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1. Introduction 

The interest rate models discussed in our lectures are widely used for pricing 

instruments. But there exists two limitations: 

1. They involve only one factor (i.e., one source of uncertainty). 

2. They do not give the user complete freedom in choosing the volatility structure. 

In recent years there have been a number of attempts to extend the models introduced 

in our lectures so that they involve two or more factors. One of the examples is 

Two-factor Hull-White Model. 

In our report we will first restate the One-factor Hull-White Model, and then 

introduce the Two-factor Hull-White Model which builds on that. Finally we will 

show the comparison by graphs. 
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2. The One-Factor Hull-White Model 
 
Hull-Whit model is a generalization of the Vasicek model with time dependent 
parameters: 

)()())()(( tdVtdtrtatdr σθ +−=  

where )(tθ is deterministic function of time. The parameters and a σ  is calibrated 

against the volatility and )(tθ is calibrated against the bond prices, 

to observed curve{ 0:),0( ≥TTp } { }0:),0(* ≥TTp . 

We recall the term structure equation: 
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the drift is given by )(),(),( trtrt σλµ − . If we compare this drift terms we see that 

the parameters in the Hull-White model include the market price of risk and the 
volatility 
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This is why we say parameters and a σ  is calibrated against the volatility. 
The model has an affine term structure 
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This model can be simplified if we let be a constant. We get equations: a
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Solve them, we obtain, 
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Insert this in the equation of A, we get 
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Now we will calibrate the model to the observed initial yield curve. The initial 
forward rate is given by 
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In order to solve this, we let 
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the solution is 
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With the function )(Tθ , the fixed values of and a σ  and using martingale measure, 

the bond price is given by 
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The spot rate volatility is the same as in the Vasicek model. 
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3. The Two-Factor Hull-White Model 
 
As explained in Hull-White One factor model, the risk-neutral process for the short 
rate, r, is 

( ) ( ) ( )[ ] 11dzdtrafutrdf σθ +−+=  

where u has an initial value of zero and follows the process 

22dzbudtdu σ+−=  

The parameter ( )tθ  is a deterministic function of time. The stochastic variable u is a 

component of the reversion level of r and itself reverts to a level of zero at rate b. The 

parameters a, b, 1σ , and 2σ  are constants and  and  are Wiener processes 

with instantaneous correlation 

1dz 2dz

ρ . 

This model provides a richer pattern of term structure movements and a richer pattern 

of volatility structures than the one-factor model. For example, when , 

, , 

( ) rrf =

1=a 1.0=b 01.01 =σ , 0165.02 =σ , and 6.0=ρ  the model exhibits, at all 

times, a “humped” volatility structure similar to that observed in the market.  

When  the model is analytically tractable. The price at time t of a 

zero-coupon bond that provides a payoff of $1 at time T is 

( ) rrf =
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and  is as given in the following. ( TtA , )
The prices, c and p, at time zero of European call and put options on a zero-coupon 
bond are given by 

( ) ( ) ( ) ( )phNTKPhNsLPc σ−−= ,0,0  

( ) ( ) ( ) ( )hNsLPhNTKPp p −−−−= ,0,0 σ  

where T is the maturity of the option, s is the maturity of the bond, K is the strike 
price, L is the bond’s principal 
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and pσ  is as given in the following.  

 

The ,),( TtA pσ , and )(tθ Functions in the Two-factor Hull-White Model 

In this part, we provide some of the analytic results for the two-factor Hull-White 

model when rrf =)( . 
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where and functions are as we mentioned before and is the 

instantaneous forward rate at time t for maturity T. 
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The volatility function, pσ , is 
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Finally, the )(tθ function is  
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where the subscript denotes a partial derivative and 
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4. Graphs 
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5. Conclusion 

The two-factor model provides a richer pattern of term structure movements and a 

richer pattern of volatility structures than the one-factor model. 

This model also exhibits, at all times, a “humped” volatility structure similar to that 

observed in the market. The correlation structure implied by the model is also 

plausible. 

There exist other two-factor models like the Yield-factor Model published by Duffie 

and Kan which we can study later. 
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