

Bermudan Options with the Binomial Model

Who are we?

Amir Kazempour Iran

Jessica Radeschnig Sweden

Hossein Nohrouzian Iran

Analytical Finance

Agenda

- **×** The Binomial Model
- * Pricing Different Options
- **×** Example
- × MATLAB Implementation
- × Questions

The Binomial Model

The Up and Down Factors

$$u = e^{\sigma \sqrt{\Delta T}}$$
 $d = e^{-\sigma \sqrt{\Delta T}}$

The Binomial Model

The Risk-Neutral Probability Measure

$$p^* = \frac{e^{r\Delta T} - d}{u - d}$$

Pricing Different Options

Pay-off Functions							
	Position						
Option Type	Long	Short					
Call	max(S _T -K,0)	-max (S _T -K,0)					
Put	max(K-S _T ,0)	-max(K-S _T ,0)					

Pricing Different Options

European Put Option

× $S_0 = 40 **×** K = \$42**x** r=12% \times $\Delta T=3$ -month \times T=9 months **x** u=1.1 **×** d=0.9

Example

8.3587

Price of the American Option

max{42-53.24,0} max{42-43.56,0} max{42-35.64,0} max{42-29.16,0} max{0,0} max{0,0} max{2.4,2.1462} max{9.6,8.3587} max{0,0.8099} max{6,4.7587}

Example

 $P_A = e^{-r\Delta T} \left[p^*(0.8099) + 6(1-p^*) \right] = 2.5374$

Price of the Bermudan Option

Example

Comparing the Results:

$1.8687 \le 2.4831 \le 2.5374$

European Price \leq Bermudan Price \leq American Price

- European Option
- Bermudan Option
- American Option
- Sinomial Option Pricing Model(BOPM)
 - Numerical Method
 - Discrete Time
 - Proposed first by:

- JC Cox, SA Ross, M Rubinstein - Journal of financial Economics, 1979 (Option Pricing: A simplified approach)

culator Cal nn.

function [euPrice, amPrice, brPrice] = binCalculator(S,K,r,sigma,T,N,exercise_ Frequency,put_True)

S: Spot price, e.g., 50.

K: Strike pricem, e.g., 50.

r: Risk-free interest rate e.g., 0.1 for 10%.

sigma: Volatility, e.g., 0.3 for 30%.

T: Years to maturity, e.g., 1 for 1 year.

N: Number of steps in the binomial tree.

Exercise Frequency: Number of times that the Bermudan option can be exercised in a year, e.g., 12 for the monthly exercise.

put_True: 1 for put option, 0 for a call.

Use Co rabhi.

User will choose between Put Option and Call Option.

Shows the prices calculated by the model.

📣 gui					
Parameters		 — Panel—			
Stock Price	50				
Strike Price	52		European	11.7656	
Interest Rate	0.10		Bermudan	12 2056	
T Maturity	2		Donnadan	13.2056	
Volatility	0.6		American	13.389	
Steps	160				
X Frequency	4				
─ Option T	Type Option Option			Calculate	

OCIES ATTEN A

MATLAB Implementation

Create the binomial tree, using the up and down factor.

Create the exercise_True vector: It indicates if the Bermudan can be exercised at a certain node.

Depending on the value of the put_True, the pay off tree, binTreeEE, is created.

- Pay-off at each node if the option is exercised at that node.

🗴 binTreeNE

0000

A THE ACTION OF A CONTRACT OF

- European option's binomial tree.
- Value of each node is equal to the expected pay-off of the two successive nodes, under the risk neutral probability.

🗴 binTreeAm

- American option's binomial tree.
- Each node is the greater of the
 - binTreeEE value

and

Expected pay-off of the two successive nodes.

20/00 ATT A

MATLAB Implementation

⊁binTreeBr

- Bermudan option's binomial tree
- If the exercise_True at the node is not zero, then, the pay-off is calculated as the one in American option.
- If the exercise_True at the node is zero, the pay-off is calculated as the one in the European option.

Running the code in MATLAB

Checking the binomial trees created by the application.

×Running the GUI

Calculating the options' fair prices for different values of exercise frequency

Questions?

Thank You!

