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Abstract

This thesis' aim is to develop a framework for model risk analysis when hedging a option position.
The framework has been split up into parameter, assumption and market state model risk and
applied to Black and Scholes pricing formula as an example.

The single most important parameter of Black and Scholes formula is the estimation of the under-
lying's volatility. The strongest and most risky assumptions are that volatility is constant and that
the logreturns are normal distributed. Black and Scholes formula is able to handle di�erent market
states but estimation of volatility is harder during turbulent times. The framework is applicable
on all models used to calculate hedge ratios and may be helpful when developing frameworks for
measuring model risk in other contexts.
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Chapter 1

Introduction

Model risk occurs when modeling reality by doing assumptions in order to reduce the degrees of
freedom. Knowledge of these simpli�cations is extra important as an issuer of options since there
is no limit of the possible loss. This paper aims to investigate the e�ect that assumptions and
parameter estimations have when hedging issued stock options with Black & Scholes. The hedging
performance is evaluated by looking at the accumulated result of the portfolio during the life time
of the option. Finding a way of measuring model risk is the �rst step to be able to monitor and
limit it.

1.1 Problem formulation

The objective of this master thesis is to develop a framework for splitting model risk when hedging
a stock option into its components and to �nd a way of measuring them.

1.1.1 Limitations

To narrow the scope of this thesis the following limitations have been done:

• analyzed model risk is in the context of a market maker issuing European options on stocks

• the model used to price the stock options is the Black and Scholes formula.

1.2 Methodology

When analyzing model risk in context of hedging an issued option the assumption that the formula
describes the market price in a good manner is applied in this thesis. This assumption is obviously
questionable when analyzing model risk even though the model already is widely used to this
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purpose. In other words the framework developed in this thesis measures the risk when using an
arbitrary model to calculate hedge ratio, not its capability to price stock options consistent with
the market price. However, a suggestion of how to setup simulations for testing a model's capability
to price according to the market price is provided in Chapter 9. In this thesis the framework is
applied on Black & Scholes formula.

The analysis of model risk will be divided into three di�erent categories:

1. parameter model risk

2. assumption model risk

3. market state model risk

which are based on when they appear. Number one is risks when giving the chosen model improperly
set input parameters. The second category is the risk implied by choosing a model, i. e. the
simpli�cations made when describing the real world in order to create a model. Market state model
risk is a measure of how the model handles di�erent market states, for example turbulent contra
ordinary times. Each has been dedicated its own section of this thesis.

In order to isolate the di�erent components of model risk both Geometric Brownian Motions and
bootstrapped historical data will be used. Modeling the stock price according to the assumptions
of the pricing model enables the possibility to isolate and observe the model's sensitivity to badly
estimated input parameters, and historical data provides data from the actual distribution of the
stock price. The general idea is as shown in Figure 1.1 to plug in the model as the model box
below, feed it with simulated stock trajectories, calculate and accumulate the result in SEK over
the time period and �nally calculate a risk measure. The gray boxes are independent of which
model to apply the framework on, and perfect data depends on the assumptions of the model. A
more thoroughly description of the simulation algorithm is provided in Section 4.1.

Figure 1.1: The general idea of the simulations.
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Chapter 2

Theoretical background

2.1 Geometric Brownian Motion

The most common way to model a stock's trajectory is by a Geometric Brownian Motion (GBM)
which is based on two assumptions1:

1. the relative expected return of the stock is assumed to be constant over time

2. the relative variability of the modeled returns of the stock is assumed to be constant for each
time step.

Which leads to the GBM described by the stochastic di�erential equation{
dS
S(t) = µdt+ σdW (t)

S (0) = S0

⇐⇒

{
dS = µS(t)dt+ σS(t)dW (t)

S (0) = S0

(2.1)

where
µ = the expected rate of return
S (t) = spot price at time t
σ = the volatility
W (t) = Wiener process.

By setting Z(t) = ln (S (t)) and using Itô's lemma equation 2.1 may be solved as

dZ(t) =

(
µ− σ2

2

)
dt+ σdW (t) (2.2)

t+∆tˆ

t

dZ =

(
µ− σ2

2

) t+∆tˆ

t

dt+ σ

t+∆tˆ

t

dW (t) (2.3)

1Hull 2009, p265
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Z(t+ ∆t)− Z(t) =

(
µ− σ2

2

)
(t+ ∆t− t) + σ (W (t+ ∆t)−W (t)) (2.4)

Z(t+ ∆t)− Z(t) =

(
µ− σ2

2

)
(t+ ∆t− t) + σW (t) (2.5)

which, expressed in spot prices and a standard normal distributed random variable ε, equals

ln (S (t+ ∆t))− ln (S (t)) =

(
µ− σ2

2

)
∆t+ σε∆t. (2.6)

For simulating purposes S (t+ ∆t) is expressed as

S (t+ ∆t) = S (t) · e
(
µ−σ22

)
∆t+σε∆t

(2.7)

giving a time series of the stock:

S (0) , S (4t) , S (24t) , . . . , S (T ) (2.8)

Properties worth mentioning are that both sides in equation 2.6 are normally distributed, while in
equation 2.7 they are lognormal distributed.

2.2 The Black and Scholes framework

A European option is a contract that gives the buyer the right to buy the underlying asset of the
contract from the issuer on a speci�ed day for a price set at time zero. The contract can only be
exercised at the day of maturity.

Today the standard model for valuation of European options on stocks is the Black and Scholes
(B&S) formula which is derived from B&S equation obtained from equation 2.1 via Itô's lemma
and seven assumptions2.

1. The stock price follows the process given in equation 2.1 with µ and σ constant.

2. Short selling of securities is permitted.

3. No transaction costs or taxes. All securities are fully divisible.

4. There are no dividends during the life of the derivative.

5. There are no risk free arbitrage opportunities.

6. Security trading is continuous and all strikes exists.

2Hull 2009, p286
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7. The risk free rate of interest is constant and the same for all maturities and equal to the drift,
µ. The market actors are risk neutral.

By solving B&S equation for a European call option the B&S call option formula is acquired

C (S, t) = SΦ (d1)−Ke−rf (T−t)Φ (d2) (2.9)

where

d1 =
ln( SK )+

(
rf+σ2

2

)
(T−t)

σ
√
T−t

d2 =
ln( SK )+

(
rf−σ

2

2

)
(T−t)

σ
√
T−t = d1 − σ

√
T − t

and

Φ(x) = the standard cumulative normal probability distribution for x

K = strike price

T = term to maturity

rf = risk free interest rate.

The corresponding solution for a put option is3

P (S, t) = Ke−rf (T−t)Φ (−d2)− SΦ (−d1) . (2.10)

Worth noticing is that the value of a long position will be positive during the lifetime of the contract,
due to the fact that there is always a possibility that the option will have a value larger than zero
at maturity.

3Hull 2009, p291
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2.2.1 Greeks

The greeks are measures of the theoretical price sensitivity with respect to changes in the di�erent
parameters. The greeks according to the B&S framework are shown in Table 2.14.

Call Put

delta (δ) ∂C
∂S = Φ (d1) ∂P

∂S = Φ (d1)− 1

vega (V ) ∂C
∂σ = S

√
Tφ (d1) ∂P

∂σ = S
√
Tφ (d1)

theta (Θ) ∂C
∂t = −Sφ(d1)σ

2
√
T
− rfKe−rfTΦ (d2) ∂P

∂t = −Sφ(d1)σ

2
√
T

+ rfKe
−rfTΦ (−d2)

gamma (Γ) ∂2C
∂S2 = φ(d1)

Sσ
√
T−t

∂2P
∂S2 = φ(d1)

Sσ
√
T−t

rho (ρ) ∂C
∂rf

= KTe−rfTΦ(d2) ∂P
∂rf

= −KTe−rfTΦ(−d2)

Table 2.1: Sensitivities according to the B&S framework.

where φ (x) is the standard normal probability density function for x.

2.3 Monte Carlo simulation

Monte Carlo simulation is a way of evaluating �nancial derivatives or strategies. The idea is to
assume a mathematical model and adapt its parameters to the behavior of the underlying asset.
When this is done random sampling from the model is performed to get a path of the underlying and
a payo� of the instrument is calculated based on it. When n paths have been sampled a mean of the
discounted payo�s decides the price. The most important advantage using Monte Carlo simulation
is that it may be used when the price not only depends on the spot price of the underlying at
maturity but on its path. The negative side is that it is time consuming due to the fact that many
simulated paths are necessary to increase the precision of the result.

The accuracy of the result depends on the number of trials which are carried out. Denote the
mean and standard deviation of the Monte Carlo simulated prices of the instrument, f, by µ and σ
respectively. Then a 95% con�dence interval of f is given by5

µ− 1.96σ√
n

< f < µ+
1.96σ√

n
. (2.11)

4Hull 2009, p362-376
5Hull 2009, p430
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2.4 The bootstrap method

One way of simulating a stock price over time is by choosing a model and trying to adapt it
to the stock to be simulated, i. e. by a priori assumption regarding the distribution. This is
called Monte Carlo simulation. Many times the assumption about the distribution is more or less
wrong, for instance the assumption of normally distributed logreturns in the B&S framework. A
method to simulate a stock price without doing any a priori assumptions about the distribution
of the logreturns is non parametric bootstrap. The idea is that given a sample, which is a good
approximation of the population, randomly drawing observations from it creating a large number
of resamples on which some statistic is calculated. The relative frequency histogram of the statistic
reveals a good estimate of its distribution.

The accuracy of the bootstrap method is dependent on whether the data which are bootstrapped
are a series of independent and identically distributed (iid) random variables or a time series. Iid
data causes no problem when bootstrapping but if not iid the dependence structure of a time series
is lost when randomly drawing one observation at time from the sample. The oldest and most
common way of implementing bootstrap when simulating time series is the block bootstrap method
where each random draw picks a block of observations instead of only one6.

Consider a sample of k logreturns from the unknown probability distribution ω. The procedure of
the classic non parametric bootstrap is then as follows7:

1. create an empirical distribution function, Ω, by giving all logreturns the same probability
equal to 1/k

2. Draw a random sample of size l with replacement, this is called a resample

3. calculate the statistic of interest, for example the result of a portfolio from time 0 to T,
R(0,T)

4. repeat steps 2 & 3 n times to get n resamples

5. the relative frequency histogram of R(0,T) is given by giving each
R1(0, T ), R2(0, T ), R3(0, T ), ..., Rn(0, T ) probability 1/n.

6Härdle, Horowitz and Kreiss 2003
7Efron and Tibshirani 1993, p47
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2.5 Delta hedging

As issuer of an option there is no limit for the possible loss, due to this fact there is a need to
control the risks involved. One way of doing this is by delta hedging which is based on the idea
of being delta neutral. Or in other words insensitive to changes in the underlying of the contract.
The portfolio delta is described as

δp(S, t, ws, wc, wp) = ws + wcδc(S, t) + wpδp(S, t). (2.12)

where ws, wc, wp are weights for positions in the stock, call and put options respectively. Delta of
the underlying stock is per de�nition equal to one and deltas of put and call are calculated as in
Table 2.1.

For an emitter the case is short positions in options which implies a certain delta position that
can be hedged by the underlying stock. A more thorough description of delta hedging is found in
Chapter 3.

2.6 Payo� structure

With a long position in a put or a call option the value at maturity is8

{
C (S, T ) = max (0, S −K)

P (S, T ) = max (0,K − S)
(2.13)

The buyer has the choice whether to exercise the option or not. The issuer of the contract is bound
to accept an exercise if the option holder requires it, which implies the following payout structure
at maturity for the issuer

{
C (S, T ) = −max (0, S −K)

P (S, T ) = −max (0,K − S)
. (2.14)

The value of a portfolio consisting of positions in call and put options, the underlying stock and a
cash position may at any time be described as

Vp(S, t, ws, wc, wp,Ω) = wsS(t) + wcC(S, t) + wpP (S, t) + Ω (t) (2.15)

where Ω represents the cash position. The cash part is calculated by

Ω (t) = Ω (t−∆t) erf∆t + (ws (t)− ws (t−∆t))S (t) (1− ξ) (2.16)

8Hull 2009, p293
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where ξ is a transaction cost which has to be paid for each transaction. The result of the portfolio
between two times is then

R (t−∆t, t) = Vp(S, t, ws, wc, wp,Ω)− Vp(S, t−∆t, ws, wc, wp,Ω). (2.17)

Which gives the accumulated result over the period as

R(0, T ) =

T∑
t=∆t

Vp(S, t, ws, wc, wp,Ω)− Vp(S, t−∆t, ws, wc, wp,Ω) (2.18)

2.7 Risk measures

2.7.1 Value at risk

Value at risk (VaR) is a measure of risk that is supposed to summarize the risk of a �nancial asset
to one single number. The concept of it may be expressed in one single statement:

the loss of the coming n days will with probability p be less than or equal to V aRp

or in a more strict manner

P (L(t− n, t) ≤ V aRp) = p (2.19)

where

L(t− n, t) = −R(t− n, t) (2.20)

and R(t−n, t) is the n days result of the portfolio de�ned in equation 2.18. The simplicity of it and
the fact that it is used to calculate the minimum capital level of a �nancial institution are probably
the main reasons to why its so widely used as risk measure. The obvious question is whether a
single number is enough to describe the risk of a complicated portfolio. However, if this is accepted
the setup of the calculations and the assumptions are critical for VaR's ability to measure risk.

In this paper the default setting of:

n = 1

p = 0.99

will be used. There are a number of di�erent ways to calculate VaR but the two main approaches
are historical and by Monte Carlo methods. The assumptions behind these two are conceptually
very di�erent. While historical assumes that the best way of describing the result is to look at the
past for some appropriate time period the model based method tries to model the future result.
The VaR calculations tied to this report will be performed using the historical approach to avoid
an assumption of normal distribution of the accumulated result.

The historical VaR is calculated using the following algorithm9:

9Hult and Lindskog 2007
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1. Sort the observations of daily results from the largest to the smallest, i. e.
l1 > l2 > l3 > ... > lm where lk, k = 1, 2, ... , m are observations of L.

2. Then
V aRp = l[m(1−p)]+1 (2.21)

where [x] is the largest integer less than or equal to x.

2.7.2 Expected shortfall

A problem with the VaR number is that it does not provide any information on how large the loss
will be the last 1− p percent of the days. Expected shortfall (ES) deals with this matter. ES gives
an answer to the question:

How much do I lose in average when the VaR number is breached?

Mathematically the same thing is expressed as

ESp = E [L | L > V aRp] . (2.22)

The historical approach of calculating ESp is

ESp =

∑[n(1−p)]+1
k=1 lk

[n(1− p)] + 1
(2.23)

where l1 > l2 > l3 > ... > lm. lk, k = 1, 2, ... , m are observations of L.

18



Chapter 3

Delta hedging

This chapter is intended to improve understanding about delta hedging and to clarify how the result
is created. Results and values are not used in the rest of the report or as a part of the framework.

3.1 Delta hedging in practice

During the period 2010-05-06 to 2010-09-14 the spot price of Ericsson B has developed as shown in
the top graph of Figure 3.11. Below are the B&S prices over the period for a call and put option
with Ericsson B as underlying and strike SEK 80. At the bottom of Figure 3.1 the hourly result,
R (t− 1, t), for a portfolio containing a short position of both a call and a put option, hedged with
the underlying stock over the period is shown.

Worth noticing is how the options delta is a�ected by time. This is made visible by the small
position needed in the underlying for being delta neutral in the early part of the period, in contrast
to the position required towards the end. This is further explained in Section 3.2.

1Bloomberg 2010-10-21 (Market data)
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Figure 3.1: Hourly result of a portfolio with a short position in both a call and a put option. The
hedge is adjusted every hour.

The data in Figure 3.1 are based on hourly observations of S and the hedge is adjusted at each
observation. Hedging this often is hard to achieve in the real world, and it would result in large
transaction costs. Usually hedge adjustments are done more seldom as in Figure 3.2 or is triggered
by certain events in the market.

20



Figure 3.2: Same scenario as in Figure 3.1 but hedge adjustments every third day.

As Figure 3.2 shows the time between hedging is important, the longer these intervals get the less
delta neutral the portfolio will become, which implies larger adjustments in the underlying when
hedging. This also leads to a severe increase of the result's standard deviation, which can be seen
in the bottom plot of Figure 3.2. A more detailed analysis of the consequence by di�erent hedging
intervals is found in Section 6.2.3.
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3.2 Analysis of the portfolios hourly result

This section is dedicated to understanding of the hourly result, R (t−4t, t), when the underlying
is simulated by a GBM. The hedged option position is one short call and one short put. In Figure
3.3 the hourly result of 100 000 trajectories are scattered. The red lines shows 1, 10, 90 and 99
percent percentiles of the hourly results for each time. Worth noticing is how many of the hourly
returns which are concentrated around zero although it does not appear so at �rst glance.

Figure 3.3: Scatter plot of hourly result over time for 100 000 GBM trajectories with underlying
σ = 0.295 and µ = 0.035.

In order to understand the the behavior of the daily result Figure 3.4 should be studied. It shows the
portfolio's sensitivity to a change of one SEK in the underlying stock. The �rst obvious conclusion
is that the largest impact on the result is obtained ATM close to maturity. Another fundamental
insight is that when delta hedging a GBM with the correct parameters the daily result of a positive
change in the underlying is always negative, all other parameters held constant. An explanation
of this is provided below. The behavior that a one SEK increase at the money (ATM) results in
larger impact on the result close to maturity than in the beginning is also worth pointing out, this is

22



however not true for all spot prices. The above mentioned properties do as well apply to a decrease
of the underlying stock.

Figure 3.4: The portfolio's sensitivity to a raise in S of one SEK.

The option price is divided into two components, intristic value and time value. The intristic value is
de�ned as the value of the option if it was exercised today. The time value represents the possibility
that the underlying spot will be in or more in the money at maturity2. In other words Figure 3.4
shows the change in intristic value at di�erent times and at di�erent spot prices.

2Hull 2009, p186
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To clarify the fact that the change in intristic value is always negative Figure 3.5 will be used.
Deltas for the put, call and a portfolio consisting of short positions in both the put and call are
plotted as lines, and the stock position of the portfolio as a dotted line. The strike of the options
is SEK 100. Notice that the portfolio delta is a strictly decreasing function over S causing the
negative change in intristic. For instance consider one hedging occasion when the spot price is SEK
110, then the stock position of the portfolio will be 0.76 until the next hedging occasion. But if the
spot price increases by two SEK then the position is too small causing that the options value will
decrease more than the increase of the stock position. In other words the result is negative, the
same arguments may be applied on a decrease of the stock price. When starting at a spot price of
SEK 90 then a similar reasoning is applicable keeping in mind that a short stock position's value
is decreased when the stock price increases.

Figure 3.5: Plot of the delta and stock position of the portfolio.
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This far, understanding of what is causing the negative daily results in Figure 3.3 has been devel-
oped. However the positive part is still to be explored, and by the reasoning above it is probably
originating from the time value of the option. In Figure 3.6 the change in value of one short call and
put option, due to one hour closer to maturity for some di�erent times and spot prices, is plotted.
The behavior is the same as of the intristic value, the increase of the result is highest ATM close
to maturity and has a negative slope over time for spot price SEK 90.

Figure 3.6: The change in time value of a portfolio from one hour to another.
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In Figure 3.7 a red line describes the portfolio's theta ATM. As may be seen the theta, or time value
change, ATM of the portfolio follows the upper frontier closely which leads to the conclusion that
most of the positive daily results of the portfolio is caused by change in time value. The last small
di�erence up to the most extreme positive results are probably interest rate on a short position in
the stock.

Figure 3.7: Scatter plot of hourly result over time for 100 000 GBM trajectories with underlying
σ = 0.295 and µ = 0.035.
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3.3 Continuous security trading

Assumption number six of the B&S framework, that trading in the option's underlying stock is
continuous, is often unproblematic since options are emitted mostly on stocks of large companies.
However, if an option is emitted on a more obscure stock where only a few transactions take place
this may cause losses due to:

• adjusting the hedge may be more expensive

• a less traded stock is more likely to have very heavy tailed logreturns which increases the
error of assuming a normal distribution.

If trading in the underlying stock is occasional or non existing the market is said to be illiquid.

27



Chapter 4

Method

A way of splitting model risk into its components and measuring them is by Monte Carlo and
bootstrap based simulation. Monte Carlo is used in this thesis to evaluate the model when the
assumption of the distribution of logreturns is correct. Doing this opens the possibility to isolate
and measure the model's sensitivity to a badly estimated input parameter. Bootstrapping is used
to measure the risk originating from the assumption of the distribution of the logreturns and non
constant volatility among other factors.

4.1 Simulation algorithm

The simulations follows the concept stated in the introduction of this paper, that is as shown in
Figure 4.1. Category one is a Monte Carlo based GBM and category two bootstrapped trajectories
from market data.

Figure 4.1: Description of the methodology of the simulations.

The simulations are set up according to the following algorithm:

1. simulate a trajectory as a GBM or bootstrapping market data (Sections 2.1 - 2.4)

2. calculate the options' prices and deltas for each time step with the B&S formula (Section 2.2)
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3. adjust the position in the stock to cancel the options delta at each time step (Section 2.5)

4. calculate the accumulated result of the portfolio from time zero to T (Section 2.6)

5. repeat steps 1 to 4 n times

6. calculate mean, standard deviation, V aR99% and ES99% on the n accumulated results (Section
2.7)

7. repeat step 1 to 6 m times

8. calculate mean of the m statistics calculated in step 7.

Throughout Chapters 5 to 8 a standard setup of the parameters for simulations and pricing will be
used, with the exception of the parameter which is investigated.

4.2 Framework

Throughout the report the following assumptions from the B&S framework will be considered true:

• Short selling is permitted

• There are no arbitrage opportunities

• The stock pays no dividends.

If the stock would pay dividends they may be handled by simply subtracting the discounted divi-
dends from the spot price.

4.2.1 Default parameters

In order to make the parameters as realistic as possible and facilitate comparison the drift and
volatility of the GBM was set equal to the mean and standard deviation of the logreturns of
Ericsson B. If nothing else is mentioned the following parameters will be used throughout the rest
of the report:

µGBM = µ̂EricB = 0.035 per year

σGBM = σ̂EricB = 0.295 per year

S (0) = 100 SEK

T = 1/12 years

K = 100 in percent of S (0), that is ATM

rf = µGBM

σB&S = σsimulations= the simulated standard deviation
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wc = −1

wp = −1

4t = 1
250·8 years = 1h

hedgestep = 4t = the time interval between hedge adjustments.

The put and call options with the parameters above has the following values at time zero:

{
P (S, t) = P (100, 0) = 3.2478

C (S, t) = C (100, 0) = 3.5390
(4.1)

which implies a premium to the market maker of SEK 6.7867 at time zero.

A more thorough description of the di�erent volatilities may be necessary. When the GBM is
simulated the volatility is set to σGBM but since the trajectories are rather short the standard
deviation of the simulated trajectory may di�er and is denoted σsimulations. The volatility used
when pricing and calculating greeks is denoted σB&S . σ̂EricB is the standard deviation of Ericsson
B estimated from the actual time series.

4.2.2 Number of simulations

V aR99% will be calculated based on the entire number of trajectories, n. To decrease the standard
deviation of V aR99% and ES99%, simulations of n trajectories will be carried out m times. Which
yields that V aR99% and ES99% is based on a sample of size mn trajectories.

No of simulations, n 25 000 50 000 75 000 100 000

R(0,T) -0.00348 -0.00352 -0.00345 -0.00335
µm=100 V aR99% 0.61727 0.61855 0.61779 0.61921

ES99% 0.85486 0.85776 0.85753 0.85788

R(0,T) 0.00152 0.00104 0.00086 0.00074
σm=100 V aR99% 0.01304 0.01021 0.00784 0.00662

ES99% 0.02026 0.01550 0.01176 0.01014

R(0,T) 0.00094 0.00065 0.00053 0.00046
Absolute error V aR99% 0.00808 0.00633 0.00486 0.00411

m = 10 ES99% 0.01256 0.00961 0.00729 0.00628

R(0,T) 27.06 18.38 15.45 13.71
Relative error (%) V aR99% 1.31 1.02 0.79 0.66

m = 10 ES99% 1.47 1.12 0.85 0.73

Table 4.1: Calculated errors at 95% level of con�dence of R(0,T), V aR99% and ES99% when m =
100 for varying n. The trajectories were simulated as GBMs.

To estimate con�dence intervals at level 95% of R(0,T), V aR99% and ES99% mean and standard
deviation was calculated based on a sample of m = 100 to get better numbers. This was done with
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the default parameters set earlier in this section and resulted in the �gures shown in Table 4.1.
Trajectories were simulated as GBMs. The absolute errors shown are based on simulations where
m = 10 which were calculated according to

absolute error =
1.96σm=100√

10
(4.2)

and are shown in the same table. Relative error is de�ned as Absolute error/µm=100. Note that the
standard deviation of the simulated result is approximately twice the size for n = 25 000 compared
to n = 100 000 since σR(0,T ) ∼ 1√

n
1. Con�dence intervals are given by

µm=100 − absolute error < E [R (0, T )] < µm=100 + absolute error (4.3)

When simulations are done throughout this thesis the setup of n = 100 000 and m = 10 will be
considered as a part of the default setting. This is since the errors may be considered as su�ciently
small for the kind of analysis carried out. Especially errors in the risk measures V aR99% and
ES99% which most of the analysis will be based on are small. Another factor is the time to do the
computations which are at a practical maximum with the resources given using these settings. The
relation between m and n has shown to be unimportant, i. e. double m and divide n by two gives
the same errors. Note that these calculations are applied only at the default setting and should
only be considered as a hint when this is changed.

To relate the absolute error to something, the premium that a market maker gets at time zero is
SEK 6.7867 according to equation 4.1. In other words the absolute errors of ES99% and V aR99%

are only 0.06% and 0.09% of the premium respectively.

1Hull 2009, p430

31



The analog con�dence intervals when bootstrapping trajectories using the default parameters are
shown in Table 4.2 below. As expected, the absolute standard errors of ES99% and V aR99%

are larger than when simulating trajectories as a GBM, 0.13% and 0.26% of the market maker's
premium respectively.

No of simulations, n 100 000

R(0,T) -0.01440
µm=100 V aR99% 1.10473

ES99% 1.65801

R(0,T) 0.00131
σm=100 V aR99% 0.01460

ES99% 0.02908

R(0,T) 0.00081
Absolute error V aR99% 0.00905

m = 10 ES99% 0.01802

R(0,T) 5.63
Relative error (%) V aR99% 0.81

m = 10 ES99% 1.09

Table 4.2: Calculated errors at 95% level of con�dence of R(0,T), V aR99% and ES99% when m =
100 for bootstrapped trajectories.

4.2.3 Contract parameters

Contract parameters are set when the deal between the market maker and the customer is entered
and are known. In this section risks of a variety of contracts are measured.

4.2.3.1 Strike

As Figure 4.2 shows, the strike of the contract will not have any signi�cant e�ect on the expected
return, µR(0,T ), due to the delta hedging. However the standard deviation of the expected return is
dependent on the di�erent strikes, and with this follows that V aR99% and ES99% will be a�ected
as well. A change of the strike will not a�ect these measurements in a linear way, but instead they
reach their maximum when the strike is a bit above ATM. This is explained by the larger need of
adjustments of the hedge, gamma, when the spot price of the underlying is close to the strike. Close
to the strike a small change in the stock price implies a less delta neutral position than the same
change further away from the strike. When the position is less delta neutral the changed spot price
will a�ect the result more. Worth noticing is that V aR99% is lower than one standard deviation
for cases where the strike is set far from the current spot price, this is explained by the fact that
V aR99% is calculated historically as de�ned in Chapter 2.
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Figure 4.2: V aR99%, ES99%, µR(0,T ) and σR(0,T ) of the result of the portfolio depending on the
strike.

33



4.2.3.2 Term to maturity

Term to maturity is a contract parameter which is de�ned as the time to maturity at time zero,
i. e. T. As Figure 4.3 shows, the length of a contract does not have any signi�cant e�ect on the
outcome of the results.

Figure 4.3: V aR99%, ES99%, µR(0,T ) and σR(0,T ) of the portfolio's result depending on T.

Although contracts with a longer term to maturity will result in small increases for σR(0,T ), V aR99%

and ES99% the size of these changes are almost negligible. A parallel can be drawn to Figure 3.3
which illustrates that µR(t−4t,t) is zero. In the theoretical world the B&S formula will generate
a price for the options so that µR(0,T ) equals zero. This together with delta hedging yields that
σR(0,T ) can be considered small, and as it turns out in Figure 4.3 the B&S formula is robust for a
longer term to maturity.
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4.2.3.3 Reference values

In Table 4.3 the risks of some contracts using the default settings are presented as reference values
for coming comparisons.

Reference data

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00070 -0.00337 0.00064 0.00143 -0.00283 -0.00054
σR(0,T ) 0.15744 0.23482 0.20267 0.10077 0.23722 0.23192
V aR99% 0.48376 0.61792 0.60995 0.30797 0.64229 0.66172
ES99% 0.69479 0.85743 0.87017 0.57903 0.90037 0.93608

Table 4.3: V aR99%, ES99%, µR(0,T ) and σR(0,T ) of the result of the portfolio for some K and T.

4.2.4 View of illiquidity

When transactions in a stock only appears occasionally, i. e. is not continuously traded the stock is
said to be illiquid. This may cause problem when hedging since the transaction may be delayed or
even impossible to carry out. However, if given an enough advantageous price a counter party will
react on the opportunity. From this point of view the illiquidity may be modeled as paying some
extra when buying and getting some less than the last price when selling the stock. Note that this
way of looking at illiquidity is analog to a transaction cost, ξ, de�ned in Section 2.6.

Another view of illiquidity is to focus on the fact that time between transactions is longer but when
one is carried out the probability of a large jump in the stock price is larger. This behavior may be
seen when comparing histograms of logreturns of Ericsson B, Figure 6.2, and Black earth farming
(BEF), Figure 6.5. In comparison, BEF is more heavy tailed than Ericsson B since many logreturns
are equal to zero due to illiquidity but when a change appears it is larger. As expected this behavior
is more likely to appear when looking at hourly data than daily since even most illiquid companies
have some transactions every day.
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Chapter 5

Parameter model risk

The model's risk originating from bad estimation of input parameters may behave very di�erent from
time to time. In this section the model's sensitivity with respect to each parameter is investigated
and measured in terms of ES99% and V aR99%. The parameters have been divided into:

• Pricing parameters

• Hedging interval

based on when they are set by the stock option market maker.

When a pricing parameter is incorrectly estimated the calculations are made in line with the as-
sumption of an arbitrage free market, this implies that over time the options are traded at the
correct price according to the B&S formula. Otherwise, arbitrage opportunities would arise. When
a parameter is badly set by the market maker the volatility used for calculating delta is di�erent
from the simulated volatility. If delta is calculated with a di�erent volatility than σB&S , which is
the correct one, then it is denoted σhedge. The notation of risk free rate will be analog, i. e. if the
risk free rate used to calculate the hedge is di�erent from rf then it is denoted rf−hedge.

5.1 Pricing parameters

Pricing parameters are set by the market maker in order to valuate the option and calculate greeks.
These parameters are unknown but estimated to describe the market. An interesting factor from
the model risk point of view is the sensitivity to badly set pricing parameters.
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5.1.1 Volatility

The sensitivity of the B&S formula to a badly set volatility parameter, σhedge 6= σB&S ≈ σGBM , is
shown in Figure 5.1. Notice that the risk in terms of V aR99% and ES99% are smallest around the
underlying's actual volatility, i.e. σhedge = σGBM = 0.295. Another thing worth pointing out is
that the risk originating from setting the volatility used for hedging too low is larger than setting
it too high.

Figure 5.1: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on a badly set volatility
σhedge of the underlying.
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Table A.1 shows some contracts' sensitivity to a badly set hedging volatility. When comparing K
= [100 110] for T = 1/12 the behavior of V aR99%, µR(0,T ) and σR(0,T ) may seem a bit odd since
when standard deviation increases V aR99% decreases. The explanation to this is a combination of
the mean's e�ect on V aR99% and the fact that historical V aR99% is calculated.

The same table with the resulting di�erence relative to the reference values in Table 4.3 due to the
shift is shown in Table 5.1. As expected σR(0,T ), V aR99%, and ES99% generally increases when
hedging with a volatility set too high. This combined with contracts that run over a longer period
will result in that the risk in the portfolio continues to grow even higher over time.

The seemingly large shifts for µR(0,T ) in Table 5.1 may be a bit misleading. Since µR(0,T ) is very
close to zero even a small absolute change will yield a large shift relatively.

σhedge = 1.2σGBM

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 487% -199% 110% 177% -194% -491%
σR(0,T ) 219% 136% 211% 238% 205% 281%
V aR99% 43% 92% 52% -18% 135% 127%
ES99% 8% 55% 15% -52% 85% 74%

Table 5.1: Change in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio due to a shift σhedge =
1.2σGBM for some K, T.
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5.1.2 Risk free rate

The consequences of a badly set risk free rate is displayed in Figure 5.2. The only risk free rate that
was changed from the prede�ned in Section 4.2 was the one used when calculating delta. Calculating
delta with the risk free rate set too high implies too high delta and when using a smaller risk free
rate than the correct one the resulting delta is too low. The plot shows the accumulated result
when varying rf−hedge. As expected the standard deviations and risk measures are smallest when
it is close to rf = 0.035, which is the correct one.

Figure 5.2: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on a badly set risk
free rate rf−hedge.
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Table A.2 shows properties of the accumulated result when using a 20% too high risk free rate, and
Table 5.2 shows the change from the reference values in Table 4.3. The result is that the highest
V aR99% and ES99%, which occurs when K = [100 110], are slightly decreased or unchanged, and
for K = 90 the risks are experiencing a raise. Worth noticing is that for higher strikes V aR99% and
ES99% actually decreases. Term to maturity a�ect the result in a way that setting rf−hedge badly
during a longer time period increases the change in V aR99% and ES99%.

rf−hedge = 1.2rf

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 12% -7% -22% -7% 31% 6%
σR(0,T ) 1% 1% 0% 0% 2% 1%
V aR99% 4% 0% -2% -5% 0% -4%
ES99% 2% 0% -1% -3% -1% -4%

Table 5.2: Change in comparison to the reference values in Table 4.3 when rf−hedge = 1.2rf for
some K and T in percent.
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5.2 Hedging interval

In Figure 5.3 the hedgestep's e�ect on the accumulated result is plotted. If hedgestep equals 24t
then the hedge is revaluated every second 4t and so on. Due to computational limitations no plot
for hedge interval smaller than one 4t = 1h was possible to carry out for the default setting but the
result is as expected decreasing to zero as 4t declines. When hedgestep grows the other extreme is
hedging at time zero and just leaving the position until time T.

Figure 5.3: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the time intervals
between hedging.
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For comparison purposes the absolute results and the change relatively the reference values in Table
4.3 for the standard setup of contracts were calculated. The numbers are showed in Table A.3 and
5.3 respectively. The result of hedging more seldom is obviously an increased risk in terms of
V aR99% and ES99% but the relative increase is smaller for contracts with longer term to maturity.
Another thing worth pointing out is that the larger hedgestep increases the risk measures of strikes
far from S(0) rather than close to.

hedgestep = 1.24t
K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 391% -271% 199% 259% -191% -349%
σR(0,T ) 42% 27% 41% 38% 27% 37%
V aR99% 42% 29% 40% 43% 26% 33%
ES99% 38% 25% 36% 41% 21% 29%

Table 5.3: Change in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when hedgestep = 1.24t
compared to the reference values.

5.3 Conclusion

Setting the risk free rate used when calculating delta wrong raises the risks when hedging with the
B&S formula. As expected, when the same error is done during a longer time period the e�ect on
the risks is increased as well. The conclusion is that the model's sensitivity to a badly set risk free
rate is rather small, and the fact that estimating risk free rate is fairly easy makes the parameter
non critical.

The outcome of hedging with a badly set volatility is higher standard deviation of the result and
larger risks in the portfolio. The risk is greater if the volatility is set too low rather than too high,
and it will continue to build up over time. The result's sensitivity to a badly set volatility is much
larger than to setting the risk free rate wrong. Worth noticing is that for high strikes the risk may
even decrease when setting σhedge too high.

The choice of hedging interval is another result a�ecting factor which is determined by the market
maker. When delta hedging the choice is simply about how much the market maker is willing
to risk by not adjusting the hedge continuously, which will not be rational due to transaction
costs. However, right now transaction costs are disregarded but still continuous hedging will not be
possible. Increased interval between hedging increases the risk measures, especially for setups with
strikes far from S(0).
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Chapter 6

Assumption model risk

In this section the object is to test the assumptions of the model and measure the risk originating
from each of them. The best way of doing this is by bootstrapping market data. Unfortunately
bootstrapping makes it impossible to isolate the impact of each factor, e.g. it is impossible to
measure the e�ect of an illiquid underlying without distortion caused by non normally distributed
logreturns. However, the simulation method in this section is varying between bootstrapping and
Monte Carlo. Assumption model risk is divided into:

• non normal distributed logreturns

• illiquid underlying

• transaction cost

6.1 Data Selection

Market data for the stocks of Ericsson B and Black earth farming serves as examples of underlyings
with di�erent properties. Note that the GBM parameters are estimated from Ericsson B to simplify
comparison.
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6.1.1 Ericsson B

Ericsson B works as a foundation for data simulation and analysis in this thesis for several reasons.
Primarily, it is very liquid and as close to continuously traded as the Swedish stock exchange
permits. Secondly, it is possible to divide the historical prices into di�erent market states. The
selection of data are hourly observations of the last trade between 2010-05-06 and 2010-09-141,
displayed in Figure 6.1.

Figure 6.1: Time series Ericsson B.

1Bloomberg 2010-10-28 (Market data)

44



The logreturns are displayed in Figure 6.2 together with a �tted normal distribution. The QQ plot
of Ericsson B's logreturns, in Figure 6.3, con�rms the non normal property.

Figure 6.2: Hourly logreturns of Ericsson B with a �tted normal distribution.
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Figure 6.3: QQ plot over hourly logreturns of Ericsson B.
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6.1.2 Black earth farming

Assumption 6 i section 2.2 reads �Security trading is continuous...� which is a very strong assumption
for some stocks. There are many listed stocks where trades are done a couple of times a day at
best. To test delta hedging of a short option position where the underlying is illiquid, market data
for BEF has been used. The time series in Figure 6.4 shows hourly observations of the spot price
between 2010-04-27 and 2010-11-092.

Figure 6.4: Time series BEF.

2Bloomberg 2010-11-09 (Market data)
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The main reason for choosing this stock is that in approximately 27% of the hourly observations
the price has not changed from the previous and that the traded volume is very low. Figure 6.5
shows the hourly logreturns for the same period which has been used in Section 6.3 to simulate
bootstrap trajectories for illiquid underlyings.

Figure 6.5: Hourly logreturns BEF with a �tted normal distribution.
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Figure 6.6: QQ plot over hourly logreturns of BEF.

The QQ plot in Figure 6.6 shows that the logreturns for BEF is more non normal distributed than
Ericsson B. There are obviously securities which are much more illiquid, these are however often
hard to get reliable market data for. The logreturns for both Ericsson B and BEF are, as Figures
6.2 and 6.5 shows, much more heavy tailed than their corresponding �tted normal distributions.
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6.2 Non normal distributed logreturns

The risk caused by the assumption of normal distributed logreturns is measured by bootstrapping
Ericsson B time series on hourly basis. Since the assumption tested is the normal distributed
logreturns a bootstrap algorithm assuming iid logreturns is su�cient. Figure 6.2 shows how the
hourly logreturns of Ericsson B di�ers from the normal distribution, the following simulations will
measure the risk of this assumption. Table 6.1 shows the simulated risks when bootstrapping the
logreturns instead of simulating a GBM. Worth pointing out is that the risk in terms of V aR99%

and ES99% are largest for strikes around S(0) and that the e�ect of a larger T is rather small, but
larger for strikes di�erent than S(0). Notice that the default parameter setting of the GBMs is
estimated from the time series of Ericsson B.

Bootstrapped reference data

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.01395 -0.01369 -0.00725 0.00299 -0.00870 -0.01247
σR(0,T ) 0.26282 0.37790 0.32672 0.16191 0.39298 0.38794
V aR99% 0.81354 1.10207 1.01799 0.48250 1.14323 1.17906
ES99% 1.29069 1.64916 1.56458 0.94888 1.71092 1.78057

Table 6.1: V aR99%, ES99%, µR(0,T ) and σR(0,T ) of the result of the portfolio for some K and T.

Table 6.2 shows the change in risks relatively the reference values in Table 4.3 for some contracts
and strikes. The relative increase is largest where the absolute risks are highest.

Relative change due to non normal distribution

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 1 905% -306% -1 240% 109% -207% -2 194%
σR(0,T ) 67% 61% 61% 61% 66% 67%
V aR99% 68% 78% 67% 57% 78% 78%
ES99% 86% 92% 80% 64% 90% 90%

Table 6.2: Relative change from reference data of GBM, Table 4.3, of V aR99%, ES99%, µR(0,T ) and
σR(0,T ) of the result when bootstrapping non normal logreturns.
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6.2.1 Contract parameters

6.2.1.1 Strike

Figure 6.7 shows how V aR99% and ES99% depends on the options' strike price. The behavior
is the same as when the trajectories are GBMs but the risks has almost doubled. The negative
accumulated result around K = 100 observed when simulating GBMs has decreased even more.

Figure 6.7: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the strike.
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6.2.1.2 Term to maturity

Figure 6.8 shows the same behavior as when the trajectories are GBMs, i. e. the risks are indepen-
dent of the contract's term to maturity. However, all the risk measures have almost doubled.

Figure 6.8: Risk measures depending on di�erent terms to maturity, T.
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6.2.2 Pricing parameters

6.2.2.1 Volatility

Figure 6.9 shows the risks if setting the volatility used to calculate the hedge ratio improperly.
The behavior is the same as when the trajectories are GBMs and the numbers almost the same.
However, when σhedge is close to the correct one the risks are higher when bootstrapping data than
when using a GBM.

Figure 6.9: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on a badly set volatility
σhedge of the underlying.

Table A.4 shows the risks when hedging a bootstrapped time series of Ericsson B with 20% too
high volatility in the delta calculation for some di�erent contracts. The risks are larger than when
doing the same thing on GBMs as in Table A.1 but with the same dynamics.
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Table 6.3 shows that when hedging a bootstrapped time series the increase of risk, in terms of
V aR99% and ES99%, is smaller due to an incorrectly set volatility in the delta calculation. However,
the smaller relative increase is from the higher initial level for bootstrapped data in Table 6.1.

σhedge = 1.2σ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -226% -55% 623% 692% -51% 400%
σR(0,T ) 111% 70% 120% 143% 104% 147%
V aR99% 3% 29% 5% -38% 52% 42%
ES99% -15% 4% -16% -46% 16% 5%

Table 6.3: Change in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio due to a shift σhedge =
1.2σ̂EricB for some K, T.

6.2.2.2 Risk free rate

The outcome when hedging with a badly set risk free rate, for an underlying based on non normal
logreturns, is similar to the simulations from the GBMmodel in Section 5.1.2. The risks are however,
according to Figure 6.10, enhanced over all tested scenarios. This implies that delta hedging using
the B&S formula is not optimal for underlyings with non normal logreturns.
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Figure 6.10: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on a badly set risk
free rate rf−hedge.

Table 6.4 shows that the relative changes from Table 6.1 when rf−hedge = 1.2rf are negligible.
Except for µR(0,T ) of options with longer term to maturity, which is increased.

rf−hedge = 1.2rf

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 1% 0% 7% 1% 26% 21%
σR(0,T ) 0% 1% 0% 1% 2% 1%
V aR99% 2% 0% 0% -2% 1% -3%
ES99% 1% 1% -1% -1% 0% -2%

Table 6.4: Change in comparison to the bootstrapped reference values in Table 6.4 when rf−hedge =
1.2rf for some K and T in percent.

55



6.2.3 Hedging interval

The e�ect of increased time between each adjustment of the hedge is higher risk which is shown
in Figure 6.11. As expected the risks and standard deviations are going down to zero as the time
between hedging occasions decreases.

Figure 6.11: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the time intervals
between hedge adjustments.

6.3 Illiquid underlying

Two di�erent methods have been used to simulate an illiquid stock. In the �rst part the underlyings
trajectories have been generated by bootstrapped data from BEF. This is to show the e�ect of non
normal distributed logreturns. In the second part a transaction cost has been used instead. The
transaction cost can be seen as a way of simulating an illiquid underlying, i. e. a spread between
bid and ask prices when market activity in a certain security is low. Then a buyer of the security
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would have to bid a higher price, seen as a premium for the poor liquidity, for the transaction to
be made, likewise a seller would have to ask for a lower price to be able to sell the security.

6.3.1 Non normal distributed logreturns

Figures 6.5 and 6.6 show that the logreturns for BEF are much more heavy tailed than a normal
distribution. This data have been used to bootstrap trajectories for an illiquid underlying. Table A.6
shows the outcome for µR(0,T ), σR(0,T ), V aR99% and ES99% for the standard setup of scenarios. As
expected the risks have increased as the logreturns got less normal distributed. This is con�rmed by
Table 6.5 which shows the relative changes for the same scenarios but with bootstrapped trajectories
from BEF instead. The general trend is that the risks increases over all and more when the strike
is not ATM but does decrease slightly with a longer time to maturity.

Bootstrapped data from BEF

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -101% -190% -364% -344% -200% -138%
σR(0,T ) 168% 107% 135% 299% 108% 113%
V aR99% 164% 110% 122% 315% 109% 105%
ES99% 150% 110% 120% 232% 110% 106%

Table 6.5: Relative change in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when underlying
trajectories are built up by data bootstrapped from BEF compared to Ericsson B.

57



A more quantitative way of studying the e�ect of non normal distributed underlyings is displayed
in Figure 6.12 where V aR99% for the portfolio has been calculated for 75 underlyings sorted by
average hourly traded volume in SEK. Even if the majority of all the companies generates fairly
low V aR99%, it seems as there are some sort of threshold around a turnover of SEK 10 000 000 per
hour above which V aR99% with every underlying gets stabilized. An explanation for this is that less
transactions implies higher probability that the underlying has a more heavy tailed distribution.
The mid cap company resulting in V aR99% ≈ 19SEK is HQ Bank which had a hourly loss of 82%
when their license where withdrawn which increases the V aR99% and ES99% dramatically.

Figure 6.12: V aR99% when hedging options on 75 underlyings with varying liquidity.

6.3.2 Liquidity premium or transaction cost

Transaction cost is a fee paid for a transaction to be executed, in this case it is used to simulate a
spread between bid and ask prices i. e. a liquidity premium. At an actual market place the size
of this spread varies over time and securities. In the simulations made for Table A.7 a constant
premium of two percent have been used. This takes the risks up to very high levels overall. Worth
noticing is that for K = 120, µR(0,T ) is close to zero which is explained by the fact that fewer
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transactions is needed for being delta neutral, which also serves to explain the low risks relatively
lower strikes.

The simulations does not take in consideration the e�ect that the hedge transaction would have on
S. That would result in a loop where every hedge transaction made would change S and therefore
make the portfolio non delta neutral implying a need of a new hedge transaction changing the price
and so on.

In most parts of this thesis liquidity premium has been excluded but as Figure 6.13 shows, the
risks increases and the expected return decreases linearly as the transaction costs grows. Due to
the large amounts of transactions necessary for being delta neutral in every time step the liquidity
premium dominates the outcome of the simulations.

Figure 6.13: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the transaction
cost.

Figure 6.13 shows that for every transaction made when hedging money is lost. This implies that
when operating at a market with transaction costs another strategy than being delta neutral in
every time step is necessary.
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Figure 6.14 shows how µR(0,T ), σR(0,T ), V aR99% and ES99% changes when hedging less often. In
this case with a liquidity premium set to one percent. Changing the hedge at around every twelfth
hour results in minimum for V aR99% and ES99%, while µR(0,T ) keeps getting less negative with
longer steps between hedging.

Figure 6.14: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on hedgestep with a
liquidity premium of 1%.

The same principle applies for Figure 6.15 where V aR99% is plotted just as in Figure 6.14 but
for liquidity premiums of 0.5%, 1%, 2% and 4% respectively. The �gure does not only show that
V aR99% increases with higher liquidity premium but also that the minimum V aR99% for each case
occurs with longer hedging intervals. If the liquidity premium is high enough there will in general
be more pro�table not to hedge at all or use another strategy than delta hedging.
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Figure 6.15: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on hedgestep with a
liquidity premium of 1%.
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6.4 Conclusion

When delta hedging time series with logreturns drawn from the actual distribution of a stock the
risks dynamics are the same as when hedging a GBM. The numbers of V aR99% and ES99% are
generally higher when hedging time series from the true distribution but the consequence of an
incorrectly set pricing parameter is much larger, this may be seen in Figures 6.9 and 6.10 where the
di�erence from their equivalent GBM plots are hardly noticed except for close the correct value.
This is as expected since the theoretically minimum risk when delta hedging is never reached on real
time series due to the non normal distribution property of the logreturns. The earlier mentioned
�gure shows that the risk increases much faster when setting σhedge too low rather than too high.

The e�ect of increasing hedgestep is the expected, i. e. a higher risk. The presence of a liquidity
premium or transaction cost will heavily a�ect the expected return and the risk of the portfolio. If
the size of this premium is large the e�ects it creates will overshadow all other factors. Furthermore
there will be no incitement to issue options at the price the B&S formula suggests since µR(0,T ) is
negative.

The outcome of the analysis may be summarized as: the risk caused by the assumption of normal
distributed logreturns is small in relation to the risk of setting the volatility parameter incorrectly,
especially too low. If the spread between bid and ask prices are too large the liquidity premiums
that has to be paid will erase all possible pro�t and rise the risk of the portfolio to very high levels.
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Chapter 7

Market state model risk

Financial time series are heteroscedastic, i. e. has varying variance over time. Factors causing this
behavior are extreme kurtosis and auto correlated squared observations. Extreme kurtosis is when
most of the variance origins from extreme but not very frequent time periods of deviations1.

In this paper market state model risk is de�ned as how well the model handles times where the
market is turbulent contra ordinary times. Another view of the same measure is how the model
handles a very volatile underlying asset contra a less volatile during ordinary times.

7.1 GBM

This section measures the theoretical risks during di�erent market states in the meaning volatile
or less volatile market and high or low interest rate.

1Ruiz, E. and Pascual, L., 2002
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7.1.1 Volatility

In this simulation all parameters were set to default except σGBM which were varied from zero to
100%. Figure 7.1 shows how µR(0,T ), σR(0,T ), V aR99% and ES99% are dependent on the volatility
of the underlying hedging with the correct volatility. The graph shows that there is a linear relation
between volatility of the underlying and the risk measures while µR(0,T ) is fairly constant around
zero.

Figure 7.1: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the volatility of
the underlying stock.

As may be seen in Table 7.1 the change of µR(0,T ), σhedge, V aR99% and ES99% increases with higher
strikes when the volatility of the underlying is set 20 % higher than the default number of σGBM .
In contrary to this a change in term to maturity will not have any signi�cant e�ect.
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σGBM = 1.2σ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 49% -48% -157% 85% -6% -204%
σR(0,T ) 9% 31% 41% 82% 31% 36%
V aR99% 9% 29% 36% 102% 29% 34%
ES99% 8% 29% 34% 70% 28% 32%

Table 7.1: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σGBM = 1.2µ̂EricB for some
K, T.

Table A.8 reveals that the absolute risks are still higher for the strike K = 110 than for K = 100
as seen generally earlier in this thesis.
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7.1.2 Risk free rate

This simulation's purpose is to clarify the behavior of the risks if the market's risk free rate is raised
a lot. Figure 7.2 shows when rf is varied from zero up to 50% and the outcome is that it hardly
matters as long as it is correctly set in the pricing model.

Figure 7.2: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio depending on the risk free rate.

Table 7.2 con�rms what Figure 7.2 showed earlier but enables comparison to a 20 % increase in
other factors. The absolute risks due to a 20% change in rf are shown in Table A.9.
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rf = 1.2µ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 12% -5% -23% -3% 7% 53%
σR(0,T ) 0% 0% 0% 0% 0% 0%
V aR99% 1% 1% 0% 1% 0% 0%
ES99% 1% 1% -1% 1% -1% 0%

Table 7.2: Change in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when rf = 1.2µ̂EricB
compared to the GBM reference values.
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7.2 Bootstrapped market data

The properties stated in the beginning of Chapter 7 are lost when bootstrapping a time series
following the algorithm stated in Section 2.4, i. e. drawing logreturns randomly to build a trajectory.
To take heteroscedasticity into account the method chosen in this paper is to look at a long time
series of Ericsson B and select shorter time periods where the volatility is assumed to be constant.
The last step is to bootstrap market data from each of these shorter time periods to see how the
risks depends on the di�erent market states.

Figure 7.3 shows a 20 years long time series of Ericsson B on daily basis in red. In the background
in blue a moving historical standard deviation is plotted. What might surprise is that the peaks of
the two do not match in time, this is due to the fact that the volatility is relative. Figure 7.4 does
make the heteroscedastic property obvious since the large logreturns appears in clusters around
some periods of time.

Figure 7.3: 20 years time series of Ericsson B as blue and moving one year historical volatility
calculated on 60 days market data.
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Figure 7.4: 20 years logreturns of Ericsson B as blue and moving one year historical volatility based
on 60 days market data.

The market states de�ned for the analysis are:

• normal: σ1year historical < 0.5 (70.2 % of the time historically)

• turbulent: 0.5 ≤ σ1year historical < 0.7 (18.1 % of the time historically)

• extra ordinary: 0.7 ≤ σ1year historical (11.7 % of the time historically)

and in addition a historically worst case which is the time period with highest one year historical
volatility.

The market states are de�ned only with respect to volatility, not risk free interest, since Section
7.1.2 made obvious that the impact of it is small provided that it is correctly set. Since the risk
free interest is a parameter easy to set the assumption is reasonable.
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Results of the simulations are shown in Table 7.3 where the notation of σ ↗ 0.5 shows that the
volatility is 0.5 increasing and σ ↘ 0.5 decreasing. The simulations are carried out as the standard
setup with exception of 4t = 8 hours, i. e. adjustments of the hedge once every day. The end date
in the table is the last of the 60 days of market data that has been used to calculate the yearly
historical volatility. As expected the risks increases with the market volatility.

Market state Yearly
volatility

End date µR(0,T ) σR(0,T ) V aR99% ES99%

Normal σ ≈ 0.44 1995-12-21 -0.1358 0.8965 2.0416 2.4950
Turbulent σ ↗ 0.5 2008-08-27 -0.1289 1.2658 3.1946 4.2966
Turbulent σ ↘ 0.5 2004-04-06 -0.3391 1.1975 3.2351 4.0696

Extra ordinary σ ↗ 0.7 2001-01-18 -0.0973 1.4796 3.5811 4.7796
Extra ordinary σ ↘ 0.7 2001-10-26 -0.0815 1.6129 3.6396 4.6008
Hist. worst case σ ≈ 1.38 2002-10-25 -0.3920 2.8219 6.7628 8.6163

Table 7.3: µR(0,T ), σR(0,T ), V aR99% and ES99% for di�erent market states.

7.2.1 Volatility based on historical estimation

The problem with volatility is that it is impossible to predict, instead it is often estimated on
historical data. The obvious question is then how good is this estimate? The upper graph in
Figure 7.5 shows a moving yearly volatility based on 60 trading days observation both in the past,
σ60d historical, and forward, σ60d forward. The lower plot shows the di�erence between them. This
reveals how accurate the volatility is estimated for a 60 days long option based on the past 60
trading days.

With an in�nite time series the average error would be equal to zero, and with the observed values
in Figure 7.5 it is -0.0013. However the largest errors for a 60 day period are more than ± 0.5. Set
in perspective this would be the same as reading the risks in Figure 6.9 for σhedge equal to zero or
0.8, which then yields a V aR99% at SEK 15 or 5.5, compared to less than SEK 2 with the correct
volatility. These numbers are however only accurate in that speci�c case.
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Figure 7.5: σ60d historical, σ60d forward of Ericsson B and the di�erence between them.
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7.3 Conclusion

The GBM simulations showed that in an ideal world the risks depends linearly on the market
volatility and almost not at all on the risk free rate. When bootstrapping market data from
di�erent periods of time the result changed a bit but the linearity could to some extent serve as a
rule of thumb regarding the behavior of the risks. However, the precision of this approximation is
strongly dependent on the distribution of the logreturns which varies a lot over time.

The conclusion stated above is under the assumption that the pricing volatility is correctly set and
it is reasonable to think that it is harder to set it correctly during more turbulent market states.
In other words it is likely that the risks are at higher levels when the market is turbulent. The
B&S framework is able to handle di�erent market states with a roughly linear increase of risks
when market volatility goes up. However higher attention has to be paid at setting the volatility
parameter correctly, especially not too low since that would lead to the behavior showed in Figure
6.9 which is rapidly growing unknown risks.
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Chapter 8

Additivity

This far the objective has been to isolate and measure the impact of a shift in each input parameter
in the B&S formula, but what about if two are shifted at the same time? The purpose of this
section is to establish whether the results due to shifted parameters are additive, i. e. is

Ψp1 (0, T ) + Ψp2 (0, T ) = Ψp1 & p2 (0, T ) (8.1)

true? Where Ψp1 (0, T ) is the change in risks when parameter p1 is shifted.

8.0.1 Incorrect σhedge and rf−hedge

Ψσhedge=1.2σGBM & rf=1.2µEricB in Table A.10 should be compared to Ψσhedge=1.2σGBM and Ψrf=1.2µEricB

calculated from Tables A.2, A.1 and 4.3. If

Ψσhedge=1.2σGBM & rf=1.2µEricB −
(
Ψrf=1.2µEricB + Ψσhedge=1.2σGBM

)
(8.2)

is close to zero it is likely that rf−hedge and σhedge are additive. This is hard to prove, but since
Table 8.1 shows small di�erences between shifting rf−hedge and σhedge together and summing the
separate shifts they seem to be additive.

Ψσhedge=1.2σGBM & rf=1.2µEricB −
(
Ψrf=1.2µEricB + Ψσhedge=1.2σGBM

)
K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -0.00119 0.00017 -0.00037 0.00078 0.00142 0.00028
σR(0,T ) -0.01203 -0.00111 0.01187 0.00688 -0.00321 0.02626
V aR99% -0.03090 0.00497 0.02814 0.01847 0.02684 0.07792
ES99% -0.02968 0.00750 0.02779 0.01875 0.03991 0.08328

Table 8.1: Di�erence in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when
Ψσhedge=1.2σGBM & rf=1.2µEricB compared to Ψrf=1.2µEricB + Ψσhedge=1.2σGBM .
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8.0.2 Incorrect σhedge and hedgestep

The shifted values for Ψσhedge=1.2σGBM & hedgestep=1.24t in Table A.11 should be compared to Ψσhedge=1.2σGBM

and Ψhedgestep=1.24t calculated from Tables A.1, A.3 and 4.3. The di�erences between them are
the values in Table 8.2. Which indicates non additivity in this case since for σR(0,T ), V aR99% and
ES99%

Ψσhedge=1.2σGBM & hedgestep=1.24t <
(
Ψhedgestep=1.24t + Ψσhedge=1.2σGBM

)
applies. The risks do not get as large when setting σhedge and hedgestep wrong as the sum of risk
changes when setting them wrong respectively.

Ψσhedge=1.2σGBM & hedgestep=1.24t −
(
Ψhedgestep=1.24t + Ψσhedge=1.2σGBM

)
K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -0.00481 0.01001 -0.00141 -0.00358 0.00681 0.00221
σR(0,T ) -0.21696 -0.28348 -0.27620 -0.13589 -0.28850 -0.30841
V aR99% -0.66859 -0.75825 -0.83129 -0.43716 -0.77155 -0.84932
ES99% -0.93423 -1.02596 -1.15048 -0.80384 -1.04192 -1.16811

Table 8.2: Di�erence in V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when
Ψσhedge=1.2σGBM & rf=1.2µEricB is compared to Ψhedgestep=1.24t + Ψσhedge=1.2σGBM .

8.0.3 Conclusion

The conclusion can then be drawn that σhedge and rf−hedge are likely to be additive. Combining
σhedge and hedgestep on the other hand results in risks that are smaller than the sum of separate
shifts. Which indicates non additivity.

74



Chapter 9

Discussion

There are two ways of looking at a model's performance

1. business perspective. The model should price the option as fair as possible to give the market
maker an advantage at the market

2. accounting and risk perspective. The model should price the option as close to the market
price as possible to re�ect the value of the option position if it had to be exited today.

Looking at today's market the di�culty is how to set the volatility parameter. Category two sets
the volatility to the implied volatility and category one uses other methods for estimation.

To some extent the framework used in this thesis does check the B&S formula's ability to price non
normal distributed trajectories fairly. This since when bootstrapping the mean of the accumulated
result is close to zero. In order to test a model's ability to price consistent with the market price
instead the following method is suggested, in this case stated for the B&S formula on a stock option:

1. collect market data for Sstock, rf and Soption for a certain period of time which includes a
known dividend payment

2. estimate σ from Sstock time series

3. calculate the theoretical option price, Πoption, for each time step

4. calculate the pricing error = − |Πoption − Soption| for each time step

5. calculate VaR on the pricing errors of the time steps

The di�culty of the above stated method is to �nd an option which is su�ciently liquid over the
entire period of time. Note that this method does as well test the models ability to price when
dividends are paid.

In this thesis the model's ability to estimate the market's actual delta is measured and using the
above stated method the pricing ability is hopefully captured. However there are a number of
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greeks left in Table 2.1 which the model may handle varyingly good. It seems reasonable to assume
that if the model prices the option with small pricing errors over time, then it handles the greeks
su�ciently good from an accounting and risk perspective. However, knowing that for instance the
volatility parameter is adjusted often. Performance testing of the model's calculations of greeks
will probably be necessary.

In Section 5 VaR and ES numbers are calculated on the market maker's result from time zero to
maturity of the stock option when a pricing parameter is set 20% too high. The outcome of this
is not a proper VaR number since the factor of how wrong an actual trader sets for instance the
volatility parameter varies over time and trader. The VaR numbers calculated to estimate the risk
related to parameter setting in this thesis would more properly be described as a conditional VaR
and be expressed mathematically as

P (L (t− n, t) ≤ V aRp | σhedge = 1.2σB&S) = p. (9.1)

These numbers serves to compare risks between di�erent models and pricing parameters. To get
a measure of the actual risk originating from estimation of parameters the behavior of the traders
has to be investigated and the conditional VaR only considered as a hint. When trying to use the
conditional VaR to this purpose the choice of the shift, here 20%, is crucial since the error will vary
over estimation occasions and most likely vary over di�erent market states. For instance, estimation
of volatility is more likely to be hard during times when market volatility is increasing swiftly than
during times of more constant market volatility. To increase the relevancy, further investigations
of the distribution of the parameter setting error have to be done, the mean of this error would
hopefully be close to zero. This provides possibility to simulate setting of the parameter instead of
setting it to a �xed number, here 20%. Parameter setting may at �rst be considered as operational
risk but it is actually model risk since di�erent models has varying sensitivity to parameters which
are varyingly hard to estimate. In other words it is a part of the process of choosing a valuation
model.

The additivity tests done in Section 8 are to be considered as a �rst investigation meant to under-
stand the behavior of the risks rather than proving additivity. In order to prove additivity a more
mathematically strict method has to be applied. However, the method chosen in this thesis serves
its purpose.

When bootstrapping time series in order to test a model's model risk attention has to be paid to
which time series to choose. As an example, look at HQ Bank in Figure 6.12 which had V aR99% ≈
SEK 19 caused by a large daily loss of 82%. That V aR99% number is the outcome of an extreme
event for the company rather than a measure of how the model handles non normal logreturns. In
other words it is a risk originating from the stock chosen to issue options on rather than a model
risk and should therefore not be used to this purpose.
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Chapter 10

Conclusion

According to the problem formulation the report is split into three components.

1. Parameter model risk. The single most risk increasing factor is a badly set volatility when
hedging. The risks increases more if the volatility is set too low rather than too high. Second
is the interval between hedging occasions, the risk increases as this interval grows. Hedging
with an improperly set risk free rate has less e�ect, moreover, it is easier to estimate.

2. Assumption model risk. The risks in the portfolio will increase as the logreturns get less
normal distributed. However the worst outcome of simulations with improperly set hedging
parameters are approximately the same when the underlying is bootstrapped from real market
data as when the trajectories are GBM generated. The presence of a liquidity premium will
overshadow the other factors if the premium is large enough.

3. Market State model risk. When hedging a trajectory with normal distributed logreturns the
risks will increase linearly with the volatility. That behavior may to some extent also serve
as a rule of thumb on bootstrapped market data. In addition to this it is harder to estimate
the volatility during turbulent times.

In general it could be said that when hedging, volatility is the most important parameter, this is also
the one that is hardest to estimate. Hedging with both improperly set volatility and risk free rate
results in risks the size of the sum of shifting them separately, suggesting that the two parameters are
additive. Another thing worth pointing out is that when hedging with an improperly set parameter
the risks will continue to grow with the term to maturity. When looking at simulations where a
�xed shift to a parameter has been applied the risk measures are conditional on that speci�c shift,
this is su�cient when comparing models and hopefully limiting.

The approach described in Figure 1.1 is general when analyzing model risk from a hedging perspec-
tive. It is just to plug in another model than the B&S formula since the separation on parameter,
assumption and market state model risk is applicable to all models calculating hedge ratio. With
another model follows other assumptions and parameters, which may imply modi�cations of the
perfect data generation etc. The B&S formula is widely used today for valuation and sensitivity
calculation of European stock options and may be seen as a benchmark model when setting limits.
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Appendix A

Output from simulations

σhedge = 1.2σGBM

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00408 -0.01006 0.00134 0.00395 -0.00832 -0.00321
σR(0,T ) 0.50227 0.55365 0.63124 0.34090 0.72309 0.88323
V aR99% 0.69359 1.18364 0.92722 0.25365 1.50694 1.50375
ES99% 0.74790 1.32519 1.00451 0.27996 1.66858 1.62427

Table A.1: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σhedge = 1.2σGBM for some
K, T on GBM trajectories.

rf−hedge = 1.2rf

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00078 -0.00362 0.00049 0.00133 -0.00195 -0.00051
σR(0,T ) 0.15878 0.23633 0.20319 0.10086 0.24300 0.23500
V aR99% 0.50260 0.61732 0.59807 0.29318 0.63954 0.63342
ES99% 0.71213 0.85649 0.85886 0.56232 0.88779 0.90240

Table A.2: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when rf−hedge = 1.2rf for some
K, T on GBM trajectories.
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hedgestep = 1.24t
K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00342 -0.01250 0.00190 0.00513 -0.00824 -0.00244
σR(0,T ) 0.22303 0.29851 0.28576 0.13938 0.30024 0.31671
V aR99% 0.68499 0.79726 0.85503 0.44083 0.80783 0.87873
ES99% 0.95727 1.07393 1.18151 0.81525 1.08884 1.20600

Table A.3: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when hedgestep = 1.24t for some
K, T on GBM trajectories.

σhedge = 1.2σ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -0.01759 -0.02116 0.03791 0.02368 -0.01314 0.03737
σR(0,T ) 0.55394 0.64324 0.71951 0.39288 0.80082 0.95656
V aR99% 0.83503 1.42435 1.06976 0.30000 1.73282 1.67268
ES99% 1.09886 1.71964 1.31242 0.51136 1.98149 1.87340

Table A.4: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σhedge = 1.2σ̂EricB for some
K, T on bootstrapped trajectories.

rf−hedge = 1.2rf

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.01406 -0.01373 -0.00677 0.00302 -0.00643 -0.00988
σR(0,T ) 0.26250 0.38106 0.32785 0.16342 0.39948 0.39092
V aR99% 0.83234 1.10531 1.01765 0.47409 1.15657 1.14616
ES99% 1.29845 1.67272 1.55314 0.93603 1.71463 1.73696

Table A.5: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when rf−hedge = 1.2rf for some
K, T on bootstrapped trajectories.
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Bootstrapped data from BEF

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -0.00019 -0.03977 -0.03370 -0.00728 -0.02608 -0.02974
σR(0,T ) 0.70410 0.78357 0.76706 0.64546 0.81562 0.82681
V aR99% 2.15125 2.31279 2.25931 2.00375 2.39205 2.41534
ES99% 3.23028 3.46480 3.44626 3.14897 3.58671 3.67153

Table A.6: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when underlying trajectories are
build up by data bootstrapped from BEF for some K, T.

ξ = 0.02

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) -8.55191 -16.62950 -8.11736 -0.00324 -23.50992 -17.57139
σR(0,T ) 5.21428 6.50808 8.23782 3.85756 8.93676 11.80945
V aR99% 23.56350 30.47482 29.81574 20.17322 42.08583 43.70535
ES99% 25.19453 31.68908 31.62599 24.07470 43.64166 45.62425

Table A.7: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when ξ = 0.02 for some K, T on
GBM trajectories.

σGBM = 1.2σ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00104 -0.00499 -0.00036 0.00265 -0.00302 -0.00165
σR(0,T ) 0.17188 0.30745 0.28603 0.18389 0.30969 0.31455
V aR99% 0.52943 0.80017 0.82824 0.62325 0.82562 0.88627
ES99% 0.75148 1.10975 1.16605 0.98589 1.15170 1.23994

Table A.8: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σGBM = 1.2µ̂EricB for some
K, T on GBM trajectories.
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rf = 1.2µ̂EricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00078 -0.00354 0.00049 0.00138 -0.00264 -0.00025
σR(0,T ) 0.15778 0.23497 0.20260 0.10096 0.23667 0.23245
V aR99% 0.48839 0.62104 0.60887 0.31093 0.64022 0.66123
ES99% 0.69848 0.86318 0.86466 0.58246 0.89201 0.93341

Table A.9: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when rf = 1.2µ̂EricB for some K,
T on GBM trajectories.

Ψσhedge=1.2σGBM & rf=1.2µEricB

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00228 -0.00677 0.00019 0.00321 -0.00318 -0.00236
σR(0,T ) 0.33414 0.31924 0.44095 0.24710 0.48844 0.68066
V aR99% 0.19777 0.57009 0.33354 -0.05063 0.88874 0.89166
ES99% 0.04078 0.47433 0.15082 -0.29704 0.79555 0.73778

Table A.10: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σhedge = 1.2σGBM and
rf = 1.2µEricB for some K, T on GBM trajectories.

Ψσhedge=1.2σGBM & hedgestep=1.24t

K 90 100 110 120 100 110
T 1/12 1/12 1/12 1/12 2/12 2/12

µR(0,T ) 0.00199 -0.00918 0.00119 0.00407 -0.00692 -0.00290
σR(0,T ) 0.35090 0.33387 0.43813 0.24361 0.49761 0.65962
V aR99% 0.22623 0.60473 0.34101 -0.05065 0.90093 0.87145
ES99% 0.07615 0.51574 0.16537 -0.28767 0.81513 0.72608

Table A.11: V aR99%, ES99%, µR(0,T ) and σR(0,T ) for the portfolio when σhedge = 1.2σGBM and
hedgestep = 1.24t for some K, T on GBM trajectories.

82


