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Problem: The standard Black-Scholes framework cannot incorporate the volatility smiles 

usually observed in the markets. Instead, one must consider alternative stochastic volatility 

models such as the SABR. Little research about the suitability of the SABR model for Swedish 

market (swaption) data has been found. 

Purpose: The purpose of this paper is to account for and to calibrate the SABR model for 

swaptions trading on the Swedish market. We intend to alter the calibration techniques and 

parameter values to examine which method is the most consistent with the market. 

Method: In MATLAB, we investigate the model using two different minimization techniques 

to estimate the modelΩǎ parameters. For both techniques, we also implement refinements 

of the original SABR model. 

Results and Conclusion: The quality of the fit relies heavily on the underlying data. For the 

data used, we find superior fit for many different swaption smiles. In addition, little discrep-

ancy in the quality of the fit between methods employed is found. We conclude that esti-

mating the h  parameter from at-the-money volatility produces slightly smaller errors than 

using minimization techniques to estimate all parameters. Using refinement techniques 

marginally increase the quality of the fit. 

 

 

 

mailto:ntn10001@student.mdh.se
mailto:awh10001@student.mdh.se


iv 
 

Sammanfattning 

Titel: SABR Modellen ς Kalibrerad för Swaptioner med Volatilitetsleende 

Datum: 9/3/2014 

Nivå: Examensarbete i Tillämpad Matematik (MMA390), 15 poäng 

Författare:   Nguyen H. Tran  Anton Weigardh 

   ntn10001@student.mdh.se  awh10001@student.mdh.se  

   Mobil: 070-016 03 03  Mobil: 073-706 51 66   

Handledare: Jan Röman, Universitetsadjunkt, Akademin för utbildning, kultur och 

kommunikation 

Anatoliy Malyarenko, Universitetslektor, Akademin för utbildning, kul-

tur och kommunikation 

Examinator: Linus Carlsson, Universitetslektor, Akademin för utbildning, kultur och 

kommunikation  
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dellen. 

Problem: Det standardiserade Black-Scholes-ramverket kan inte inkorporera de vola-

tilitetsleenden som vanligtvis observeras på marknaden. Istället så måste man överväga al-

ternativa stokastiska volatilitets-modeller så som SABR-modellen. Lite forskning angående 

lämpligheten av SABR-modellen för svensk (swaptions) data har blivit utförd. 

Syfte: Syftet med denna rapport är att beskriva och kalibrera SABR-modellen för swaptioner 

på den svenska marknaden. Vi avser att ändra kalibreringstekniker och parametervärden för 

att undersöka vilken metod som är mest förenlig med marknaden. 

Metod: I MATLAB undersöker vi modellen genom att använda två olika minimiseringstekni-

ker för att estimera SABR-modellens parametrar. För båda metoderna så implementerar vi 

även förfiningar av den ursprungliga SABR-modellen. 

Resultat and Slutsats: Kvaliteten av passformen beror i stor grad på underliggande data. För 

använd data så hittar vi förstklassig passform för många olika swaptionsleenden. Vi finner li-

ten skillnad i kvaliteten av passformen mellan metoder implementerade i denna rapport. Vi 

drar slutsatsen att estimering av h-parametern från έŀǘ-the-money-volatilitetέ producerar 

något mindre fel jämfört mot använda tekniker som estimerar alla parametrar. Användning 

av förfiningstekniker ger en marginell förbättrad kvalitet av passformen. 
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1 INTRODUCTION 

 

1.1 Background 

During the early 1970s, Black and Scholes (1973) and Merton (1973) developed what be-

came a pricing model for European put- and call options. Usually known as the Black-Scholes 

model or the Black-Scholes-Merton model, their Nobel Prize awarded work has played a 

keen role in the field of pricing financial derivatives. 

The Black-Scholes model was initially developed to fit a world where there are no arbitrage 

opportunities with unlimited possibilities to lend and borrow at a risk-free rate. A world 

where continuous (transaction costs free) trading occurs in non-dividend paying underlying. 

The underlying asset (usually a stock that can be shorted and/or traded in fraction) is as-

sumed to follow a geometric Brownian motion (i.e. a stochastic process). Under these as-

sumptions, the model can price European options with only five inputs. Four of which are 

observable on the marketplace (price of underlying, strike price, time to maturity and risk-

free interest rate) and one that needs to be estimated or inferred (volatility). With its sim-

plicity and the underlying risk-neutral valuation, the Black-Scholes model speaks to inves-

torǎΩ independent on their attitudes towards risk (Hull, p. 289). 

Over the last 40 years, financial markets have changed rapidly and now are very different 

compared to when Black, Scholes and Merton presented their ground-breaking work. Com-

plex instruments are nowadays traded and traders are familiar with exotic options. Pricing 

of these innovative derivatives are usually a perplexity and the Black-Scholes model, that 

was develop to price plain vanilla (European) options, has now been rendered somewhat in-

adequate. In addition, variables that are assumed constant appear in fact to be random, 

thus jeopardizing the accuracy of models that do not account for these phenomena.  

Prior to the Black Monday, 19th of October 1987, the only unidentified variable in the Black-

Scholes model, the volatility, did not depend greatly on the strike price when being ob-

served in the market. In the aftermath, a new pattern arose. Volatilities were now smaller 

for at-the-money (ATM) options rather than for dittos that were deep in-the-money (ITM) 

and/or out-of-the-money (OTM). The shape of the volatility curve came to be known as a 

volatility skew or volatility smile1 and has since then been complicated to include in any pric-

ing models.  

Various attempts have been made to come up with models that handle for example, a sto-

chastic interest rate or a model that tries to seize the volatility smile observed on the mar-

ket. Black (1976) developed a formula for pricing forward contracts. His work later came to 

be known as the Black model (also known as the Black-76 model). Lƴ Ƙƛǎ ǇŀǇŜǊ άPricing with 

a smileέ, Dupire (1994), extends the Black-Scholes model, claiming it to be compatible with 

the volatility smiles. In the same time, Derman and Kani (1994) presented their work on lo-

                                                      
1 Skew usually refers to the slope of the curve while smile indicate the curvature. 
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cal volatility models. In addition, models allowing for discontinuity (aka jump diffusion mod-

els) have been developed (see e.g. Cox and Ross (1976); Bakshi, Cao and Chen (1997)). 

Hagan et al. (2002) stated that local volatility models predicted the wrong dynamics for the 

implied volatility curve. The authors derived the SABR model that they claimed, άŎŀǇǘǳǊŜǎ 

ǘƘŜ ŎƻǊǊŜŎǘ ŘȅƴŀƳƛŎǎ ƻŦ ǘƘŜ ǎƳƛƭŜέ (Ibid, p. 84). Named after its parameters: Stochastic, 

Alpha, Beta, Rho, the SABR model has over the last decade gained vast popularity, especially 

in interest derivative markets. 

 

1.2 Problem Statement 

²ƛǘƘƻǳǘ ǇƻǎǎƛōƭŜ ƘŜŘƎƛƴƎ ƻǇǇƻǊǘǳƴƛǘƛŜǎΣ ŦƛƴŀƴŎƛŀƭ ƛƴǎǘƛǘǳǘƛƻƴǎ Ŏŀƴƴƻǘ ǇǊƻǘŜŎǘ ǘƘŜƛǊ ŎƭƛŜƴǘǎΩ 

money. In order to hedge properly, a trader needs to be able to value instruments correctly. 

With real interest rates that are sometimes negative, pricing models that traders earlier 

have used might now appear obsolete. The Black-Scholes model breaks down and traders 

are nowadays switching toward models that can handle negative interest rates (e.g. the 

Normal Black model). Furthermore, some assumptions of the famous Black-Scholes model 

are quite unreasonable. Yet, despite its flaws, the model is still considered market standard 

and is commonly used as benchmark when evaluating new models. 

If one would plot the implied volatility as a function of strike, he or she will most likely expe-

rience a parabola shaped curve instead of a straight line. This stands in great contrast to the 

assumptions by Black and Scholes (1973) that presumed constant volatilities with a one-to-

one relationship between price of an option and the volatility of the underlying asset. De-

spite that traders usually quote options in implied volatilities, there still exist a problematic 

decision to choose what volatility to use in order to price an option. 

As mentioned, attempts have been made in order to develop pricing models that handle the 

smile effects. One of the most praised one is the SABR model. It is a stochastic volatility 

model for forward LIBOR rates and is, in comparison to other volatility models, considered 

somewhat user friendly. Subsequently to Hagan et al.Ωǎ (2002) derivation of the SABR mod-

el, many papers evaluating its properties have been performed. Bartlett (2006) suggested a 

new set of risk formulas (updated Greeks) and West (2005) proposed a way for calibrating 

the model in illiquid markets. Later, Oblój (2008) showed a way of fine-tuning the calibra-

tion. Their suggestions can come to good usage when evaluating the aptness of the model in 

Hagan et al. (2002) and enhancing quality of the fit. 

A swaption is an option to enter a swap. It gives the holder the possibility (but not the obli-

gation) to enter into a swap at a certain future time. Swaptions are commonly priced using 

the Black-76 model, where the implied volatility is read from a volatility surface. Once again, 

choosing an appropriate measurement for the standard deviation of the derivative (due to 

the fact of the observed volatility smiles) is a testing task. 
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This problem is aggravated when one, for example, want to write an over-the-counter (OTC) 

derivative of a strike that cannot be read from a volatility surface. Will a calibration of the 

model create volatility surfaces that traders can use for pricing swaptions whose underlying 

have both short and long tenors? Are there various methods that are better to capture the 

smile effect that exists on the swaption market? 

For the Swedish swaption market, little research has been published regarding the suitabil-

ity of the SABR model. To evaluate the applicability of the SABR model will not only add to 

the current body on literature about the model in general, but it will also appraise country 

specific conditions, if any, in particular. 

 

1.3 Review of Current Literature 

In this part, we summarize preceding papers concerning mainly the empirical results of the 

SABR-model. Since papers investigating the performance of the model for swaptions are few 

in numbers, this section also includes papers relating to other financial instruments. 

Hagan et al. (2002), the founders of the SABR model, could adequately show that local vola-

tility models predicted the wrong dynamics (the opposite of what was expected) of the im-

plied volatility curves when changes in underlying assets forward price occurred (see Section 

2.7). Hagan et al. (2002, p. 93) were able to fit the implied volatility with good accuracy for 

various set of options and swaptions. 

Later, Henrard (2005) compared the risk measurements for some swaptions pricing models. 

The author concluded that the normalized models performed better under the investigated 

period. Under his study, Henrard (2005) found that the delta of the models could differ up 

to ten percent. The author also saw a clear difference from models following a geometric 

Brownian motion to those with an arithmetic Brownian motion in their risk statistics. In a 

delta hedging contest, the Vasicek model (extended in Hull and White (1990)), outper-

formed the SABR model as well as the Black-76 model (Henrard 2005, p. 56). 

West (2005) calibrated the SABR model for illiquid markets. The author claimed that the al-

gorithm employed for finding the paramŜǘŜǊǎ όʰ, ̡ ,  ˄ŀƴŘ ˊ) made the results robust. Under 

an arbitrarily chosen constant beta of 0.7, West (2005 p. 383) found that rho and volvol (vol-

atility of volatility) only change occasionally. He favoured a constant beta, which, in favour 

over a non-constant, reduced the hedging costs. 

Rebonato, Pogudin and White (2008) tested the hedging performance of the SABR model 

and the LMM-SABR model (developed by Rebonato (2007)). The authors claimed that the 

SABR-model is well-specified and found support for correct and unbiased hedge ratios.2 De-

spite positive results, the scholars addressed one flaw of the model, namely that it cannot 

                                                      
2 A hedge ratio is the value of a position protected by a hedge compared with the size of the position itself. 
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incorporate jumps when they occur.3 Similar results were found for the LMM extension of 

the model (Rebonato, Pogudin & White 2008, p. 99). 

Wu (2011) investigated the pricing- and hedging performance for interest rate caps, using 

the SABR model. The results indicated good pricing correctness of the model as well as su-

perior hedge ratios compared to the Black-76 model. Wu (2011, p. 11) pointed out that 

keeping the parameters ˄  ŀƴŘ ˊ simultaneously constant, produced larger pricing errors 

than when letting either one or both of them to vary (i.e. by recalibrating the model). Under 

his study, Wu (2011, p. 24) also found support that the altered Greeks by Bartlett (2006) 

outperformed those of Hagan et al. (2002). 

Oblój (2008) presented a new refinement to the SABR model that tackled a small but persis-

tent theoretical flaw of the original model. The author pointed out that the new correction 

term is consistent as ᴼρ and can thus eliminate the creation of wrong price in small 

strikes for large maturities region of the original model. Later in the thesis, this refinement 

will be reiterated and assessed alongside the model by Hagan et al. (2002). 

Skov Hansen (2011) calibrated the SABR model for swaptions to fit with the observed mar-

ket smiles. In his extensive thesis, the author found good fit for the model. Skov Hansen also 

pointed out that the delta risk is very dependent on parameterization used (different betas), 

and suggested a refinement to Hagan et al. (2002) in order to generate similar deltas regard-

less of beta employed.  

Mercurio and Morini (2008) conveyed critique against the SABR and other local volatility 

models in the sense that the models did not show the desired behaviour in hedging. The au-

thors claimed that the stochastic volatility models only worked in a desirable way when 

model-inconsistence hedging were applied (i.e. shifting the underlying ceteris paribus).  

Regarding Swedish research, papers apropos of the SABR model are few in numbers. Boqvist 

and Sigurjonsson (2006) evaluated the SABR model for index options. They argued that the 

model sufficiently captures the volatility function of the market. On the other hand, the au-

thors stressed that the model is strongly dependent on the quality of underlying data. 

Sjöstrand (2010) claimed in her paper that the SABR model slightly outperform the Black-

Scholes model for European put options. However, the author only studied put options of 

one specific company under a very brief time. 

  

                                                      
3 ! άƧǳƳǇέ occurs when a function is discontinuous for its entire domain. 
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1.4 The Aim of the Thesis 

The aim of this paper is to describe the theory surrounding the SABR model and evaluate its 

suitability. We intend to alter the parameters in the model while employing two different 

methods of calibration to see how well it fits to authentic swaption data for the Swedish 

market. 

 

1.5 Limitations 

This paper is bounded to investigate swaptions that are traded on the Swedish market. The 

focus will be only on physical settled swaptions based on interest rate swaps (IRS). We as-

sume that the counterparties involved in the swap contract agreed to exchange a fixed se-

ries of payment for a floating series of payment. The data provided to us is adjusted (such as 

interpolated). Thus, it does not necessarily correspond to accurate data if it could be ob-

servable on the marketplace. 

Due to the nature of the model of investigation, some parameters will be chosen arbitrarily. 

These are selected based on our review of literature and should correspond to the most 

plausible. An account for intermediate values, hopefully, will only marginally affect the out-

comes of this paper. 

As with all pricing models, some assumptions about the characteristics of the market place 

need to be taken in to account and will be addressed further in later section.  

In order to keep the paper concise, and to put a focus on the application, we will refrain 

from deeper mathematical derivation of areas outside the scope of this thesis. Furthermore, 

we leave out definitions of fundamental financial and mathematical concepts since we as-

sume the plausible reader to be familiar with non-accounted terms. Due to hard, sometimes 

undefined, estimation methods, we will only present general theoretical illustration of risk 

terms and swaption pricing.  

 

1.6 Data Selection, Assortment and Limitation 

On the courtesy of Jan Röman and Swedbank AB, we have received market data for plain 

vanilla swaptions. The data is quoted in implied volatilities (Black-76) and was observed at 

the ŦƛǊǎǘ ƻŦ {ŜǇǘŜƳōŜǊ нлмо ǳǎƛƴƎ {ǿŜŘōŀƴƪΩǎ trading software Murex Mx3. 

The set of data includes a volatility term structure (see Section 2.6) where ATM swaptions 

are quoted in Black-76 volatilities. There are eleven different maturities for the swaptions 

{1M,3M,6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,20Y} for ten different tenors of the underlying swap 

{1Y,2Y,3Y,4Y,5Y,7Y,10Y,12Y,15Y,20Y}. Every swaption is quoted for 17 strikes with a spread 

of 2 percentage points in each direction around the ATM rate. There are thus 1870 different 

theoretical prices that could be reproduced from the current data. For a full account of in-

put data to our calibration, see Appendix 2. 
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The volatility surfaces have been interpolated and extrapolated for strikes and maturities of 

swaptions that are not traded. This is a standard industry procedure where the institution 

wants to cover the smile effect over an entire volatility surface for a specific derivative. 

The data handed to us is already άŦƛǘǘŜŘέ ǘƻ ǘƘŜ ƳŀǊƪŜǘ smile. This will consequently lead to 

biased results when we try to fit the SABR model to market data. Albeit this modification is 

of a small margin, we expect it will cause a smaller error of the smile fit. On the other hand, 

since we want to investigate the model from a more empirical point, we strive to use actual 

market data. Our result is then realistic and reflects the fallouts that actual traders get. 

 

1.7 Disposition of the Paper 

The rest of this paper is organized as follows: In Section 2, we will briefly recap the proper-

ties of the Black-Scholes model. There, a deeper understanding in specific financial instru-

ments, especially caps/floors and swaptions will be presented. Section 3 will mainly be de-

voted to the SABR model as presented in Hagan et al. (2002). In Section 4, we will calibrate 

the model using data for the Swedish market. This Section also shows results and compares 

them under certain circumstances. The paper is concluded in Section 5. Finally, suggestions 

about further research on the topic are presented. 
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2 THEORETICAL FRAMEWORK 

This Section starts by reviewing different interest rates and the properties of a swap and 

swaption contract. Later, we will recapitulate some theoretical aspects that can assist the 

understanding of the SABR model. Finally, the ground of motivation from which the SABR is 

developed.  

 

2.1 Interest Rates 

Here, we will briefly define different interest rates that act as fundamentals for the valua-

tion of swaps and swaptions. As a general source, we refer to Röman (2012). 

Spot rate: Spot rate ὶὸ  is the percentage of the amount invested (say X) one gets at time 

t i when invested X in a zero coupon bond at time t0 (i.e. today). In our case, this spot rate is 

quoted quarterly and is realized through bootstrapping the zero coupon bond yield curve.  

Forward rate: Forward rate Ὢὸȟὸ  is the percentage of X invested in zero coupon bond at 

time t0 which one will get for the time between ὸ and ὸ in the future. This rate can be plot-

ted through the spot rates curve. The relationship is as follows 

ρ ὶὸ Ͻρ Ὢὸȟὸ ρ ὶὸ  

Where after rearranging the terms can be stated as 

Ὢὸȟὸ
ρ ὶὸ

ρ ὶὸ
ρ 

We see that the forward rate is more clearly described as the relationship between two spot 

rates. Another way to represent the forward rate is through the discount function ὴὸȟὸ  

where π Ὥ Ὦ, we have  

ὴπȟὸὴὸȟὸ ὴπȟὸ ᵼὴὸȟὸ
ὴπȟὸ

ὴπȟὸ

ὴὸ

ὴὸ
 

It is common to use continuous compounding interest rate. In this case the forward curve 

can be discounted by using Ὡ , it then becomes 

Ὡ Ὡ ȟ Ὡ ᵼὩ ȟ
Ὡ

Ὡ
 

If we continue to simplify the above expression for forward rate, we arrive at a very neat re-

sult below 

ᵼὪὸȟὸ ὸ ὸ  ὶὸὸ ὶὸὸ 

ᵼ Ὢὸȟὸ
ὶὸὸ ὶὸὸ

ὸ ὸ

ὶὸὸ ὶὸὸ ὶὸὸ ὶὸὸ

ὸ ὸ
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ὶὸ ὸ ὸ ὸὶὸ ὶὸ

ὸ ὸ

ὶὸ ὸ ὸ

ὸ ὸ

ὸὶὸ ὶὸ

ὸ ὸ
 

 ὶὸ
ὸὶὸ ὶὸ

ὸ ὸ
 

Spot rates and forward rates for longer time (>3 years) are usually extracted by bootstrap-

ping methods using swaps and zero coupon bonds and with known yield as constructors. For 

shorter periods, the liquid Forward Rate Agreements (FRAs) and short-term cash deposits 

are favoured. Interpolating and/or extrapolating techniques are commonly used to find the 

estimates for the missing rates so that traders get a (smooth) curve including all conceivable 

tenors. An example is found in Figure 1. There also exist many other techniques that can be 

employed such as the Newton-Raphson algorithm, or Nelson-Siegel (Svensson) parameteri-

zation along with a vast amount of interpolation procedures. For a good exposition, we in-

vite the reader to Röman (2012). 

Figure 1 - Bootstrapped Curve Example 

Figure 1 shows an example of how a bootstrapped curve could look like. The Figure shows the bootstrapped 

yield curve for Swedish bond data at 2006-04-24. Source: Röman (2012, p. 112). 

Swap rate: Swap rate is the fixed interest rate that causes the swap starting value to be ze-

ro, for the Swedish market it is an interbank rate. This rate could be expressed as risk-free in-

terest rate plus interest risk premium for the swap. In this paper, it is denoted as 

ὙπȟὝȟὝ  and will be derived in the next section. 

Discounting rate: Discounting rate is the rate used for discounting cash flows. In certain con-

textsΣ ǘƘƛǎ Ŝǉǳŀƭ ǘƻ ƎƻǾŜǊƴƳŜƴǘΩǎ ȊŜǊƻ-coupon bond rate, which is usually a representation 

of the risk-free interest rate. 

xIBOR rates: A xIBOR rate is the x InterBank Offered Rate where x refers to the body that 

fixes the rate4. It is rate in which a selection of banks is willing to lend to each other. The xI-

BOR rates are carefully monitored by traders. They act as indicators of the level of demand 

and supply on the financial markets. 

                                                      
4 Two examples are LIBOR (London InterBank Offered Rate) and STIBOR (Stockholm Interbank Offered Rate) 
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2.2 Swaps and Swaptions 

 

2.2.1 Swap 

Swap is a financial derivative that allows an exchange of a series of payment for a different 

series of payment. The most common type of a swap is an IRS where the payments are de-

pending on an underlying interest rate (e.g. a xIBOR rate).5 These types of payments are re-

ferred to as having a fixed leg position (entering a payer swap) or a floating leg position (en-

ter a receiver swap). Payments for these contracts usually occur on a semi-annual basis. The 

swap market is of a vast size where the value of traded contracts on interest rate far ex-

ceeds those of other instruments (such as commodities and equity). In order to grasp the 

usefulness of a swap we give a simple example. 

Suppose that there are two companies A and B with different credit ranking and/or financial 

position. They both need to generate a loan of £5 million from their current banks. Compa-

ny A can borrow the money using two options: it can pay either LIBOR or a fix rate at 6%. 

Company B has the possibility to borrow the money for LIBOR rate plus 50 BPS6 or at the fix 

rate of 9%. Assume that, for whatever reason, these companies have different view about 

the future trend of interest rates; company A prefers to pay a floating rate and company B 

would like to pay the fix rate. In this case, an intermediate institution, άa swap bankέ, can 

aid both companies and benefit itself by issuing a swap. 7 

The swap bank can issue a swap in which company A will pay it the LIBOR rate and company 

B will receive the LIBOR rate, company B will then pay a fix rate of 8% and company A will 

receive 7% of its loan from the swap bank. The swap bank can then keep 1% for itself. By do-

ing that, company A will get the fixed rate loan from its bank and pay back the money only 

with the rate of LIBOR ς 1%. Company B will get the floating rate loan from its bank also and 

will have to pay a fixed rate of 8% plus 50 BPS. Bank A will get 6% and bank B will get the LI-

BOR + 50 BPS. Thanks to the present of the swap contract, all parties involved have gained 

equally or more than the initial scenario. 

The swap market, in this way of functioning, depends on the comparative advantages com-

panies bear when subjected to different interest rates (due to unlike borrowing conditions) 

and are commonly observable in reality. The diagram below gives an illustration of cash 

flows between the three parties. 

 

                                                      
5 Other type of swaps are e.g. currency-, commodity and credit default swaps. 
6 Where 100 basis points (BPS) equals 1%. 
7 Obviously, a swaption can be sat up directly between two firms although using an intermediate institution 
will bear the risk if either of the companies defaults. 
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Figure 2 - Swap Market Cash Flow Illustration 

In Figure 2, company A accepts to pay the bank 6% and company B accepts to pay Libor + 50 BPS. With a swap 

contract between the firms and the swap bank, company A ends up paying Libor ς 1% while company B pays 

8.5%. Under this setup, both companies are better off financially compared to if they initially would accept a 

floating rate loan (company A) and fixed rate loan (company B). 

According to Skov Hansen (2011), the present value (PV) of a floating leg can be calculated 

as the sum of discounted forward rate payments. This forward rate can be extracted from 

ǘƘŜ ǎǇƻǘ ǊŀǘŜΩǎ yield curve by using some suitable bootstrapping technique, which was dis-

cussed in Section 2.1.  

╟╥  ὪπȟὝ ȟὝὴπȟὝ  

Concerning a receiver swap, it is rather straightforward to calculate the present value of a 

payer swap since the payments are known in advance. The PV of the fixed leg is obtained by 

discounting fix rate payments over the entire tenor of the swap with E payment periods.  

╟╥  ὑὴπȟὝ  

Where 

  is tenor of the floating leg (in years) 

  is tenor of the fix leg (in years), could be different from that of the floating leg. 

ὪπȟὝ ȟὝ  is the future forward rate from Ὕ  to Ὕ observed at time 0.  

ὑ is the known fix rate of payment. 

ὴπȟὝ  is the discount rate from Ὕ to today.  

If we know let ὙπȟὝȟὝ  to be the fixed rate which is set so that the present value of the 

swap contract is zero. That is only possible when PVfloat = PVfix. We have the following 
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 ὪπȟὝ ȟὝὴπȟὝ  ὙπȟὝȟὝ ὴπȟὝ  

В  ὪπȟὝ ȟὝὴπȟὝ

В  ὙπȟὝȟὝ ὴπȟὝ
ρ 

Once solving for the swap rate, we get 

ὙπȟὝȟὝ
В  ὪπȟὝ ȟὝὴπȟὝ

В  ὴπȟὝ
 

One can also express the swap rate in terms of discounting factors to get a simpler expres-

sion of ὙπȟὝȟὝ . As described in Röman (2012), we can describe the forward rate with 

respect to discounting factors.  

ὴπȟὝ ὴπȟὝ ὴὝ ȟὝ ᵼ ὴπȟὝ ὴπȟὝ
ρ

ρ  ὪπȟὝ ȟὝ
 

ᵼὪπȟὝ ȟὝ
ρ



ὴπȟὝ ὴπȟὝ

ὴπȟὝ
 

 Then the value of a floating leg can be expressed as 

 ὪπȟὝ ȟὝὴπȟὝ 
ρ



ὴπȟὝ ὴπȟὝ

ὴπȟὝ
ὴπȟὝ  

ὴπȟὝ ὴπȟὝ ὴπ ὴὝ  

ρ ὴὝ 

So the swap rate is 

ὙπȟὝȟὝ
ρ ὴὝ

В  ὴπȟὝ
 

We can thus see that the swap rate can be expressed as a relationship between the floating 

rate and the fixed rate multiplied by a discounting rate. This rate, which equates the value of 

the fixed and floating rate, is also called swap rate or par swap rate. After the crisis, swap 

valuation has changed to a very complicated process. Banks have issues to determine the 

right forward and discounting rate that should be used to price this instrument. This has led 

to an inconsistency problem in swap valuation, which will not be further discussed in our pa-

per. We only have ambition to present here the fundamental properties of a swap to assist 

reader for the next section.  
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2.2.2 Swaption 

A swaption is an option on a swap that serves as a right but not an obligation to enter into a 

swap at a specified future date. Swaptions are frequently used by banks and other financial 

institutes with the purpose of hedging cash flow against the exposure to random events 

such as fluctuations of interest rates or currency rates, but are not common instruments for 

private investors. The most common swaptions are the so-called plain vanilla swaptions. It is 

of a European type with an IRS (which is accounted for in the previous section) as underlying 

asset.8 

Settlement of swaptions can occur either by physical settlement where actual exchanges of 

cash flows on the underlying swap takes place, or by cash settlements where the value of 

the underlying swap is paid at the time of exercise. 

As with a swap, there are two sides of every swaptions. They are known as payer- and re-

ceiver swaptions ǿƘŜǊŜ ŜŀŎƘ ǇŀǊǘȅΩǎ Ǉƻǎƛǘƛƻƴ ƛǎ ƴŀƳŜŘ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ŦƛȄŜŘ ƭŜƎ. The person 

entering a payer swaption get the right to enter a swap where he or she pays a fix leg and 

receive a floating leg. The holder of a receiver swaption can, at a future date, enter into re-

ceiver swap where he or she receives a fixed leg and pay the floating. 

A swaption is usually denoted as a nYmY swaption where m is the tenor of the underlying 

swap and n is the time to maturity of the swaptions. A 1Y10Y όάƻƴŜ ƛƴǘƻ ǘŜƴέ ƻǊ άin-one-for-

tenέ) payer swaptions gives the holder the option to enter a 10-year swap (paying fixed leg, 

receiving floating) in one (1) year. 

Extending the previous valuation of a swap, one now needs to extend the notation to ac-

count for the right to exercise. The value of a physically settled payer swaption observed at 

time t, 

ὖὛ ὃὸȟὝȟὝ ὙὸȟὝȟὝ ὑ  

where the term 

ὃὸȟὝȟὝ  ὴὸȟὝ  

is also called the annuity of the swap.9 

Swaptions are mainly traded OTC with absent regulations and are usually quoted in Black-76 

(log-normal) volatility. They can also be quoted in price (e.g. USD) or in other forms of im-

plied volatilities (normal volatility). If quoted in implied volatility, one then plug it into the 

άcorrectέ model to get the dollar equivalent price. 

 

                                                      
8 There also exist e.g. American and Bermudian swaptions that are of a more complex type. 
9 In this context the + denotes the maximum value between the calculated price and zero.  
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2.3 Martingales 

So far, we have gained understanding about the characteristics and the present value of 

swaptions. In the following sections, we continue to show how to price a swaption in the 

Black-Scholes framework, where the market is assumed free of arbitrage. In order to fulfil 

that assumption, we first need to look at the definition of a martingale and the martingale 

representation Theorem. 

A martingale is an integrable stochastic process that represents the notion of fair game in 

mathematics.10 A martingale implies that at a particular time t in a sequence of random var-

iables, given all the knowledge of past results, the expected outcome at time s is the same 

as the result at the current time t, where 0 < t < s. We have the following, 

Definition 1. Continuous-time martingale  

A continuous-time stochastic process {X(t)} defined on the probability spŀŎŜ όҠΣCΣtύ ǿƛǘƘ re-

spect to filtration Ὂ  where Ὂ represents the information generated by X(t) on the time in-

terval [0, T], is a martingale if 

ρȢ  Ὁȿὢὸȿ Њ Ὢέὶ ὩὥὧὬ ὸ ɴ πȟὝȟὥὲὨ 

ςȢ  Ὁὢί ὢὸȟὸ ί Ὕȟ 

where Ὁὢί  denotes the conditional expectation of ὢί given the information Ὂ. 

Definition of Martingale is referred to Kijima (2003).  

 

Theorem 1. Martingale representation Theorem 

Let Wt be a standard Brownian motion, ά  be a martingale process adapted to filtration Ὂ  

where ὸ ɴ πȟὝ, then there exists a uniquely determined Ὂ ς adapter stochastic process 

ὧὸȟz  such that 

ά ά ὧὸȟz Ὠὡ      έὶ ὩήόὭὺὥὰὩὲὸὰώ      Ὠά ὧὸȟz Ὠὡ  

Martingale representation Theorem is referred to Björk (2004). Here the uncertain growth 

of a martingale process ά  is equal to the Brownian motion development multiplied by 

some process ὧὸȟz . For example, ὧὸȟz  could be a function of Ὓȟὑȟὶȟ„ȟὸ.  

2.4 Arbitrage Free Theory 

The First Fundamental Theorem of asset pricing ensures with necessary and sufficient condi-

tion that the market is free of arbitrage and complete. The following theorem is extracted 

from Björk (2004). 

                                                      
10 A fair game is a game in which each participant is not more likely to win than another player is. 
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Theorem 2. Arbitrage Free Theorem 

The market is free of arbitrage if and only if there exists a risk-neutral probability measure Q 

such that the discounted price process  is a martingale, given the time horizon T, a risky 

asset with Vt as its price process and a risk-free asset gt. 

Now consider a plain vanilla European swaption with a fixed strike rate Rfix, Rt is the swap-

ǘƛƻƴΩǎ ŦƻǊǿŀǊŘ ǊŀǘŜ ŀǘ ǘƛƳŜ ǘ ŀƴŘ w0 is the forward swap rate as of today. As discussed in the 

earlier section, the value of a payer swaption can be expressed as 

ὖὛ ὃὸȟὝȟὝ Ὑ Ὑ  

Here, in order to follow the Arbitrage Free theory, the factor Rt should be a martingale. Ex-

pressed mathematically we have 

ὨὙ ὧὸȟzὨὡȟ         ὨὙ  Ὑ 

Once again, Ὠὡ is a Brownian motion and the factor ὧὸȟz  is a determinable function of 

time and other parameters while Ὑ ƛǎ ǘƘŜ ŜȄǇŜŎǘŜŘ ǾŀƭǳŜ ƻŦ ǘƘŜ ǎǿŀǇǘƛƻƴΩǎ ŦƻǊǿŀǊŘ ǊŀǘŜ. In 

other words, to assure that the market is free of arbitrage opportunity, the forward price 

process should be expressed as a random Brownian process multiplied by a scale factor 

ὧὸȟz . To go further in pricing this option, a suitable model for ὧὸȟz  should be postulated. 

This is the arbitrage free pricing theory where the Black-Scholes model based on.  

 

2.5 Black-Scholes Model 

In this section, we will give a brief presentation to the Black-Scholes model. For a full ac-

count, we invite the reader to e.g. Black and Scholes (1973) or Chapter 13 in Hull (2009). 

 

2.5.1 Assumptions 

In order for the Partial Differential Equation (2.5.2) below to hold, some assumptions need 

to be carried out. 

¶ The stock price follow a lognormal distribution where the returns are normally dis-

tributed 

¶ Short selling is allowed 

¶ No transaction costs or taxes 

¶ No dividends during the life of the derivative 

¶ No arbitrage opportunities 

¶ Continuous trading in securities 

¶ Constant risk-free interest rate 

¶ Constant volatility in the underlying asset 
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2.5.2 The Black-Scholes Equations and Formulas 

Given the above assumption, where „ represents the assumed constant volatility, Ὓ is the 

asset price process given by a geometric Brownian motion, Ὠὡͯ ὔπȟρ is a Wiener process 

with mean 0 and a variance „ ρ. If ‘ ƛǎ ǘƘŜ ǎǘƻŎƪΩǎ ŜȄǇŜŎǘŜŘ ǊŜǘǳǊƴ we have the following  

 ὨὛ ‘ὛὨὸ„ὛὨὡ      ύὬὩὶὩ Ὓ ί 

    

(2.5.1) 

A derivation of the Black-Scholes Partial Differential Equation usually includes setting up a 

risk-free portfolio consisting of one derivative, which has value of Ὢ and one part of underly-

ing asset. Another possibility is to use the capital asset pricing model (CAPM).11 Regardless 

of derivation techniques, we land in the famous Black-Scholes Partial Differential Equation. 

 Ὢ

ὸ
ὶὛ
Ὢ

Ὓ

ρ

ς
„Ὓ

Ὢ

Ὓ
ὶὪ 

 

(2.5.2) 

The above Partial Differential Equation (PDE) has many solutions in regards to different de-

rivatives with S being the underlying variable. To solve the equation for a particular deriva-

tive, the boundary conditions that specify values of the derivative at the boundaries of pos-

sible S and t have to be determined. For example, in case of a European call option, the key 

boundary condition is 

Ὢ Ὓ ὑ  ύὬὩὲ  ὸ Ὕ 

Equation (2.5.2) can also be understood in term of the Greeks.  is the change in value of 

option with respect to time, in other word the  - Theta.  is the change in value of option 

ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ŀ ŎƘŀƴƎŜ ƛƴ ǳƴŘŜǊƭȅƛƴƎ ŀǎǎŜǘΩǎ ǇǊƛŎŜΣ can be denoted as Ў ς delta. The last 

derivative  is the so-called ɜ ς gamma. Iǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǊŀǘŜ ƻŦ ŎƘŀƴƎŜ ƻŦ ƻǇǘƛƻƴΩǎ ŘŜƭǘŀ 

with respect to the underlying stock price. Therefore, we can rewrite Equation (2.5.2) as 

— ὶὛЎ
ρ

ς
„Ὓɜ ὶὪ 

This PDE has excluded the dependence of the optionΩǎ value to risk preferences, which is the 

expected return on a stock, ˃ Φ Since an investor is only willing to pay for a highly risky asset 

if he believes that tƘŜ ŜȄǇŜŎǘŜŘ ǊŜǘǳǊƴ ǿƛƭƭ ōŜ ƘƛƎƘΣ ˃ ǘƘǳǎ depends greatly on risk prefer-

ence. This exclusion ƻŦ ǘƘŜ ŜȄǇŜŎǘŜŘ ǊŜǘǳǊƴ ƻŦ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ ŀǎǎŜǘ ˃ has consequently given 

the Black-Scholes model a great advantage. 

From the above PDE, price of a call option, c, can be obtained to be12 

                                                      
11 See for example Chapter 13 of Hull (2009) for a derivation. 
12 One approach is to define the contingent claim as (St-K)+ and the use the Itô lemma on the process of 
underlying asset to reach a Feynman-Kac representation of the claim. Steps included are to integrate the value 
ƻŦ ǘƘŜ Ŏŀƭƭ ƻǇǘƛƻƴ ƻǾŜǊ ŀ ƭƻǿŜǊ ƭƛƳƛǘ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ YΣ ˋΣ ǊΣ ¢ ŀƴŘ { and finally to express the value of a plain 
vanilla European call option as shown above. See e.g. Röman (2012) for a deeper derivation. 
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 Ã  3ﬞ Ä  ὑὩ ﬞ Ä   (2.5.3) 

 

While the price of the put, p, can be calculated by similar techniques or via the put-call-

parity 

 Ð ὑὩ ﬞ Ä 3ﬞ Ä  (2.5.4) 

where  

Ä  
ÌÏÇ3 ὑϳ ὶ „ ςϳ Ὕ

„ЍὝ
 

Ä  
ÌÏÇ3 ὑϳ ὶ „ ςϳ Ὕ

„ЍὝ
 Ä „ЍὝ  

and ﬞ Ø is the cumulative normal distributed function (explained further in Appendix 1). 

Observe ǘƘŀǘ ǘƘŜ ƻǇǘƛƻƴΩǎ ǾŀƭǳŜ ƛǎ now depending only on the maturity T, the risk-free inter-

est rate ὶ, variance „  and the moneyness of the option 3 ὑϳ . Here, the only vague value to 

determine is the variance „ , which is usually calculated based on historical return data and 

is assumed constant through the ƻǇǘƛƻƴΩǎ ƭƛŦŜΦ Merton (1973) has shown that the call op-

ǘƛƻƴΩǎ ǾŀƭǳŜ ƛǎ ǇƻǎƛǘƛǾŜƭȅ ŎƻǊǊŜƭŀǘŜŘ ǿƛǘƘ ǘƘŜ ǾŀƭǳŜ ƻŦ ¢Σ Ǌ ƻǊ „ . As these variables increase, 

the value of a call option is approaching its maximum, which is the stock price. Nowadays, 

simple call and put options are still widely valued using this model. 

 

2.5.3 Extensions and Critique of the Black-Scholes Model  

Black and Scholes or Merton did not trade upon their framework ς at first. In 1993, Black 

and Merton founded Long Term Capital Management (LTCM) and attracted vast capital to 

their hedge found. Initially, it started out good with high returns during the first three years. 

In late 90s when Asian and Russian financial crises struck the markets, LTCM betted against 

it. The results were disastrous. The Federal Reserve eventually had to bail out the hedge 

fund in order to prevent a complete financial meltdown.13 

Despite that the Black-Scholes model is considered as the benchmark for option pricing, it 

has received its vast share of critique. First, the distribution of the underlying prices is in fact 

not generally log-normally distributed. Traders instead assume a heavier left tail and a less 

heavy right tail (Hull 2009, p. 400). This is roughly the same as saying that the log returns are 

ƴƻǘ ƴƻǊƳŀƭƭȅ ŘƛǎǘǊƛōǳǘŜŘ ŘǳŜ ǘƻ ǘƘŜ ŦŀŎǘ ƻŦ ǘƻƻ Ƴŀƴȅ άŜȄǘǊŜƳŜέ ƳƻǾŜƳŜƴǘǎ ǘƘŀǘ ŀǊŜ creat-

ing kurtosis in the distribution. In addition, assets prices jumps frequently, thus violating the 

assumption of smooth movements. Instead, traders use volatility smiles to allow for the 

non-lognormality (Ibid). Secondly, the assumption of continuous and instant trading without 

any transactions costs is a falsification of reality and is thus a vast limitation to the Black-

                                                      
13 For a full account on the history behind the crash of LCTM we recommend the documentary The Midas 
Formula: Trillion Dollar Debt (Clark, 1999). 
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Scholes model. It is thus not so hard to understand how LCTM could fail when the markets 

do not act like theory. 

The Black-76 Model 

Black (1976) made some slight modifications to his and his colleagues preceding work. In-

stead of using the spot price of an underlying asset, S0, the model now discounts a forward 

price, Ὂ. This model is more suitable to price interest rate derivatives (i.e. bond options, in-

terest caps/floors and swaptions). With notation earlier introduced, Black postulated that 

ὧὸȟz  is „Ὂὸ. Under the Black-76 model, the theoretical value of a call and a put reads 

ὨὊ „ὊὸὨὡ              ύὬὩὶὩ            Ὂπ ὊȢ  

Ã  Ὡ &ﬞ Ä  ὑﬞ Ä  

Ð Ὡ +ﬞ Ä &ﬞ Ä  

Ä  
ÌÏÇὊὑϳ ὶ „ ςϳ Ὕ

„ЍὝ
 

Ä  
ÌÏÇὊὑϳ ὶ „ ςϳ Ὕ

„ЍὝ
 Ä „ЍὝ  

Swaption under the Black-76 model 

Among other derivatives instruments, swaptions can also be included in this pricing model 

as a more complicated type of option. Based on the definitions given earlier, value of a pay-

er swaption ὖὛ can be seen as a call option on the swap rate ὙὸȟὝȟὝ  with strike price 

K. Using the Black-76, we get  

ὖὛ ὃὸȟὝȟὝ ὙὸȟὝȟὝ ﬞ Ὠ ὑﬞ Ὠ  

Where  

Ὠ
ὰέὫ

ὙὸȟὝȟὝ
ὑ

ρ
ς
„ȟ Ὕ ὸ

„ȟ Ὕ ὸ
ȟ 

Ὠ Ὠ „ȟ Ὕ ὸ 

Explicitly, if we consider the discount function in detail, as done in Röman (2012) we can ex-

press the value of a payer and receiver swaption (RS) as following 

ὖὛ
ρ

ρ
ρ Ὂάϳ

Ὂ
Ὡ Ὂﬞ Ὠ ὑﬞ Ὠ  

ὙὛ

ρ
ρ

ρ Ὂάϳ

Ὂ
Ὡ ὑﬞ Ὠ Ὂﬞ Ὠ  
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Ὠ
ÌÏÇὊὑϳ

ρ
ς„Ὕ

„ЍὝ
ȟὨ Ὠ „ЍὝ 

Where 

†   = The time between swaption maturity and underlying swap maturity ς tenor. 

ά = Compounding swap rate per year.  

Ὂ  = Forward rate of the underlying swap ὙὸȟὝȟὝ , also called par swap or swap rate. 

ὑ  = Strike rate of the swaption. 

ὶ   = Risk-free interest rate. 

Ὕ  = Time to swaption expiration in years. 

„  = Volatility of the forward starting swap rate. 

The Normal Black Scholes Model 

Another extension to the Black-Scholes framework is the Normal Black Scholes Model de-

veloped by Iwasawa (2001). Iwasawa pointed out that some traders believe that the traded 

assets follow a normal distribution rather than a lognormal ditto, as assumed in in Black-

Scholes model. In the model by Iwasawa (2001), the underlying asset is allowed to take on 

negative values. We have the following theoretical prices of a call and put14 

 ὧ  Ὡ & +ﬞ Ä
Ѝ

Ѝ
Ὡ Ⱦ   (2.5.5) 

 ὴ  Ὡ + &ﬞ Ä
Ѝ

Ѝ
Ὡ Ⱦ   (2.5.6) 

Where Ὠ
Ѝ

  

It is thus possible to realize that by inspecting the formulas for d1, Equation (2.5.5) and 

Equation (2.5.6), the strike price, K as well as the current future price F can take on any val-

ue, including negative values. With huge amounts of OTC traded derivatives where underly-

ing instruments can be negative (such as derivatives on any real interest rates), the Normal 

Black Model could then act as a suitable alternative where the Black-Scholes model breaks 

down. 

To summarize, the Black-Scholes option-pricing model has its advantages (e.g. its simplicity) 

but the framework is built upon a set of assumptions that are strongly questionable. Hence, 

many attempts have been made to come up with either new alternatives or expansions 

and/or adjustments the Black-Scholes model. These models are based on fewer assump-

tions. 

                                                      
14 Iwasawa (2001) also derives the normal process under a bounded negative assumption where the 
underlying prices cannot fall below a certain level. 
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2.5.4 Greeks under the Black-Scholes Model 

In order to derive the Greeks in the SABR model later, we should first look at this set of the 

basic Greeks. However, we will not take into account all Greeks but only the most important 

two, which are Delta and Vega. For other Greeks such as Theta, Gamma and Rho, the reader 

could refer to additional readings in e.g. Chapter 17 of Hull (2009). 

Delta 

The delta of an option is the rate of change in the price of the option caused by a change in 

the price of the underlying asset. Under the Black-Scholes model, the delta of a call option is 

usually denoted 

Ў 
ὧ

Ὓ
 

It is possible to express the delta of a call or a put from the cumulative normal distribution 

functions where d1 is defined as in Section 2.5.2. For European options we have 

Ў  ﬞ Ä  

Ў  ﬞ Ä ρ 

Delta for a call option is always positive and approaches one for options that are deep ITM. 

Ў ᶰπȟρ 

While delta for a put is bounded to the closed interval  

Ў ᶰ ρȟπ 

For investors, the concept of delta hedging is of great importance. If a portfolio is set up so 

that it has a delta equal zero, it is known to be delta neutral. This implies that the value of 

the portfolio stays the same when a change in underlying occurs. In order to maintain a del-

ta neutral portfolio, it must be rebalanced on a frequency basis. Actually, if one wants to 

have a delta neutral portfolio, he or she must use dynamic hedging (thus continuously re-

balancing the portfolio). This would obviously invoke great transaction costs so the concept 

of continuous hedging is only appropriate in theory. In practice, delta hedging for financial 

institutions is performed on a daily basis (Hull 2009, p. 377). 

With a delta neutral portfolio, one can see that the Equation (2.5.2) is reduced to depend 

only on theta and gamma, as shown below 

Ὢ

ὸ

ρ

ς
„Ὓ

Ὢ

Ὓ
ὶὪ 



24 
 

Vega 

Vega15 of an option is associated with a change in the option price caused by a change in the 

volatility of the underlying asset. The Vega of a call option in the Black-Scholes model is thus 

ɤ 
ὧ

„
 

For European options, vega is calculated as 

ɤ ȟ ὛЍὝﬞ Ὠ  

ɤ ȟ π 

Where d1 is defined as in Section 2.5.2. From the First Fundamental Theorem of Calculus, 

ﬞ ὼ is the probability density function for a standard normal random variable.16 Vega is 

always positive for both put- call options, and is at greatest where the option is ATM. 

Since ǾƻƭŀǘƛƭƛǘȅΣ ˋ ƛǎ ŀƴ ŀǎǎǳƳŜŘ Ŏƻƴǎǘŀƴǘ ƛƴ ǘƘŜ .ƭŀŎƪ-Scholes world, the concept of a 

change is counterintuitive. However, for stochastic volatility models (such as the SABR mod-

el) where the volatility is non-constant, vega is more appealing. A vega neutral portfolio (i.e. 

ǿƘŜƴ ɽ Ґ лύ ǿƻǳƭŘ ǘƘŜƴ ƪŜŜǇ ƛǘǎ ǾŀƭǳŜ ƛŦ ŀ ŎƘŀƴƎŜ ƛƴ volatility occurred. 

 

2.6 Volatility Smiles, Skews and Surfaces 

Volatility smile is the plot of the implied volatility of an option and its strike price. It is not 

until after the stock market crash in October 1987 that the pattern of the plot appeared as a 

smile. Before the crash, implied volatility depended on strike to a much lesser extent. 

Rubinstein (1994) suggested that this is because traders are more concerned of another 

crash and thus, price their options accordingly. This phenomenon is ŀƭǎƻ ƪƴƻǿƴ ŀǎ άŎǊŀǎƘ-o-

ǇƘƻōƛŀέ ŀƴŘ has been supported with several empirical observations. History shows that 

declines in the S&P 500 have resulted in steeper volatility skew. On the other hand, increas-

es tend to become less steep (Hull 2009, p. 395). 

In the Black-Scholes model, it is impossible to solve for the implied volatility explicitly. In-

stead, e.g. the Newton-Raphson method or the method by Chance (1996), must be used to 

find the implied ˋ ǎƻ ǘƘŀǘ ǘƘŜ ǘƘŜƻǊŜǘƛŎŀƭ ǇǊƛŎŜ ŀƎǊŜŜs with the observed market price. Since 

the data we are using to calibrate the SABR model is already quoted in implied (Black-76) 

volatility, we will not discuss further the method use to solve for volatility. 

Once one is able to obtain implied volatilities for a set of different strikes, the volatility smile 

can be plotted. Figure 3 is the result for the actual data of 1M15Y swaption. 

                                                      
15 Vega is actually not a Greek letter. Yet it is still referred to as one of the Greeks within the field of finance 
and we will adopt that lingo throughout this paper. We denote Vega with the capital Lambda.   
16 See appendix 1 for formulae for ﬞ ὼ. 
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Figure 3 - 1M15Y Swaption Smile 

 

Figure 3 shows the implied volatility for a 1M15Y swaption as a function of the strike. Simple 

linear regression is done by MATLAB between the 17 observations. The ATM rate was circa 

3.10%, on first of September 2013, which is indicated by the red star. From inspecting the 

smile, we see that the implied volatility resembles a parabola-shaped form with a minimum 

value of approximately 29%. We can also see that the smile is asymmetrical but clearly that 

the market prices this derivative with different implied volatilities depending on different 

strikes. To experience a perfect shaped smile on the market is extremely implausible, the 

smile in Figure 3 ǎƘƻǳƭŘ ōŜ ŎƻƴǎƛŘŜǊŜŘ ŀǎ ŀ άƎƻƻŘέ ŀŎǘǳŀƭ ǎƳƛƭŜΦ  

The basic definition of a volatility smile is, as mentioned, a parabola shaped curve where 

ITM and OTM money options have a higher implied volatility than ATM options. 17 There are 

also tweaks to the curve where the smile is of a different shape. First, if ITM calls and OTM 

puts are traded with a higher implied volatility, this pattern is known as volatility smirk or 

reverse skew. This is illustrated in Figure 4.  

  

                                                      
17 Due to no-arbitrage arguments, European puts and calls with the same underlying, strike price and maturity 
date will have the same implied volatility and thus create identical smiles (Hull 2009, p. 389). 
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Figure 4 - Reverse Skew Smile 

 

Figure 5 - Forward Skew Smile 

 
Figure 4 (left) and Figure 5 (right) illustrates a reverse skew and a forward skew respectively.  

(Source: http://www.theoptionsguide.com/volatility-smile.aspx) 

A reverse skew that appears on the market is due to the fear traders possess against a new 

(vast) crash. The implied probability distribution of e.g. equity options with a reverse skew 

tend to have heavier left tails (less heavy right tails) than lognormal distribution (Hull 2009, 

p. 394). On the other hand, if one experiences the opposite with higher implied volatilities 

for ITM puts and OTM calls, the pattern arising is known as a forward skew (as is illustrated 

in Figure 5). A forward skew pattern can arise in e.g. commodities markets where the expec-

tations about declined future harvests due to drought, frost or any non-controllable factor 

that will make the traders to drive up the demand for OTM calls.  

By taking a second look at Figure 3, we can see that the smile of the 1M15Y swaption would 

resemble a reverse skew. This should not be surprising since one might expect a large de-

cline in the interest rate due to some extreme event, e.g. a larger recession. 

If one plots the implied volatility as a function of both the strike price and time to maturity, 

the resulting 3D-surface is known as the implied volatility surface or volatility cube. This is il-

lustrated in Figure 6.18 For swaptions, an alternative is to use ATM options with various ten-

ors and times to expire to visualize the volatility term structure. An example can be found in 

Figure 8. Any procedure to construct a volatility ŎǳōŜ ǿƛƭƭ ǊŜǉǳƛǊŜ ǎƻƳŜ ƪƛƴŘ ƻŦ άƛƴǘŜƭƭƛƎŜƴǘ 

interpolaǘƛƻƴέ ό[ŜǎƴƛŜǿǎƪƛ нллуΣ ǇΦ моύΦ Lƴ ǘƘŜ ŜȄŀƳǇƭŜǎ ōŜƭƻǿ, MATLAB has done this auto-

matically. 

                                                      
18 An alternative would be to plot the tenor of the underlying swap for a different set of strikes while keeping 
the time to expiry constant. 

http://www.theoptionsguide.com/volatility-smile.aspx
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Figure 6 - 15Y Volatility Surface 

 
Figure 5 generated by MATLAB shows a 15-year volatility surface as of first of September 2013. The at-the-

money swap rate is approximately 3.10%. Maximum implied volatility is 52.6% while the minimum equals 

15.55%. 

One can see from Figure 6 that the implied volatility is much greater for expiries that are 

short into the future while swaptions that expires later on in the future are generally traded 

with a much lower implied volatility. Looking at the shortest time to maturity, the smile cor-

responds to the volatility smile of a 1M15Y swaption that was plotted in Figure 3. It could be 

observed that individual smiles for each possible time of expiry take on a reverse skew pat-

tern.  

We can now visually conclude that the assumption about a constant volatility for all possible 

strikes is very farfetched. However, the longer is time to maturity the flatter are the curves. 

For swaptions with an expiry of more than 10 years, we would only experience a small smirk 

if the volatility surface were plotted. This could be seen by looking at the 15-year volatility 

surface from another angle, see Figure 7. Here we see how flat the surface actually is where 

it is rather flat over its domain.  
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Figure 7 - 15Y Volatility Surface (different angle) 

 

Figure 8 illustrates the volatility cube for ATM swaptions. Here we note that the surface is 

very unsmooth with many local maximum and minimum points. However, the general pat-

tern is that ATM swaptions with a short time to expiration are traded at a higher implied 

volatility compared to ATM swaptions that can be exercised in more than 10 years.  

Figure 8 - ATM Swaption Volatilities 

 
Figure 8 is created by MATLAB using ATM swaption volatilities (see Appendix 2) at the 1st of September 2013. 

The maximum point is 37.4% while the minimum is 16.1%. 
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2.7 Local Volatility Models 

Before the creation of SABR model, the local volatility model by Derman and Kani (1994) 

was an attempt made to create single, self-consistent model to extract volatilities for any 

strikes. According to the authors, perhaps the most direct and simple way to tackle the con-

stant volatility in the BlackςScholes is by replacing Equation (2.5.1) with 

ὨὊ

Ὂ
‘ὸὨὸ„ ὊȟὸὨὡ 

Where ‘ὸ is the risk neutral drift depending on time and „ Ὂȟὸ is the local volatility 

function depending on the forward price Ὂ and time ὸ. Instead of a constant volatility, now 

„ Ὂȟὸ will be deduced numerically from the smile. Using binomial option pricing tech-

nique, a local volatility surface is created that causes ǘƘŜ ōƛƴƻƳƛŀƭ ǘǊŜŜΩǎ ƻǇǘƛƻƴ ǇǊƛŎŜǎ ǘƻ ōŜ 

consistent with the market ones. This model is arbitrage-free, preference-free, self-

consistent and it avoids additional factors to the Black-Scholes. From „ Ὂȟὸ obtained af-

ter calibration, it calculates correct market price of options (calls and puts) for all strikes and 

exercise dates. Therefore, this model is a natural and easy way to value option only from 

observable market data.  

In the initial setup, the following stock price process must be valid 

Ὂ ὴὛ ρ ὴὛ 

έὶ     ὴ
Ὂ Ὓ

Ὓ Ὓ
 

Where Ὂ is a known forward price, ὴ is the unknown transition probability to the upper 

node Ὥ ρ, ρ ὴ  is the transition probability to the lower node Ὥ , Ὓ  is value of the 

stock at node Ὥ ρ, Ὓ is stock value at node Ὥ. Because the implied tree is measured in risk-

neutral condition, the expected value of the stock price ὴὛ ρ ὴὛ must be equal 

to its known forward price Ὂ. At each node of the tree, a call option with strike price ὑ, ma-

turity ὸ  is valued, using Arrow-Debreu19 stock prices ‗ as follow 

ὅὑȟὸ Ὡ Ў ‗ὴ ‗ ρ ὴ Ὓ ὑ  

This formula is the common risk-neutral option valuation, where at every node, the ƻǇǘƛƻƴΩǎ 

price is the difference ōŜǘǿŜŜƴ ǎǘƻŎƪΩǎ ǇǊƛŎŜ ŀƴŘ ŦƻǊǿŀǊŘ ǇǊƛŎŜ ƻǊ ȊŜǊƻ ƳǳƭǘƛǇƭȅ with the ex-

pected value of Arrow-Debreu stock prices‗ὴ ‗ ρ ὴ . Every node is then 

summed and discounted back to current time zero. Next is to determine stock price on the 

upper node 

                                                      
19 Arrow-Debreu pricing model is based on equilibrium theory of supply and demand. In this model, the first 

Arrow-Debreu price is 1 and the next upper/lower price is ‗  where ὴ is the transition probability to 

upper/lower price.  
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Ὓ
ὛὩ ὅὛȟὸ ‗Ὓ ВȢ

‗Ὂ Ὡ ὅὛȟὸ ВȢ
 

Where ВȢ В ‗ί Ὂ  

This sum is equal to zero (Derman and Kani, 1994). The stock price for the lower node is 

Ὓ
Ὓ

Ὓ
 

Ὓ is the centre node at the previous level, according to the logarithmic Cox-Ross-Rubinstein 

centering condition the author chose, the above relationship holds.  

Finally, implied volatility at node i, „ is given as 

„ ὴρ ὴ ÌÏÇὛ Ὓϳ  

This implied volatility „ has been calculated based on the risk-free transition probability and 

the logarithm difference of the possible values (either up or down) of Ὓ at each time step. 

Where S is deduced directly from the market value of the option with strike K and time to 

expiry ὸ .   

For a full account of how the model works and its derivations, readers can refer to Derman 

and Kani (1994). Hagan (2002, p. 87) pointed out that the model, unfortunately, άpredicts 

the wrong dynamics of the implied volatility curve, which leads to inaccurate and often un-

ǎǘŀōƭŜ ƘŜŘƎŜέ. To examine the dynamics of this model, first, we have to simplify the initial 

setup by omitting the time variable and that will leave us with 

ὨὊ

Ὂ
„ ὊὊὨὡ              ύὬὩὶὩ             Ὂπ Ὢ 

Using singular perturbation technique to analyse this model, the market implied volatility to 

apply in the Black-76Ωǎ ŦƻǊƳǳƭŀ „ὑȟὪ to price option could be explained as 

„ὑȟὪ „
ρ

ς
Ὢ ὑ ρ

ρ

ςτ

Ὠ„
ὨὪ

ρ
ςὪ ὑ

„
ρ
ςὪ ὑ

Ὢ ὑ ὬὑȟὪ  

!ŎŎƻǊŘƛƴƎ ǘƻ ŜǾŀƭǳŀǘƛƻƴ ƻŦ ǘƘŜ ŜǉǳŀǘƛƻƴΩǎ ǊƛƎƘǘ ƘŀƴŘ ǎƛŘŜ by Hagan et al. (2002), the volatili-

ty depends largely on the first term. The second term gives little adjustment to the result 

and the omitted terms notated with ὬὑȟὪ only account for less than 1% of the first term. 

Therefore, the market implied volatility that is also understood as 

„ὑȟὪ „
ρ

ς
Ὢ ὑ  



31 
 

Suppose Ὢ ƛǎ ǘƻŘŀȅΩǎ ŦƻǊǿŀǊŘ ǇǊƛŎŜΣ „ ὑ  is the implied volatility curve observed from the 

market for some strike K at time 0 (today). The local volatility after calibration to fit the 

market is 

„ Ὢ „ ςὪ Ὢ  ςȢχȢρ 

Because, for the observed implied volatility to be consistent with (2.7.1), we have the fol-

lowing 

„ ςὪ Ὢ „
ρ

ς
Ὢ ȿςὪ Ὢȿ „

ρ

ς
ςὪ „ Ὢ 

Here we can use the absolute value condition because f is by definition a forward price so it 

should not be negative. This Having obtained „ Ὢ, now let the forward price shift to a 

new value of Ὢ, the new implied volatility predicted by the model is 

„ὑȟὪ „
ρ

ς
Ὢ ὑ „ ς

Ὢ ὑ

ς
Ὢ „ ὑ ȿὪ Ὢȿ 

arrival formula of the local volatility tells us some unusual properties of the model. Intu-

itively, when the forward Ὢ increases, volatility curve is expected to shift to the right hand 

side. However, the local volatility will shift the smile to the opposite hand side. A graphical 

illustration found below in Figure 9.  

Figure 9 - Dynamics from Local Volatility Models 

 
Figure 9 shows the unexpected (opposite) shifts in the implied volatilities that are the results when the for-

ward prices are altered under a local volatility model. Source: Skov Hansen (2011, p. 33). 

This inconsistency has also affected on the calculated risks from this model. Delta and vega 

hedging falls due to the wrong dynamics predicted. Therefore, unfortunately, this model 

cannot be applied correctly with reality. However, the model has produced future distribu-

ǘƛƻƴǎ ƻŦ ǘƘŜ ǎǘƻŎƪ ǇǊƛŎŜǎ ǘƘǊƻǳƎƘ ƳŀǊƪŜǘ ǉǳƻǘŜŘ ƻǇǘƛƻƴΩǎ ǇǊƛŎŜΦ 5ŜǊƳŀƴ ŀƴŘ Yŀƴƛ όмффпύ ōŜ-

lieved that this model can be very useful in case of barrier options, where the striking barri-

er probability is especially sensitive to the implied volatility smile.   
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3 THE SABR MODEL 

In this section, given the scenario of the local volatility model, the Black-76 model, defini-

tions of swaption and different interest rates, we will present the SABR model as well as the 

properties of its parameters. In addition, the original Greeks under the model accompanied 

with an updated set by Barlett (2006) and finally the adjustment of the SABR will also be 

mentioned. 

 

3.1 The Original Formula 

From Hagan et al. (2002), the original SABR model can be described as 

 ὨὊ ὊὨὡ  (3.1.1) 

Ὂπ Ὢ 

Ὠ ὺὨὡ  

π  

ὨὡὨὡ ”Ὠὸ 

In which, the forward price process is denoted as Ὂ, the volatility  is a stochastic process. 

Both ὡ  and ὡ  are Brownian motions without drift which are correlated by a coefficient ʍ. 

Therefore, in this model, the volatility process is allowed to be random through the develop-

ment of , which is scaled up by including the factor volvol, ὺ. This extra randomness has 

solved the problem of constant volatility, which is an unrealistic assumption of the Black-

Scholes model. 

Recall that the price of a European option with strike price K, time to maturity T, by Black-76 

formula is 

ὧ Ὡ ὪﬞὨ ὑﬞὨ  

ὴ ὧ Ὡ ὑ Ὢ 

where the put price is retrieved from the put-call parity and 

Ὠȟ
ὰέὫ Ὢὑ

ρ
ς„Ὕ

„
 

We can directly observe f, K, r and T while the implied volatility, ʎ  is solved by using singu-

lar a perturbation technique in Hagan et al. (2002). The formula for ʎ  is as follows 
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(3.1.2) 

  

Where ᾀ and ὼᾀ are defined as 

ᾀ
ὺ


Ὢὑ ϳÌÏÇ Ὢὑϳ  

ὼᾀ ὰέὫ
ρ ς”ᾀᾀ ᾀ ”

ρ ”
 

In the explicit Formula (3.1.2), the volatility is a function of the strike price K and the current 

forward price Ὢ for a specific date of expiry, T. The terms that we denote as ὫὑȟὪ and 

ὩὑȟὪ are complex but taken a very small margin of the total result (Hagan et al. 2002), so 

they will be ignored in our calculation. When one sets Ὢ = K into Equation (3.1.2) the formu-

la for the ATM volatility, „ , is being reduced to  

„ „ ὪȟὪ


Ὢ
ρ

ρ 

ςτ



Ὢ

ρ

τ

”ὺ

Ὢ

ς σ”

ςτ
ὺ Ὕ ὩὑȟὪ 

In order to extract the volatility ʎ +ȟÆ, parameters ɻȟɼȟÖȟʍ need to be calibrated using 

the observable market data for implied volatility at every strike. The current forward price Ὢ 

and strike price + are given market condition. After calibration, the model can produced es-

timated value for volatility that are valid in the near future and captures the dynamic of the 

smile. These values can be plugged back in the Black-76Ωǎ ŦƻǊƳǳƭŀ, for any strikes, to arrive 

at the opǘƛƻƴΩǎ theoretical price. Hagan et al. (2002) predicted that the calibrated volatility 

function could give correct value up to six months. However, institutions usually recalibrate 

it on a frequent basis, usually every day. 

 

3.2 Dynamics of the Parameters 

In this section, we investigate the main parameters of the SABR model. Focus will be drawn 

upon the effect of these parameters on the modelΩǎ dynamics, their reasonable range and 

how they alter the shape of the predicted smile. Below we present a numerical example of a 

fully calibrated model to market data. We will adjust each parameter while keeping the oth-

ŜǊǎ Ŏƻƴǎǘŀƴǘ ŀƴŘ ƻōǎŜǊǾŜ ǘƘŜ ǊŜǎǳƭǘ ƛƴ ǘƘŜ ǎƳƛƭŜΩǎ ǎƘŀǇŜΦ  
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is the exponent of the forward rate and it represents the belief traders possess about 

the distribution of the underlying asset.20 Its range should be ᶰπȟρ. Because, if     

 π, Equation (3.1.1) suggests that an increase in value of the forward process pro-

duces a relative decrease in the change of the of price process (Skov Hansen, 2011). Moreo-

ver, if  ρ, an increase in the forward process will result in a greater change of the for-

ward process, which is greater than the volatility times the current forward price. These two 

cases are very disagreeable and they explain the reason for the upper and lower bound of 

the parameter. 

Figure 10 - Change in Beta 

 
Figure 10 shows the SABR volatility smile for a 1M5Y swaption calibrated using Method 1 (see Section 3.4) with 
ʲ Ґ лΦрΦ wŜǎǳƭǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ˊ Ғ лΦ084Σ ˄ Ғ лΦстп ŀƴŘ ʰ Ғ лΦлруΦ ¢ƘŜ {{9 ŦƻǊ ǘƘŜ Ŧƛǘ ǿƘŜƴ ʲ Ґ лΦр is approxi-
mately 0.015. Beta is later increased/decreased to 0.7/0.3 while keeping the rest of the parameters constant. 
The red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

After calibrating the model with  πȢυ, we shift the value to 0.3 and πȢχȢ Observe that the 

curve in Figure 10 shifts upward for a decreased beta and downward for an increased beta, 

ceteris paribus. Of course, there is no longer any fit to the market volatility since beta is 

changed subsequently to the calibration. In addition, we experienced a rather big effect on 

the curvature of the smile for a change in beta where the left hand side of ATM point is 

more effected than the right ditto. The higher the beta, the flatter is the curve. Our findings 

are similar to those of Skov Hansen (2011) while Hagan et al. (2002) do not evaluate this 

matter.  

  

                                                      
20 See Section 3.4 for a deeper description. 

 ̡
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 or volvol is the volatility of the volatility. As shown in Figure 11, a change in volvol 

would have an impact on the smileΩǎ ŎǳǊǾŀǘǳǊŜ. This parameter should be directly 

calibrated to best fit by using market Řŀǘŀ ǿƛǘƘ ǘƘŜ ŎƻƴǎǘǊŀƛƴǘ ǘƘŀǘ ˄җлΦ Because 

volatility can never be negative and hence it is reasonable to argue that the volatility of 

volatility also must be postivive. 

Figure 11 - Change in Volvol 

 
Figure 11 shows the SABR volatility smile for a 1M5Y swaption calibrated using Method 1 (see Section 3.4) with 
ʲ Ґ лΦрΦ wŜǎǳƭǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ˊ Ғ лΦ084Σ ˄ Ғ лΦстп ŀƴŘ ʰ Ғ лΦлруΦ ¢ƘŜ {{9 ŦƻǊ ǘƘŜ Ŧƛǘ ǿƘŜƴ ˄ = 0.674 is ap-
proximately 0.015. Volvol is later increased/decreased to 1.174/0.174 while keeping the rest of the parameters 
constant. The red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

After calibration using predetermined  πȢυ, we get ’ πȢφχτ. With an increase and 

decrese in ’ by πȢυ, we obtain a more convex and a flater smile around ATM point 

respectivly. One can see, in agreement with Hagan et al. (2002), that the volvol controls how 

much smile the curve exhibits, ǿƘŜǊŜ ŀƴ ƛƴŎǊŜŀǎŜ ƛƴ ˄ ǿƻǳƭŘ ƛƴŎǊŜŀǎŜ ǘƘŜ ǎƳƛƭŜ ŜŦŦŜŎǘ ƻŦ ǘƘŜ 

curve, ceteris paribus. 

  

 ˄
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 will rotate the curve around the ATM point when increased. As in previous examples, 

we calibrate the SABR model with the assumption that  πȢυ. The best fit possible 

under this scenario returns ” πȢπψτ. Then lower and higher ” by πȢςυ, we get the 

following graph.Theoretically, ” is the correlation between two Brownian motion and is 

therefore bounded to ”ɴ ρȟρ. 

Figure 12 - Change in Rho 

 
Figure 12 shows the SABR volatility smile for a 1M5Y swaption calibrated using Method 1 (see Section 3.4) with 
ʲ Ґ лΦрΦ wŜǎǳƭǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ˊ Ғ лΦ084Σ ˄ Ғ лΦстп ŀƴŘ ʰ Ғ лΦлруΦ ¢ƘŜ {{9 ŦƻǊ ǘƘŜ Ŧƛǘ ǿƘŜƴ ˊ = 0.084 is ap-
proximately 0.015. Rho is later increased/decreased to 0.334/-0.166 while keeping the rest of the parameters 
constant. The red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

Hagan et al. (2002) claim that rho controls the skew of the curve. This is verified by looking 

at Figure 12 to see what happens when we increase/decrease the parameter. One can see 

that an increased ˊ ǘƻ ŎƛǊŎŀ 0.334 rotates the curve counter clockwise, creating a flatter 

smile. On the contrary, ŀ ŘŜŎǊŜŀǎŜ όˊ Ґ -0.166) would lead to a clockwise rotation of the 

SABR curve and hence a steeper smile.  

 ́
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 is different tƻ ʲΣ˄ ŀƴŘ ˊ since it is a stochastic parameter. An increase in this 

parameter will lead to an upward shift of the entire smile while a decrease will result 

in an downward shift. This observation can be made after setting  to be the initial 

volatility where the entire stochastic process would begin from. As a result,  should govern 

ǘƘŜ ǾŜǊǘƛŎŀƭ ƭƻŎŀǘƛƻƴ ƻŦ ǘƘŜ ǎƳƛƭŜ ǊŀǘƘŜǊ ǘƘŀƴ ǘƘŜ ǎƳƛƭŜΩǎ ǎƘŀǇŜΦ Also for this reason >0 

since we can not experince non-positive volatility. From our calibration corresponding with 

the earlier figures, we receive  πȢπυψ. Adding and subtracting 0.01 to this value we 

attain the curves in Figure 13.  

Figure 13 - Change in Alpha 

 
Figure 13 shows the SABR volatility smile for a 1M5Y swaption calibrated using Method 1 (see Section 3.4) with 
ʲ Ґ лΦрΦ wŜǎǳƭǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ˊ Ғ лΦ084Σ ˄ Ғ лΦстп ŀƴŘ  hҒ лΦлруΦ ¢ƘŜ {{9 ŦƻǊ ǘƘŜ Ŧƛǘ ǿƘŜƴ  hҒ лΦлру is ap-
proximately 0.015. Alpha is later increased/decreased to 0.068/0.048 while keeping the rest of the parameters 
constant. The red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

In Figure 13, we can see that the curvature of the SABR curves seem to remain constant 

when alpha is increased and decreased. That a change in alpha will keep the shape of the 

smile is in agreement with e.g. Skov Hansen (2011, p.39). 

 

  

 h
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3.3 The Backbone 

From Hagan et al. (2002), the so-called backbone is the curve that is traced out from ATM 

volatility when the forward price, f, changes. This backbone is observed to be dependent al-

most entirely on the  used as the exponent of the price process. Initially, we calibrate the 

ƳƻŘŜƭ ǿƛǘƘ ʲ Ґ л ŦƻǊ ŀ мaр¸ ǎǿŀǇǘƛƻƴ ǿith and ATM rate of 2.4%. If we instead let the for-

ward rate shift to 2.9% and 1.9% respectively, we can infer from Figure 14 that the ATM vol-

atility shift accordingly. 

Figure 14 - .ŀŎƪōƻƴŜ ǿƛǘƘ ʲ = 0 

 

LŦ ƻƴŜ ƛƴǎǘŜŀŘ ŎŀƭƛōǊŀǘŜǎ ǘƘŜ ƳƻŘŜƭ ǿƛǘƘ ʲ Ґ м ŀƴŘ ǘƘŜn change the forward rate by 50 BPS 

the result will be different. Both an increase and a decrease in Ὢ would only shift the curve 

on the horizontal axis while keeping the ATM volatility constant, as seen in Figure 15. 

Figure 15 - .ŀŎƪōƻƴŜ ǿƛǘƘ ʲ = 1 
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3.4 Parameter Approximation 

There are many ways one can calibrate the SABR model, however, the general idea is to 

minimize the gap between observed and predicted implied volatility fitted by the SABR 

model for each corresponding strike. This technique is also known as the Least Square 

Method. Using mathematical language, the problemΩǎ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴ can be formulated 

as 

ÍÉÎ
ȟ ȟȟ

„ ʎ ʉȟɻȟʍȟɼȠ+ȟὪ  

Where „ is the implied market volatility (found by some appropriate method) and 

„ ’ȟȟ”ȟȠὑȟὪ is the SABR volatility as a function of SABR parameters given the strike K 

and an ATM forward price Ὢ. The Sum of the Squared Errors (SSE) above will then be mini-

mized with the constraints of ǘƘŜ ƳƻŘŜƭΩǎ ǇŀǊŀƳŜǘŜǊǎΣ ƛΦŜΦ  

”ᶰ ρȟρ 

ᶰπȟρ 

’ π 

 π 

To solve the above optimization problem with the given restrictions, one can put different 

weights to each parameters according to distinct characteristic of the market under consid-

eration. For example, in an illiquid market, a trader might want to put more weights to trad-

ed instruments than equal weights in order to produce best possible fit . In our calibration, 

given the market data from Murex Mx3, we will only apply equal weights. 

 

3.4.1  ̡

According Hagan et al. (2002), ʲ ƛǎ ǘƘŜ ŦƛǊǎǘ ŎƘƻƛŎŜ Ŧor a pre-estimating parameter, for it can 

reflex the prior belief on the forward process of the underlying asset. Otherwise, if fitted 

with the market smiles, it would only be fitting the market noises.21 The authors pointed out 

that ǾŀǊƛƻǳǎ ʲ ǾŀƭǳŜǎ Řƻ ƴƻǘ ƎƛǾŜ ǎǳōǎǘŀƴǘƛŀƭ difference in quality of the fit. However, the 

ŎƘƻƛŎŜ ƻŦ ʲ Ŏŀƴ ŀŦŦŜŎǘ ǘƘŜ Greeks (Skov Hansen, 2011). Below we will discuss three common 

choices of beta, which occurs when we let πȟȟρ.  

  

                                                      
21 This would imply that we instead are interested to minimize ÍÉÎ

ȟ ȟ
В „Ὅ „ ’ȟȟ”ȟȠὑȟὪ  where we 

let ˊ ɴ ρȟρ , ’ π and  π. 
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♫ ὛὸέὧὬὥίὸὭὧ ὋὥόίίὭὥὲ ὔέὶάὥὰ ὓέὨὩὰ  

ὨὊ Ὠὡ  

When beta equals zero, the forward process becomes stochastic normally distributed with 

mean zero and a lognormal distributed standard deviation. With a symmetric break-even 

point, this is an effective choice for managing risk. This choice is also suitable for trading 

market like Yen, Krona and interest rates, where the forwards Ὢ can be negative or near ze-

ro. However, for most normal cases of forward price, this beta is not the most preferable 

one as stated by Skov Hansen (2011). 

 

♫  ὛὸέὧὬὥίὸὭὧ ὅὍὙ άέὨὩὰ  

ὨὊ ὊὨὡ  

This choice usually concerns with US interest rate desks that often use CIR models. The sto-

chastic CIR model takes its name from Cox, Ingersoll and Ross (Cox, Ingersoll & Ross, 1985) 

model of short-term interest rates. With setting beta equals to one-half, our current level of 

the price process is under a square root. This proponent will prevent the forward price to be 

negative, which is in contrast to the previous case where beta equals to zero.  

 

♫ ὛὸέὧὬὥίὸὭὧ ὒέὫὲέὶάὥὰ ὓέὨὩὰ  

ὨὊ ὊὨὡ  

In this case, the forward process is a lognormal process, it is almost similar to the Black and 

{ŎƘƻƭŜǎΩǎ setup, where the stock price follows a Brownian motion. The only difference is 

that Black and Scholes assumed constant volatility and this stochastic model sets the volatil-

ity process to be a stochastic process as well. If beta is chosen to be one, one should also be-

ƭƛŜǾŜ ǘƘŀǘ ǘƘŜ ƳŀǊƪŜǘΩǎ backbone is horizontal (as can be seen in Section 3.3). This case also 

resembles the case beta is one-half because the lognormal process will also prevent nega-

tive forward rate.  

However,  can also be estimated as any other parameters in the model or it can be de-

duced from the observed backbone. Taking logarithm of Equation (3.1.2) produces 

ὰέὫ„ ὰέὫρ ὰέὫὪ 

From this, we can use linear regression of natural logarithm of observed ATM volatility and 

natural logarithm of forward rates in order to estimate the slope of the line above. ̡  is then 

the slope + 1. 
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3.4.2 ˊΣ ˄ ŀƴŘ ʰ 

After realizing beta, we are left with three remaining parameters to estimate ʰΣ ˊ ŀƴŘ ˄Φ Lƴ 

general, there are two well-known ways to do so.  

The first method (denoted in this paper as Method 1) is recommended by Hagan et al. 

(2002) and can be seen as the more convenient one. It uses ATM volatility to infer the pa-

rameter  so ǿŜ ƻƴƭȅ ƴŜŜŘ ǘƻ ŜǎǘƛƳŀǘŜ ˊ ŀƴŘ ˄Φ DƛǾŜƴ ǘƘŜ ŜȄǇǊŜǎǎƛƻƴ ŦƻǊ „  in earlier sec-

tion, we have 

 
„
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(3.4.1) 

 

π ὃ ὄ ὅ „ Ὢ  

Where 
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ς σ”

ςτ
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West (2005) suggested that this cubic function could have more than one real root. In that 

case, the smallest positive root should be selected to best capture the smile effect. Now the 

miniƳƛȊŀǘƛƻƴ ǇǊƻōƭŜƳΩǎ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴ becomes  

ÍÉÎ
ȟ

„ „ ’ȟ”ȟ ”ȟ’ȟ„ ȠὑȟὪȟ  

However, this estimation will take more time to produce the final result than the second 

method. Since every iteration has been added an extra step ƻŦ ŜǎǘƛƳŀǘƛƴƎ ʰ ǘƘǊƻǳƎƘ ˊ ŀƴŘ ’Ȣ 

In detail, the procedure is 

i. !ǎǎƛƎƴ ƛƴƛǘƛŀƭ ǾŀƭǳŜǎ ǘƻ ˊ ŀƴŘ ˄Φ 

ii. Solve for  through Equation (3.4.1) that use inputs ȟʍ ŀƴŘ ˄Φ 

iii. Insert ȟ ȟʍ ŀƴŘ ˄ ƛƴǘƻ Equation (3.1.2) to calculate „ for every strike. 

iv. Minimize the objective function above to get a new set of ʍ ŀƴŘ ˄Φ 

v. Repeat (ii) and (iii) to get a new set of parameters and „.  

vi. Plug the new „ ƛƴǘƻ ǘƘŜ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴΣ ǘƘŜƴ ŎƻƳǇŀǊŜ ǘƘŜ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴΩǎ 

value with a convergence criteria. Move on to the next iteration until the algorithm 

converge to a level of tolerance.  

The second method (denoted in this paper as Method 2) uses common techniques of opti-

mization such as Newton-Raphson Method for finding roots or minimizes the sum of 

squared of errors (SSE) (see Appendix 4) to solve the stated general minimization problem 

for all parameters22 and arrive at a set of parameters that gives the smallest error. Both 

                                                      
22 Assuming that ̡ is predetermined prior to the calibration of the model. 
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methods are very intuitive and may be done with a computer software that allows such im-

plementation. 

 

3.5 Greeks under the SABR Model 

 

3.5.1 Original Set 

In this section, we briefly describe the previous Greeks (delta and vega) under the SABR 

framework. Consider an option with a forward rate f, strike K and time to expiry T expressed 

in year. Under the model, the value of this option measured with the Black-76 formula is 

ὠ ὄὪȟὑȟ„ὑȠὪȟȟὝȟὝ 

Where, „ὑȠὪȟȟὝ is the volatility extracted from SABR and ὄὪȟὑȟ„ȟὝ is the Black-76 

pricing formula. From the original paper by Hagan et al. (2002), delta is the change in the 

current value of the option when the current value of the forward is shifted, while keeping 

other parameter and the level of alpha fixed. However, in addition to the Black-76 model, 

the underlying asset price is now a function of volatility. Therefore, by applying the chain 

rule, we find the SABR delta as 

 Ὢ Ὢ Ὢ 

  

Ў
ὄ

Ὢ

ὄ

„

„

Ὢ
 

 ύὬὩὶὩ π ί ὸ, Ὢ is the forward price at time t and Ὢ is the forward price at time s,  is 

the volatility at time t and  is the volatility at time s and Ὢ is the change in Ὢ. 

Similarly, vega risk is calculated as the change in price of the option with respect to a change 

in volatility of the ǳƴŘŜǊƭȅƛƴƎ ŀǎǎŜǘΩǎ alpha, where  is the change in , 

Ὢ Ὢ 

   

Ώ
ὄ

„

„


 

However, these risk measurements are not the optimal ones under the SABR model. Hence, 

we need to turn to better alternatives. 
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3.5.2 An Updated Set of Greeks 

Bartlett (2006) claimed that the delta and vega risk could be hedged more precisely by add-

ing new terms to the risk measurements of Hagan et al. (2002). Under the Greeks below, the 

author claimed that delta risk is less sensitive to the beta-exponent chosen in the SABR 

model. 

Barlett argued that because in the SABR model alpha and Ὢ is correlated, when Ὢ changes, 

in average, alpha changes too. Therefore, he postulated a more realistic way to calculate 

delta risk.  

Ὢ Ὢ Ὢ 

   

The average change in alpha caused by the change in Ὢ is denoted as ɿɻ. In order to calcu-

late alpha, Barlett (2006) rewrote the SABR dynamics in term of two uncorrelated Brownian 

motions Ὠὡ  and Ὠὤ, 

ὨὪ ὪὨὡȟ 

Ὠ ’ ”Ὠὡ ρ ”Ὠὤ  

If we rearrange the first expression as 

Ὠὡ ὨὪὪ ȟ 

then insert it into the second expression, we get 

Ὠ
”’

Ὢ
ὨὪ ’ ρ ”Ὠὤ 

Now, apparently, the change in alpha is affected by the change in two independent terms. 

The first term is the change in Ὢ and the second term is the unsystematic change in alpha. 

With this approach, we can write the average change in alpha due to the forward Ὢ as 

ɿɻ
”’

Ὢ
 ὨὪ 

The change in the option value is now 

Ўὠ
ὄ

Ὢ

ὄ

„

„

Ὢ

„



”ὺ

Ὢ
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Therefore, the delta risk is now 

Ў
ὄ

Ὢ
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This new definition of delta has included the average change in volatility alpha caused by 

changes in the underlying forward rate by adding the new term 

ὄ

„

„



”ὺ

Ὢ
 

In the same manner, vega risk should also be calculated from the following scenario 

Ὢ Ὢ  Ὢ

   

Similarly, where ɿÆ is the average change in Ὢ caused by a change in alpha, we can also find 

that 

Ὢ
”Ὢ

’
Ὠ 

Thus, the vega risk is now 

Ώ
ὄ

„

„
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We will stop at deriving risks at this point. For more complicated derivatives such as swap-

tion, it is difficult to measure delta and vega correctly. The reason is that, generally, delta of 

a swaption is defined as the change in swaption price in term of a change in the underlying 

swap price. In this case, the swap value must be determined and this is not an easy task to 

achieve in reality. Since different institutes have diverse techniques to approaching value of 

a swap, using different interest rate curves. Even with an appropriate method of calculating 

the a swap values, the task of calculating Greeks still appears problematic when one must 

decide how to shift the price of the underlying asset (e.g. the swap). One option is the shift 

the entire yield curve by, for example, 1 BPS and calculate new (theoretical) prices, or to use 

some applicable scaling factor. However, one will most likely never experience a parallel 

shift in the curve used to price the derivative. Instead, a shift occurring in one or several 

time buckets can be used. Consequently, to calculate risk is a delicate work that involves 

ambiguous decisions. Therefore, this section will not be further developed here, nor as a 

ǇŀǊǘ ƻŦ ǘƘŜ ǎƻŦǘǿŀǊŜ ŀǇǇƭƛŎŀǘƛƻƴ ŦƻǊ ǎǿŀǇǘƛƻƴΩǎ Ǌƛǎƪǎ ǳƴŘŜǊ ǘƘŜ {!.w ƳƻŘŜƭΦ  
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3.6 Refinement of the SABR Model  

It can be observed that the original formula for volatility by Hagan et al. (2002) breaks down 

when the strike is small and maturity is long. In this section, we will simply state the refine-

ment to that problem, which was summarized by Oblój (2008). We refer to Oblój (2008), 

and Chapter 3 and Chapter 7 in Gatheral (2006) for background and additional reading. 

The implied volatility surface „ ὼȟὝ with maturity Ὕ and ὼ ÌÏÇὊὑϳ  can be approxi-

mated using Taylor expansion, as the following  

„ ὼȟὝ Ὅὼ ρ Ὅ ὼὝȟ 

ύὬὩὶὩ   Ὅ ὼ
 ρ

ςτ



ίὑ

ρ

τ

”‡

ίὑ ϳ

ς σ”

ςτ
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And four cases for Ὅὼ 

Case 1: ὼ π 

Ὅπ ὑ  

Case 2: ‡ π 

Ὅὼ
ὼρ 

Ὢ ὑ
 

Case 3:  ρ 

Ὅὼ
‡ὼ

ÌÏÇ
ρ ς”ᾀᾀ ᾀ ”

ρ ”

 

ύὬὩὶὩ   ᾀ
‡ὼ


 

Case 4:  ρ 

Ὅὼ
‡ὼ

ÌÏÇ
ρ ς”ᾀᾀ ᾀ ”

ρ ”

 

ύὬὩὶὩ ᾀ
‡Ὢ ὑ
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The parameters ȟȟ‡ȟ” are obtained after calibration of the SABR model and ὑȟὪȟὝ are 

market data. This way, the volatility „ ὼȟὝ is calculated with regard to one of these four 

cases with only trivial operations and it is then plugged back into the Black-76Ωǎ ŦƻǊƳǳƭŀ ƛƴ 

order to get the price of an option. This adjusted model, even though, theoretically more 

reasonable than the original one, produce only small differences we will show in Section 4. 
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4 CALIBRATION AND RESULTS 

Using the data set described earlier, in this section, we will calibrate the SABR model with 

MATLAB in several ways. First, we will set three prior values to beta (0, 1/2 and 1), then use 

different methods to calibrate the remaining parameters. Secondly, we will estimate all pa-

rameter values using only the given market smile.  

In MATLAB, we partly use functions written by of Fabrice Douglas Rouah (see 

www.volopta.com). We also write our own program for implementing the SABR model 

where we call many of the external functions. ²Ŝ ǳǎŜ ǘƘŜ άŦƳƛƴǎŜŀǊŎƘέ ǘƘŀǘ ƛƳǇƭŜƳŜƴǘǎ ǘƘŜ 

Nelder-Mead algorithm to find parameters that minimize our SSE. Our written program im-

ports all the data from Mx3 to convert it to suitable volatility matrices. Later it also plots the 

volatility smiles, surfaces and cubes that we have presented earlier in this paper. The entire 

process from importing data from an excel-sheet to receiving all our findings takes approxi-

mately 15 seconds using a standard computer. Segments of our and Fabrice Douglas 

wƻǳŀƘΩǎ ŎƻŘŜ Ŏŀƴ ōŜ ŦƻǳƴŘ ƛƴ !Ǉpendix 3. 

 

4.1 Different Values of Beta 

Using both Method 1 and Method 2 without refinements, we calibrate the model for three 

different values of beta, namely πȟȟρ. Results are presented in Table 1 and Table 2. The 

result shows that the discrepancy in term of error23 is insignificant across all beta under 

both methods. 

 

Table 1 - Method 1 Estimated for Different Beta 

beta rho volvol alpha error 

0 0.447103 0.651421 0.008953 0.024757 

0.5 0.08426 0.673686 0.057738 0.014563 

1 -0.24621 0.783108 0.373115 0.014482 
 

Table 2 - Method 2 Estimated for Different Beta 

beta rho volvol alpha error 

0 0.475036 0.587904 0.009232 0.027657 

0.5 0.077919 0.641193 0.058745 0.018593 

1 -0.24778 0.780557 0.373697 0.014509 

 

                                                      
23 The error term is define as В „ „ ’ȟ”ȟ ”ȟ’ȟ„ ȠὑȟὪȟ , in other words, it is the sum of the 
squared differences between the observed market implied volatility and the estimated volatility by the SABR 
model.  

http://www.volopta.com/
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Although the different is small, we conclude that    gives the best fit for Method 1 while 

ʲ Ґ м ǇǊƻŘǳŎŜs the smallest error under the second calibration. On the other hand, when 

 π, one experiences the largest error, approximately 0.01 higher than for other values of 

beta. Below are figures illustrating the fit to market data. 

Figure 16 - Calibration with Different Beta (Method 1) 

 
In Figure 16, a 1M5Y swaption is calibrated using Method 1. Parameter estimation can be found in Table 1. The 

red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

As we can see from Figure 16, all the SABR curves go through the ATM point of the swap-

tion. This is also the point of intersection for the three curves. This is due to the fact that we 

only minimize the sum of the squared errors for two ǇŀǊŀƳŜǘŜǊǎ όƛΦŜΦ ˄ ŀƴŘ ˊύΦ ²Ŝ ŀƭǎƻ Ŏŀƴ 

conclude that the fit is equally good regardless of the predetermined value of beta. 
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Figure 17 - Calibration with Different Beta (Method 2) 

  
In Figure 17, a 1M5Y swaption is calibrated using Method 2. Parameter estimation can be found in Table 1. The 

red star indicates the ATM volatility of 37.4% for a swaption with strike of 2.4%. 

In Figure 17, Method 2 is employed where the sum of squared errors is minimized for three 

predeterminŜŘ ǾŀƭǳŜǎ ƻŦ ʲΦ Lƴ ŎƻƴǘǊŀǎǘ ǘƻ CƛƎǳǊŜ мс, the produced curves do no longer go 

through true the ATM market volatility (with the exception of when one is chosen as the be-

ta exponent). 

Comparing Method 1 and Method 2, we see that both methods produce spectacular fit to 

the market data. It is reasonable to believe that the chosen method should be based on 

whether the traders want to fit the SABR curve through the point of ATM volatility. Trader 

should fit the model so that it goes through ATM because more swaptions (and other deriv-

atives) are traded at or around ATM. Obviously, the work effort to minimize SSE and solving 

eq. (3.4.1) take more time to implement. Although, in our opinion, this is a small price to 

pay in order to have a model that can fit ATM instruments. 

The choice of which beta exponent to use is a puzzle to solve. Fortunately, we experience 

good fit regardless of which value we use when calibrating the model. We claim that, in 

agreement with Hagan et al. (2002), the beta value does not have such a great impact of the 

quality of the fit. It is quite appealing for traders to drop the assumption about a lognormal 

distributed underlying asset that is crucial in the Black-Scholes world and instead pick beta 

based on true beliefs. 
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4.2 Method 1 vs. Method 2 using Refinements 

From the previous observation, we choose  πȢυ to compare the quality of fit between 

two methods with their refinement suggested by Oblój (2008). Table 3 shows the calibrated 

parameters and errors.  

 

Table 3 - Different Methods Calibrated for when Beta is 0.5 

Calibration beta rho volvol alpha error 

Method 1 0.5 0.08426 0.673686 0.057738 0.014563 

Method 2 0.5 0.077919 0.641193 0.058745 0.018593 

Method 1F 0.5 0.046258 0.662306 0.057749 0.014231 

Method 2F 0.5 0.041704 0.636768 0.058619 0.015944 

 

As we can see, Method 1 with refinement has the lowest error while Method 2 has the high-

est. In average, refinement in both method shows equally fit when both Method 1 and 

Method 2 fit well to the market data without noticeable differences. The parameters are al-

so very similar. The two figures below are illustrations of the calibration.  

Figure 18 - Fine-tuned Smile (Method 1) 

  
In Figure 18, a 1M5Y swaption is calibrated using method 1 with and without fine-tuning. Estimated parame-

ters can be found in Table 3. The star indicates where ATM volatility is 37.4% for a swaption with strike of 

2.4%. 

One can once again see from Figure 18 that Method 1 calibrates the model by inferring al-

pha from ATM volatility. The fit of the two curves are almost identical for the entire domain 

of the curve and only seem to diverge slightly for large strikes. 
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Figure 19 - Fine-tuned Smile (Method 2) 

 

In Figure 19, a 1M5Y swaption is calibrated using Method 2 with and without fine-tuning. Estimated parame-

ters can be found in Table 3. The star indicates where ATM volatility is 37.4% for a swaption with strike of 

2.4%. 

In Figure 19, one can see that Method 2 produces almost identical curves with and without 

fine-tuning. Once again, the SABR curves only seem to differ for larger strikes. As mentioned 

previously, if SSE is used to minimize the ŜǊǊƻǊǎ ŦƻǊ ʰΣ ˊ ŀƴŘ ˄Σ ǘƘŜ ōŜǎǘ ŦƛǘǘƛƴƎ ŎǳǊǾŜǎ Řƻ not 

intersect the point of ATM volatility. 

Despite the fact that the Oblój (2008) refinement produces smaller errors, they are in fact 

rather cumbersome to apply. If the extra quality required is not outweighed by the effort it 

takes to implement refinement, any techniques should be considered adequate. However, 

we argue that for our example above, the positive effect received by applying Oblój (2008) is 

dwarfed in comparison to those that potentially could be received by altering between 

Method 1 and Method 2. 

  

4.3 Calibration for Long and Short Tenors 

As seen from the previous results, the fit of the SABR model to a 1M5Y swaption is spectacu-

lar regardless of method used or the selected beta. We continue by looking at some ex-

treme scenarios where the tenor of the underlying swap is very short/long and the time to 

maturity is also very short/long. We want to investigate the following swaptions: 1M20Y, 

1M4Y, 20Y4Y and 20Y20Y. 

Under the assumption that beta for the underlying asset is one half, we calibrate the four 

different swaptions using Method 1. The results are summarized in Table 4. 
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Table 4 - Different Swaptions Calibrated with Method 1 

Swaption beta rho volvol alpha error 

1M20Y 0.5 -0.03445 0.764233 0.05122 0.005479 

1M4Y 0.5 0.089563 0.541858 0.053886 0.042698 

20Y4Y 0.5 1 0.061883 0.031644 0.015523 

20Y20Y 0.5 -0.1098 0.208613 0.026842 0.005055 

 

Figure 20 - 1M20Y Calibration 

 

Figure 21 - 20Y20Y Calibration 

 
 

In Figure 20 (left) and Figure 21 (right) the SABR model is calibrated for a 1M20Y and a 20Y20Y swaption (ATM 
rate 3.17%) ǿƛǘƘ ʲ Ґ лΦрΦ aŀǊƪŜǘ !¢a ǾƻƭŀǘƛƭƛǘƛŜǎ ŀǊŜ ŀǇǇǊƻȄƛƳŀǘŜƭȅ нлΦф҈ ŀƴŘ мсΦм҈ respectively. Calculated 
ǇŀǊŀƳŜǘŜǊǎ ŦƻǊ ˊΣ ˄Σ ʰ ŀƴŘ {{9 ŀǊŜ ŦƻǳƴŘ ƛƴ ¢ŀōƭŜ пΦ 

Figure 20 and Figure 21 show remarkable fit to the market data. In those figures, we com-

pare two swaptions from the same volatility surface. One that expires in one month and one 

in 20 years. Investigating the parameters, we see that alpha is higher for the swaption that 

expires shorter which is consistent of what we can expect by looking at any swaption volatil-

ity surface. The negatiǾŜ ǾŀƭǳŜ ƻŦ ˊ ŘƻŜǎ ƴƻǘ ŎƘŀƴƎŜ ōȅ ŀ ƎǊŜŀǘ ŀƳƻǳƴǘ ǿƘƛƭŜ ˄ ƛǎ ƘƛƎƘŜǊ ŦƻǊ 

the swaption that expires in one month. 

Figure 22 - 1M4Y Calibration 

 

Figure 23 - 20Y4Y Calibration 

 
In Figure 22 (left) and Figure 23 (right) the SABR model is calibrated for a 1M4Y and a 20Y4Y swaption (ATM 
rate 2.21%) ǿƛǘƘ ʲ Ґ лΦрΦ aŀǊƪŜǘ !¢a ǾƻƭŀǘƛƭƛǘƛŜǎ ŀǊŜ ŀǇǇǊƻȄƛƳŀǘŜƭȅ осΦо҈ ŀƴŘ ннΦм҈ ǊŜǎǇŜŎǘƛǾŜƭȅΦ /ŀƭŎǳƭŀǘŜŘ 
paramŜǘŜǊǎ ŦƻǊ ˊΣ ˄Σ ʰ ŀƴŘ {{9 ŀǊŜ ŦƻǳƴŘ ƛƴ ¢ŀōƭŜ пΦ  
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We now turn the attention to a swaption with a short tenor of underlying swap. After cali-

bration, we end up with curves that do not show the superior quality of fit we have ob-

served earlier. The errors for the 1M4Y- and 20Y4Y swaptions are many times greater than 

those of the 1M20Y and 20Y20Y swaption when using the exact same techniques of calibrat-

ing the SABR model. Comparing the estimated values for rho, one can also see that it is very 

different when calibrated to fit the two different smiles from the same volatility surface. The 

same is true for volvol and alpha. 

It appears trickier to fit swaptions that have a shorter tenor than those with a long tenor re-

gardless of when they expire. Of course, this could be a result of a poorly chosen calibration 

technique where for example refinements or another beta value would generate a much 

better fit. On the other hand, it can also be a proof of how complex and dynamic the market 

could be. There can thus exist tenors with smiles that the SABR model cannot capture cor-

rectly. 

Above, we calibrated the SABR model for swaptions with underlying strikes of four years. 

We chose the tenor of four years to represent a swaption with a short-term underlying 

swap. In fact, many swaps have shorter tenors than four years. However, we did not choose 

them because in order to be able to calibrate the model around a spread of 400 BPS, a one-, 

two- or three-year swaption would have to be calibrated for negative strikes. The SABR 

model breaks down and we can no longer calibrate the curve under methods presented in 

this paper. In defence of Hagan et al. (2002) who presented their work during a time when 

interest rates were still somewhat high, no one could expect scenarios where an issue about 

negative strikes would be addressed. In order to resolve this issue a method that accounts 

for negative strikes must be developed.24 

 

4.4 Additional Remarks 

We have so far showed very good fit to market data. We do not argue that that SABR model 

in any way fail to capture the effect of the smile seen in the markets. Our findings presented 

and discussed above are clear proofs that the SABR model is efficient to calibrate itself to 

market data. Method employed, with or without refinements, also seem to have a small im-

pact on the outcome. 

However, the quality of the data must always be questioned. In this report, we have used 

ƳŀǊƪŜǘ Řŀǘŀ ǇǊƻǾƛŘŜŘ ǘƻ ǳǎ ōȅ ƻƴŜ ƻŦ {ǿŜŘŜƴΩǎ ƳŀƧƻǊ ōŀƴƪǎΦ ¢ƘŜ Řŀǘŀ ǊŜŎŜƛǾŜŘ ƛǎ ŀƭǊŜŀŘȅ ƛƴ-

terpolated/extrapolated for several strikes and tenors where traded instruments do not ex-

ist. As mentioned earlier, this is standard procedure. Although, if one tries to calibrate the 

model to data that ƛǎ ŀƭǊŜŀŘȅ ŀƭǘŜǊŜŘ ǘƻ άŦƛǘ ǘƘŜ ƳŀǊƪŜǘέΣ ƻƴŜ ŎƻǳƭŘ ŀƭƳƻǎǘ ŜȄǇŜŎǘ ǘƻ ǎŜŜ ǘƘŜ 

result we provide in previous sections.  

                                                      
24 Such as extension of the SABR model to fit with the Normal Black model (see Section 2.5.4). 
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In this paper, we only study instantaneous movements in time to calibrate the SABR model. 

The SABR volatility calculated from the calibration ought to be plugged back into the Black-

76 model to receive a theoretical price for any strike. Although, this is only valid at that cer-

tain point in time for when the calibration occurred and does not answers any questions re-

garding if the calibration will last for a longer time. Calibration of the model only takes a 

couple of seconds so recalibration of a frequent basis could easily be done. Hagan et al. 

(2002) claimed that calibration lasts for a long time given that alpha is recalibrated daily. It 

could be argued that the model should be recalibrated more frequently than that.  

Implied volatility is an interesting concept. Up until today, any version of the Black-Scholes 

model is mainly used to find the implied volatility of an instrument. People are thus άǳǎƛƴƎ 

ǘƘŜ ǿǊƻƴƎ ƴǳƳōŜǊ ƛƴ ǘƘŜ ǿǊƻƴƎ ŦƻǊƳǳƭŀ ǘƻ ƎŜǘ ǘƘŜ ǊƛƎƘǘ ǇǊƛŎŜέ (Rebonato, 2007). Despite 

that the SABR model is not an actual pricing model it has gained vast popularity among 

traders. It is easy to calibrate and the result seem to correspond good to market data. Since 

we have not investigated any alternative models, little can be said about them and whether 

they succeed the SABR model. However if the market standard would be to use the SABR 

model in order to price certain interest rate derivatives, would the market adjust to the 

model such as it did to the Black-Scholes model during the 70s? What impacts and what 

kind of harm could this possible cause? Even if certain models appear very appealing, one 

must always remember that the market is dynamic and will always change, often unexpect-

edly. To put to strong credence in one model is thus very risky, regardless of its power to 

correctly capture smile dynamics and create good hedge ratios. 
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5 CONCLUSION 

The SABR model developed by Hagan et al. (2002) is a stochastic volatility model that at-

tempts to capture volatility smiles in derivative markets. In this paper, we account for and 

calibrate the SABR model for swaptions. By using two different methods (with and without 

refinement), we found the SABR model accurately capture the volatility smiles on the mar-

kets. Under our investigation, we experienced reverse skews rather than forward skews for 

all swaptions. On the other hand, for longer tenors, we do not experience any major smile 

effects for swaptions when the volatility curves are rather flat in general.  

We find no major discrepancy between the two methods of calibration. However, we sug-

ƎŜǎǘ ǘƘŜ ƳŜǘƘƻŘ ǿƘŜǊŜ ʰ is inferred from ATM volatility for conveniences and slightly better 

result. While using refinements, the fit to the market data is increased marginally. Despite a 

slightly better fit, we aǊƎǳŜ ǘƘŀǘ ŀ άōŜǘǘŜǊέ ǾŀƭǳŜ ŦƻǊ ʲΣ ǿƘƛŎƘ ƛǎ ƳƻǊŜ ƛƴ ƭƛƴŜ ǿƛǘƘ ǘƘŜ ǘǊǳŜ 

distribution of the underlying asset, should be implemented rather than any refinements. 

For future conceivable studies, as a natural continuation of this paper, a study to calculate 

swaptions, caps or floors prices, ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ άDǊŜŜƪǎέ and how they are affected by chang-

ing the parameters under the SABR should be carried out. In addition, a research about vol-

atility surfaces would be an interesting undertaking. Moreover, a deeper study of a dynamic 

SABR model would constructively add to the body of literature, see Appendix B, where 

Hagan et al. (2002, p. 103) presented the dynamic of SABR model. This would lead to one 

being able to calibrate the SABR model for entire volatility surfaces. Finally, as earlier men-

tioned, an extension of the SABR model that is consistent for negative strikes could be an in-

teresting alternative for further studies.  
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6 APPENDICES 

 

Appendix 1 ς Cumulative Normal Distribution Function 

 

To implement for example Equation (2.5.3) and Equation (2.5.4), there lies a problem calcu-

lating the cumulative normal distribution function, ﬞ Ø. One can use inbuilt functions in 

e.g. Excel (NORMSDIST) or MATLAB (normcdf). Without computational assistance, a poly-

nomial approximation for ﬞ Ø is given by 

ﬞ Ø
ρ ﬞᴂØ ὥὯ ὥὯ ὥὯ ὥὯ ὥὯ ȟ ὼ π

ρ ﬞ Øȟ ὼ π
 

Where 

Ὧ
ρ

ρ ὼ
 

 πȢςσρφτρω 

ὥ πȢσρωσψρυσπ 

ὥ πȢσυφυφσχψς  

ὥ ρȢχψρτχχωσχ 

ὥ ρȢψςρςυυωχψ 

ὥ ρȢσσπςχττςω 

ﬞ ὼ  
ρ

Ѝς“
Ὡ ϳ  

 

For further reference, see Chapter 13 in Hull (2009). 
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Appendix 2 ς Selected Data 

 

Table A1 - Selected Data 

ATM VOLATILI-
TIES 

           

Tenor/Maturity  1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 

1Y 33.4 30.1 31.5 31.1 34.3 33.9 29.8 27.8 24.5 22.4 19.7 

2Y 32.8 31.1 33.3 33.3 34 31.5 28.4 26.3 24.8 21.5 20.9 

3Y 34 32.5 34.8 34.8 32 29.9 27.4 25.4 24.4 21.1 21.5 

4Y 36.3 35 34.9 33.9 30.6 28.7 26.6 24.9 23.8 20.9 22.1 

5Y 37.4 36.3 35.5 33.1 29.7 27.6 25.9 24.4 23.2 20.8 22.2 

7Y 32.5 31.3 30.9 29.7 27.8 26.7 25.5 24.4 22.9 20.8 21.2 

10Y 31.1 29.3 28.2 26.8 26.1 25.7 25.1 24.4 22.9 21.1 19.9 

12Y 31.1 29.3 28.2 26.8 26.1 25.7 25.1 24.4 22.9 21.1 19.9 

15Y 29.3 28 27.3 26.1 25.1 24.8 24.1 23 22.3 20.3 17.2 

20Y 28.9 27.9 27.4 26.4 25 24.6 23.8 22.8 21.9 19.8 16.1 

            
4Y swaption            
Strike/Maturity  1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 

0.213859081 37.0984 37.0984 28.6 24.9333 14.1049 11.0987 9.9779 8.86667 7.96642 7.10018 7.46706 

0.463859081 30.6482 30.6482 23.6167 20.0667 11.4791 9.07393 8.16222 7.25833 6.50812 5.76683 6.14199 

0.713859081 24.1979 24.1979 18.6333 15.2 8.85319 7.04913 6.34654 5.65 5.04982 4.43349 4.81693 

0.963859081 17.7476 17.7476 13.65 10.3333 6.22733 5.02434 4.53085 4.04167 3.59151 3.10014 3.49186 

1.213859081 11.2973 11.2973 8.66667 5.46667 3.60146 2.99954 2.71517 2.43333 2.13321 1.76679 2.16679 

1.463859081 7.46483 7.46483 5.76667 3.68333 2.4177 2.01633 1.84071 1.66667 1.41656 1.16679 1.51674 

1.713859081 3.63239 3.63239 2.86667 1.9 1.23394 1.03312 0.96624 0.9 0.69991 0.56679 0.8667 

1.963859081 1.39964 1.39964 1.1 0.76667 0.53358 0.39991 0.38319 0.36667 0.26661 0.23339 0.3667 

2.213859081 0 0 0 0 0 0 0 0 0 0 0 

2.463859081 -0.6331 -0.6331 -0.6333 -0.5 -0.4336 -0.2999 -0.2665 -0.2333 -0.2 -0.1666 -0.3 

2.713859081 -0.7664 -0.7664 -0.8 -0.7667 -0.6338 -0.4998 -0.3995 -0.3 -0.3333 -0.2 -0.5667 

2.963859081 -0.3831 -0.3831 -0.55 -0.8167 -0.7672 -0.6164 -0.4742 -0.3333 -0.3166 -0.15 -0.75 

3.213859081 0.00018 0.00018 -0.3 -0.8667 -0.9007 -0.733 -0.549 -0.3667 -0.2999 -0.1 -0.9334 

3.463859081 0.66681 0.66681 0.08333 -0.7083 -0.8592 -0.6747 -0.345 -0.2833 -0.2082 0.025 -1.0001 

3.713859081 1.33344 1.33344 0.46667 -0.55 -0.8176 -0.6163 -0.3408 -0.2 -0.1166 0.15 -1.0667 

3.963859081 2.00007 2.00007 0.85 -0.3917 -0.776 -0.5579 -0.3366 -0.1167 -0.0249 0.275 -1.1334 

4.213859081 2.6667 2.6667 1.23333 -0.2333 -0.7345 -0.4995 -0.3323 -0.0333 0.06679 0.4 -1.2001 

            
5Y swaption            
Strike/Maturity  1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 

0.399829154 35.4 35.4 27.1 17 11.4 9.7 9.04733 8.4 7.7 7 7.9 

0.649829154 28.625 28.625 21.875 13.725 9.25 7.9 7.37285 6.85 6.275 5.675 6.5 

0.899829154 21.85 21.85 16.65 10.45 7.1 6.1 5.69836 5.3 4.85 4.35 5.1 

1.149829154 15.075 15.075 11.425 7.175 4.95 4.3 4.02387 3.75 3.425 3.025 3.7 

1.399829154 8.3 8.3 6.2 3.9 2.8 2.5 2.34938 2.2 2 1.7 2.3 

1.649829154 5.45 5.45 4.1 2.6 1.85 1.65 1.57469 1.5 1.3 1.1 1.6 

1.899829154 2.6 2.6 2 1.3 0.9 0.8 0.8 0.8 0.6 0.5 0.9 

2.149829154 1 1 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.4 

2.399829154 0 0 0 0 0 0 0 0 0 0 0 

2.649829154 -0.4 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 

2.899829154 -0.5 -0.5 -0.4 -0.4 -0.4 -0.3 -0.2498 -0.2 -0.3 -0.2 -0.6 

3.149829154 -0.15 -0.15 -0.05 -0.35 -0.45 -0.35 -0.2747 -0.2 -0.25 -0.15 -0.8 

3.399829154 0.2 0.2 0.3 -0.3 -0.5 -0.4 -0.2996 -0.2 -0.2 -0.1 -1 
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3.649829154 0.825 0.825 0.65 -0.1 -0.4 -0.3 0 -0.1 -0.1 0.025 -1.075 

3.899829154 1.45 1.45 1 0.1 -0.3 -0.2 0 0 0 0.15 -1.15 

4.149829154 2.075 2.075 1.35 0.3 -0.2 -0.1 0 0.1 0.1 0.275 -1.225 

4.399829154 2.7 2.7 1.7 0.5 -0.1 0 0 0.2 0.2 0.4 -1.3 

            
15Y swaptions            
Strike/Maturity  1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 

1.104474218 23.2997 23.2997 18.6 12.8 9.6 10.85 11.5529 12.25 11.7999 11.1 8.79975 

1.354474218 19.2247 19.2247 15.1375 10.425 7.7 8.92503 9.54628 10.1625 9.79996 9.2125 7.3123 

1.604474218 15.1498 15.1498 11.675 8.05 5.8 7.00003 7.5397 8.075 7.79997 7.325 5.82484 

1.854474218 11.0749 11.0749 8.2125 5.675 3.9 5.07502 5.53311 5.9875 5.79999 5.4375 4.33739 

2.104474218 6.99995 6.99995 4.75 3.3 2 3.15001 3.52653 3.9 3.8 3.55 2.84993 

2.354474218 4.72497 4.72497 3.025 2.175 1.125 2.15001 2.42612 2.7 2.65 2.45 1.99996 

2.604474218 2.44999 2.44999 1.3 1.05 0.25 1.15001 1.32571 1.5 1.5 1.35 1.14999 

2.854474218 0.94999 0.94999 0.55 0.4 -0.3 0.5 0.60041 0.7 0.7 0.6 0.5 

3.104474218 0 0 0 0 0 0 0 0 0 0 0 

3.354474218 -0.5 -0.5 -0.35 -0.25 -0.9 -0.3 -0.4004 -0.5 -0.4 -0.45 -0.4 

3.604474218 -0.6 -0.6 -0.1 -0.25 -1 -0.45 -0.6508 -0.85 -0.75 -0.75 -0.75 

3.854474218 -0.325 -0.325 0.3 -0.15 -0.975 -0.5 -0.751 -1 -0.9 -0.925 -0.9999 

4.104474218 -0.05 -0.05 0.7 -0.05 -0.95 -0.55 -0.8512 -1.15 -1.05 -1.1 -1.2499 

4.354474218 0.55005 0.55005 1.3125 0.2375 -0.8 -0.425 -0.4193 -1.1 -1.0125 -1.0625 -1.3499 

4.604474218 1.15005 1.15005 1.925 0.525 -0.65 -0.3 -0.3882 -1.05 -0.975 -1.025 -1.4499 

4.854474218 1.75006 1.75006 2.5375 0.8125 -0.5 -0.175 -0.357 -1 -0.9375 -0.9875 -1.5499 

5.104474218 2.35007 2.35007 3.15 1.1 -0.35 -0.05 -0.3258 -0.95 -0.9 -0.95 -1.6499 

            
20Y swaptions            
Strike/Maturity  1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 

1.166501312 22.1 22.1 17.5 12.6 8.5 10.7 11.5033 12.3 12 11.3 7.9 

1.416501312 18.275 18.275 14.225 10.275 6.675 8.8 9.50287 10.2 9.95 9.375 6.575 

1.666501312 14.45 14.45 10.95 7.95 4.85 6.9 7.50246 8.1 7.9 7.45 5.25 

1.916501312 10.625 10.625 7.675 5.625 3.025 5 5.50205 6 5.85 5.525 3.925 

2.166501312 6.8 6.8 4.4 3.3 1.2 3.1 3.50164 3.9 3.8 3.6 2.6 

2.416501312 4.6 4.6 2.7 2.15 0.35 2.1 2.40123 2.7 2.65 2.5 1.85 

2.666501312 2.4 2.4 1 1 -0.5 1.1 1.30082 1.5 1.5 1.4 1.1 

2.916501312 0.9 0.9 0.5 0.4 -1 0.5 0.60041 0.7 0.7 0.6 0.5 

3.166501312 0 0 0 0 0 0 0 0 0 0 0 

3.416501312 -0.5 -0.5 -0.6 -0.2 -1.6 -0.3 -0.4004 -0.5 -0.4 -0.4 -0.3 

3.666501312 -0.5 -0.5 -0.4 -0.2 -1.7 -0.4 -0.6008 -0.8 -0.7 -0.7 -0.6 

3.916501312 -0.2 -0.2 0.1 -0.05 -1.65 -0.45 -0.701 -0.95 -0.85 -0.85 -0.8 

4.166501312 0.1 0.1 0.6 0.1 -1.6 -0.5 -0.8012 -1.1 -1 -1 -1 

4.416501312 0.725 0.725 1.225 0.425 -1.45 -0.35 0 -1.025 -0.95 -0.95 -1.05 

4.666501312 1.35 1.35 1.85 0.75 -1.3 -0.2 0 -0.95 -0.9 -0.9 -1.1 

4.916501312 1.975 1.975 2.475 1.075 -1.15 -0.05 0 -0.875 -0.85 -0.85 -1.15 

5.166501312 2.6 2.6 3.1 1.4 -1 0.1 0 -0.8 -0.8 -0.8 -1.2 

The data in Table A1 contains the data to reproduce the calibration, smiles, surfaces and cubes done in previ-

ous sections. All values are in per cent unless other stated. The implied volatility for a specific swaption should 

be read by adding or subtracting a term to the ATM volatility. For example, the implied volatility for a 1M4Y 

swaption at strike K = 0.213859081 is (33.4 + 37.0984) = 70.4984% while the implied volatility for a 20Y20Y 

ATM swaption (i.e. K =3.166501312) is (16.1+0) = 16.1%. 
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Appendix 3 ς Selected Code 

 

This appendix contains some of the MATLAB code used for calibrating the SABR model. For a 

full account of MATLAB code, contact either author. We begin with the functions for two 

different methods of calibrations that based on the functions written by Rouah. The first 

function EstimateAllParameters corresponds to Method 2, where all the SABR parameters 

are estimated simultaneously. 

function  y = EstimateAllParameters(params,MktStrike,MktVol,F,T,b)  

  
% -------------------------------------------------------------------------  
% Returns the following SABR parameters:  
% a = alpha  
% r = rho  
% v = vol - of - vol  
% Required inputs:  
% MktStrike = Vector of Strikes  
% MktVol    = Vector of corresponding volatilities  
% F = spot price  
% T = maturity  
% b = beta parameter  
% --------------------- ----------------------------------------------------  
a = params(1);  
r = params(2);  
v = params(3);  

  
N = length(MktVol);  

  
% Define the model volatility and the squared error terms  
for  i=1:N  
    ModelVol(i) = SABRvol(a,b,r,v,F,MktStrike(i),T);  
    error(i) = (ModelVol(i) -  MktVol(i))^2;  
end ;  

  
% Return the SSE  
y = sum(error);  

  
% Impose the constraint that - 1 <= rho <= +1 and that v>0  
if  abs(r)>1 | v<0  
    y = 1e100;  
end  

 

 

 

  



59 
 

The second and the third function EstimateRhoAndVol and findAlpha are used for Method 1. 

As mentioned above, alpha is estimated through ATM volatility while rho and volvol is found 

by minimizing the SSE.  

function  y = EstimateRhoAndVol(params,MktStrike,MktVol,ATMVol,F,T,b)  

  
% -------------------------------------------------------------------------  
% Returns the following SABR parameters:  
% r = rho  
% v = vol - of - vol  
% Uses ATM volatility to estimate alpha  
% Required inputs:  
% MktStrike = Vector of Strikes  
% MktVol    = Vector of  corresponding volatilities  
% ATMVol = ATM volatility  
% F = spot price  
% T = maturity  
% b = beta parameter  
% -------------------------------------------------------------------------  
r = params(1);  
v = params(2);  
a = findAlpha(F,F,T,ATMVol,b,r,v);  
N = leng th(MktVol);  

  
% Define the model volatility and the squared error terms  
for  i=1:N  
    ModelVol(i) = SABRvol(a,b,r,v,F,MktStrike(i),T);  
    error(i) = (ModelVol(i) -  MktVol(i))^2;  
end ;  

  
% Return the SSE  
y = sum(error);  

  
% Impose the constraint that - 1 <= rho <= +1 and that v>0  
% via a penalty on the objective function  
if  abs(r)>1 | v<0  
    y = 1e100;  
end  

 
 

function  y = findAlpha(F,K,T,ATMvol,b,r,v)  
% By Fabrice Douglas Rouah  

  
% -------------------------------------------------------------------------  
% Finds the SABR "alpha" parameter by solving the cubic equation described  
% in West (2005) "Calibration of the SABR Model in Illiquid Markets"  
% The function can return multiple roots.  In that case, the program  
% eliminates negative roots, and select the smallest root among the  
% positive roots that remain.  
% Required inputs:  
% F = spot price  
% K = strike price  
% T = maturity  
% ATMvol = ATM market volatility  
% b = beta parameter  
% r = rho parameter  
% v = vol of vol parameter  
% ---------------------------- ---------------------------------------------  
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% Find the coefficients of the cubic equation for alpha  
C0 = - ATMvol*F^(1 - b);  
C1 = (1 + (2 - 3*r^2)*v^2*T/24);  
C2 = r*b*v*T/4/F^(1 - b);  
C3 = (1 - b)^2*T/24/F^(2 - 2*b);  

  
% Return the roots of the cubic equation (multiple roots)  
AlphaVector = roots([C3 C2 C1 C0]);  

  
% Find and return the smallest positive root  
index = find(AlphaVector>0);  
Alpha = AlphaVector(index);  
y = min(Alpha);  

 

 

This following function, SABRvol will return the SABR volatility for each strike and maturity 

in both methods.  

 

function  y = SABRvol(a,b,r,v,F,K,T);  
% ---------------------------------------------  
% Returns the SABR volatility.  
% Required inputs:  
% a = alpha parameter  
% b = beta parameter  
% r = rho parameter  
% v = vol of vol parameter  
% F = spot price  
% K = strike price  
% T = maturity  
% ---------------------------------------------  
% By Fabrice Douglas Rouah  

  
% Separate into ATM case (simplest case) and  
% Non- ATM case (most general case)  

  
if  abs(F - K) <= 0.001  % ATM vol  

  
    Term1 =  a/F^(1 - b);  
    Term2 = ((1 - b)^2/24*a^2/F^(2 - 2*b) + r*b*a*v/4/F^(1 - b) + (2 -

3*r^2)*v^2/24);  
    y = Term1*(1 + Term2*T);  

  
else     % Non- ATM vol  

  
    FK = F*K;  
    z = v/a*(FK)^((1 - b)/2)*log(F/K);  
    x = log((sqrt(1 -  2*r*z + z^2) + z -  r)/(1 - r));  
    Term1 = a / FK^((1 - b)/2) / (1 + (1 - b)^2/24*log(F/K)^2 + (1 -

b)^4/1920*log(F/K)^4);  
    if  abs(x - z) < 1e - 10 
        Term2 = 1;  
    else  
        Term2 = z / x;  
    end  
    Term3 = 1 + ((1 - b)^2/24*a^2/FK^(1 - b) + r*b*v*a/4/FK^((1 - b)/2) + (2 -

3*r^2)/24*v^2)*T;  
    y = Term1*Term2*Term3;  
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end  

 

For all code above, we refer to the eminent work of Fabrice Douglas Rouah with free 

MATLAB functions available at www.volopta.com.  

Below is a very short section from our code for calibrating one example of a 1M5Y swaption, 

given the above functions. 

 

%% Calibrating the smile for a 1M5Y swaption  

  
%Define the starting values and options for fminsea rch  
start = [0.3,0.3];  
options = optimset( 'MaxFunEvals' , 1e5, 'TolFun' , 1e - 8, 'TolX' , 1e - 10);  

  
% Parameter estimation method 1.  Set Beta = 0.5.  
% Estimate rho and v, and at each iteration step,  
% Find alpha as the cubic root using the findAlpha function  
Beta = 0.5;  
[param, feval] = 

fminsearch(@(par)EstimateRhoAndVol(par,K5Y,Vol5Y(:,1),Vol5ATM(1),Swapcurve(

5),Expiry(1)/12,Beta),start,options);  
r1 = param(1);  
v1 = param(2);  
a1 = 

findAlpha(Swapcurve(5),Swapcurve(5),Expiry(1)/12,Vol5ATM(1),Beta,r1,v1);  
for  j= 1:length(K5Y);  
    SABRVol1M5Y_method1(j) = 

SABRvol(a1,Beta,r1,v1,Swapcurve(5),K5Y(j),Expiry(1)/12);  
end  

 

 

 

  

http://www.volopta.com/
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Appendix 4 ς Ordinary Least Squares 

To minimize the sum squared of errors (SSE) in our calibration, the technique implied is 

Ordinary Least Squares (OLS) regression estimation. Given a single variable regression model 

below  

ὣ  ὢ  

Where ὣ and ὢ is the observed market data, ὣ is estimated data, OLS will chose  and  

that gives the minimum squared  all over sample data points. Where 

 ὣ ὣ 

ὣ  ὢ 

So, in detail, OLS minimize 

Ὡ ὣ  ὢ  

For only one independent variable,  and  are calculated as follow 


В ὢ ὢ ὣ ὣ

В ὢ ὢ
 

 ὣ ὢ 

However, in our model, there are two or three independent variables in the regression 

model ”ȟ’ and ). In which, the Equation (3.4.1) has to be rewritten where ”ȟ’ and  are 

,  and  respectively. Now, the method is called multivariate regression model but it 

has the same underlying principle as the single variable model. The goal now is to minimize 

the SSE in the same mathematical approach but with one variable at a time while keeping 

others constant. The formula for different  is very cumbersome and vast in size. We refer 

to A. H. Studenmund (2011) for the content of this section and more information. 

  












