
 
 

 
 

Division of Applied Mathematics 

School of Education, Culture and Communication 

Box 833, SE-721 23 Västerås 

Sweden. 
 

 

 

MASTER THESIS IN MATHEMATICS /APPLIED MATHEMATICS 

 

 

VALIDATING THE WILLOW TREE MODEL USING JAVA AND 

COMPARING THE RESULTS WITH OTHER MODELS FOR  

SWEDBANK 

 

By 

Hayford Gyasi 

Kwame Bonsu 

 

Supervisor 

Jan R. M. Röman 

 

 

June 2012                                            



 
 

                                                                                  

 

 

Division of Applied Mathematics 

School of Education, Culture and Communication 

Box 833, SE-721 23 Västerås 

Sweden. 
 

 

 

Master thesis in mathematics / applied mathematics  

 

Date:  

June 2012  

 

Project name:  

Validating the willow Tree model and comparing the results with other models 

                                  for Swedbank. 

 

Authors:  

Hayford Gyasi 

Kwame Bonsu 

 

Supervisor:  

Jan R. M. Röman 

 

Examiner:  

 Dr. Anatoliy Malyarenko 

 

Comprising:  

30 points  

___________________________________________________________________________  

 

 

 

                                   



 
 

 

AKNOWLEDGEMENT 

We appreciate the almighty God for His support throughout the entire program. We are also 

grateful to our supervisor, Jan Röman (Swedbank) for his immense contribution to the success of 

this project. And to our program coordinator, Dr. Anatoliy Malyarenko, for assisting us in this 

project. 

Finally, to all colleagues of Financial Engineering program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 ABSTRACT  

One type of risk that affects pricing of exotic options is the model risk.  

Our main aim is to validate the willow tree model by developing a java program for the basic 

willow tree model.  The results are used to calculate the term structure of interest rate which is 

then compared with the term structure on the market. This can help the Swedbank to be able to 

have the appropriate rates to price instruments correctly using the willow tree model and to 

quantify the amount of model risk in the willow tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

EXECUTIVE SUMMARY 

In July of 2009, the Basel Committee on Banking Supervision issued a directive
1
 requiring that 

financial institutions quantify model risk. The Committee further stated that two types of risks 

should be taken into account: “The model risk associated with using a possibly incorrect 

valuation, and the risk associated with using unobservable calibration parameters”. The resulting 

adjustments must impact Tier I regulatory capital, and the directive must be implemented by the 

end of 2010. 

 

On the surface, this seems to be a simple adjustment to the market risk framework, adding model 

risk to other sources of risk that have already been identified within Basel II. In fact, quantifying 

model risk is much more complex because the source of risk (using an inadequate model) is 

much harder to characterize.  

 

Therefore, the understanding of how a particular financial models work is a must, for all banks 

and financial institution. To compare with built in models and with the prices on the market, It is 

valuable to create own models to verify and validate those.  

 

                                               

  

  

                                                           
Basel Committee on Banking Supervision. Revisions to the Basel II market risk framework - final version. 

July 2009. 
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1.0 Introduction 

 

Financial modelling is building an abstract representation of a financial decision making 

situation. These mathematical models are designed to represent the performance of a financial 

assets or a portfolio. The price process of the underlying is given by the geometric Brownian 

motion 

 Ὓὸ ὛπÅØÐ‘ ὸ „ᾀὸ  , 

where ᾀὸ ȟὸ π is a standard Brownian motion. 

With this formula many more options can be developed and priced using financial models. 

Beginning with the financial crash of 1987 and the recent in 2008 deviations of option prices 

from the Black-Scholes model have been more pronounced. The weakness of the Black-Scholes 

model is central to understanding why models have to be validated. Black-Scholes assumptions 

of constant volatility and lognormal stock process are inconsistent with observations in the 

financial markets. This led to the use of ‘implied volatility smile’. The implied volatility is the 

volatility used in Black-Scholes model in order to obtain correct quoted option prices. The word 

‘smile’ refers to the curvature of the volatility function. Stock returns show that they have high 

kurtosis (i.e. higher central peak and fatter tails) compared to the lognormal distribution assumed 

in the Black-Scholes model. Since it has fatter tails, this translates into higher volatility on either 

side. Black-Scholes suggest that the market is complete. In order words, any contingent claim 

admits a replicating portfolio and hence can be hedge perfectly. Suppose there is a crash in the 

market, it is evident that there is no chance to carry out a continuously changing delta hedge and 

hence the impossibility of perfect hedging. This implies that the market is incomplete hence 

every option cannot be replicated by self-financing portfolio.  

In risk –neutral world, option prices are arbitrage free and can be computed as discounted 

expected payoffs with respect to some measure Q.  The risk neutral measure Q is a probability 

measure with the property that all assets have the same expected rate of return which is the risk-

free rate that is: 

    Ὁ Ὓ ὛὩ     

Under such a measure Q, any portfolio — will always have expected rate of return r, that is 

   Ὁ ὠ — ὠ —Ὡ   

If — is a replicating portfolio for any option X, when ὠ — ὢ , then also ὠ — ὢ or 

otherwise there is arbitrage. This is true by the law of one price. Therefore we have: 
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ὢ ὠ —   Ὡ  Ὁ ὠ —   Ὡ  Ὁ ὢ — . 

Financial models are made possible because of option replication. A model is arbitrage free if 

there is a martingale measure.  This measure is obtained by calibrating to the market data in 

particular, to liquid vanilla options. 

Now the market consists of liquid traded options –vanilla options and exotic or illiquid options. 

Vanilla options are options with special features or restrictions. Vanilla options have standard 

strike prices, standard expiration dates and standard terms. Exotic options have nonstandard 

features and are more complex than options that trade on the exchange. The exotic options are 

traded over the counter (OTC). The market prices for vanilla options are available and these 

prices are determined by supply and demand in the market. 

However, exotic options prices are determined by pricing models. These models act as arbitrage 

free ‘extrapolation’ rules, extending the pricing system from market quoted vanilla options to no 

quoted  exotic options, one has to estimate the unknown parameters of the model which 

reproduces ‘ as closely’ as possible the option prices quoted in the market. This is known as 

model calibration.  This paper seeks to address this.  

The use of financial models in pricing assets should be correctly done in order to reduce the risk 

of wrong pricing which in turn causes lose of huge amount of money. Model verification and 

validation (v&v) are essential parts of the model development process if models are to be 

accepted and use to price assets correctly. Verification of model is done to ensure that the model 

is programmed well and does not contain errors, oversights, or bugs. It ensures that the 

specification is complete and that mistakes have not been made in the implementing the model. 

In model validation we assume the model is not deterministic (i.e. has random elements). 

Validation ensures that the model meets its intended requirements in terms of the methods 

employed and the results obtained. The ultimate goal of the financial model validation is to make 

the model useful in the sense that the model gives the right price, and to make the model actually 

work. There is risk in pricing financial instruments .Some of these risk are systematic risk, 

unsystematic risk and the model risk. In recent times the banks and other financial institutions 

has taken interest in the model risk so that it can be quantify and reduced as a result of creating a 

good model which is consistent with the prices in the market. Some traditional models like the 

Black-Scholes, the Hull and White are explain in details with examples .In this project enough 

time has been invested in the willow Tree model creation and its interest rate validation. 

Moreover we also   show how to calibrate the prices with the market prices to see that we have 

similar prices with the same volatility. 
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2.0 The concept of Calibration of financial models 
 

The calibration of a mathematical model in finance is the determination of the risk neutral 

parameters that govern the evolution of a certain price process  Ὓὸ 

The martingale hypothesis assumes that there exists a probability measure Q, equivalent to П, 

such that our discounted price process  Ὓὸϳὄὸ  is a martingale (here  ὄὸ  is the evolution 

of a riskless savings account usually given us    ὄὸ ὄπ Ὡ ).  П is the historical or physical 

probability measure. We use statistical procedures to fit П to the data, this reflects past evolution 

of prices of the underlying. Q is the risk neutral probability measure this is also calibrated 

through prices of derivatives on the underlying. 

The calibration of a model is performed observing the prices of certain derivatives written on the 

underlying  Ὓὸ  , and fitting the parameters of the model in such a way that it reproduces the 

observed derivative prices. The purpose of calibration is to compute prices of not so liquid 

derivatives instruments, or more complex instruments.                                     

 3.0 Binomial models 
 

The binomial model was first proposed by Cox, Ross and Rubinstein (CRR-1979). It is therefore 

called the CRR model in some literature. The binomial model assumes that movements in prices 

of instruments follow the Binomial distribution. The model uses discrete-time model of the 

varying prices over time of the underlying instrument. For this reason the model is widely used 

since it is able to handle a variety of conditions for which other models cannot easily be applied. 

As a consequence it is used to value American Options that are exercise at any given time. 

Another advantage of the Binomial model is that it is relatively simple model and it is readily 

implementable in computer software. 

The binomial model is more accurate particularly for longer-dated Options on securities with 

dividend payments. This model is computationally slower than the Black-Scholes formula. 

Options with several sources of uncertainty and Options with complicated features for example 

Asian Options, the binomial model is not commonly used to value due to several difficulties. 

Some other models we will talk about later in this paper are used to value instruments of such 

nature. 
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3.1 Building the BDT Binomial Model 
 

The model we will use is based on a Black-Derman-Toy (BDT) interest rate Binomial tree 

approach which  adjusts for the cost of the embedded option and the difference between model 

price and market price due to other risks, for example credit and liquidity risks. 

 

The Black-Dorman-Toy (BDT) model is a single-factor short-rate model matching the observed 

term structure of forward rate volatilities, as well as the term structure of the interest rate. A 

binomial tree is constructed for the short rate in such a way that the tree automatically returns the 

observed yield function and the volatility of different yields. The model is described by a 

stochastic differential equation where the rates are log-normally distributed. Therefore, the 

interest rates cannot be negative. To adjust the theoretical price on the binomial tree to the actual 

price, a spread called option-adjusted spread (OAS) is added to all short rates on the binomial 

tree such that the new model price after adding this spread makes the model price equal the 

market price .The value of option-adjusted spread is that it enables investors to directly compare 

fixed income instruments, which have similar characteristics, but traded at significantly different 

yields because of embedded options. 

 

The OAS model has three dependent variables: 

 

¶ Option Adjusted Spread 

¶ Underlying Price 

¶ Volatility 

 

The stochastic process for the short rate in the Black-Derman-Toy (BDT) model is given by 

stochastic differential Equation (SDE): 

 

ὨÌÎÒ —ὸ  ”ὸÌÎὶὨὸ„ὸὨᾀ  
 

Where the drift of the short-term rate is —ὸ , ὤὸ is a Brownian motion and ”ὸ is the mean 

reversing term to an equilibrium short-term rate that depends on the interest rate local volatility 

as follows: 

 

”ὸ
Ὠ

Ὠὸ
ÌÎ„ὸ

„ὸ

„ὸ
 

 

ὨÌÎÒ  —ὸ  ÌÎὶ Ὠὸ„ὸὨᾀ  

 

Since the volatility is time dependent, there are two independent functions of time, —ὸ and  

 „ὸ , chosen so that the model fits the term structure of spot interest rates and the structure of 

the spot rate volatilities. Jamshidian (1991) shows that the level of the short rate at time t in the 

BDT model is given by: 
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ὶὸ ὟὸÅØÐ„ὸᾀὸ  
 

Where Ὗὸ is the median of the lognormal distribution of r at time t, „ὸ the level of the short 

rate volatility and z(t) the level of the Brownian motion, a normal distributed Wiener process that 

captures the randomness of future changes in the short-term rate. The Black-Derman-Toy model 

is a lognormal model that is able to capture a realistic term structure of the interest rate 

volatilities. According to the principle of risk-neutral valuation the expected return from a stock 

at time T, 

 ὉὛ ὛὩ  

Ὓ  is the current stock price and r is the continuous compounding risk-free rate. 

 

We construct a binomial tree whose pricing is given by the figure below: 

 

                                   
 

Figure 1.0: A simple binomial diagram 

 

Restricting to only the single time step (i.e. ὸ and  ὸ). Initial price Ὓhas the option of moving to  

Ὓό or ὛὨ at time ὸ.  

Let p be the probability of the price to rise to Ὓό then the probability to move to ὛὨ  is ρ ὴ 

 

Calculating the expected return from the stock at ὸ and making use of the risk-neutral valuation 

we have 

                                     ὉὛ ὴὛό  ρ ὴὛὨ ὛὩ   

   

 We get  

ὴ
Ὡ Ὠ

ό Ὠ
 

 

We choose appropriate values of u and d which can be obtained from equating the variance of 

the return to „όЎὸ. 
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The variance of the stock price return on the binomial tree is 

 

ὴόό ρ ὴὨό ὴό ρ ὴὨό „όЎὸ 
 

Ignoring higher terms of Ўὸ² and making use of  όὨ ρ , we get:  

   

  ᵼό ὩЍЎ       And       Ὠ Ὡ ЍЎ 

 u and d are the ups and downs of the binomial tree. 

 

Where „ὸ is the volatility at time t. The risk-neutral probabilities of the binomial branches of 

this model are assumed equal to ½. (It by no means implies that the actual probability for an 

interest rate increase or decrease is equal to ½.) The tree uses the short-rate annual volatility of 

the benchmark rates which should be given in the Black-Scholes framework. The process can be 

illustrated using the following four short rates (all expressed with semi-annual compounding): 

Ὢ ȟὪ Ὢ ȟὪ   
 

When the tree is built, the volatility spread factors, ὤᴂί are kept constant and the tree is built 

with the following relationship between the nodes called the rates: 

 

Ὢȟ ὤ  Ὢȟ 

where  Ὢȟ Ὢ , so  Ὢȟ ὤ ȢὪȟ   and  Ὢȟ  Ὢȟ  Ὢ Ȣ  

Therefore   Ὢȟ 
 
 

Also  Ὢȟ ὤ ȢὪȟ  and Ὢȟ   ὤ  ȢὪȟ so  Ὢȟ Ὢȟ Ὢȟ  Ὢ  

Therefore  Ὢȟ 
Ȣ 

   Ȣ
  etc 

Generally the rates a given by: 

Ὢȟ Ȣ
ὲ ρ

Ὥ
Ȣὤ ς  ȢὪ ᵼὪȟ ȟȣȟὪȟ  

 

3.2 Calibration of the BDT Binomial tree. 

 

Before the tree we have built can be use it has to be calibrated with the market data.  This 

process involves raising or lowering the estimates of the rates in the tree by a sufficient amount 

so that the value for the cash flows given by the tree exactly equals the values given by the 
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discount function. The relationship between the different nodes ὤᴂί must be maintained during 

the calibration process. The price at cash flow equal 1 is given by  

ρ
ς

ρ ὪȟȢὸ ὸ
 

ρ
ς

ρ ὤȢὪȟȢὸ ὸ
 Ȣ

ρ

ρ ὪȟȢὸ ὸ
  

And the price of the same cash flow equal 1is again given by ὖὸȟὸ  , by the discount function 

P(T, t) (with equal probabilities  ) discounting from t = ὸ to t = ὸ. Therefore the following 

must hold: 

ρ
ς

ρ ὪȟȢὸ ὸ
 

ρ
ς

ρ ὤȢὪȟȢὸ ὸ
 Ȣ

ρ

ρ ὪȟȢὸ ὸ
0ὸȟὸ  

From the expression Ὢȟ ὤ ȢὪȟ ,  Ὢȟ  can be calculated if the value of Ὢȟ is known. The 

nodes at time 2 are calibrated as follows: 

ρ

ς

ρ
ς

ρ ὤȢὪȟȢὸ ὸ
 

ρ
ς

ρ ὤȢὪȟȢὸ ὸ
Ȣ

ρ

ρ ὪȟȢὸ ὸ

ρ
ς

ρ ὤȢὪȟȢὸ ὸ

ρ
ς

ρ ὪȟȢὸ ὸ
Ȣ

ρ

ρ ὪȟȢὸ ὸ

ρ

ρ ὪȟȢὸ ὸ

0ὸȟὸ  

These equations are solved numerically by a Van Winjgaarden-Decker-Brent method. When Ὢȟ 

is known Ὢȟ and Ὢȟ can also be calculated. The rates in the calibrated tree are then compared 

with the rates from the un-calibrated and the necessary adjustment made. 

                          

 3.3 Pricing Options in the BDT Binomial model 
 

Options prices are evaluated from the end of the tree and working from backwards (i.e. backward 

induction). A put option is worth ÍÁØὑ Ὓὸȟπ  and a call option is worth ÍÁØὛὸ ὑȟπ 

where S(t) is the stock price at time T and K is the strike price. The risk- neutral probabilities and 

the discounting factors of the tree are given by ὴ
Ў

  and ὩЎ  from Hull (2003): 

 To illustrate this approach, let us consider an example: 

 

Consider a five-month American put option on a non-dividend-paying stock when the 

stock price S =$50. The option is at the money, i.e., K = $50, the risk-free interest rate is 
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10% per annum, and the volatility is 40% per annum. Suppose we divide the life of the 

option into five intervals of length one month:  

 

(i.e. ЎÔ  =  year). 

 

We can easily find that: 

 

ό ὩЍЎ = 1.1224,                         Ὠ Ὡ ЍЎ =0.8909 

ὩЎ =1.0084                                    ὴ
Ў

  =0.5076 

1- P = 0.4924 

 

Note that $50 = 5000 cents, and the stock prices at each node are calculated by 

multiplying the previous stock price by u or d, for the upward movement and the 

downward movement of stocks, the prices of the option in the tree at each node are 

calculated as follows: 

 

  ὖ ÍÁØ ὑ Ὓὸȟ Ў ὖὪ ρ ὖὪ    

 

Where Ὢȟ Ὢ are the up and down prices at each node respectively. For instance the price 

at time step t = 4 months with stock price S(t) = 5000cents is calculated as: 

 

ὖ ÍÁØ υπππυπππȟ
Ȣ

πȢυπχφςρυπȢτωςτφωυ  

 

Which gives P = 266 cents. We do the same for the rest of the nodes. The stock price is 

represented on the top of the node and the option price at the down of the node as shown 
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in figure 1.1 below.

 
                  t = 0           t = 1           t = 2          t = 3            t = 4           t = 5 

              Figure 1.1:  BDT Binomial tree for American put option in cents.                

 4.0 The Black ɀScholes model. 
 

The Black –Scholes model is a mathematical model of a financial market containing derivative 

of certain investment instruments. The model is widely used in the option market.  Many 

empirical tests have shown that Black-Scholes price is close to the observe prices. This model 

was first proposed by Fischer Black and Myron Scholes in 1973. 

 The main idea was to perfectly hedge the option by buying and selling the underlying assets in 

the right way and also to reduce risk associated with it. This hedge is called delta hedging. From 

the Black-Scholes model (equation) we can deduce the Black scholes formula which gives the 

price of European –style options. There are number of assumptions in the Black- Scholes world: 

¶ Options can be exercised  only at expiration(European-style options) 

¶ The stock price follows a geometric Brownian motion with constant drift and volatility. 

¶ The underlying stocks do not pay dividends. 

¶ There is no arbitrage opportunity(no profit without risk) 

¶ It is possible to borrow and lend cash and also buy and sell any amount of stock. 
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¶ The transactions do not incur any cost or fees. 

¶ Stock returns follow a lognormal distribution. 

¶ Interest rates do not change in the life of the option (and are known). 

 

4.1 Derivation of the Black-Scholes model (PDE) 

 

We let: 

S = the price of the stock 

 ὠὛȟὸ = the price of the derivative as a function of time t and stock price S. 

ὅὛȟὸ ,   ὖὛȟὸare the prices of European call and put options respectively at time t. 

r = the annualized risk- free interest rate.  

ɛ = the drift rate of S 

„ = the volatility of the stock returns 

Π = the value of a portfolio. 

From [1], and the assumptions given above it follows that price of the underlying assets follows 

a geometric Brownian motion. That is  ʈÄÔ „Ὠᾀ 

          ᵼ ὨὛ ὛʈÄÔ 3„Ὠᾀ ……………………………………………………………...….. (1) 

Where W is the Brownian motion and a simple random walk. Also    

ὨὛό ὛʈÄÔ 3„Ὠᾀό = Sό„όὨὸ …………………………………………….………. (2) 

Since (Ὠὸ)ό=0 and  ÄÚό  ÄÔ 

The payoff of the option at maturity T is known to be V(S, T), to find it value at time t, we apply 

Itōs lemma to V(S, t) and we have: 

               Ὠὠ ȢὨὛ ȢὨὸ  
ό

ό
ȢὨὛ……………………………………………….……..(3) 

When we substitute equations (1) and (2) into (3) we have: 

Ὠὠ Ὓʈ 3„ Ὠὸ3„ Ὠᾀ……………………………………….. (4) 
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Now we consider a delta –hedging portfolio consisting of short one option and long   shares at 

time t, the value of this portfolio is: 

Π= - V + Ὓ over time period [t, t + ∆t] the total value of the portfolio becomes 

∆Π= - ∆V + ЎὛ  ……………………………………………………………………… (5) 

We now make equations (1) and (4) discrete by replacing differentials with deltas, we have:  

 ЎὛ Ὓ‘ЎÔ  3„Ўᾀ 

and    

Ўὠ
ὠ

Ὓ
Ὓʈ

ὠ

ὸ

ρ

ς
3„

ὠ

Ὓ
Ўὸ 3„

ὠ

Ὓ
Ўᾀ 

We then substitute these two discrete equations into (5) we have: 

∆Π= 3„ Ўὸ …………………………………………………………. (6) 

We realize that Ўᾀ has been eliminated which means that there is no uncertainty in the portfolio 

which makes it effectively riskless in infinitesimal short period of time.  Over a time period  

[t, t+∆t]   under the risk free rate r, the price process ∆Π becomes 

∆Π= r Π ∆t = ὶ ὠ ὛЎὸ………………........................................................... (7) 

Equating (6) and (7) we have: 

 3„ Ўὸ ὶ ὠ ὛЎὸ 

Simplifying and rearranging we have  

 3„ ὶὛ ὶὠ π 

This is the Black-Scholes partial differential equation.                            

 

4.2 The Black- Scholes formula 
 

If #Ὓȟὸand ὖὛȟὸare the prices of European call and put options respectively at time t. 

K is the strike price 
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T is the time to maturity 

N(x) is the cumulative distribution function of the standard normal distribution. 

We use the risk-neutral valuation approach to calculate for the Black-Scholes formula.  The 

value of expected value of call option in risk-neutral world is: 

  PÍÁØ Ὓ ὑȟπ   

Where P denotes the expected value in the risk-neutral world. The European call option price is 

calculated by discounting the expected value at risk-free rate of interest. 

 ὅὛȟὸ Ὡ PÍÁØ Ὓ ὑȟπ  

From the assumption that Black-Scholes price process is lognormal 

 ᵼ PὛ ὛὩ   

 And the standard deviation for 

   ÌÎὛ „ЍὝ ὸ 

Therefore 

    ὅὛȟὸ Ὡ  ὛὩ ὔὨ ὑὔὨ  

or 

  ὅὛȟὸ ὛὔὨ ὑὩ ὔὨ  

This is the Black-Scholes price for European call Option at time t. 

From the put call parity formula 

  ὖ3ȟÔ ὑὩ Ὓ ὅὛȟὸ 

We have: 

 ὖὛȟὸ ὑὩ Ὓ ὛὔὨ ὑὩ ὔὨ  

 ᵼ ὖὛȟὸ ὑὩ ρ  ὔὨ Ὓρ  ὔὨ  

Therefore   we have  

 ὖὛȟὸ ὑὩ ὔ Ὠ Ὓὔ  Ὠ   

Which is the Black-Scholes price of the European put option at time t. 
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Where  

 Ὠ  
 

Ѝ
 

and      

 Ὠ  
 

Ѝ
Ὠ „ЍὝ ὸ 

 

These equations are called the Black-Scholes formula which is used to value financial instrument 

mostly Options of European type. There are some limitations to this model, some of them being 

the assumption of cost-less trading, yielding liquidity risk which is difficult to hedge and the 

assumption of constant volatility, which in real world varies over time. Very short-term options 

can be valued using Black-Scholes formula because volatility can change so much in only a few 

days, invalidation of these assumptions in longer term in the real world makes the Black-Scholes 

formula not work for mid-term and long-term options. Therefore proper application of Black-

Scholes model requires the understanding of these limitations. Also interest rate is not always 

constant, it varies by tenor which gives an interest rate curve which can be interpolated to pick 

appropriate interest rate to be used for Black- Scholes pricing. The Black-Scholes model was 

later improved to deal with some limitations of the real world. For example the Generalized 

AutoRegressive Conditional Heterokedasticity (GARCH) model replaces the constant volatility 

with stochastic volatility. 

 

  4.2.1 Pricing Options in the Black-Scholes model 

 

The Black-Scholes formula is used to calculate the value of option. We can demonstrate the 

working of the Black-Scholes formula with this example: 

 

Let us assume that the current price of shares of company ABC is $100 and you would 

like to get an option to purchase one share of ABC company stock for $95. The option 

expires in three months. We also assume that the stock pays no dividends.  The standard 

deviation of the stock return is 50% per year, and the risk-free rate is 10% per year, we 

can calculate the value of the option as follows: 

 

T=  = 0.25year,   t = 0, S = $100, K = $95, r =10% = 0.10,   „= 50% = 0.50 

 

We have: 

 Ὠ  
 Ȣ

Ȣ
Ȣ

Ȣ ЍzȢ
πȢτσ 
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 Ὠ πȢτσπȢυπzЍπȢςυ 

 

            N (0.43) = 0.6664  

            N (0.18) = 0.5714 

 

Therefore the value of the call option is  

 

C(S, T) = 100* 0.6664-95*Ὡ Ȣ ᶻȢ  *0.5714 = 66.64 - 52.94 = 13.70 

 

Using the put-call parity formula the price of the put option is: 

 

           P(S, T) = 13.70 + 95*Ὡ Ȣ ᶻȢ  -100 = 6.35   

                                             

5.0 The Short rate models 
 

The models discussed above are widely used to value instruments such as Caps, European bond 

options and European swap options. One limitation of these models among others is that they do 

not provide a description of how interest rate r evolves through time. Due to this, the models 

mentioned above are not used to value interest rate derivatives such as American-style swap 

options, callable bonds, and structure notes. Term structure models are used to value derivatives 

of this nature which take into account the movement of interest rates in the market. One 

difference between movement of stock price S and interest rate r is that interest rates appear to be 

pulled back over long-run average range of time.  This phenomenon is known as mean 

reversion. When the short rate r is high, mean reversion tends to cause it to have negative drift: 

when r is low, mean reversion tends to cause it to have positive drift. This can be explain 

economically that when interest rate r is high there is low demand for funds from borrowers as a 

result interest rate decline inversely when rates are low the demand for funds increases and 

consequently rates tend to rise. The Interest rate models we talk about in this paper take into 

account the mean reversion phenomenon.  
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 6.0 Term structure of interest rates   
 

The term structure of interest rate is a yield curve displaying the relationship between spot rates 

of zero-coupon securities (e.g. zero coupon bonds) and their term of maturity as shown in the 

figure below in figure 1.2. 

                                                      

                                      

                                       Figure 1.2  Term structure of Interest rates 

This curve allows an interest rate pattern to be determined which can then be used to discount 

cash flows appropriately. 

If the term structure ὖὸȟὝȡπ ὸ ὝȟὝ π has the form 

 ὖὸȟὝ ὊὶȟὸȟὝ = Ὡ ȟ ȟ  

Where r is dependent on time t. Then the model is said to possess an affine term structure (ATS).  

A and B are deterministic functions of two real variables t and T, P (t, T) is the price at time t of a 

zero-coupon bond that pays $1 at time T. The affine bond price can then be written as  

 ὖὸȟὝ ὃὸȟὝὩ ȟ  ............................................................................................. (a) 

If ὙὸȟὝ is the continuously compounded interest rate at time ὸ for a term of  Ὕ ὸ  then 

 ὖὸȟὝ Ὡ ȟ  

 ᵼὙὸȟὝ ÌÎὖὸȟὝȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢȢ Â 

Substituting equation (a) into (b) we have 
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 ὙὸȟὝ ÌÎὃὸȟὝὩ ȟ  

Then,  

 ὙὸȟὝ ÌÎὃὸȟὝ ὄὸȟὝὶ .................................................................... (c) 

Equation (c) is use to obtain the term structure of interest rates at any given time t from the 

values of r at that time. 

This shows that the entire term structure can be written as a function of r           

        

 6.1 Equilibrium models of term structure 
 

Equilibrium models derive process for the short rates r. These models also explain why the 

process for r affects bond prices and option prices. The process for r in one-factor equilibrium 

model involves only one sources of uncertainty. The risk neutral process for one factor 

equilibrium model is written in this form: 

 Ὠὶ άὶὨὸίὶὨᾀ 

Where m and s are instantaneous drift and volatility respectively, which are functions of r. A 

model is one-factor if all the rates move in the same direction over any short time interval. When 

the process for the short rates reverts to a long rate and follows a stochastic process, it defines 

two factor equilibrium model. 

Equilibrium models do not automatically fit today’s term structure of interest rates. Parameters 

have to be chosen cautiously so that they can fit into today’s term structure of interest rates. 

Consequently traders have very little confidence in Equilibrium models since it does not really 

price the underlying bond correctly which may lead to a big error in the price of the bond option. 

 

6.2 No-Arbitrage models of term structure 
 

No-arbitrage models of term structure are popular among practitioners because they provide a 

description of the yield curve that is consistent with the prices of all actively traded bonds on a 

given date and can therefore be used for pricing less liquid bonds and fixed income derivatives 

on the same dates. 

This model is designed in such a way that today’s term structure of interest rates is an input and 

it is also consistent with the term structure. The drift part of these models (i.e. coefficient of Ὠὸ) 
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usually is a function of time t. When time t is included in the drift of Equilibrium models they 

can be converted to no-arbitrage models. 

7.0 The Vasicek Model 
 

Vasicek model is a type of one-factor equilibrium short rate model, which has risk-neutral 

process for r as: 

 Ὠὶ ὥὦ ὶὨὸ„Ὠᾀ 

Where a, b, and „ are constants. In this paper we will put ὧ ὥz ὦ for simplicity sake. Then the 

process can be written as: 

 Ὠὶ ὧ ὥὶὨὸ„Ὠᾀ...................................................................................................(d) 

The drift part ὧ ὥὶ represents the expected instantaneous change in the interest rate at time t.  

The parameter a represent the “speed of reversion” and c represent the long run equilibrium 

value towards which the interest rate revert. In this model the short rate r is pulled to a level c at 

rate a. 

 

 7.1 Bond pricing using the Vasicek model 
 

Assume that we have Q-dynamics  

 Ὠὶ ‘ὸȟὶὨὸ„ὸȟὶὨᾀ 

And assume that this process possess an affine term structure (ATS), then we observe that the 

drift ‘ and the variance „ό are both affine functions of r with time dependent coefficients then 

we can write 

  ‘ὸȟὶ ὥὸὶ ὦὸ  ................................................................................................. (e) 

 „ό ÔȟÒ ÃÔÒ  ÄÔ ................................................................................................. (f) 

Comparing equation (d) with equations (e) and (f) we have: 

 a (t) = -a, c (t) = 0, b (t) = b and d (t) = „ό 

Considering ὃὸȟὝ and ὃὸȟὝ as a function of t we solve the ODE’s: 
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 ὃ —ὃὄ „όὃὄό π  and  ὄ ὥὄ ρ 

Subject to 

 ὃὝȟὝ ρ and ὄὝȟὝ π 

We get        ὄὸȟὝ  

and  ὃὸȟὝ Ὡὼὴ
ό

ό
ὄὸȟὝ Ὕ ὸ  

 όόȟ
 

8.0 The Hull-White model 
 

In this paper we consider only the one-factor no-arbitrage Hull-White model which is an 

extension of the Vasicek model that provide an exact fit to the initial term structure. The 

stochastic differential equation describing the Hull-White interest rate model is 

 Ὠὶ —ὸ ὥὶὨὸ„Ὠᾀ 

or 

 Ὠὶ ὥ ὶὨὸ„Ὠᾀ 

This means that at any given time, r reverts towards  at rate a. Its variance rate per unit time 

is „ό. Here —ὸ is a function of time determining the average direction in which r moves and a 

is the mean reversion rate. This model assumes that the short-term rate in the future is normally 

distributed. We noticed that  Ὠὶ is negative if r is currently large and positive if r is currently 

small. This shows that in the Hull-White model the interest rate process can be negative. This 

model can also be considered as the Vasicek model with a time-dependent reversion level. The 

function —ὸ can be calculated from the initial term structure.  

 

8.1 Bond pricing using the Hull-White model 
 

The zero-coupon bond at a future time t in terms of the short rate r and prices of the bond today 

is evaluated as follows using the affine bond price 

 ὖὸȟὝ ὃὸȟὝὩ ȟ  

and 
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 ὄὸȟὝ  

This gives  

 ὃὸȟὝ
ȟ

ȟ
Ὡ

ȟ ȟ όόȟ

 

Where Ὂπȟὸ  is the instantaneous forward rate that applies to time t as observed at time zero. 

This can be computed as   Ὂπȟὸ
 ȟ

 

 

 8.2 Calibration of the Hull-White model 
 

The Hull-White model is calibrated by choosing the mean reversion rate a and the standard 

deviation „ in such a way that they are consistent with option prices observed in the marketplace. 

After this, —ὸ is calibrated against the theoretical bond prices. The calibration of the Hull-

White model is largely an optimization in which the system finds values for the Hull-White 

volatility parameters  „ and a, in which option prices calculated using Black-Scholes model 

match as far as possible.  

 

9.0 The Black-Karasinski model 
 

The Black-Karasinski model is a one factor no – arbitrage model that allows only positive 

interest rates r. Interest rates dynamics in this model is given by: 

 ὨÌÎὶ —ὸ ὥÌÎὶὨὸ„Ὠᾀ 

ÌÎὶ Follow the same process as r in the Hull-White model. The short term interest rate in the 

Hull-White model can be negative but the short rates stays only positive in the Black-Karasinski 

model which gives it an advantage over the Hull-White model in real life. The future value of r 

in the Black-Karasinski model is lognormal. One disadvantage in this model is that it is not 

possible to produce formulas for valuing bonds in terms of r as such it does not have much 

analytical tractability as compared to the Hull-White model. 
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  10.0 Trinomial Trees 
 

The trinomial tree model improves upon the binomial model by allowing stock prices to move up, 

down or stay the same with certain probability. The trinomial tree can be applied to solve various 

European and American options, pricing barrier options and calculating the Greeks. 

Trinomial trees provide an effective method of numerical calculation of option prices. The 

trinomial model is considered to produce more accurate results than the binomial model when 

fewer time steps are modelled, it is often use when computation speed is of essence. 

 

 10.1 Building the Trinomial tree 
 

To create the trinomial tree we first consider a single time step trinomial tree with the stock price 

at the beginning Ὓ . During this time step the stock price can move up with probability p to the 

value Ὓ or move down with probability q to the value Ὓ or in the middle with probability 

ρ ὴ ή to the value  Ὓ  as illustrated in figure 1.3 below. 

 

                                          t=0                                  t=1 

Figure1.3. Single step trinomial tree. 

In the trinomial tree the jump sizes u, d, and m are match to the distribution of Geometric 

Brownian motion with transition probabilities  ὴȟήȟὖ  . The model can be summarize as follows 

  Ὓὸ  

Ὓ      ×ÉÔÈ ÐÒÏÂÁÂÉÌÉÔÙ              ὖ    
Ὓ      ×ÉÔÈ ÐÒÏÂÁÂÉÌÉÔÙ              ὖ     
 Ὓ     ×ÉÔÈ ÐÒÏÂÁÂÉÌÉÔÙ                 ή     
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The jump sizes are:   

 ό ὩЍЎ , Ὠ Ὡ ЍЎ  and m=1 

The transition probabilities are given by:  

 ὖ

Ў
ɀ

Ў

Ў

ɀ
Ў

 

  ή

Ў

ɀ
Ў

Ў

ɀ
Ў

 

 ὖ ρ ὖ ή 

 r is the risk-free interest rate interest rate at an infinitesimal time. The standard trinomial tree 

looks like the figure below: 

 

Figure1.4. Standard trinomial tree 

When pricing financial instruments under the trinomial model u, d and m are evaluated with their 

corresponding transition probabilities ὖ , ὖ  and ή  . If the instrument is option, the option type 

is also needed (i.e. call, put), we then apply the same methodology as used in pricing binomial 

option. 
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10.2 The Hull-White trinomial trees. 
 

The Hull-White interest-rate tree is a process where we build a trinomial tree for the Hull-White 

model. This tree can be used to implement the Hull-White model and the Black-Karasinski 

model. This process is also used to develop new models such as the Willow tree model. 

First of all we consider the interest rate process for the Hull-White model: 

 Ὠὶ —ὸ ὥὶὨὸ„Ὠᾀ 

Where r is the instantaneous interest rate, ὥ and „ are constants and —ὸ  is a function of 

ὸ chosen so that the model provides an exact fit to the initial term structure of interest rates.  

For the consideration of the Hull-White tree we define a new variable ὶᶻ obtained from r by 

setting both —ὸ and the initial value of ὶ equal to zero. The process for ὶᶻ is: 

 Ὠὶᶻ ὥὶᶻὨὸ„Ὠᾀ  

We then construct a tree for ὶᶻ that has a form as shown in figure 1.5 below: 

 

Figure1.5.The Hull-White interest rate tree in ὶᶻ 

The central node at each time step has ὶᶻ π and  ὶᶻὸ ЎÔ ὶᶻὸ  is normally distributed 

where  the length of each time step is ЎÔ. If we ignore higher terms of ЎÔ we have 

 Ὁὶᶻὸ ЎÔ ὶᶻὸ ὥὶᶻὸЎÔ 

and 
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 ὠὥὶὶᶻὸ ЎÔ ὶᶻὸ „όЎÔ 

We define ЎÒ as the spacing between interest rates on the tree and we set  ЎÒ Ѝσ6, where V is 

the variance of the change in r in time ЎÔ . 

For each node ὭȟὮ we define the expected change in ὶᶻ as ὓὶᶻ  at node jЎὶᶻ . From Hull and 

White [1994] the expected change in ὶᶻ and it’s variance of the change in ὶᶻ  in time ЎÔ are given 

by: 

 ὉὨὶᶻ ὓὶᶻ Ὡ Ў ρὶᶻ 

 ὠὥὶὨὶᶻ ὠ
ό Ў

 

For a node ὭȟὮ a non-standard branching takes place at nodes Ὦᶻ where Ὦᶻthe smallest integer 

is greater than the value -0.184/M. 

The probability at each node is chosen to match the mean and standard deviation of the change in 

ὶᶻ for the process for ὶᶻ. We have these 3 different branches in the tree. 

                

Standard branch                                  upward branch                              downward branch 

 

 We define the transition probabilities as ὖȟ ὖ and ὖ   for the up, middle and down branching 

probabilities respectively.   

 

ὖ
ό

ὖ Ὦὓ

ὖ
όό

ữ
Ử
Ữ

Ử
ử

......................................................................................................(11A) 

At the top edge of the tree where the branching is non-standard the modified probabilities 

become: 
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ὖ
ό

ὖ Ὦὓό ςὮὓ

ὖ
όό

ữ
Ử
Ữ

Ử
ử

......................................................................................... (11B) 

At the bottom edge where the branching is no-standard the probabilities are: 

 

ὖ
ό

ὖ Ὦὓ ςὮὓ

ὖ
όό

ữ
Ử
Ữ

Ử
ử

........................................................................................ (11C) 

The next stage for the construction of the Hull-White trinomial tree involves forward induction. 

We work from zero to the end of the tree adjusting the location of the nodes at each time step in 

such a way that the initial term structure is matched. The effect of this forward induction is to 

convert a tree for ὶᶻ into a tree for r. The conversion of the tree from ὶᶻ to r produces a tree as 

shown below in figure 1.6. 

 

Figure1.6. Conversion of Hull-White tree from ὶᶻ to r 

The Hull-White tree is analytically tractable. For instance Bond prices can be calculated 

analytically by using the affine bond pricing formula in equation (1) we have: 

 ὖὸȟὝ ὃὸȟὝὩ ȟ  

And the fact that when r is continuous we have: 

 ὖὸȟὝ Ὡ ȟ  

Putting T=t+Ўὸ and equating these two equations we have: 
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 Ὡ Ў ὃὸȟÔ ЎÔὩ ȟ Ў  

Then 

 ὶ
Ў ȟ Ў

ȟ Ў
.......................................................................................................... (11D) 

Given the   Ўὸ-period rate R at a node of the Hull-White tree we can calculate  the instantaneous 

interest rate r by using equation ρρ$  and then  use it to calculate for points on the term 

structure. 

Where ὖὸȟὝ is the price at some time t of a zero coupon bond maturing at time T. The variable 

r is the instantaneous short rate while the variable R is the interest rate on the Hull-White tree at 

 Ўὸ-period. Variables r and R are not the same and therefore cannot be interchanged. 

The bond price at each node ὭȟὮ for each branch is calculated as follows: 

 ὠȟ ὖὠ ȟ ὖὠ ȟ ὖὠ ȟ Ὡ ȟЎ 

 ὠȟ ὖὠ ȟ ὖὠ ȟ ὖὠ Ὡ ȟЎ 

 ὠȟ ὖὠ ȟ ὖὠ ȟ ὖὠ ȟ Ὡ ȟЎ 

We can see from the two functions of Ὠὶὸ  and Ὠὶᶻὸ that these functions differ only by some 

function of time. We define this difference as 

   ὸ Ò Ô ὶᶻὸ................................................................................................ (11E) 

This is the difference between the central or mean values of r (t) and ὶᶻ (t) at time t. 

Differentiating equation (11E) we have: 

 —ὸ ὥὸ 

This is because the expected value of ὶᶻ (t) is zero and ὸ is the expected value of  Ò Ô . We 

can also write  

 ὸ ὩὼὴὥὸÒπ ᷿—ήὩ ÄÑ 

Substituting the analytical expression for —ὸ given in Hull and White [1994a] this reduces to 

 ὸ ὊπȟὝ
ό

ό ό
 

This expression is used to find central nodes so that we don’t have to go through forward 

induction to find them. Since the tree is a discrete representation of the underlying continuous 
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stochastic process it does not provide an exact fit to the initial term structure. The forward 

induction procedure matches the initial term structure exactly to the tree. 

 

10.2.1 Construction of 3-step Hull-White tree 

 

We construct a 3-step Hull-white tree if the zero coupon curve was used to price a 3-year option 

on a zero coupon bond. We choose the day count to be 365 then the size of the time step is  

 ЎÔ

ᶻ

ρȢπώὩὥὶί . 

The parameters ὥ and „ are chosen as ὥ πȢρ   and  „ πȢπρ  . These values were chosen based 

on rough representation of the values that are observed in the market. 

Therefore the expected change in ὶᶻ is given as  

 ὉὨὶᶻ ὓὶᶻ Ὡ Ў ρὶᶻ 

Therefore  

 ὉὨὶᶻ ὓ Ὡ Ў ρ 

 ᵼ ὓ Ὡ Ȣz ρ= -0.095162581 

The variance of the change in ὶᶻ is given as 

 ὠὥὶὨὶᶻ ὠ
ό Ў

 

Therefore 

            ὠ
Ȣ ό ᶻȢz

ᶻȢ
= 0.00009063462346 

The step size  Ўὶ Ѝσὠ  Ѝσz πȢππππωπφστφςστφ  

 ᵼ  Ўὶ =0.016489507 

Non-standard branching takes place at nodes 

  Ὦᶻ = 
Ȣ Ȣ

Ȣ
 = 1.93353   ᵼ    Ὦᶻḗ ς   

We then calculate the transitional probabilities as follows: 

For standard branching we use equation 11A, for instance, at j = 0 
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 ὖ
όz Ȣ ᶻ Ȣ

 

ᵼ        ὖ πȢρφφχ 

The same procedure is repeated for j=1 and j=-1 at   ὖ and j=-1, 0, 1 for   ὖ ὥὲὨ ὖ. 

For non-standard branching we use equations 11B and 11C for top and bottom branches 

respectively. 

At j=2, using equation 11B we have 

 ὖ
όz Ȣ ᶻᶻ Ȣ

 

 ᵼ ὖ πȢψωωςωρ 

We repeat the same for   ὖ ὥὲὨ ὖ. At j = -2, using equation (11C) we have 

 ὖ
ᶻ Ȣ ɂ ᶻ Ȣ

 

 ᵼ  ὖ πȢπψωφ 

The same is repeated for   ὖ ὥὲὨ ὖ. We then calculate the rates at each node as follows: 

Rate = ὮЎÒ, For instance the rate at j=2 is 

Rate = 2(0.016489507) = 0.0329790 

Combining all these data for the 3-time step tree in  ὶᶻ , we have the initial Hull-White tree as 

shown in a table 1.1 below. 

        J Rate= ὮЎÒ ὖ    ὖ  ὖ Equation 

       2 0.03298 0.89929 0.01109 0.08962 11B 

       1 0.01649 0.12361 0.06576 0.21878 11A 

       0 0.00000 0.16667 0.16667 0.16667 11A 

      -1 -0.01649 0.21878 0.65761 0.12361 11A 

      -2 -0.03297 0.08962 0.01109 0.89929 11C 

 

Table1.1. 3steps Hull-White tree 

The rates in the tree at each time step are then shifted by amount   , which is chosen so that the 

revised tree correctly prices discount bond. 
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 11.0 The willow Tree model 
 

The willow tree model is a high performance library for the development of lattice –based 

models. In the same way as the binomial or trinomial models the willow tree is intended to 

describe continuous –time stochastic process with discrete-time stochastic process. One distinct 

feature of the willow tree is that the number of nodes at each time step is constant. This is in 

contrast to the binomial tree where the number of nodes becomes  ς  where M is the time 

steps at the end of the tree. The willow tree provides better coverage of high probability regions 

of the process space and gives less waste in the low probability regions as shown in the figure 

1.7 below. 

                              
Figure 1.7.The space between trinomial and the willow tree 

  

In this figure the space between the willow and trinomial envelopes is relatively a high 

probability region, which is neglected by the trinomial tree but taken into consideration by the 

willow model. 

 

 

11.1 Features of the willow tree 
 

1. Multiple interest rate processes:  The Hull-White and Black-Karasinski processes are 

fully supported both in pricing and calibration. 

2. Option-adjusted spread (OAS):  The callable bond model supports calculation of OAS 

from market quotes, the use of an OAS in valuation and Option-adjusted sensitivities. 

3. Market -to-future compliance:  Swaptions can settle into underlying swap legs, early 

exercise is supported for Bermudan and American options.  Callable bonds are called (or 

put) when optimal. 

4. Performance/accuracy control: it trade accuracy and performance by specifying the 

number of days per time step in the lattice and the number of nodes at each time step (i.e. 

using possible values of lattice such as 7, 9, 11 etc) 
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. 

11.2 Models implemented in the willow tree method 
 

These models can be implemented using the willow tree method: 

¶ One –factor European, American and Bermudan fixed maturity Swaptions:  For 

Bermudan Swaptions, ability to explicitly specify an exercise schedule or choose 

to implicitly define one through cash flow dates (fixed, floating or fixed, or 

floating). It provides an ability to specify different lattice step size in option and 

swap period.  

¶ Callable bonds/callable convertible bonds: For callable bonds schedules may be 

either continuous or discrete. Look-out periods are supported. Trade day rules are 

supported. It provides the value of the embedded call and put options. In callable 

convertible bonds it is a 2-factor model where factor 1 is the short rate and factor 

2is the underlying asset. 

¶ Flexible and limit cap/floor:  This is a 1-factor short rate model. The underlying 

curve index determines the index rate to be used in computing cash flows.  Three 

types of instruments are available: plain Vanilla caps/floors, regular flexible 

caps/floor, and limit type caps/floors. 

¶ Equity options: it supports European, Bermudan and American type equity 

options. 

¶ Interest rate index(IR) linked note:  This is a 1-factor model directly using willow 

lattice to model complex interest rate products that depend on the short rate. 

¶ Callable range accrual:  This is an extension of IR index linked note. The interest 

only accrues if the index rate lies within the specified bounds.  

                  

11.3 Creating the willow tree model 
 

The main method use to create the willow tree model is to approximate Brownian motion, which 

is widely used as a standard stochastic process for stocks, interest rates, etc. The graph below 

shows the optimized node positioning by the willow tree method. 
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Figure1.8. Approximate Brownian motion method in willow tree 

The final willow tree using 11 nodes with 3 equal time steps is the figure below: 

 

Figure 1.9.Willow tree with 11 nodes and with 3 equal time steps 
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11.4 Time-Inhomogeneous Markov Chain 
 

Markov Chain is a class of stochastic processes which shares the Markov property, which means 

that given the present values of the process the future is independent of the past. 

Markov processes are important models of security prices because they are realistic 

representations of the true prices. 

Given a filtration Ὂ ὊȠὸ ρȟςȟσȟȣȟὝ  generated by ὢ ὢȠὸ ρȟςȟσȟȣȟὝ . This 

process takes values in some finite set E, called the state space. The process is in state j at time t     

if ὢ ὮὉ 

The filtration is the history of the present and past values of the process X in all states. The 

dynamics of interest rates or Equity prices for the willow tree method is described as discrete 

stochastic process in the form of a lattice. 

In real world the nodes j and time step k define a state and the finite set of all possible states (j, k) 

which define state space E. The stochastic process X is said to be Markov chain if: 

 ὖὢ ὮὊ ὖὢ Ὦὢ  

This simply means that having the whole information set of what happened before today has 

exactly the same predictive power as having the information today. The Markov chain X is said 

to be time –homogeneous if the conditional probabilities ὖὢ ὮὊ   do not depend on time 

t; otherwise it is called time-inhomogeneous. We define the transition probabilities of a time-

inhomogeneous process as: 

  ὖ ὭȟὮ ὖ ὢ  ὢ ȟὭȟὮὉ 

Or in a matrix form this can be written as 

 ὖ ὖὭȟὮ 

 

11.5 The basic willow tree model 
 

We consider dividing the normal distribution into n individuals and assigning a single value in 

each interval to represent the corresponding stratum of the distribution. 
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If ᾀȟᾀȟᾀȟȣȟᾀ are the representative normal variants, with probabilities  ήȟήȟήȟȣȟή  i.e. 

ᾀȟή   is a discrete approximation of the standard normal function where  ή ὖὤ ᾀ . 

Curran (May 2000) suggest that 

 ᾀ ὔ Ὥ
Ȣ

…………………………………………………………………. (11.5) 

           ή  

Where ὔὼ is the normal distribution. In setting up the willow tree lattice for modelling option 

prices, we first need to set up a discrete Markov process that converges to Brownian motion in 

the limit as explain below. 

 

11.6 Technique to approximate Brownian motion 
 

Given i ,j  ɴE , let {ὢ;k = (1, 2, 3, é,T)} be a time-inhomogeneous Markov chain  with state 

space         E={1, 2, ..., n}.  We will say that the process 

{ ὣ  ;k = (1, 2, 3, é,T)}  has the value ὸ Ȣᾀ  when ὢ  is in state i  

Where  ὸ Ὤ  for some  Ὤ π  and j= 1, 2 … k        

Ὤ represent the interval and ὣ is a discrete Markov process. 

Subject to certain conditions on the transition probabilities the stochastic process,  ὣ       

converges to Brownian motion as   ὯᴼЊ  and Ὤ O π   for all k.  

Let ὖ  denote the transition probability from node i to node j at time step k. The transition 

probabilities must be parameterized by t and h in order to achieve convergence to Brownian 

motion. This parameterization must satisfy the usual requirements for discrete-time models, 

consisting of the following three conditions: 

 

1. The process must constitute a martingale 

 

Ὁὣ  ὣ ὣ     ᶅὯ  

 

2. The variance of the process must be equal to the length of the time step 

 

ὠὥὶὣ  ὣ Ὤ      ᶅὯ  

 

3. Transition probabilities from each node must sum to one 
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ὖ ρ      ᶅὭȟὯ 

4. Finally we impose the restriction: 

ήὖ  ή     ᶅὮȟὯ 

 

This condition inductively guarantees that the unconditional probability of each state j at time 

step k+1 is given  ή, that this is the case at time step k.  

 

Writing     and letting Ὤ Ὤ (For convenience, the subscript of  and the superscript 

k of  ὖ  will be dropped) conditions (1) and (2) can be rewritten as 

 

 Ѝρ Вὖᾀ ᾀ                                 ᶅὭȣȣȣȢυ 

 ρ  Вὖ ᾀό ᾀό                   ᶅὭȣȣȣȢφ   

A unique solution of the transition probabilities  ὖ  can be solved using linear programming 

(LP). The objective function is chosen by the expectation of the absolute values of the third 

power of all increments 

 

Minimize 

 

  ВВ ὖ ȿЍρ    ᾀ ᾀȿύ…………………………………………………………..(11.6) 

 

subject to conditions (3), (4), equations (5), (6) and ὖ π   ᶅὭȟὮ. The solutions of this linear 

programming equation for different values of  are computed for  ὖ  .  Since the conditions (1) 

and (2) and constraints (5) and (6) are assured, linear interpolation of  ὖ  based on 
Ѝ

 is 

possible for a judicious choice of values of  for which the LP can be solved. 

 

The graph below illustrates condition (3), which means that the sum of transitional probabilities 

going from any one of the nodes in the previous time step to all nodes in the next time step 

should be one. 
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                            Transition probabilities from each note sum to one 

The graph below also illustrate condition (4) which means that the sum of transitional 

probabilities times the marginal probabilities going from all nodes in the previous time step to 

the node j in the next time step should be equal to the corresponding marginal probability  ή  at 

the node j. 

                            

              Sum of transitional probabilities times marginal probabilities equal marginal probability. 

 

11.7 One factor willow model 
 

Most valuations for the willow type of instruments use the one factor interest rate model, but the 

power of the willow tree method is capable to handle multifactor models. 

 

11.7.1 Case1. Construction of the normal short rates in the willow tree. 

 

Under this section we consider how the Hull-White model is used to build up the short rates in 

the willow tree.  

From the Hull-White interest rate dynamics  

 

 Ὠὶ —ὸ ὥὶὨὸ„ὸὨᾀ 

Where the mean reversion constant  ὥɴ πȟρ. If  ὶᶻ is the short rate of the willow tree, the 

forward induction process is as follows: 
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Let ὶ ὸ  ὶᶻ and ὶᶻ satisfies the equation  

 

Ὠὶᶻ ὥὶᶻὨὸ„ὸὨᾀ 
 

with initial condition ὶᶻπ π 

Solving this we have 

 ὶᶻ Ὡ ᷿„ίὩ Ὠᾀί  

We let  

 ὢ ᷿„ίὩ Ὠᾀί     

where X is normally distributed with mean 0 and variance᷿„όίὩ Ὠί. 

Therefore  

   ὢ ᷿„όίὩ ὨίȢᾀ 

where z  is the normally distribution with mean 0 and variance 1 . X can be written in the 

discrete form at node j and time step k as follows: 

ὢὮȟὯ ᷿ „όίὩ Ὠίᾀ   ḗ    В „όὸ᷿ Ὡ Ὠίᾀ  

=    В „όὸ ᾀ.............................................................................................. (12.3) 

here the ᾀȭs are the z values we generated from the basic willow tree model. 

We simplify this further by letting         

   Ὕ В „όὸ ......................................................................................................  (12.4) 

where   j =1, 2, 3 ...K.       k = 1, 2, 3... T 

We then have                                                         

   ὢὮȟὯ Ὕ Ȣᾀ  

Finally we have                                              
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 ὶᶻὮȟὯ Ὡ ȢὢὮȟὯ.................................................................................................................. (12.5) 

 

 

11.7.11 Calibration of the normal short rates in the willow tree model. 

 

We calibrate the short rate of the willow model by fitting the initial term structure. The drift term 

α is added to the short rate ὶᶻ  by forward induction method so that the interest rate at each node 

matches the initial term structure of the interest rate. 

We first let  ὗȟ  be the Arrow –Debreu model (which suggest that under certain conditions 

there must be a set of prices such that supplies must be equal to demands for every security in the 

economy). We let  ὗȟ pays $1 only at node (j, k) or otherwise 0. We can then calculate ɻ and 

 ὗȟ iteratively in such a way that the initial term structure is match exactly.  

We let 

  ὗȟ  ήȢὨ ὸȟ ὸȟ ὸ   . 

Where the  ήᴂί are the q values of the probabilities and 

 Ὠ ὸȟ ὸȟ ὸ
ȢЎ 

  ......................................................................................... (12.6) 

We can then find ɻ by finding solution for equation (12.3). 

The drift ɻ is calculated by finding the solution for the following equation 

Ὠ ὸȟ ὸȟ ὸ
 ὗȟ

ρ ὶz ὮȟὯ ɻ ȢЎ ὸ
 

 k = 1, 2, 3... T 

The discount factor Ὠ ὸȟ ὸȟ ὸ  is determined by the yield curve of the instrument which 

represents the initial term structure. 

Since the value of ɻ is known  ὗȟ  can be determined by the equation below 

 ὗȟ  
 ὖȟȢὗȟ

ρ ὶz ὮȟὯ ɻ ȢЎ ὸ
 



 
 

37 
 

We then recover the short rates by using equation (12.7) below: 

 

ὶὮȟὯ ὶᶻὮȟὯ ɻ........................................................................................... (12.7) 

 

11.7.2 Case2. Construction of the log normal short rates in the willow tree model. 

 

In this section we consider how the Black and Karasinski model is used to build the interest rates 

in the willow tree. Using the Black and Karasinski interest rate dynamics 

ὨÌÎὶ —ὸ ὥÌÎὶὨὸ„ὸὨᾀ 

Where a is the mean reversion constant and ὥᶰπȟρ. We let the short rates be  Ὑᶻ. 

 Let 

 ὶ ὸὙᶻ and Ὑᶻ satisfies the following equation 

ὨÌÎὙᶻ ὥÌÎὙᶻὨὸ„ὸὨᾀ  

with initial the condition Ὑᶻπ ρ. Solving this we have  

Ὑᶻ Ὡ
ᶻ
 

where ὶᶻ is the interest rate in case 1. Therefore the formula of  Ὑᶻ at node j and time step k is  

ὙᶻὮȟὯ Ὡ
ᶻ ȟ ...................................................................................................... (12.8) 

 

11.7.21Calibration of the lognormal short rate of the willow tree 

 

We follow the procedure as in case 1 but here we let ὙᶻὮȟὯȢɻ  replace  ὶᶻὮȟὯ ɻ . We let 

 ὗȟ be the Arrow-Debreu function that represents the present value of a security that pays $1 

only at node (j, k), otherwise 0. We proceed by calculating for ɻ and  ὗȟ iteratively.  

First we calculate the drift part ɻ by solving this equation  

Ὠ ὸȟ ὸȟ ὸ
ȢЎ 

  

where we let 

 ὗȟ  ήȢὨ ὸȟ ὸȟ ὸ     
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Here the  ήᴂί are the q values of the probabilities. Then the drift ɻ is calculated by solving this 

equation 

Ὠ ὸȟ ὸȟ ὸ
 ὗȟ

ρ Ὑz ὮȟὯȢɻ ȢЎ ὸ
 

  k, k=1, 2, 3,...,T  

The yield curve of the instrument which represents the initial term structure is used to determine 

the discount factor Ὠ ὸȟ ὸȟ ὸ . 

Since we know ɻ we can compute  ὗȟ  by using the equation 

  ὗȟ  В
 ȟȢȟ
ᶻ ȟȢ ȢЎ 

 

We then recover the short rates by using the equation (12.9) 

ὶὮȟὯ ὙᶻὮȟὯɻ................................................................................................ (12.9) 

12.0 The Java applet for the willow tree interest rates 
 

We proceed by using Java program to create an applet which is use to calculate the interest rates 

in the willow tree by using equation (11.5) the basic willow tree approach and equations 

(12.3),(12.5) for the rates as in case1 and equation(12.8) in case2. 

These values were chosen: a= 0.03, „ πȢρ for this test. It should be noted that volatility 

changes with time; for the sake of the simplicity of our test we used constant volatility. An applet 

showing interest rates of the willow tree with total number of nodes n=5, with 5 equal time step, 

at node j=1and time step k=1is shown below. 
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Figure1.10. Java applet showing willow tree interest rates 

The applet above in figure1.10   shows  ὶᶻρȟρ = 0.0078 and Ὑᶻρȟρ = 1.0079 for the rates in 

the willow tree built by using the Hull and White and the Black Karasinski models respectively. 

 

12.1 The components of the Java applet  
 

The applet in figure 1.10 has two main components; the input panel and the calculate button.  

The input panel contains four data sets: 

1. Number of nodes- which is the total number of nodes in the willow tree. 

2. Number of time steps- which is the total number of time step in the willow tree. 

3. Node- this is a particular node in the tree (e.g. node 2). 

4. Time step- this is a particular time in the tree (e.g. 2years). 

The calculate button has two components: 

1. ὶᶻ -which calculates the Hull-White rates in the willow tree. 

2. Ὑᶻ -which calculates the Black-Karasinski rates in the willow tree. 

 

12.2 Using the applet 
 

At the click on the calculate button, the button is highlighted as shown below and it performs the 

following actions:  
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Figure 1.11 highlighted calculate button 

1. Calculates the Hull-White interest rates for the willow tree as shown below: 

                                    

 
Figure 1.12 rate calculated by Hull-White 

 

2. Calculates the Black-Karasinski interest rates for the willow tree as shown below: 

                                    

                                                 

                                              Figure 1.13 rate calculated by Black-Karasinski 

 

12.3 Exceptions 
 

Although this specialised Applet is use mainly by practitioners there is still a need to add some 

exception class in Java to make it user free. 

All inputs in the Applet take only positive values. When a non-positive number is entered the 

menu below pops up to allow the user to enter the right number, for this example we entered a 

negative node. 

                                          

                                           1.14 Exception for non positive number 

All inputs must be numbers (integers). When alphabets or any other characters are entered, there 

is a pop up which tells the user to enter an integer. This is shown below by the menu 
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                                             1.15 Exception for numerical values 

Again, since number of nodes in the willow tree must be an odd number for equal distribution in 

the tree, when an even number is entered in the number of nodes panel the menu below pops up 

which helps the user to enter an odd number. 

 

                                    

                             1.16 Exception for odd number of nodes 

 

Finally, node must be less or equal to number of nodes and time step must be less or 

equal to number of time step. So when a user enters a node/time step greater than the 

number of time step or numbers of nodes this menu is displayed. 

 

                             

Figure 1.17 Exception for node/time step 

13.0 Interest rate term structures for the willow tree 
 

We calculate rates for 5 nodes, 5 time steps at the same node and same time step for the willow 

tree using the Hull-White model as in cas1. The table below shows the results: 



 
 

42 
 

 

Time to maturity = T                     Short rates = ►ᶻ▒ȟ▓ 

1 ►ᶻ ȟ 0.0079 

2 ►ᶻ ȟ Ȣ  

3 ►ᶻ ȟ 0.2809 

4 ►ᶻ ȟ 0.6582 

5 ►ᶻ ȟ 0.0000 

 

Table 1.2. Hull-White willow tree interest rates 

We then plot the interest rates against the time steps using table and we have the graph below: 

 

Figure1.18.Normal interest rates term structure for the willow tree. 

We see from figure1.18 above that the movement of interest rates follow the normal distribution 

and the drift pulls it down when the rates grow to the maximum point which supports the theory 

of mean reversion. 
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 For case2: We tabulate the results from the Black and Karasinski rates at the same node and time 

steps as we did for the Hull-White model. The table below gives the values: 

 

Time to maturity = T                     Short rates = ╡ᶻ▒ȟ▓ 

1 ╡ᶻ ȟ 1.0079 

2 ╡ᶻ ȟ Ȣ  

3 ╡ᶻ ȟ 1.3243 

4 ╡ᶻ ȟ 1.9313 

5 ╡ᶻ ȟ 1.0000 

 

Table1.3. Black-Karasinski willow tree interest rates. 

We again plot interest of the Black-Karasinski willow tree rates using table 1.3 against time step 

and we have the graph below: 

 

 

Figure 1.19 lognormal interest rate term structure for the willow tree. 
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These yield curves in figure 1.18 and figure1.19 move in the same way as the yield curve on the 

market, when the interest rate increases to the maximum, the drift part in the model pull it in 

such a way that it comes down and when the interest rate moves down the drift pulls it up as 

explain by the mean reversion phenomenon. This shows that the willow tree interest rate term 

structure has been validated and it behaves like the interest rate on the market. The willow tree 

model is used by the Swedbank to price cancellable bonds and other instruments. The software 

can be found from the RISKWATCH Company. 
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14.0 Conclusion 
 

This paper has explained a new model called the willow tree model which is an alternative to the 

traditional binomial and trinomial trees. 

The willow tree is an improvement over the binomial and the trinomial trees since it takes higher 

nodes than the binomial and trinomial it therefore gives more accurate prices. It can be use to 

implement other models like the Hull-White model and the Black and Karasinski models. The 

willow tree can be use to develop a multi-factor convertible bond model and normal and 

lognormal short-rate models. Some advantages of the willow tree is that it provides better 

coverage of high probability regions of the process space and  the length of the time steps can be 

chosen arbitrarily which simplifies the implementation of the pricing models. 

We then propose valuing securities (especially with long-term rates) using the Hull-White and 

the Black-Karasinski interest rate term structure for the willow Tree Model. 
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15.0 Recommendations 
 

Further work can be done by any researcher (student) by creating a program to price options 

using the willow tree. This case the linear program in equation (11.6) should be solved subject to 

the constraints given, so that the values of the transitional probabilities   ὖ   can be found. The 

interest rates we have calculated with other parameters such as volatilities smiles („  can then be 

used to price the option. 

The prices can then be calibrated against the market data. To calibrate the prices against the 

market we recommend the use of European plain vanilla Swap options. The prices are then fitted 

to the market price to get an accurate option prices. 

The willow tree is use to price instruments such as European Swap options, callable bonds, 

callable convertible bonds, cancellable bonds, etc.  The model can be used to price these 

instruments and many more by choosing a particular time step and the volatility at that time. 

When we compare the performance of the willow tree to the trinomial tree (the industry 

standard), models based on willow tree are much faster, more accurate, and more stable.  
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17.0 Appendix 1      

                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                

 

 

 

 

 

 

 

 

 

 

Notation                          

 

 

Variable in Java Code 

 

Time step n 

Node m 

Number of nodes Node 

Number of time step timeStep 

╣▓ TK 

╡ᶻ▒ȟ▓ R 

►ᶻ▒ȟ▓ r 

Ɑ Vol 

X(j, k) X 

╣▓ TK[i] 

◑▒ Z[i] 

N(x) N[i] 
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18.0 Appendix 2 
 

 

package willowtree;  

 

  import java.awt.*;  

  import java.awt.event.ActionEvent;  

  import java.awt.event.ActionListener;  

  import java.text.*;  

  import javax.swing.*;  

  import static java.lang.Math.*;  

 

 public cla ss WillowTree extends JApplet {  

      

    int m = 10, n = 10;  

 

int node = 101;  

 

double N [] = new double [node];  

 

double  k [] = new double [node] ;  

 

double X = 0;  

 

double r;  

 

int timeStep = 102;  

 

double [] TK = new double [timeStep];  

 

 double[] Z = new double [node];  

 

 double a1=0.319381530;  

 

double a2= - 0.356563782;  

 

double a3=1.781477937;  

 

double a4= - 1.821255978;  

 

double  a5=1.330274429;  

 

double y = 0.2316419;  

 

double vol = 0.1;  

 

double a = 0.03;  

        

double temp = 0;    

    

double R;     

 

// panels  

   private JPanel mainPanel = new JPanel(new java.awt.BorderLayout());  

   private JPanel dataPanel = new JPanel(new java.awt.BorderLayout());  

   private JPanel inputPanel = new JPanel(new GridLayout(4,6));  
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   private JPanel controlPanel = new JPanel();  

          

          // labels  

     private JLabel nodeLabel = new JLabel(" Number of Nodes");  

     private JLabel time StepLabel = new JLabel(" Number of Time Steps");  

     private JLabel particularNodeLabel = new JLabel("Node ");  

     private JLabel particularTimeStepLabel = new JLabel("Time Step");  

     private JLabel hullWhiteRateLabel = new JLabel("r*");  

     private J Label bKrateLabel = new JLabel("R*");  

    

     // text fields  

     private JTextField nodeField = new  JTextField();    

     private JTextField timeStepField = new  JTextField();    

     private JTextField particularNodeField = new JTextField();   

     pri vate JTextField particularTimeStepField = new JTextField();     

     private JTextField hullWhiteRateField = new JTextField(15);  

     private JTextField bKrateField = new JTextField(15);  

               

  // button  

     private JButton button = new JButton ("Calculate");  

   

     private De cimalFormat myFormatter = null;  

      @Override  

     public void init () {  

    // Initialise formatter  

   DecimalFormatSymbols symbols = new DecimalFormatSymbols();  

   symbols.setDecimalSeparator('.');  

   myFormatter = new DecimalFormat("###.#####",symbols);  

   // get content pane  

   Container contentPane = getContentPane();  

    // add main panel to content pane  

    contentPane.add(mainPanel);  

    // add data panel  

    mainPanel.add(dataPanel,BorderLayout.NORTH);  

    // add input panel  

    dataPanel.add(inputPanel,BorderLayout.CENTER);  

              // add control panel  

              dataPanel.add(controlPanel,BorderLayout.SOUTH);  

              

             // create and add label  

            inputPanel.setBorder(BorderFactor y.createTitledBorder("Input 

Panel"));  

            inputPanel.add(nodeLabel);  

            nodeLabel.setLabelFor(nodeField);  

           // add text field  

           inputPanel.add(nodeField);  

           nodeField.setText(myFormatter.format(node));  

      

         // create and add label  

       

            inputPanel.add(timeStepLabel);  

             

         // add text field  

       inputPanel.add(timeStepField);  

       timeStepLabel.setLabelFor(timeStepField);  

       timeStepField.setText(myFormatter.forma t(timeStep));  
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        // create and add label  

       inputPanel.add(particularNodeLabel);  

        

       // add text field  

        inputPanel.add(particularNodeField);  

        particularNodeField.setText(myFormatter.format(m));  

        particularNodeLabel.setLabelFor(particularNodeField);  

         

        // create and add label  

          inputPanel.add(particularTimeStepLabel);  

        

       // add text field  

       inputPanel.add(particularTimeStepField);  

     particularTimeStepField .setText(myFormatter.format(n));  

      particularTimeStepLabel.setLab elFor(particularTimeStepField);   

       

      // add button    

      controlPanel.add(button);  

       

      // create and add label  

      controlPanel.add(hullWhiteRateLabel);  

       

      // add text field  

      controlPanel.add(hullWhiteRateField);  

     hullWhiteRateField.setEditable(false);  

     hullWhiteRateLabel.setLabelFor(hullWhiteRateField);  

       

      // create and add label  

      controlPanel.add(bKrateLabel);  

       

       // add text field  

        controlPanel.add(bKrateField);  

        bKrateField.setEditable(false);  

        bKrateLabel.setLabelFor(bKrateField);  

          

       button.addActionListener(new ActionListener() {  

            

            @Override  

             public void actionPerformed(ActionEvent evt) {  

                 

                 buttonActionPerformed(evt);     

            }          

         });  

       

 }  

     

    private void buttonActionPerformed(ActionEvent evt) {   

         

           

       try{  node = (int)Float.parseFloat(nodeField.getText());  

        

       } catch (NumberFormatException e) 

{JOptionPane.showMessageDialog(null,"enter an integer");  

          return;  

       }  

        

        try{ timeStep = (int)Float.parseFloat(timeStepField.get Text());  
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       } catch (NumberFormatException e){  

           JOptionPane.showMessageDialog(null,"enter an integer");  

          return;  

       }  

        

       try{ if(node<=0){  

           throw new ArithmeticException();  

       }  

            

       } catch (Exception e){  

         JOptionPane.showMessageDialog(null,"enter a positive number of 

nodes");  

         return;  

     }  

       try{ if(timeStep<=0){  

           throw new ArithmeticException();  

       }  

            

       } catch (Exception e){  

         JOptionPane.showMessageDialog(null,"enter a positive number of time 

step");  

         return;  

     }  

        

       try{ if(node % 2 == 0){  

           throw new ArithmeticException();  

                  }  

              }  

       catch (Exception e){  

           JOptionPane.showMessageDialog(null,"node must be an odd number");  

           return;  

       }  

            

       try{  m = (int) Float.parseFloat(particularNodeField.getText());  

          

       }  

        

  catch(NumberFormatException ev){JOptio nPane.showMessageD ialog(null,"enter 

an integer");     

    return;  

   

  }   

       try{  n = (int) Float.parseFloat(particularTimeStepField.getText());  

          

       }   

  catch(NumberFormatException ev){JOptionPane.showMessageDialog(null,"enter  

an integer");  

        

    return;  

   

  }  

       try{  if (m <=0){  

              

         throw new ArithmeticException();  

            

             }  
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     }  

        

     catch(Exception e){  

          

       JOptionPane.showMessageDialog (null,"enter  a positive node");    

      

       return;  

      

     }  

        

       try{  if (n <=0){  

              

         throw new ArithmeticException();  

            

             }  

     }  

        

     catch(Exception e){  

          

       JOptionPane.showMessageDial og(null," enter a positive time step");  

          

       return;  

      

     }    

         try{ if(n > timeStep || m > node){  

           throw new ArithmeticException();  

            }  

       }  

       catch (Exception e){  

        JOptionPane.showMessageDialog(null,"time step/node must be less than 

its number");  

                return;  

       }  

           

     for (int j=0;j<= timeStep;j++){  

 

       for (int i=1;i<=node - 1;i++){  

             

   temp = (pow(vol,2)*i)*pow(((exp(2*a*i+1 ) - exp(a*i*2))/2*a),1/2);  

 

   TK [i] += temp;     

     

  k[i] = (1/(1+(y*i)));  

 

  N [i] = (1 -  ((1/(sqrt(2*PI)))*exp(( - 1/2)*(pow(i,2)))*  

 

      (a1*k[i]+a2*pow(k[i],2)+a3*pow(k[i],3)+a4*pow(k[i],4)+a5*pow(k[i],5))));  

 

      Z [i] = (1/N[i])*((i - 0.5)/node);      

  }  

    }  

 

 X = TK[m]*Z[n];  

 

 r = exp( - a*m)*X;  

  

 R = exp(r);  
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  hullWhiteRateField.setText(String.valueOf(r));  

  bKrateField.setText(String.valueOf(R));  

      

        }  

 }  

         

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         


