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Introduction 

The plot of the yield to maturity against time is called the yield curve. For the moment,

assume that this has been calculated from zero-coupon bonds and that these bonds have

been issued by a perfectly creditworthy source. The shape of the yield curve can be

concave or convex. A number of theories are used to explain the shape of the term

structure. The most common are:

 1.Expectation value theory

 2.Market segment theory

 3.Liquidity theory

The most common is the last, which use arguments that the forward rate always should be

above the expected zero coupon rates and that investors are dependent on the liquidity

and borrowers mostly want fixed rates.
Term structure models are based on the assumption that the whole term structure of

interest rates can be derived from the stochastic behaviour of one or many variables. The

reason for modelling the entire term structure is to make all model prices internally

consistent.
In categorising these models, two properties are significant:

1.Number of state variables

Most models lack analytical solutions and have to be solved using numerical

methods. The computing time increases dramatically for each new state variable.

2. External consistency.

By external consistency, we mean coherence between the model term structure

and the observed term structure. When the model is used to price derivative

instruments, it is essential that the underlying instrument is priced in accordance

with observed market prices.

The rates with a lifetime less than a year are given by so called Treasure-Bills. Rates with

lifetime between one and ten years are given by Treasury-Notes and rates with lifetimes

more than ten years by Treasury-Bonds. In parallel to the curve above, we have the

municipal and corporate bonds. Closest to the curve above, i.e., with lowest spread are

those curves with the best (highest) ranking.
Examples 

Spot rate
We assume that all of the investors believe one year spot rate in the next 5 years following the table below:
	Years
	Spot rate

	1
	6%

	2
	8%

	3
	9%

	4
	9.5%

	5
	9.5%


Now we calculate the present value of zero-coupon bonds .  Again we have some assumptions , the face value of zero-coupon bonds are 100 SEK . So we have 
	Time to maturity
	Present value

	1 year
	100/(1+6%)=94.340

	2 years
	100/[(1+8%)(1+6%)]=87.352

	3 years
	100/[(1+9%)(1+8%)(1+6%)]=80.139

	4 years
	100/[(1+9.5%)(1+9%)(1+8%)(1+6%)]=73.186

	5 years
	100/[(1+9.5%)(1+9.5%)(1+9%)(1+8%)(1+6%)]=66.837


Using the formula 
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And the present value above , we could calculate the yield-to-maturity 
Since our bond is zero-coupon bond , so C=0 ,and we have

	Time to maturity
	Yield to maturity

	1 year
	6%

	2 years
	6.7%

	3 years
	7.66%

	4 years
	8.12%

	5 years
	8.39%



[image: image2.emf]0%

2%

4%

6%

8%

10%

1 2 3 4 5

time to maturity

yield to

maturity


Forward rate 
With the spot rate curve known, we can (as we have seen above) calculate the forward

rates as:
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So we could have 
	Time to maturity
	Forward rate

	1 year
	6%

	2 years
	10.0377%

	3 years
	11.0279%

	4 years
	11.0138%

	5 years
	9.5%
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Application 

I find some data of  Swedish government bonds and bills on the NasdaqOMX 
We will use bootstrapping to find the zero coupon curve. Swedish bonds are quoted in

YTM with day-count conversion: 30/360. The coupon frequency is 1, i.e., there is one

coupon per year for bonds.
By using the data on the lecture notes, we have following rates

r(1m) = r(30d) = 1.25 %

r(2m) = r(60d) = 1.22 %

r(3m) = r(90d) = 1.30 %

r(4m) = r(120d) = 1.31 %

r(6m) = r(180d) = 1.49 %
We now start the bootstrap with the bond RGKB 1041. This bond have a coupon rate

c = 6.75 %, ytm = 2.415 % and maturity at T = 2014-5-5 . (Today is 2012-12-19.) I.e., Time to maturity=1y4m16d = 360 + 120 +16 = 496 days. Therefore, we also have a coupon payment of 6.75 at 136 days from now. We start by calculate the present value of this coupon. We do this by extrapolation using 120 and 90 days:
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The value of the coupon is therefore:
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The price of the bond is given by the quoted yield:
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This means that a zero coupon bond with maturity T=496 days from now, have the price P=109.9868-6.71676=103.2700. This gives the zero-coupon rate at time t=496 days:
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   , we get r(496d)=2.4347%
The bond RGKB 1047. This bond have a coupon rate c = 5 %, ytm = 3.219 % and maturity at T = 2020-12-1 . (Today is 2012-12-19.) I.e., Time to maturity=7y11m11d = 360*7 + 330 +11 = 2861 days. Therefore, we also have a coupon payment of 5 at 2501,2141,1781,1421,1061,701,341 days from now. 
We start by calculate the present value of the interpolated coupons (341, 701 days

from today):
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We continue by calculate the present value of the extrapolated coupons (1061,1421,1781,2141,2501 days from today):
r(1061d)=2.4347+0.002989556*(1061-496)=4.1238%
r(1421d)=2.4347+0.002989556*(1421-496)=5.2000%

r(1781d)=2.4347+0.002989556*(1781-496)=6.2763%

r(2141d)=2.4347+0.002989556*(2141-496)=7.3525%

r(2501d)=2.4347+0.002989556*(2501-496)=8.4288%

The value of the coupons is therefore:
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The present value if the bond is:
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Therefore, a zero coupon bond with maturity at T = 2861 days from today have the

present value of P =112.5755-27.9777=84.5978. This gives the zero-coupon rate at t

= 2861 days as:
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r(2861d)=2.7559%

Now we can have a graph like this:
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Conclusion 

There are many methods to calculate the term structure of interest rates and pricing bonds. And there are some very interesting connections between interest rates and time to maturity. There are mainly three assumptions about the shape of the term structure. We also have found a way to determine the value of zero coupon rates and use them to get a curve of zero coupon bond.
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