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Abstract  
 
This report describes the methods of Monte Carlo simulation and its usefulness in solving 

complex problems in financial engineering. Included in this report are a number of examples of 

problem solving using Monte Carlo simulations based on various stochastic models, such as 

stochastic differential equation, Binomial model and Markov Chain. 
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Introduction  
!
Financial engineering has led to the explosion of derivative trading that we see today. Ever since 

Fischer Black and Myron Scholes published their option pricing model, trading in options and 

other derivatives has grown dramatically.  

 

As financial markets are characterized by risks that cannot be measured because of 

incompleteness in our knowledge of future forces that will shape financial markets. For this 

reason decision makers are in a world of uncertainty. The effectiveness of widely used risk 

management models is inversely related to the degree of uncertainty and complexity in financial 

markets. 

 

For the purposes of our seminar we will study one such model used in estimating future 

movements of option prices and underlying assets, the Monte Carlo method. We will price 

financial derivatives (options), calculate expected contingent claims and determine the 

probability of companies defaulting on their obligations. [1] 
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Monte Carlo Simulation  
Definition of Monte Carlo Simulation  

The Monte Carlo Simulation is an analytical methodology utilised for problem solving by 

performing a large number of trial runs, using a stochastic model and then inferring a solution 

from the collective results of the trial runs.  

 

History of Monte Carlo  

The modern form of Monte Carlo dates back the 1940s when the following scientists Enrico 

Fermi (Physicist), Stanislaw Ulam (Mathematician) and John Von Neumann whilst working Los 

Alamos Scientific Laboratory which was part of the Manhattan Project. 

Fermi in the 1930s had done work regarding Monte Carlo as way of approximation but it was a 

highly rigorous and time consuming and failed to gain traction. In the 1940s when he met with 

John Von Neumann the combination of Fermi’s approximation method and Von Neumann’s 

computer knowledge where able to use it calculate approximations with high degree of accuracy. 

In modern finance it is used as financial concepts have got more complicated to be able to 

approximate accurate financial scenarios. [2] 

 

Key Principles of Monte Carlo  

The goal of Monte Carlo is to approximate the expectation of a function that is intractable. In 

finance an example of such a function would be an option as S(t) is a changing with respect to 

time and determining the expectation of S(T) is difficult.  

Definition: If X1, X2, …, Xn is a family of independent and identically distributed random variables 

and f(x) is a real valued function it is given that the function f(X) is as a random variable. For IID 

random variables X1, X2, …, Xn the strong law of large numbers ensures that [4]:     

! ! ! !   
!

𝑁!
! 𝑓 !"

!

!!!

 

An example in financial engineering is a call option: 

Ε ! ! ! !! + ! !
!
𝑁 ! !" ! ! !

!

! ! !

!  

Advantages of Basic Monte Carlo  

1. Flexible methodology and there is virtually no limit to the analysis. 

2. Easy understood by non- mathematicians 

3. Easy to developed and extended. 
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Disadvantages of Monte Carlo  

1. Dependent on the complexity of the problem the running time maybe long 

2. Can require high end computers to compute values 

3. Solutions are not exact and depend on the number of repeats 

 

Example o f the use of Monte Carlo [3] 
Estimation of π ≈ 3.14… 

Take a square with sides r and a quadrant with radius r as shown below 

The area of the square is r2 and denoted m(S).  

The area of the quadrant is 0.25π r2 and denoted by m(Q). 
! (! !

! ! ! !
! ! !!" ! ! ! !"# ! ! !! ! ! ! !!!!!! ! !"#$ ! ! !   

 
This problem then gets modeled into a Monte Carlo: 

! ! !! !
!

!
! !" !! !! !!!!! !! !!"#$ ! ! !

!

! ! !

 

 
  

 
Figure 2: Estimated value of pi 

!
Number of Iterations Estimation of π 

10 3.6000 
100 3.2800 

1000 3.1920 
10000 3.1396 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Table 1: Estimation of pi 
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Monte Carlo methods  in Financial Engineering  
     
One very important aspect of financial engineering is quantitative analysis. By creating and 
utilizing models to represent real world markets financial engineers can price instruments 
accurately. Two such examples of pricing models are the Black-Scholes model and the binomial 
model. As the world of finance becomes more complex these analytical pricing models are 
becoming too cumbersome to compute efficiently. Fortunately, thanks in part to advances in 
computer processing, the Monte Carlo Simulation method has become a versatile tool for the 
accurate pricing of financial instruments. 
 
The standard analytical approach to instrument pricing involves collecting historical data to 
create a model of the current financial world and then inputting that data into a currently existing 
pricing model to produce the expected value of an instrument at some time in the future. The 
Monte Carlo method is similar to the analytical approach in that it requires creating a model of 
the current financial world based on historical data. Unlike the analytical approach, however, the 
Monte Carlo method involves generating a large number of random variables and running them 
through the actual pricing formula of our instrument in order to create an expectation of the 
future price. 
 
Standard Analytical Approach : 

 
Historical Data --------> Pricing Model --------> Future Instrument Value 

 
Monte Carlo Method : 

 
Historical Data + Random Number -> Random Variable -> Pricing Formula -> Future Instrument 
Value 

 
Utilizing a pricing method that doesn't require a model allows an analyst to price instruments that 
are otherwise extremely difficult to price and/or impossible to model. Some examples of such 
instruments are [4]: 

 
State dependent binomial models 
Pricing models dependent on sub-intervals of time 
Pricing models with absorbing states  
Multivariate pricing models (models that require 2 or more stochastic processes) 
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Monte Carlo Simulation for a Recursive Binomial Instrument with State 
Dependence  
 
Historical Data: 
u = input('Enter u: ') #User defined up factor 
d = input('Enter d: ') #User defined down factor 
R = input('Enter R: ') #User defined Discount factor 
S(0) = input('Enter S(0): ') #User defined Original Stock Price 
K = input('Enter K: ') #User defined Strike Price 
T = input('Enter T: ') #User defined time to maturity 
a = input('Enter a: ') #User defined u/d factor (per 10.10) 
p = (R - d*S(t)**-a)/((u*S(t)**a)-(d*S**-a)) #Calculates the risk neutral probability 
*note the risk neutral probability is a function p(R,S(t),a,u,d) and therefore a>0 requires a 
recalculation of the risk neutal probability at each node of the standard binomial lattice 
Random Number: 
 v = np.random.random(1)   #Creates a vector with 1 element of random numbers between 0 
and 1 
  
Random Variable: 
x[x <= p] = 1      #Sets the value of all random numbers in v to 1 if they are within the risk neutral  
probability 
 x[x < 1] = 0       #Sets the value of all random numbers in v to 0 if they are outside the risk 
neutral probability 
 
Pricing Formula: 
def S(t): 
return (S(t-1)**(1 - a + (2*a*X)))*(u**X)*(d**(1-X)) #Defines the Underlying Stock Value at time t 
= count 
*note the value of S(t) is dependent on the value S(t-1) thus creating the recursive relationship 
and requiring T number of calculations to generate an S(T) value 
 
Future Instrument Value: 
L = sum(s)/n           #Averages the stock values at time T 
______________________________________________________________________ 
      
The standard binomial model with a = 0 requires 1 calculation for each S(T) and T number of 
calculations to produce all of the nodes at t = T with a final calculation using the binomial 
coefficients to obtain an estimated future value of the financial instrument for a total of T+1 
calculations. When !  > 0 each node of the binomial lattice requires 1 calculation, p(t),  which 
must be repeated T times to calculate one value of S(T). To obtain a result for the financial 
instrument over all values of S(T) requires another calculation using the binomial coefficients for 
a combined total of T2+1 calculations. The value of an automated random process to create our 
expectation as the pricing model becomes more and more complicated or T gets very large 
should be readily apparent. 
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Exercises  
 

Exercise 1 1.9 
 

Suppose that you have bought a call option with strike price 100 yen and want to evaluate its 
expected return. Suppose that you obtain somehow random numbers of the underlying stock 
price at the maturity and they are given by 

 
   100     110     95    108      97     101      96   118     97     91 
     93     128     97    111    109     108     93   110     95     106 

 
The option premium was 5 yen. Estimate the mean rate of return of the option. [4] 
 
Solution 
 
Let C be the option premium in yen !  C= 5  
Strike price K=100 
The payoff on the call option is given by Xi = max (S(T) - K,0). 

 
0     10     0     8     0     1     0   18     0     0 
0     28     0    11    9     8     0   10     0     6 

 
The mean payoff (x̄) of the call option is given by  !

!
! i  !  ! !

!"#

!"
!= ! !45 

 
Since the mean of the payoff on the call option obtained by the random numbers is 5.45, the 
mean rate of return of the option is obtained by: 
 

! ! !

𝐶
!=

! !!" ! !

5
! 0!!" ! 9% 
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Exercise 11.10  
 

In the extended binomial model considered in Example 11.3, suppose that the up-factor is given 
by u(S,t) = uSα when S(t) = S and the down-factor d(S,t) = dS-α (cf. Example 8.1). Assuming that 
R(S,t) = R > 1, calculate by Monte Carlo simulation the call option premium written on this 
security with parameters u = 1.1, d = 0.9, R = 1.05, S = K = 100, T = 10, and α = 0.1. [4] 
 
Example 11.3: 
 

! ! ! ! ! ! ! ! ! ! ! ! !!!!! ! ! ! ! !! ! !! ! ! !  
 
where W is a random walk with underlying IID Bernoulli random variables X. 
 
The risk neutral probability  
 

! !
! ! !

! ! !
 

 

! ! 𝑡! !
! ! 𝑑! ! ! ! ! !

! ! ! ! )! ! ! ! ! ! ! ! !  

 

! ! ! ! =
! !05 ! ! !! ! ! 𝑡! ! !

! !! ! ! ! ! ! ! ! !! ! ! ! ! ! !  

 
! =  0 0.1 0.2 0.3 0.4 0.5 

p(0) 0.7500 0.4101 0.2760 0.1984 0.1335 0.0880 

            Table 2: Risk-neutral probabilities at time 0 
 

S(0) = 100 
 

! ! ! ! ! ! ! ! ! ! ! ! ! ! !" ! ! ! ! ! ! ! ! ! !" !!!!! ! ! ! ! !! ! !! ! ! !  
 
                                   =    ! ! ! ! ! ! ! ! ! ! ! ! ! !"  
 

! ! ! ! ! ! ! ! ! ! ! ! ! !" ! ! ! ! ! !  
 
… 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !" ! ! ! ! ! !  
 
Where W is an IID Bernoulli Random variable X such that 
X = 1 when x <= p  
X = 0 when x > p 
When a = 0 the call option premium C = 39.0867 
 
!

!
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"#!$%&'(!)*+,%!-./0,*'.%&!

1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&2344!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&23444!!!!!!!!!!!!!!!!!!!!!!!!!&234444!

4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!5463748!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!5463975!!!!!!!!!!!!!!!!!!!!!!!!!:76;979!

463!!!!!!!!!!!!!!!!!!!!!!!!!!!;467739!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!9<6;=37!!!!!!!!!!!!!!!!!!!!!!!!	  64.7090!

463<!!!!!!!!!!!!!!!!!!!!!!!!!:46338<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!::6=473!!!!!!!!!!!!!!!!!!!!!!!!5=6973;!

46;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!56=947!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!76;;=8!!!!!!!!!!!!!!!!!!!!!!!!3:68=37!

46:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!469<77!!!!!!!!!!!!!!!!!!!!!!!!!!563;99!

465!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!!!!!!!!!!!!!!!!!!!!!!!!!!;6=:;<!

46<!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4!

Table 3: Call option premium at time T 
 
(See Appendix A and B for the full calculation) 
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Exercise 11.11  
!
In the model considered in Example 11.4 suppose µ(S,t) = c(µ-S) and σ(S,t) = σ√S. Calculate by 

Monte Carlo simulation the expected payoff from the call option written on this security with 

parameters c = 0.1, µ = 110, σ = 0.2, S = K = 100, T = 1 and h = 1/250 [4] 

 

Example 11.4: Consider the stochastic difference equation (11.7) given in Example 11.2 but in 

this example we assume that Zt are IID and follow the standard normal distribution N(0,1). 

Suppose that we divide each year into n equally spaced subintervals with length h=1/n, Let S(t) 

be the time t price of a financial security, t = 0, h, 2h........ Denote St = S(th). In the stochastic 

difference equation (11.7) the term µ(S,t) represents the mean rate of return per unit of interval. 

In finance literature however, it is common to measure the rate of return in terms of year. Hence 

it would be better to write the term as  µ(S,t)h, where µ(St,t) represents the mean rate of return 

per year. The term σ²(St,t) represents the variance for the rate of return per unit of interval. Since 

Zt are IID and the variance of the sum of independent random variables is a sum of the 

variances of the random variables, we write them as σ(S,t)√h where σ²(S(t),t) represents the 

variance for the rate of return per year. The standard deviation σ(S,t) is called the volatility of the 

price process. In summary the price process {St} follows the stochastic difference equation 

(11.18) 

! ! ! ! ! ! ! ! !! ! 1 ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! !! !  

! ! ! ! ! 𝑆 ! = !𝑆 ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! !!  !!!!!!!!!!!! ! ! ! ! ! ! ! ! !! !! !  

 

Solution 

 

Payoff = max {S1 − K, 0} 

 

! !"# ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! !"" ! !  

 

! !"# !"" ! ! ! !! !!" ! !""
!

!"#
+ !0!2 !""

1
250

! ! ! ! !"" ! !  

Since ∆Z ~ N(0, 1) we generated it in excel using the NORMSINV(RAND) function. We then 

used the Monte Carlo simulation to calculate the premium using 30 000 possible values of Si. 

The results are as follows: 

 



)) !

Number of 
iterations  

Estimation of S
i
 Expected payoff  

10 116 6.81 

1 000 97 5.94 

10 000 107 5.25 

30 000 114 5.18 
Table 4: Expected payoff of the call option 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



)# !

Exercise 11.12  
!
In the same setting as Exercise 11.11 obtain the probability distribution of : 
MT = max0≤t≤TSt by Monte Carlo simulation. 
 
Solution 
 
 

 
Figure 3: Probability distribution of MT 
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Exercise 11.13  
!
In the multivariate Markov model introduced in Example 11.6, suppose that ! !

! ! ! ! !
! ! !  as the 

initial rating, ! ! ! ! ! ! !  for n = 1,2, and the conditional transition probabilities ! ! !! ! ! ! ! ! !! ! 

are given in the table 10.111. Obtain the joint distribution (𝑋!
! ! ! !

! !  with T = 10 for the cases r = 0.5 

and r = 0.1 by Monte Carlo simulation. Simulate the same multivariate Markov model except that 

𝑐! ! ! !!"# !! ! ! ! ! that is, the negatively correlated case. [4] 

 

Solution 

The first step is to obtain theoretical framework of the problem which is given by the equation 

below relates to the multivariate Markov model: 

! ! ! !
! !

! ! ! !
! ! !! ! ! !

! ! ! ! ! ! ! ! ! !
! ! ! ! !

! ! ! ! !
! ! ! ! !!!

! !
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !

! ! !
! !

In this model values are to be defined as follows: 

1. First variable ! !   

! ! ! ! !!" !!   !!"# !!! ! ! !2 

In the first part of the exercise we are given this value is to be 1 for both values of n in the 

second part we are given ! ! ! ! !!"# !! ! ! ! ! 

2. Second variable ! !
!  

! !
! !!"#$$%!!!"#$%&'' !!!"#$%& !!"#$"%&'( !!"# ℎ!𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟!! ! ! 

! !𝐵!
! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! !!!!!!!!!!!! ! ! ! ! ! !  

In the exercise we are given this value to be 1 this leads the value of ! !
! ! !  

3. Third variable ! !  

! ! ! ! ! ! ! !! ! ! ! ! ! !! !!!!!!!!!! ! ! ! ! ! ! ! ! ! ! 

In the exercise we are given r = 0.5 this will give a ! ! ! ! !  and ! ! ! !  with equal 

probabilities of 0.5 each and ! ! ! !  does not occur. When the value of r = 0.1 the new 

values as follows ! ! ! ! !  and ! ! ! !  with equal probabilities of 0.1 each and ! ! ! !  now 

occurs with a probability of 0.8. 

4. Fourth variable ! ! ! !
!  

! ! ! ! !
! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! !! ! !!!!!!!! ! ! ! !!  

In the exercise to determine this value we use the given transition probabilities in Table 

10.1. The value j being the credit rating at time t+1 and i the credit rating at time t. 

5. Fifth variable ! !
!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
#!Hazard rate is the probability that the default occurs at the next period given no default before that time. 



), !

This is the credit rating of a firm at a given time t and correspondingly ! ! ! !
! is the credit rating at 

the time t+1.  

The next step is to observe the number of scenarios and map the variables to the different 

scenarios. In this exercise table 5 denotes these scenarios. 

Scenario ! !! !
!  ! !  ! !  ! !

!  

1 ! ! ! ! ! ! !
! ! !  1 -1,1 1 

2 ! ! ! ! ! ! !
! ! !  1 -1,0,1 1 

3 ! ! ! ! ! ! !
! ! !  0,1 -1,1 1 

4 ! ! ! ! ! ! !
! ! !  0,1 -1,0,1 1 

     Table 5: Observed scenarios 
 
It can be noted from the table that ! ! ! !

! and ! !  will be our random variables during this exercise 

as their values are dependent on probabilities. ! !
! !remains a constant for all scenarios and ! !  is 

a constant for a particular firm. 

The final step is to compute the model within the given scenario parameters. The generation of 

random numbers to give probabilities for the realization of the values of the random variables. 

Table 6 shows the iterative process that was used to determine ! !
!  values. This is based on the 

scenario ! ! ! !  and ! ! ! !  if random number is between 0 and 0.5, ! ! ! !
!  is based on the 

probabilities on Table 10.1. 

 

Credit rating (t) Random Number ! ! ! !
!  ! !  Credit rating (t+1) 

A 0.4227 0 1 AA 

AA 0.3954 0 1 AAA 

AAA 0.7119 0 -1 AA 

          Table 6: Iteration process 
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Figure 4: @80?/!A0./=0<7/08?!B0/C!=D"E(!2?4!F?D$!

!

 
Figure 5: Joint Distribution with r=0.5 and c1=1, c2=0 

  

!!!"

!!"

!"

###"

##"
$$$"

%"
&'"

()"

*)"

+)"

,)"

-)"

.)"

/)"

!!!" !!" !"
###"

##"
$$$"

%"
&'"

!!!"

!!"

!"

###"

##"
$$$"

%"
&'"

()"

*)"

+)"

,)"

-)"

.)"

/)"

!!!" !!" !"
###"

##"
$$$"

%"
&'"



)&!

 
Figure 6: Joint Distribution with r=0.1 and cn=1 

 

 
Figure 7: Joint Distribution with r=0.1 and c1=1, c2=0 
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Exercise 11.14  
!
In the framework of Exercise 10.7, suppose that the hazard rate for default of firm i is " i =   (20 - 
i)-1 when the economic condition is good, while it is given by µi = (10 + i)-1 when the condition is 
bad, where i = 1, 2, …, 5. By Monte Carlo simulation with a = 1 – b = 0.7, obtain the probability 
that no firm will default within 10 periods. [4] 
 
Solution 
 
From the framework of Exercise 10.7, a is defined as the transition probability of the state that 
the economic condition is good, whereas b is the transition probability of the state that the 
economic condition is bad. Therefore, the hazard rate2 is defined as: 
 

 
! ! ! ! !! ! !" ! !! ! ! ! ! .3! !" ! 1!!! !!  !! ! ! ! ! !… !5 

 
 
To be able to solve this problem, the simulations of time history of Markov chain within 10 
periods are required. In order to do that, uniform random numbers un, n = 1,2,…,N (in this case 
N = 1000) are generated using RAND() function in excel for all 10 periods.  
 
Let M be a random variable and let mn be its random numbers.  We define 

 
mn = 0 if un > hi  (no default until next period), while  
mn = 1 if un < hi  (default) ,                   i = 1,2,!,5 , n = 1,2,…N 
 

The process is repeated for all five firms. After that the results of each row are summed up in 
order to get the value of M. In this case, the desired M is when M = 0. Then the hazard rate is 
recalculated by the end of the 10th period by dividing the total of the desired outcomes by N. The 
new hazard rate (h) is ≈ 0.036. 
 
Therefore, the probability that no firm will default within 10 periods, which derives from   1 – h, is 
equal to 0.964. 
 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#!Hazard rate is the probability that the default occurs at the next period given no default before that time. 
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Conclusion  
!
As demonstrated in our exercises Monte Carlo simulation is a very useful mathematical 

technique for analyzing uncertain scenarios and providing probabilistic analysis of different 

situations such as the risk of businesses defaulting or estimating the attractiveness of derivatives 

before one decides to invest. 

In this seminar article, we have discussed the history, theoretical basis and application of Monte 

Carlo simulation in finance. We have shown that applying Monte Carlo techniques is simple and 

easy to understand, due to various software applications that have accelerated the adoption of 

Monte Carlo simulation as shown in our Appendixes through the use of Python and Microsoft 

Excel.  
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Appendices  

Appendix A  
 
S(0) = K = 100 
u = 1.1 
d = 0.9 
T = 10 
α = 0 
R = 1.05 => p = .75, 1-p = .25 

 
Binomial Lattice 

 
100 

90         110 
81          99          121 

72.9       89.1       108.9      133.1 
65.61      80.19      98.01      119.79      146.41 

59.05      72.17      88.21      107.81      131.77      161.05 
53.14      64.91      79.39      97.03      118.59      144.95      177.16 

47.83      58.46      71.45      87.33      106.73      130.45      159.44      194.87 
43.05      52.61      64.30      78.59      96.06      117.41      143.50      175.38      214.36 
38.74      47.35      57.87      70.73      86.45      105.67      129.15      157.85      192.92       

235.80 
S(T) 

34.87      42.61      52.09       63.66       77.81      95.10      116.24      142.06      173.63      
212.22      259.37 

 
pm x (1-p)(T-m) 

p = [.0000, .0000, .00001, .00003, .00008, .00023, .0007, .00209, .00626, .01877, .05631] 
 

Binomial Coefficient  
BC = [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1] 

 
 

Contingent Claims at K = 100  
C = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 16.24, 42.06, 73.63, 112.22, 159.37] 

Expectation of Contin gent Claims (p x BC x C)  
Expectation of Contingent Claim = 63.6694 

Call Premium (R -T x (p x BC x C))  
Call Premium = 39.0876  

 
 

! !
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Appendix B  
 

Python 2.7 Monte Carlo Simulator for Exercise 11.10  
""" 
Created on Wed Oct 01 21:58:13 2014 
@author: mylurian 
""" 
import pylab as plt    #Imported a library 
import numpy as np     #Imported a library 
u = input('Enter u: ') #User defined up factor 
d = input('Enter d: ') #User defined down factor 
R = input('Enter R: ') #User defined Discount factor 
G = input('Enter S: ') #User defined Original Stock Price 
S = G                  #Duplicates the OSP for computational purposes 
K = input('Enter K: ') #User defined Strike Price 
T = input('Enter T: ') #User defined time to maturity 
a = input('Enter a: ') #User defined u/d factor (per 10.10) 
n = input('Enter n: ') #Total number of Monte Carlo iterations 
s=[]                   #Creates an emptyset to be populated by calculated stock values at time T 
count = 0              #Sets the initial count value for the loop Process 'count' 
for _ in range(n*T):  #Sets the total number of loops to processed 
    if count == T:     
        S = G          #Resets the underlying stock value to the OSP after T loops 
    if count == T: 
        count = 0      #Resets the count to 0 after T loops 
    p = (R - d*S**-a)/((u*S**a)-(d*S**-a)) #Calculates the risk neutral probability 
    v = np.random.random(1)   #Creates a vector with T elements of random numbers between 0 
and 1  
    x = v              #Duplicates the vector v for computational purposes 
    x[x <= p] = 1      #Sets the value of all random numbers in v to 1 if they are within the risk 
neutral probability 
    x[x < 1] = 0       #Sets the value of all random numbers in v to 0 if they are outside the risk 
neutral probability 
    X = x[0]           #Defines X to call the 'zero'th element of vector x 
    def f(X): 
        return (S**(1 - a + (2*a*X)))*(u**X)*(d**(1-X)) #Defines the Underlying Stock Value at time t 
= count 
    S = f(X)           #Duplicates the Underlying Stock value at time t = count 
    count = count + 1  #Increases the count 'count' by 1 
    if count == T:      
        s.append(S)    #Populates the vector s with the Underlying Stock Values at time t = T 
k = np.ones(n) * K      #Creates a vector with n elements, all = K, for computational purposes 
b = s - k              #Creates a vector populated by all the contingent claims 
b[b <= 0] = 0          #Sets all negative values of our contingient claims to 0 
L = sum(s)/n           #Averages the stock values at time T 
A = sum(b)/n           #Averages the Call Options at time T 
B = (R**-T)*sum(b)/n   #Returns the Call Option Premium of our OSP (per 10.10) 
print 'Your Underlying Stock Price estimate is: ', L 
print 'Your Contingient Claim estimate is: ', A 
print 'Your Call Option Premium estimate is: ', B 
if a == 0 and T == 10: #Allows the graphic info to be called only when a = 0 AND T = 10(the 
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graph doesn't work otherwise) 
    fig, ax = plt.subplots() #Defines the figure and name of the plots to follow (otherwise it draws 
new graphs)   
    H = sorted(s)      #Sorts the stock price at time T vector numerically for graphing purposes 
    H.insert(0,0)      #Inserts a 0 in the '0'th element of vector H for graphing purposes 
    H.append(400)      #Appends a 400 in last element of vector H for graphing purposes 
    J = b-G            #Reduces our contingient claims by the OSP for graphing purposes 
    I = sorted(J)      #Sorts the OSP reduced contingent claims numerically for graphing purposes 
    I.insert(0,-K)     #Inserts a -K in the '0'th element of vector I for graphing purposes 
    I.append(400-2*K)  #Appends a 400-2*K in the last element of vector I for graphing purposes 
    plt.plot(H, I, '-') #Plots vectors H and I with a blue line 
    ax.set_xlim(0, 400) #Sets the range of the x-axis as 0 to 400 
    ax.set_ylim(-150, 300) #sets the range of the y-axis as -150 to 300 
    plt.xlabel('Underlying Stock Price') #Labels the x-axis 
    plt.ylabel('Present Value') #Labels the y-axis 
    ax.plot(np.arange(400),np.zeros(400), '-r')    #Graphs the present value = 0 with a red line 
    ax.plot(K,0, '^g')        #Plots the Strike Price on the x-axis with a green triangle 
    C = []                    #Creates an emptyset to be populated by present values of our portfolio 
    N = []                    #Creates an emptyset to be populated by stock prices at time = T 
    chocula = 0               #Sets the initial count value for the Loop Process 'chocula' 
    for _ in range (n):       #Sets the total number of loops to be processed 
        if chocula == 0:       
            N.append(s[chocula])   #Populates the vector N with the 'chocula'th element of the vector 
s 
            C.append(b[chocula]-G) #Populates the vector H with the 'chucula'th element of the 
vector b minus our OSP 
            points, = ax.plot(N,C, '*y')#Defines our original ordered pairs to be graphed (Our 
contingient claims) 
            plt.title('Monte Carlo Simulation of a Call Option') #Prints a title on our graph 
            text = plt.text(50, 200, 'n = 1') #Defines the original text for our n counter 
            plex = plt.text(50, 275, 'Your Underlying Stock Price estimate is: ') #Defines original text 
            glex = plt.text(50, 250, 'Your Contingient Claim estimate is: ')      #Defines original text 
            blex = plt.text(50, 225, 'Your Call Option Premium estimate is: ')    #Defines original text 
        if chocula < n: 
            N.append(s[chocula])   #Appends the 'chocula'th element of the vector x to the vector N 
            C.append(b[chocula]-G) #Appends the 'chocula'th element of the vector b - our OSP to 
the vector C 
            ax.plot(sum(N)/chocula,0, 'xm') #Plots the re-estimated values of our stock price at time 
T on the x-axis 
            points.set_data(N, C)  #Replaces the original ordered pairs to be graphed with 
'Chocula'th + 1 points of data 
            chocula = chocula + 1  #Increases the count 'chocula' by 1 
            text.set_text('n = {0}'.format(chocula)) #Updates the n counter with each loop 
            plt.pause(0.0001)      #Artificially defines the time interval between individual plotted 
points 
        if chocula == n-1: 
            ax.plot(sum(N)/n,0, 'Dk')    #Plots a black diamond on our final estimate of our Underlying 
Stock Price 
            plex.set_text('Your Underlying Stock Price estimate is: {0}'.format(L)) #Updates text after 
the final loop 
            glex.set_text('Your Contingient Claim estimate is: {0}'.format(A))      #Updates text after 
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the final loop 
            blex.set_text('Your Call Option Premium estimate is: {0}'.format(B))    #Updates text after 
the final loop 
            ax.plot(sum(N)/n,-G+A, 'Dk') #Plots a black diamond on our final estimate of our 
Contingient Claim 
 
!
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