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1. Introduction 

The area of consideration in this report is the valuation of Asian basket digital 

option. The pricing process was performed by means of the Monte Carlo 

simulation. It is one of the most widely accepted numerical methods, used in 

quantitative finance. With the development of computer hardware Monte 

Carlo simulation is predicted to raise in popularity, however, its biggest 

shortcoming is still long computational time. 

Underneath we list detailed conditions of the analyzed contract: 

Starting date: 13.10.2008 

Expiration date: 13.11.2008 

Currency: SEK 

Notional amount: 1 SEK 

Payoff of our contract is based on the change of the value of three stock 

indices: 

• Nikkei 225 (i=1) 

• FTSE 100  (i=2) 

• DJIA  (i=3) 

 

���� � �1 	
 ��  10 	
 �� � 1� 

Where 

�� �  13 � ��
�

���
 

 

�� � 124 ∑ �����������  

 ���� � -  Value of the i-th index at the end of the t-th trading day 

(excluding ��� ) 
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���0� -  Value of the i-th  index at the opening of the market on 

13.10.2008 �� – Ratio of the mean index to beginning value �� - indicator of the relative change of the values of indices during the 

contract period 	 -   Number of the index �  -  Number of the trading day 

 

Trading days are numbered from 1 to 24, where the number 1 is 13.10.2008 

and the 24 is 13.11.2008 

All the index values for our calculation in the contract payoff (except  ���0�) are 

taken as the closing prices for specified date. 

���0� - being accounted as values of i-th index the opening of the market on 13.10.2008 

 

 

2. Theoretical background 

 

1. Monte Carlo simulation 

In finance, there is an amount of uncertainty and risk relative with estimating 

the future value of figures due to the wide variety of potential outcomes. 

Monte Carlo simulation is one technique that helps to simplify the model with 

uncertainty involved in estimating future outcomes. Monte Carlo simulation 

can be applied to complex, non-linear models or used to evaluate the accuracy 

and performance of other models. 

To apply Monte Carlo simulation to estimate a financial value, there are 

typically three steps: generating sample paths, evaluating the payoff along each 

path and calculating an average to obtain estimation. 

 

For example: 
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For a risk-neutral environment, the value of the derivative security is the 

discounted value of its future date cash flow: 

( )0Pr , ,rT Q
Tice e E f S S−=   L

. 

Monte Carlo simulation approximates the expectation of the derivative’s future 

cash flows with one simple arithmetic average of cash flows taken over a finite 

number of simulated price path: 

( )0
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The mean of the sample will be quite close to accurate price of derivate in a 

large sample of simulated price paths. And the rate of convergence is 1/√N. 

Unfortunately, the use of random numbers yields an error bound which is 

probabilistic and the rate of convergence is slow. Therefore, high accuracy 

requirements may lead to long computation times. 

 

2．Valuation issues 

i. Choosing process for the underlying asset 

Underlying assets (indices values) are assumed to follow geometrical Brownian 

motion. In the following sections, the model is going to be developed to 

incorporate additional features of the contract.  

We begin with: 

!�"#$��� � %�!� & '�!( 

Where: 

!�"#$��� - change in the natural logarithm of i-th asset’s value 

%� - drift rate for i-th asset 

'� - volatility of i-th  asset 

!� - time increment 
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!( - Wiener process 

Then to obtain process which is martingale after discounting, we set drift rate 

μi to �) * +,
� � , as a result: 

!�"#$��� � �) * '��
2 �!� & '�!( 

) - risk free rate 

Hence, we obtain the following form of geometric Brownian motion for index 

value process:  

 

����� � ���0�-./0+1,� 23�4+135
 

The advantage of such a process for Monte Carlo simulation is that simulated 

values are accurate, so we can simplify our  computation to a reasonable level. 

Some other processes require us to simulate path divided into large numbers of 

intervals for obtaining required level of accuracy. In considered case, it leads to 

24 simulated time steps. 

 

ii. Incorporation of dividends in the model 

Characteristic feature of stocks or stock indices is dividends received during the 

holding period. Dividends reduce cost of holding asset physically. Hence, 

introducing them into no arbitrage argument leads to slight changes in the 

index/stock price process. Two basic methods used for incorporation of 

dividends are: 

a) Reduction of asset price by value of forecasted dividends. 

Dividend dates and dividend amounts have to be forecasted to use this 

method. 

��6� 7 � ���0�-./0+1,� 23�4+135 * � 8 -/��0 �3��
 ��
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8  – Value of dividend payment at time �  

b) Reduction of asset price by dividend yield 9 

��6� 7 � ���0�-./0:10+1,� 23�4+135
 

9� - dividend yield for i-th security 

First method is applicable to single stocks as it is possible to assess timing and 

amount of future dividends. In mature financial markets, many companies 

follow stable dividend policy, which enables dividends forecasting with high 

level of accuracy. 

Second method is much easier to implement from mathematical and 

analytical point of view. As we assume continuous dividend streams, 

proportionate to the value of the stock/index, there is no need to predict 

dividend dates. Here dividends are incorporated into the formula in a 

way that does not influence its mathematical properties.  Significant 

discrepancies between assumptions underlying this method and 

dividend policies observable in the market make it rarely used for single 

stocks. However, this method copes well with describing behavior of the 

index. As index consists of many different stocks, dividends are paid 

frequently enough to justify continuous dividend payout assumption. 

Additionally, it was noticed that dividend yield matches pretty well with 

real dividend payouts in longer periods  (months, quarters and years). 

Basing on our previous arguments, we decided to employ the second method 

as it is better suited with dividends on indices. 

 

iii. Currency interdependence (quanto) 

Contracts which payoff is calculated in one currency, but underlying asset is 

quoted in the country using another currency are called quantos. In this way, 

they are somehow dependent on the exchange rate movement and the risk 

free rate in the foreign country. To implement this special feature which is 

present in the contract under analysis (we have our payoff in SEK but 
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underlying assets are quoted in USD, JPY and GBP environments respectively), 

we need to change our price processes to: 

����� � ���0�-./0:10�/0/;0<=>�?1,AB1��0+1,� 23�4+135
 

 

That reduces to: 

����� � ���0�-./;10:10<=>�?1,AB1�0+1,� 23�4+135
 

C#D��� , EF��  - covariance between logarithmic return on i-th asset and 

logarithmic return on the currency in which i-th asset is denominated (in case 

of an index – in which currency are denominated securities included in an 

index) 

)G�  - risk free rate in the country of the i-th asset 

iv. Variance – Implied Vs historical volatilities 

Input in our option valuation model include risk free rate, price of the 

underlying asset, strike price (or other limit implying when it is optimal to 

exercise), time to expiry and variance (there would be also covariances in our 

case). All the parameters excluding last one are observable on the market. But 

we never know the value of the variance (and covariances). This causes a need 

for estimation of volatilities and correlation parameters. There are several 

approaches: 

 

a)Variance is constant in time. 

Contra intuitively constant volatility is more efficient for longer time periods 

(quarters, years). It does not mean that volatility tends to be stable in the long 

run, but rather that other methods will not provide us with better estimate, 

while would significantly increase computational time and complication of the 

model. 
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We can distinguish two popular approaches under assumption of constant 

volatility in time. 

- Volatility calculated from historical data 

The simplest method, assumes that volatility in the future will be the same as it 

was in the past. Our estimation of volatility is just sample standard deviation 

from previous period. Estimating volatility for pricing purposes, we usually use 

data from recent period of equal length to the duration of the option, e.g. to 

value option with 3 months to expiry, data from recent 3 months would be 

used. 

 

Formula: 

���� � 1H * 1 ���� * �I��J
���

� 1H * 1 � ���
J

���
* � 1H * 1 � ��

J
���

�� 

�� � ln . M�M�0�2 � "HM� * "HM�0� 

Where: 

��- logarithmic rate of return for i-th period 

M�- price of security (value of the index) at time i 

 

- Volatility implied from other derivative contracts traded on the 

market( recheck sentences below carefully please)  

Under assumption of validity of the option pricing formulas, we can imply what 

level of the volatility is perceived by the market participants. Implied volatility 

is the value that calibrates the model (e.g. Black-Scholes), so that it yields 

current market price of the instrument. Rationale for using implied volatility is 

that price of volatility should be the same for all traded assets. Using other 
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volatility than the market, means that you are buying (selling) uncertainty on 

other conditions than the market. This leads to arbitrage opportunities. 

Remark: There is no exact analytical formula for implied volatility (or 

covariance). Values are obtained by means of numerical algorithms. 

b) Variance is stochastic 

It is true that volatility is unstable in time, but patterns which volatility follows 

are still under discussion. One of the findings, which is supported by the 

majority of market analysts and researchers is called “volatility clustering”. It 

describes following property: period with high (low) volatility is usually 

followed by a period with high (low) volatility. 

For that reason most popular models for stochastic volatility incorporate this 

autoregressive property. Examples of such models are ARCH and GARCH. 

Those methods are especially successful in modeling volatility of short term 

contracts. 

According to arguments above, GARCH model would be best suited for 

valuation of the analyzed option, but due to simplicity of the model we did not 

employ idea of stochastic volatility. Pricing of the option was performed with 

estimates based on historical data. 

 

v. Multi-asset price process 

In the case of the basket option, we need to model more than one price 

process. If those price processes are independent or even uncorrelated, we 

could simulate them just by generating random realizations of Wiener process 

and applying them to the previously obtained formula: 

����� � ���0�-./0:10�/0/;0<=>�?1,AB1��0N1,
, 23�4+135

=����� �
���0�-./;0:10<=>�?1,AB1�0N1,

, 23�4+135
 

In the financial world there are thousands of reciprocal relations between 

different markets. Hence, behaviors of indices are correlated. To implement 
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this correlation into our model we will use method called Cholesky 

decomposition. 

 

Instead of generating Wiener process in usual manner: 

!( � √!�P 

Where: 

P - random number from standard normal distribution 

We will obtain !( � √!�Q� where Q�’s are correlated normally distributed 

variables [N(0,1)] 

Q�’s are values in the i-th row of the column vector R � ST 

S – matrix satisfying SSU �  V, where V is correlation matrix 

T – column vector of uncorrelated normally distributed variables [N(0,1)] 

 

 

3. Final model 

 

i. Formulas for valuation part: 

According to arguments above, and switching from continuous to discrete time, 

value of the asset i at day τ equals to: 

����W� � ���0�-./;10:10<=>�?1,AB1�0+1,� 2X�W4∑ +1√X�Y1Z[Z\]  

����W� - value of i-th asset on day τ 

)G� - daily risk free rate for currency of asset i 

9� – daily dividend yield for asset i 

C#D��� , EF�� –covariance of log returns on the i-th asset with log returns on the 

i-th currency 
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'� - variance of log returns on the i-th asset 

�W – number of the day when measurement takes place 

^� - length of the time step [counted in days, set to one day] 

Q�  - random number generated by means of Cholesky decomposition for i-th 

asset on j-th day 

Processing further, average value of the  i-th asset on day T is calculated as 

 �_���� � 1� � ���0�-./;10:10<=>�?1,AB1�0+1,� 2X�W4∑ +1√X�Y1Z[Z\]
U

W��
 

 _   - average value of i-th asset from T days at day T 

Defining relative value as ����� � ?_1�U�?1��� 

���0� - relative value 

We obtain: 

����� � �_�������0� 1� � -./;10:10<=>�?1,AB1�0+1,� 2X�W4∑ +1√X�Y1Z[Z\]
U

W��
 

Then defining payoff indicator as an average of relative values of n assets 

�� � 1H � �����J
���

� 1H � �_�������0� 1� � -./;10:10<=>�?1,AB1�0+1,� 2X�W4∑ +1√X�Y1Z[Z\]
U

W��
J

���
 

�� - payoff indicator 

Hence, the payoff of the option from the simulation is 

���� � �1 	
 ��  0 0 	
 �� � 0  ̀

After discounting payoff with the risk free rate, we obtain option value: 

ab"cd� � -0/U e ���� 

ab"cd� - value of the option obtained from a single simulation 
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Simulating option value K  times we obtain our estimate of the option fair price 

with the expression: 

��0� � -0/U e Efg����h i 1j � ab"cd�k
l

k��
 

��0� - fair price of an option as obtained from K simulations 

Efgh – expectation value under risk-neutral probability measure 

j - total number of performed simulations 

m - simulation number 

ab"cd�k - Value of the option obtained in k-th simulation 

We calculate variance of obtained results as: 

al � 1j ��ab"cd�k
l

k��
*��0��� � 1j � ab"cd�k�

l
k��

*  ��0�� 

al  - Variance of option values obtained in K simulations 

Hence, standard error of K simulations is 

                          �El � naj 

�El - standard error of K simulations 

ii. Probabilities 

Additionally to pricing option contract, we obtained estimates for probabilities 

of reaching the strike under both physical and risk-neutral measure. Drift rates 

used to approximate physical probability, were estimated on the same data set 

as variances and correlation matrix. 

Such an estimate of real probability can be used by both issuer and buyer of 

the option: 
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• Issuer of the option can assess what is the probability that option will 

eventually expire in the money. Moreover issuer can perform simulation 

for his entire portfolio with and without issued option. Thus, examine 

influence of this contract on the entire portfolio, which is of higher 

importance than gain or loss realized on a single instrument. 

• Buyer of the option can conduct similar simulation for his portfolio. 

Obtained results could help to evaluate optimal amount of the 

instrument to be included in the portfolio, accordingly to buyer risk and 

return objectives. 

 

We calculated estimates of the real drift rate according to the formula 

%� � 1o * 1 � � ,?1
p

 ��
 

%� – estimate of the drift rate of the i-th asset under physical probability 

measure  

� ,?1  - logarithmic rate of return for j-th observation of i-th index 

o - number of observations ( here 24) 

iii. Greeks 

Greek parameters were by conducting additional simulations. Use of 

parameters obtained from Monte Carlo simulation should be always done with 

care.  

Approximation error is implicitly included in numerical procedures. Thus, for 

instance, running two sets of simulations to calculate delta, we obtain two 

results with two approximation errors. In extreme cases, it can lead to result 

such as negative delta for a call option. 

 However, there are some advantages of simulating exponential Brownian 

motion related to greeks. First, we can obtain values necessary to calculate 

delta and gamma just by multiplying the price obtained in the last step by 

change factor (1+ϵ) or (1-ϵ). Hence, we can include their calculation into the 

main simulation. It saves computational time. Second advantage of geometric 
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Brownian motion is even more important. To minimize simulation errors while 

estimating Greeks, we calculate both values S(1+ϵ) and S(1-ϵ) for one set of 

random numbers. This method results in simulation errors offsetting each 

other. This leads to more accurate estimates. We employed this procedure in 

our calculations of delta and gamma. 

Formulas used for calculation of Greeks are presented below. In the formulas 

we used shorthand notation rb	)s)cd����,��1 & P�� for 

����,��1 & P�, ��,�, ��,�, ), )G�, )G�, )G�, j, '�, '�, '�, t, C#D���, EF��, C#D���, EF��, C#D���, EF��, 9�, 9�, 9�, �� 

It means that other parameters are held constant. 

Delta: 

Delta is calculated for ϵ=1 unit of index value 

^� � ����� & P� * ����� * P�2P  

^� – delta with respect to i-th asset /sensitivity of the option’s price to change 

in i-th underlying asset price 

Gamma: 

Gamma is calculated for ϵ=1 unit of index value 

 

u� � ����� & P� & ����� * P� * 2������P�  

u� – gamma with respect to i-th asset /sensitivity of the option’s i-th delta to 

change in i-th underlying asset price 

 

Vega: 

Vega is calculated for ϵ=1%, but in a yearly volatility. That is  P3 �  �%√�w� where  

P3  – daily change in volatility 
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x� � ��'� & P� * ��'� * P�2P  

 

x� - vega with respect to i-th asset /sensitivity of the option’s price to change in 

i-th underlying asset volatility 

 

iv. Inputs: 

Stated model requires several inputs. 

Risk free rates 

Risk free rates corresponding to Nikkei 225, FTSE 100 and DJIA in the model 

are respectively: Japanese 3 month government bond yield, British 6 month 

government bond yield and US 3 month Treasury bill. 

Risk free rates were converted to continuous compounding, and scaled to 

one day time step by employing formula 

) � 1252 ln �1 & )=� 

        ) – continuously compounded rate after scaling 

        )= – rate observable on the market, used as a proxy for instantaneous  rate 

Rates were scaled to trading days, as the simulation is entirely performed 

with time steps equal to one trading day.  Weekends and so called effect of 

Monday were not modeled in the simulation. The only rate treated 

accordingly to typical market manner was Swedish risk free rate used for 

discounting option payoff. Those calculations were performed with 30/360 

day count convention. 

The rates used in the project are rates at 05.10.2008. 

)G� - daily risk free rate for currency of asset i 
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Dividend yield 

www.bloomberg.com. The values in the stated sources are yearly 

dividend yields which were scaled to daily values by dividing them by 

assumed number of 252 trading days. 9� – daily dividend yields for these assets are quoted from 

Covariances 

First logarithmic returns were calculated for DJIA, Nikkei 225, FTSE 100 

and US Dollar, Japanese Yen and British Pound respectively. Then the 

covariance between returns on the corresponding indexes and exchange rates 

were computed according to the formula 

C#D��� , EF�� � 1o * 1 ��p
 ��

� ,?1*�I?1��� ,AB1*�IAB1� 

C#D��� , EF�� –covariance of log returns on the i-th asset with log returns on the 

i-th currency 

o - number of observations ( here 24) 

� ,?1  - logarithmic rate of return for j-th observation of i-th index 

� ,AB1  - logarithmic rate of return for j-th observation of i-th currency 

�I?1 - average of logarithmic rates of return for i-th index 

�IAB1 - average of logarithmic rates of return for i-th currency 

Averages were calculated according to the formula: 

z_ � 1o * 1 � z 
p

 ��
 

Variances 

To calculate sample variances of logarithmic rates of return, we employed 

following formula: 
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'�� � ab)���� � 1o * 1 ��p
 ��

� ,?1*�I?1�� 

'�� - variance of log returns on the i-th asset 

 

 

Correlation matrix 

Elements in the correlation matrix calculated from sample data were obtained 

as: 

{�k � 1o * 1 ��p
 ��

� ,?1*�I?1��� ,?|*�I?|� 

Where i denotes the number of the row, and k denotes the number of the 

column in the matrix. 

Remark. Quotes used to calculate variances, correlation matrix and drift rates 

for indices were taken for period starting 27.08.2008, ending 03.10.2008. 

Choice of the sample period is based on the following reasons: 

• Sampling period consists of 24 trading days, so it is equal to the  duration 

of the valued contract 

• Older data have little predictive value, due to major changes on the 

global financial markets in recent weeks. 
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Values of the inputs are listed in the table below. 

Nikkei 225 FTSE 100 DJIA 	 1 2 3 )G� 0,15% 0,63% 3,76% ) 4,41% '� 0,022319733 0,031466583 0,028170129 }#)��� , ��� 1 0,537666544 0,06287788 }#)��� , ��� 0,537666544 1 0,649144246 }#)��� , ��� 0,06287788 0,649144246 1 C#D��� , EF�� -0,00030796 -9,76919E-05 -4,6102E-05 9� 3,84921E-05 0,000163492 0,000126587 %� -0,0064 -0,00435 -0,0045 

 

4. Results  

Results presentation: 

Option value 0,4834 

Number of simulations 10000 

Variance of results 0,2480 

Standard error of simulation 0,00498 

  

Probability of expiring in the money (P) 0,1456 

Probability of expiring in the money (Q) 0,4851 

  

Confidence interval 0,4717-0,49494 

Confidence level 99% 

Width of confidence interval 0,023170831 

Width of confidence interval (% of price) 0,049114347 
 

 P – physical probability measure 

Q – risk-neutral probability measure 
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Greeks:  

 

Greek  Value 

 ^�0p�kk~� ��w 0,000149 

 ^�0�U?A ��� 0,000399 

 ^�0���� 0,000149 

 u�0p�kk~� ��w 0,005879 

 u�0�U?A ��� -0,00139 

 u�0���� -0,00847 

 x�0p�kk~� ��w 1,245513 

 x�0�U?A ���  0,109605 

 x�0���� 0,388600 
 

Noticeable facts 

• All the values are very low but we should remember that the whole 

value of the contract is less than 0,5, while indices are quoted in 

thousands of units. Thus, change of 1% is more than 100 points for 

Nikkei 225. This translates to approximately 0,0149 value change of the 

option. That is more than 3% of options initial value in relative terms! 

• Gammas with respect to FTSE 100 and DJIA are negative. This could be 

due to approximation error or specific construction of the contract 

• Contract seems to be relatively stable with respect to volatilities of 

indices (especially with regards to FTSE 100 and DJIA). This leads to 

conclusion, that small misestimation of parameters would result in just 

minor changes of option price. This stability of the model is very 

desirable property. As stated in the previous parts of the report, there is 

no accurate method of volatility estimation.   Therefore, decreases in 

importance of volatility parameters will improve accuracy of simulated 

results.   
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5. Summary 

Analytical finance is a fast growing area. As the models become more and more 

complicated, Monte Carlo simulation often becomes the only method to 

evaluate the prices of complicated derivatives and the risk measures for 

complex portfolios. In this paper, we solved our problem with Monte Carlo 

simulation. Although we constructed model employing all of our financial 

knowledge, there are still areas for further improvement.  

We should admit that as it is in case of every model, accuracy of results is 

limited by the quality of underlying assumptions and inputs. In our problem, 

areas of highest uncertainty are volatilities and correlations used as inputs. 

Those, together with the approximation error, lead to unstable estimates of 

greek parameters. Still formula with sound theoretical basis can yield results 

that are going to be critically verified by the market. Even though, analysis 

based on the outputs of the model, gives us valuable knowledge necessary to 

act in the financial environment. What we should do, is to be aware of 

drawbacks of the employed method and adjust obtained result. Financial 

markets nowadays are based on quantitative analysis more than ever, but still 

there is no method that could replace human flexibility to act in volatile 

environment. Hence, what is needed is analytical tools but also an analyst that 

will use them properly and adjust results for qualitative factors.  
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