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Abstract

In the paper we detail the reduced form or hazard rate method of pricing credit default
swaps, which is a market standard. We then show exactly how the ISDA standard CDS
model works, and how it can be independently implemented. Particular attention is paid to
the accrual on default formula: We show that the original formula in the standard model is
slightly wrong, but more importantly the proposed fix by Markit is also incorrect and gives
a larger error than the original formula.

We finish by discussing the common risk factors used by CDS traders, and how these
numbers can be calculated analytically from the ISDA model.
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1 Introduction
A Credit Default Swap (CDS) is a form of insurance against the default of a debt issuing entity.1
This can be a corporation, a municipality or sovereign state. The protection lasts for a specified
period (e.g. five years), and if the reference entity defaults in this period, the protection buyer
receives a payment from the protection seller. In return, the buyer of protection makes regular
(e.g. every three months) premium payments to the protection seller. These payments cancel in
the event of a default, otherwise the contract cannot be cancelled before maturity, but it can be
sold or unwound (at cost).

2 The Standard CDS Contract
Here we describe the new (post ‘Big Bang’) CDS contract. These are often referred to as
vanilla CDS, standard CDS, Standard North American Contract (SNAC) or Standard European
Contract (STEC). The differences from old, or legacy contracts are given at the end of the
section.

What constitutes a default is contract specific and legally very technical. We will use the
term default to mean any credit event that will trigger the payment of the protection leg of the
CDS. More details can be found in The ISDA Credit Derivatives Definitions [ISD], or in more
digestible form here [O’k08]. What follows is a description of a CDS contract suitable to build a
mathematical pricing model, rather than a rigorous legal description.

A CDS contract is made between two parties - the protection buyer and the protection seller
- and references a particular obligor (i.e. a corporation, municipality or sovereign state). The
buyer of protection makes regular (quarterly) premium payments to the protection seller, until
the expiry of the CDS contract or the reference obligor suffers a default (if this occurs first). For
a particular period, there is an accrual start date, si, an accrual end date, ei, and a payment
date, pi. The amount paid on the payment date is

Notional × DCC(si, ei)× C

where C is the fixed coupon amount, DCC is the day count convention2 used for premium
payments. The commonly quoted currencies are USD, EUR and JPY and the notional is usually
quite large - $1MM to $10MM (or equivalent in other currencies). In most CDS contracts
(including SNAC), on default the protection buyer must pay the accrued premium from the last
accrual date to the default date, τ , i.e. an amount Notional×DCC(si, τ)×C, where si < τ < ei.

In the event of a default, the protection buyer would deliver one of the reference obligor’s
defaulted bonds3 to the protection seller in return for par (physical settlement). In the event
that there is not a ready supply of defaulted bonds in the market, an auction is conducted to
establish the bond’s recovery rate and the contact is cash settled. The details of this are beyond
the scope of this paper (again see [ISD] or [O’k08]). It is enough for us to assume that the
protection seller pays the protection buyer an amount of Notional × (1 − RR), where RR is
the established recovery rate of the obligor’s bonds. A less liquid type of CDS contract is a

1The entity issues debt in the form of bonds, which it may default on. Unlike normal insurance, there is no
obligation to hold the insured asset (i.e. the bonds of the reference entity), so CDS can be used to speculate on
default or credit downgrades.

2Except for bespoke trades this is ACT/360 - see section 3.1 for a short description of of day count conventions.
3Generally any maturity of bond is acceptable, so the protection buy will deliver the cheapest bond available.
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Digital Default Swap (DDS) - this contractually specifies a recovery rate and cash settles. From
a modelling perspective, it can be treaded as an ordinary CDS.

Regardless of the trade date, the first coupon is paid in full. If the trade date is not an accrual
start date, the protection buyer would receive from the protection seller the accrued premium to
that point as a rebate.

2.1 Dates
There are several dates and date sets are defined in CDS contracts. These are:

• Trade Date. The date when the trade is executed. This is denoted as T, with T+n meaning
n days after the trade date.

• Step-in or Protection Effective Date. This is usually T+1. This is the date from which the
issuer is deemed to be risky. Note, this is sometimes just called the Effective Date, however
this can cause confusion with the legal effective date which is T-60 or T-90.

• Valuation Date. This is the date that future expected cash flows are discounted to. If this
is the trade date, then we will report the market value, while if it is the Cash-settle Date
then we will report the cash settlement.

• Cash-settle Date. This is the date that any upfront fees are paid. It is usually three working
dates after the trade date.

• Start or Accrual Begin Date. This is when the CDS nominally starts in terms of premium
payments, i.e. the number of days in the first period (and thus the amount of the first
premium payment) is counted from this date. It is also known as the prior coupon date
and is the previous IMM date before the trade date.

• End or Maturity Date. This is when the contract expires and protection ends - any default
after this date does not trigger a payment. This is an (unadjusted) IMM date.

• The Payment Dates. These are the dates when premium payments are made. They are
IMM dates adjusted to the next good business day.

• The Accrual Start and End Dates.�These are dates used to calculate the exact value of each
premium payment. Apart from the final accrual end date, these are adjusted4 IMM dates.

The ISDA model takes the trade, step-in, cash-settle, start and end dates as inputs and
calculates payment and accrual start/end dates based on a set of rules. All inputs to the ISDA
model and date generation rules are discussed in appendix A.

Prior to 2003, there were no fixed maturity dates, so a six-month (6M) CDS would have
a maturity exactly six months after the step-in date [O’k08]. Since then, maturity dates for
standard contracts have been fixed to the IMM dates of the 20th of March, June, September and
December. The meaning of a 6M CDS is six months after the next IMM date from the trade
date. Table 2.1 below gives some examples.

4using the following business day adjustment convention.
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Trade date 6M 1Y
18-Jun-2013 20-Dec-2013 20-June-2014
19-Jun-2013 20-Dec-2013 20-June-2014
20-Jun-2013 20-March-2014 20-Sep-2014
21-Jun-2013 20-March-2014 20-Sep-2014

Table 1: Six month and one year CDS maturity dates for a set of trade dates crossing an IMM
date.

2.2 The Coupons
Like the Interest Rate Swaps (IRS) on which they were modelled, CDSs originally traded at par
- i.e. they were constructed to have zero cost of entry. The market view on the credit quality
of the reference obligor was reflected in the coupon or par spread. Since the coupon was then
fixed, the CDS could have positive or negative mark-to-market (MtM) throughout its lifetime,
depending on the market’s updated view of the credit quality.

Highly distressed issuers will either default in the near-term or recover and have a much
smaller chance of default over the medium-term. The par-spread of a CDSs on non-investment
grade obligors would typically be very high (sometimes exceeding 10,000bps) to cover the seller
of protection from the (high) chance of a quick default. However, this does not suit the buy of
protection, since they may be left paying huge premiums on an obligor who’s credit quality has
improved markedly. To better reflect the risk profile of these type of CDS, they generally traded
with an upfront fee (paid by the protection buyer) and a standard (much lower) coupon.

Following the credit crisis, in 2009 ISDA issued the ‘Big Bang’ protocol in an attempt to
restart the market by standardising CDS contracts�[Roz09]. All CDS contracts would now have
a standard coupon5 and an up-front charge, quoted as a percentage of the notional - Points
Up-Front (PUF), which reflected the market’s view of the reference obligor’s credit quality. This
amount is quoted as if it is paid by the protection buyer. However, it can be negative, in which
case it is paid to the protection buyer.

The standardised coupons, together with maturity only on IMM dates, makes CDS contracts
extremely fungible, which in turn makes market prices readily available. For example, a 1Y
CDS on M&S issued on 20-Jun-2013 (and with a coupon of 100bps), will be identical to every
other 1Y CDS on M&S (with 100bps coupon) issued up to the 19-Sep-2013, i.e. they will have
identical premium payments and a maturity of 20-Sep-2014 - this is known as on-the-run. After
the 19-Sep-2013, new 1Y CDSs will have a maturity of 20-Dec-2014, so the ‘old’ 1Y CDSs (which
are now effectively 9M CDSs) will be less liquid - this is known as off-the-run.

2.3 Pricing
Since their inception, CDSs have been priced via a survival probability curve (and yield or
discount curve for computing the PV of future cash flows). Section 3 describes the interest rate
and credit curves and section 4 shows how to price a CDS given these curves.

In practice on-the-run CDSs for standard maturities will be highly liquid, and therefore have
market quoted prices. These quotes (on the same reference entity) are used to construct a credit
curve (see section 6), which in turn can be used to price off-the-run CDSs, which are less liquid.

5100 or 500bps in North America, and 25, 100, 500 or 1000bps in Europe.
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2.4 Differences before and after ‘Big Bang’
Below we list the main differences between standard CDSs issued before and after the ISDA
‘Big Bang’ of April 2009, that affect the pricing model. Other differences mainly concern the
determination of credit events and the recovery rate. This is taken from [Mar09].

• Legal Effective Date. This was T+1 (i.e. the same as the step-in date), which could
cause risk to offsetting trades (as there may be a delay in credit event becoming known).
It is now T-60 (credit events) or T-90 (succession events).

• Accrued Interest. For legacy trades only accrued interest from the step-in date (T+1).
If the trade date was more than 30 days before the first coupon date, the first coupon is
reduced to just be the accrued interest over the shortened period (short stub); if there are
less than 30 days, nothing is paid on the (nominal) first coupon and on the second coupon
(effectively the first) the full accrued over the extended period (long stub) is paid - i.e.
the normal premium for this period plus the portion not paid on the first coupon date.
Following this front stub period, normal coupons are paid.
For standard CDS, interest is accrued from the previous IMM date (the prior coupon date),
so all coupons are paid in full. This accrued interest (from the prior coupon date to the
step-in date) is rebated to the protection buyer, on the cash settlement date.

• coupons. Previously CDSs were issued with zero cost of entry, so the coupon was such
that the fair value of the CDS was zero (par spread). Now CDSs are issued with standard
coupons, and and upfront free is paid.

3 The Basic Tools
3.1 Day Count Conventions
The start and end of accrual periods, payment dates and default time are all calendar dates.
Cash-flows, such as premium payments, are calculated by converting a date interval into a real
number representing a fraction of a year. This is achieved by determining the number of days
between two events, and dividing by a denominator - the details of these Day Count Conventions
(DCC) are beyond the scope of this paper; some of the more widely used ones are detailed here
[Res12]. The simplest are of the form ACT/FixedNumber - where ACT is the actual number
of days between two events and the fixed denominator is 360 or 365 (or even 365.25). For our
purposes we will denote the year-fraction, ∆t, between two dates, d1 and d2 as

∆t = DCC(d1, d2) (1)

The DCC used to calculate the premium payments for single-name CDS is almost always
ACT/360.

When it comes to defining continuous time discount and survival curves, we need to convert
intervals between the trade date (i.e. ‘now’) and payment times (or default times) to year
fractions. In principle we can choose any DCC; however, generally the year fractions are not
additive, so for three dates d1 < d2 < d3 we have

DCC(d1, d2) + DCC(d2, d3) ̸= DCC(d1, d3).
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This is not a desirable feature for a continuous time curve. Actual over fixed denominator DCCs
do not have this problem. Therefore we prefer to use ACT/365 (fixed) for the curves.6

3.1.1 ACT/365 and ACT/365 Fixed

What we have called ACT/365 above is often referred to as ACT/365 Fixed or ACT/365F.
Conversely within the standard ISDA model, ACT/365 means ACT/ACT ISDA - this is used
for accrual fractions in some currencies.7

The rest of this paper involves calculations which use real numbers. It is understood that
all dates have been converted to year fractions from the trade date (using ACT/365F), and all
payments (fixed) have been calculated using the correct DCC (usually ACT/360). Hence we will
sometimes refer to a date, when strictly we mean a year fraction.

3.2 Interest Rate Curves
In the interest rate world, the price of a zero-coupon bond8 plays a critical role. The price at
some time, t, for expiry at T ≥ t, is written as P (t, T ), where P (t, T ) ≤ 1.0 and P (T, T ) = 1.0.
This quantity is used to discount future cash flows, so is known as the discount factor.

If the instantaneous short (interest) rate, r(t) is deterministic, we may write

P (t, T ) = e−
∫ T
t

r(s)ds (2)

If r(t) follows some stochastic process, the price of a zero coupon bond may be written as

P (t, T ) = EP
[
e−

∫ T
t

r(s)ds|Ft

]
(3)

where the expectation is taken in the risk neutral measure. We may also define the instantaneous
forward rates, f(t, s) s ≥ t and f(t, t) = r(t), such that

P (t, T ) = e−
∫ T
t

f(t,s)ds ⇐⇒ f(t, s) = −∂ ln[P (t, s)]

∂s
= − 1

P (t, s)

∂P (t, s)

∂s
(4)

Finally, we define the continuously compounded yield on the zero coupon bond (or zero rate),
R(t, T ), as

P (t, T ) = e−(T−t)R(t,T ) ⇐⇒ R(t, T ) = − 1

T − t
ln[P (t, T )] (5)

When t = 0 we may drop the first argument and simply write P (T ), f(T ) and R(T ) for the
discount factor, forward rate and zero rate to time T .

The graphs of P (T ) and R(T ) against T for 0 ≤ T ≤ T ∗ (where T ∗ is some upper cutoff) are
known as the discount and yield curves respectively. Since they are linked by a simply monotonic
transform, we can treat these curves as interchangeable,9 and refer to them generically as yield
curves.

6This is the default in the ISDA model. Note, ACT/ACT which is also popular is not additive.
7Specifically for some Libor curves.
8This is largely a hypothetical bond which pays no coupons and returns one unit of currency at expiry - its

fair value before expiry must be less than or equal to one.
9The link to the forward curve is more complex as it involves differentiation of the yield/discount curve to

obtain the forward curve, or integration of the forward curve to obtain the yield/discount curve.
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Each currency will have its own collection of curves, which are implied from various instru-
ments in the market. ‘Risk’ free curves in the US are built from Overnight Index Swaps (OIS).
The ISDA standard model uses the Libor curve for discounting, with a tenor (i.e. 3M, 6M etc)
that is currency specific.

The ISDA model uses a simple bootstrap approach to construct a Libor curve with piecewise
constant (instantaneous) forward rates from market quotes for money market and swap rates.
This is discussed further in appendix D.

3.3 Credit Curve
In the reduced form used for CDS pricing, it is assumed that default is a Poisson process, with
an intensity (or hazard rate) λ(t). If the default time is τ , then the probability of default over
an infinitesimal time period dt, given no default to time t is

P(t < τ ≤ t+ dt|τ > t) = λ(t)dt (6)

where P(A|B) denotes a conditional probability of A given B. The probability of surviving to
at least time, T > t, (assuming no default has occurred up to time t) is given by

Q(t, T ) = P(τ > T |τ > t) = E(Iτ>T |Ft) = e−
∫ T
t

λ(s)ds (7)

where Iτ>T is the indicator function which is 1 if τ > T and 0 otherwise. It should be noted
that the intensity here does not represent a real-world probability of default.

Up until this point we have assumed that the intensity is deterministic10 - if it is extended
to be a stochastic process, then the survival probability is given by

Q(t, T ) = EP
[
e−

∫ T
t

λ(s)ds|Ft

]
(8)

It is quite clear that the survival probability Q(t, T ) is playing the same role as the discount
factor P (t, T ), as is the intensity λ(t) and the instantaneous short rate r(t). We may extend this
analogy and define the (forward) hazard rate, h(t, T ) as

Q(t, T ) = e−
∫ T
t

h(t,s)ds ⇐⇒ h(t, s) = −∂ ln[Q(t, s)]

∂s
= − 1

Q(t, s)

∂Q(t, s)

∂s
(9)

and the zero hazard rate,11 Λ(t, T ) as

Q(t, T ) = e−(T−t)Λ(t,T ) ⇐⇒ Λ(t, T ) = − 1

T − t
ln[Q(t, T )] (10)

The survival probability curve, Q(t, T ), the forward hazard rate curve, h(t, T ), and the zero
hazard rate curve, Λ(t, T ), are equivalent, and we refer to them generically as credit curves.

The forward hazard rate represents the (infinitesimal) probability of a default between times
T and T + dT , conditional on survival to time T , as seen from time t < T . The unconditional
probability of default between times T and T + dT is given by

P(T < τ ≤ T + dT |τ > t) = Q(t, T )h(t, T ) = −∂Q(t, T )

∂T
(11)

10the default time is random even when the intensity is deterministic.
11since it is the analogy of the zero rate. In a bond context, this has been called the ZZ-spread (zero-recovery,

zero-coupon) [Ber11].
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4 Pricing a CDS
The pricing mechanism we present below is quite standard and can be found (in various forms)
in any textbook covering the subject [Hul06, O’k08, Cha10, LR11]. We assume that a continuous
time interest rate and credit curve is extraneously given, and are defined from the trade date
(t = 0) to at least the expiry of the CDS. All dates have been converted into year fractions (from
the trade-date) using the curve DCC.12

Below we consider prices at the cash-settlement date rather than the trade date. The cash
settlement value (or dirty price from bond lexicon) of a CDS is the discounted value of expected
future cash flows, and ignores the accrued premium. What is normally quoted is the upfront
fee or cash amount (the clean price), which is simply the dirty price with any accrued interest
added. For a newly issued legacy CDS, there is no accrued interest (recall, interest accrues from
T+1), so dirty and clean price are the same.

Clean and dirty price are used in the ISDA model, but are not standard terms in the CDS
world. We chose to used the term to aid clarity: dirty means without accrued premium and
clean means with accrued premium.�

We take the trade date as t = 0 and the maturity as T . The step-in (effective protection date)
is te and the valuation (cash-settle date) is tv. All cash flows are discounted to the valuation
date - this is what we call the present value (or PV). This pricing is valid for new contracts (both
spot starting and forward starting) as well as seasoned trades (e.g. for MtM calculations), and
for a broad set of contact specifications.

4.1 The Protection leg
The protection leg of a CDS consists of a (random) payment of N(1−RR(τ)) at default time τ
if this is before the expiry (end of protection) of the CDS (time T ) and nothing otherwise. The
present value of this leg can be written as

PVProtection Leg = NE[e−
∫ τ
tv

r(s)ds(1−RR(τ))Iτ<T ] (12)

Under the assumptions that recovery rates are independent of interest or hazard rates13, and
independent of the default time, this can be rewritten as

PVProtection Leg = NE[1−RR(τ)]E[e−
∫ τ
tv

r(s)dsIτ<T ] = N(1−RR)E[e−
∫ τ
tv

r(s)dsIτ<T ] (13)

where RR = E[RR(τ)] is the expected recovery rate.
Under the further assumption that interest rates and hazard rates are independent, this

becomes

PVProtection Leg = −N(1−RR)

P (tv)

∫ T

0

P (s)
dQ(s)

ds
ds = −N(1−RR)

P (tv)

∫ T

0

P (s)dQ(s) (14)

With no other information about the nature of the yield and credit curves, the PV of the
protection leg must be computed by numerical integration.

12We use ACT/365F for the discount and credit curves. The trade (in terms of calculation of premiums) uses
ACT/360.

13A negative correlation between spreads and recovery rates has been observed[Cha10, Ber11], but this is
generally ignored.
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4.2 The Premium Leg
The premium leg consists of two parts: Regular premium (or coupon) payments (e.g. every three
months) up to the expiry of the CDS, which cease if a default occurs; and a single payment of
accrued premium in the event of a default (this is not included in all CDS contracts but is for
SNAC).

If there are M remaining payments, with payment times t1, t2, . . . , ti, . . . , tM , period end
times e1, e2, . . . , ei, . . . , eM

14 and year fractions of ∆1, . . . ,∆i, . . . ,∆M , then the present value of
the premiums only is

PVPremiums only = NCE

[
M∑
i=1

∆ie
−

∫ ti
tv

r(s)dsIei<τ

]
=

NC

P (tv)

M∑
i=1

∆iP (ti)Q(ei) (15)

where the second equation follows from the independence assumption. The quantity P (T )Q(T ) ≡
B(T ) is known as the risky discount factor - the PV of the premium payments is just the risky
discounted value of the cash flows.

The second part of the premium leg is the accrued interest paid on default. If the accrual
start and end times are (s1, e1), . . . , (si, ei), . . . , (sM , eM ), its PV is given by

PVaccrued interest = NCE

[
M∑
i=1

DCC(si, τ)e
−

∫ τ
tv

r(s)dsIsi<τ<ei

]

= − NC

P (tv)

M∑
i=1

[∫ ei

si

DCC(si, t)P (t)
dQ(t)

dt
dt

] (16)

We use ACT/365 to measure year fractions for the curves. The accrual fraction may use a
different day count convention.15 To account for this we may write

PVaccrued interest = − NC

P (tv)

M∑
i=1

[
ηi

∫ ei

si

(t− si)P (t)
dQ(t)

dt
dt

]
(17)

where ηi = ∆i/DCCcurve(si, ei) - i.e. it is the ratio of the year fraction of the interval measured
using the accrual DCC, to the interval measured using the curve DCC. When both DCC use
actual days for the numerator and a fixed denominator, this will be a fixed number.16 This is
now amenable to numerical integration.

The full PV of the premium leg is

PVpremium = PVPremiums only + PVaccrued interest

=
NC

P (tv)

M∑
i=1

[
∆iP (ti)Q(ei)− ηi

∫ ei

si

(t− si)P (t)
dQ(t)

dt
dt

] (18)

This of course scales linearly with the coupon, C.
14The period end time is the final time that a default can occur to count as a default in that period. It usually

equals the payment time, but can be before it; notably for the ISDA model.
15it is usually ACT/360
16In most cases it will be simply 365/360 ≈ 1.0139.
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The Risky PV01 (RPV01) (aka spread PV01, risky duration or PVBP) is usually defined as
the value of the premium leg per basis point of spread (coupon). To avoid scaling factors, we
define it as the value of the premium leg per unit of coupon,17 so:

PVpremium = C ×RPV 01 (19)

4.3 CDS Valuation
The premium leg we discussed above is the dirty PV. For clarity we label the Risky PV01 given
above, RPV 01dirty. The cash settlement (or dirty PV) for the buyer of protection, is given by

PVdirty = PVProtection Leg − C ×RPV 01dirty (20)

As with bonds, this value has a sawtooth pattern against time, driven by the discrete premium
payments. To smooth out this pattern, the accrued interest between the accrued start date
(immediately before the step-in date) and the step-in date is subtracted from the premium
payments. So

RPV 01clean = (RPV 01dirty −N ×DCC(s1, te)) (21)
It is this clean RPV01 that is normally quoted, so when we refer to RPV01 without a subscript
we mean the clean RPV01. The two PV can then be written as

PVclean = PVProtection Leg − C ×RPV 01

PVdirty = PVProtection Leg − C ×RPV 01−NC ×DCC(s1, te)
(22)

This PVclean is the upfront amount - it is the net amount paid by the protection buyer, on
the cash-settlement date to enter a new CDS contract. Recall the current (post ‘Big-Bang’)
treatment of coupons: The protection buyer pays the next coupon in full on the coupon date
(even if this is the next day); in return the buyer receives (from the protection seller) the accrued
interest[Cha10], which is paid on the cash-settle date.

4.3.1 Points Upfront

As already mentioned, the upfront amount is just the PVclean in our notation. Points Upfront
(PUF) is just this value per unit of notional (expressed as a percentage). The clean price is
defined as 1 - PUF (again expressed as a percentage). It is now market standard to quote CDSs
in terms of PUF and a standard coupon.

4.3.2 Market Value

The market value is simply PVdirty discounted to the trade date. That is, P (tv) = 1 in the above
equations. It will be slightly smaller in magnitude that the cash settlement.

4.3.3 The sign of the Accrued Premium

The quantity NC ×DCC(s1, te) is positive and is called the accrued amount. By market con-
vention the sign of the accrued for the buyer of protection is negative, so accrued is defined as

accrued = −NC ×DCC(s1, te) (23)
For the seller of protection, the accrued is positive.

17i.e. our value is 10,000 times the ‘standard’ value.
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4.4 Approximation to the PV
A common approximation is to assume that any payment resulting from a default is made on
the next scheduled payment date [Ber11]. We can then approximate the protection leg as

PVProtection Leg ≈ N(1−RR)

P (tv)

M∑
i=1

P (ti) [(Q(ti−1)−Q(ti)] (24)

In addition, if we assume that on average default happens mid-way through the period, we can
approximate the accrued interest paid on default as

PVaccrued interest ≈
NC

2P (tv)

M∑
i=1

∆iP (ti)(Q(ti−1)−Q(ti)) (25)

and

RPV 01dirty ≈ N

P (tv)

M∑
i=1

∆iP (ti)

[
Q(ti) +

(Q(ti−1)−Q(ti)

2

]

=
N

P (tv)

M∑
i=1

∆iP (ti)

[
(Q(ti−1) +Q(ti)

2

] (26)

So the PV of a CDS can be calculated reasonably accurately without numerical integration.
This in turn means one can use more complex representations for the curves, without making
calibration slow. We discuss this further in section 11.

4.5 The Par Spread
Prior to the new ISDA ‘Big Bang’ protocol of 2009, CDS contracts were entered into at zero
cost. The coupon that makes the clean PV of the CDS zero is known as the par spread, Sp. It
is given simply as

Sp(T ) =
PVProtection Leg
RPV 01clean

=
−(1−RR)

∫ T

0
P (s)dQ(s)

ds ds∑M
i=1

[
∆iP (ti)Q(ti) + ηi

∫ ei
si
(t− si)P (t)dQ(t)

dt dt
]
−N ×DCC(s1, te)

(27)
If a CDS is issued with a coupon C (which may be the initial par spread), and some time later
the par spread for a CDS with the same maturity18 is Sp, then the MtM value of the CDS is

MtM = (Sp − C)×RPV 01(P,Q) (28)

The mark-to-market will be clean or dirty depending on which RPV01 we use. We have empha-
sised that the RPV01 depends on the discount and credit curves, which will have changed since
the CDS was issued. Hence the equation is not as straightforward as it appears, since one must
recalculate the value of RPV01.

18and of course with all other details except the coupon identical.
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4.5.1 Par Spread Approximation

Using the approximation of section 4.4 we have

Sp(T ) =
(1−RR)

∑M
i=1 P (ti) [(Q(ti−1)−Q(ti)]∑M

i=1 ∆iP (ti)
[
(Q(ti−1)+Q(ti)

2

] (29)

4.6 The Credit Triangle
If the premium leg were paid continuously, its value would be given by

PVpremium, continuous =
NC

P (tv)

∫ T

0

P (t)Q(t)dt (30)

and the par spread (ignoring any accrued interest) would be given by

Sp = −(1−RR)

∫ T

0
P (t)Q(t)dt∫ T

0
P (t)dQ(t)

(31)

Under the further assumption that the hazard rate19 is constant at a level, λ, this becomes the
credit triangle relationship

Sp = (1−RR)λ

∫ T

0
P (t)e−λtdt∫ T

0
P (t)e−λtdt

= (1−RR)λ ↔ λ =
Sp

1−RR
(32)

This serves as a rule of thumb for switching between spreads and hazard rates, and as a first
guess at the hazard rate for calibration. Some subtleties, such as what recovery rate should be
used, are discussed in [Ber11].

4.6.1 PUF approximation

For a fixed premium and PUF we have

[(1−RR)λ− C]

∫ T

0

P (t)e−λtdt = PUF (33)

To generate another rule of thumb, we first assume that interest rates are flat at a level, r, and
that (r + λ)T ≪ 1. The integral then becomes∫ T

0

e−(r+λ)tdt =
1− e−(r+λ)T

r + λ
≈ T − (r + λ)T 2

2
+ . . .

Keeping just the first term, we may write

λ ≈ C + PUF/T

1−RR
(34)

19In this case, instantaneous, forward and zero hazard rates all have the same value, so we don’t make a
distinction.
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5 The ISDA Model
The ISDA CDS Standard Model20 is maintained by Markit. It is written in the C language and
is the evolution of the JP Morgan CDS pricing routines. As well as the CDS date logic21 the
model makes the assumption that both the yield curve and credit curve are piecewise constant
in their respective forward rates. This reduces the integrals of equations 14 and 17 to sums of
simple analytic parts, and hence eliminates the need for numerical integration in the pricing.
The curve assumptions also greatly simplify calibration, which we discuss in section 6.

The assumption of piecewise constant forward rates between specified nodes is the ISDA model
- the official C code is an implementation of this, but any implementation using the same curve
assumptions will produce the same prices to machine precision.22 OpenGamma has produced
its own implementation in Java.

One further point to note, is that the ISDA model is quite general about the contact spec-
ification. It can be used to price CDSs with any maturity date (it knows nothing about IMM
dates), start date and payment interval. So the contract specifics are inputs to the model - for
standard contracts, this would be a maturity date on the relevant IMM date, a start date of the
IMM date immediately before the trade date, and quarterly premium payments.

5.1 The ISDA Model Curve
We assume that the yield curve has ny nodes at times T y = {ty1, t

y
2, . . . , t

y
i , . . . , t

y
ny
} and that the

credit curve has nc nodes at T c = {tc1, . . . , tci , . . . , tcnc
}. At the ith node of the yield curve the

discount factor is given by Pi = exp(−tyiRi), and at the ith node of the credit curve the survival
probability is given by Qi = exp(−tciΛi).

We now just consider the credit curve (the equivalent values for the yield curve follow by
analogy). The survival probability at non-node times is given by

Q(t) = exp
(
−
[
tciΛi(t

c
i+1 − t) + tci+1Λi+1(t− tci )

∆tci

])
for ti < t < ti+1 (35)

where ∆tci = tci+1 − tci . The interpolation is linear in the log of the survival probability. Using
equation 9 we have

h(t) =
−tciΛi + tci+1Λi+1

∆tci
≡ hi+1 for ti < t < ti+1 (36)

which justifies our previous statement that the forward rates are piecewise constant.23 This
allows us to write

Q(t) = Qie
−hi+1(t−tci )

Λ(t) =
Λit

c
i + hi+1(t− tci )

t
for ti < t < ti+1

(37)

For times before the first node we have simply

Q(t) = e−h1t for 0 ≤ t < t1 (38)
20latest version 1.8.2 at the time of writing.
21This is not strictly part of the model as it is specified in the CDS contract.
22This is 1 part in 1015 using double precision floating point operations.
23Note: the forward rate is undefined at the nodes.
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and after the last node
Q(t) = Qnce

−hnc (t−tcnc
) for t > tcnc

(39)
That is, the forward hazard rate is constant after the penultimate node.

5.2 Combined Nodes
We let the chronologically ordered combined set of unique nodes24 be

T = T y ∪ T c = {t1, . . . , ti, . . . , tn}

where n ≤ ny+nc. Between any two consecutive nodes we are guaranteed that both the forward
interest rate and forward hazard rate are constant.

We distinguish values (e.g. discount factors, survival probabilities) at these nodes by Q̄i ≡
Q(ti), P̄i ≡ P (ti) etc.

5.3 Protection Leg
For the protection leg we modify the set of nodes so that final node, tn, is taken as the maturity
of the CDS (so nodes after this time are not included), and the effective protection start is added
as the zeroth node, t0.

The value of the protection leg (equation 14) may be written as

PVProtection Leg =
N(1−RR)

P (tv)

n∑
i=1

Ii where Ii = −
∫ ti

ti−1

P (t)dQ(t) (40)

The individual integral elements are given by

Ii = −
∫ ti

ti−1

P (t)dQ(t) = P̄i−1Q̄i−1hi

∫ ti

ti−1

e−(fi+hi)(t−ti−1)dt

=
hi

fi + hi

(
B̄i−1 − B̄i

)
=

ĥi

f̂i + ĥi

(
B̄i−1 − B̄i

) (41)

where B̄i = P̄iQ̄i and we have defined

f̂i ≡ fi∆ti−1 = ln(P̄i−1)− ln(P̄i)

ĥi ≡ hi∆ti−1 = ln(Q̄i−1)− ln(Q̄i)
(42)

- the point of this last step is to not divide by the time step since it cancels out anyway.

5.3.1 Limiting Case

Care must be taken when f̂i + ĥi → 0. We start by defining the function ϵ(x), its derivatives
and their Taylor expansions

ϵ(x) ≡ ex − 1

x
≈ 1 +

1

2
x+

1

6
x2 +

1

24
x3 + . . .

ϵ′(x) ≡ (x− 1)(ex − 1) + x

x2
≈ 1

2
+

1

3
x+

1

8
x2 +

1

30
x3 + . . .

ϵ′′(x) ≡ (ex − 1)(x2 − 2x+ 2) + x2 − 2x

x3
≈ 1

3
+

1

4
x+

1

10
x2 +

1

36
x3 + . . .

(43)

24that is, if the yield and credit curve have a common node, it is only counted once.
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With this, equation 41 can be written as

Ii = Bi−1ĥiϵ(−(f̂i + ĥi)) (44)

For small values of f̂i + ĥi we may use the Taylor expansion form of ϵ(x) which is well defined
for x → 0.

5.4 Premium Leg
The premium leg consists of M risky discounted premium payments and M integrals which
represent the accrued interest paid on default. The premium payments pose no problem, since
we may use equation 15 directly. Therefore we just focus on the integral for default in the kth

payment period. From equation 17 this is

Ik = −
∫ ek

sk

(t− sk)P (t)
dQ(t)

dt
dt (45)

where sk and ek and the accrual start and end for the kth period.25 If we now truncate our set
of combined nodes, so it only contains the nk nodes between sk and ek exclusively, then add sk
and ek as the first and last node (i.e. t0 = sk and tnk

= ek) we have

Ik = −
nk∑
i=1

∫ ti

ti−1

(t− sk)P (t)
dQ(t)

dt
dt

=

nk∑
i=1

[
P̄i−1Q̄i−1hi

∫ ti

ti−1

(t− sk)e
−(fi+hi)(t−ti−1)dt

]

=

nk∑
i=1

[
hi

fi + hi

(
B̄i−1 − B̄i

fi + hi
+ B̄i−1(ti−1 − sk)− B̄i(ti − sk)

)]

=

nk∑
i=1

[
ĥi

f̂i + ĥi

(
∆ti−1

(
B̄i−1 − B̄i

f̂i + ĥi

− B̄i

)
+ (ti−1 − sk)(B̄i−1 − B̄i)

)]
(46)

where we have made use of the identity B̄i = B̄i−1e
−(fi+hi)(ti−ti−1) in simplifying the expression.

Since the nodes are generally further apart than the three months between payments, we will
usually have nk = 1 and the integral for each period reduces to a single simple formula

Ik =
∆t0ĥ1

f̂1 + ĥ1

(
B̄0 − B̄1

f̂1 + ĥ1

− B̄1

)
(47)

Putting this all together we have

PVpremium =
NC

P (tv)

M∑
k=1

[
∆kP (tk)Q(ek)− ηiI

k
]

(48)

for the value of the premium leg when the forward rates (yield curve) and forward hazard rates
(credit curve) are piecewise constant, i.e. the ISDA model.

25In the ISDA model, if protection is from start of day (i.e standard CDS) these are both rolled back one day.
The exception to this is the maturity date, so the overall effect is to give one extra day of protection.
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5.4.1 Formulae given in ISDA Standard CDS Model C Code

This implementation (versions 1.8.2 and below) gives this formula as (using our notation and
rearranging)

IkISDA =

nk∑
i=1

[
ĥi

f̂i + ĥi

(
∆ti−1

(
B̄i−1 − B̄i

f̂i + ĥi

− B̄i

)
+ (ti−1 − s̃k)(B̄i−1 − B̄i)

)]
(49)

where s̃k = sk − 1/730 - i.e. the accrual start is reduced by half a day (on a 365-based day
count). The reason for this is unclear26 and the formula is identical to equation 46 except for
this half-day adjustment to the accrual start. In fact we may write

IkISDA = Ik +
1

730

nk∑
i=1

ĥi

f̂i + ĥi

(B̄i−1 − B̄i) (50)

with the second term seen as an error term.
In a note in December 2012 [Mar12] Markit states that the formula (eqn. 49) is incorrect.

They give a correction (for the nk = 1 case) in the paper, and also added it as a comment to the
1.8.2 C code. The corrected equation is (in our notation)

IkMarkit fix =

nk∑
i=1

[
∆ti−1ĥi

f̂i + ĥi

(
B̄i−1 − B̄i

f̂i + ĥi

− B̄i

)]
(51)

This is the same as our equation 47 for nk = 1, i.e. if the forward rate and forward hazard
rate are both constant throughout the coupon period (i.e. there are no nodes within the coupon
period). However, this is not true in general, so the correction is still wrong. We may write

IkMarkit fix = Ik −
nk∑
i=1

[
ĥi

f̂i + ĥi

(
(ti−1 − sk)(B̄i−1 − B̄i)

)]
(52)

where again the second part can be seen as an error term. Clearly for nk = 1 the error term
vanishes (since t0 = sk), but for nk > 1 the error is larger than for the original ISDA model
formula.

Both Markit and Bloomberg still use the code with equation 49 and are yet to switch to
equation 51.27 Nevertheless some groups have started using the Markit fix, even though it is
wrong in some circumstances.

The correct formula is that given in equation 46, which is the original formula in the Standard
ISDA model without the half day adjustment. However, to be pragmatic OpenGamma has
implemented all three formulae given above. The price of five CDS (tenors of 3M, 6M, 1Y, 5Y
and 10Y) with a notional of 10MM using all three formulae is given in table 2, along with the
percentage difference from what we believe to be the correct formula (labeled OpenGamma fix).
All the CDSs have been priced from the same credit curve.28 The original ISDA formula is out
by less than 0.01%, while the Markit fix is out by more than 0.6% for the short dated CDS -
this is because the formula mis-prices periods that have a curve node fall within then, and these
tend to be the early premium periods; the effect is diluted for long dated CDS.

26An amount of 10−50 is also added to the denominators to prevent divide by zero problems, rather than taking
the limits correctly (e.g. by a Taylor expansion). We can ignore this.

27presumably for backwards compatibility as the change in price is non-negligible.
28If the ‘wrong’ formula is used to calibrate the curve and the same (wrong) formula is the used to price CDS,

the cancelation of errors will lessen the effect.
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3M 6M 1Y 5Y 10Y
OpenGamma Fix -5,698.56 -10,868.26 -21,118.52 317,678.48 837,013.78

ISDA Original -5,699.06 -10,869.22 -21,120.39 317,660.59 836,976.56
Markit Fix -5,662.91 -10,829.15 -21,071.65 317,761.01 837,135.37

Error: ISDA Orignal 0.009% 0.009% 0.009% -0.006% -0.004%
Error: Markit Fix -0.626% -0.360% -0.222% 0.026% 0.015%

Table 2: Comparison of the effect of the three different accrual-on-default formulae discussed
in the text, on the price (for 10MM notional) of five CDSs. The error is given versus the
OpenGamma fix.

5.4.2 Limit Case

We must again consider the case of f̂i + ĥi → 0. Using ϵ(x) and ϵ′(x) (eqn. 43) we may write

Ik =
n∑

i=1

[
ĥiB̄i−1

(
(ti−1 − sk)ϵ(−(f̂i + ĥi)) + ∆ti−1ϵ

′(−(f̂i + ĥi)
)]

(53)

and once again small values of f̂i + ĥi can be handled using the Taylor expansion form of ϵ(x)
and ϵ′(x) . The Markit fix formula (eqn. 51) can also be handled this way, giving

IkMarkit fix =

n∑
i=1

[
∆ti−1ĥiB̄i−1ϵ

′(−(f̂i + ĥi))
]

(54)

6 Calibration of the Credit Curve
In this section we will concentrate on the calibration of the ISDA model. In section 11 we will
discuss calibration using other representations of the credit curve.

The ISDA CDS Standard Model calibrates a yield curve from money market instruments
(deposits) and swaps. We discuss the details of this in appendix D, but for now we assume an
appropriate yield curve exists.

6.1 The Single CDS Case
If for a particular reference entity, there is only one CDS tenor available with reliable pricing
information (i.e is liquid), the best we can do is to find the single constant hazard rate, λ,
that will reprice the CDS. For a fixed coupon, C, and recovery rate, the price is a (non-linear)
function of λ. This is shown in figure 1 below for a range of recovery rates. The function is
monotonically increasing, starting at the (negative) discounted value of the premium payments
when λ = 0 (since there is no value in the protection leg) and asymptotically reaching the Loss
Given Default (LGD = 1−RR) as λ → ∞ - here default is immediate.

For (market observed) clean price, PVclean we can define the price residual functions as

G(λ) = (PVProtection Leg(λ)− C ×RPV 01clean(λ)− PVclean)/N (55)
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Figure 1: The normalised price (i.e. unit notional) for a standard 5Y CDS against hazard rate
for a range of recovery rates. The CDS premium is 500bps.

This is also monotonic in λ and is guaranteed to have a root G(λ∗) = 0 provided that

−CN
M∑
i=1

∆iP (ti) ≤ P (tv)PVclean < (1−RR)N (56)

A price outside this range is arbitrageable, so should not exist in an efficient economy. Without
the first derivative, G′(λ), one can use a gradient-free root finder such as the bisection method,
secant method or Van Wijngaarden-Dekker-Brent Method (see [PTVF07] for details of these) to
find the implied hazard rate. We find last of these to be the most effective. If the derivative
available analytically the Newton-Raphson method is preferred - appendix B gives formulae for
the first derivative for the ISDA model.

For a zero upfront CDS, the credit triangle λ = Sp/(1 − RR) can be used as (a very good)
initial guess. With PUF, we use the modified form λ = (C +PUF/T )/(1−RR). In either case,
the root finder will converge in only a few iterations.

6.1.1 Conversion between PUF and Quoted Spreads

When CDS trades with a fixed premium and PUF (as all standard contracts now do), they can
be given an equivalent quoted spread.29 This is calculated by first finding the constant hazard
rate that reprices the CDS, as above. With this constant hazard rate, the par spread of the CDS
is calculated - this is the quoted spread.

To reverse the procedure, one first finds the constant hazard rate that reprices the CDS to
zero given its premium is set to its quoted spread. One then prices the CDS from the constant
hazard rate with its actual premium.

29This is also called flat spread - see figure 4 and the accompanying text for a discussion on the (mis)use of this
term.
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There is a one-to-one mapping between price (PUF) and quoted spread for a CDS, and the
link can be seen as analogous to the link between price and implied volatility of an option.
Figure 2 shows PUF against quoted spread for fixed coupons of 0bps (i.e. no coupons), 100bps
and 500bps, for a 10Y CDS with a recovery rate of 40%. When quoted spread equals the coupon,
the PUF is zero.

Whether the price is given as PUF or a quoted spread, the actual trade is the same - an
upfront fee is paid and then premiums, with standard coupons, are paid on the premium dates.
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Figure 2: The Points Up-Front (PUF) of a 10Y CDS against quoted spread for three levels of
fixed coupons. The recovery rate is 40%.

6.2 Multiple CDSs
Usually CDS quotes are available for several tenors on the same name, and one is interested in
building a credit curve that will exactly reprice all of the quoted instruments.

A common approach for curve construction is to specify an interpolating scheme and a set
of nodes (or knots) of equal number to the number of instruments, and at times matching the
maturities.30 We work with the zero hazard rate curve Λ(t). Let Λ = (Λ1, . . . ,Λn)

T be the
vector of curve nodes and V = (V1, . . . , Vn)

T be the vector of market prices, then we must solve
the vector equation

G(Λ) = V (57)

where G(·) is the function that prices all the CDSs given the credit curve that results from the
nodes Λ. We need in effect to invert this equation, and have

Λ = G−1(V) (58)
30This isn’t required, but generally results in smoother curves.
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This can be handled by a multi-dimensional root finding technique such as the Newton and Quasi-
Newton methods [PTVF07]. We have used this approach to good effect for the construction of
multi-curves (i.e. separate discount and index curves) in the interest rate setting [Whi12].

Since the interpolator used in the ISDA model is local - meaning that the survival probability
(or equivalently the zero hazard rate) at a particular time only depends on the value of the two
adjacent nodes - the vector equation may be broken down as

G1(Λ1) = V1

G2(Λ1,Λ2) = V2

...
Gi(Λ1,Λ2, . . . ,Λi) = Vi

...
Gn(Λ1 . . . ,Λi . . . ,Λn) = Vn

(59)

The first equation may be solved by one-dimensional root finding for Λ1; with this the second
equation is also solved by one-dimensional root finding for Λ2. In this way the whole system is
solved by n one-dimensional root findings, using the values found at previous steps: This process
is known as bootstrapping a curve.31

The framework we have discussed included both the case where the market quotes are par
spreads (i.e. the CDSs have zero cost of entry and the market view is reflected entirely through
the premium or spread), in which case V = 0, and when CDSs trade with a fixed premium and
quotes are given as PUF.

6.2.1 Calibration from Quoted Spreads

Since by convention quoted spreads are computed from a constant hazard rate, they are different
from par spread (although numerically close) - it is entirely inconsistent to treat these quotes as
if they were par spreads to build a credit curve.

If CDSs with fixed premiums have quoted spreads (rather than PUF), one must first convert
these to PUF before proceeding to bootstrap the credit curve.

6.2.2 Conversion between PUF and Par Spreads

It is consistent to build a credit curve from PUF quotes, then use this curve to compute the
equivalent par spreads of CDSs with the same maturities, or indeed go the other way. Whether
viewed in terms of PUF (or quoted spreads) or par spreads, the underlaying credit curve is, by
construction, identical. One use of this is to view credit risk in terms of shocks to the par spreads.

7 Sensitivity to the Credit Curve
We start by considering an arbitrary CDS, with present value, V and (with no loss of generality)
a unit notional. We assume an interpolated credit curve with n nodes has been constructed, but
make no further assumptions at this stage.

31The term bootstrap is used loosely to mean implying curves from market data, even when the technique used
may not actually be a bootstrap.
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Under this framework, quantities of fundamental importance are the sensitivity of the CDS
value to the nodes of the credit curve. Formally these are:

∂V (Λ)

∂Λk
(60)

which form a vector of sensitivities. For any model, an element can be calculated by central
difference, i.e.

∂V (Λ)

∂Λk
≈ V (Λ1, . . . ,Λk + η, . . . ,Λn)− V (Λ1, . . . ,Λk − η, . . . ,Λn)

2η
(61)

where η is some small number.32 For a typical credit curve with eight nodes, the computation
of the sensitivity vector takes 16 calls to the pricing code.

In most cases, the sensitivity can be calculated analytically. The general technique is often
called Algorithmic Differentiation, which works by repeatedly applying the chain rule to elemen-
tary operations and functions [GW08, Hen12]. This is more accurate (i.e. machine precision)
and faster. In the case of the ISDA Model, this becomes relatively simple. Appendix B gives
explicit formulae for the protection and premium leg sensitivities to the credit curve.

Table 3 shows the PV sensitivity vectors for six CDSs with maturities corresponding to the
nodes of the credit curve. As expected, there is no sensitivity to nodes beyond the maturity of
the CDS. The value along the diagonal increases with maturity, as there is more scope for large
price changes for longer-tenor CDSs. The numbers are the sensitivity of a unit notional CDS to
the hazard rate. This is often scaled to be the sensitivity on a $10MM notional to a 1bps change
of hazard rate - in that case the first entry in the table would be $308.69.

Curve Nodes
CDS Maturity P6M P1Y P3Y P5Y P7Y P10Y

20-Dec-11 0.30903 0.00000 0.00000 0.00000 0.00000 0.00000
20-Jun-12 0.00632 0.59684 0.00000 0.00000 0.00000 0.00000
20-Jun-14 0.00633 0.02487 1.66846 0.00000 0.00000 0.00000
20-Jun-16 0.00633 0.02487 0.14165 2.41260 0.00000 0.00000
20-Jun-18 0.00633 0.02487 0.14166 0.23604 2.87787 0.00000
20-Jun-21 0.00633 0.02487 0.14166 0.23605 0.35704 3.31445

Table 3: The PV sensitivity to zero hazard rates at the credit curve nodes for a set of standard
CDSs with a coupon of 100bps and a recovery rate of 40%. The trade date is 13-Jun-2011. This
can be viewed as a Jacobian matrix for the PV sensitivity to credit curve nodes.

A second table (4) shows the par-spread sensitivity to the zero hazard rate at standard
maturity points for a set of CDSs. The trade date is 13-Jun-2011, the CDS maturities are on
the June and December IMM dates out to ten years and the recovery rate is 40%. The two
maturities (20-Jun-11 and 20-Dec-11) only have sensitivities to the six-month node (20-Dec-11),
with a value that is consistent with the credit triangle (section 4.6). Even for CDS maturities
that do not correspond to credit curve nodes, there is no sensitivity beyond the next node after
that maturity.

32Typically η ≈ 10−4 − 10−8. The optimal choice is beyond the scope of this paper - see any text book on
numerical modelling.
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Curve Nodes
CDS Maturity P6M P1Y P3Y P5Y P7Y P10Y

20-Jun-11 0.5921 0.0000 0.0000 0.0000 0.0000 0.0000
20-Dec-11 0.5932 0.0000 0.0000 0.0000 0.0000 0.0000
20-Jun-12 0.0055 0.5879 0.0000 0.0000 0.0000 0.0000
20-Dec-12 0.0041 0.2990 0.2890 0.0000 0.0000 0.0000
20-Jun-13 0.0033 0.1544 0.4337 0.0000 0.0000 0.0000
20-Dec-13 0.0027 0.0672 0.5212 0.0000 0.0000 0.0000
20-Jun-14 0.0023 0.0095 0.5791 0.0000 0.0000 0.0000
20-Dec-14 0.0022 0.0089 0.3821 0.1956 0.0000 0.0000
20-Jun-15 0.0020 0.0083 0.2379 0.3388 0.0000 0.0000
20-Dec-15 0.0019 0.0078 0.1269 0.4491 0.0000 0.0000
20-Jun-16 0.0018 0.0073 0.0394 0.5361 0.0000 0.0000
20-Dec-16 0.0017 0.0070 0.0371 0.3786 0.1590 0.0000
20-Jun-17 0.0016 0.0066 0.0352 0.2500 0.2889 0.0000
20-Dec-17 0.0015 0.0063 0.0336 0.1422 0.3978 0.0000
20-Jun-18 0.0014 0.0061 0.0321 0.0515 0.4895 0.0000
20-Dec-18 0.0014 0.0058 0.0307 0.0493 0.3918 0.1009
20-Jun-19 0.0013 0.0056 0.0296 0.0474 0.3078 0.1876
20-Dec-19 0.0013 0.0054 0.0285 0.0457 0.2343 0.2636
20-Jun-20 0.0012 0.0052 0.0276 0.0441 0.1697 0.3304
20-Dec-20 0.0012 0.0051 0.0267 0.0427 0.1126 0.3895
20-Jun-21 0.0012 0.0049 0.0259 0.0415 0.0621 0.4417

Table 4: The par-spread sensitivity to zero hazard rates at the credit curve nodes for a set of
CDSs with recovery rate 40%.

7.1 Hedging the Credit Curve
With no loss of generality we take our CDS to have unit notional. We will hedge this with a
collection of m other CDSs (on the same name) with present values Vi and (relative) notionals
wi - these are hedge ratios. The total value of the portfolio is

Π(Λ) = V (Λ)−
m∑
i=1

wiVi(Λ) (62)

We have emphasised the dependence on (the nodes of the) credit curve; the dependence on the
yield curve we suppress. The sensitivity of the portfolio to the kth node is given by

∂Π(Λ)

∂Λk
=

∂V (Λ)

∂Λk
−

m∑
i=1

wi
∂Vi(Λ)

∂Λk
(63)

To ensure the portfolio is insensitive to any of the curve nodes, we must have

JTw = vΛ (64)
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where

vΛ =

(
∂Π(Λ)

∂Λ1
, . . . ,

∂Π(Λ)

∂Λn

)T

,

w = (w1, . . . , wm)T

and Ji,k =
∂Vi(Λ)

∂Λk

In general the price Jacobian, J, is not square,33 so we must solve the system in a least
squares sense. Formally

w = (JJT )−1(JvΛ) (65)
will minimise |vΛ − JT w|2, i.e. give the lowest sum-of-squares of sensitivity of the portfolio to
the credit curve nodes.

7.1.1 Hedging the ISDA Model Credit Curve

If we build an ISDA model credit curve (i.e. with piecewise constant forward hazard rates) and
the hedging instruments are the same instruments used to construct the credit curve, then the
Jacobian is square and is of lower diagonal form (i.e. it looks like table 3), i.e. Ji,j = 0 for j > i.

This means equation 64 can be solved by back-substitution

wn =
∂V

∂Λn
/
∂Vn

∂Λn

wn−1 =

(
∂V

∂Λn−1
− ∂Vn−1

∂Λn
wn

)
/
∂Vn−1

∂Λn−1

...

w1 =

(
∂V

∂Λ1
−

n∑
i=2

∂V1

∂Λi
wi

)
/
∂V1

∂Λ1

(66)

If the next node after the expiry of our CDS is k, then

∂V

∂Λi
= 0 for i > k

and
wi = 0 for i > k

In table 5 we show the hedge ratios for a set of CDSs. The trade date is (again) 13-Jun-2011
so the first CDS is only a week from maturity, so it is hedged with a small amount of the six-
month CDS (maturity 20-Dec-11). All the CDSs that have a maturity corresponding to a hedging
instrument, have a hedge ratio of exactly one to that instrument only, i.e. the portfolio cancels
to contain no trades - this is a sanity check. For all other maturities, most of the significant
hedge ratios are for the instruments with maturities immediately before and after the CDSs, i.e.
all the CDSs could be hedged with just two standard CDSs. Furthermore, as the hedge ratios
(almost) sum to one, this hedge makes our portfolio insensitive to default (the exception is the
first, one week CDS).

33usually m < n, that is, we hedge with fewer instruments than were used to build the curve.

22



Hedge Instrument Maturity
CDS Maturity P6M P1Y P3Y P5Y P7Y P10Y

20-Jun-11 0.03204 0.00000 0.00000 0.00000 0.00000 0.00000
20-Dec-11 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20-Jun-12 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000
20-Dec-12 0.00002 0.73999 0.26002 0.00000 0.00000 0.00000
20-Jun-13 0.00001 0.48703 0.51300 0.00000 0.00000 0.00000
20-Dec-13 0.00000 0.23923 0.76079 0.00000 0.00000 0.00000
20-Jun-14 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000
20-Dec-14 -0.00000 -0.00001 0.73060 0.26963 0.00000 0.00000
20-Jun-15 -0.00001 -0.00001 0.47556 0.52474 0.00000 0.00000
20-Dec-15 -0.00000 -0.00001 0.23171 0.76851 0.00000 0.00000
20-Jun-16 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000
20-Dec-16 -0.00000 -0.00001 -0.00002 0.72870 0.27157 0.00000
20-Jun-17 -0.00001 -0.00001 -0.00003 0.47298 0.52737 0.00000
20-Dec-17 -0.00000 -0.00001 -0.00002 0.22942 0.77083 0.00000
20-Jun-18 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
20-Dec-18 -0.00001 -0.00001 -0.00003 -0.00004 0.80969 0.19075
20-Jun-19 -0.00001 -0.00002 -0.00005 -0.00006 0.63029 0.37038
20-Dec-19 -0.00001 -0.00003 -0.00006 -0.00007 0.45940 0.54134
20-Jun-20 -0.00001 -0.00002 -0.00005 -0.00006 0.29752 0.70312
20-Dec-20 -0.00001 -0.00001 -0.00003 -0.00004 0.14427 0.85611
20-Jun-21 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

Table 5: The hedge ratios to make different maturity CDSs insensitive to infinitesimal changes
to the credit curve. All the CDSs have a coupon of 100bps and a recovery rate of 40%. The
trade date is 13-Jun-2011.

What we have shown is the delta hedge of the credit curve; the portfolio is still sensitive to
large movements of the curve. As an example we consider hedging the 4Y CDS with the 3Y and
5Y standard instruments (with hedge ratios of 0.47556 and 0.52474). Figure 3 shows the change
in the portfolio PV (for a notional of $10MM of the 4Y CDS) against parallel and tilt34 shifts
to the zero hazard rates. Even for a large (100bps) shift in either direction the change is only
$250 for parallel shifts; this compares to a loss of $220,000 for a 100bps down shift and a gain of
$212,000 for the same up shift, on the unhedged position. The shapes suggest that our hedged
portfolio will gain (a small amount) from any shift in the credit curve (i.e. we have positive
gamma). However, this will be offset by the portfolio losing value over time (negative theta).

7.2 Rebalancing a Portfolio
A trader may have a portfolio of illiquid CDSs (on the same name) and wish to swap these for
a new portfolio of liquid CDSs, such that the new portfolio maintains the same sensitivities to
the credit curve. A particular case is when the CDSs were issued pre Big-Bang (and thus have
coupons set to whatever the par spreads where on the original trade date), and the trader would

34the first node is lowered and the last node raised by the given amount - the other nodes have proportionate
shifts, so the curve is tilted about the central node.
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Figure 3: The performance of a hedged CDS portfolio to parallel and tilt shifts to the zero hazard
rates.

prefer to hold new CDS with standard coupons. Such a process is called portfolio compression.
One way to compute the new portfolio is as follows: our original portfolio has p positions

with notionals w1, . . . , wp and CDS PVs V1, . . . , Vp; the target portfolio has m positions with
notionals ŵ1, . . . , ŵm and CDS PVs V̂1, . . . , V̂m. So that both portfolios have the same sensitivity
to (infinitesimal) changes to the zero hazard rates, we require

p∑
i=1

wi
∂Vi(Λ)

∂Λk
=

m∑
i=1

ŵi
∂V̂i(Λ)

∂Λk
∀ k (67)

In matrix notation this becomes
JT w = ĴT ŵ (68)

which can be solved exactly provided that the Jacobian Ĵ is square - i.e. there are as many
instruments in the new portfolio as there are nodes in the credit curve. Generally one may wish
to solve this problem in least-squares sense. Formally

ŵ = (ĴĴT )−1ĴJTw (69)

The trader may also desire that the new portfolio have the same value on default as the old, and
that there is no cost (other than fees) in switching to the new portfolio. These two constraints
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are met by
p∑

i=1

wi =
m∑
i=1

ŵi

p∑
i=1

wiVi =
m∑
i=1

ŵiV̂i

(70)

These can be incorporated by prepending two columns to both Jacobians, i.e.

A =


1 V1

1 V2

...
... J

1 Vp−1

1 Vp

 B =


1 V̂1

1 V̂2

...
... Ĵ

1 V̂m−1

1 V̂m

 (71)

then solving
ŵ = (BBT )−1BAT w (72)

Finally, relative importance to the difference constraints35 can be set by multiplying A and B
by a diagonal matrix of weights.

This procedure does not tell the trader which CDSs to choose for the new portfolio, just
what the optimal (in some sense) notionals are. A range of different portfolios could be tested,
choosing the one with the smallest value of |AT w − BT ŵ|2. This could be automated in some
optimisation scheme, however this is outside the scope of this paper.�

8 Spread Sensitivity or Credit DV01
As the market traditionally traded on par spread, traders like to think in terms of the effect on
their portfolio due changes in spread rather than the credit curve directly.

The credit DV01 (CDV01) or CS01 (Credit Spread 01) is defined as the change in price of
a CDS for a one basis point increase in spread. This simple definition belies a great deal of
confusion as to which spread we are talking about.

8.1 Par Spread Sensitivity
If a credit curve is calibrated from a set of par spreads, we may bump up a single spread by 1bps
and calibrate a new bumped credit curve. The difference in price of a reference CDS priced off
the bumped versus the normal curve is the CS01 (of the CDS) to that par spread. This set of
numbers (from individual bumped par spreads) is generally known as bucketed CS01. If all the
par spreads are simultaneously bumped by 1bps (i.e. in parallel), the resultant single number is
known as parallel CS01. Since the bump is finite (albeit small), the sum of the bucketed CS01
does not exactly equal the parallel CS01.

35for example, you may care little about the sensitivity to the 10Y node, but a lot about both portfolios having
the same value.
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The CS01 defined above is just the (scaled) forward difference approximation to the sensitivity,
∂V
∂Sk

when we bump the kth par spread. To compute this exactly, we first consider the par spread
Jacobian,36 JS, where

(JS)i,j =
∂Si

∂Λj
(73)

is a square matrix. Let vs =
(

∂V
∂S1

, . . . , ∂V
∂Sn

)T
, then

JS
Tvs = vΛ (74)

and the system can be solved for vs. In the ISDA model case, the par spread Jacobian is lower
triangular, so the system can be solved by back-substitution. The elements of the vector vs are
the analytical (exact) versions of the bucketed CS01; the sum of the elements is the equivalent
of the parallel CS01.

Table 6 shows this sensitivity for a set of CDSs. The pattern is as expected in that there is
no sensitivity to spreads beyond the one immediately after the CDS’s maturity. An important
point to note is that all the CDSs we price have a coupon of 100bps; if they had coupons equal to
the par rates, then for a CDS with a maturity corresponding to one of the six pillar37 maturities,
the sensitivity would be only that spread, and the value would be just the CDS’s RPV01.

Since it is more normal in the credit world to compute these numbers by a bump and reprice
(i.e. a scaled forward finite difference), in table 7 below we compare the sensitivity numbers for
a 8Y CDS (maturity 20-Jun-2019) computed analytically and by forward finite difference.38 The
numbers start to differ in the fourth significant figure,39 and as previously mentioned the sum of
the buckets does not equal the parallel in the finite difference case.

Other than matching the accepted numbers from Bloomberg, Markit etc., there is no com-
pelling reason to compute CS01 by forward finite difference rather than analytically when using
the ISDA model; the latter will be much quicker as it does not require (multiple) recalibration
of the credit curve for each bump of spread.

8.1.1 Hedging against Par Spread Moves

To hedge against spread changes, we again consider a portfolio as in equation 62, but now write
its value in terms of the spreads, S and use instruments to hedge with the same maturities as
those used to construct the credit curve.

Π(S) = V (S)−
n∑

i=1

wiVi(S) (75)

To hedge against the kth par spread we require

∂Π(S)

∂Sk
=

∂V (S)
∂Sk

−
n∑

i=1

wi
∂Vi(S)

∂Sk
= 0 → vs = ΘTw (76)

36sensitivity of par spreads to the zero hazard rates - this is what was shown in table 4
37pillar as they ”hold up the curve”.
38In the normal way of quoting CS01, the PV difference is not divided by the bump size (1bps), and they are

given on full notional (i.e. 10MM), so the numbers quoted will be 1000 (107 × 10−4) larger than here.
39this is to be expected as we approximate a derivative with forward finite difference with a bump of 10−4.
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Tenors
CDS Maturities P6M P1Y P3Y P5Y P7Y P10Y Total

20-Jun-11 0.0194 0.0000 0.0000 0.0000 0.0000 0.0000 0.0194
20-Dec-11 0.5229 0.0000 0.0000 0.0000 0.0000 0.0000 0.5229
20-Jun-12 0.0010 1.0173 0.0000 0.0000 0.0000 0.0000 1.0183
20-Dec-12 0.0005 0.7516 0.7495 0.0000 0.0000 0.0000 1.5016
20-Jun-13 -0.0000 0.4931 1.4787 0.0000 0.0000 0.0000 1.9718
20-Dec-13 -0.0005 0.2399 2.1930 0.0000 0.0000 0.0000 2.4324
20-Jun-14 -0.0010 -0.0045 2.8825 0.0000 0.0000 0.0000 2.8770
20-Dec-14 -0.0015 -0.0068 2.0895 1.2134 0.0000 0.0000 3.2946
20-Jun-15 -0.0020 -0.0090 1.3388 2.3615 0.0000 0.0000 3.6893
20-Dec-15 -0.0024 -0.0110 0.6210 3.4585 0.0000 0.0000 4.0661
20-Jun-16 -0.0028 -0.0130 -0.0610 4.5003 0.0000 0.0000 4.4235
20-Dec-16 -0.0030 -0.0138 -0.0641 3.2455 1.5964 0.0000 4.7610
20-Jun-17 -0.0031 -0.0145 -0.0670 2.0628 3.1001 0.0000 5.0782
20-Dec-17 -0.0033 -0.0152 -0.0697 0.9364 4.5312 0.0000 5.3794
20-Jun-18 -0.0034 -0.0158 -0.0722 -0.1247 5.8784 0.0000 5.6622
20-Dec-18 -0.0034 -0.0159 -0.0721 -0.1239 4.7172 1.4310 5.9330
20-Jun-19 -0.0034 -0.0159 -0.0719 -0.1230 3.6228 2.7787 6.1872
20-Dec-19 -0.0034 -0.0160 -0.0717 -0.1221 2.5802 4.0613 6.4283
20-Jun-20 -0.0034 -0.0160 -0.0715 -0.1211 1.5926 5.2751 6.6556
20-Dec-20 -0.0034 -0.0161 -0.0712 -0.1202 0.6578 6.4229 6.8698
20-Jun-21 -0.0034 -0.0161 -0.0709 -0.1191 -0.2223 7.5023 7.0705

Table 6: The sensitivity of the PV of a set of CDSs to the par spreads of the CDSs used to
construct the credit curve. The last column shows the sensitivity of all the spreads moving in
parallel. The (priced) CDSs all have a coupon of 100bps. All CDSs have a recovery rate of 40%
and the trade date is 13-Jun-2011.

The quantity vs we met in equation 74; Θ is another Jacobian - it is the sensitivity of the hedging
CDSs to the par spreads (it corresponds to selected rows of table 6). We take our hedging CDSs
to be instruments one can readily buy, therefore they have a fixed coupon of 100bps. If instead
we used par-CDSs, the Jacobian would be diagonal, with values equal to the CDS’s RPV01.

Since Θ is lower triangular, we can solve equation 76 by back-substitution. We performed
this exercise for our standard set of CDS; the results we obtained are identical to these in table 5.
This should come as no surprise - one is hedging against infinitesimal movements of the hazard
rates, and the other is hedging against infinitesimal movements of the par spreads, but these
are just two ways of showing exactly the same information. The latter calculation involves eight
matrix back-substitutions, while the former takes just one to produce the same result.

8.1.2 Rebalancing a Portfolio using Spread Sensitivities

In section 7.2 we discussed swapping an old portfolio (of CDSs on a single name) for a new one
that had the same sensitivity to the zero hazard rates. The same exercise can be carried out for
sensitivity to par spreads. Formally we seek to minimise

|ΘT w − Θ̂
T ŵ|2 (77)
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Calculation Method P6M P1Y P3Y P5Y P7Y P10Y Sum Parallel
Analytic -0.00343 -0.01593 -0.07193 -0.12300 3.62276 2.77873 6.18718 6.18718

Forward FD -0.00343 -0.01593 -0.07193 -0.12300 3.62328 2.78004 6.18903 6.18322

Table 7: The sensitivity of the PV of 8Y CDSs to the par spreads of the CDSs used to construct
the credit curve. The calculation methods are analytic and forward finite difference (or bump
and reprice). The bump in the forward difference is 1bps.

If the Jacobians Θ40 are computed analytically, the same weights for the new portfolio will
emerge as for computing them via zero hazard rate sensitivities - except more work is involved
in the calculation.

Most often Θ and Θ̂ are computed by finite difference (i.e. bump and reprice), which involves
refitting the credit curve several times. While this will ultimately produce very similar results
to the analytic method of section 7.2, this method is considerably slower.

8.2 Quoted Spread Sensitivity
Any standard CDS issued after April 2009 will have a standard coupon and trade with an upfront
fee (Points Up-Front - PUF). Section 6.1.1 details conversion between PUF and quoted spreads.
Given a set of CDSs with PUF (or equivalently quoted spreads), one can build the credit curve
and manage the market credit risk by considering movements to the underlying zero hazard rates
as in section 7.1. Practitioners seem to prefer to see risk to the quoted spread (as this is a direct
market observable), which results in some rather peculiar methodologies.

8.2.1 Parallel CS01

This is calculated by pricing the CDS using its quoted spread (see section 6.1.1), then bumping
the quoted spread by 1bps and recalculating the price; the difference is the (parallel) CS01.
This number is reported by Markit, Bloomberg etc. It can be regarded as the (forward) finite
difference approximation for

∂V

∂S
=

(
∂V

∂λ

)
/

(
∂S

∂λ

)
(78)

The difference can be quite large; for a 10Y CDS with a 100bps coupon and a 130bps quoted
spread (trade level), the (scaled) CS01 is 6.1885 while the exact derivative is 6.5880.

8.2.2 Bucketed CS01

There is no universally accepted definition for bucketed CS01. We will present a few methodolo-
gies.

Bumping Flat Spreads

• For a target CDS, choose a set of maturities (pillars) that you want to measure sensitivity
to (these could be the standard liquid points of 6M, 1Y, 3Y, 5Y, 7Y and 10Y).

• Set the spreads at these points equal to the quoted spread of the target CDS.
40recall these are the sensitivity of the PV of CDSs to the par rates of the CDSs used to build the credit curve.
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• Build a credit curve from the pillar CDSs assuming the spreads are par spreads.

• Price the target CDS from this curve.

• Bump each spread in turn by 1bps, build a credit curve and price the target CDS from this
new curve.

• The differences from the original price are the bucketed CS01s.

There are a number of odd features of this method. Firstly flat spreads are not equivalent to
a constant hazard rate. This is shown clearly in figure 4 where we plot the par spread of different
maturity CDSs for a constant hazard rate of 100bps (as usual the recovery rate is 40%). The
constant hazard rate has given rise to a term structure of spreads. The range is not large (around
0.1bps), however since the reverse is also true (a flat term structure of spreads will not give a
constant hazard rate), the price of the target CDS will be (slightly) wrong before we bump the
spreads. Secondly, absolutely no account is made for the actual credit curve, just the fictitious
one that is constructed from the flat spreads.
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Figure 4: The par spread for a set of CDSs with a constant hazard rate of 100bps and a recovery
rate of 40%. Clearly, a constant hazard rate induces a (small) term structure of spreads.

This method is, however, widely used. If the (flat) spreads are bumped in parallel, the result
is called parallel CS01, although it will differ from the result of the method in the last section.
Table 8 shows the results of this calculation for a set of CDS with maturities one year apart.
The pattern is similar to what we saw for par spread sensitivity - that should not be surprising,
since after setting all the spreads to the same value, the methods are identical, and hence an
equivalent analytic flat spread CS01 can be calculated.
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Bucketed
CDS Maturities P6M P1Y P3Y P5Y P7Y P10Y sum Parallel

20-Jun-11 0.0194 0.0000 0.0000 0.0000 0.0000 0.0000 0.0194 0.0194
20-Jun-12 0.0009 1.0177 0.0000 0.0000 0.0000 0.0000 1.0186 1.0185
20-Jun-13 -0.0005 0.4954 1.4720 0.0000 0.0000 0.0000 1.9669 1.9667
20-Jun-14 -0.0009 -0.0045 2.8723 0.0000 0.0000 0.0000 2.8669 2.8667
20-Jun-15 -0.0020 -0.0100 1.3489 2.3155 0.0000 0.0000 3.6525 3.6511
20-Jun-16 -0.0025 -0.0127 -0.0608 4.4386 0.0000 0.0000 4.3627 4.3616
20-Jun-17 -0.0028 -0.0144 -0.0681 2.0550 3.0233 0.0000 4.9931 4.9899
20-Jun-18 -0.0030 -0.0152 -0.0711 -0.1237 5.7673 0.0000 5.5544 5.5523
20-Jun-19 -0.0030 -0.0154 -0.0714 -0.1234 3.5840 2.6922 6.0629 6.0574
20-Jun-20 -0.0030 -0.0154 -0.0704 -0.1207 1.5873 5.1380 6.5158 6.5100
20-Jun-21 -0.0029 -0.0152 -0.0686 -0.1165 -0.2208 7.3404 6.9164 6.9129

Table 8: The flat spread method for parallel and bucketed CS01.

Bumping Pillar Quoted Spreads

• For a target CDS, choose a set of pillars that you want to measure sensitivity to (these
should correspond to liquid CDS with available market prices).

• From the quoted spreads at the pillars, build a credit curve as detailed in section 6.2.1.

• Price the target CDS from this curve.

• Bump each quoted spread in turn by 1bps, build a credit curve and price the target CDS
from this new curve (see comment below).

• The differences from the original price are the bucketed CS01s.

Table 9 shows the results of this method. The pattern is very different: CDSs corresponding to
a pillar (e.g. 10Y CDS, maturity 20-Jun-2021) only have sensitivity to that pillar, and all the
others only have any significant sensitivity to the adjacent pillars. This is just a reflection of the
fact that quoted spreads have a one-to-one relationship with CDS prices.

The constructed credit curve will imply a price for the target CDS; this price may not be the
same as that quoted in the market (via PUF or quoted spread). The only way to ensure that the
target CDS is priced correctly is to include it as an instrument used to build the credit curve.

Bumping Implied Par Spreads

• Build a credit curve as for the bumping pillar quoted spreads method above.

• Imply equivalent par spreads at the pillars as in section 6.2.2.

• Use these implied par spreads as in section 8.1 to compute parallel and bucketed CS01.

This method obviously produces results constant with section 8.1, i.e. a pattern like table 6. It
also gives sensitivity to (implied) par spreads rather than quoted spreads.
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Bucketed
CDS Maturities P6M P1Y P3Y P5Y P7Y P10Y Sum Parallel

20-Jun-11 0.0194 0.0000 0.0000 0.0000 0.0000 0.0000 0.0194 0.0194
20-Jun-12 0.0000 1.0185 0.0000 0.0000 0.0000 0.0000 1.0185 1.0185
20-Jun-13 0.0000 0.4961 1.4708 0.0000 0.0000 0.0000 1.9669 1.9675
20-Jun-14 0.0000 0.0000 2.8667 0.0000 0.0000 0.0000 2.8667 2.8667
20-Jun-15 0.0000 0.0000 1.3641 2.2901 0.0000 0.0000 3.6542 3.6513
20-Jun-16 0.0000 0.0000 0.0000 4.3651 0.0000 0.0000 4.3651 4.3618
20-Jun-17 0.0000 0.0000 -0.0001 2.0666 2.9329 0.0000 4.9995 4.9901
20-Jun-18 0.0000 0.0000 0.0000 0.0000 5.5634 0.0000 5.5634 5.5526
20-Jun-19 0.0000 0.0000 -0.0001 -0.0003 3.5101 2.5680 6.0777 6.0579
20-Jun-20 0.0000 0.0000 -0.0001 -0.0003 1.6585 4.8768 6.5349 6.5106
20-Jun-21 0.0000 0.0000 0.0000 0.0000 0.0000 6.9382 6.9382 6.9136

Table 9: The bumping pillar quoted spreads method for parallel and bucketed CS01.

8.3 Sensitivity to Arbitrary Spreads
Traders often want to see bucketed CDS01 to more (or different) maturities than the CDSs used
to construct the credit curve. One way to do this is to build the credit curve in the normal
way from the pillar CDSs, then imply par spreads at the specified bucket maturities. These par
spreads (and the corresponding fictitious CDSs) can be used to compute CS01 as in section 8.1.
The normal caveat that the target CDS may not be priced correctly applies.

8.4 Credit Gamma or Convexity
This is the second order sensitivity to the credit curve or spread. The general curve gamma is

Γi,j =
∂2V (Λ)

∂ΛiΛj
(79)

although one rarely considers the cross terms. This can be found by finite difference, or for the
ISDA model, analytically.41

What is more often quoted is the spread gamma or convexity (or gamma CS01). This is
normally calculated by finite difference as

∂2V (Λ)

∂S2
i

≈ V (Λ[S1, . . . , Si + η, . . . , Sn])− 2V (Λ[S]) + V (Λ[S1, . . . , Si − η, . . . , Sn])

η2
(80)

where η is one basis point (1bps) and the notation V (Λ[S]) means build the credit curve Λ from
the spreads, then use the credit curve to price the CDS.

The change in value of a CDS due to movements of the par spreads (of the instruments used
to construct the credit curve) can be written as

∆V ≈
n∑

i=1

∂V

∂Si
∆Si +

n∑
i=1,j=1

∂2V

∂Si∂Sj
∆Si∆Sj + . . . (81)

41This second derivative is more involved, and we are yet to implement it analytically.
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9 Yield Curve Sensitivities
Similarly to the credit curve sensitivity, for an interpolated yield curve we take this to be the
sensitivity of the CDS’s PV to the zero rates at the curve nodes.

∂V

∂Ri

We call the vector of these values vR. In the general case this can be found by finite difference.
For the ISDA model exact formulae can be derived, and these are given in appendix C. We also
give the sensitivity of money market instruments and swaps to the yield curve - since these are
used to construct the yield curve, and form natural hedging instruments against movements to
the yield curve. Table 10 shows the sensitivity of a set of CDS to the yield curve nodes (zero
rates).42 This should be compared with table 3, where the sensitivities are at least an order of
magnitude larger.

Yield Curve Nodes
CDS Maturity 1M 3M 6M 1Y 3Y 5Y 7Y 10Y 11Y 12Y

20-Jun-11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20-Jun-12 -0.0001 0.0002 0.0004 0.0018 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
20-Jun-13 0.0000 0.0002 0.0004 -0.0021 -0.0015 0.0000 0.0000 0.0000 0.0000 0.0000
20-Jun-14 0.0000 0.0002 0.0004 -0.0037 -0.0093 0.0001 0.0000 0.0000 0.0000 0.0000
20-Jun-15 0.0001 0.0002 0.0004 -0.0037 -0.0406 -0.0138 0.0000 0.0000 0.0000 0.0000
20-Jun-16 0.0002 0.0002 0.0004 -0.0037 -0.0513 -0.0581 0.0001 0.0000 0.0000 0.0000
20-Jun-17 0.0003 0.0002 0.0004 -0.0037 -0.0513 -0.1080 -0.0192 0.0000 0.0000 0.0000
20-Jun-18 0.0004 0.0002 0.0004 -0.0037 -0.0513 -0.1251 -0.0800 0.0001 0.0000 0.0000
20-Jun-19 0.0005 0.0002 0.0004 -0.0037 -0.0513 -0.1251 -0.1470 -0.0159 0.0000 0.0000
20-Jun-20 0.0006 0.0002 0.0004 -0.0037 -0.0513 -0.1251 -0.1852 -0.0655 0.0000 0.0000
20-Jun-21 0.0007 0.0002 0.0004 -0.0037 -0.0513 -0.1251 -0.1980 -0.1439 0.0002 0.0000

Table 10: The PV sensitivity to zero rates at the yield curve nodes for a set of standard CDSs
with a coupon of 100bps and a recovery rate 40%. The trade date is 13-Jun-2011.

9.1 Hedging Yield Curve Movements
A CDS position (or a portfolio of CDSs) can be hedged against infinitesimal movements of the
yield curve by adding money market contracts and swaps as hedging instruments. The calculation
proceeds exactly as in section 7.1 except that we are now considering the sensitivity to the nodes
of the yield curve.

9.2 Money Market and Swap Sensitivities
Mirroring what happens with the credit curve, traders often want to see the sensitivity of a CDS
to the money market and swap rates of the instruments used to construct the yield curve rather
than to the derived zero rates.

42To fit the table in we have reduced the number of nodes on the yield curve.
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Traditionally, these numbers, like other sensitivities in the credit world, have been calculated
by forward finite difference: Each market rate is bumped in turn by one basis point; a new yield
curve is bootstrapped; and finally the CDS is repriced from the new yield curve (the credit curve
remains unchanged). The difference in price is the bucketed IR01. If the rates are bumped in
parallel this is the parallel IR01.

The exact derivative can be calculated exactly as the spread sensitivity. Calling Si the ith

market rate (money market or swap)43, the market rate Jacobian is

(J)i,j =
∂Si

∂Rj
(82)

which is a square matrix. Let vs =
(

∂V
∂S1

, . . . , ∂V
∂Sn

)T
, then

JS
Tvs = vR (83)

As JS is lower triangular, we can solve for vs by back-substitution.
We can hedge a CDS portfolio’s sensitivity to market interest rates quotes exactly like we

hedged a CDS to market CDS spread - but again, this will give the same results as hedging
directly against the yield curve.

10 Other Risk Factors
10.1 Recovery Rate Risk
The sensitivity of the PV to the recovery rate (assuming the credit curve is immutable) can be
read straight from equation 14:

∂PV

∂RR
=

N

P (tv)

∫ T

0

P (s)dQ(s) (84)

This is of course just the (negative of) the value of the protection leg with zero recovery rate.
A different type of recovery risk can be computed by refitting the credit curve with a bumped

recovery risk, but leaving the trade recovery untouched.

10.2 Value on Default or Jump to Default
Immediately prior to default, the CDS has some value V (to the protection buyer). After default,
the contract is cancelled, so there is an immediate loss of −V 44[O’k08]. The protection buyer
pays the accrued interest, A and receives N(1−RR), so the full Value on Default (VoD) for the
protection buyer is

VoD = −V +N(1−RR)−A (85)
The VoD for the protection seller is the negative of this (where V is still the PV prior to
default for the protection buyer). In this formula, V is the dirty price. Since the clean price is
Vclean = Vdirty +A, we can absorb A and use the clean price instead.

If default happens after a large widening of spreads (i.e. the default is somewhat expected),
then VoD will be small.

43S has been previously used for spread, we hope this does not cause confusion.
44If V was negative, this is a gain.
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11 Beyond the ISDA Model
The ISDA model is a market standard and can be made robust and quick to calibrate. However,
the curves (yield and credit) it produces are not realistic since they imply sudden jumps in
forward rates. This in turn means that prices and risk factors implied from the curves should be
viewed with caution.

For interest rate derivatives, we have used a range of interpolators in a multi-curve setting
[Whi12]. These interpolators can all be expressed as piecewise polynomials[dB78, Iwa13]. Since
the integrals involved in CDS pricing take exponents of the zero curves, anything beyond linear
interpolation will not have a closed form solution for the integrals. The integrals could be
computed numerically, with a tradeoff between accuracy and computation time. Alternatively,
one could completely remove the need to carry out the integrals by using the approximation
discussed in section 4.4.

Whether we compute the integrals numerically or remove them entirely, we are no longer in
a position to bootstrap the credit curve as the Jacobian (of CDS PVs to credit curve nodes)
is no longer triangular. Instead we must solve for all the nodes simultaneously using a multi-
dimensional root finder - this is now standard in the interest rate world.

Depending on the interpolator used,45 the resultant credit curve will be smoother (no jumps
in the forward rate). Whether the prices and risk factors are ‘better’ than those produced from
the ISDA model can only be determined with substantial back-testing, which is outside the scope
of this paper.

11.1 The Discount Curve
Since CDS are over-the-counter (OTC) derivatives, it is assumed that discounting should be at
the (risky) inter-bank rate (i.e. Libor or its equivalents). Interest rate swaps are now almost
always collateralised according to a credit support annex (CSA), and discounting is performed
using the risk free curve (which is normally build from overnight index swaps (OIS). With CDS
trades moving onto exchanges, the correct discount curve should be the OIS rather than Libor.�

A ISDA Model Dates
The ISDA model is formulated with an integer date representation; this is taken to mean that
the trade and all payments are assumed to be made at 11:59pm in the relevant time zone. For
completeness we list all inputs to the ISDA model. The exact meaning of certain terms will be
clarified when they are used in subsequent sections.

• Trade Date. The date when the trade is executed. This is denoted as T, with T+n meaning
n days after the trade date

• Step-in or Protection Effective Date. This is usually T+1. This is when protection (and
risk) starts in terms of the model. Note the legal effective date is T-60 or T-90 for standard
contracts.

• Valuation or Cash-settle date This is the date for which the present value (PV) of the CDS
is calculated. It is usually three working dates after the trade date.

45some interpolators, notably cubic spline, can produce widely oscillating curves, which reprice all the instru-
ments but are hardly believable.
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• Start or Accrual Begin Date . This is when the CDS nominally starts in terms of premium
payments, i.e. the number of days in the first period (and thus the amount of the first
premium payment) is counted from this date.

• End or Maturity Date This is when the contract expires and protection ends - any default
after this date does not trigger a payment.

• Pay Accrual on Default Is a partial payment of the premium made to the protection seller
in the event of a default. This is normally true.

• Payment Interval The interval between premium payments. This is three months for a
standard CDS contract.

• stub-type This can be front-short, front-long, back-short or back-long. Front-short is nor-
mal, although somewhat moot when maturity and nominal payments are all on IMM dates.

• Protection at Start of Day Does protection start at the beginning of the day.

• Recovery Rate The recovery rate.

• Business-day Adjustment How are adjustments for non-business days made. This is nor-
mally following, i.e. move forward in steps of one day until a good business day is found.

• Calendar Calendar defining what is a non-business day. Except for CDS denominated in
JPY (which use the Tokyo holiday calendar), normally a weekend only calendar is used.

• Accrual Day Count Convention DDC used to calculate the amount of the premium pay-
ments. This is normally ACT/360.

A.1 The Premium Leg
The payments on the premium leg depend on three sets of dates:

• The payment dates - actual cash payments are made on these dates

• The accrual start dates

• The accrual end dates

The premium payment is given by the year fraction between the accrual start and end dates
multiplied by the coupon and notional. As is normal in day counts, the first day is included and
the second is excluded.

Example: For an accrual start of 18-Feb-2009 and an accrual end of 20-May-2009, the
number of days is 91; using the usual day count convention of ACT/360, the year fraction is
91/360 ≈ 0.2528.

Given the specification of a stub-type and the payment interval, nominal dates are generated
by either rolling back from the maturity date in integer multiples of the payment interval, until
the start date is passed (for front stubs) or forward from the start date until the maturity date
is passed (for back stubs). For front-stub the first date is set to the start date, and for front-long
the second date is removed. For back-stub the last date is set to the maturity, and for back-long
the penultimate date is removed.
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Example: if the start date is 30-Jul-2012, the maturity is 29-May-2013, the stub is front-
short and the payment interval is 3M, the nominal dates will be: 29-May-2013, 01-Mar-2013,
29-Nov-2012, 29-Aug-2012, and 30-Jul-2012.

Accrual dates are generated by:

• The first accrual start date is set to the first nominal date (which will be the start date),
i.e. it is unadjusted

• The ith payment date is set to the (i+ 1)th nominal date business-day adjusted according
to a specified holiday calendar and business day convention.

• All subsequent accrual start dates are set to the previous payment date.

• All but the last accrual end date are set to the payment date.

• The final accrual end date is set to the final nominal date (i.e. the maturity), plus one
day,46 i.e. it is unadjusted.

A.1.1 The Standard CDS Contract

For a standard contract the maturity is always an unadjusted IMM date47 and the coupon
interval is 3M (quarterly), so the nominal payment dates will all be IMM dates. The business
day convention is following, the day count convention is ACT/360 and the holiday calendar is
determined by currency.�For cash-settled amounts and non-JPY currencies the calendar is taken
as a weekday only [ISD09].

The accrual begin date is taken as the latest adjusted IMM on or before the step-in date
(T+1). So while the ISDA model does not adjust the accrual start date, it should be adjusted
before being input to the model.

Example: A 2Y CDS with a trade date of 30-Jul-13 will have a maturity of 20-Sep-15 (two
years on from the next IMM date after the trade date). With a weekday calendar, the dates and
cash-flows for a 10MM notional 100bps CDS are shown in table A.1.1 below.

Accrual Start Accrual End Payment Date Days in Amount
(Inclusive) (Exclusive) Period
20-Jun-13 20-Sep-13 20-Sep-13 92 25555.56
20-Sep-13 20-Dec-13 20-Dec-13 91 25277.78
20-Dec-13 20-Mar-14 20-Mar-14 90 25000.00
20-Mar-14 20-Jun-14 20-Jun-14 92 25555.56
20-Jun-14 22-Sep-14 22-Sep-14 94 26111.11
22-Sep-14 22-Dec-14 22-Dec-14 91 25277.78
22-Dec-14 20-Mar-15 20-Mar-15 88 24444.44
20-Mar-15 22-Jun-15 22-Jun-15 94 26111.11
22-Jun-15 21-Sep-15 21-Sep-15 91 25277.78

Table 11: dates and cash-flows for a 2Y CDS with a trade date of 30-Jul-13.

46This is for the normal case that protection is from the start of the day; if it is not, the extra day is not added.
4720th March, June, September and December.
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A.1.2 Protection at Start of Day

This is handled in the ISDA model by subtracting one day from credit observation dates. This
means that the period end date (which first appears in equation 15) is taken as the accrual
end date minus one day. The dates for the calculation of the accrual on default also have this
treatment, so are the accrual start and ends dates minus one day.

A.2 The Protection Leg
The effective start date is taken as the later of the step-in date and the start date. If protection
is at start of day, one day is subtracted from this. The end date is unadjusted. These two dates
(where converted to year fractions from the trade date) are used in equation 40 to compute the
protection leg.

B Curve Sensitivity for the ISDA Model
A quantity that will be used in subsequent calculations is the sensitivity of the survival probability
at time t, Q(t), to the value of the zero hazard rate at the ith node. This is given simply by

∂Q(t)

∂Λi
=


−tiQi if t = ti

−tiQ(t) (t−ti−1)
∆ti−1

if ti−1 < t < ti

−tiQ(t) (ti+1−t)
∆ti

if ti < t < ti+1

0 otherwise

(86)

Of course, exactly analogous equations hold for the yield curve (i.e. discount factor sensitivity
to zero rates at nodes).

B.1 Protection Leg Sensitivity
Using the notional of equation 41, we define the ith integral element sensitivity to the survival
probability at tj as

∂Ii
∂Q̄j

=



1

f̂i+ĥi

[
f̂i(B̄i−1−B̄i)
Q̄i−1(f̂i+ĥi)

+ ĥiP̄i−1

]
if j = i− 1

− 1
f̂i+ĥi

[
f̂i(B̄i−1−B̄i)
Q̄i(f̂i+ĥi)

+ ĥiP̄i

]
if j = i

0 otherwise

(87)

From the chain rule, the ith integral element sensitivity to (zero hazard rate at the) jth node
is:

∂Ii
∂Λj

=
n∑

k=1

∂Ii
∂Q̄k

∂Q̄k

∂Λj
=

∂Ii
∂Q̄i−1

∂Q̄i−1

∂Λj
+

∂Ii
∂Q̄i

∂Q̄i

∂Λj
(88)

Finally, the protection leg sensitivity to the credit curve�is

∂PVProtection Leg
∂Λj

=
N(1−RR)

P (tv)

n∑
i=1

∂Ii
∂Λj

(89)
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B.2 Premium Leg Sensitivity
B.2.1 Premiums Only

The sensitivity of the premiums only is very straightforward; from equation 15 we can derive

∂PVPremiums only
∂Λj

=
NC

P (tv)

M∑
i=1

∆iP (ti)
∂Q(ei)

∂Λj
(90)

B.2.2 Accrual Paid On Default

We focus on the solution of the integral for the kth premium period given in equation 53. The
ith element of that sum we call Iki , and for ease of reference we reproduce it here:

Iki = ĥiB̄i−1

(
(ti−1 − sk)ϵ(−(f̂i + ĥi)) + ∆ti−1ϵ

′(−(f̂i + ĥi)
)

The sensitivity of this to the survival probability is:

∂Iki
∂Q̄j

=


P̄i−1

(
ϕ1(1 + ĥi)− ϕ2ĥi

)
if j = i− 1

B̄i−1

Q̄i

(
−ϕ1 + ĥiϕ2

)
if j = i

0 otherwise

(91)

where we have defined the following variables

ϕ1 = (ti−1 − sk)ϵ(−(f̂i + ĥi)) + ∆ti−1ϵ
′(−(f̂i + ĥi))

ϕ2 = (ti−1 − sk)ϵ
′(−(f̂i + ĥi)) + ∆ti−1ϵ

′′(−(f̂i + ĥi))
(92)

The sensitivity to the zero hazard rates at the nodes is:

∂Iki
∂Λj

=
∂Iki

∂Q̄i−1

∂Q̄i−1

∂Λj
+

∂Iki
∂Q̄i

∂Q̄i

∂Λj
(93)

The full sensitivity of the premium leg is

∂PVpremium
∂Λj

=
NC

P (tv)

M∑
i=1

[
∆iP (ti)

∂Q(ei)

∂Λj
− ηi

ni∑
k=1

∂Iik
∂Λj

]
(94)

Since we have used the ϵ() form, the limit f̂i + ĥi → 0 is handled correctly.
To get the sensitivity using the original ISDA formula, simple replace sk with s̃k = sk−1/730.

To use the Markit fix formula, drop the first terms from equation 92 (i.e. set ti−1 − sk = 0).
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C Yield Curve Sensitivity for the ISDA Model
The formulae in this section are very similar to those in appendix B and we follow closely the
notation used there.

C.1 Protection Leg Sensitivity
The sensitivity of the ith integral element to the discount factor at tj is

∂Ii
∂P̄j

=



ĥi

f̂i+ĥi

[
−(B̄i−1−B̄i)
P̄i−1(f̂i+ĥi)

+ Q̄i−1

]
if j = i− 1

ĥi

f̂i+ĥi

[
(B̄i−1−B̄i)
P̄i(f̂i+ĥi)

− Q̄i

]
if j = i

0 otherwise

(95)

From the chain rule, the ith integral element sensitivity to (zero rate at the) jth node is:

∂Ii
∂Pj

=
n∑

k=1

∂Ii
∂P̄k

∂P̄k

∂Rj
=

∂Ii
∂P̄i−1

∂P̄i−1

∂Rj
+

∂Ii
∂P̄i

∂P̄i

∂Rj
(96)

Finally, the protection leg sensitivity to the yield curve�is

∂PVProtection Leg
∂Rj

=
N(1−RR)

P (tv)

n∑
i=1

∂Ii
∂Rj

(97)

C.2 Premium Leg Sensitivity
C.2.1 Premiums Only

Again, the sensitivity of the premiums only is very straightforward; from equation 15 we can
derive

∂PVPremiums only
∂Rj

=
NC

P (tv)

M∑
i=1

∆i
∂P (ti)

∂Rj
Q(ei) (98)

C.2.2 Accrual Paid On Default

This can be written most compactly using ϵ(x) and its derivatives from equation 43. The sensi-
tivity of this to the discount factor is:

∂Iki
∂P̄j

=


ĥiQ̄i−1 (ϕ1 − ϕ2) if j = i− 1

B̄i−1

P̄i
ĥiϕ2 if j = i

0 otherwise

(99)

where the variables ϕ1 and ϕ2 were defined in equation 92. The sensitivity to the zero rates at
the nodes is:

∂Iki
∂Rj

=
∂Iki
∂P̄i−1

∂P̄i−1

∂Rj
+

∂Iki
∂P̄i

∂P̄i

∂Rj
(100)

Again, to use the original ISDA formula, simple replace sk with s̃k = sk − 1/730, and to use
the Markit fix formula, drop the first terms from equation 92 (i.e. set ti−1 − sk = 0).
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D The ISDA Model Yield Curve Bootstrap
The yield curve is constructed from money market rates (spot (L)ibor rates) with maturities out
to 1Y (typically these are 1M, 2M, 3M, 6M, 9M and 12M), and swap rates with maturities out
to 30Y (typically the swap rates are 2Y-10Y, 15Y, 20Y, 25Y and 30Y). The combined maturities
(chronologically ordered) form the nodes of the yield curve. For nM money market rates and nS

swap rates, we have a total of n = nM + nS nodes.
The curve is defined from a particular spot date. Nominal maturity dates are measured from

the spot date and (actual) maturity dates are adjusted to good business days (normally using
modified following).

For curve nodes corresponding to money market rates, the discount factor at that node is
given by

Pi = (1 +miti)
−1

where mi is the relevant money market rate and ti is the year fraction measured from the spot
date using the correct DCC for that currency. This has no dependence on any other node in the
yield curve.

D.1 Swap Pricing
The ISDA model makes the standard single curve textbook assumption that the present value
(on a unit notional) of the floating leg of an IRS can be written as

1− P (T )

where P (T ) is the discount factor from the last payment (the maturity of the swap). The
nominal payments on the floating leg are calculated stepping backwards from the maturity in
integer multiples of the payment interval;�these are then adjusted to be good business days. The
PV of the fixed leg is given by

C
M∑
i=1

∆iP (ti)

where C is the fixed leg coupon (swap rate), ∆i = DCCfixed leg(ti−1, ti), and P (ti) are the
discount factors for the fixed payments, of which there are M . Since the swap must have zero
PV, we require

(1 + C∆M )P (T ) + C

M−1∑
i=1

∆iP (ti)− 1 = 0

where P (T ) ≡ P (tM ). The value P (T ) will correspond to a curve node, while the other discount
factors are found by interpolation (given the ‘current’ node and all the previous ones) - there is
no dependence on nodes forward of the current. We can find the value of P (T ) that solves this
equation using one-dimensional root finding.48

In summary, for nodes corresponding to money market rates we simply read out the value of
the node, while all other nodes (corresponding to swaps) are found by bootstrapping along the
curve in a very similar way to what is done for the credit curve.

48We actually solve for the zero rate rather than the discount factor.
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E Market Data Used in Examples
Unless stated otherwise, the examples in this paper use the following market data.

The trade date is 13-Jun-2011. The instruments used to build the yield curve (deposit and
swap rates) are snapped the day before (12-Jun-2011), and the spot date is three days forward
from this (i.e. 15-June-2011). The table 12 below shows the market data to build a Euro yield
curve. The deposits (money market) use a ACT/360 DCC, while the fixed leg of the swap
uses 30/360 DCC with annual payments. In the table we also show the year fractions (from
ACT/365F DCC) and fitted zero rates measured from the CDS trade date.

Type Tenor Rate Year Fraction Zero Rates
Depo 1M 0.445% 0.088 0.451%
Depo 2M 0.949% 0.173 0.945%
Depo 3M 1.234% 0.258 1.232%
Depo 6M 1.776% 0.507 1.778%
Depo 9M 1.935% 0.756 1.937%
Depo 1Y 2.084% 1.008 2.082%
Swap 2Y 1.652% 2.014 1.629%
Swap 3Y 2.018% 3.011 1.998%
Swap 4Y 2.303% 4.008 2.287%
Swap 5Y 2.525% 5.011 2.512%
Swap 6Y 2.696% 6.011 2.688%
Swap 7Y 2.825% 7.011 2.822%
Swap 8Y 2.931% 8.016 2.934%
Swap 9Y 3.017% 9.014 3.024%
Swap 10Y 3.092% 10.014 3.104%
Swap 11Y 3.160% 11.014 3.178%
Swap 12Y 3.231% 12.014 3.256%
Swap 15Y 3.367% 15.016 3.407%
Swap 20Y 3.419% 20.022 3.451%
Swap 25Y 3.411% 25.027 3.421%
Swap 30Y 3.412% 30.033 3.411%

Table 12: The date use to build a Euro curve with a spot date of 15-Jun-2011. The fitted curve
is show measured from the CDS trade date (13-Jun-2011).

The credit curve is built from six liquid CDS quotes (6M, 1Y, 3Y, 5Y, 7Y and 10Y) given
as par spreads. Apart from quoting as par spreads, they are assumed to be standard CDSs -
i.e. quarterly premium payments with a DCC of ACT/360; a following business-day convention
(with weekend only calendar); and a prior coupon (accrual start date) of 21-Mar-2011 (so there
are 85 days of accrued interest).49 Table 13 shows the data along with the survival probabilities
at the curve knots (pillars).

The generic CDS we price off these curves is a standard ISDA CDS with a coupon of 100bps.

49In a previous version we had incorrectly stated the accrual start date as 20-Mar-2011 (which is a Sunday);
thanks to Christian Fenger for pointing this out.
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Tenor Maturity Spread (bps) Year Fraction Survival Probability
6M 20-Dec-11 79.27 0.521 0.99307
1Y 20-Jun-12 79.27 1.022 0.98645
3Y 20-Jun-14 122.39 3.022 0.93915
5Y 20-Jun-16 169.79 5.025 0.86259
7Y 20-Jun-18 192.71 7.025 0.78866
10Y 20-Jun-21 208.60 10.027 0.69051

Table 13: Data used to build the credit curve with a trade date of 13-Jun-2011. The year
fractions (measured from the trade date) and survival probability of the knots (pillars) of the
fitted curve are shown.
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