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Abstract

In this paper, we evaluate the famous Black-Scholes model (1973) for options with dividends
in underlying. We use various extensions of the Black-Scholes framework to see how the
theoretical price of plain vanilla European options is affected when dividends are assumed.
We also test for early exercises of American Options. We infer from our results that the size
of a discrete dividend or the size of a dividend yield has a greater impact than when a discrete
dividend occurs, at least for options with short time to maturity.
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Chapter 1

Introduction

During the early 70s, Black and Scholes (1973) and Merton (1973) laid the foundations for a
framework that came to change the way in which options were priced. Using only five para-
meters to price a plain vanilla European option (price of underlying asset, strike price, risk-free
interest rate, volatility of the underlying asset and time to maturity), the Black-Scholes-Merton
model spoke to a vast range of traders which earlier used complex multi-factor models. The
model gained immense popularity and has since then become the benchmark. In order to cal-
culate the theoretical price of a call- or a put option using the Black-Scholes formulas, several
assumptions have to be taken (see section 2.3). One keen assumption is that the underlying
asset (usually a stock) pays no dividends during the life of the option. The postulation of no
dividends in the underlying asset only holds for options with short maturities. In reality, a vast
bulk of traded companies pay dividends on an annual, semi-annual, quarterly or even monthly
basis. Problems then arise when one tries to price an option that spans over one or several
dividends. A large concern is whether one can assume the dividends to be recurring or if they
are just some random events. Furthermore, the size of the dividend and its occurrence in time
will also have an impact on the theoretical price of a derivative. Does there exist one or several
good solutions to cope with the fact that we live in a world where dividends are common? In
this report, we investigate the Black-Scholes world with dividends and simulate some different
scenarios. By using MATLAB, we develop an application of financial model where the user
can see how the theoretical price of a plain vanilla European option changes while altering the
parameters.



Chapter 2

Theory around the Black-Scholes model
and dividends

In this part, we recap the concept surrounding dividends and the Black-Scholes framework.
We present alternative results using different parameters.

2.1 Whatis a dividend and how does it influence the under-
lying asset?

Dividends are earnings that a company distributes to its shareholders. There are different types
of dividend payouts but for the sake of this report we will assume that dividends are paid in
cash. If a person wants to buy a stock, she will be willing to pay a certain amount of money. If
this stock is expected to pay a dividend within a short future, the stock is very attractive since
it will generate an extra income. Therefore it seems reasonable to pay some extra money in
order to become the owner. The price of this stock will be higher prior to a dividend compared
to the price of a stock that already had a dividend, which is called ex dividend. At ex-dividend
date the price of the stock will drop approximately by the amount of the dividend size. A stock
can therefore differ in price over time, despite the fact that it represents the exact same size of
ownership. [1]

The consequence of this is that option prices on these stocks will differ as well. The more the
stock increases its value, the more valuable its call option will be. After the dividend payout
the stock price will drop and thus increasing the value of put options. [2]



2.2 Assumptions in the Black-Scholes World

In order for the Black-Scholes-Merton differential equation in section 2.3 to hold, we take on
the following assumptions.

1. There is no opportunity to perform arbitrage. (Arbitrage means to earn money through
buying cheap and selling expensive.)

2. There is market efficiency which means that the future development of the stock price
and the trend of the market are unpredictable. Instead they follow an Ito Process (which
depends on the present value) and are continuously guessed.

3. The expected return u and volatility o (risk) of the stock (that underlies the option) is
constant during the option’s life time.

The stock pays no dividends.
Tax, transaction costs, fees and commissions are excluded from the calculations.

During the option’s life time, the risk free interest rate is known and constant.

N o R

Small changes in the stock price S with respect to time Ar follow a normal distribution

5~ o(uirt,oV/A0) 3]

2.3 The price in a world without dividends

We will use the following notation for the different parameters: S() = the price of the under-
lying

f(S,t) = price of the option depending on the underlying and time

C(S,t) = price of a Call

P(S,t) = price of a Put

K = strike price

r = risk free interest rate, continuously compounded

o = volatility

t =time

The standard Black- Scholes PDE

2
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where %—J; represents the change in the option value with respect to time, called ®

% represents the change in the option value with respect to the underlying, called A

2
% represents the change in the option value with respect to the volatility of the underlying,



called I'.

The standard formulae for European Call and Put

In order to use the formulae we need to know the current price of the underlying stock Sy,
the strike price K (the contracted price of the stock at the date of maturity), the risk free
interest rate r and the time to maturity 7 of the option. Discounting back the strike price with
continuous compounding calculating Ke~'7 gives us the value that the strike price would have
today, i.e. the present value of the strike price. We also need information about the volatility
o which is a measurement of the risk due the uncertainty of the return of the stock.

Furthermore we need to determine what the change of the option price will be with respect to
a change of the underlying stock N(d;) and we need to estimate the probability that the option
will be exercised N(d>). The formulae for d; and d, are

L In(32) + (r+%)T
! oVT
and
. In(32) + (r— ST
2_

Plugging d; and d; into N(x) gives the cumulative probability distribution of the values, i.e
the probability that variables with standard normal distributions ¢ (0, 1) will be smaller than
dy and d; respectively.

Current stock price and strike price are expressed in the value of its currency (e.g. 100$),

volatility and interest rate are expressed in decimals (e.g. 50% = 0.5). Time to maturity is

expressed in years (e.g. 200days = % ~0.55) .

Now we have everything we need to show the actual formulae for calls ¢ and puts p
c= S()N(d]) — KeirTN(dz)

and
p= Ke_rTN(—dz) — S()N(—dl)

2.4 Numerical Example

The inputs for this example are for the stock of Eniro AB. At october 27 2012 it was traded
for SEK 9.05. It’s volatility ¢ was according to its business report (2012-06-30) 41.18%, [4].



The risk-free interest rate » (STIBOR rate, 2012-10-26, [5]) was 1.57%. The calculations in
this example are made for both call and put options with a strike price K = 15 and a maturity
date in 6months (=~ 182days) from now.

¢ =9.05N(d;) — 15¢ 015703 ()

2
g (%2 +(0.0157 4 245180.5 sy
0.04118+/0.5

We can use the table for N(x) in Hulls literature [6] to obtain the value

N(d;) = 0.059076

In(293) 4+ (0.0157 — 0041182y 5
dy = n(5s’) 54118 — 2 ) = —1.8539 = N(d>) = 0.03192136

Now we plug the values into our formula for ¢ which yields

¢ ~0.06

We can also calculate a put:

p=Ke "TN(—dy) — SoN(—d;) = 15¢ 2015703 N(1.8539) —9.05N(1.5627) ~ 5.89

2.5 Introducing Dividends to the Black-Scholes World

When we relax assumption nr 4, we face the problem how to correctly value an option. One
alternative is to assume that the underlying asset pays a continuous fraction in dividend known
as dividend yield. A second alternative arises when the underlying asset pays a finite amount
of dividend at one or several certain dates, the discrete case.

For the case of American Options where the holder of the option has the possibility to exercise
early, there might be certain conditions that, if they are fulfilled, make it beneficiary to exercise
early.



2.6 Derivation of Black-Scholes with Continuous Dividends

The stock price S(r) at time ¢ can be expressed as a function of two deterministic constants,
i.e a drift u(z) and a diffusion o(r) as well as stochastic component which is governed by a
Brownian motion W (¢). The function is given by

S(t) = u(t) + o (W (1), @.1)
S(0) = Sp.
ds(t)

Now, the change in (2.1) between two time periods can be expressed as a ratio given by K0}

where dS(t) is the increment at time ¢. It follows that
dS(t) =S(t)u(t)dt +S(t)o(t)dW(t). (2.2)

For a stock yielding a continuous dividend at time ¢, the price of the stock decreases by the
rate of the yield. This means that if we express the dividend by (z), the stock decreases by
0(1)S(t)dt, which is equivalent with subtracting the yield from the drift. We can rewrite (2.2)
as

dS(t) = S(t)(u(r)—8(t))dt +S(t)o(t)dW (z). (2.3)

Further, we introduce a money market account B(z) = e which grows continuously by a
constant rate r. The characteristics of the increment is given by

dB(t) = rB(t)dt, (2.4)
B(0) =1.
To derive the Black-Scholes PDE we need to express the stock and the money market account
as a value process V (¢). The value process is weighted by a stochastic function f(x,y) where
x is the portion of stocks held and y is the portion of money held at the money market market
account. f(x,y) rebalances in proportion to the assets to maintain the value. The process is
given by
V(t) = x(1)S(1) +(1)B(2),

and is self-financing if
dV(t) =x(t)dS(t)+y(t)dB(t)

= x(¢) [S(t)(u(t) —0(t))dr + S(t)c(t)dW(t)] +y(¢)rB(t)dt
= {x(t)S(t)(u(t) —0(1)) —l—y(t)rB(t)} dt +x(¢)S(t)o (t)dW (t). (2.5)

Now, we must introduce a relative portfolio g(u,w) such that the portion of respective asset is
expressed as a ratio of the total value of dV (¢). This is done by letting

x(1)S(r) (1 24

u(t) = HOZ and w(r) =

,u(t) +w(r) = 1. (2.6)



By putting the expressions from (2.6) into (2.8) we get
dv(t) =V (t) {u(t)/.t(t) + rw(t)} dt+V(t)w(t)o(t)dW (t). (2.7)

By assuming that V (t) = V(¢,S(¢)) we can use ItAt Lemma on (2.7) and get

av(t) = ‘;—th + g—‘;dS+ - 325‘; (ds)?
2 2 2
_ %_‘;dt + aa—‘; [S(t)(u(t) — 5(t))dr —l—S(t)G(t)dW(t)] MR >2 ‘3 S‘;d

262 92
= B—‘;+S(t)(u(z)—3(z))g—‘;+s( >2 gSquS( Jo(t)dW (7).

By multiplying the right hand side by %

v v | S(1)?c %y
TS () — 8(1) %% + S 2 S(1)o(1)dW (1)
—V(t){ 70 }dt—FV( ) 70 ,
and comparing with experssion (2.7) we have that
(1 - )50 55
u(r) = — 2.8)
and
_ 9 +20°8(8) P
w(t) = Vor . (2.9)
v

By now we should substantially reduce the partial derivative notations. We use 5- =V,
as — Vs and 2 as2 = Vss. By going back and plug (8) and (9) into (2.6) and let r = p(t), the

result will become

ut)+w(t)=1
(1—21)5(1)vg Vi 1628(1)2VsS

1;( 1) V)r =1

(r—6(t))S(r)Vs+V, + ;GZS( Y Vs = 1V (1), (2.10)

which is the Black-Scholes PDE modified for a continuous yield.



2.7 Parts of the Solution Affected by Dividend.

The pay-off for an European call option at maturity is
Vr =maxS(T) —K,0, (2.11)

and suppose that V(t,S(t)) is a solution to (2.10). We recall the incremental stock price and it
characteristics given in (2.1) and (2.2), and use It6 Lemma to write (2.10) as

dV = Vidt 4 VsdS + %VSS(dS)Z
= V,dt + Vg [S(t)(/.i(t) —8(1))dt + S(t)o-(t)dW(t)] + %S(t)zazvggdt

_ {v, FVeS(u(r) — 8(1)) + %S(t)zczvsgl dt +S(t)o (1)aw (1)
=rVdt+S(t)o(t)dW(t). (2.12)

We also show that the price diffusion process will be slightly different when introducing a
dividend. Recall equation (2.2), to solve this by [t6 Lemma we must introduce a new variable
Z = In(S(1)) solve for Z. We have

dZ = Z,dt + ZsdS + %ZSS(dS)Z
L P _ 1y
=3 [(r 5(t))Sdl‘+G(t)SdW(l)] 5520 Sdt
=(r—6(r)— %Gz)dl +o(t)dW(t).

If we integrate and exponentiate both hand sides of the expression above it gives

/sz - /T (r—8(1)— %Gz)dt+/T0'( )aw (1)
In(S(T)) —In(S(t)) = (r—8(t) - %Gz)(T —1)+o@)(W(T)-W())
Sn(S(T)) eS(t)—O—(r—S(t)—%Gz) (T—1)+o(r) (W(T)-W (1))
S(T) = S(Z)e(r—S(t)—%Gz)(T—t)+6(l)(W(T)—W(t))
=S(t)e. (2.13)

Let (T —t) = 7, then the probability distribution of Z is normal with mean (r—§(t) — 102)t
and variance 627 and the probability density function is given by

| ((r—8(1)—Lo?)7)?
GS(t)\/ﬁeXp{ 262T2 }

g(S) =

10



Before we can continue and finish the solution, we must clarify two things. First of all, we
need to find the value of the pay-off when y equals zero. That is when

S(t)e —K =0

yozln(%)

From that solution we can introduce a new variable z and rewrite g(S) into

1 —z?

by showing that

The rest of the solution to Black-Scholes follows the same procedure as for the non-dividend
case. Note that N(—z9) = N(d;) and that z is slightly modified by the dividend.

11



Chapter 3

Application and results

We developed a MATLAB program where the user can choose several properties of the un-
derlying asset and the dividends. We start of by investigating the theoretical European Call
and Put price for different dividend yields. Later we turn to the discrete case and investigate
how the size of dividends influences the price. Additionally we consider different times for
dividends keeping the other parameters untouched.

In the second part we turn our attention to American Options. Using the Black’s Approxim-
ation, we evaluate if early exercise is optimal under certain criteria, such as size of and time
to dividend. Black’s Appr. can also be used if there are more than one dividend payout within
the lifetime of an American Option.

At last we present a simple MATLAB program where the user can change parameters, with
or without dividends, in order to see theoretical prices and if early exercise would be op-
timal.

3.1 European case with dividend yield

Here we show how the option price is influenced by a changing yield.

As anticipated we see that the theoretical price of a Call is negatively correlated to the size of
the yield while the Put shows the reverse pattern. Obviously one could not expect yields of
magnitude 25 %.

In fig. 3.2 we have calculated the present value of the dividend using the simple formula
De " Where D is the size of the dividend, #, is time to dividend and r is the risk free interest
rate.

As expected the price of a Call/Put decreases/increases when the size of the dividend increases.
We see that for a sufficiently a large dividend, the Call price approaches zero while the Put
approaches K.

12



Figure 3.1: European Options with changing size of continuous dividend yield

Call price as a function of yield (SU=100, K=90, r=0.05, T=1, o =0.25)
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Figure 3.2: European Options with different discrete dividend values
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Using the previous method to calculate the present value of the dividend, we see in Figure 3.3
how the value for Calls and Puts changes depending on when the dividend is paid. For Calls
the value seems to increase with the decrease of time left to next dividend. Despite this, the
changes in the theoretical prices are very small, approximately 0.10.

We can conclude that the size of the dividend or the yield has a much larger impact on the
price than when a dividend is paid out for instruments with one year to maturity.

13



Figure 3.3: European Options with different times when dividends are paid

: as a function oftrl when 5 in D is paid out (SD=100, K=80, r=0.05, T=1, o =0.
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3.2 American Options

It can be shown that it is always optimal to exercise at time t#, for a sufficiently high value of
the stock price S(z,) if the following inequality is valid.[8]

D, > K[1—e " (T=))

where D, is the size of the dividend, K is the strike price, r is the risk free interest rate and ¢,
is time to dividend.

Figure 3.4: American Options with discrete dividend of constant size

Exercise when D_> K[1-exp(-r(T-t ))], D =4
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Time for dividend
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We can see that the inequality above will tend to be satisfied when the dividend is large and/or
the dividend date is fairly close to maturity. In the third panel we can see that the option will
always be exercised for sufficiently high stock prices regardless of when the dividend is paid
out.

Letting the time for dividend payout be constant, we can see below how the size of the dividend
influences whether early exercise might be optimal.

Figure 3.5: American options with discrete dividends of different size and the same 7,
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All the panels in Figure 3.5 show that there exist boundary values that , if they are exceeded,
lead to early exercise at dividend date. The longer away the dividend date lies from today, the
lower the dividend needs to be for early exercise. This can be seen in panel 2.

3.3 Black’s approximation

The following inequality can be used for the case of several dividends.

D; < K[l — e "ti171)]

If the inequality is fulfilled, it is not optimal to exercise immediately prior to time #,_.

Assume there are two dividends, both of size 2. The first dividend occurs in one month and the
second in seven months. By using the Black’s approximation we check whether the inequality
above is fulfilled at any time.

90[1 . 6—0.05*(7/12—]/12)] —229221

90[1 — e~ 0-05+(1=-7/12)] — 1 8556
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As we can see, 2.21 is greater than 2.00. Thus the option should never be exercised just
before the first ex-dividend date. On the contrary, since 1.86 is smaller than 2.00. There
are sufficiently high stock prices where early exercise is optimal just prior to the second ex-
dividend date.

3.4 User version

A simple MATLAB program is created where the user can change the values of the Black-
Scholes parameters in order to get the theoretical option prices. Later, the user can state
whether the underlying asset pays zero, one or two dividends during the lifetime of the con-
tract. Updated European prices will then be given. In addition, the Black’s Approximation,
which was explained earlier in this paper, will test if there might be any optimal times to
exercise the call-option prior to expiry. Below we guide the reader through one conceivable
procedure. When starting the program the following box will show up

Figure 3.6: Starting box for user version

Input P... [ = j

Enter price:
100

Enter Strike:
90

Enter Rate:
0.05

Enter Time :
1

Enter Volatiltty:
0.25

Enter Yield
0.00

p—
(S ———

Running the program with the predetermined values gives the following output

For a European call/put
Price of the call is 18.140763
Price of the put is 3.751411

Do underlying pay dividend? y/n

The second step is to indicate whether the underlying asset pays dividends. Answering 'y’ and
"2’ in the MATLAB command prompt will initiate the following box

Now the program recalculates the theoretical option prices for a European call and put. In
addition, it uses the Black’s approximation to see if there are any dividend times when early
exercise is optimal (given a sufficiently high stock price). Changing the values to use the
same parameters as earlier (i.e. dividends of D; = [2,2] at time 1, = [1/12,7/12]), yields the
following outcome

16



Figure 3.7: Box for telling the program if asset pays dividends

Erpute.. (= = ]

Enter Dividend 1:
z

Enter Time for Dividend 1.
112

Enter Dividend 2:
2

Enter Time for Dividend 2:
M2

For a European call/put
Price of the call is 15.200774
Price of the put is 4.745616

For a American call
Do not exercise (call) at first dividend
Exercise (call) at second dividend

We see that the call/put price decrease/increase when the two dividends are accounted for.

Furthermore, we get the expected result as we did in the previous section using the Black’s
approximation.

17



Chapter 4

Discussion and conclusion

In this report, we briefly investigate the effect that dividends have when using the Black-
Scholes pricing formulae. In order to calculate the theoretical prices of options we employ
several (sometimes unrealistic) assumptions about the market and the underlying asset. Des-
pite that we investigate scenarios that are implausible in the real market (e.g. very high yield
or high discrete dividends), it is quite instructive to see how the theoretical option prices are
affected when dividends are accounted for. For short maturities (in our case 1 year), the option
value is greater influenced by the size of the dividend compared to when it occurs. For Amer-
ican options there is always an opportunity where an early exercise might be optimal given
that. By using the Black’s approximation, we see in general, that if early exercise is optimal, it
will happen just prior to the latest dividend. This is seen from our numerical examples above.
For instruments where the underlying just pays one dividend, early exercise is depending on
the size of the dividend and when it is paid out.

4.1 Comments

When one derives the Black-Scholes PDE for continuous dividends and uses the approach
involving a money market account as above, one of the weight equations (x(¢)) changes from
the non-dividend case. This change is compulsory if one doesn’t want 0 to fall out of the final
PDE along with p. For a non-dividend case, r is what is left in the PDE and r = u(¢) in a
risk neutral world, it is thereby not a valid solution if one first lets (u(z) — 6(¢)) fall out and
then just replace r in the final PDE by (u(7) — 6(¢)), since r # (u(¢) — 8(¢)). Other sources
of literature suggests using the delta hedge approach where one creates a value process of A
shares and a call option instead of using the money market account.
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4.2 Appendix

close all
clear all
clc
tic;

9% European options, dividend yield
%[ Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility b Yield)

% Setting some initial conditions , ITM(OIM) Call(Put)
Price = 100;

Strike = 90;
Rate = 0.05;
Time = 1;

Volatility = 0.25;

% No dividend case

[templ ,temp2] = blsprice (Price, Strike ,Rate ,Time, Volatility ,0);
Call_DivYield0 = templ;

Put_DivYield0 = temp2;

Yield = 0:0.001:0.25;

% Loop for Yield A[0,0.25] with small increments

for i = 1:1:1length(Yield)

[Call_EUyield (i), Put_EUyield(i)] = blsprice (Price, Strike ,Rate ,Time, V
end

9% Plot results

figure (1)

subplot(3,1,1)

plot(Yield, Call_EUyield)

hold on

plot (Yield, Call_DivYieldO,’ .r"’)

title ([ *Call_price_as_a_function_of_yield_ (S_O=" num2str(Price) ’, K=
xlabel (’ Yield_size’,  fontsize’  ,12, fontweight’, bold’)

ylabel (’ Price’,’  fontsize’ ,12, fontweight’, bold’)

legend (’ Call_price’,’ Call_price_yield_=_0", Location’,’  Best’)
hold off

subplot(3,1,2)
plot (Yield , Put_EUyield,  g’)
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hold on
plot(Yield, Put_DivYieldO, .r’)
title ([ Put_price_as_a_function_of_yield_ (S_O=" num2str(Price)
xlabel (’Yield _size’,  fontsize’ ,12, fontweight’, bold’)

ylabel (’Price’,  fontsize’ ,12,  fontweight’, bold”)

legend (' Put_price’,’ Put_price_yield_=0", Location’, Best’)
hold off

subplot(3,1,3)
plot(Yield, Call_EUyield, Yield , Put_EUyield)
hold on

title ([ " Call_& Put_price_as_a_function_of_yield_(S_0=" num2str(Price)

xlabel (’Yield _size’,’ fontsize’  ,12, fontweight’, bold’)
ylabel (’ Price’,  fontsize’ ,12,  fontweight’, bold”)
legend (° Call_price’,’Put_price’, Location’, Best’)
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% Individual plots ,

figure (2)

uncomment to plot and save

plot(Yield, Call_EUyield)

hold on

plot(Yield, Call_DivYieldO,  .r’)
title ([’ Call price as a function of yield (S_0=" num2str( Price)
xlabel(’Yield size ’, fontsize

", 12, fontweight ’, "bold )

vlabel (’ Price ’, fontsize ',12, fontweight ’, bold )
, ' Call price yield = 0’,  Location ’, Best’)

legend(’ Call price
hold off

figure (3)

1

plot(Yield, Put_EUyield, 'g’)

hold on

plot(Yield, Put_DivYieldO,  .r’)

title ([ Put price as a function of yield (S_0=" num2str( Price)
xlabel(’Yield size ’, fontsize ’,

12, fontweight ’, "bold )

vlabel (’ Price’, fontsize ',12, fontweight ', bold )
, "Put price yield = 0’, Location ’, Best’)

)

legend(’ Put price
hold off

figure (4)

plot(Yield, Call_EUyield, Yield , Put_EUyield)

hold on
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title ([’ Call & Put price as a function of yield (S_0=" num2str( Price)
xlabel(’Yield size ', fontsize ',12, fontweight ', bold’)
vlabel (’ Price ', fontsize ',12, fontweight ', bold )

legend(’ Call price

’

, "Put price
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%

% saveas(figure(2), 'EUFigure2.jpeg’, jpeg );
% saveas (figure(3), 'EUFigure3.jpeg’, jpeg ’);
% saveas(figure(4), 'EUFigure4.jpeg’, jpeg ’);

9% European options — discrete dividends

% Setting some initial conditions, ITM(OIM) Call(Put)
Price = 100;

Strike = 90;

Rate = 0.05;

Time = 1;
Volatility = 0.25;
Yield = O;

% No dividend case

[templ ,temp2] = blsprice (Price, Strike , Rate, Time, Volatility ,Yield)
Call_DivdisO = templ;

Put_DivdisO = temp2;

9% Letting time for dividend be constant, Dtime
Dtime = 0.5;

Dividend_D =[0:0.5:100]*exp(—DtimexRate );

% Looping for DivA[0,100] with small increments

for i = 1:1:1length(Dividend_D)

[Call_EUdis_D (i), Put_EUdis_D(i)] = blsprice (Price—Dividend_D (1), Stril
end

% Plot results

figure (5)

subplot(3,1,1)

plot (Dividend_D , Call_EUdis_D)

hold on

plot (Dividend_D , Call_DivdisO ,’ .r’)

title ([ °Call_price_as_a_function_of_dividend_(S_0O=" num2str(Price) °,
xlabel (’Size_of_dividend’,’  fontsize’,12,  fontweight’,’bold’)
ylabel (’ Price’,’  fontsize’ ,12, fontweight’, bold’)

legend (’ Call_price’,’ Call_price_dividend_=_0",  Location’, Best’)
hold off

subplot(3,1,2)
plot (Dividend_D , Put_EUdis_D, ’g’)
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hold on

plot (Dividend_D , Put_DivdisO,’.r")

title ([ Put_price_as_a_function_of_dividend_(S_O=" num2str(Price) ’, K=’ nun
xlabel (’Size_of_dividend’,’ fontsize’,12,  fontweight’, bold’)

ylabel (’Price’,  fontsize’ ,12,  fontweight’, bold’)

legend (" Put_price’, Put_price_dividend_=_0", Location’,’Best’)

hold off

subplot(3,1,3)

plot (Dividend_D , Call_EUdis_D , Dividend_D , Put_EUdis_D)

title ([ Call_& Put_price_as_a_function_of_dividend_(S_O=" num2str(Price) °,_
xlabel (’Size_of_dividend’,’ fontsize’,12,  fontweight’, bold’)

ylabel (’Price’,  fontsize’ ,12,  fontweight’, bold’)

legend (° Call_price’,’ Put_price’, Location’,’ Best’)

9 % Individual plots, uncomment to plot and save

% figure (6)

% plot(Dividend_D , Call_EUdis_D )

% hold on

9% plot(Dividend_D , Call_DivdisO,  .r’)

9 title ([’ Call price as a function of dividend (S_0=" num2str( Price) ', K=’
% xlabel(’Size of dividend ’, fontsize ',12, fontweight ’, bold’)

% ylabel(’ Price’, fontsize ',12, fontweight ’, bold ")

% legend(’ Call price’,’ Call price dividend = 0’, Location ’, Best’)

% hold off

%

% figure(7)

% plot(Dividend_D , Put_EUdis_D, g’)

% hold on

9% plot(Dividend_D , Put_DivdisO, ’.r ")

9 title ([ Put price as a function of dividend (S_0=" num2str(Price) ', K=" n
9% xlabel(’Size of dividend ’, fontsize ',12, fontweight , bold )

% ylabel(’ Price’, fontsize ',12, fontweight ’, bold ")

% legend(’ Put price ’, Put price dividend = 0’, Location ’, Best’)

% hold off

%

% figure(8)

%% plot(Dividend_D , Call_EUdis_D , Dividend_D , Put_EUdis_D )

% title ([ Call & Put price as a function of dividend (S_0=" num2str(Price)
9% xlabel(’Size of dividend ', fontsize ',12, fontweight ’, bold’)

9% ylabel(’ Price’, fontsize ',12, fontweight , bold’)

9% legend(’Call price’,’ Put price’, Location’, Best’)

%

% saveas (figure(6), 'EUFigure6.jpeg’, jpeg ’);
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% saveas(figure(7), 'EUFigure7.jpeg’, jpeg ’);
% saveas(figure(8), 'EUFigureS8.jpeg’, jpeg ' );

%% Letting size of dividend be constant, D
D = 5;

D_time = 0:0.01:1;

% Looping for D_timeA[0,1] with small increments

for i = 1:1:length(D_time)

Dividend_T (i) = Dxexp(—D_time(i)x*Rate);

[Call_EUdis_T (1), Put_EUdis_T(i1)] = blsprice (Price—Dividend_T (1), Stril
end

% Plot results

figure (9)

subplot(3,1,1)

plot (D_time , Call_EUdis_T)

title ([ °Call_price_as_a_function_of_t_n_when_  ° ,num2str(D),’_ in_D_is_p
xlabel (°Time_when_dividend_is_paid,_t_n’,  fontsize’ ,12,  fontweight’,’
ylabel (’ Price’,’  fontsize’ ,12, fontweight’, bold’)

legend (° Call_price’,’Location’,’ Best’)

subplot(3,1,2)

plot (D_time , Put_EUdis_T, ’g’)

title ([ Put_price_as_a_function_of_t_n_when_  ,num2str(D),’ ,in_D_is_pa
xlabel (’Time_when_dividend_is _paid,_t_n’, fontsize’ ,12, fontweight’,’
ylabel (’Price’,  fontsize’ ,12, fontweight’, bold’)

legend (’ Put_price’,  Location’, Best’)

subplot(3,1,3)

plot (D_time , Call_EUdis_T ,D_time , Put_EUdis_T)

title ([ Call_%_Put_price_as_a_function_of_t_n_when_ ,num2str(D),’ ,in |
xlabel (°Time_when_dividend_is_paid,_t_n’,  fontsize’ ,12,  fontweight’,’
ylabel (’ Price’,’  fontsize’ ,12, fontweight’, bold’)

legend (° Call_price’,’Put_price’,’Location’,  Best’)

9% % Individual plots, uncomment to plot and save

% figure(10)

% plot(D_time, Call_EUdis_T)

% title ([’ Call price as a function of t_n when ’,num2str(D),’ in D is
% xlabel(’ Time when dividend is paid, t_n’,’ fontsize ',12, fontweight’
9% vylabel(’ Price’, fontsize ',12, fontweight ’, bold )

>
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% legend(’ Call price’, Location’, Best )

%

Y figure(l1)

9% plot(D_time, Put_EUdis_T, g’)

% title ([ Put price as a function of t_n when ’,num2str(D),’ in D is paid ou
% xlabel(’ Time when dividend is paid, t_n’, fontsize ,12, fontweight ', bold’
% ylabel(’ Price’, fontsize ',12, fontweight ’, bold )

% legend(’Put price’, Location’, Best’)

%

% figure(12)

9% plot(D_time, Call_EUdis_T,D_time, Put_EUdis_T)

% title ([ Call & Put as a function of t_n when Dividend = ’,num2str(D),’ (S_
% xlabel(’ Time when dividend is paid, t_n’, fontsize ,12, fontweight ', bold’
%% ylabel(’ Price’, fontsize ',12, fontweight ’, bold’)

% legend(’ Call price’, Put price’, Location’, Best’)

%

% saveas (figure(10), 'EUFigurelO.jpeg ’, jpeg ’);

% saveas(figure(11), 'EUFigurell.jpeg’,  jpeg ’);

% saveas (figure(12), 'EUFigurel2.jpeg’, jpeg ’);

9o
toc;

close all
clear all
clc
tic

9% American options
% Check for early exercise

% Setting some initial conditions, ITM(OIM) Call(Put)

Price = 100;
Strike = 90;

Rate = 0.05;

Time = 1;
Volatility = 0.25;
Yield = O;

Dn = 4;

Tn = 0:0.01:1;

% Hull 2009
9% Dn <= K[l—exp(—r(T—tn)] 13.24
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9 Dn > K[l—exp(—r(T—tn)] 13.25

% Checking for which Tn to exercise for some given Dn
% Looping over the range of Tn

for i = 1:1:1length(Tn)

RHS(i) = Strikex(l—exp(—Ratex(Time—Tn(i))));

end

figure (1)
subplot(3,1,1)
plot (Tn,RHS)

hold on
plot(Tn,Dn,’ .r’)
axis ([0 1 O Dn+1])

title ([ 'Exercise_when_D_n_>_ K[l—exp(—r(T—t_n))] D_n="

[ T M | —_ ) —

ylabel (’ Value’,’ fontsize’ ,12, fontweight’, bold’)
legend ('K[1—exp(—r(T—t_n))]’,’D_n’,  Location’,  Best’)

% Decreasing the dividend
Dn = 2;

% Looping over the range of Tn

for i = 1:1:length(Tn)

RHS(i) = Strikex(l—exp(—Rate*(Time—Tn(1))));
end

subplot(3,1,2)
plot (Tn,RHS)
hold on
plot(Tn,Dn,’ .r’)

num2str (Dn) ],

title ([ 'D_n=" num2str(Dn)],’ fontsize’,12,  fontweight’, bold’)

ylabel (’ Value’,’ fontsize’ ,12, fontweight’, bold’)
legend ('K[1—exp(—r(T—t_n))]’,’D_n’,  Location’,’ Best’)

% Increasing the dividend
Dn = 6;

for i = 1:1:length(Tn)
RHS(i1) = Strikex*(l—exp(—Rate*(Time—Tn(1))));

end

subplot(3,1,3)
plot (Tn,RHS)
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hold on

plot(Tn,Dn,’ .r’)

axis ([0 1 O Dn+1])

title ([ 'D_n=" num2str(Dn)], fontsize’ ,12,  fontweight’, bold’)
xlabel (’Time_for_dividend ,’fontsize’,12, fontweight’, bold’)
ylabel (’Value’,’  fontsize’ ,12,  fontweight’, bold’)

legend ( 'K[1—exp(—r(T—t_n))]’,’D_n’,’ Location’,’Best’)

% Uncomment to save
% saveas (figure (1), 'AMFigurel.jpeg’, jpeg ' );

% Checking for which dDn to exercise early for a fixed Tn
% Setting some initial conditions , ITM(OIM) Call(Put)

Price = 100;
Strike = 90;

Rate = 0.05;

Time = 1;
Volatility = 0.25;
Yield = 0;

Tn = 0.5;
D=0:0.1:10;

RHS=Strike (1 —exp(—Rate x(Time—Tn)));

figure (2)
subplot(3,1,1)

plot (D,D)

hold on

plot (D,RHS,’  .r")

title ([ 'Exercise_when_D_n_> K[l—exp(—r(T—t_n))]_,, T_n_=_," num2str(Tn)],’ font

ylabel (’Value’,’  fontsize’ ,12,  fontweight’, bold’)
legend ('D_n’ ,’K[l—exp(—r(T—t_n))] ’,  Location’,’  Best’)

9% Increasing Tn
Tn = 0.75;

RHS=Strike *(1 —exp(—Rate x(Time—Tn)));

subplot(3,1,2)

plot (D,D)

hold on

plot (D,RHS,’  .r’)

title ([ 'T_n_=_," num2str(Tn)], fontsize’  ,12,  fontweight’, bold’)
ylabel (’Value’,’  fontsize’ ,12, fontweight’, bold’)
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legend ('D_n’ ,’K[l—exp(—r(T—t_n))]’, Location’,  Best’)

% Decreasing Tn
Tn = 0.25;

RHS=Strike *x(1 —exp(—Rate x(Time—Tn)));

subplot(3,1,3)

plot (D,D)

hold on

plot (D,RHS,’ .r’)

title ([ 'T_n_=_," num2str(Tn)], fontsize’  ,12,  fontweight’, bold’)
xlabel (’Dividend_size’,’fontsize’ ,12, fontweight’, bold’)
ylabel (’ Value’,’  fontsize’ ,12, fontweight’, bold”)

legend ('D_n’ ,’K[l—exp(—r(T—t_n))]’, Location’,  Best’)

% Uncomment to save
% saveas(figure(2), 'AMFigure2.jpeg ’, jpeg ’);

9% American options calls, Black’s Approximation
% Hull page 300

9% Setting some initial conditions , ITM(OIM) Call(Put)
Price = 100;

Strike = 90;

Rate = 0.05;

Time = 1;
Volatility = 0.25;
Yield = 0O;

% Setting up a series of dividends Dn that are paid out on some time
Dn = [2,2];
Tn = [1/12,7/12];

first = Strikex(1—exp(—Ratex(Tn(2)—Tn(1))));
second = Strikex(l—exp(—Rate*(Time—Tn(2))));

% Check wheter they should be exercised early
if (first<Dn(1l))
fprintf(’ Exercise_at_first_dividend\n’)
else
fprintf (’Do_not_exercise_at_first_dividend\n’)
end
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if (second<Dn(1))

fprintf( Exercise_at_second_dividend\n’)
else

fprintf (’Do_not_exercise_at_second_dividend\n’)
end

9o
toc;

close all
clear all
clc

% Price = 100;
% Strike = 90;
% Rate = 0.05;
% Time = 1;
% Volatility = 0.25;
prompt={’Enter_price:’ ,...
"Enter_Strike:’ ...
"Enter_Rate:’ ,...
"Enter_Time_:°
"Enter_ Volatility:’ ,...
"Enter_Yield:’ ,...
}s
name="Input_Parameters’;
numlines=1;
defaultanswer={’100*,°90",70.05°,°1°,°0.25",70.00" };
answer=inputdlg (prompt ,name, numlines , defaultanswer );

Price = str2num(cell2mat(answer(1)));
Strike = str2num (cell2mat (answer(2)));
Rate = str2num(cell2mat (answer(3)));

Time = str2num(cell2mat(answer(4)));
Volatility = str2num(cell2mat (answer (5)));
Yield = str2num(cell2mat (answer (6)));

[Call ,Put] = blsprice (Price, Strike ,Rate ,Time, Volatility , Yield);
fprintf (’For_a European_call/put\n’)

fprintf ('’ Price_of_the_call_is_%f\n’, Call)

fprintf (’Price_of_the_put_is %f\n’, Put)

fprintf (° \n )
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9% Setting up some dividend condition
Dividends = input(’Do_underlying_pay_dividend?_y/n\n’,’s’);

if (Dividends == ’y’)
Times = input(’1_or_2 times?_1/2\n’,’s’);
fprintf (° \n’)
if (Dividends == 'y’ && Times == ’17)

prompt={’Enter_Dividend_1:" ,...
"Enter_Time_for_Dividend_1:’ ...

}s

name="Input_Parameters’;

numlines=1;

defaultanswer={’5",°0.25"};

answer=inputdlg (prompt ,name, numlines , defaultanswer );
Dn = str2num(cell2mat(answer(1)));

Tn = str2num(cell2mat (answer (2)));

YFor European

Dividend = Dnxexp(—TnxRate);

[Call ,Put] = blsprice (Price—Dividend , Strike ,Rate ,Time, Volatility ,
fprintf (’For_a_European_call/put\n’)

fprintf (’Price_of_the_call_is_%f\n’, Call)

fprintf (’Price_of_the_put_is _%f\n\n’, Put)

YoFor American

RHS = Strike*(1—exp(—Rate*(Time—Tn)));

fprintf(’For_a_American_put\n’)

if Dn > RHS
fprintf(’It_is_optimal_to_exercise_early\n’)

else
fprintf(’It_is_not_optimal_at_exercise_early\n’)

end

fprintf (° \n’)
end

if (Dividends == 'y’ && Times == ’2)
prompt={’Enter_Dividend_1:" ,...
>Enter_Time_ for_Dividend_1: ...
Enter_Dividend_2:7 ,...
"Enter_Time_for_Dividend_2: ...

}s
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name="Input_Parameters’;

numlines=1;

defaultanswer={’5",70.25",°5",70.75" };

answer=inputdlg (prompt ,name, numlines , defaultanswer );

Dn = [str2num(cell2mat(answer(1))),str2num(cell2mat(answer(3)))];
Tn = [str2num (cell2mat(answer (2))) ,str2num(cell2mat(answer (4)))];

9%For European

Dividend = Dn(1)xexp(—Tn(1)xRate) + Dn(2)*xexp(—Tn(2)x* Rate) ;

[Call ,Put] = blsprice (Price—Dividend , Strike ,Rate ,Time, Volatility , Yield);
fprintf(’For_a_European_call/put\n’)

fprintf (’Price_of_the_call_is_%f\n’, Call)
fprintf(’Price_of_the_put_is _%f\n\n’, Put)

first = Strikex(l1—exp(—Rate*(Tn(2)—Tn(1))));
second = Strikex(l—exp(—Rate*x(Time—Tn(2))));

9% Check wheter they should be exercised early
fprintf (’For_a_American_call\n’)
if (first<Dn(l))
fprintf (’ Exercise_(call)_at_first_dividend\n’)
else
fprintf (’Do_not_exercise_(call)_at_first_dividend\n’)
end

if (second<Dn(1))
fprintf(’ Exercise_(call)_at_second_dividend\n’)
else
fprintf (’Do_not_exercise_(call)_at_second_dividend\n’)
end
fprintf(° \n ")

end

end
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