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Problem The standard Blackscholesframework cannot incorporate the volatilitgmiles
usually observed in the markets. Instead, one must consider alternative stochastiitityol
models such as the SABRtle research about the suitdity of the SABR model for Swedish
market (swaption) data has been found

Purpose The purpee of this paper is to account for and to calibratee SABR model for
swaptionstradingon the Swedish market. We intend to alter the calibration techniques and
parameter values t@xaminewhich methodisthe mostconsistent with the market.

Method: In MATLA, we investigate the model using two differentnimizationtechniques
to estimate themodek) parameters.For both techniques, walso implement refinements
of the original SABR model.

Results and Conclusiohe quality of the fit relies heavily on thumderlying dataFor the
data used, we find superior fit for many different swaption smilasaddition,little discrep
ancyin the quality of the fit betweenmethodsemployedis found We conclude that esti
mating theh parameter from atthe-moneyvolatility produces slightly smaller errors than
using minimization techniques to estimate all parameters. Using refinenestiniques
marginally increasghe qualityof the fit.
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Problem: Det standardiserade BlacScholesamverket kan inte inkorporera de vela
tilitetsleenden som vanligtvis observeras pa marknaden. Istallet s& maste man Overvaga al
ternativa stokastiska volatilitetsiodeller sa som SABRodellen. Lite forskning angaende
lampligheten av SABRodellen for svensk (swaptions) data har blivit utford.

Syfte: Syftet med denna rapport ar att beskriva och kalibrera SwBgellen for swaptioner
pa den svenska marknaden. Vi avser att andra kalibreringstekniker och parametervarden fo
att undersoka vilken metod som ar mest férenlig med marknaden.

Metod: | MATLAB undersoker vi modellen genom att anvanda tva olika minimiseringstekni
ker for att estimera SABRodellens parametrar. Fér bada metoderna sa implementerar vi
aven forfiningar aden ursprungliga SABRodellen.

Resultat and SlutsatKvaliteten av passformen beror i stor grad pa underliggande data. For
anvand data sa hittar vi forstklassig passform for manga olika swaptionsleenden. Vi finner li
ten skillnad i kvaliteten av passfoen mellan metoder implementerade i denna rapport. Vi
drar slutsatsen att estimering dwparametern frané I-tlie-moneyvolatiliteté producerar
nagot mindre fel jamfort mot anvanda tekniker som estimerar alla parametrar. Anvandning
av forfiningsteknikeger en marginell forbattrad kvalitet av passformen.
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” Standard deviation of the underlying asset value, also known as volatility.

» Volatility produced bythe SABRolatility model thatshould be the substi
tution to the constant volatilityn the Black76 pricing model for option.

» Implied volatility that is observed from market prices.

» Volatility produced from the local volatility model.
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1 INTRODUCTION

1.1 Background

During the early 1970s, Black and Scholes (1973) and Mergx8)tleveloped what be
camea pricing model for European puand call options. Usually known as tBeckScholes
model or the BlackScholesMerton mode] their Nobel Prize awarded work has played a
keenrole in the field of pricing financiaerivatives.

The BlaciScholes model waisitially developed to fit a world where there are no arbitrage
opportunities with unlimited pssibilities to lend andborrow at a riskfree rate. A world
where continuous (transaction costs free) trading osdarnondividend paying underlying.
The urderlying asst (usually a stock that can be shorted and/or traded in fractiorgsis
sumed to follow a geometric Brownian motion (i.e. a stochastic processg)er these as
sumptions, the model can price European options vathly five inputs. Fouiof which are
observable on the marketplace (price of underlying, strike pricee tio maturity and risk
free interest rate) and one thateeds to be estimated or inferred (volatility). With its sim
plicity and the underlying riskeutral valuation, the BldeScholes model speaks toves
tora idependenton their atitudes towards risk (Hull, p. 289).

Over the last 40 years, financial markets have changedlly and noware very different
comparedto when Black, Scholes and Merton presented tlggound-breakingwork. Com

plex instruments are nowadays traded and traders are familiar with exotic options. Pricing
of these innovative derivatives are usually a perplexity and the EBabbkles modelthat

was develop to pricelgin vanilla (European) optionsas now been rendered somewhatin
adequate. In addition, variables that are assun@mhstantappear in fact to be random,
thus jeomrdizing the accuracy of models that do not account for these phenomena.

Prior to the Black Monday, ¥%f October 1987, th onlyunidentified variable in the Black
Scholes model, the volatility, did halepend greatly on the strike price when being eb
served in the market. In the aftermath, a new pattern arose. Volatilities were now smaller
for at-the-money (ATM) options ratr than for dittos that were deep #the-money (ITM)
and/or out-of-the-money (OTM). The shape of the volatility curve came to be known as a
volatility skewor volatility smilé and has since then been complicated to include in any pric
ing models.

Variows attempts have been madéo come up with models that handlier example, a sto
chastic interest rate or a model that tries 8eize the volatility smile observed on the mar

ket. Black (1976) del@ped a formula for pricing forwardontracts. His work latetame to

be known as thélack mode(alsoknown asthe Black76 mode).L y K A &Prididg wils NJ &
a smile&, Dupire (1994), extends the BlaSkholes model, claiming it to be compatible with

the volatiity smiles.In the same time, Derman and Kani (19p#sented their work on lo

1 Skew usually refatto the slope of the cure while smile indicate the curvature.
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cal volatility modelsln addition, models allowing for discontinuity (ajkenp diffusionmod-
els)have been developed (see e@ox and Ross (197®akshi, Cao and Chen (1997)).

Hagan et al. (200&tated that local volatility models predicted the wrong dynamics for the
implied volatility curve. The authors derived tiS8ABR modehat they claimedd O LJG dzNB a
GKS O2NNBOU Re y(bdipOgt) Nenked aitét 8s parafriets:Seochastic

Alpha, Beta, Rhahe SABR modélas over the last decade gained vaspplarity, especially

in interest derivative markets

1.2 Problem Statement

2 AGK2dziih LI2adaAofS KSRIAYI 2LIRNIdzyAGASas FAyY
money. In order to Bdge properly, a trader needs to be alidevalue instruments correctly.

With real interest rates that aresometimesnegative, pricing models that traders earlier

have used might now appear obsolete. The Biackoles modebreaks down and traders

are nowadays switching toward models that can handle negativterest rates (e.g. the

Normal Blackmodel). Furthermore,someassumptions of the famous BlaSkchols model

are quite unreaonable Yet, despite its flaws, the model is still considered market siehd

and is commonly used as benchmark when evaluating new models.

If one would pld the implied volatilityas a function of strikehe or she will most likely expe
rience a parabola shaped curve instead of a straight Tihés stands in great contrast the
assumptions by Black and Scholes (1973) that presumed constant volatilities withta- one
one relationship between price of an option and the volatility of the enying asset. De
spite thattraders usually quote options in implied volatilities, thestdl exist a problematic
decisionto choosewhat volatility to use in order to price an option.

As mentioned, attempts have been made in order to develop pricing models that handle the
smile effects. One of the most praised one is the SABR model. kteclaastic volatility
model for forward LIBOR rates and is, in comparison to other volatility models, considered
somewhat user friendly. Subsequently to Hagan &2 @002) derivation of the SABR mod

el, many paers evaluating its properties have beparformed. Bartlett (2006) suggested a
new set of risk formulas (updated Greeks) and West (2005) proposed a way for calibrating
the model in illiquid markets. Later, Obl6j (20G8)oweda way of finetuning the calibra

tion. Their sugge®mns can come t@ood usage when evaluating the aptness of the model in
Hagan et al. (2002nd enhancingjuality of the fit

A swaptionis an option to enter a swap. It gives the holder the possibility (but not the obli
gdion) to enter into a swap at a certain fututane. Swaptions are commonly priced using
the Black76 model, where tle implied volatility iseadfrom a volatility surface. Once again,
choosng an appropriate measurement for the standard deviation of the derivative (due to
the fact of the observed vatility amiles) is a testing task



This problems aggravatedvhenone, for examplewant to write an overthe-counter(OTQ
derivative of a strike thatannotbe read from a volatility surfac&Vill a calibration of the
model create volatility surfaces & traders can use for pricing swaptions whose underlying
haveboth short andlong tenors?Are there various methods that are bettéy capture the
smile effect that exists on the swaption marRet

For the SwedislBwaptionmarket, little research has begoublishedregarding the suitabil

ity of the SABR ouel. To evaluate the applicability of the SABR model will not only add to
the current body on literature about the model in general, but it will also appraise country
specific conditionsif any,in particuar.

1.3 Review of @Qrrent Literature

In this part, wesummarizepreceding papers concerning mainly the empirical results of the
SABRnNodel. Sine papersinvestigating the performance of the model for swaptions are few
in numbers, this section also includpapers relating to other financial instruments.

Hagan et al. (2002)he founders of the SABR model, could adequately show that local vola
tility models predicted the wrong dynamics (the opposifewhat was expectedof the im
plied volatility curves whe changes in underlying assétsward priceoccurred (see&ection
2.7). Hagan et al. (2002, p. 93) were able to fit the implied volatiith good accuracy for
various set of options and swaptions.

Later,Henrard (2005) compared the risk measurementssome swaptions pricing models.
The authe concluded that the normalizechodels performed better under the investigated
period. Under his study, Henrard (2005) found that the delta of the models could differ up
to ten percent. The author also saw a clekliiference from models following a geometric
Brownian motion to those with marithmetic Brownian motiorin their risk statistics. In a
delta hedging contest, the Vasicek model (extended in Hull and White (1990)), outper
formed the SABR modas well as te Black76 model (Henrard 2005p. 56).

West (2005) calibratethe SABR model falliquid markets The athor claimed that the al
gorithm employed for finding the para® i S Ni& Al oyPR madethe results robust. Under
an arbitrarily chosen constant beta of 0.7, West (2005 p. 383) found that rho and {xat-ol
atility of volatility) only change occasionally. He favoured a consksta, which in favour
over a nonconstant, reducd the hedgingcosts.

Rebonato, Pogudin and White (2008) tested the hedging performance of the SABR model
and the LMMSABR model (developed by Rebonato (2007)). Theomuttlaimedthat the
SABRmodel iswell-specifiedand found support for correct and unbiased hedgéas? De-
spite positive resilts, the scholars addressed one flawtbé model, namely that it carot

2 A hedge ratio is the value of a position protected by a hedge compared with the size of the position itself
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incorparate jumps when they occirSimilar results were found for the LMM extension of
the model (Rebonato, Pogudin & White 2008, p. 99).

Wu (2011) invstigated the pricing and hedging performance for interest rate caps, using
the SABR model. The results indichtgod pricing correctness of the model as well as su
perior hedye ratios compared to the Blagé model. Wu (2011, p. 11) pointed out that
keeping the parameterss | ysknultaneouslyconstant, produced larger pricing errors
than when letting either one or both of them to vary (i.e. by recalibrating the model). Under
his study, Wu (2011, p. 24) alsouhd support that the altered Greeks by Bartlett (2006)
outperformed those of Hagan et al. (2002).

Obléj (2008presenteda new refinenent to the SABR model thedckled a srall but persis

tent theoreticalflaw of the original model. The author pointed dilnat the new correction
term is consistentasf © pand can thuseliminate the creation of wrong price in small
strikes for large maturities region of the original model. Later in the thesis, this refinement
will be reiterated and assessadbngsidehe model by Hagan et al. (2002).

Skov Hansen (2011) calibrated the SABR model for swaptions to fit with the observed mar
ket smiles. In his extensive thesis, the author found good fit for the model. Skov Hansen also
pointed out that the delta risk is vedependent on parameterization usediffgrent betas),

and suggested eefinementto Hagan et al. (2002) in order to generate similar deltas regard
less of beta employed.

Mercurio and Morini (2008) conveyed critigue against the SABR and otherviaaaility
models in the sense that the models did not show the desired behaviour in hedging. The au
thors claimed that the stochastic volatility models only worked in a desirable way when
modeltinconsistence hedging were applied (i.e. shifting the unydiegl ceteris paribus).

Regarding Swedish researgapers apropos ahe SABR model are few in numbers. Bogvist
and Sigurjonsson (2006) evaludtihe SABR model for index options. They adhtiat the
model sufficiently captures the volatility function thfe market. On the other hand, the au
thors stresed that the model is strongly dependent on the quality of underlying data.
Sjostrand 2010) claimedn her paper that the SABR model slightly outperform the Black
Scholes model for European put optiot$owever, the author only studiedout options of
one specific company under a very brief time.

3] a 2 derursddvhen a function is disntinuous for its entire domain.
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1.4 The Aim of the Thesis

The aim of this paper t® describe the theorywrounding the SABR model apsdaluate its
suitability. Weintend to alter theparameters m the mocel while employingtwo different
methods of calibratiorto see how well iffits to authentic swaption data for the Swedish
market.

1.5 Limitations

Ths paperis bounded toinvestigate swaptionghat are tradedon the Swedish markeiThe
focuswill be only on physical settled swaptions based on interest rate swap3. VRSas
sume that the counterparties involved in the swap contract agreed to exchange a fixed se
ries of payment for a floating series of paymenie data provided to uis adjusted guch as
interpolated). Thus, it doesot necessarily correspond taccurate data if it could beb-
servable on the marketplace.

Due to the nature of the modadf investigation, som@arameterswill be chosen arbitrarily.
These are selected based on ouriesv of literature and should correspond to the most
plausible. An account for iermediate values, hopefully, witnly marginallyaffect the out-
comes of this paper.

As with all pricing models, some assumptions about the characteristics of the npdaket
need to be takenn to account and will be addressed further in later section

In order to keep the paper concisand to put a focus on thapplication,we will refrain

from deeper mathematical derivation of areas outside the scopthisfthesis Furthermore,

we leave out definitions of fundamental financial and mathematical concepts since-we as
sume the plausible reader to be familiar with nrancounted termsDue to hard, sometimes
undefined, estimation methods we will only present generdlheoretical illustration of risk
terms and swaption pricing

1.6 Data Selection, Assortment and Limitation

Onthe courtesy of Jan Roman and Swadk AB, we have receivadarket data for plain
vanilla swaptions. The data is quoted in implied vibtas (Black76) and wasbserved at

theF ANB GO 2F { SLII SYo S Nadingisaftwareldufey Mx3.{ 6 SRo I y{ Qa

The set of data includes a voldtiliterm structure (seeSection2.6) where ATM swaptions

are quoted in Black6 volatilities. There are eleven differentaturities for the swaptions
{1IM,3M,6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,20Y} for ten different tenors of the underlying swap
{1Y,2Y,3Y,4Y,5Y,70Y112Y,15Y,20Y}. Every swapi®gquoted fo 17 strikes with a spread

of 2 percentage points in each directianound theATM rate.Thereare thus 1870different
theoretical prices that could be reproduced from the current d&tar a full account of in

put data toour calibration, seéppendix 2



The volatility surfacebave been intgpolatedand extrapolatedor strikes aml maturities of
swaptions that are not tradedrlhis isa standard industry procedure where the institution
wants to cover the smile effect over an entire volatility surface for a specific derivative.

Thedata handedo usisalreadyd T A G G SR¢  $rile This Sillcahsetwderiylead to
biased results wheme try to fit the SABR model to market datalbeit this modification is
of a small marginye expect it will cause a smallerror of the smile fitOn the other hand,
since we want to investigatihe model from a more empirical point, we strive to use actual
market data. Our resuis then realistic and reflects the fallouts thettual tradergyet.

1.7 Disposition of the Paper

The rest of this paper is organized as followsSégtion2, we will briefly recap the proper
ties of the BlackScholes modelThere,a deeper understanding in specific financial instru
ments, especially caps/floors and swaptiom#l be presented Section3 will mainly be de
voted to the SABR model as presentadHaganet al. (2002). Irectiond, we will calibrate
the model using data for the Swedish markehisSectionalsoshowsresultsand compares
them under certain circumstances. The paper is concludeSection5. Finally,suggestions
about further regarch on the topic are presented.
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2 THEORETICARAMEWORK

This Sectionstarts by reviewing different interest rates and the properties ofwap and
swagion contract. Later, wewill recapitulate sore theoretical aspects that caassist the
understandingof the SABR modefinally,the ground of motivation from which the SABR is
devebped.

2.1 InterestRates
Here,we will briefly definedifferent interest rates that act as fundamentals for the valua
tion of swaps and swaptionés a general source, wefer to Réman (2012).

Spot rate Spot ratd 0 is the percentag®f the amount invested (say X) one gets atdim
tiwhen invested X in a zero coupon bond at timé.e. today). In our case, this spot rate is
guoted quarterly and is realized through bootstrapping the zero coupon bond yield curve.

Forward rate Forward ratéQohd is the percentage of X invested in zero coupon bond at
time to which one will gt for the time betweeno ando in the future. This rate can be plot
ted through the spot rates curve. Thelationship is as follows

p 16 Op "o p 10
Where after rearranging the terms can be stated as
. 10
"Qo ho p— p
p 10
We see that the forward rate is more clearly described as the relationship between two spot

rates. Another way to represent the forward rate ibrough the discount functiof oo
wheremm  "Q Qwe have

n o no

nmo noho nmo + noho AT N o

It is common to use continuous compoundingeirest rate. In this casehe forward curve
can be discounted by usiffy , itthenbecomes

y y Q
Q Q h Q t Q h S
Q

If we continue to simplify the above expression for forward rate arrive at a very neat re
sult below

t Qoo o0 o i 00 100
- ioo0 100 100 100 100 10O
t Qo ho :
0O O 0O O
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Spot rates and forward ras for longer time (>3 years) ausually extracted by bootstrap
ping methods using swaps and zero coupon bonds and with known yield stsuobors. For
shorter periods, the liquid Forward Rate Agreements (FRAs) andtehartcash deposits
are favoured. Interpolating and/or extrapolating techniques are commonly used to find the
estimates for the missing rates so that traders get a (smoothye including all conceivable
tenors. An example is found in FigureThere also exist many other techniques that can be
employed such & the Newton-Raphson algorithm, or NelseBiegel (Svensson) parameteri
zation along witha vast amount of interpation procedures. For good exposition, we i

vite thereader to R6man (2012).

Figurel - Bootstrapped @rve Example
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Figure 1 showan example of how a bootstrapped curve could look like. Figeireshows the bootstrapped
yield curve for Sedish bond data at 20064-24. Source: R6man (2012, p. 112)

Swap rate Swap rate is the fixed interest rate that caushke swap starting value to bee
ro, for the Swedish market it 81 interbank rate This ratecould be expressed ask-free in
terest rate plus interest riskpremium for the swap In this paper, it is denoted as
'Y T YR'Y and willbe derived in the next section.

Discounting rate Discounting rate is the rate used fdiscounting cash flows. In certaton
textsx G KAA& Sljdz f (-éupahban8 Ndg, YBich iis@sually sSréiBesentation
of the riskfree interest rate.

XIBOR ratesA xIBOR rate is the x InterBank Offered Rate where x refers to the body that
fixes the raté. It is rate in which a selectiasf banks is willing to lend to each other. The xI
BOR rates are carefuligonitored by traders. Thegct asindicators of the level of demand
and supply on the financial markets.

4Two examples are LIBOR (London InterBank Offered Rate) and SSi@&H#dIm Interbank Offered Rate)
12



2.2 Swaps and Swaptions

2.2.1 Swap

Svap is a financial derivative that allowas exchange of a series of payment for a different
series of payment. The most common type of a swap ilR&@where the payments are de
pending on an underlying interest rate (e.g. a xIBOR Pafbese types of payments are-re
ferred to as having a fixeleg position (entering a payer swap) ofl@ating legposition (en-

ter areceiver swap)Paymentsfor these contractaisually occur on a serannualbasis. The
swap market is of a vast size whefree value of tradedcontracts on interest rate far ex
ceeds those of other instruments (such as commodities and equity). In order to grasp the
usefulness of a swap we give a simple example.

Suppose that there are two companies A and B with different credit ranking and/or financial
position. They both need to gerste a loan of £5nillion from their current bang& Compa
ny A can borrow the money using two options: it can payeziLIBOR or a fix rate at 6%.

Company B has the possibility to borroletmoney for LIBOR rate plus BBSor at the fix
rate of 9%. Assue that, for whatever reason, these companies have different view about
the future trend of interest ratescompanyA prefers to pay a floating rate and company B
would like to pay the fix rate. In this case, an intermediate institut@@nswap ban& can

aid both companies and benefit itself by issumgwap.’

The swap bank can issue a swap in which company A will pay it the LIBOR rate and company
B will receive the LIBOR rate, companwiB then pay a fix rate of® and company A will
receive 7% of & loan from the swap bank. Theap bank can then keepA for itself By do

ing that company A will get théxed rateloan from its bank and pay back the money only

with the rate of LIBOR 1%. Company B will get tli@ating rate loan from its bank alssmd

will have to pay a fixed rate of 8ptus 50BPSBank A will get 6%nd bank B will get thé&t

BOR + 5@PSThanks to the present of the swap contract, all parties involved have gained
equally or more than the initial scenario.

The swap market, in th way of functioning, depends on the comparative advantages com
panies beawhen subjected to different interest rates (due to unlike borrowing conditions)
and are commonly observable in reality. The diagram below gives an illustiaftioash
flows between the threeparties.

5 Other type of swaps are e.g. curreacgommodity and credit default swaps.

8 Where 100 basis points (BPS) equals 1%

7 Obviously, a swaption can be sat up directly between two firms although using an intermediate imstituti
will bear the risk if either of the companies defaults.

13



Figure2 - Swap Market Cash Flow lllustration
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In Figure 2company A accepts tpay the bank 6% and company B accepts to pay Libor + 50 BPS. With a swap
contract between the firmand the swap banksompany A ends up paying Libpd% while company B pays
8.5%. Under this setup, both companies are better off financially compared to if they initially would accept a
floating rate loan (company A) and fixed rate loan (company B).

Accordingto Skov Hanse (2011),the present value (PV) of a flaag leg can bealculated
as the sum of discounted forward rate paymeritis forward rate cabe extracted from
0KS & L)¥iéld chdrelly$isng some suitable bootstrapping techniguehich was dis
cussed irBection2.1.

Fr 1 QY RYn iy

Concerninga receiver swap, it is rather straightforward to calculate the present value of a
payer swap since the payments are known in advance. The PV of the fixed leg is obtained by
discounting fix rate payments over the entire tenor of the swagh E payment paods

Ik 1 0 nmy

Where

1 is tenor of the floating leg (in years)

1 is tenor of the fix leg (in years), could be different from that of the floating leg.
"QmiiY HY is the future forward rate froniY to “Yobserved at time 0

0 is the known fix rate of payment.

n THY is the discount rate fromiYto today.

If we know letY T YR'Y to be the fixed rate which is set so that the presevalue of the
swap contracis zera That isonly possiblavhen PVieat = P\, We have the following

14
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B ) QY RY R Ty
B 1 YTHYRY [ iy

Y

Once solvindor the swap rate, we get

| QY RYnR iy
B 1 nfmhy

Y T YR'Y

One can also express the swap rate in terms of discounting factors to get a simpler-expres
sion of Y i YA'Y . As described in R6ma2012),we candescribe theforward rate with
respect to discounting factors.

P

AFTHY A MY [YY AY+ nmRY nniYy —
n n n n n o Oy FY

p nmhy n Y

t Q'Y RY : q Y

Then the value of adhktingleg can be expressed as

”n i e \ Ler g Tﬁ'Y g 3 er
) QrifY RYn miiy y — n Ty

n 'y nmyY [ Q7Y

So the swap rate is

p N’y

Y TYR'Y _
B 1 MY

We can thus see thahe swap rate can be expressed as a relationship between the floating
rate and the fixed rate multiplied by a discoumg rate. Thisrate, whichequates the value of

the fixed and floating rateis also called swap rator par svap rate.After the crisis, swap
valuation has changed to a veryrgplicated process. Banks haigsues to determine the
right forward and discounting ratihat should be usedo price this instrument. This has led

to an inconsitency problem irswap valuationwhich will not be further discussed in our-pa
per. We only have ambition to present here the fundamemadpertiesof a swap to asist
reader for thenext section

15



2.2.2 Swaption
A swvaption is an ogbn on a swap that serves asight but ot an obligation to enter into a

swap at aspecifiedfuture date. Swaptions arBequently usedoy banks and other financial
institutes with the purpose of hedging cash flagainst the exposure to rando@vents
such as fluctuations of interest rager currency rates, but are not common instruments for
private investos. The most common swaptions dhee socalled plain vanilla swaptions. It is
of a European type with an IRBhichis accounted for in the previous sectioa$ underlying
asset?®

Settlement & swaptions can occur either by physical settlement where actual exchanges of
cash flows on the underlying swap takes plameby cash settlements where the value of
the underlying swap is paid at the time of exercise.

As with a swap, there are two side§ every swaptions. Tlyeare known as payetand re

ceiver swaptiongs KSNBE S| OK LI NIeéQa L}2aAiAidAz2thepesony YSR
entering a payer swaption get the right to enter a swap where he or she pays a fix leg and
receive a floatindeg. The holder of a receiver swaption can, at a future date, enter into re

ceiver swap where he or she receives a fixed leg and pay the floating.

A swaption is usually denoted asn&mY swaption where m is the tenor of the underlying
swap and n is the timto maturity of the swaptions. A 1Y16Ya 2 y S AR2yNih-BheforS y ¢
tené) payer swations gives the holder the option to enter a @ar swap (paying fixed leg,
receiving floating) in one (1) year.

Extending theprevious valuation of a swapne now neés to extend the notation to ac
count for the right to exercise. The value of a physically settled payer swaphservedat
time t,

0 "Y 0 HYRY 'YOHYRY 0

wherethe term
o NYRY A e 1'%

is alsocalled the annuity of the swab.

Swaptionsare mainly traded OTC with absent regulations andusalyy quoted in Black'6
(log-normal) volatility. Theyan also beguoted in price (e.g. USD) or in other forms of im
plied volatilities (normal volatility)lf quoted inimplied volatility, one then plug into the
ocorrecie model to gt the dollar equivalent price.

8 There also exist e.g. American and Bermudian swaptluatsare of a more complex type.
91n this context the + denotes the maximum value between the calculated price and zero.
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2.3 Martingales

So far, we have gainednderstanding about the characteristics and the present value of
swagions. In the following sections, weontinue to show how to prica swagion in the
BlackScholes frameworkwhere the market is assumdtkee of arbitrage.In order to fulfil
that assumptionwe first need to look at the definition of a \rtingaleand the martingale
representation heorem

A martingale is an integrable stochastic process that represents the notion of fair game in
mathematicsi® A martingale implies thadt a particular time t in a sequence of randoar-
iables, given all the knowledge of past results, the expected outcome at $imeghe same

as the resulat the current time t where 0 <t < s. We have the following,

Definition 1. Continuougime martingale

A continuais-time stochastic procesgX(t} definedon the probability sp OS 06 KZr€Xt 0
spect tofiltration "O where"Orepresents the information generated by X(t) on the time|in
terval [0, T]js a martingale if

PpB8OWOS HWQEDQWIDN miYRdE Q
¢ 80 &I ol i "

whereO @i denotesthe conditionalexpectation ofw i given the informatioriO.

Definition of Martingale is referred tKijima(2003)

Theorem 1 Martingale representation fieorem

LetW; be a standard Brownian motiod, be a martingale procesadapted to filtration "O
whered ¥ 1Y, then there exiss a uniquely determinedO¢ adapter stochastiprocess
@O such that

a a OfFF W £1°QR7 6 QUL Ga TGO @R Q®

Martingale representatio Theorem is referred to Bjork (2004jere the uncertain growth
of a martingale process is equal to the Brownian motion dewgiment multiplied by
some processy i . Forexanple, 0o could be a function oD fi h, fo.

2.4 Arbitrage Free Teory

TheHrst Fundamental Aeorem of asset pricing enswsw@ith necessary and sufficient condi
tion that the market is free of arbitrage and compleiéhe following theorem is extracted
from Bjork (2004).

10 A fair game is a game in which each participant is not more likely to win than another player is.

17

g A



Theorem?2. Arbitrage Free Theorem

The market is free of arbitrage if and only if there exists amisktral probability measure (

(44

such that the discounted price process is a martingale, given the timeorizon T, a risky

asset with Yas its price process andiak-free asset g

Now onsider a plain vanilla Europeawaption with a fixed strike ratesg R is the swap
GA2yQa T2NBI| NRoidNe foSvard sivapiratexs ftodny. AsydRcussed in the
earlier section, e value of a payer swaptiaran be expressed as

0"Y o HYRY 'Y 'Y

Here, in order to follow the Arbitrage Free theory, the factesRould be a martingale. Ex
pressed mathematically we have

qY Qo Qah QY Y

Once again{) wis aBrownian motion and thdactor o is a determinablefunction of

time and other parametershile’Y A 4 (KS SELISOGSR @I fdzS . @F GKS
other words, to assure that the market is free of arbitrage opportunity, the forward price
process should be expressed arandom Brownian process multipligoly a scale factor

w o . To go further in pricing thisption, a suitable model fa &% should be postulated.

This ighe arbitrage free pricing theory where the Blagskholes model based on.

2.5 BlackScholes Moel
In this section, we wilgive a brief presentation téhe BlackScholes model. For a full-ac
count, we invite the reader to e.g. Black and Sch¢le73) or Chapterl3 in Hull (2009).

2.5.1 Assumptions
In order for thePartial Differential Equation (2.5.2 below to hold, sore assumptions need
to be carried out.

1 The stock price follow a lognormal distribution where the returns are normally dis
tributed

Short selling is allowed

No transaction costs or taxes

No dividends during the life of the derivative

No arbitrage opportunities

Gontinuous trading in securities

Constant riskree interest rate

Constant volatility in the underlying asset

= =4 4 4 48 8 -
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2.5.2 TheBlackScholes guationsand Formulas
Given the above assumption, wheye represens the assumedconstant volatility, Yis the
assetprice process given by geometric Brownian motigfQ 3 0 Tip is a Wieer process

AL LA M

withmeanOand avariange p.If* A& GKS ai2 01 wéha&EheIBIOWitgR NB G
QY © YQ4 YQo 0'RYY (2.5.1)

A derivation of the BlaeBcholesPartial Differential Ejuation usually includes setting up a
risk-free portfolio consisting of onderivative, which has value &and one part of underly
ing assetAnother posibility is to usethe capital asset pricing model (CAPMRegardless
of derivation techniques, we land the famous BlaciScholedRartial Differential uation.
rao J1,Qpe Q. (2.5.2
o i TAF"Y < YT_“Y i Q
The abovePartial Differential §uation (PDEhas many solutiogin regards to different de
rivatives with S beinthe underlying variable. To solve the equation for a particular deriva
tive, the boundary conditionthat specify values of the derivative at the boundaries of-pos
sible S and have to bedetermined For example, in case of a European call optioa,key
boundary condition is

Q Y 0 0MEo Y
Equation (2.5.2)can alsabe understood in term of the Greeks- is the change in value of

option with respecto time, in other word the - Theta.—is the change in value of option
GAGK NBaLISOG G2 | OKLI ycaBbedeyotedadyRR 8avtd. €hejadd | aa S
derivative— is the secalleds ¢ gamma.li NBLINBaSyda (GKS NradS 27F O

with respect to the underlying stock pricéherefore we can rewriteEquation(2.5.2 as
% P v i
C
ThisPDEhas excluded the dependencetbie optionQ alue to risk preferences, which is the
expectedreturn on a stocky ®incean investoris only willing to pay for a highly risky asset

A ¥ s oA -

A X 4 A X

ence.Thisexclusio8 ¥ (G KS SELISOGSR NB i digtongefuenihiigen dzy R S NI
the BlackScholesnodela great advantage.

From the above PDE, price of al ogition, ¢, can be obtained to be

11 See for exampl€hapterl3 of Hull (2009) for a derivation.

20ne approach is to digfe the contingent claim aéS-K)' and the use the It6 lemma orhé process of

underlying asseto reach a FeynmaKac representation of the chai Steps included are to integratiee value

2F GKS OFtf 2LWA2Yy 20SNI I 2andfiNallyitolexpiess thé valiieKof aNfatn LIS O G G
vanilla Europearall option as shown above. See e.g. Réman (2012) for a deeper derivation.
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A 3° A ovQ A (2.5.3)

While the price of the put, pcan be calculated by similar techniqueswa the put-calt
parity

D 0Q A 3 A (2.5.4)
where
) 11730 i ,jc’y
A 3 il j ¢
LY
. 1 TZjo i, jcYy . -
A £Y | ¢ AUy
LY

and @ is the cumulativenormal distributed function éxplained further in Appendig).
Observell KI G (1 KS 2 Lddwidepgndidgoniy bnfthéz@atukityi T, theisk-free inter-

est ratei , variance, andthe moneyness of the optio j 0. Here,the only vague valu®
determineis the variancg , which is usuallgalculated based on historicedturn data and

is assumedconstantthrough the 2 LJ(i A 2 yMedon (197 3)Basshown that thecall op-
GA2yQa @I fdzS A& LI2aAridargdsSt, e ABesENG&ibbles iSckease A (i K
the value ofa calloption is approachingts maxmum, which is the stock pricdNowadays,

simple call and put optionare stillwidely valued using this model

2.5.3 Extensions and Critique of the Blackcholes Model

Black andScholes or Merton did not trade upon their framewarlat first. In 1993, Black

and Merton founded Long Term Capital Management (LTCM) and attracted vast capital to
their hedge found|nitially, it started ougood with high returns during the first thregears.

In late 90s when Asian and Russian financial crises struck the markets, LTCM betted against
it. The results were disastrous. The Federal Resevemtuallyhad to bail out he hedge

fundin order to prevent a complete financial meltdow#.

Despitethat the BlackScholes model is considered as the benchmark for option pricing, it
hasreceivedits vast share of critique. First, the distribution of the underlying prices is in fact
not generallylog-normally distributed. Traders instead assume a heavdt tail and a less
heavy right tail (Hull 2009, p. 400). This is roughly the same as saying that the log returns are

y20 y2NXIFffeé RAAUGNROGdzG SR YRS YR SiviSS/cidat QK I 21F

ing kutosis in the distribution. In addition saets prices jumps frequently, thus violating the
assumpion of smooth movements. Instead, traders use volatility smiles to allow for the
non-lognomality (Ibid). Secondly, the assumption of continuous and instant trading without
any transctions costss a falsification of reality and is thus a vastidation to the Black

BFor a full account on the history behiride crash of LCTM we recommend the document@he Midas
Formula: Trillion Dollar Del§Clark, 1999)
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Scholeanodel. It is thus not so hard to understand how LCTM could fail when the markets
donot act like treory.

The Black76 Model

Black (1976) made some slight modifications todmd his colleagues preceding work: In
stead of using the spot price of an underlying assgtii® model nowdiscounts a forward
price,"O This model is more suitable to price interest rate derivatives (i.e. bond options, in
terest caps/floors and swamins). With notation earlier introducedlack postulated that
woi is, "00 . Under the Black'6 modelthe theoretial value of a call and a put reads

JO , 00 Qw VM Q Om R
A Q & A o A

1 T°QU i, jcYy o

Swaption under the Black'6 model

Among other derivatives instruments, swaptions can also be included in this pricing model
as a more complicated type of option. Based on the digbins given earlier, value of @ay-

er swaption 0 "Ycan be seen as a call option on the swap P&tei YA'Y with strike price

K. Using the Bla€k6, we get

0" 0 HYRY 'YHRYRY™ Q 0 Q
Where

o £ ,,thYhY g RV

Q

Q Q ,: Y o

Explicitly, if weconsiderthe discount function in deil, as done in R6man (2012) we can ex
press the value of a payer and receiver swaption (RS) as following

p — B
oy P94 4 v 0 o 0
0
p
P P
Y pT?a 0 0 9o O 0
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Where

Tt = The time between swaption maturity and underlying swap matugitgnor.

& = Compounding swap rate per year.

"O= Forward rate offte underlying swafy i’ YA'Y , also called par swap or swap rate.
0 = Strike rate of the swaption.

i = Riskree interest rate.

“Y= Time to swaption expiration in years.

» = Volatility ofthe forward starting swap rate.

The Normal Black Scholes Model
Another extersion to the BlaciScholedramework is theNormal Black Scholes Modgs-

veloped by lwasawa (2001). Iwasawa pointed out that some traders believe that the traded
assets follow a normal distribution rather than a lognormal ditto, as assumed in in-Black

Schdes model. In the model by Iwasawa (2001), the underlying asset is allowed to take on
negative values. We have the following theoretical prices of a call arifl pu

o Q & +° A o 7 (2.5.9

n Q + & A Q7 (2.5.9

Where'Q ——
N

It is thus possibldgo realize thatby inspecting theformulas ford:, Equation(2.5.5 and
Equation(2.5.6), the strikeprice, K as well as the current future price F can take onvahy

ue, including negative value$Vith huge amounts of OTC tradekrivatives where underly

ing instruments can be negative (such as derivatives on any real interest rates), the Normal
Black Model could then act as a suitable alternative where the BBabkles model breaks
down.

To summarize, the Blackcholes optiospricing model has its advantages (e.g. itsgdiaity)

but the framework is built upon a set of assumptions that are strongly questionable. Hence,
many attempts have been made to come upthweither new alternatives or expaions
and/or adjustments the Blaecholesmodel These models are based éewer assump
tions.

¥lwasawa (2001) also derives theormal process under a bounded negative assumption where the
underlying prices cannot fall below a certain level.
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2.5.4 Greeks undethe BlackScholes Mdel

In order to derive the Greeks ilmé SABR model later, we should first l@khis set ofthe
basic Greekddowever, we will not take into account all Greeks but only the nrapbrtant
two, which are Delta and Vega. For other Grealchsas Theta, Gamma and Rho, the reader
could refer toadditional readings in e.@&hapterl7 of Hull 2009).

Delta
The delta of an option is the rate of change in the price of the option caused by a change in
the price of the underlying asset. Under the Bk&tholesnodel,the delta of a call option is
usually denoted

g ! @
Ty
It is possible to expresthe delta of a call or a put frothe cumulative normal distribution

functions where dis defined as ilbection2.5.2 For European optionse have

y 7 A
y T A p

Delta for a call option is always positive and approachesf@neptions that are deep ITM.

) ~

Yy N T1ip
While delta for a put is bounded tine closed interval
y ~  phn

For investors, the concept of delta hedging is of giegiortance. If a portfolio is setp so

that it has a delta equal zero, it isdn to be delta neutral. This implies that the value of
the portfolio stays the same when a change in underlying occurs. In order to maintain a del
ta neutral portfolio, it must be rebalanced on a frequency basis. Actually, if one wants to
have a delta newal portfolio, he or she must use dynamic hedging (thus continuously re
balancingthe portfolio). This would obviously invoke great transaction costs so the concep
of continwous hedging i®nly appropriate in theory. In practice, delta hedging for ficiah
institutions is performed on aaily basis (Hull 2009, p. 377).

With a delta neutral portfolio, one can see théte Equation(2.5.2) is reducedto depend
only on theta and gamma, as shown below

T Q

-
T o '

Yallhel

"YT Q
” T “Y
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Vega
Vegd® of an optionis associated with a change in the option price caused by a change in the
volatility of the underlying asset. The Vega of a call optigherBlackScholes model is thus
I
T ”

For European optionsega is calculated as
¥ YUY Q
¥ n Tt

Where d is defined as irBection2.5.2 From the First Fundamental Theorem of Calculus,
® is the probability density function for a standard normal random varidbléega is
always positive for bt put- call optionsand is at geatest where the option is ATM.

Since@2t F GAftAGET Aa |y [SéhalegYWwbri, th® Zzofcept lofyali Ay
change is counterintuitive. However, for stochastic volatility models (such as the SABR mod

el) where the volatility is noiconstant, vega is more appealing. A vega neutral portfolio (i.e.
GKSY [ ' n0 ¢2dz R {KSyolatili§/ddcirraddii & @ £ dzS8 A F | C

2.6 Volatlity Smiles, Skewsand Surfaces

Volatility smile is the plot of the implied volatility of an option and its strike price. It is not

until after the stock market crash in October 1983t the pattern of the plot appeared as

smile Before the crash, implied volatility depended on strikea much lesser extent.

Rubinstein (1994) suggested that this is because traders are more concerned of another
crash and thus, price their options accordingly. This phenomenbriisi 2 1y 2 6-¢- | a & C
LJK 2 0 A Ihés beeyf Bupported with several empiricservations.History show that

declines in the S&P 500 have resulted in ptyevolatilityskew. @ the other hand, increas

es tend to become less steep (Hull 2009, p. 395).

In the BlackSchdes mode] it is inmpossible to solve for the implied \adllity explicitly. In-

stead, e.gthe Newton-Raphsommethod or the methodby Chance (996), must be used to

find the implied a2 GKI & GKS (svBhandBbserved niarkdtiiBe8nge I INB S
the data weare using to calibrate the SABR modehlreadyquoted in implied (Black76)

volatility, we will not discuss further the methagketo solve for volatility.

Once one is able tobtain implied volatilitiedor a set of different strikes, the volatility smile
can be plotted Figure 3s the resul for the actual dataof 1IM15Yswaption.

B Vega is actually not a Greek letter. Yet it is still referred to as one of the Greeks within the field of finance
and we will adopt that ling throughout this papenVe denote Vega with the capital Lambda.
16 See appendix 1 for formulder™ @ .
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Figure3 - IM15Y Swaption Rile
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Figure 3showsthe implied volatility for a 1IM15Y swaptias a function of the strikeSimple
linear regression is doney MATLABetween the 17 observations. The ATM rate wasa
3.10%,0n first of September2013, whichis indicated by theed star. From inspecting the
smile, we see that th@nplied volatilityresembles a parabolshaped form with a minimum
value ofapproximately29%. We can also see that the smilaggmmetricabut clearly that

the market prices this derivative with different implied volatilitiespeéadingon different
strikes To experience a perfect shaped smile on the market is extremelaimsile,the
smleinFigureAK2dzf R 0S O2YyaARSNBR Ia | G322Ré | O d:
The basic definition of a volatility smile is, as mentwna parabola shaped curwehere

ITM and OTM money options have a higher implied volatility than ATM optiohisere are

also tweakgo the curve where the smile is of a different shape. First, if ITM calls and OTM
puts are traded with a higher implied volatility, this pattern is known as volatility smirk or
reverse skew. This illustrated inFigure 4

7 Due to nearbitrage arguments, European puts and calls with the same underlying, strike price and maturity
date will have the same implied voldttl and thus create identical smil€giull 2009, p. 389)
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Figure4 - Reverse Skew Smile Figure5 - Forward Skew Smile
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Figure 4(left) and Figure5 (right) illustrates a reversekewand a forward skew respectively.
(Sourcehttp://www.theoptionsguide.com/volatilitysmile.aspx

Areverse skew thaappeas on the market is due to the fear traders [E&ss against a new
(vast) crashThe implied probability distsution of e.g. equity options with a reverse skew
tend to have heavier left tails (less heavy right tails) than lognormal distribution (Hull 2009,
p. 394).0n the other handif one experienceghe opposite with higher implied volatilities

for ITM puts andDTM calls, the pattern arising is known as a forward sfasas illustrated

in Figure % A forward skewpattern can arise in e.g. commodities markets where the expec
tations about declined future harvests due to drought, frost or any-nontrollable fctor

that will make the traders to drive up the demand for OTM calls.

Bytaking a second look at Figurew8e can see that the smile of the 1M15Y swaption would
resemble a reverse skew. This should hetsurprisingsinceone might expect a large de
cline in the interest rate due to some extreme event, e.g. a larger recession.

If oneplots the implied volatility as a function dfoth the strikeprice and timeto maturity,

the resulting3D-surface is known as the implied volatility surface or volatilitfgecrhis isl-

lugtrated in Figure 62 Forswaptions, an alternative is to use ATM options with various ten

ors and timeto expire tovisualize the volatility term structure. Aexample can be found in

Figure 8 Any procedure to construct a volatili@dzo S At f NBIljdzANE &d2YS -
interpolall A 2y ¢ o[ SaAayASgalA HnAAy MATUEB hmsodon® this gatod KS S
matically.

8 An alternative would be to plot the tenor of the underlying swap for a different set of strikes while keeping
the time to expiry constant.
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Figure6 - 15Y Volatility Surface
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Figure Sgenerated by MATLABhows al5-yearvolatlity surface as ofirst of September 2013. The-ttte-
money swap rate is approximatedy10% Maximum implied volatility is 52.6% while the minimum equals
15.55%

One can see from FiguretBat the implied volatility is much greater for expiries that are
short into the future while swaptions that expires later on in the future are generally traded
with a much lower implied volatility. Looking at the shortest time to maturity, the smile cor
responds to the volatility smile of a 1IM15Y swaptthat was plotted in Figure. 3t could be
observed that individual smiles for each possible time of expiry take on a reverse skew pat
tern.

We can nowvisually conclude that the assumption about a camstvolatility for all possible
strikes is very farfetched. However, the longetime to maturity the flatterare the curves
For swaptios with anexpiryof more than 10years,we would only experience a small smirk
if the volatility surface were plotid Thiscouldbe seen by looking at th&5-year volatility
surface from another anglesee Figure 7. Herge see how flat the surface actualywhere

it israther flat over its domain.
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Figure7 - 15Y Volatility Surface (differenangle)
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Figure 8illustratesthe volatility cube for ATM swaptions. Henee note that the surface is
very unsmooth with many local maximum and minimum points. However, the general pat
tern is that ATM swaptions with a short time to expiration are traded at a higher implied
volatility compared to ATM swaptions that can be exercised in more than 10 years.

Figure8 - ATM Swaption Volatilities
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Figure 8is createdoy MATLAB using ATM swaption volatilities (see Appendix 2) af'ttbeIeptember2013.
The maximum point is 37.4% while the minimum is 16.1%
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2.7 LocalVolatility Models
Before the creation of SABR modtile local volatility model by Derman and Kani (1994)
was an attempt made to creag¢ single, seitonsistent modeto extract volatilities for any
strikes.Aacording to the authorsperhaps the most direct and simple way to tackle the-con
stant voldility in the BlackcScholess by replacindequation(2.5.1) with
Q0
“_O
Where* 0 is the risk neutral drift depending on time and @0 is the local volatility
funcion dependirg onthe forward price"Cand timeo. Instead of a constant volatilitypjow
, @ will be deduced numerically from the smilgsing binomial option pricintech-
nique, a localvolatility surfaceis createdthat caussti KS o0Ay 2 YAl f (GNBSQa
consistent with the market onesThis model is arbitragiee, preferencefree, self
consistentand t avoids additional factors tthe BlackScholesFrom,  "@0 obtained af
ter calibration, it calculates correct market price of options (calls and puts) for all strikes and
exercise date Therefore, this model i@ naturaland easy way to value option only from
observable market data.

0Qo , "BOQ®

In the initial setip, the followng stock price process must kalid
0 BNy o /Y
AR 0 Y
NNy

Where Ois a known forward price) is the unknown transition probability to the upper
nodeQ p, p 1 is the transition probability to the lower nod@"Y is value of the
stock at nodeQ p, “Yis stock value at nod€@Because the implied tree is measdiia risk
neutral condition, the expected value of the stock pnig& p N “Ymust be equal

to its known forward pricéQ. At each nodeof the tree a call option withstrike price0, ma
turity ©  is valued, using Arroebreu® stockprices_ as follow

6 0D QY _n _ pq YO0

This formulas the commorrisk-neutral option valuation, where avery node, the2 LJG A 2 Y Q &
price is the differenc® SG 6 SSy ai201Qa LINRAROS | ymhtie2NB I NR
pected value of ArrovDebreu stockprices_1n1 _ p N . Every node is then
summed and discounted back to current time zdxext is to determinestock price on the

upper node

19 Arrow-Debreu pricing model is based on equilibrigineory of supply and demand. In this model, the first
Arrow-Debreu price is 1 and the next upper/lower price_is — whereris the transition probability to
upper/lower price.
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"YQ 6 "Yo _"Y B8
_0Q 6"W B3

oy

Where B8 B _ i O
This sum is equab zero(Derman and<ani, 1994)The stock price for the lower node is

oy Y
N
“Yis the centre node at the previous level, according to the logarithmieRassRubinstein
centeringcondition the author chose, the above relationship holds.

Finally, implied volatilityt node i,, isgiven as

” r‘] p r‘] i I “E J “Y
This implied volatility, has been calculated based on the Hsle transition probability and
the logarithm diffeence of the possible values (either up or down)¥att each time step.

Where S is deduced directly from the market value of the optiai wirike K and time to
expiryo

For a full account afiow the modelworks and its derivationseaders caneafer to Derman
and Kani (1994)agan (2002p. 87 pointed out that the model, unfortunatelygpredicts
the wrong dynamics of the implied volatility curwehich leads to inaccurate and often-un
aidl of S TKexdnh&the dynamics of this model, finse have to simplify the initial
setup by omitting thetime variable and that will leaves with

'ao

o "
Using singular perturbation technique to analyse this modelnizeketimplied volatility to
apply in the Black6Q & T 2 NOi@o priceoption could be explained as

T Mw oMi Q@ oM Q

Q, Py
- P pmn ¢ 2V
C

Quv p —
T Pq ¢
" c Q v
I OO2NRAY3A G2 S@Ifdzr GA2Y bgHagan & &l. (20 volAilR v Q &
ty depends lagely on the first term. The second tergives little adjustment to the result
and the omitted termsnotated with" QU RQ only account for less than 1% of the first term.
Therdore, themarketimplied voatility that is alsounderstood as

QU "QURQ

Y (o E"Q 0
C
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SupposéQA a (2RI & Q& , F02 Nihé inplied alkadiligeSrie observed from the
market for some strike Kat time O (today) The local volatility after chbration to fit the
market is

” “Q ” C“Q “Q c &&
Becausefor the observed implied volatility to be consistent with7.1) we have the fol

lowing
., ¢Q Q -"Q LQ Qs ” -¢Q Q
C C

Here we can use the absolute valeenditionbecause f is by definition a forward price so it
should not be negative. Thidaving obtaineq  "Q, now let the forward price shift to a
new value ofQthe new implied volatility predicted by theadel is

- Py - Qo

., uhQ -—"Q v . C
C C

arrival formula of the local volatility tellss some unusual properties of the modéitu-
itively, when the forwardQncreases, volatility curve is expected to shift to tight hand
side. However, thdocal volatility will shifthe smile to the opposite hand side. A graphical
illustration found belown Figure 9

M , 0 sQ s

Figure9 - Dynamics from Local Volatility Models
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Figure 9 shows the unexpectédpposite)shiftsin the implied volatilities that are the results when the for

ward pricesare altered undea local volatility model. Source: Skov Hansen (2011, p. 33).

This inconsistency has also affected on the calculated risks from this nibmdts.and vega

hedging falls due to the wrong dynamics predicted. Therefordprunately, this model

camot be applied correctly with realityHowever, the modehasproduced future distribu

GAz2zya 2F GKS ai201 LNROSaA GKNRdIZAK YI N} S | dz
lieved that this model can be very useful in case of barrier options, where the stbi&imnig

er probability is especially sensitive to the implied volatility smile.
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3 THESABR NDDEL

In this sedbn, given the scenario of the locablatility model, the Blackk6 model, defini

tions of swaption and different interest rates, we will presém¢ SABR model as well as the
propetties of its parameters. In addition, the original Greeks under the model accompanied
with an updated set by Barle{2006)and finally the adjustment of the SABR will also be
mentioned.

3.1 TheOriginalFormula
From Hagart al. (2002)the originalSABR model can be described as
d0 | 'Ow (3.12.0
on  Q
Q U
L S
Qo " Qo
In which,the forward price process is denoted &3 the volatility] is a stochastic process
Bothw andw are Brownian motionswithout drift which arecorrelated bya coefficientw
Therefore, in this model, the volatilifyrocess is allowed to be random through the develop
ment of| , which is scaledip by including the factor vebl, v. This extra randomnessak

solved the problem of constantolatility, whichis an unrealistic assumiph of the Black
Scholes model.

Recall that theprice ofa European optiorwith strike price K, time to maturity Dy Back76
formulais

@ Q QO 0°Q
n @ Q 0 0
wherethe putprice is retrieved from the putall parityand
N
'Qﬁ C

”

We can directly observe f, K, r andwhile theimplied volatility A is solvedby using singu
lar a perturbation techniquen Hagan et al. (2002Y he formula fok is as follows
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0 op quT ¢ 00 pp‘”f,’qsn Q0 RQ o 62
" -
o B 2 L2 S % v ok
Wheredandw & are defined as
a 9'00 1 7qo

N o B S S S
wa 0€&Q ~
P

In theexplicitFormula(3.1.2), the volatility is &unction ofthe strike price K and thecurrent
forward priee "Cfor a specific dateof expiry, T. Theterms that we denote asQu RQ and
QU RQ are complexbut takena very small maig of the total result(Hagan et al. 200250
they will be ignoredn our calculation.Whenone sets"(= Kinto Equation(3.1.2 the formu
la for the ATM volatility, , is being reduced to

| pPT I p'lblg @
Q ¢t Q TQ CT

0 Y QURQ

In order to extract the volatilitk +hE parameters iy lmneed to be calibrated using
the observable market datior implied volatility at every strikeThe current forward pricéQ
and strikeprice+ are given meket condition.After calibration, the modetan produced es
timated valuefor volatility that are valid in the near future and capturése dynamic of the
smile. Thesevalues can beplugged back in the BlagleQ a T 2 fdldardzistiikesto arrive

at the opll A 2tlye@retical price. Hagan et al. (2002) predicted that the calibrated volatility
function could give correct value up to sixonths. However, institutions usualtgcalibrate

it on a frequent basis, usualgvery day.

3.2 Dynamics othe Parameters

In this setion, we investigate the main parameters of the SABR model. Focus will be drawn
upon the effect of these parameters on the mo@alynamics their reasonable rangand

how they alter the shape of the predicted smiBelowwe presenta numerical examplef a

fully calbrated modelto market data We will adjust each parameter while keeping the -oth
SNaE O2yaidlyd IyR 20aSNWS GKS NBadzZ G Ay GKS
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J is the exponent of the forward rate antirepresents the belietraders possessbout
the distribution of the underlying asséllts range should be N Tip . Because, if
I Equation(3.1.]) suggests that an increase inlwa of the forward process pro
duces a relative decrease in the change of the of price pro¢€&sv Hansen, 2011loreo-
ver, iff p, an increase in the forward process will result in a greater change dbthe
ward process, which is greater than the volatility times the current forwaicep These two
cases are vergisagreeable and they explain the readon the upper and lower bound of

the parameter

Figurel0- Change in Beta

Method 1 - Changing p
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Figure 1G6shows the SABR volatiligynilefor a 1IM5Y swaptlonallbrated usingMethod 1(seeSect|on3 4) with
i ' nop® wSadzZ A@sE LA NI YnSdticSTNGE  HIyNS b
mately 0.015. Beta is later increased/decreased to 0.7/0.3 while keeping the rest of the parameters constant.

The red star indicates the ATM volatilafy37.4% for a swaption with strike of 2.4%.

BFK Smgfin pisyafproi & B

After calibrating the model with @, we shift the value t®.3 and §80bserve that the
curvein Figure 1Ghifts upwad for a decreased beta and downward for acreased beta,
ceteris paribus. Of course, there i longerany fitto the market volatility since beta is
changed subsequently to thalibration. In addition, weexperience a rather big effect on
the curvature of the smile foa change in beta where thleft hand sideof ATM pointis
more effected than the right ditto. The high#re beta, the flatteris the curve Ourfindings
are similar to those of Skov Hansen (2011) while Hagan et al. (2002) do not evaluate this

matter.

20 SeeSection3.4 for a deeper description
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or volvol is the volatility of the volatilityAs show in Figure 11 a change in volvol

would havean impact on the smi@ & O dzNIGi$ pacadier should be directly

calibrated tobest fit by using markeRI G gAGK (KS OBegadsa NI Ay
volatility can never be negative and hence it is reasonable to argue that the volatility of
volatility also must be postivive.

Figurell- Change in Wlvol
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Figure 11showsthe SABR volat|lltym|lefor a 1IM5Y waptlon calibrated usmg Method QseeSectlonS 4) with

i T nopd wSadzZ GAYES LI NF YSESNE I WB [ B KB0BRpidapt KS { { 9
proximately 0.015. Volvol is later increased/decreased to 1.17Z@while keeping the rest ahe parameters

constant.The red star indites the ATM volatility of 37% for a swaption with strike of 2.4%.

After calibration using predetermingd 1@, we get 7@ X.TWith an increase and

decrese il byt®, we obtain a more convex and a flatemile around ATM point
respectivly Onecan see, in agreement with Hagat al. (2002), that the volvol controls how

much smile the curve exhibitgs KSNBE 'y Ay ONBIF &S Ay A g2dd R AY
curve, ceteris paribus.
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will rotate the curve around the ATM poinwhen increasedAs in previous examples

we calibrate the SABR model with the assumption that T@®. The best fitpossible

under this scenario returns 1@t Y.tThen lower and highérby & vwe get the
following graphTheoretically, is the correlaion between two Brownian motion and is
therefore bounded td ¥ pip .

Figurel2- Charge inkRho
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Figure 1Zhows the SABR volat|llsynlle for a IM5Y swaptlomallbrated usmg/lethod 1(seeSect|on3 4) with

i T nopd wSadzZ (GAYES LI NF YSESNE I WB " B KBEOoO§dapt KS { { 9
proximately 0.015. Rho is later increased/decrease@.884-0.166 while keeping the rest of the parameters
constant.The red star idicates the ATM volatility of 37% for a swaption with strike of 2.4%.

Hagan et al. (2002) claithat rho controls the skew of the curve. This is verified by looking

at Figure 12 to se&vhat happens when we increase/decrease the parameter. One can see

that an increasd ©~ {2 0.834 WitAés the curve counteclockwise creating a flatter

smile. On the contraryk R S ONB-D.5#66 wabild lead to a cloakise rotation of the

SABR curve and hence a steeper smile.
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h is different t2 1 I A sihcg R is ‘astochastic parameter An increae in this
parameterwill lead to an upward shift of the entire smiehile a decrease will result

in an downward shift.This observationcan be made aftersettingl to be the initial

volatility where the enire stochastic process would begin froAs a result shouldgovern

GKS @GSNIAOIE t20FGA2Yy 2F ( KAso fovihid r€asoNI0 i K S NI

since we can not experince nquositive volatility.From our calibration corresponding with

the earlier figures, we receive 18t v.JAdding and subtractind.01 to this valuewe

attainthe curves in Figure 13.

Figurel3- Change in Alpha
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Figure 13hows the SABR volatilisynilefor a 1M5Y swaptiorcalibrated usingiethod 1(seeSection3.4) with

i ' nopd wSadzZ GAYES L¥ NF YEESNB®RADWE ¢KE P9 sFdea@yi KS FA
proximately 0.015. Alpha is later increased/decreased to 0.068/0.048 while keeping the rest of the parameters
constant.The red star indicates the ATM volatility3#.4% for a swaption with strike of 2.4%.

In Figure 13we can see that the curvature of the SABR curves seem to remain constant

when alpha is increased and decreased. That a change in alpha wiltheesphape of the

smile is in agreement with e.g. Skov Hansen (2011, p.39).
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3.3 The Backbone

FromHagan et al. (2002}he socalledbackbone is the curve that is traced duoom ATM
volatility when the forward pricgf, changes. This backbone is observed talbpendental
most entirely onthef used as the exponent of the price process. Initjallg calibrate the
Y2RS(

ith anNATIM rateaip2,4% dveihstedid et 2hy forg
ward rate shiftto 2.9% and 1.9% respeatily, we can infer from Figure 1that the ATM vol
atility shift accordingly
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the result will be different. Both an increase and a decrems@wvould only shift the curve
on the horizontal axis while keeping the ATM voligtiionstant as seen in Figure 15
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3.4 ParameterApproximation

There are many ways one can calibrate the SABR mbdefever,the general idea is to
minimize the gap between observed and predicted implied volatility fitted by the SABR
model for each coresponding strikeThis technige is also known athe Least Square
Method. Usingmathematical language, thproblena 2 6 2 S O lican®8 foruafe® i A 2 Y
as

(—

l Eﬁi , K dh hviynr AQ

Where, is the implied market volatility (found by some appropriate methgdand

, 'h HH n AQis the SABR volatility as a function of SABR parameters given thekstrike
and an ATM forward pric& The Sum of the Squaredr&rs (SSEabovewill then be mini
mized withthe constraintsofif KS Y2 RSt Qa LI NI YSUGSNEZ A PSSO

To solve the above optimization problem with the given restrictiomse can put different
weights to each parameters according to distinct characteristic of the market under eonsid
eration. For examplein anilliquid market,a trader mightwant to put moreweights to trad

ed instrumentsthan equal weightsn order toproduce bestpossiblefit. In our calibration,
giventhe market datafrom Murex Mx3 we will only aply equal weights.

34.1 1

AccordingHagan et al. (2002) A & G K S ofalpiedsiimatiogparan@tér, 6Fit can

reflex the prior belief on the forward process of the underlying as&¢herwise, if fitted

with the market smiles, it would only be fitting the market noidé€$he authors pointed out

that 1 NRA 2dza | @I f dzSa diferengeaniquakityh abifie fitHdwmdedet, the” G A | f
OK2AOS 27T | Greekygkou Harkéh P011B&l6nSve will discushree common

choices ofbeta, which occilswhenwe letf | mih-fp .

21 This would imply that @ instead are interested to minimizi;:; I%B 20 » ' h WA MARQ wherewe

let’~ plp ,’ Tmand Tt
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When beta equa zerg, the forward process beaoes stochastic normally distributed with
mean zero and lognormaldistributed standard deviationWith a symmetric brealkeven
point, this is an effective choice for managing riskis chaie isalso suitable for trading
market like Yen, Kronandinterest rates, where the forward§xan be negative or near ze

ro. However, for most normal casef forward price this betais not the most preferable
oneas stated byskov Hansen (2011)

Bo- YO W e QQ&

g0 | 'OQw
This choice usually concerns with US interest rate desks that often use CIR models- The sto
chastic CIR model také&s name from Cox, Ingersoll and Ross (Qogersoll &Ross 1985)
model ofshort-term interest rates. With setting beta equals to oAealf, our current level of

the price process is under a square root. This proponent will prevent the forward price to be
negative, which ig contrast tothe previous cas wherebeta equasto zero.

by YO 85 00'@QE ¢ 10 @& D &
ado | Ow
In this case, the forward process is a lognormal process, it is almost similar to the Black and
{ OK 2 6efi@, @fdere the stoclprice followsa Brownian motion. The onlgifferenceis
that Black and Scholes assunmahstant volatility and this stochastic model s#te volatit
ity process to be a stochastic process as Welieta is chosen to be onene should also be
f ASOS (KI (backbireis holizonlal&scahde seen iBection3.3). This casealso

resenbles the case beta is of®lf becausdghe lognormal process will also prevent nega
tive forward rate.

Howeverf can also be estimated as any other parameters in the modet can be de
duced fromthe observed backbonelaking logarithm oEquation(3.1.2 produces

ag,Q aeEQp 1T a€EQQ
From this, we &n use linear regression of natural logaritlwhobserved ATM volatility and

naturallogarithmof forward rates in order to estimatthe slope of the line aboveé isthen
the slope + 1
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342 "X A YR N
After realizing beta, we are left with threeemaining parameterso estimateh = ~ |y R A ®
general, here are two weklknown ways to do so.

The first method(denoted in this paper as Mbbd 1)is recommended byHagan et al.

(2002)and can be seen as the mormnvenientone. t uses ATM vaittility to infer the pa

rameter] sog S 2yfé& ySSR G2 SaidAYlFdGS, itedrierseed DA DS
tion, we have

” ~ ” ” , "Y
o P ct 0 T x: (3.4.1
T 0 o] o] . Q
Where
. p T Y . ” T ’ ¢ Y, L c o.n
0 — WE ’
¢ iQ TQ P qT

West (2005) suggested that this cubic functmyuld have more than one real root. In that
case, the smallest positive root should be seledtetest capture the smile effecNowthe
mnYAT I GA2Y LINRPOf SYmRemeao 2SO0 A GBS Fdzy Qi A2y

HET . CFHROTRR R

However, thé estimation will take more time to produce thHmal result than the second
method. Since every iteratn has been added an extrastepf Sa d A Yl G Ay 38 h G KNS
In detail, the procedure is

. laaA3dy AYyAGALE @GFrftdzSa G2 ° |yR A®

ii. Solve for throughEcuation(3.4.]) that use input$ Mk Y R A @

ii. Insertt H wl Yy R /EquAtiyrid2l.d to calculate, for every strike.

iv.  Minimize the objective functiombove to getanew setafl Y R A ®

v. Repeat (ii) and (iifp get a new set of parameters and.

vii Plugthenew, Ayi2 (GKS 202S0O0AGS FdzyOliA2ys (KSy
value with a convergence criteria. Move on to the next iteration until the algorithm
converge to a level of tolerance.

The secondnethod @enoted in this paper as Metho?) uses common techniques of opti
mization such as NewteRaphson Mthod for finding rootsor minimizesthe sum of
squared of errors (SSEeeAppendix 4)Xo solve the statedyeneralminimization problem
for all paraneters?and arrive at a set of parasters tha gives the smallest error. Both

22 Assuming that is predetermined prior to the calibration of the model.
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methods arevery intuitive and maye done with a computer software that allovgsich m-
plementation

3.5 Greeksunderthe SABR Model

3.5.1 Original Set

In this sectionwe briefly describethe previous Greeks (delta andgega) under the SABR
framework Consider an ption with a forward rate f, strike K artine to expiryT expressed
in year. Under thenodel,the value of this option meaged with the Black/6 formula is

@ 6 "@h ONB AYRY
Where,, 0NM RY is the volatility extracted from SABR aéid"®y h, H'Y is the Black/6
pricing formula From the original paper by Hagan al. (2002)delta is the change in the
current value of the option when theurrent value of the forward is shiftedvhile keeping
other paraneter and the level of alphéfixed. However, in addition to the Bla€kt model,
the underlyng asset price is now a function of volatility. Therefdrg,applying the chain
rule, we find the SABR delts
RN
| |
Ny 6 ' ”
y 19
T aQr g Q
O0'Mi ™ i o Qis the forward price at time t aniis the forward price at time §, is
the volatility at time t and is the volatility at time s anfd " the change iff2

Similarly, vega risk is calculated as thenge in price of the option with respect to a change
in volatility of thedzy’ R S NI & Aajpih whelich Sdith@ &hange in,

0 0
| | T

T_d_u

T a

However, these risk measurements are not the optima¢sunder the SABRnhodel. Hence,
we need to turn to better alternatives.

Q
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3.5.2 An UpdatedSet of Greeks

Bartlett (2006) claimed that the delta and vega risk could be hedged more precisely by add
ing new terms to the risk measurements of Hagan et al. (2002). Under the Greels thed
author claimed that delta risk is less sensitive to the betponent chosen in the SABR
model.

Barlett argued that becae in the SABR model alpha afi$ correlated, wherkxhanges,
in average alpha changes too. Therefore, he postulated a more realistic way to calculate
delta risk.
0 Q10

| | 11
The average change alpha caused by the change™{as denoted ag 4. In orderto calcu
late alpha, Barlett (2006) rewte the ABR dynamics in term of twacorrelated Brownian
motions' @ and' v,

aQ | QQw h

Q@ e p o
If we rearange the firstexpression as
o 0Q 'Q h

then insert it intothe second expression, we get

Q  —oo | p o
0
Now, apparently, the change in alpha is affected by the change in two independent terms.
The first term is the change ii@and the second term is the unsystematic changelpha.
With this approachwe can writehe average change in alpha due teetforward™Qas

I — Q0
LR

The changén the option value imow
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This new defirtion of delta has included the average change in volatility alpha caused by
changes in the underlying forward rate by addihg new term

1A
T 1 1Q

In the same manner, vega risk should also be caledltom the followingscenario
0 Q1 Q
| | T

Similarly, wherg As the average change ‘ificaused by a change alpha, wecan also find
that

-,
1 Q —0Q

Thus the vega risk is now

We will stop atderiving risks at this poinkor more complicated derivatés such as swap

tion, it isdifficult to measure delta and vega correctly. The reason is that, generally, delta of
a swaption is defined as the change in swaption price in term of a change in the underlying
swap price. In thisase, theswap value must be determined atlis is not an easy tagk
achieve in reality.i8ce different institutes haveéiversetechniquesto approaching value of

a swap, using different interest rate cusvé&ven with an appropriate method of calcufeg

the a swap values, the task of calculating Greeks still appears pratiemhen one must
decide how to shift the price of the underlying asset (e.g. the swap). One option is the shift
the entire yield curve by, for example, 1 BPS and calculate mmargtical) pricesor to use

some applicable scaling factor. However, one will most likely never exmeria parallel

shift in the curve used to price the derivative. Instead, a shift occurring in one or several
time buckets can be used€onsequentlyto calculate risks adelicate work that involves
ambiguous decisions. Therefore, this section will not be further developed here, nor as a

LI NI 2F GKS az2Fd6IF NS | LILX AOIFGA2Y F2NJ agl LIWGA2
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3.6 Refinement of the SABR Model

It can beobserved that the dginal formula for volatility byHagan et al. (2002)reaks down
when the strike is small and maturity is long. In this section, we will simply state the-refine
ment to that problem which was summarized b®bléj(2008). We referd Obloj (2008),

and Chapter3 andChapter7 in Gatheral (200%for background and additional reading

The implied volatility surface ofi'Y with maturity”Yande 1 T QU0 can be approxi
matedusing Taylor expansioas the following

, Y O®p Ow'Yh

” O.”
i we 0 L P TFIT ST,
CT (VL T U ] CT
And four cases foD ®
Caselw T
O | v
Case 2t
s wlp 1
00 o573
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The parameters fj htf’ are obtained afte calibration of the SABR model anti® Yare

market data. This wayhe volatility, GH'Y is calculatedwith regard to one of these four

cases with only trivial operations and it is thplugged back into the Blagil6Q a ¥ 2 NJ dzf |
order to get the price of an optioriThis adjusted modekven though, theoretically more
reasonable than th origind one,produce only small differences we will shanSectiord.
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4 CALIBRATION AND RES$8

Using the data set describeghrlier, in this section, we will calibrate the SABR model with
MATLAB in severalays. Firstwe will set three prior values to beta (0, 1/2 and 1), then use
different methods to calibrate the remaining parameters. Secondly, we will estimate all pa
rameter values using only the given market smile.

In MATLAB we partly use functions written by of Fabrice Douglas Rouah (see
www.volopta.con). We also write our own program for implementing the SABR model
where we call many of the external functiodsS dz&aS (G KS aFYAyaSl NOKE
NelderMead algorithm to find parameters that minimize our S&BIr written programm-

ports allthe data from Mx3 to convert it to suitable volatility matricéster it alsglotsthe
volatility smiles, surfaces and cubes that geve presented earlien this paper.The ettire
process from impding data from an excedheet to receivingll our findings takes approxi
mately 15 seconds using standard computer. &ment of our and Fabrice Douglas
w2dzt KQa O2RS @éngix30S F2dzy R Ay ! LJ

4.1 Different Values of Bta
Using bothMethod 1 andMethod 2 without refinemens, we calibrate the model fdahree

different values of beta, namelyth-fp . Results are presented in Tatdleand Table 2. The

result shovs that the discrepancy in term of errdtis insignificant acrossllabeta under
both methodks.

Tablel - Method 1 Estimated for Different Beta

beta rho volvol alpha error

0 0.447103 0.651421 0.008953 0.024757
0.5 0.08426 0.673686 0.057738 0.014563
1 -0.24621 0.783108 0.373115 0.014482

Table2 - Method 2 Estimated for Different Beta

beta rho volvol alpha error

0 0.475036 0.587904 0.009232 0.027657
0.5 0.077919 0.641193 0.058745 0.018593
1 -0.24778 0.780557 0.373697 0.014509

BThe error term is define &8 , , 'Hh "HHA M AB  , in other words, it is the sum of the
squared differences between the observed market implied volatility and the estimated volatility by the SABR
model.
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Althoudh the different is small, weonclude that

j I~ sithsBnkatbe§ Srror under the second calibration. On the other hand, when

f T, oneexperiencathe largest errorapproximately 0.01 higher thaior other valies of
beta. Below ardigures illusrating the fit to market data.

- givesthe best fit for Method 1 while

Figurel6 - Calibration with Different Beta (Method 1)

Method 1 - Different Betas
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In Figure 16a 1M5Y swaption is calibrated usiMgthod 1. Parameter estimation can be found in Table 1. The
red star indicateshe ATM volality of 37.4%6 for a swaption with strike of 2.4%.

As we can see fromdtire 16,all the SABR curves ¢frough the ATM point of the swap
tion. This is also the point of intersection for the three curves. This is due to the fact that we

only minimize the sum othe squared errors for twaJ- NI YSGSNB O6A ®PSP A | yF
conclude that the fit i;equally good regardless tie predetermined value obeta.
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Figurel7 - Calibration with Different Beta (Method 2)

Method 2 - Different Betas
T

08 | T T T
: ® Market vol
\ : p=0
0.75- A : : ————p=05
03% FH N R p=1
o7l ) | k ATM
. 1
A
0.65- ‘ ‘f‘ 8
LY
= L I i
% 0.6 t".
& 055+ % ~ : ' ' 1
< ¥
(%] “‘3
05- N b
N
X
*, - ; , |
045+ %
N
%
0.4 , : 3\"_ : P
I T i
0.35

L L L 1 | L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Strike

In Figure 17a 1M5Y swaption is calibrated usiMgthod 2. Parameter estimation can be found in Table 1. The
red star indiates the ATM volatility of 37% for a swaption with strike of 2.4%.

In Figure 17Method 2 is employed where the sum of squared errors is minimized for three
predetermirS R @I f dzS8a 2F | & Ltiye plOduged dlives do nd BHnge A dzNB
through true the ATM market volatility (with the exception of when one is chosen as the be

ta expnent).

ComparingMethod 1 andMethod 2, we see that both methodgroducespectacular fit to
the market data. It is reasonable to believe tithe chosen methodshould be based on
whether thetraders wantto fit the SABR curve thugh the point of ATM votdity. Trader
shouldfit the model so that it goes through AMbecausemore swaptions (and other deriv
atives) are traded at or around ATM. Obviously, the work effort to minimize SSBlaimd) s
eq. (3.4.) take more time to implement. Although, in ouriamn, this is a small price to
payin orderto have a model that can fit ATM instruments.

The choice of which beta exponent to use is a puzzle to solve. Fortunately, we experience
good fit regardless of which value we use when calibrating the model. Wia that, in
agreament with Hagan et al. (2002he beta value does not have such a great impact of the
quality of the fit. It is quite appealing for traders to drop the assumption about a lognormal
distributed underlying asset that is crucial in the@&tScholes world and instead pick beta
based on true beliefs.
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4.2 Method 1 vs. Method 2 using Refinements

From the previous observation, we chogse T@® to compae the quality of fit between

two methods with their refinement suggesd by Obl6j(2008). Tabl& shows the calibrated
parameters and errors.

Table3 - Different Methods Calibrated for when &a is 0.5

Calibration beta rho
Method 1 0.5
Method 2 0.5
Method 1F 0.5
Method 2F 0.5

volvol alpha error

0.08426 0.673686 0.057738 0.014563
0.077919 0.641193 0.058745 0.018593
0.046258 0.662306 0.057749 0.014231
0.041704 0.636768 0.058619 0.015944

As we can sedlethod 1 with refinement has the lowest error whidethod 2 has the high
est. In average, refinement inoth method shows equally fit wherboth Method 1 and
Method 2 fit well to the market data without noticeable differences. The parameters are al
so very similar. The two figures below are illustratohthe calibration.

Figurel8- Finetuned Smile (Method 1)
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In Figure 18a 1M5Y swaption is calibrated using method 1 with andhavit finetuning. Etimated parame

ters can be found in Tdb 3. Thestar indicates whereATM volatilityis 37.4% for a swaption with strike of
2.4%.

One can onceagain see from Figure 1Bat Method 1 calibrates the model by inferring-al
pha from ATM volatility. The fit of the two curves are almost identical for the entire domain
of the curve and only seem to dinge slightly for large strikes.
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Figurel9- Finetuned Smile (Method 2)
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In Figure 19a 1M5Y swajpdn is calibrated usiniylethod 2 with and without fine-tuning. Etimated parame
ters can be found in Tdb 3. Thestar indicates where ATM volatility 87.4% for aswaption with strike of
2.4%.

In Figure 19one can see thaMethod 2 produces almost identical curves with and without
fine-tuning. Once again, the SABR curves only seem to differ for larger strikes. As mentioned

previously, ifSSE is used to minimize tBeNNB2 NE F2NJ h ¥ °~ | yRnot>X (GKS
intersect the point of ATM volatility

Despite the fact that theDbléj (2008) refinemenproduces smaller errorghey are in fact
rather cumbersometo apply. If the extra quality required is not outwghed by the effort it
takes to implement refinementany techniques should be considered adequate. However
we argue that for our examplabove, the positive ééct received by applyin@bl6j(2008) is
dwarfed in comparison to those that potentially coute reeived by altering between
Method 1 andMethod 2.

4.3 Calibration for Long and Short Tenors

As seen fronthe previous results, the fit of the SABR model to a 1IM5Y swaption is spectacu
lar regardless of method used or the selected beta. We continuédbling at some ex
treme scenarios where the tenor of the underlying swap is very short/long and the time to
maturity is also very short/long. We want to investigate the following swaptions: 1M20Y,
1M4Y, 20Y4¥nd20Y20Y.

Under the assumption that beta fahe underlying asset is one halfe calibrate the four
different swaptions using Method 1. The results are summarized in Table 4.
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Table4 - Different Swaptions Calibrated with Mthod 1

Swaption  beta rho volvol alpha error
1M20Y 0.5 -0.03445 0.764233 0.05122 0.005479
1M4Y 0.5 0.089563 0.541858 0.053886 0.042698
20Y4Y 0.5 1 0.061883 0.031644 0.015523
20Y20Y 0.5 -0.1098 0.208613 0.026842 0.005055

Figure20- 1M20Y Calibration Figure21-20Y20Y Calibration
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In Figure 20 (left) and Figure Right) the SABR model is calibrated for a 1M20Y and a 20xgption (ATM

rate 3.17%) A q K i ' nopd al N} Si lca g2t ¥ kefspbdii\!elﬁi Talculngs | LILINE
LI N} YSGSNBR F2NJ "X A h FyR {{9 NS F2dzy R Ay ¢+ o6fS no
Figure 20 andrigure21 showremarkable fit to the market datdn those figureswe can-

pare two swaptions from the same volatility surface. One that expires in one mantl ore

in 20 years. Investigating thearameters,we see that alpha is higher for the swaptidmat

expires shorter which is consisteot what we can expect by looking atyaswaption volat

ity suface. ThenegalS @I f dzS 2 F ~ IR2BNB ly® (I YOXKdzyB S Rt S
the swaption that expires in one month.

Figure22- 1M4Y Calibration Figure23-20Y4Y Calibration
1M4Y calibration - Method 1 20Y4Y calibration - Method 1
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In Figure 22 (left) and Figure 23ght) the SABR model is tahited for a 1IM4Y and a 28Y swaption (ATM
rate 221%p A GK I ' nopd al Ny Sd !¢a @2tFGAtAGASE | NB | LILINE
paranS G SNBE F2NJ "X A h FyR {{9 FINBE F2dzyR Ay ¢l o6tS no
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We now turn the attention to a swaption with dart tenor of underlying swap. After cali
bration, we end up with curves that do not show the superior quality of fit we have ob
served earlier. The errors for the 1M4dhd 20Y4Y swaptions are many times greater than
those of tre 1IM20Y and 20Y20Y swaption whesing the exact same techniques of calibrat
ing the SABR model. Comparing the estimated values fqoorf@can also see that it is very
different when calibrated to fit the two different smiles from the same volatilityface. The
same is true for volvol and alpha

It appears trickier to fit swaptions that have a shorter tenor than those with a long teror re
gardless of when they expire. Of course, this could be a result of a poorly chosen calibration
technique where for gample refinements or another beta value would generate a much
better fit. On the other hand, it can also be a proof of how complex@nthmic the market

could be. There can thus exist tenors with smiles that the SABR model cannot capture cor
rectly.

Above, we calibrated the SABR model for swaptions with underlying strikes of four years.
We chose the tenor of four years to represent a swaption with a stesrmh underlying
swap. In fact, many swaps have shorter tenors than four yésoaiever,we did not dioose

them becausan order to be able to calibrate the model around a spread of 400 BPS,-a one
two- or three-year swaption would have to be calibrated for negative strikes. The SABR
model breaks down and we can tanger calibrate thecurve under method presented in

this paper. In defnce of Hagan et al. (2002) wpoesentedtheir work during a time when
interest rates were still somewhat high, no one could expect scenarios where an issue about
negative strikes would be addressed. In order to resolve igsue a method that accounts

for negative strikes must be developét.

4.4 Additional Remarks

We have so far showed very good fit to market data. We do not argue that that SABR model
in any way fail to capture the effect of the smile seen in the mark@ts.findings presented

and discussed above are clear proofs that the SABR model is efficient to calibrate itself to
market data. Method employed, with or without refinements, also seem to have a small im
pact on the outcome.

However, the quality of thelata must always be questioned. In this report, we have used

YIEN] SG RFEGE LINPOGARSR (2 dza o6& 2yS 2F {[{6SRSyYC
terpolated/extrapolated for several strikes and tenors where traded instruments do not ex

ist. As menbned earlier, this is standard procedure. Although, if one tries to calibrate the
model to datathath & | f NS REGKE 1 ENBRSilig> aFf8 O2dzZA R Y
result we provide in previous sections.

24 Such as extension of the SABR model to fit with the Normal Black mod&dsten2.5.4).
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In this paper, we only study instantamgs movements in time to calibrate the SABR model.
The SABR volatility calculated from the calibratioight to be plugged back into the Black

76 model to receive a theoretical price for any strike. Although, this is only valid at that cer
tain point in tme for when the calibration occurred and does not answers any questiens re
garding if the calibration will last for a longer tim@alibration of the model only takes a
couple of seconds so recalibration of a frequent basis ceakilybe done. Hagan etla
(2002) claimed that calibration lasts for a long time given that alpha is recalibrated daily. It
could be argued that the model should be recalibrated more frequently than that.

Implied volatility is an interesting concept. Up until today, any versiotihe BlackSchoés
model is mainly used tfind the implied volatility of an instrument. People are thiugdza A y" 3
GKS GgNBYy3 ydzYoSNJ Ay GKS ¢ NHEReBbna®200) Bekspite 2 3 S
that the SABR model is not an actual pricing modélag gained vast popularity among
traders. It is easy to calibrate and the result seem to correspond good to market data. Since
we have not investigated any alternative models, little can be said about them and whether
they suceed the SABR model. Howevkthe market standard would be to use the SABR
model in order to price certain interest rate derivatives, would the market adjust to the
model such as it did to the Bla8icholes model during the 70s? What impaatsl what

kind of harm could thipossiblecaus® Even if certain models appear very appealing, one
must always remember that the market is dynamic and will always change, often unexpect
edly. To put to strong cdence in one model is thus very risky, regardless of its power to
correctly capturesmile dynamics and create good hedge ratios.
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5 CONCLUSION

The SABR model developed by Hagan et al. (2002) is a stochastic volatility model that at
tempts to capture volatility smiles in derivative marlsetn this paper, we account for and
calibrate the 8BR model for swaptions. By using two different methods (with and without
refinement),we found the SABR modatcuratdy capture the volatility smiles on the mar

kets. Under our investigation, we experiengo@verse skews rather than forward skews for

all swaptions. On the other hand, for longer tenorge do not experience any major smile
effects for swaptions when the volatility curves are rather flat in general.

We find no major discrepancy between thedwnethods of calibration. Hower, we sug
3Sad GKS Y Ssier& frankATMIolatilitjor conveniences and slightly better
result. While using refinementghe fit to the market data is increased marginally. Despite a
slightly better fit, we B dzS G KIF 0 | & &S 0KSANEK @Alaf d¥S2 NES2 Ny
distribution of the underlying asseshould be implemented rather than any refinements.

For future conceivable studieas a natural continuationf this paper, a study to calculate
swaptions, caps or floorprices, & ¢ St f | Aandihkvbthey deNaBestddzby chang

ing the parametersinderthe SABR should be carried olt addition,a researchabout vot

atility surfaces wouldbe an interesting undertaking. Moreoverdaeperstudy of a dynamic
SABR modelvould constructively add to the body diterature, see Appendix B, where
Hagan et al. (2002, p. 10BJjesentedthe dynamic of SABR moddlhis would lead to one
being able to calibrate the SABR model for entire volatility stefaFinally, as earlier men
tioned, an extension of the SABR model that is consistent for negative strikes could be an in
teresting alternative for further studies.
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6 APPENDICES

Appendix 1¢ Cumulative Normal Distribution Function

To implementfor exampleEquation(2.5.3 and Equation(2.5.4), there lies a problem caleu
lating the cumulative normal distribution function, @. One can use inbuilt functions in
e.g. ExcelNORMSDISTor MATLABnprmcd). Without computational assistance, a poly
nomial approxmation for @ is given by
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For furtherreference, see Chapter 13 in Hull (2009).
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Appendix 2¢ Selected Data

Table Al - Selected @&ta

ATM VOLATIL}
TIES

Tenor/Maturity M 3M 6M 1Y 2y 3Y 4y 5Y 7Y 10Y 20Y
1y 334 30.1 315 31.1 34.3 33.9 29.8 27.8 24.5 22.4 19.7
2y 32.8 31.1 33.3 33.3 34 315 28.4 26.3 24.8 215 20.9
3Y 34 325 34.8 34.8 32 29.9 27.4 25.4 24.4 21.1 21.5
4Y 36.3 35 34.9 33.9 30.6 28.7 26.6 24.9 23.8 20.9 22.1
5Y 37.4 36.3 35.5 33.1 29.7 27.6 25.9 24.4 23.2 20.8 22.2
Y 325 31.3 30.9 29.7 27.8 26.7 25.5 24.4 22.9 20.8 21.2
1oy 31.1 29.3 28.2 26.8 26.1 25.7 25.1 24.4 22.9 21.1 19.9
12y 31.1 29.3 28.2 26.8 26.1 25.7 25.1 24.4 22.9 21.1 19.9
15Y 29.3 28 27.3 26.1 25.1 24.8 24.1 23 22.3 20.3 17.2
20Y 28.9 27.9 27.4 26.4 25 24.6 23.8 22.8 21.9 19.8 16.1
4Y swaption

Strike/Maturity M 3M 6M 1Y 2y 3Y 4Y 5Y 7Y 10Y 20Y
0.213859081 37.0984 37.0984 28.6 249333 14.1049 11.0987 9.9779 8.86667 7.96642 7.10018 7.46706
0.463859081 30.6482 30.6482 23.6167 20.0667 11.4791 9.07393 8.16222 7.25833 6.50812 5.76683 6.14199
0.713859081 241979 24.1979 18.6333 15.2 8.85319 7.04913 6.34654 5.65 5.04982 4.43349 4.81693
0.963859081 17.7476 17.7476 13.65 10.3333 6.22733 5.02434 4.53085 4.04167 3.59151 3.10014 3.49186
1.213859081 11.2973 11.2973 8.66667 5.46667 3.60146 2.99954 2.71517 2.43333 2.13321 1.76679 2.16679
1.463859081 7.46483 7.46483 5.76667 3.68333 2.4177 2.01633 1.84071 1.66667 1.41656 1.16679 1.51674
1.713859081 3.63239 3.63239 2.86667 1.9 1.23394 1.03312 0.96624 0.9 0.69991 0.56679 0.8667
1.963859081 1.39964 1.39964 1.1 0.76667 0.53358 0.39991 0.38319 0.36667 0.26661 0.23339 0.3667
2.213859081 0 0 0 0 0 0 0 0 0 0 0
2.463859081 -0.6331 -0.6331 -0.6333 -0.5 -0.4336 -0.2999 -0.2665 -0.2333 -0.2 -0.1666 -0.3
2.713859081 -0.7664 -0.7664 -0.8 -0.7667 -0.6338 -0.4998 -0.3995 -0.3 -0.3333 -0.2 -0.5667
2.963859081 -0.3831 -0.3831 -0.55 -0.8167 -0.7672 -0.6164 -0.4742 -0.3333 -0.3166 -0.15 -0.75
3.213859081 0.00018 0.00018 -0.3 -0.8667 -0.9007 -0.733 -0.549 -0.3667 -0.2999 -0.1 -0.9334
3.463859081 0.66681 0.66681 0.08333 -0.7083 -0.8592 -0.6747 -0.345 -0.2833 -0.2082 0.025 -1.0001
3.713859081 1.33344 1.33344 0.46667 -0.55 -0.8176 -0.6163 -0.3408 -0.2 -0.1166 0.15 -1.0667
3.963859081 2.00007 2.00007 0.85 -0.3917 -0.776  -0.5579 -0.3366 -0.1167 -0.0249 0.275 -1.1334
4.213859081 2.6667 2.6667 1.23333 -0.2333 -0.7345 -0.4995 -0.3323 -0.0333 0.06679 0.4 -1.2001
5Y swaption

Strike/Maturity 1M 3M 6M 1Y 2y 3Y 4y 5Y 7Y 10Y 20Y
0.399829154 35.4 35.4 27.1 17 11.4 9.7 9.04733 8.4 7.7 7 7.9
0.649829154 28.625 28.625 21.875 13.725 9.25 7.9 7.37285 6.85 6.275 5.675 6.5
0.899829154 21.85 21.85 16.65 10.45 7.1 6.1 5.69836 5.3 4.85 4.35 5.1
1.149829154 15.075 15.075 11.425 7.175 4.95 4.3 4.02387 3.75 3.425 3.025 3.7
1.399829154 8.3 8.3 6.2 3.9 2.8 25 2.34938 2.2 2 1.7 2.3
1.649829154 5.45 5.45 4.1 2.6 1.85 1.65 1.57469 1.5 1.3 1.1 1.6
1.899829154 2.6 2.6 2 1.3 0.9 0.8 0.8 0.8 0.6 0.5 0.9
2.149829154 1 1 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.4
2.399829154 0 0 0 0 0 0 0 0 0 0 0
2.649829154 -0.4 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3
2.899829154 -0.5 -0.5 -0.4 -0.4 -0.4 -0.3 -0.2498 -0.2 -0.3 -0.2 -0.6
3.149829154 -0.15 -0.15 -0.05 -0.35 -0.45 -0.35 -0.2747 -0.2 -0.25 -0.15 -0.8
3.399829154 0.2 0.2 0.3 -0.3 -0.5 -0.4 -0.2996 -0.2 -0.2 -0.1 -1
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3.649829154 0.825 0.825 0.65 -0.1 -0.4 -0.3 0 -0.1 -0.1 0.025 -1.075
3.899829154 1.45 1.45 1 0.1 -0.3 -0.2 0 0 0 0.15 -1.15
4.149829154 2.075 2.075 1.35 0.3 -0.2 -0.1 0 0.1 0.1 0.275 -1.225
4.399829154 2.7 2.7 17 0.5 -0.1 0 0 0.2 0.2 0.4 -1.3
15Y swaptions

Strike/Maturity M 3M 6M 1y 2Y 3Y v 5Y Y 10Y 20Y
1.104474218 23.2997 23.2997 18.6 12.8 9.6 10.85 11.5529 12.25 11.7999 11.1 8.79975
1.354474218 19.2247 19.2247 15.1375 10.425 7.7 8.92503 9.54628 10.1625 9.79996 9.2125 7.3123
1.604474218 15.1498 15.1498 11.675 8.05 5.8 7.00003 7.5397 8.075 7.79997 7.325 5.82484
1.854474218 11.0749 11.0749 8.2125 5.675 3.9 5.07502 5.53311 5.9875 5.79999 5.4375 4.33739
2.104474218 6.99995 6.99995 4.75 3.3 2 3.15001 3.52653 3.9 3.8 3.55 2.84993
2.354474218 472497 4.72497 3.025 2.175 1.125 2.15001 2.42612 2.7 2.65 2.45 1.99996
2.604474218 2.44999 2.44999 1.3 1.05 0.25 1.15001 1.32571 1.5 1.5 1.35 1.14999
2.854474218 0.94999 0.94999 0.55 0.4 -0.3 0.5 0.60041 0.7 0.7 0.6 0.5
3.104474218 0 0 0 0 0 0 0 0 0 0 0
3.354474218 -0.5 -0.5 -0.35 -0.25 -0.9 -0.3 -0.4004 -0.5 -0.4 -0.45 -0.4
3.604474218 -0.6 -0.6 -0.1 -0.25 -1 -0.45 -0.6508 -0.85 -0.75 -0.75 -0.75
3.854474218 -0.325 -0.325 0.3 -0.15 -0.975 -0.5 -0.751 -1 -0.9 -0.925  -0.9999
4.104474218 -0.05 -0.05 0.7 -0.05 -0.95 -0.55 -0.8512 -1.15 -1.05 -1.1 -1.2499
4.354474218 0.55005 0.55005 1.3125 0.2375 -0.8 -0.425 -0.4193 -1.1 -1.0125 -1.0625 -1.3499
4.604474218 1.15005 1.15005 1.925 0.525 -0.65 -0.3 -0.3882 -1.05 -0.975 -1.025 -1.4499
4.854474218 1.75006 1.75006 2.5375 0.8125 -0.5 -0.175 -0.357 -1 -0.9375 -0.9875 -1.5499
5.104474218 2.35007 2.35007 3.15 11 -0.35 -0.05 -0.3258 -0.95 -0.9 -0.95 -1.6499
20Y swaptions

Strike/Maturity M 3M 6M 1y 2y 3Y 4Y 5Y 7Y 1oy 20Y
1.166501312 22.1 22.1 17.5 12.6 8.5 10.7 11.5033 12.3 12 11.3 7.9
1.416501312 18.275 18.275 14.225 10.275 6.675 8.8 9.50287 10.2 9.95 9.375 6.575
1.666501312 14.45 14.45 10.95 7.95 4.85 6.9 7.50246 8.1 7.9 7.45 5.25
1.916501312 10.625 10.625 7.675 5.625 3.025 5 5.50205 6 5.85 5.525 3.925
2.166501312 6.8 6.8 4.4 3.3 1.2 31 3.50164 3.9 3.8 3.6 2.6
2.416501312 4.6 4.6 2.7 2.15 0.35 2.1 2.40123 2.7 2.65 25 1.85
2.666501312 2.4 2.4 1 1 -0.5 11 1.30082 1.5 15 14 1.1
2.916501312 0.9 0.9 0.5 0.4 -1 0.5 0.60041 0.7 0.7 0.6 0.5
3.166501312 0 0 0 0 0 0 0 0 0 0 0
3.416501312 -0.5 -0.5 -0.6 -0.2 -1.6 -0.3 -0.4004 -0.5 -0.4 -0.4 -0.3
3.666501312 -0.5 -0.5 -0.4 -0.2 -1.7 -0.4 -0.6008 -0.8 -0.7 -0.7 -0.6
3.916501312 -0.2 -0.2 0.1 -0.05 -1.65 -0.45 -0.701  -0.95 -0.85 -0.85 -0.8
4.166501312 0.1 0.1 0.6 0.1 -1.6 -0.5 -0.8012 -1.1 -1 -1 -1
4.416501312 0.725 0.725 1.225 0.425 -1.45 -0.35 0 -1.025  -0.95 -0.95 -1.05
4.666501312 1.35 1.35 1.85 0.75 -1.3 -0.2 0 -0.95 -0.9 -0.9 -1.1
4.916501312 1.975 1.975 2.475 1.075 -1.15 -0.05 0 -0.875 -0.85 -0.85 -1.15
5.166501312 2.6 2.6 3.1 1.4 -1 0.1 0 -0.8 -0.8 -0.8 -1.2

The data in Table Al contains the dataréproduce the calibrationsmiles, surfacesand cubegdone in prewv
ous sectios. All values are in per centnless other statedThe implied volatility for a specific swaption should
be read by adding or subtracting a term to the ATM volatility. For eXxantbe implied volatility for a 1M4Y
swapion at strike K =0.213859081is (33.4 + 37.0984) = 70.4984ghkile the implied volatility for a20Y20Y
ATM swaption (i.e. K3166501312)s (16.1+0=16.1%
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Appendix 3¢ Selected Code

This appendix contagsome of the MATLAB code usked calibratingthe SABR modeFor a
full account of MATLAB code, contact either authée begin with the functiondor two
different methods of calibratios that based on the functions written dgouah The first
funcion EstimateAllParametersorrespondsto Method 2 where allthe SABRpbarameters

areedimated simultaneously.

function y = EstimateAllParameters(params,MktStrike, MktVol,F,T,b)

% - -
% Returns the following SABR parameters:

% a = alpha

% r=rho

%v=vol -of-vol

% Required inputs:

% MktStrike = Vector of Strikes

% MktVol = Vector of corresponding volatilities
% F = spot price

% T = maturity

% b = beta parameter
O

a = params(l);
r = params(2);
v = params(3);

N = length(MktVol);

% Define the model volatility and the squared error terms
for i=1:N
ModelVol(i) = SABRvol(a,b,r,v,F,MktStrike(i),T);
error(i) = (ModelVol(i) - MktVvol(i)"2;
end;

% Return the SSE
y = sum(error);

% Impose the constraint that -1 <=rho <= +1 and that v>0
if abs(r)>1|v<0

y = 1e100;
end
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The second anthe third functionEstimateRhoAndVaindfindAlphaare usedfor Method 1
As mentioned above, alpha is estimated through ATM volatility while rho and volvol is found
by minimizing the SSE.

function y = EstimateRhoAndVol(params,MktStrike,MktVol, ATMVol,F,T,b)

%
% Returns the following SABR parameters:

% r=rho

% v=vol -of-vol

% Uses ATM volatility to estimate alpha

% Required inputs:

% MktStrike = Vector of Strikes

% MktVol = Vector of corresponding volatilities
% ATMVol = ATM volatility

% F = spot price

% T = maturity

% b = beta parameter

%
r = params(1);

v = params(2);

a = findAlpha(F,F,T,ATMVol,b,r,v);
N =leng th(MktVol);

% Define the model volatility and the squared error terms

for i=L:N
ModelVol(i) = SABRvol(a,b,r,v,F,MktStrike(i),T);
error(i) = (ModelVol(i) - MktVvol(i)"2;
end;

% Return the SSE
y = sum(error);

% Impose the constraint that -1<= rho <= +1 and that v>0
% via a penalty on the objective function
if abs(r)>1|v<0
y = 1e100;
end

function y = findAlpha(F,K,T,ATMvol,b,r,v)
% By Fabrice Douglas Rouah

%
% Finds the SABR "alpha" parameter by solving the cubic equation described

% in West (2005) "Calibration of the SABR Model in llliquid Markets"

% The function can return multiple roots. In that case, the program

% eliminates negative roots, and select the smallest root among the
% positive roots that remain.

% Required inputs:

% F = spot price

% K = strike price

% T = maturity

% ATMvol = ATM market volatility

% b = beta parameter

% r = rho parameter

% v = vol of vol parameter

%
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% Find the coefficients of the cubic equation for alpha
CO= -ATMvol*FN1 - b);

Cl=(1+(2 - 3*N2)*vN2*T/[24),

C2 = r*b*v*T/4/F7(1 - b);

C3=(1 -b)"2*T/24/F™(2 - 2*b);

% Return the roots of the cubic equation (multiple roots)
AlphaVector = roots([C3 C2 C1 CQ));

% Find and return the smallest positive root
index = find(AlphaVector>0);

Alpha = AlphaVector(index);

y = min(Alpha);

This following functionSABRvabill return the SABR volatility for each strigad maturity
in both methods.

function y = SABRvol(a,b,r,v,F,K,T);
% -
% Returns the SABR volatility.

% Required inputs:

% a = alpha parameter

% b = beta parameter

% r = rho parameter

% v = vol of vol parameter

% F = spot price

% K = strike price

% T = maturity

% -
% By Fabrice Douglas Rouah

% Separate into ATM case (simplest case) and
% Non- ATM case (most general case)

if abs(F - K) <= 0.001 % ATM vol

Terml= a/FM1 -b);

Term2 =((1 - b)"2/24*a"2/F(2 - 2*b) + rb*a*v/4/F (1 -b)y+(2 -
3*r2)*v2/24);

y = Term1*(1 + Term2*T);

else % Non- ATM vol

FK = F*K;
z = v/a*(FK)*((1 - b)/2)*log(F/K);
x = log((sqrt(1 - 2z +z272) + 2 -/l -n);
Terml =a/ FK?((1 -b)2) /I (1+(2 - b)*2/24*log(F/IK)"2 + (1 -
b)*4/1920*log(F/K)"4);
if abs(x -z)<le -10
Term2 = 1;
else
Term2 =z /x;
end
Term3 =1+ ((1 - b)"2/24*a"2/FK™ (1 - b) + r'b*v*a/4/FK"((1 -b)/2) + (2 -
3*r12)[24*v"2)* T,
y = Term1*Term2*Term3;
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end

For all code above, we refer to the eminent work fedibrice Douglas Rouakith free
MATLAB functions available watvw.volopta.com

Below is areryshort section from our cod#or calibrating one example af 1M5Y swapon,
given the above functions.

%% Calibrating the smile for a 1IM5Y swaption

%Define the starting values and options for fminsea rch
start =[0.3,0.3];
options = optimset( 'MaxFunEvals' , 1e5, TolFun*  ,1e -8, 'TolX' ,le -10);

% Parameter estimation method 1. Set Beta = 0.5.
% Estimate rho and v, and at each iteration step,
% Find alpha as the cubic root using the findAlpha function
Beta = 0.5;
[param, feval] =
fminsearch(@ (par)EstimateRhoAndVol(par,K5Y,Vol5Y(;,1),VoI5ATM(1),Swapcurve(
5),Expiry(1)/12,Beta),start,options);
rl = param(l);
vl = param(2);
al=
findAlpha(Swapcurve(5),Swapcurve(5),Expiry(1)/12,Vol5ATM(1),Beta,rl,v1);
for j= lL:length(K5Y);
SABRVoILIM5Y_methodl(j) =
SABRvol(al,Beta,rl,vl,Swapcurve(5),K5Y(j),Expiry(1)/12);
end
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Appendix 4¢ Ordinary Least Squares
To minimize the sum squared of errors (SSE) in our calibration, the technique implied is
Ordinary Least Squares (OLS) regression estimation. Given avarglde regression model
below

O 1T 1T

Where® and® is the observed market data) is estimated data, OLS will chdse andf
that gives the minimum squaréd all over sample data points. Where

So, in detail, OLS minimize
Q ® T (A
For only one independent variable, and! arecalculated as follow

B & ®

[ S B '

However, in our model, there are two or three independent variables in the regression
model "R and| ). In which, theEquation(3.4.1)hasto be rewritten where’ i and| are

I ,1 andl respedively. Now, the methods called multivariate regrssion model but it

has the same underlying principle as the single variable model. The goal now is to minimize
the SSE in the same mathematical approach but with one variable at a time while keeping
others corstant. The formula for differerit is very ambersome and vast in size. We refer

to A. H.Studenmund2011) for the content of this section and more information.
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