
A Step-By-Step Procedure to The

Numerical Solution for

Time-Dependent Partial

Derivative Equations in Three

Spatial Dimensions

Xi Wang
Xinyan Lin

Supervisor: Jan Röman
School of Education, Culture and Communication

Mälardalen University
2012.09.17

Declaration

We declare that this thesis was composed by ourselves and that the work contained therein is
our own, except where explicitly stated otherwise in the text.

(Xi Wang
Xinyan Lin)

2

Acknowledgement

To our supervisor Jan Röman who is the lecturer of Analytical Finance I and II, assistant vice
president and head of market risk in Swedbank in Sweden. First of all, thanks for giving us such
a challengeable topic. Secondly, we appreciate your invaluable experience, patience, encourage-
ment and continuous support. Otherwise, this paper would not have been achieved so far.
Also, thanks to two PHD students: Karl Lundeng̊ard and Christopher Engström in Mälardalen
University, they are also the lecturers in the course Applied Matrix Analysis and Numerical
Method with Matlab. With their experiences and knowledge, the matrices in programming
part have been dealt with successfully.

3

Abstract

Derivative market has been trading for quite a long time, like options, futures. Meanwhile,
interest rate derivative market is the biggest derivative market among the others in the world.
In recent years, interest rate derivative arises much concern for various purposes. For example,
an investor from one country may have access to getting involved in some derivatives in another
country by exposing himself to the exchange rate. However, in this situation, simulation meth-
ods to value such derivative might seem inadequate. On the other hand, numerical methods,
which have done remarkable job when applied to the valuation, therefore, are strongly recom-
mended in the academic community. This paper consolidates insights from another seminar
paper [3] which proposes a Partial Differential Equation (PDE) approach to price cross-currency
interest rate derivatives in terms of three correlated processes, uses finite difference methods
for the spatial discretization of the PDE, and proves that the Alternative Direction Implicit
is the most efficient method to solve such PDE. However, no detailed procedure is shown to
solve the time-dependent parabolic PDE in three spatial dimensions. Thus, our work focuses
on providing step-by-step instructions that enable the reader to follow to solve the parabolic
PDE by finite difference method. Meanwhile, this paper is a guide for readers to see how the
PDE is applicable to general realistic financial problems.

4

Contents

Abstract 4

List of Figures 6

1 Introduction 7

2 Derivation of the PDE 8
2.1 Introducing the three dynamic processes and the functions 8
2.2 Ito‘s lemma . 8

3 The Alternative Direction Implicit Scheme 10
3.1 finite differences . 10
3.2 Alternating Direction Implicit Method . 11

4 The HV scheme 14
4.1 Discover splitting scheme . 14

5 Boundary conditions for the ADI method 16

6 Thomas Algorithm 18

7 Summary 19

8 Future Work 20

9 Bibliography 21

A First Appendix 22

B Second Appendix 23

C ”Fixed notional” method 24

D Codes in Matlab 25

5

List of Figures

3.1 The split in three dimensions . 12

5.1 Illustration on the boundary conditions and the solution area 17

6.1 Illustration on Diagonal Matrix transformation by Thomas algorithm 18

6

Chapter 1

Introduction

In this paper, we investigate the cross-currency swap by using the PDE approach. Particularly,
it is floating to floating cross-currency swap which involves foreign exchange rate and the interest
rates for two currencies. The current standard modeling of such products consist of two one-
factor Gaussian models for the term structures and one-factor log-normal model for the spot
FX rate [3][10]. However, these three time-dependent variables construct a three dimension
problem. Generally, such PDE is considered to be a massively computational challenge if it is
solved straightforward. Therefore, we also investigate the efficient and well-known Alternative
Direction Implicit (ADI) method to solve the PDE.
In this paper we avoid to discuss the models and the parameters in the models, but only focus
on the how the PDE approach is applied to find the value of such derivatives. The outline of
the rest of this paper is arranged as follows. In section 2, we present the models and show how
the PDE is derived. Section 3 and 4, Alternative Direction Implicit method and the splitting
method are demonstrated, so that making a bunch of equations into a nice and acceptable
accuracy scheme which results in a convenience computer programming system. Section 5 and
6; generally give a short introduction to the boundary conditions and the Thomas Algorithm.
Section 7 and 8 give a short summary and future work.

7

Chapter 2

Derivation of the PDE

2.1 Introducing the three dynamic processes and the func-
tions

Let u(s, rd, rf , t) denote the domestic value function of a security, where s is spot foreign
exchange rate; rd,rf are the domestic and foreign short rate respectively [3].
Assume the spot FX as follows [9]:

ds(t) = (rd(t)− rf (t))s(t)dt+ γ(t, s(t))s(t)dWs(t) (2.1.1)

where Ws(t) is a Brownian motion. rd and rf follow the mean-reverting Hull-White model and
have the following dynamics [9]:

drd(t) = (θd(t)− κd(t)rd(t))dt+ σd(t)dWd(t) (2.1.2)

drf (t) = (θf (t)− κf (t)rf (t))dt− ρs,f (t)σf (t)γ(t, s(t))dt+ σf (t)dWf (t) (2.1.3)

where deterministic functions κi(t) and σi(t), with i = d, f , are the mean reversion rates and the
volatility functions. Deterministic function θi(t) is a function of time determining the average
direction in which ri moves. dWd(t) and dWf (t) are the other Brownian motions with respect
to rd and rf .
The ”quanto” drift adjustment, −ρs,fσf (t)γ(t, s(t)) for drf (t) comes from changing the measure
from the foreign risk-neutral measure to the domestic risk neutral one. γ(t, s(t)) is the local
volatility function for the spot FX rate has the functional form [9]

γ(t, s(t)) = ξ(t)

(
s(t)

L(t)

)ζ(t)−1
(2.1.4)

where ξ(t) is the relative volatility function, ζ(t) is the time-dependent constant elasticity of
variance (CEV) parameter and L(t) is a time-dependent scaling constant [3].

2.2 Ito‘s lemma

Because the normalized price process of any security is a martingale under the domestic risk-
neutral measure, it is easy to apply the Ito‘s lemma and simply set the drift term to be zero.
Ito‘s lemma gives:

du =
∂u

∂t
dt+

∂u

∂s
ds+

∂u

∂rd
drd +

∂u

∂rf
drf +

1

2

∂2u

∂s2
ds2 +

1

2

∂2u

∂r2d
dr2d +

1

2

∂2u

∂r2f
dr2f

+
∂2u

∂rd∂s
dsdrd +

∂2u

∂rf∂s
dsdrf +

∂2u

∂rf∂rd
drddrf (2.2.1)

8

Substituting the dynamics gives:

du =
∂u

∂t
dt+

∂u

∂s
((rd(t)− rf (t))s(t)dt+ γ(t, s(t))s(t)dWs(t))

+
∂u

∂rd
((θd(t)− κd(t))rd(t)dt+ σd(t)dWd(t))

+
∂u

∂rf
((θf (t)− κf (t)rf (t))dt− ρfs(t)σf (t)γ(t, s(t))dt+ σf (t)dWf (t))

+
1

2

∂2u

∂s2
(γ2(t, s(t))s2(t)dt) +

1

2

∂2u

∂r2d
(σ2
d(t)dt) +

1

2

∂2u

∂r2f
(σ2
f (t)dt)

+
∂2u

∂s∂rd
(ρs,dσd(t)γ(t, s(t))sdt) +

∂2u

∂s∂rf
(ρs,fσf (t)γ(t, s(t))sdt)

+
∂2u

∂rd∂rf
(ρd,fσd(t)σf (t)dt) (2.2.2)

Rearrange the above equation and group the - dt terms, because of the martingale property, by
setting these terms equal to zero the PDE is derived as:

∂u

∂t
+ (rd − rf)s

∂u

∂s
+ (θd(t)− κd(t)rd)

∂u

∂rd

+ (θf (t)− κf (t)rf − ρf,sσf (t)γ(t, s(t)))
∂u

∂rf

+
1

2
γ2(t, s(t))s2

∂2u

∂s2
+

1

2
σ2
d(t)

∂2u

∂r2d
+

1

2
σ2
f (t)

∂2u

∂r2f

+ ρs,dσd(t)γ(t, s(t))s
∂2u

∂s∂rd
+ ρs,fσf (t)γ(t, s(t))s

∂2u

∂s∂rf
+ ρd,fσd(t)σf (t)

∂2u

∂rd∂rf
− rdu

= 0 (2.2.3)

9

Chapter 3

The Alternative Direction
Implicit Scheme

3.1 finite differences

In the discretization, the first and second derivative terms can all be approximated by the
central difference method as presented following [3][7]:

∂u

∂s
≈
umi+1,j,k − umi−1,j,k

24s
,
∂2u

∂s2
≈
umi+1,j,k − 2umi,j,k + umi−1,j,k

4s2
(3.1.1)

Similarly,
∂u

∂rd
≈
umi,j+1,k − umi,j−1,k

24rd
,
∂2u

∂r2d
≈
umi,j+1,k − 2umi,j,k + umi,j−1,k

4r2d
(3.1.2)

∂u

∂rf
≈
umi,j,k+1 − umi,j,k−1

24rf
,
∂2u

∂r2f
≈
umi,j,k+1 − 2umi,j,k + umi,j,k−1

4r2f
(3.1.3)

∂u

∂t
≈
umi,j,k − u

m−1
i,j,k

4t
(3.1.4)

While the cross-derivative terms are approximated by a four-point finite difference:

∂2u

∂rd∂s
=
umi+1,j+1,k + umi−1,j−1,k − umi−1,j+1,k − umi+1,j−1,k

44s4rd
(3.1.5)

∂2u

∂rf∂s
=
umi+1,j,k+1 + umi−1,j,k−1 − umi−1,j,k+1 − umi+1,j,k−1

44s4rf
(3.1.6)

∂2u

∂rd∂rf
=
umi,j+1,k+1 + umi,j−1,k−1 − umi,j−1,k+1 − umi,j+1,k−1

44rf4rd
(3.1.7)

Where, m denotes the time index, and i, j, k denote the s−, r−d , r−f direction.
Because we solve the PDE backward in time, by changing variable τ = Tend−Tstart [3] the above
differential equation 2.2.3 can be rewritten as following when substitute the finite differences in

10

the corresponding terms:

(rd − rf)s

(
umi+1,j,k − umi−1,j,k

24s

)
+

1

2
γ2(t, s(t))s2

(
umi+1,j,k − 2umi,j,k + umi−1,j,k

4s2

)
+ (θd(t)− κd(t)rd)

(
umi,j+1,k − umi,j−1,k

24rd

)
+

1

2
σ2
d(t)

(
umi,j+1,k − 2umi,j,k + umi,j−1,k

4r2d

)
+ (θf (t)− κf (t)rf − ρf,sσf (t)γ(t, s(t)))

(
umi,j,k+1 − umi,j,k−1

24rf

)
+

1

2
σ2
f (t)

(
umi,j,k+1 − 2umi,j,k + umi,j,k−1

4r2f

)

+ ρs,dσd(t)γ(t, s(t))s

(
umi+1,j+1,k + umi−1,j−1,k − umi−1,j+1,k − umi+1,j−1,k

44s4rd

)
+ ρs,fσf (t)γ(t, s(t))s

(
umi+1,j,k+1 + umi−1,j,k−1 − umi−1,j,k+1 − umi+1,j,k−1

44s4rf

)
+ ρd,fσd(t)σf (t)

(
umi,j+1,k+1 + umi,j−1,k−1 − umi,j−1,k+1 − umi,j+1,k−1

44rf4rd

)
− rdu

=

(
umi,j,k − u

m−1
i,j,k

4τ

)
(3.1.8)

Rearrange in terms of the directions i−, j−, k−:(
(rd − rf)s

24s
+
γ2(t, s(t))s2

24s2

)
umi+1,j,k +

(
− (rd − rf)s

24s
+
γ2(t, s(t))s2

24s2

)
umi−1,j,k

− γ2(t, s(t))s2

4s2
umi,j,k +

(
θd(t)− κd(t))rd

24rd
+
σ2
d(t)

24r2d

)
umi,j+1,k

+

(
−θd(t)− κd(t))rd

24rd
+
σ2
d(t)

24r2d

)
umi,j−1,k −

σ2
d(t)

4r2d
umi,j,k

+

(
θf (t)− κf (t)rf − ρf,sσf (t)γ(t, s(t))

24rf
+
σ2
f (t)

24r2f

)
umi,j,k+1 −

σ2
f (t)

4r2f
umi,j,k

+

(
−θf (t)− κf (t)rf − ρf,sσf (t)γ(t, s(t))

24rf
+
σ2
f (t)

24r2f

)
umi,j,k−1

+
ρs,dσd(t)γ(t, s(t))s

44s4rd
(
umi+1,j+1,k + umi−1,j−1,k − umi−1,j+1,k − umi+1,j−1,k

)
+

ρs,fσf (t)γ(t, s(t))s

44s4rf
(
umi+1,j,k+1 + umi−1,j,k−1 − umi−1,j,k+1 − umi+1,j,k−1

)
+

ρd,fσd(t)σf (t)

44rf4rd
(
umi,j+1,k+1 + umi,j−1,k−1 − umi,j−1,k+1 − umi,j+1,k−1

)
− rdu

=
umi,j,k − u

m−1
i,j,k

4τ
(3.1.9)

3.2 Alternating Direction Implicit Method

The basic idea behind the ADI method is to split the finite difference equations into different
directions. Since in our case, the three dimensions form a cube for every time step, Figure 3.1
demonstrates the idea.
For each split, only one direction is taken implicit. As the procedure continues, the exact
solution will be found. From the finite difference method, Equation 3.1.9 can be written in the

11

Figure 3.1: The split in three dimensions

form:

Am1 +Am2 +Am3 +Am0 =
um − um−1

4τ
(3.2.1)

Where Am1 ,Am2 ,Am3 denote the terms in each direction. Am0 denotes the cross derivative terms,
are treated in an explicit fashion. And assume the term rdu is distributed evenly overAm1 ,Am2 ,Am3
[3]. Therefore:

Am1 =
∂u

∂s
+
∂2u

∂s2
− 1

3
rd

Am2 =
∂u

∂rd
+
∂2u

∂r2d
− 1

3
rd

Am3 =
∂u

∂rf
+
∂2u

∂r2f
− 1

3
rd

Am0 =
∂2u

∂rd∂s
+

∂2u

∂rd∂rf
+

∂2u

∂rf∂s
(3.2.2)

In order to see the tri-diagonal, we can do the following transformation:

Am1 = a ∗ umi+1,j,k + b ∗ umi−1,j,k −
γ2s2

4s2
∗ umi,j,k −

1

3
rd ∗ umi,j,k

Am2 = c ∗ umi,j+1,k + d ∗ umi,j−1,k −
σ2
d

4r2d
∗ umi,j,k −

1

3
rd ∗ umi,j,k

Am3 = e ∗ umi,j,k+1 + f ∗ umi,j,k−1 −
σ2
f

4r2f
∗ umi,j,k −

1

3
rd ∗ umi,j,k (3.2.3)

In such form, the following matrices represent the Am1 ,Am2 ,Am3 respectively:

Am1 =


−γ

2s2

4s2 −
1
3rd a · · · 0

b
. . .

...

0 · · · −γ
2s2

4s2 −
1
3rd



Am2 =


− σ2

d

4r2d
− 1

3rd c · · · 0

d
. . .

...

0 · · · − σ2
d

4r2d
− 1

3rd



12

Am3 =


− σ2

f

4r2f
− 1

3rd e · · · 0

f
. . .

...

0 · · · − σ2
f

4r2f
− 1

3rd


Where

a =
(rd − rf)s

24s
+

γ2s2

24s2

b = − (rd − rf)s

24s
+

γ2s2

24s2

c =
(θd − κdrd)

24rd
+

σ2
d

24r2d

d = − (θd − κdrd)
24rd

+
σ2
d

24r2d

e =
(θf − κfrf − ρs,fσfγ)

24rf
+

σ2
f

24r2f

f = − (θf − κfrf − ρs,fσfγ)

24rf
+

σ2
f

24r2f

13

Chapter 4

The HV scheme

The Hundsdorfer and Verwer (HV) [5] splitting scheme as suggested in [3] approximates the
exact solution Um:


V0 = Um−1 +4(Am−1Um−1 + gm−1)

(I − 1
24τA

m
i)Vi = Vi−1 − 1

24τA
m−1
i + 1

24τ(gmi − g
m−1
i), i = 1, 2, 3

Ṽ0 = V0 + 1
24τ(AmV3 −Am−1Um−1) + 1

24τ(gm − gm−1)

(I − 1
24τA

m
i)Ṽi = Ṽi−1 − 1

24τA
m
i V3, i = 1, 2, 3

Um = Ṽ3.

Here the vector gm is the boundary conditions for the corresponding directions, will be discussed
in the later section. In our case, the boundary conditions form a cube. Besides, from now on,
the A matrices are defined in a slightly different manner because of the computational and
programming purpose; they are presented in the Appendix A.

4.1 Discover splitting scheme

Applying the Douglas [4] ADI scheme to the equation 3.2.1, obtain a first evaluate of the
solution at time m+ 1 by taking implicitly half of the A1 :

1

2
A1(um+ 1

3 + um) +A2u
m +A3u

m +A0u
m =

um+ 1
3 − um

4τ
(4.1.1)

Then, taking half of the A2 ,A3 respectively,

1

2
A1(um+ 1

3 + um) +
1

2
A2(um+ 2

3 + um) +A3u
m +A0u

m =
um+ 2

3 − um

4τ
(4.1.2)

1

2
A1(um+ 1

3 + um) +
1

2
A2(um+ 2

3 + um) +
1

2
A3(um+1 + um) +A0u

m =
um+1 − um

4τ
(4.1.3)

The intermediate values um+ 1
3 , um+ 2

3 can be eliminated. The reader is strongly recommended
to the reference [4] for detailed elimination procedures.
For splitting purpose, the above can be rewritten as:

(I − 1

2
4τA1)um+ 1

3 = um +4τ(A2u
m +A3u

m +A0u
m) +

1

2
4τA1u

m (4.1.4)

(I − 1

2
4τA2)um+ 2

3 = um +
1

2
4τA1(um+ 1

3 + um) +
1

2
A2u

m +A3u
m +A0u

m (4.1.5)

(I − 1

2
4τA3)um+1 = um +

1

2
4τA1(um+ 1

3 + um) +
1

2
A2(um+ 2

3 + um)

+
1

2
A3u

m +A0u
m (4.1.6)

14

For the programming purpose, the above can be sorted as:{
V0 = Um +4τ(AmUm)

(I − 1
24τAi)Vi = Vi−1 − 1

24τA
m−1
i Um i = 1, 2, 3

(4.1.7)

Where Am is the sum of the A0, A1, A2, A3, and Vi with i = 1, 2, 3 is corresponding to um+ 1
3 ,

um+ 2
3 , um+1 in equation 4.1.4, 4.1.5, 4.1.6.

The scheme 4.1.7 is so called Douglas-Rachford method (DR method). The HV method is
derived in a similar manner, while, taking more steps to stabilize the solution on each step
to ensure the final solution, can be viewed as an extension of DR method. In 4.1.4, there
are actually I + 1 equations, but only three unknown variables for each equation regardless

the boundary conditions, namely u
m+ 1

3

i−1,j,k, u
m+ 1

3

i,j,k , u
m+ 1

3

i+1,j,k. Similarly, in j and k directions,

u
m+ 2

3

i,j−1,k,u
m+ 2

3

i,j,k ,u
m+ 2

3

i,j+1,k,um+1
i,j,k−1,um+1

i,j,k ,um+1
i,j,k+1 are unknown. As stated earlier, A1, A2, A3 are

tri-diagonal matrices, therefore, the equations 4.1.4, 4.1.5, 4.1.6 can be expressed below:

(
I − 1

2
4τA1

)


u
m+ 1

3

1,j,k

u
m+ 1

3

2,j,k

u
m+ 1

3

3,j,k

u
m+ 1

3

4,j,k
...

u
m+ 1

3

i,j,k


= [ω1]

(
I − 1

2
4τA2

)


u
m+ 2

3

i,1,k

u
m+ 2

3

i,2,k

u
m+ 2

3

i,3,k

u
m+ 2

3

i,4,k
...

u
m+ 2

3

i,j,k


= [ω2]

(
I − 1

2
4τA3

)


um+1
i,j,1

um+1
i,j,2

um+1
i,j,3

um+1
i,j,4
...

um+1
i,j,k


= [ω3]

ω1 is a (I + 1)× 1 dimension vector with components:

ω1 = um +4τ(A2u
m +A3u

m +A0u
m) +

1

2
4τA1u

m

Similar to ω2 and ω3 , but the dimensions are (J + 1)× 1 and (K + 1)× 1 respectively.

ω2 = um +
1

2
4τA1(um+ 1

3 + um) +
1

2
A2u

m +A3u
m +A0u

m

ω3 = um +
1

2
4τA1(um+ 1

3 + um) +
1

2
A2(um+ 2

3 + um) +
1

2
A3u

m +A0u
m

15

Chapter 5

Boundary conditions for the ADI
method

In numerical method, it is unnecessary to construct the whole universe; therefore, work must be
done to decide the region we are only interested in. Proper boundary conditions can significantly
reduce the computation time and increase the accuracy of the results. In other words, the
boundary condition is one of the most significant parts of such PDE functions. There are
many boundary conditions can be applied to PDE function, for example, Dirichlet boundary
conditions, Neumann boundary conditions and mixed boundary conditions. Nevertheless, some
boundary conditions can be very complicated. For the Neumann boundary conditions, instead
of having fixed values on the bonded surfaces, it uses the derivatives. For instance, in the s−

direction, the second-order one-sided approximation gives the following:

∂u

∂s
≈

4 ∗ umi+1,j,k − umi+2,j,k − 3 ∗ umi,j,k
24s

= g1 forward

∂u

∂s
≈
umi−2,j,k − 4 ∗ umi−1,j,k + 3 ∗ umi,j,k

24s
= g2 backward

The start and end surfaces are um0,j,k, umI,j,k and then, the um0,j,k and umI,j,k are solved from the
forward and backward differences which will result in the different coefficients in the matrix on
the left hand side of the equation as well as the right hand side. This boundary condition is
more complicated in implementations. We will continue to discuss this topic in the next paper,
where we will do the calibrations and show different boundary conditions result in comparable
results. For now, in this paper, we simply apply the Dirichlet boundary conditions where there
are fixed values on the end surfaces. This type of the boundary condition takes the values on
the boundary points as known, but only changes the right hand side of the equation when the
boundary conditions are considered. 

F1 − g1
F2

F3

...

...
Fn−1
Fn − gn


To be more explicit, in our case, the boundary conditions are surfaces. Figure 5.1 below
illustrates the boundaries and the area we are really concern about which is indicated by the
red hypercube. Readers can get helps to understand the boundary conditions by having a look
at the [1, 2, 6] in the reference.

16

Figure 5.1: Illustration on the boundary conditions and the solution area

17

Chapter 6

Thomas Algorithm

HV scheme has made the algorithm clear enough to solve the Um, but since the algorithm
involves solving a large number of systems of equations which may cause difficulties in the
implementation. Fortunately, knowing that A1, A2, A3 are three tri-diagonal matrices, the
Thomas algorithm [11] has been invented and recommended to help us to do the job. The basic
idea behind the algorithm is substitution which will result in a new tri-diagonal matrix. Of
course, the vector on the right hand side of the equation will be substituted as well. However,
the advantage is, the elements in sub-diagonal in new tri-diagonal matrix are zeros, and the
diagonal elements are ones. Figure 6.1 illustrates how the diagonal matrix is transformed using
the Thomas algorithm.

Figure 6.1: Illustration on Diagonal Matrix transformation by Thomas algorithm

18

Chapter 7

Summary

Up until here we have made complete procedures to the numerical method for three dimensional
partial derivative equations. As can be seen, such problems could be extremely complex. The
matrices we illustrated on this paper only reflect the general forms. When the indices are
considered, we are actually dealing with hundreds of equations. Thus, to find the final exact
solution, every step is critical; our goal is to efficiently obtain the solution with high accuracy.
Thanks to the other academicians; the problems in the real situations can successfully be solved
even with different order of errors. The programming languages have been playing a vital part,
for example the MATLAB, C++, etc., in the appendix; we enclose the MATLAB program for
solving such problems. However, the program has to be modified for any other specific type of
instruments. Therefore, in this paper, we skip analyzing the results from the program but only
give a short insight into it. More details will be covered in the next paper.

19

Chapter 8

Future Work

So far, this paper only gives the general understanding to the numerical method of solving partial
differential equations in three dimensions. As has been said in the introduction, this paper has
not talked about any parameters in the formulas; obviously, those parameters will significantly
influence the results. In the next paper, will test the program and try to calibrate the parameters
from the real market data. When dealing with the real market data, the boundary conditions
we consider in the paper may not be suitable anymore because of the time-dependent variables.
Thus, to achieve great accuracy, more specific boundary conditions will be included. Finally,
the MATLAB program built in the way that suits for general instruments whichever involves
three dimensions, estimating some of such popularly traded instruments will be illustrated in
the next paper as well.

20

Chapter 9

Bibliography

[1] Nasser M. Abbasi. Neumann boundary conditions on 2d grid with non-uniform mesh space
for elliptic pde, 2012.

[2] Wolfgang Arendt and Mahamadi Warma. Dirichlet and neumann boundary condi-
tions:what is in between? Journal of Evolution Equations, 3:119–135, 2003.

[3] Duy Minh Dang, Christina C. Christara, Kenneth R. Jackson, and Asif Lakhany. A pde
pricing framework for cross-currency interest rate derivatives. Procedia CS, 1(1):2371–2380,
2010.

[4] Jim Douglas. Alternating direction methods for three space variables. Numerische Math-
ematik, 4:41–63, 1962.

[5] K.J. in ’t Hout and B.D. Welfert. Unconditional stability of second-order adi schemes
applied to multi-dimensional diffusion equations with mixed derivative terms. Applied
Numerical Mathematics, 59(34):677 – 692, 2009. ¡ce:title¿Selected Papers from NUMDIFF-
11¡/ce:title¿.

[6] J.Izadian and S.S.Jalalian. A new method for solving 3d elliptic problem with dirichlet
or neumann boundary conditions using finite difference method. Applied Mathematical
Sciences, 6(34):1655–1666, 2012.

[7] Zhilin Li. Finite difference method basics.

[8] Sensen Lin. Finite difference schemes for heston model, 2008.

[9] Vladimir Piterbarg. Smiling hybrids. Risk magazine, pages 66–70, May 2006.

[10] Jason Sippel and Shoichi Ohkoshi. All power to prdc notes. Risk magazine, pages 31–33,
November 2002.

[11] W.T.Lee. Tridiagonal matrices: Thomas algorithm.

21

Appendix A

First Appendix

For the programming purpose, the following transformations are needed which are based on
Lin’s work[8]. We let:

4t
4s = Rs,

4t
4s2 = Rss, u

m
i+1,j,k − umi−1,j,k = δs ∗ umi,j,k,

umi+1,j,k − 2umi,j,k + umi−1,j,k = δss ∗ umi,j,k
4t
4rd = Rd,

4t
4r2d

= Rdd, u
m
i,j+1,k − umi,j−1,k = δd ∗ umi,j,k,

umi,j+1,k − 2umi,j,k + umi,j−1,k = δdd ∗ umi,j,k
4t
4rf = Rf ,

4t
4r2f

= Rff , u
m
i,j,k+1 − umi,j,k−1 = δf ∗ umi,j,k,

umi,j,k+1 − 2umi,j,k + umi,j,k−1 = δff ∗ umi,j,k
4t
4rd4s = Rsd,

4t
4rf4s = Rsf ,

4t
4rd4f = Rdf

umi+1,j+1,k + umi−1,j−1,k − umi−1,j+1,k − umi+1,j−1,k = δsdu
m
i,j,k

umi+1,j,k+1 + umi−1,j,k−1 − umi−1,j,k+1 − umi+1,j,k−1 = δsfu
m
i,j,k

umi,j+1,k+1 + umi,j−1,k−1 − umi,j+1,k−1 − umi,j−1,k+1 = δdfu
m
i,j,k

A1 =
(rd−rf)s

2 Rsδs + γ2s2

2 Rssδss − 1
3rd

A2 = θd−κdrd
2 Rdδd +

σ2
d

2 Rddδdd −
1
3rd

A3 =
θf−κfrf−ρs,fσfγ

2 Rfδf +
σ2
f

2 Rffδff −
1
3rd

A0 =
ρs,dσdγs

4 Rsdδsd+
ρs,fσfγs

4 Rsfδsf +
ρd,fσfσd

4 Rdfδdf

Represents A1, A2, A3 in the tri-diagonal matrix form as:

A1 =


−γ

2s2

4s2 −
1
3rd

(rd−rf)s
24s + γ2s2

24s2 · · · 0

− (rd−rf)s
24s + γ2s2

24s2
. . .

...
... · · · −γ

2s2

4s2 −
1
3rd



A2 =


− σ2

d

4r2d
− 1

3rd
θd−κdrd
24rd +

σ2
d

24r2d
· · · 0

− θd−κdrd
24rd +

σ2
d

24r2d

. . .
...

... · · · − σ2
d

4r2d
− 1

3rd



A3 =


− σ2

f

4r2f
− 1

3rd
θf−κfrf−ρs,fσfγ

24rf +
σ2
f

24r2f
· · · 0

− θf−κfrf−ρs,fσfγ
24rf +

σ2
f

24r2f

. . .
...

... · · · − σ2
f

4r2f
− 1

3rd



22

Appendix B

Second Appendix

For the boundary conditions, approximations to the partial derivative have to be forward and
backward second-order one-sided finite difference. More specifically, for the boundary on the
first points, use the forward difference, for the last points, use the backward points Secondorder
onesided approximation for the derivatives:

∂u

∂s
≈

4 ∗ umi+1,j,k − umi+2,j,k − 3 ∗ umi,j,k
24s

forward

∂u

∂s
≈
umi−2,j,k − 4 ∗ umi−1,j,k + 3 ∗ umi,j,k

24s
backward

∂u

∂rd
≈

4 ∗ umi,j+1,k − umi,j+2,k − 3 ∗ umi,j,k
24rd

forward

∂u

∂rd
≈
umi,j−2,k − 4 ∗ umi,j−1,k + 3 ∗ umi,j,k

24rd
backward

∂u

∂rf
≈

4 ∗ umi,j,k+1 − umi,j,k+2 − 3 ∗ umi,j,k
24rf

forward

∂u

∂rf
≈
umi,j,k−2 − 4 ∗ umi,j,k−1 + 3 ∗ umi,j,k

24rf
backward

23

Appendix C

”Fixed notional” method

In our paper, we have been discussing the floating-to-floating cross-currency swap, this con-
structs a structure that the two parties receive the floating from one currency and pay the
floating in another. The ”fixed notional” method can be used to approximate the cash flows
from the floating payment receives. Take the domestic investor for example; the cash inflow
for each time period is vτLd(Tτ)Nd, where vτ is the year fraction, and Ld(Tτ) is the domestic
Libor rate, Nd is the principal. However, this cash inflow is equivalent to: getting Nd at Tτ−1,
and then invest it at rate Ld, at time Tτ , return Nd. The interest rate generated from this
transaction will be exactly the same as vτLd(Tτ)Nd. If we do the same for each period, will
result in only the principals receives at Tstart and pays at Tend are relevant, where the all cash
flows between are cancelled out. Therefore, to be more specifically, only the discount factor
from Tstart to Tend is needed to estimate the cash flows on this side.

24

Appendix D

Codes in MATLAB

function f = TransformA0 (u0 , rhosd , rhos f , rhodf , sigmad , sigmaf ,gamma, dt)
clear f
ns = s ize (u0 , 1) − 1 ;
nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
s l i n e = 0 : 1 : ns ;
d l i n e = 0 : 1 : nrd ;
f l i n e = 0 : 1 : n r f ;
u1 = u0 (3 : ns + 1 , 3 : nrd + 1 , 2 : n r f) . . .

+ u0 (1 : ns − 1 , 1 : nrd − 1 , 2 : n r f) . . .
− u0 (1 : ns − 1 , 3 : nrd + 1 , 2 : n r f) . . .
− u0 (3 : ns + 1 , 1 : nrd − 1 , 2 : n r f) ;

u2 = u0 (3 : ns + 1 , 2 : nrd , 3 : n r f + 1) . . .
+ u0 (1 : ns − 1 , 2 : nrd , 1 : n r f − 1) . . .
− u0 (1 : ns − 1 , 2 : nrd , 3 : n r f + 1) . . .
− u0 (3 : ns + 1 , 2 : nrd , 1 : n r f − 1) ;

u3 = u0 (2 : ns , 3 : nrd + 1 , 3 : n r f + 1) . . .
+ u0 (2 : ns , 1 : nrd − 1 , 1 : n r f − 1) . . .
− u0 (2 : ns , 1 : nrd − 1 , 3 : n r f + 1) . . .
− u0 (2 : ns , 3 : nrd + 1 , 1 : n r f − 1) ;

u4 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
u4 (2 : ns , 2 : nrd , 2 : n r f) = u1 ;

u5 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
u5 (2 : ns , 2 : nrd , 2 : n r f) = u2 ;

u6 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
u6 (2 : ns , 2 : nrd , 2 : n r f) = u3 ;

sd = s l i n e ’∗ d l i n e ;
s f = s l i n e ’∗ f l i n e ;
df = d l ine ’∗ f l i n e ;

f 1 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
f 2 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
f 3 = zeros (ns + 1 , nrd + 1 , n r f + 1) ;
for i = 1 : ns + 1

f1 (: , : , i) = sd∗u4 (: , : , i) ;
f 2 (: , : , i) = s f ∗u5 (: , : , i) ;
f 3 (: , : , i) = df ∗u6 (: , : , i) ;

end
f 11 = rhosd ∗ sigmad∗gamma∗dt∗ f 1 /4 ;
f22 = rho s f ∗ s igmaf ∗gamma∗dt∗ f 2 /4 ;
f33 = rhodf ∗ s igmaf ∗ sigmad∗dt∗ f 3 /4 ;
f 0 = f11 + f22 + f33 ;
f = f0 ;

end

25

function f = TransformA1 (u0 , rd , r f ,gamma, dt)
clear f

ns = s ize (u0 , 1) − 1 ;
nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
s l i n e = 1 : ns−1;

f = zeros (s ize (u0)) ;
B1 = s l i n e .ˆ2∗gamma. ˆ 2 / 2 ;
B1 = [B1 ’ ; 0 ; 0] ;
B2 = −s l i n e .ˆ2∗gamma. ˆ 2 ;
B2 = [0 ; B2 ’ ; 0] ;
B3 = s l i n e .ˆ2∗gamma. ˆ 2 / 2 ;
B3 = [0 ; 0 ; B3 ’] ;
B = spdiags ([B1 B2 B3] , [−1 0 1] , ns + 1 , ns + 1) ;

C1 = − (rd − r f) ∗ s l i n e /2 ;
C1 = [C1 ’ ; 0 ; 0] ;
C2 = −rd∗ ones (ns − 1 , 1) /3 ;
C2 = [0 ; C2 ; 0] ;
C3 = (rd − r f) ∗ s l i n e /2 ;
C3 = [0 ; 0 ; C3 ’] ;
C = spdiags ([C1 C2 C3] , [−1 0 1] , ns + 1 , ns + 1) ;

for j = 2 : nrd
for k = 2 : n r f

P1 = u0 (: , j , k) ;
G1 = B + C;

temp1 = dt∗G1∗P1 ;
f (2 : ns , j , k) = temp1 (2 : ns) ;

end
end

end

function f = TransformA2 (u0 , rd , sigmad , thetad , kappad , dt)
clear f
ns = s ize (u0 , 1) − 1 ;

nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
drd = rd/nrd ;
d l i n e = 1 : nrd − 1 ;
f = zeros (s ize (u0)) ;

D1 = sigmad ˆ2/(2∗ drd . ˆ 2) − thetad /(2∗ drd) + kappad∗ d l i n e /2 ;
D1 = [D1 ’ ; 0 ; 0] ;
D2 = (−sigmad .ˆ2/ drd .ˆ2 − rd /3) ∗ ones (1 , nrd − 1) ;
D2 = [0 ;D2 ’ ; 0] ;
D3 = sigmad .ˆ2/(2∗ drd . ˆ 2) + thetad /(2∗ drd) − kappad∗ d l i n e /2 ;
D3 = [0 ; 0 ; D3 ’] ;
D = spdiags ([D1 D2 D3] , [−1 0 1] , nrd + 1 , nrd + 1) ;

for i = 2 : ns
for k = 2 : n r f

P2 = u0 (i , : , k) ’ ;
temp2 = dt∗ D∗P2 ;

f (i , 2 : nrd , k) = temp2 (2 : nrd) ;
end

end
end

26

function f = TransformA3 (u0 , rd , r f , s igmaf , rhos f ,gamma, the ta f , kappaf , dt)
clear f
ns = s ize (u0 , 1) − 1 ;

nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
d r f = r f / n r f ;
f l i n e = 1 : n r f − 1 ;
f = zeros (s ize (u0)) ;

E1 = sigmaf .ˆ2/(2∗ dr f . ˆ 2)−t h e t a f /(2∗ dr f)+kappaf∗ f l i n e /2+rho s f ∗ s igmaf ∗
gamma/(2∗ dr f) ;

E1 = [E1 ’ ; 0 ; 0] ;
E2 = (− s igmaf .ˆ2/ d r f . ˆ2 − rd /3) ∗ ones (1 , n r f − 1) ;
E2 = [0 ; E2 ’ ; 0] ;
E3 = sigmaf .ˆ2/(2∗ dr f . ˆ 2)+the t a f /(2∗ dr f)−kappaf∗ f l i n e /2− r ho s f ∗ s igmaf ∗

gamma/(2∗ dr f) ;
E3 = [0 ; 0 ; E3 ’] ;
E = spdiags ([E1 E2 E3] , [−1 0 1] , n r f + 1 , n r f + 1) ;

for i = 2 : ns
for j = 2 : nrd

P3 = u0 (i , j , :) ;
P3 = reshape (P3 , [n r f + 1 , 1]) ;

temp3 = dt∗ E∗P3 ;
f (i , j , 2 : n r f) = temp3 (2 : n r f) ;

end
end

end

function f = ThomasA1(u0 , rd , r f ,gamma, boundary1 , boundary11 , dt)
clear f
ns = s ize (u0 , 1) − 1 ;
nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
i l i n e = 1 : ns − 1 ;
f = zeros (s ize (u0)) ;
for j = 2 : nrd

for k = 2 : n r f
stp = u0 (2 : ns , j , k) ;
a = (rd − r f) ∗ i l i n e ∗dt /2 − gamma. ˆ2∗ i l i n e . ˆ2∗dt /2 ;
b = 1 + gammaˆ2∗ i l i n e . ˆ2∗dt + rd∗dt /3 ;
c = − (rd − r f) ∗ i l i n e ∗dt /2 − gamma. ˆ2∗ i l i n e .ˆ2∗ dt /2 ;

stp (1) = stp (1) − a (1) ∗boundary1 ;
stp (ns−1) = stp (ns−1)−c (ns−1)∗boundary11 ;

for l = 2 : ns − 1
m = a (l) /b (l − 1) ;
b (l) = b(l) − m∗c (l − 1) ;
s tp (l) = stp (l) − m∗ stp (l − 1) ;

end

f (ns , j , k) = stp (ns − 1) /b(ns − 1) ;
for l = ns − 2 : −1: 1

f (l + 1 , j , k) = (stp (l) − c (l) ∗ f (l + 1 , j , k)) /b(l) ;
end

end
end

end

27

function f = ThomasA2(u0 , rd , drd , sigmad , thetad , kappad , boundary2 , boundary22
, dt)

clear f
ns = s ize (u0 , 1) − 1 ;

nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
j l i n e = 1 : nrd − 1 ;
f = zeros (s ize (u0)) ;

for i = 2 : ns
for k = 2 : n r f

stp = u0 (i , 2 : nrd , k) ;
a = thetad ∗dt /(2∗ drd)−kappad∗ j l i n e ∗dt/2−sigmadˆ2∗dt /(2∗ drd

ˆ2) ;
b = (1+sigmadˆ2∗dt/drdˆ2+rd∗dt /3) ∗ ones (1 , nrd−1) ;
c = −thetad ∗dt /(2∗ drd)+kappad∗ j l i n e ∗dt/2−sigmadˆ2∗dt /(2∗ drd

ˆ2) ;
stp (1) = stp (1) − a (1) ∗boundary2 ;

stp (nv−1) = stp (nv−1) − c (nv−1)∗boundary22 ;
for l = 2 : nrd − 1

m = a (l) /b (l − 1) ;
b (l) = b(l) − m∗c (l − 1) ;

stp (l) = stp (l) − m∗ stp (l − 1) ;
end

f (i , nrd , k) = stp (nrd − 1) /b(nrd − 1) ;

for l = ns − 2 : −1 : 1
f (i , l + 1 , k) = (stp (l) − c (l) ∗ f (i , l + 1 , k)) /b(l) ;

end
end

end
end

function f = ThomasA3(u0 , rd , drf , s igmaf , theta f , kappaf , rhos f , . . .
gamma, boundary3 , boundary33 , dt)

clear f
ns = s ize (u0 , 1) − 1 ;

nrd = s ize (u0 , 2) − 1 ;
n r f = s ize (u0 , 3) − 1 ;
k l i n e = 1 : n r f − 1 ;
f = zeros (s ize (u0)) ;
for i = 2 : ns

for j = 2 : nrd
stp = u0 (i , j , 2 : n r f) ;

a =(th e t a f ∗dt /(2∗ dr f)−kappaf∗ k l i n e ∗dt/2− r ho s f ∗ s igmaf ∗gamma) ∗dt
/(2∗ dr f)−s igmaf ˆ2∗dt /(2∗ dr f ˆ2) ;

b=(1+ sigmaf ˆ2∗dt/ dr f ˆ2 + rd∗dt /3) ∗ ones (1 , n r f − 1) ;
c=the t a f ∗dt/ (2∗ dr f)−kappaf∗ k l i n e ∗dt/2− r ho s f ∗ s igmaf ∗gamma∗dt

/(2∗ dr f)−s igmaf ˆ2∗dt /(2∗ dr f ˆ2) ;
s tp (1) = stp (1) − a (1) ∗boundary3 ;

stp (nv−1) = stp (nv−1) − c (nv−1)∗boundary33 ;
for l = 2 : n r f − 1

m = a (l) /b (l − 1) ;
b (l) = b(l) − m∗c (l − 1) ;
stp (l) = stp (l) − m∗ stp (l − 1) ;

end
f (i , j , n r f) = stp (n r f − 1) /b(n r f − 1) ;

for l = ns − 2 : −1 : 1
f (i , j , l + 1) = (stp (l) − c (l) ∗ f (i , j , l + 1)) /b(l) ;

end
end

end
end

28

function f = Hund (thetad , theta f , kappad , kappaf , rhos f , rhosd , rhodf , . . .
sigmad , sigmaf , gamma, s , ns , rd , nrd , r f , nr f , T, nt , Dd, Df , Nd,

boundary1 , boundary11 , boundary2 , boundary22 , boundary3 ,
boundary33)

clear f ;
dt = T/nt ;
ds = s /ns ;
drd = rd/nrd ;
d r f = r f / n r f ;
sva lue = 0 : ds : s ;
c = (1−Dd) ∗ svalue−1 +Df ;
q = ones (ns + 1 , nrd + 1 , n r f + 1) ;
b = ones (1 , nrd+1, n r f+1) ;
for i = 1 : n r f + 1

q (: , : , i) = c ’∗b (: , : , i) ;
end

u0 = Nd∗q ;
for m = 1 : nt

% f i r s t phase
v0 =u0 + TransformA0 (u0 , rhosd , rhos f , rhodf , sigmad , s igmaf gamma, dt) . . .

+ TransformA1 (u0 , rd , r f , gamma, dt) . . .
+ TransformA2 (u0 , rd , sigmad , thetad , kappad ,

dt) . . .
+ TransformA3 (u0 , rd , r f , s igmaf , rhos f , gamma,

. . . the ta f , kappaf , dt) ;
W1 = v0 − 0 .5∗TransformA1 (u0 , rd , r f , gamma, dt) ;
v1 = ThomasA1 (W1, rd , r f , gamma, boundary1 , boundary11 , dt) ;
W2 = v1 − 0 .5∗TransformA2 (u0 , rd , sigmad , thetad , kappad ,

dt) ;
v2 = ThomasA2(W2, rd , drd , sigmad , thetad , kappad , boundary2 , . . . boundary22 ,

dt) ;
W3 = v2−0.5∗TransformA3 (u0 , rd , r f , s igmaf , rhos f , gamma, the ta f , . . .

kappaf , dt) ;
v3 = ThomasA3(W3, rd , drf , s igmaf , the ta f , kappaf , rhos f ,gamma, . . .

boundary3 , boundary33 , dt) ;
% second phase
v 0 =v0+0.5∗(TransformA0 (W3, rhosd , rhos f , rhodf , sigmad , sigmaf ,gamma, dt)

. . .
+ TransformA1 (W3, rd , r f , gamma, dt) . . .
+ TransformA2 (W3, rd , sigmad , thetad , kappad , dt) . . .
+ TransformA3 (W3, rd , r f , s igmaf , rhos f , gamma, the ta f , kappaf , dt)

) . . .
− 0 . 5∗ (TransformA0 (u0 , rhosd , rhos f , rhodf , sigmad , sigmaf ,gamma, dt)

. . .
+ TransformA1 (u0 , rd , r f , gamma, dt) . . .
+ TransformA2 (u0 , rd , sigmad , thetad , kappad , dt) . . .
+ TransformA3 (u0 , rd , r f , s igmaf , rhos f , gamma, the ta f , kappaf , dt

)) ;
Z1 = v 0 − 0 .5∗TransformA1 (v3 , rd , r f , gamma, dt) ;
v 1 = ThomasA1 (Z1 , rd , r f , gamma, boundary1 , boundary11 , dt) ;
Z2 = v 1 − 0 .5∗TransformA2 (v3 , rd , sigmad , thetad , kappad ,

dt) ;
v 2 = ThomasA2 (Z2 , rd , drd , sigmad , thetad , kappad , boundary2 , . . .

boundary22 , dt) ;
Z3 = v 2 −0.5∗TransformA3 (v3 , rd , r f , s igmaf , rhos f , gamma, the ta f ,

. . . kappaf , dt) ;
v 3 = ThomasA3(Z3 , rd , drf , s igmaf , the ta f , kappaf , rhos f , gamma, . . .

boundary3 , boundary33 , dt) ;
u0 = v 3 ;

end
f = u0 ;

end

29

