
Barrier Option Pricing
− A Monte Carlo Simulation Approach

Väster̊as 2013-10-23
Mälardalen University

MMA 708
Author: Jessica Radeschnig

Instructor: Jan Röman

Abstract

This report describes how Matlab can be used to solve the barrier-asset pricing problem with
methods of Monte Carlo Simulation.

Contents

1 Introduction 1
1.1 Monte Carlo Simulation . 2
1.2 Barrier Options . 2

2 The Black-Scholes Model 3
2.1 The Algorithm . 3

3 Examples 4
3.1 Example 1 − Pricing a Down-and-In-Call . 4
3.2 Example 2 − Pricing a Down-and-Out-Put . 4
3.3 Example 3 − Pricing an Up-and-Out-Call . 5
3.4 Example 4 − Pricing an Up-and-In-Put . 5
3.5 Example 5 − Pricing an Up-and-In-Put . 5

Comments and Conclusions 5

References 6

A Appendix 6
A.1 The Algorithm . 6
A.2 The Examples . 8

Purpose

The purpose of solving this assignments is to develop practical skills in how to price financial derivatives
in a computer programming language.

1 Introduction

This first section of this report will introduce the reader to Monte Carlo Simulation and Barrier options.
The second section give the discretized Black-Scholes formula that needs in order to simulate the stock
price, followed by an developed algorithm that could perform the specific task. Next, Section 3 will
give some examples with the use of the algorithm, followed by conclusions from this seminar. At last,
Appendix A contains the Matlab codes for the algorithm and the examples.

1

1.1 Monte Carlo Simulation

Monte Carlo methods contain many different models that can make it possible to create sample out-
comes. These models can be simulated over and over again in order for the sample size to increase.
Further, by the law of large numbers, the average value of the outcomes will converge towards the real
value. Thus, applying simulation to stocks make it possible to for instance find the expected future
option pay off, which further can be used for pricing the option in question. See Glasserman (2003) for
more details about Monte Carlo Simulations.

1.2 Barrier Options

Barrier options are path-dependent options whose pay off depend on weather the price of the underlying
stock reaches a given barrier or not. These options can be classified as Knock - In Options1 or Knock -
Out Options2. In the first of these, the price of the underlying must intersect the barrier for the option
to exist and in the latter case, the option’s existence is terminated if the barrier is being intersected.
See Hull (2010) for further readings.

When simulating, each iteration i will produce a different value of the option. The price of the
option however, is martingale and thus will be the average of all the estimated values, that is,

V =
1

n

n∑
i=1

Vi (1)

where n is the number of simulations and

Vi =

{
Ci, for call options
Pi, for put options

Furthermore,

Ci = 1e−rT max{Si(T)−K, 0}

and
Pi = 1e−rT max{K − Si(T), 0}

where r is the risk-free interest rate, T is the time to maturity, S(T) is the stock price at maturity and
K is the strike price. In addition, 1 is the indicator function:

1 =

{
1, if in the contract
0, if out of the contract

The upper and lower bound of the 95% confidence interval for the option value is V + 1.96s and
V − 1.96s respectively3, where s represent the sample variance and is given by

s =

√√√√ 1

n− 1

n∑
i=1

(Vi − V̂n)2 ,

for a finite but rather large value of n (Glasserman, 2003).

1Could be either a down-and-in or a up-and-in option.
2Could be either a down-and-out or a up-and-out option.
3The value 1.96 is found from Z0.5/2 in the Normal Table

2

2 The Black-Scholes Model

In the Black-Scholes model, t is the current time and S(t) represents the stock price at that time. T is
the time of maturity, r is the annualised risk-free interest rate, σ is the annualized volatility and W (t)
is the Brownian Motion. Furthermore, W (t) has a distribution of

√
TZ, where Z is a standard normal

variable. The movements of the stock price is explained by

dS(t)

S(t)
= rdt+ σdW (t)

and at maturity, the solution to this stochastic differential equation is given by

S(T) = S(0)e(r−σ
2/2)T+σW (T).

Furthermore, one can discretize the above continuous formula of the the stock value through dividing
the time into subintervals. Then the stock vale S(tj+1), where j = 0, 1, 2, · · · ,m, is the time step from
time 0 to time T, can be estimated as follows:

Ŝ(tj+1) = Ŝ(tj)e
(r−σ2/2)T/m+σ

√
T/mZj , (2)

where Zj are independent from one another. (Glasserman, 2003)

2.1 The Algorithm

When pricing the barrier option, one first must simulate the price movements of the underlying stock
in order to find the expected pay off. The Matlab function created to simulate the estimate and do the
pricing is attached in Section 5.14 and works as follows:

First, an outer loop is created to represent the amount of simulations. Then, the indicator function,
used to give value to the simulations that are in the contract, is defined to be equal 0 for knock-in
option and 1 for knock-out). An inner loop is now created to calculate the movements for all the
time steps. Inside this loop, we first must find a starting value and do so through an if-condition
that separates the first simulation from the rest. Then the algorithm generates a value for the normal
random variable Zi(t1) and plug this together with the input of S0 into (2). Next an if-command
checks whether the price movement caused the option to be in the contract or not, and assign the
corresponding value of the indicator function. From there, this procedure is repeated for Si(tj+1) but
now plugging the value of Zi(t1) and the simulated value of Si(t1) into (2) instead. Next, the inner
loop is closed, an if command specifies weather to find the call-price or the put-price, which is found
for each simulation and set by the discounted pay off at maturity times the indicator function in order
to sort out the ones being in -and out of the contract respectively. Finally, the outer loop is closed and
the price at time 0 is set to be the discounted average pay off of all simulations. Let I and B represents
the indicator function and the price-barrier respectively, then the above procedure is summarized below.

for i = 1 to n do
if Knock-In Option
set I = 0
elseif Knock-Out Option
set I = 1
for j = 0 to m− 1 do

if j = 0
generate Zi(t1)
calculate Si(t1) by (2)

if Down-and-In Option and Si(t1) ≤ B, or Up-and-In Option and Si(t1) ≥ B
I = 1

4The function in the appendix actually includes one more loop in order to generate vectors with different values for
different number of simulations, this is for demonstration purposes only. The last value of this vector is the one used for
the pricing.

3

elseif Down-and-Out Option and Si(t1) ≤ B, or Up-and-Out Option and Si(t1) ≥ B
I = 0

end if
else j 6= 0

generate Zi(tj+1)
calculate Si(tj+1) by (2)

if Down-and-In Option and Si(t1) ≤ B, or Up-and-In Option and Si(t1) ≥ B
I = 1

elseif Down-and-Out Option and Si(t1) ≤ B, or Up-and-Out Option and Si(t1) ≥ B
I = 0

end if
end if

end for
if Call-Option
set Ci = e−rTmax{Si(T)−K, 0} × I
elseif Put Option
set Pi = e−rTmax{K − Si(T), 0} × I
end if

end for
set V by (1)

3 Examples

This section provides five examples of pricing barrier options with the Black-Scholes model. All of them
has arbitrary values of input5, where it is assumed, for simplicity, that a month has 30 trading days
and that prices fluctuate once per day (giving the same number of time-steps in the simulator as the
number of days till maturity). Moreover, the amount of stock-price simulations is 10.000 for each of
the examples and the Matlab function and script used for execution are attached in the Appendix.

3.1 Example 1 − Pricing a Down-and-In-Call

Let the inputs to the Black-Scholes model be

r = 0.02

T = 1/4

S0 = $100

σ2 = 0.12

B = 95

K = 70

The price of a down-and-in call option with this stock as the underlying turns out to be $0.0617
and with 95% confidence, the value lies within the interval [$0.0346 $0.0888]. The computational time
was 18.641742 seconds and Figure 2a demonstrates how the estimate converges towards the true value
as the number of simulations increases.

3.2 Example 2 − Pricing a Down-and-Out-Put

Let the inputs to the Black-Scholes model be

r = 0.02

T = 1/4

S0 = $100

σ2 = 0.12

B = 88

K = 115

The price of a down-and-out put option with this stock as the underlying turns out to be $0.0242
and with 95% confidence, the value lies within the interval [$0.0117 $0.0368]. The computational time

5Barrier options are mostly traded at the over the counter market which makes it difficult to find any data to evaluate
this model against.

4

was 16.026143 seconds and Figure 2b demonstrates how the estimate converges towards the true value
as the number of simulations increases.

3.3 Example 3 − Pricing an Up-and-Out-Call

Let the inputs to the Black-Scholes model be

r = 0.02

T = 1/4

S0 = $100

σ2 = 0.12

B = 110

K = 70

The price of a down-and-in call option with this stock as the underlying turns out to be $0.0351
and with 95% confidence, the value lies within the interval [$0.0186 $0.0517]. The computational time
was 20.661569 seconds and Figure 2c demonstrates how the estimate converges towards the true value
as the number of simulations increases.

3.4 Example 4 − Pricing an Up-and-In-Put

Let the inputs to the Black-Scholes model be

r = 0.02

T = 1/4

S0 = $100

σ2 = 0.12

B = 110

K = 115

The price of a down-and-in call option with this stock as the underlying turns out to be $0.1098
and with 95% confidence, the value lies within the interval [$0.0674 $0.1523]. The computational time
was 16.144229 seconds and Figure 2d demonstrates how the estimate converges towards the true value
as the number of simulations increases.

3.5 Example 5 − Pricing an Up-and-In-Put

A similar trial as Example 1 was executed with identical numbers except for that the number of
simulations were set to 100.000 rather than 10.000. The computational time increased to 200.918013
seconds while the price became $0.0090, with 95% confidence interval [$0.0058 $0.0123]. Figure 1 in the
Appendix demonstrates how the estimate converges towards the true value as the number of simulations
increases.

Comments and Conclusion

From Figure 1 and 2 in the Appendix, it is obvious that as the number of simulations (i.e. n) increases,
the variance of the distribution tend to become smaller. The smaller variance is of course desirable
but it does also increase the computational time of the model, as demonstrated in Example 5. In
addition, since the barrier options forces one to use the discretized version of the models’ stock-price
formulas, small errors will arise causing the result to be biased. By increasing the number of steps
(i.e. m) however, this error will decrease, causing the estimate to converge asymptotically towards the
true value but will in turn, increase the computational time. In other words, greater accuracy increases
the computational time and one must decide at what level the benefits outweighs the costs. Anyhow,
simulation is a good method of solving complicated stochastic differential equations and this assignment
clearly demonstrates how Monte Carlo methods can be used in order to price more complex derivatives
rather than non-complex such for instance a European option. However, there is more to come before
I am convinced about the method being a good fit. Firstly, concerning the question of when benefits
outweighs the losses, how long time is a reasonable time for execution (i.e. how urgent is it to have the
results)? In this report the results were generated in a maximum of less than 4 minutes but running the
trials (identically) over and over again gave values that fluctuated significantly between all trials. What
if the simulations or time-steps were increased even further or an average of the value of many trials
were calculated, could this generate more equal values from execution to execution? I truly suspect

5

that there is a reason for Monte Carlo simulations within the field but more knowledge is forced before
I can be convinced about the greatness of Monte Carlo Simulations when pricing financial derivatives.

References

Hull, John C. (2010) Options, Futures, and other Derivatives, 7th edt, United States, Pearson.

Glasserman, P. (2003) Monte Carlo Methods in Financial Engineering, United States, Springer.

A Appendix

This appendix contains all relevant Matlab scripts that has been created to solve the problems.
Section 5.1 covers the first of these while section 5.2 covers the second one. Section 5.3 will cover the
examples.

A.1 The Algorithm

Here follows the Matlab function for pricing the down-and-in call option with the Black-Scholes
model:

1 % Course: Monte Carlo Simulation

2 % Author: Jessica Radeschnig

3 % Assignment 1/2 - Pricing discretely monitored down -and -in call option in

4 % B-S model

5 function[Price , upper , lower , moments]= BlackScholes(n,m,Option ,Knock ,r,T,...

6 Var ,S0 ,K,B)

7 % Defines the function with output and

inputs.

8 % This function can be used by other

scripts

9

10

11 Price = 1:50; % Makes the output to come in vector form

12 upper =1:50; % -||-

13 lower =1:50; % -||-

14 moments =1:50; % Defines how many different sample sizes to measure

15

16

17 for N=1:50 % Make the output vector represent different sizes of

simulations

18

19 moments(N)=(n/50)*N;

20 end

21 N=1;

22 h=waitbar(0,’Work in progress , please wait ...’);% Creates window counting down

until

23 % the results of the execution

are

24 %

available

25

26

27

28 tic % Starts calculating the time for calculations

29 for i = 1:n; % To make n simulations

30 if Knock ==11 || Knock ==21; % Indicator function: Initially one is out of the

31 I=0; % contract

32 elseif Knock ==12 || Knock ==22;

33 I=1; % Indicator function: Initially in contract

34 end

35

36

37 for j = 0:m-1; % To make m timesteps untill maturity

38 Z(j+1)=randn (1,1); % Generates the random normal variable

39 dW=sqrt(T/m)*Z(j+1); % The distribution of the Brownian motion

6

40

41 if j==0 % The S of the first time period must be priced

42 % with an explicit input

43

44 S(j+1) = S0*exp((r- Var/2)*(T/m) + sqrt(Var)* dW); % Defines the

45 % first next stock price

46

47 if all([Knock ==11, I==0, S(j+1) <= B]) || all([Knock ==21, I==0, S(j+1) >=

B]);

48

49 % Condition for being in the contract is to

fall

50 % or reach to the

barrier

51 I = 1;

52

53 elseif all([Knock ==12, I==1, S(j+1) <= B]) || all([Knock ==22, I==1, S(j

+1) >= B])

54 % Condition for out of the contract is to

fall

55 % or reach to the

barrier

56 I = 0;

57 end

58

59

60 else % All time periods after first: is priced using estimated values of S

61

62 S(j+1) = S(j)*exp((r - Var/2)*(T/m) + sqrt(Var)* dW); % Simulates all

63 % values of S after the first

64

65 if all([Knock ==11, I==0, S(j+1) <= B]) || all([Knock ==21, I==0, S(j+1) >= B])

;

66

67 % Condition for being in the contract is to

fall

68 % or reach to the

barrier

69 I = 1;

70 end

71

72 if all([Knock ==12, I==1, S(j+1) <= B]) || all([Knock ==22, I==1, S(j+1) >=

B])

73 % Condition for out of the contract is to

fall

74 % or reach to the

barrier

75 I = 0;

76 end

77 end

78

79 end % End j-loop

80

81

82 if i== moments(N)

83 if Option ==1; %Creates N different sample sizes (# of simulations)

84 C(i) = exp(-r*T)* max((S(m-1)-K), 0)*I; % Vector with call price for all

85 % iteration

86 Price(N)=sum(C(1:i))/i; % Calculates the price of the down -and -in call

87

88 s=std(C(1:i)); % Gives the standard deviation of each sample

89

90 upper(N) = Price(N) + 1.96*s/(sqrt(i));% The upper confidence inteval

91 % bound for the samples

92

93 lower(N) = Price(N) - 1.96*s/(sqrt(i));% The lower confidence inteval

94 % bound for the samples

95 N=N+1;

96

97 elseif Option ==2; %Creates N different sample sizes (# of simulations)

7

98 P(i) = exp(-r*T)* max((K - S(m-1)), 0)*I; % Vector with put price for all

99 % iterations

100

101 Price(N)=sum(P(1:i))/i; % Calculates the price of the down -and -in call

102

103 s=std(P(1:i)); % Gives the standard deviation of each sample

104

105 upper(N) = Price(N) + 1.96*s/(sqrt(i));% The upper confidence inteval

106 % bound for the samples

107

108 lower(N) = Price(N) - 1.96*s/(sqrt(i));% The lower confidence inteval

109 % bound for the samples

110 N=N+1;

111 end

112 end

113

114

115

116 waitbar(N/50); % Now , the count down in the waitbar should proceed

117

118 end % End i-loop

119

120 close(h); % Not untill here , the count -down (in window) is finnished

121

122 toc % Stops calculating the time for calculations

123

124 end % Ends the function

A.2 The Examples

Here follows the Matlab file used for executing the results in the Examples.

1 % Course: Analytical Finance II

2 % Author: Jessica Radeschnig

3 % Seminar: Pricing discretely monitored Barrier Options in B-S Model

4 % Main File , Example

5 clear

6 clc

7

8

9 n=10000;

10 m=90;

11

12 Matlab asks for the model inputs

13 Option=input(’What kind of option is it? Press "1" for call and "2" for put’);

14 Knock=input(’What kind of option is it? Press "11" for down and in, "12" for down

and out , "21" up and in , or "22" for up and out.’);

15 r=input(’What is the interest rate?’);

16 T=input(’What is the time to maturity?’);

17 S0=input(’What is the initial stock price?’);

18 Var=input(’What is the variance?’);

19 B=input(’What is the Barrier level?’);

20 K=input(’What is the strike price?’);

21

22

23 [Price , upper , lower , moments]= BlackScholes(n,m,Option ,Knock ,r,T,Var ,S0 ,K,B);

24

25 if Option ==1;

26 fprintf(’The Price for the Call -Option is %3.4\n’,Price)

27 Price(1, 50) % Gives the price (from the value generated by n=100000)

28 fprintf(’The Upper Bound is %3.4\n’ ,upper(1, 50))

29 upper(1, 50) % Gives the upper bound (from the value generated by n=100000)

30 fprintf(’The Lower Bound is %3.4\n’ ,lower(1, 50))

31 lower(1, 50) % Gives the lower bound (from the value generated by n=100000)

32

33 plot(moments , upper , moments , Price , moments , lower) % Plots the average option

34 % price and confidence interval corresponding to

all

8

35 % the different amount of sample

sizes

36 title(’Simulating Barrier Option Price using Black -Scholes Model ’)

37 xlabel(’Number of Simulations ’);

38 ylabel(’Call -Option Price’);

39 legend(’Upper Bound’,’Call -Price’, ’Lower Bound ’)

40 grid on;

41 elseif Option ==2;

42 fprintf(’The Price for the Put -Option is %3.4\n’,Price)

43 Price(1, 50) % Gives the price (from the value generated by n

=100000)

44 fprintf(’The Upper Bound is %3.4\n’ ,upper(1, 50))

45 upper(1, 50) % Gives the upper bound (from the value generated by n

=100000)

46 fprintf(’The Lower Bound is %3.4\n’ ,lower(1, 50))

47 lower(1, 50) % Gives the lower bound (from the value generated by n

=100000)

48

49 plot(moments , upper , moments , Price , moments , lower) % Plots the average option

50 % price and confidence interval corresponding to

all

51 % the different amount of sample

sizes

52 title(’Simulating Barrier Option Price using Black -Scholes Model ’)

53 xlabel(’Number of Simulations ’);

54 ylabel(’Put -Option Price’);

55 legend(’Upper Bound’,’Put -Price ’, ’Lower Bound ’)

56 grid on;

57 end

Figure 1: Estimating using the Black-Scholes Model − Increasing the simulations
The graph shows how the variance of the estimated option price decreases as the number of iterations (simulations)

increases. Total number of simulations is 100.000.

9

(a) Down-and-In Call (b) Down-and-Out Put

(c) Up-and-Out Call (d) Up-and-In Put

Figure 2: Estimating using the Black-Scholes Model
The graphs shows how the variance of the estimated option price decreases as the number of iterations (simulations)

increases. Total number of simulations is 10.000.

10

