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Abstract 

The aim of the paper is to study the normal Black model against the classical Black 

model in a trading point of view and from a risk perspective. In the section 2, the 

derivation of the model is subject to the assumption that implementation of a dynamic 

hedging strategy will eliminate the risk of holding long or short positions in such 

options. In addition, the derivation of the formulas has been proved mathematically by 

the notable no-arbitrage argument. The idea of the theory is that the fair value of any 

derivative security is computed as the expectation of the payoff under an equivalent 

martingale measure. In the third section, the Greeks have been derived by 

differentiation. Also brief explanation regarding how one can approximate log-normal 

Black with normal version has been explored in the section 4. Eventually, with the aid 

of Excel VBA, there is an empirical test for swaptions on an At-The-Money volatility 

surface, given as Black (log-normal) volatilities, which is translated into a normal 

volatility surface. Then calculate and plot how delta and vega differs between the 

models. 
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1. Introduction  

1.1. Negative interest rates 

When it comes to the question regarding how low interest rates can reach, both the 

economists and traders around the globe believe that interest rates could go negative. 

Although that sounds unbelievable, there are precedents for negative interest rates. 

 

To name just a few macroeconomic cases, in the late 1990s zero interest rate came 

into being briefly, as Japanese savers were so unsecured about the stock market which 

had collapsed, they would rather deposit their money in the bank even at a negative 

interest rate. In 2009, Sweden’s Riksbank, the first central bank to adopt negative 

interest rates, actually lowered its deposit rate to a -0.25% in the midst of the financial 

crisis. On a regular basis, negative real interest rates, when nominal interest rates are 

below inflation rate, become a monetary policy tool of the governments to tax on 

money as a mean of driving money out of the banks and into investments to benefit 

the economy, as well as dealing with variables like inflation and unemployment.  

 

In the financial market, another example of a negative interest rate, a rate below zero 

whereby the lender pays interest to the borrower, is a private placement with 

institutional investor of debt-plus-warrants, a security called Squarz from Berkshire 

Hathaway Corporation governed by the Wall Street legend Warren Buffett. Goldman 

Sachs engineered the structure in mid-2002, and called it the “first ever 

negative-coupon security.” With the aid of high stock market volatility and low 

market interest rates, Berkshire would pay around 3% annually on the bonds being 

issued. Instead the investor would receive a warrant allowing the purchase of 

Berkshire stock as well, and to keep the warrant alive, investors would have to pay a 

higher rate, perhaps 3.75%, meanwhile Berkshire made the interest payments. To sum 

up, the net effect amounted to a negative interest rate. 

 

In recent decades, the interest rate derivative instruments, which are products whose 

payoffs depend in some way on the level of interest rate, are increasingly arousing 
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interest from either such institutional investors as banks or individual investors with 

customized cashflow demands or as a speculative tool to profit from their specific 

views on the movement of the market interest rates, say directional movements or 

volatility movements. 

 

1.2. Notations and assumptions 

For the whole paper, denote the current future price f, with -∞ < f < ∞. For 

instruments like swaptions, f stands for the forward rates which are the rates of 

interest implied by current zero rates for periods of time in the future. We do not take 

in account the case of an option on a normally distributed spot price, as this is an 

obvious special case of an option on a forward price. Let C and P be the value of 

European call and put options respectively. The strike price and time to maturity are 

denoted by K and  respectively. The annual risk-free interest rate is denoted by 

r and the annual volatility rate (or the annual standard deviation of the price of the 

asset) is denoted by σ. Finally, I will use  which denotes the standard 

normal cumulative distribution function, ; which 

denotes the standard normal probability density function, . 

 

At the same time, the following explicit assumptions are made: 

 There is no arbitrage opportunity (i.e., there is no way to make a riskless 

profit). 

 It is allowed to borrow and lend cash at a known constant risk-free interest 

rate. 

 It is likely to buy and sell any amount, even fractional, of the underlying (this 

includes short selling). 

 The above transactions do not incur any fees or costs (i.e., frictionless market). 

 The underlying does not pay a dividend.  
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 The options can not be exercised earlier than the maturity time, i.e. European 

type options. 

  The current future price follows the following normal distibution in a 

risk-neutral world: 

 , where  and  are constant. 

 

1.3. A short review of the literature on the Black option pricing model 

In 1976, Fischer Black, one of the fathers of the Black-Scholes model coined in 1973, 

demonstrated how the Black-Scholes model could be modified in order to value 

European call or put options on futures contracts. For options on forward or futures, 

derived directly from Black-Scholes model with: 

 1                               [1.3.1] 

then the Black formulas2 are  

                                      [1.3.2] 

                                    [1.3.3] 

where   

 

Why are futures options in the equity market and the Black pricing model popular? In 

terms of futures options, Hull (2008) summarized that there are a number of reasons: 

1).Compared with spot options, which are exercised as soon as the sale or purchase of 

the asset at the agreed-on price take place, futures options are exercised to give the 

holder a right to enter into a futures contract at a certain futures price by a given date. 

In most case, a future contract is more liquid and easier to trade than the underlying 

asset.  

 

2).Besides, a future price is informed readily from trading on the futures exchange, 

while the spot price of the underlying may not be known immediately. Take Treasury 

bonds as an example, the market for Treasury bond futures is far more active than the 

                                                        
1 S is the spot price of the underlying asset. 
2 For their Greeks, see Appendix. 
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one for any Treasury bond. The current market price of a bond can not be available 

but contacting dealers, whereas a bond futures price is obtained shortly from trading 

on the Chicago Board of Trade.  

 

3).One of beauties of a future option for most capitalists is that exercising it does not, 

more often than not, result in delivery of the underlying asset, since the underlying 

futures contract is closed out prior to delivery commonly. They are eventually settled 

in cash.    

 

4).Another advantage for futures options is that they are traded in the same exchange 

and facilitates speculation hedging and arbitrage and tends to require lower 

transaction costs than spot options to make the markets more efficient.   

 

Traders prefer to Black pricing model to price not only European options on physical 

commodities, forward or futures, but also interest rates derivative instruments, 

including bond options, interest rate caps and floors and swaptions primarily. They are 

widely used to either speculate on the future course of interest rates or to hedge the 

interest payments or receipts on an underlying position. Besides, they allow an 

investor to benefit from changes in interest rates while limiting any downside losses. 

For instance, Black’s model can be used to imply a term structure of forward rates 

from actively traded index option.   

 

1.4. Problem formulation 

Therefore, it has become a hot issue in the study of pricing interest rate derivatives 

like interest rate cap & floors, options of Forward Rate Agreement or European 

swaptions. The Black model, alternatively referred as the Black-76 model, is available 

as the standard model for valuing these over-the-counter interest rate options. This 

model is classified into a class of models known as log-normal forward models under 

the assumption that the underlying asset, i.e. the interest rate, is lognormal distributed. 

Unfortunately, in the current interest rate market situation with very low or even 
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negative interest rates, different from that of the equity market, the parameter of strike 

price (and/or the forward rate (“the price” )can take zero or negative values which 

makes a log-normal model hardly take effect and give accurate market prices.  

 

To handle this puzzle, a normal distributed Black model is required. As a matter of 

fact, this case was initially considered by Bachelier’s model illustrated as below [1.4.1] 

of arithmetic Brownian motion in 1900, it came to be was regarded as an instructive 

dead end though. The main reason is that it took time value of money (i.e. lack of the 

discount factor) out of consideration. Nonetheless, I suggest here that it is premature 

to conclude that an option pricing model with a normal underlying is of no use. In 

addition to the work of Bachelier (1990), I would like to mention papers with 

introduction related to the research questions by Hagan and Woodward (1998), 

Iwasawa (2001), Henrard (2005), Blake, Dawson and Dowd (2007), Grunspan (2011), 

together with  Benhamou and Nodelman (2013). 

             [1.4.1] 

 

Accordingly, this brings us to the problems of the paper: when the interest rate is 

modeled with a normal distributed stochastic process, what does the model look like? 

Do the two models give the identical price with the right volatility? Will the risk, i.e. 

the Greeks (delta, gamma, vega, theta and rho), differ when we are shifting the yield 

curve? Then the interest rate volatility is normal while in Black the volatility is 

log-normal. Both models are supposed to give the same prices and there exists 

formula to convert from normal to log-normal or vice verse. Therefore, in a trading 

point of view and from a risk perspective, a study of a normal and a log-normal Black 

model is of great interest. 

 

For this paper, the author describes the current state of the interest rate derivatives 

market in the context of normal distributed Black options pricing model against 

classical Black model. The theory depends upon various areas of applied mathematics 
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with specialization in financial engineering, including stochastic calculus, the 

implementation of a dynamic hedging strategy, the notable no-arbitrage argument, the 

application of Feynman-Kač, the equivalent martingale measure and particularly risk 

measures. Also singular perturbation theory explains how one can approximate 

normal volatility with log-normal one. The paper unifies couples of results scattered 

throughout the mathematical and financial literature and papers, as well as it tests 

empirically new outcomes from this highly promising area by the author, with the 

assistance of Excel VBA. 

 

2. Derivation of equation and formulas 

Start by constructing a certain portfolio, called the delta hedged portfolio, consisting 

of being long delta shares of future contract and short one derivative in question. Say, 

call it Π. Let us also denote the value of derivative by g. Then, the value of the 

delta-hedged portfolio is given by: 

                                      [2.1] 

 

So applying Ito’s lemma using the SDE given above into the changes of the portfolio 

value, one gets: 

 

                                            [2.2] 

 

Notice that the  term has vanished. Thus uncertainty has been eliminated and the 

portfolio is effectively riskless. The rate of return on this portfolio must be equal to 

the rate of return on any other riskless instrument; otherwise, there would be 

opportunities for arbitrage. We want the above riskless portfolio to be a martingale 

under the discounted expectation. This is to say that the above quantity equals the 

gain from the risk free interest rate for the portfolio value. So, over the time 

period  we have: 

                               [2.3] 
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Since it cost nothing to enter into a futures contract at the beginning, one has: Π = g. 

Thus, we arrive at the following partial differential equation:  

                           [2.4] 

 

To test the effectiveness of this strategy, simulate the returns to dealers with short 

positions in payer and receiver swaptions respectively who perform daily rehedging 

over the lifetime of the swaptions. Monte Carlo simulation is available to model the 

evolution of the underlying forward swap price, assuming a normal distribution. It is 

assumed that a dealer starts with zero cash and borrowing or depositing at the riskless 

interest rate in response to the cashflows gained by the dynamic hedging strategy.  

 

As Merton (1973) and Blake, Dawson and Dowd (2007) indicate, since the portfolio 

requires zero investment, it must be that to avoid “arbitrage” profits, the expected and 

realized return on the portfolio with this strategy is zero. Merton’s model was 

predicated on rehedging in continuous time, which would bring about expected and 

realized returns being identical. In practice, traders tend to use discrete time rehedging 

alternatively. One outcome of this is that, over a large number of simulations, the 

expected return will be zero, although on any individual simulation, the realized 

return may differ from zero. 

　 

In a risk neutral world, the process followed by the variable V known as a Wiener 

process is giving as  with the trivial solution, from integration over the 

interval [t, T]:  

           [2.5] 

 

As far as we can see , since  has a standardized normal distribution with mean 0 and 

variance 1, then  is a Gaussian process; , i.e. with mean  and 

variance . According to the above parabolic partial differential equation 

[2.4], the terminal payoff is .By the application of Feynman-Kač to 
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compute the expectations of random process equivalent to the integral of a solution to 

a diffusion equation, we obtain the following solution: 

         [2.6] 

where 3 

 

Intuitively, couple [2.5] with [2.6] and the solution can also be expressed as: 

                                         [2.7] 

Therefore, the formula for the above can be simplified by simply expanding the 

expression inside the integral. The detail will be shown for more general audience. 

For the call, we have: 

  

                 

                

                                  [2.8] 

 

Set  and with  we get 

 

 

 

                                                        
3  refers to ; Similarly,   refers to . 
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Then, the fair values of call C and corresponding put P are given as: 

 

where . 

 

Consider European swaptions, the holder of the option has the right to enter a swap 

which commences at a specified time , the first payment being one time period later, 

at , and lasts until time . Then are two possibilities exist: 

(a) A payer swaption, which gives the holder the right but not the obligation to 

receive a floating rate, and pay a fixed rate  (a call on the floating rate). 

(b) A receiver swaption, which gives the holder the right but not the obligation to 

receive a fixed rate , and pay a floating rate (a put on the floating rate). 

 

The value of the swaption per unit of nominal derived from the normal Black formula 

is expressed as 

;              [2.11]               

where  stands for a payer swaption,  for a receiver swaption. Here 

 is called the accrual factor, the value of a basis point (PV01, DV01), the level 

or the annuity4.  

 

3. Risk measures 

A financial institution is always faced with the problem of managing its risk when 

selling an option to a client in the over-the-counter markets. The institution can 

neutralize its exposure by buying the identical option as it has sold on the exchange, 

                                                        

4 The annuity factor is , where m represents the compounding frequency per year in swap 

rate. It is as same as the derived one of Black-76 model. Concerning the derivation of this factor, see Appendix 2. 
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as long as the option happens to be the same as one that is traded on an exchange. 

However, when the option has been customized to the demands of a client and does 

not correspond to the standardized products traded by exchanges, then hedging the 

exposure is much trickier. 

 

To solve this, alternative approaches are commonly referred to as the ‘Greeks’. The 

Greeks are vital tools in risk management. Each Greek letter measures the risk in a 

different dimension in an option position and the purpose of a trader is to manage the 

Greeks so that all risks are acceptable enough. Limits are defined for each Greek letter. 

For example, the delta limit is often expressed as the equivalent maximum position in 

the underlying asset. Besides, the vega limit is usually expressed as a maximum dollar 

exposure per 1% change in the volatility. And special permission is necessary if a 

trader intends to exceed a limit at the end of a trading day. Moreover, the first-order 

Greeks (delta, gamma, vega, theta and rho) are computed by simple differentiation of 

the above formulas, as exhibited below one by one in this section. 

 

3.1. Delta 

Most importantly, the delta of an option is the rate of change of its price with 

respect to the price of the underlying asset. According to the put–call parity, a long 

call plus a short put (a call minus a put) replicates a forward, which has delta equal to 

1. That is, for a European call and put option for the same strike price and time to 

maturity of underlying, and without dividend yield, the sum of the absolute values of 

the delta of each option will be 1.00. 

 

Since the delta of underlying asset is always 1.0, the trader could delta-hedge his 

entire position in the underlying by buying or shorting the number of shares indicated 

by the total delta. For example, if the delta of a portfolio of options in Z (expressed as 

shares of the underlying) is +1.75, the trader would be able to delta-hedge the 

portfolio by selling short 1.75 shares of the underlying. This portfolio will then keep 

its total value whichever direction the price of Z moves. The delta of an option varies 
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over time, thus the position in the underlying asset has to be rebalanced by traders at 

least on a daily basis. 

 

             [3.1] 

 

 

         [3.2] 

 

In the equity market, delta is trivial since an underlying instrument can vary in price. 

Nevertheless, in the context of interest rate theory, the changes occur as a change in 

the interest rate curve. Not a single value (point), but the whole curve. This implies 

that delta risk is the risk associated with a shift in the zero curve. Thus, delta can be 

defined in several alternatives: 

i) By shifting the swap rate (F), i.e., the fixed rate in an underlying swap. It is the 

standard in some trading systems to take the analytical derivative of the 

swaption price with respect to the forward swap rate, ignoring the annuity 

term which also depends on the swap rate via the discount factors. 

 

ii) By shifting the yield curve (the zero coupon curve) with one basis-point (1bp 

= 0.01 %). This is sometimes termed as DV01 or PV015. This approach 

assumes implicitly a parallel evolution of the interest rate curve. 

 

iii) By shifting the quoted rate, before bootstrapping the market quotes to a zero 

curve. Traders argue that the zero curve can changes only if the quote for the 

instruments used to calculate the zero curve changes. In this delta definition, 

one computes as many as deltas as there are market instruments. Each delta 

corresponds to the isolated influence of the change of the market quote of one 

                                                        
5 PV01 is the variation in ‘‘Present Value’’ of a 1 basis-point shift of the rate; DV01 refers to the same ratio 
expressed in “Dollar”. They are analogous to the delta in derivative pricing and almost the same. 
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market instrument. Thus it makes sense to outline the exposures arising from 

the changes in the quote. 

 

iv) By calculating the change in the value of the swaption with respect to the 

change of the underlying swap value when making a shift in the curve as ii) or 

iii).  

 

v) By shifting of certain section or time buckets of the interest rate curve. The 

risk profile is aggregated, as bucket delta measures the impact of shifting the 

rates of a given bucket by one basis point while the other buckets stay 

unchanged. The fair forward swap rate is dependent upon the bootstrap and 

interpolation method associated with the construction of the yield curve. When 

applying continuous compounding of the interest rate mathematically to 

express the forward rate, the yield on all maturities can change by the same 

number of basis points and a parallel shift in the yield curve occurs. 

Unfortunately, the world is far from that simple because the zero rates can tilt 

up or down over a long term and the risk is placed unevenly in time buckets. 

As a result, a change in the yield curve with different maturities in which the 

changes in yields do not occur evenly in the financial market. This method is 

quite useful to give a condensed overview of the risk when the traders intend 

to hedge partially risks.  

 

3.2. Gamma 

Once an option position has been made delta neutral, the next step is to focus on its 

gamma .It is the rate of change of its delta with respect to the price of the 

underlying asset. It is a measure of the curvature of the relationship between the 

option price and the asset price. The impact of this curvature on the performance of 

delta hedging can be decreased by making an option position gamma neutral. To be 

more exactly, if is the gamma of the position being hedged, this decrease is often 

completed by taking a position in a traded option that has a gamma of . It is 
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evident from the Put-Call parity that by differentiating the put and call formula twice 

with respect to the underlier establishes the equality of gamma of put and call for 

option models. 

                                    [3.3] 

 

3.3. Vega 

Practically, volatilities of the underlying asset are stochastic throughout the time, 

while delta and gamma hedging are under the assumption that the volatility remains 

constant. The vega  of an option or an option portfolio measures the rate of change 

of its value with respect to volatility. Vega can be an important Greek to monitor for 

an option trader, especially in volatile markets. Making the position vega neutral can 

help trader hedge an option position against volatility changes. Again, from the 

Put-Call parity, by differentiating the put and call formula twice with respect to  

comes to the equality of put and call for option models. 

 

 

                  [3.4] 

Put-Call Parity:   

 

Since vega is conventionally presented by practitioners in terms of a one percentage 

point change in volatility, then vega can also be   . To create both 

gamma and vega neutrality, two traded derivatives dependent on the underlying asset 

must be used. Unlike delta, typically it is far from feasible to maintain gamma and 

vega neutrality regularly. If they get too large, trading is curtailed or corrective action 
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is taken. 

 

3.4. Theta and Rho 

Another measure of the risk of an option position is theta  which measures the rate 

of change of the value of the position with respect to the passage of time, with the rest 

holding constant. As demonstrated below, the chain rule and the product rule as well 

as the sum rule are applied implicitly. By convention, practitioners quote theta as the 

change in an option’s value as one day passes, as exhibited [3.5B]&[3.6B]. On top of 

those, to measure the rate of change of the value of the position with respect to the 

interest rate, rho  is available. The value of an option is generally less sensitive to 

changes in the risk free interest rate than to changes in other parameters. For this 

reason, rho is the least used of the first-order Greeks. 

 

   

                                            [3.5A] 

                                           [3.5B] 

 

 

  

 

           

                                            [3.6A] 
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                                           [3.6B] 

 

                                           [3.7] 

                                           [3.8] 

 

It has been proved previously that the price of a single derivative dependent on a 

future contract must satisfy the differential equation [2.4]. It follows that the value of 

 of a portfolio of such derivatives also satisfies the differential equation  

.                               [3.9] 

Since 

 , 

then it follows that 

.                                       [3.10] 

 

4. Equivalence between the normal and the lognormal implied volatility 

In the real market, it is standard practice to quote the swaptions in term of log-normal 

volatility (Black volatility) which is inserted into the Black model to find the price. 

Meanwhile, normalized volatility is also the market convention though, primarily 

because normalized volatility deals with basis point changes in rates rather than, as in 

lognormal volatility, with percentage changes in rates. Therefore one needs to 

calculate the implied normal volatility.  

 

In this derived model, the interest rate is modeled with a normal distributed stochastic 

process. Then the interest rate volatility is normal while the volatility is log-normal in 

Black-76 model. Both models are supposed to give the same prices and there exist 

formula to convert from normal to log-normal or log-normal to normal. Such formula 

can be derived with the help of perturbation theory which is applicable if the problem 

at hand can be formulated by adding a "small" term to the mathematical description of 
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the exactly solvable problem. 

 

4.1 Singular perturbation expansion 

Consider a European call with expiration date , settlement date , and strike K. As 

before, let  be the stochastic process for the forward price as seen at date  with 

‘‘adjustment’’. We are assuming that   

                            [4.1] 

under the forward measure. Under this measure, the value of the option at date  is 

, where the function  is given by the expected value  

                            [4.2] 

Here  is the discount factor to the settlement date  at date . 

 

By using singular perturbation methods to solve the scaled problem, we analyze 

Black’s model to determine the volatility  which would yield the same value of 

the option. As Hagan and Woodward (1998) proved previously, the value of the call 

option is  

,                      [4.3] 

where   

 

 

Lastly, the equivalent Black volatility implied by this price is computed as below: 

  

Where  [4.4] 

 

To yield the more precise equivalent volatility formula, arbitrarily high order can be 

performed via . A similar analysis shows that the implied volatility for a 

European put option is given by the same formula. 
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4.2 Conversion between log normal and normal volatility 

Black’s model is  where  is present forward swap (or 

caplet) rate and  is the implied log normal volatility, while the normal model is 

, where is the normal volatility. To translate from normal 

to lognormal vol., the formula proved earlier by Hagan(1998) and Viorel and Dan 

(2011)  is  

                [4.5]  

as  

 

Alternatively, considering some terms are too small to affect its precision, the formula 

could be simplified as below: 

                               [4.6] 

when With these formulas and the normal volatility, then make use of 

a global Newton method to find log-normal one approximately.  

 

5. Empirical test on disparities between Black model and normal Black model 

In this section, to take a close graphical look at how the risks for a swaption differ 

between the log-normal Black model and normal one, some empirical tests are 

performed by the Excel VBA.6 Starting from the setup, the values of parameters are 

defined specifically. Only Swedish calendar is valid to bootstrap, as well as 360 days 

per year actual days per month. The beginning date is 2013/4/19. The rates quoted in 

the market are par yields from which the zero coupon rate is derived. To bootstrap a 

zero-coupon curve, there are liquid instruments on the Swedish market, i.e. an 

over-night rate (O/N), a tomorrow-next rate (T/N), deposit rates for one week, one, 

two and three month maturities, some OMX STIBOR Forward Rate Agreements 

                                                        
6 This VBA application was programmed originally by Jan Röman. See the demo of input-output interfaces in the 
Appendix.  
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(FRA) and finally swaps from 4 year up to 30 year. Swap rate is calculated as pure 

interpolation of the bootstrapped yield curve. For the years when there is shortage of 

swap rates, use the linear extrapolation to find the zero rates and then in the same way 

to calculate the discount factors as well as forward rate in turn. 

 

Since the log normal volatility is the normal way to quote swaptions in the market, an 

at-the-money normal volatility surface can be converted from log-normal volatility 

surface as figure 1, applying the formula [4.5] or [4.6]. However, as brief experiment 

has showed in figure 2, two models could always reach same option price for a certain 

receiver swaption of 4 years to expiration and around 1.72% forward rate, under the 

circumstance of a range of strike rates and log-normal volatilities from 2% to 40% 

 

Figure 1.  Conversion between log normal and normal volatility surface 
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Figure 2. Approximation experiments on receiver Swaption price surface with Black model 

and normal Black model 

 

In terms of delta and vega, their disparities between models are also of significance. 

On one hand, when the forward rate is identical to strike rate and the log-normal 

volatility increases, its vega decreases and its delta rises, while the curves of their 

normal counterparties hovers, exhibited as figure 3. On the other hand, if the forward 

rate differs from the strike rate, the difference between log-normal delta and normal 

one accelerates with respect to the growing volatility; whereas the gap between 

log-normal vega and normal vega tend to not only go up majorly but move down to 

zero somewhere by all means, as demonstrated in figure 4&5. 

 
Figure 3. Disparity between the Black Vega(Delta) and normal Vega(Delta) with respect to 

Black volatility when forward rate is as same as strike rate (At the Money)  
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Figure 4. Disparity between the Black Vega(Delta) and normal Vega(Delta) with respect to 

Black volatility when forward rate is lower than strike rate (Out of the Money) 

 

Figure 5. Disparity between the Black Vega(Delta) and normal Vega(Delta) with respect to 

Black volatility when forward rate is higher than strike rate (In the Money) 

 

The indicated results of experiments coincide with the results of proposed solution of 

Henrard (2005) who discussed that all six models7 with sufficient degrees of freedom 

lead to the same price for standard options. But, he studied that the difference of risks 

inferred will be substantial owing to the different implicit hypotheses within the 

models. For instance, the delta of nomal-like models for a receiver swaption are lower 

                                                        
7 Classical Black model of geometric Brownian motion of the forward swap rate; its normal version of arithmetic 
Brownian motion of the forward swap rate; Hull-White model of arithmetic Brownian motion of the continuously 
compounded rates and stochastic volatility models of Stochastic Alpha Beta Rho, one with the elasticity parameter 

 equal to 0 (normal) or with 1 (log-normal) and one with no correlation between rates and volatility (  = 0). 
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than that of log-normal-like Black models. The difference in the delta can reach 10% 

or more of the underlying even if models are calibrated to the identical prices. 

Therefore, it is convincible enough to ensure that the above investigated analysis 

holds strongly. 

 

6.Conclusion 

Ever since it became clear that a geometric Brownian motion process provides a more 

plausible model of asset prices than an arithmetic Brownian motion process, it has 

been taken for granted that there was no point in developing an option pricing model 

for a normally distributed underlying. Nonetheless, it has been argued that there are 

potential in which we might need such a model when the forward rate is zero and/or 

when the strike rate is equal zero or negative, and a contemporary example is when 

the interest rate is negative.  

 

In the second section, the derivation of the model is subject to the assumption that 

implementation of a dynamic hedging strategy will eliminate the risk of holding long 

or short positions in such options. Additionally, the derivation of the formulas has 

been proved mathematically by the famous no-arbitrage argument. The idea of the 

theory is that the fair value of any derivative security is computed as the expectation 

of the payoff under an equivalent martingale measure. In the section 3, the Greeks 

have been derived analytically by differentiation. Also brief explanation regarding 

how one can approximate log-normal Black with normal version has been explored in 

the fourth section. Eventually, there is an empirical test for swaptions on an 

at-the-money volatility surface, given as Black (log-normal) volatilities, which is 

converted to a normal volatility surface. Then calculate and plot how delta and vega 

differs between the models. 

  

Admittedly, both models have limitations in routine pricing and do not provide a 

description of how interest rates evolve through time, concerning pricing interest rate 

derivatives such as American style swap options. Interest rate derivatives are tougher 
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to value than equity and foreign exchange derivative due to the complicated behavior 

of an individual interest rate and the varying volatilities of different points on the 

yield curve. As a matter of fact, other notable models, like Hull-White model, can be 

calibrated to the market as well. I believe that either model can be valuable in my 

future study. 

 

To sum up, the crucial risk sensitivities for such fixed income derivatives as swaptions 

are delta (PV01, DV01) and Vega among Geeks, as a result of their risk limits set by 

the trading desk. Thanks to the conversion formula between log-normal volatility and 

normal volatility, it has been found in this paper that both models results in same 

option value despite of the disparities in their risks. Accordingly, an option-pricing 

model based on a normal underlying is not some flawed relative of Black, as it is 

usually considered to be, but is instead the key to correctly pricing this type of 

derivatives– and hence, from a risk perspective as well as in a trading point of view, a 

very helpful tool in the rapidly emerging interest rate derivatives market.  
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Appendix 

Table 1: Risk measures for the Black model

Greeks Call  Put 

Delta   

Gamma   

Vega   

Theta 

Rho   



2. Black formulas expressed for Caps/Floors and Swaptions & annuity factor 

The Black formula for the time-t value of a caplet and a floorlet are expressed as: 

 

 

Where  is the tenor,  the face value and F the implied forward rate between time 

t and at the caplets/floorlets maturity, T. 

 

From Black model, a payer swaption and a receiver swaption are expressed as : 

 

 

 

where 
T-t = Tenor of swap in years (time between swaption maturity and swap maturity). 
F = Forward rate of the underlying swap. 
K = Strike rate of the swaption. 
r = Risk-free interest rate. 
T = Time to swaption expiration in years. 

 = Volatility of the forward-starting swap rate. 

m = Compounding’s per year in swap rate. 

 

Derivation of annuity factor of swaptions8 

To derive the factor for a swaption, start by studying a forward starting swap. That is a 
swap that starts at a future time where we exchange floating for fixed cash flows. A 

 swap means a swap that start at time  and have maturity at time 
. 

 
Define the reset days for any swap as:  and denote  as  The 
holder of a forward starting  payer swap with tenor  
receives fixed payments at times and pay at the same times floating 
payments. 
 
For each period , the LIBOR rate is set at time  and the floating 
leg  is received at . For the same period the fixed leg  is 

                                                        
8 Röman, J., (2012), Lecture Notes in Analytical Finance II, Mälardelen University, p370-373. 



paid at  where F is the (fixed) swap rate. 

 

The non-arbitrage value at of the floating payment made at  is given by 
. The total value of the floating legs at time t for equals 

 

 

where the forward rate is given by: 

  

 

 
The value at the starting day is the same as the face value = 1. In a swap, there is not 
any final payment of the face value. This gives the swap value at the starting day t = 0, 
as 1 – p(0, T). Between to resets therefore must the swap value must be as: 

 where is  the time for the next reset day. This explains the 
formula above. 
 
The total value at time t for the fixed side equals  

   

where F is called the swap rate. This is a par rate since it makes the price of the swap 
to be equal zero when entering the swap contract. So the total value of the payer swap 
is given by 

 

Thus define the forward swap rate (at par)  of the swap as the 
value of F for which the total value above is zero. I.e., 

 

In addition, define for each pair n, k with n < k, the process 

 

as the accrual factor or the value of a basis point (also called the level, DV01, PV0l, 
annuity or numerical duration of the swap). 
 
Then express the swap value as: 

 

In the market there are no quoted prices for different swaps. Instead there are market 
quotes for the par swap rates. Calculate the arbitrage free price for a payer swap with 
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the strike rate K as  
 

 

A payer swaption is then a contract given by: 

 

This contract gives the holder the right to enter a swap contract at time  with 
swaption strike (fixed rate) K. 
 
Under the numeraire process  a payer swaption is then a call option on with 
strike\ price K. The value of this contract is given by the Black-76 formula: 

 

The Black formula can be written as: 

 

If denote the Forward swap-rate between and  as F, at  it is: 

 

 

Now let  be the maturity of the swaption, F the Forward swap-rate  
above) and introducing m reset days per year (the frequency). 
 

3. Presentation of input-output interfaces 

 
Figure 6. Demo of classical Black and normal Black swaption calculator given Black implied 

volatility  
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Figure 7. Demo of Black normal swaption calculator  

 

4. Extract of VBA program codes 

' Base function for the normal Black model (C = Call, P = Put options) 
'For all functions below, the following is used.  
' The SwapRate, StrikeRate, r and vol is given in %. I.e., 3.4 % as 0.034 
' The SwapTenor and SwaptionMaturity are given in years. 
' F is the frequency, i.e., the mumber of cash-flows per year 
' N (the face value, notional) is not used (use this outside this function) 
' ===================================================== 
Function Annuity(SwapRate As Double, Tenor As Double, F As Double) As Double 
Annuity = (1 - 1 / Pow(1 + SwapRate / F, F * Tenor)) / SwapRate 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalC(SwapRate As Double, StrikeRate As Double, maturity As_ 
Double, r As Double, vol As Double) As Double Dim d1 As Double, d2 As Double,_ 
nd1 As Double 
 
d1 = (SwapRate - StrikeRate) / (vol * Sqr(maturity)) 
d2 = vol * Sqr(maturity / (2 * 3.141592654)) * Exp(-d1 * d1 / 2) 
nd1 = CND(d1) 
BlackNormalC = Exp(-r * maturity) * ((SwapRate - StrikeRate) * nd1 + d2) 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalP(SwapRate As Double, StrikeRate As Double, maturity As_ 
Double, r As Double, vol As Double) As Double Dim d1 As Double, d2 As Double,_ 
nd1 As Double 
 
d1 = (SwapRate - StrikeRate) / (vol * Sqr(maturity)) 
d2 = vol * Sqr(maturity / (2 * 3.141592654)) * Exp(-d1 * d1 / 2) 
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nd1 = CND(-d1) 
BlackNormalP = Exp(-r * maturity) * ((StrikeRate - SwapRate) * nd1 + d2) 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalDeltaC(SwapRate As Double, StrikeRate As Double, maturity_ 
As Double, r As Double, vol As Double) As Double Dim d1 As Double 
 
d1 = (SwapRate - StrikeRate) / (vol * Sqr(maturity)) 
BlackNormalDeltaC = Exp(-r * maturity) * CND(d1) 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalDeltaP(SwapRate As Double, StrikeRate As Double, _ 
maturity As Double, r As Double, vol As Double) As Double Dim d1 As Double 
 
d1 = (SwapRate - StrikeRate) / (vol * Sqr(maturity)) 
BlackNormalDeltaP = -Exp(-r * maturity) * CND(-d1) 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalDeltaCS(SwapRate As Double, StrikeRate As Double, _ 
SwapTenor As Double, SwaptionMaturity As Double, _r As Double, F As Double,_ 
vol As Double) As Double Dim d1 As Double 
 
d1 = BlackNormalSwaptionPayer(SwapRate + 0.000001, StrikeRate, SwapTenor, _ 
SwaptionMaturity, r, F, vol) 
d1 = d1 - BlackNormalSwaptionPayer(SwapRate - 0.000001, StrikeRate, _ 
SwapTenor,  SwaptionMaturity, r, F, vol) 
BlackNormalDeltaCS = d1 / 0.000002 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalDeltaPS(SwapRate As Double, StrikeRate As Double, _ 
SwapTenor As Double, SwaptionMaturity As Double, r As Double, F As Double, _ 
vol As Double) As DoubleDim d1 As Double 
 
d1 = BlackNormalSwaptionReceiver(SwapRate + 0.000001, StrikeRate, SwapTenor,_ 
SwaptionMaturity, r, F, vol) 
d1 = d1 - BlackNormalSwaptionReceiver(SwapRate - 0.000001, StrikeRate, _ 
SwapTenor, SwaptionMaturity, r, F, vol) 
BlackNormalDeltaPS = d1 / 0.000002 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalVeg(SwapRate As Double, StrikeRate As Double, _ 
maturity As Double, r As Double, vol As Double) As Double Dim d1 As Double 
     
d1 = (SwapRate - StrikeRate) / (vol * Sqr(maturity)) 
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BlackNormalVeg = Exp(-r * maturity) * nd(d1) * Sqr(maturity) 
End Function 
' ------------------------------------------------------------------------- 
Function BlackNormalVegS(SwapRate As Double, StrikeRate As Double, _ 
SwapTenor As Double, SwaptionMaturity As Double, r As Double, F As Double, _ 
vol As Double) As Double   Dim d1 As Double 
   
d1 = BlackNormalSwaptionPayer(SwapRate, StrikeRate, SwapTenor, _ 
SwaptionMaturity, r, F, vol + 0.0001) 
d1 = d1 - BlackNormalSwaptionPayer(SwapRate, StrikeRate, SwapTenor, _ 
SwaptionMaturity, r, F, vol - 0.0001) 
  BlackNormalVegS = d1 / (0.0002) 
End Function 
 
' ===================================================== 

'Conversion between log normal and normal volatility 

' The formulas here is found in Hagans article. The same can be found in 
' Lecture Notes in Analytical Finance II by Jan. 
' For all functions below, the following is used. 
 
' The SwapRate, StrikeRate, rates and vol is given in %. I.e., 3.4 % as 0.034 
' The SwapTenor and SwaptionMaturity are given in years. 
' F is the frequency, i.e., the mumber od cash-flows per year 
' N (the face value, notional) is not used (use this outside this function) 
' ===================================================== 
Function BlackVol2Norm(SwapRate As Double, StrikeRate As Double, _ 
SwaptionMaturity As Double, v As Double) As Double 
  If (Abs((SwapRate - StrikeRate) / StrikeRate) < 0.001) Then 
    BlackVol2Norm = v * Sqr(SwapRate * StrikeRate) * (1 + (1 / 24) * _ 
                    Log(SwapRate / StrikeRate) * Log(SwapRate / StrikeRate)) 
    BlackVol2Norm = BlackVol2Norm / (1 + Pow(v, 2) * SwaptionMaturity / _ 
                    24 + Pow(v, 4) * Pow(SwaptionMaturity, 2) / 5760) 
  Else 
    BlackVol2Norm = v * (SwapRate - StrikeRate) / Log(SwapRate / StrikeRate) 
    BlackVol2Norm = BlackVol2Norm / (1 + (1 - Log(SwapRate / StrikeRate) * _ 
                    Log(SwapRate / StrikeRate) / 120) * Pow(v, 2) * _ 
SwaptionMaturity / 24 + Pow(v, 4) * Pow(SwaptionMaturity, 2) / 5760) 
  End If 
End Function 
' ---------------------------------------------------------------------------- 
Function NormVol2Black(SwapRate As Double, StrikeRate As Double, _ 
SwaptionMaturity As Double, vol As Double) As Double 
 
NormVol2Black = NewtonRaphson2(SwapRate, StrikeRate, SwaptionMaturity, vol, _ 
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2 * vol / (SwapRate + StrikeRate)) 
End Function 
' ---------------------------------------------------------------------------- 
Function NewtonRaphson2(SwapRate As Double, StrikeRate As Double, _ 
SwaptionMaturity As Double, cm As Double, Optional initial As Double) As Double 
  Dim dVol As Double 
  Dim EPSILON As Double 
  Dim maxIter As Double 
  Dim vol_1 As Double 
  Dim vol_2 As Double 
  Dim vol_3 As Double 
  Dim old_err As Double 
  Dim i As Double 
  Dim dX As Double 
  Dim Value_1 As Double 
  Dim Value_2 As Double 
 
  dVol = 0.00001 
  EPSILON = 0.00001 
  maxIter = 100 
  vol_1 = initial 
  i = 1 
  old_err = 9E+99 
  Do 
    Value_1 = BlackVol2Norm(SwapRate, StrikeRate, SwaptionMaturity, vol_1) 
    vol_2 = vol_1 - dVol 
    Value_2 = BlackVol2Norm(SwapRate, StrikeRate, SwaptionMaturity, vol_2) 
    dX = (Value_2 - Value_1) / dVol 
    If Abs(old_err) < EPSILON Or i > maxIter Or dX = 0 Then Exit Do 
    old_err = -(cm - Value_1) / dX 
    vol_1 = vol_1 - (cm - Value_1) / dX 
    Debug.Print vol_1 
    i = i + 1 
  Loop 
  Debug.Print vol_1 
  NewtonRaphson2 = vol_1 
End Function 
' ---------------------------------------------------------------------------- 
 

5. Summary of reflection of objectives in the thesis 

Objective 1. 

 Survey of literature with comments related to the current research questions: 

Second paragraph of section 1.4.   
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 Survey and comparison of alternative methods related to the subject of the 

project: Section 3.1 

 Deeper presentation of specific methods supposed to be used in the project: 

Section 2, 3, 4, 5. 

Objective 2. 

 Description of the model and comparisons with alternative models: Section1.3  

 Analysis of data, their quality, volume, shortage, etc. (if any): First 

paragraph of section 5 

Objective 3.  

 Formulation of the problem studied in the project and the goals of the project: 

Section 1.4 

 Evaluation of possible solution in the time framework and presentation of 

solution (algorithms, results of experiments, description of programs, 

presentation of input-output interfaces, etc): Section 5, Appendix 3. The 

algorithms are based on the formulas of section 3,4.  

 Program codes: Appendix 4 

Objective 4. 

 Print of the oral presentation of the project. PowerPoint 

 Improved English and the thesis structure (abstract, table of contents, sections, 

conclusion, references). Everywhere 

 The place of results in the area; the list of main results and achievements; 

potential use of results; possible future continuation of the project: Section 6. 

Objective 6. 

 Popular presentation of project and its results: Last paragraph of Section 1.4. 

 Remarks concerned the use of Internet and correctness of citations: In the end 

of section 7. 

 Acknowledgement: Page 2 
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Black Option Pricing Model
• Fisher Black, 1976

• A generalization of Black-Scholes model

• The underlying  is log-normal distributed

http://en.wikipedia.org/wiki/File:Fischer_Black.JPG


• Equity market

• Interest rate derivatives market

Bond options

Caps and floors

Swaptions

FRA

…

• Future option VS Spot one 

• More liquid , price known readliy, settle in cash, lower cost 

http://www.google.com.hk/url?sa=i&rct=j&q=speculation&source=images&cd=&cad=rja&docid=UPs3AosVEpn_dM&tbnid=U74gZognm9phJM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.123rf.com%2Fphoto_16489194_abstract-word-cloud-for-speculation-with-related-tags-and-terms.html&ei=tqiOUfDiL4jfswb05oGgDA&psig=AFQjCNFAk9kAahFNMxpH7qTnK3FHkgD7ZQ&ust=1368390176878547


Negative Interest Rate 

• Macroeconomics

Japan, in 1990s

Sweden’s Riksbank,-0.25% in 2009

Real Interest Rate=Nominal IR﹣Inflation Rate

• Finance

Debt-plus-warrants called Squarz by        
Goldman Sachs



Normal Distributed Option Pricing Model

• Bachelier’s Model, in 1900 

• Arithmetic Brownian Motion



Normal Distributed Black Options Pricing Model

• Partial differential equation
• Formulas of call and put options 



Assumptions
• No arbitrage opportunity 
• Borrow and lend cash at a known constant risk-free 

interest rate

• Buy and sell any amount, even fractional, of the 
underlying.

• Frictionless market: no transactions costs& 
no dividend.

• European type options.
• The current future price follows the following normal 

process in a risk-neutral world



• Delta hedged portfolio 

• Ito’s lemma 

• Gain from the risk free interest rate for the portfolio 
value. So, over the time period

• Cost nothing to enter into a futures contract at the beginning, 
one has: Π = g.



To test the effectiveness of this strategy:To test the effectiveness of this strategy:

•• ToolTool: Monte Carlo simulation 

•• AssumeAssume: normal distribution for Underlying forward swap price

• Zero cash & borrowing /depositing at the riskless interest rate

• Short positions in payer and receiver swaptions

• Perform daily rehedging over the lifetime of the swaptions

•• ResultResult: the expected return will be zero, over a large number 
of simulations



Application of Feynman-Kač

Gaussian process                                                Gaussian process                                                



• European swaptions:

• A payer swaption (a call on the floating rate).

• A receiver swaption (a put on the floating rate).

• The value of the swaption per unit of nominal 
is



• Delta 

• Gamma

• Vega

• Theta

• Rho



Alternatives to define Delta

• i) By shifting the swap rate (F), i.e., the fixed rate in an 
underlying swap.

• ii) By shifting the yield curve (the zero coupon curve) 
with one basis-point (1bp = 0.01 %).

• iii) By shifting the quoted rate (before bootstrapping the 
quotes to a zero curve).

• iv) By calculating the change in the value of the swaption 
with respect to the change of the underlying swap value 
when making a shift in the curve as ii) or iii).

• v) By shifting of certain section or buckets of the interest 
rate curve. 



Equivalence between the normal and the 
lognormal implied volatility

• Singular perturbation expansion

• Conversion between log normal and 
normal volatility



















Disparity between the Black Vega(Delta) and normal Vega(Delta) 
with respect to Black volatility

At the Money



Out of the Money

In the Money



Conclusion
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