Stochastic Volatility

David G. Hobson
School of Mathematical Sciences, University of Bath
9 October 1996

Abstract

The volatility of a financial asset is the variance per unit time of the logarithm of
the price of the asset. Volatility has a key role to play in the determination of risk and
in the valuation of options and other derivative securities.

The widespread Black-Scholes model for asset prices assumes constant volatility.
The purpose of this chapter is to review the evidence for non-constant volatility and to
consider the implications for option pricing of alternative random or stochastic volatility
models. We concentrate on continuous time diffusion models for the volatility, but we

also make comments about certain classes of discrete time models, such as ARV, ARCH

and GARCH.



1 Volatility and the need for Stochastic Volatility models

1.1 Introduction

A common approach in the modelling of financial assets is to assume that the propor-
tional price changes of an asset form a Gaussian process with stationary independent
increments. The celebrated (and ubiquitous) Black-Scholes option pricing formula is
based on such a premise. The success and longevity of the Gaussian modelling approach
depends on two main factors: firstly the mathematical tractability of the model, and sec-
ondly the fact that in many circumstances the model provides a reasonable and simple
approximation to observed market behaviour.

An immediate corollary of the Gaussian assumption is that the behaviour of the
asset price can be summarised by two parameters, namely the mean and the standard
deviation of the Gaussian variables. In finance-speak the standard deviation is renamed
the volatility. Volatility is a key concept because it is a measure of uncertainty about
future price movements, because it is directly related to the risk associated with holding
financial securities and hence affects consumption/investment decisions and portfolio
choice, and because volatility is the key parameter in the pricing of options and other
derivative securities.

This chapter is concerned with the estimation of volatility and the implications
of the empirical observation that volatility appears non-constant over time. Some of
the evidence for this claim is given in the next subsection. In Section 2 we review the
continuous-time models which have been introduced to reflect the non-constant volatility
phenomenon, including level-dependent and stochastic diffusion models for the volatility.
Since the fundamental problem in mathematical finance is to price derivative securities
such as options we focus in Section 3 on the implications of these alternative models for
derivative pricing. The types of discrete-time models (such as ARV, ARCH and GARCH)
favoured by econometricians to model stochastic volatility are the subject of Section 4.
Some comments and conclusions on the importance of accurate modelling of volatility

are given in a conclusion.

1.2 Simple models for Asset Prices

The canonical continuous Gaussian process is Brownian motion. In the same way that
the normal law arises as the limit of a normalised sum of independent random variables,
so Brownian motion arises as the limit of a random walk as, simultaneously, step sizes are
reduced and step frequency increased. The links between Brownian motion and finance
are long and illustrious; and indeed (mathematician’s) Brownian motion was devised by
Bachelier (1900) as a model for French stock prices.

The increments of a Brownian motion are normal random variables. As a conse-



quence Brownian motion can and does become negative which makes it an unsatisfactory
model for limited Liability stocks. Instead a more reasonable model was proposed by Os-
borne (1959) and Samuelson (1965) who took the asset price to be an exponential (or
geometric) Brownian motion. Thus the logarithm of the asset price is a Brownian motion.

To be more formal, the standard and classical model for the behaviour of the price
of a financial asset, such as a stock, assumes that the price process (F;);>o is the solution
to a stochastic differential equation (SDE)

where ¢ is measured in units of one year, B; is a Brownian motion and yu, the mean, and
o, the volatility, are constant parameters of the model. The time convention is chosen to

ensure that o can be interpreted as an annualised volatility. This SDE has solution
P, = Pyexp{oB; + ( — Lo®)t}. (2)

For a highly readable introduction to stochastic differential equations see Pksendal (1985).

The discrete time analogue of (1) based on a daily sequence of observations (FP,),>o is
nP,—InP,.1=A(lnP,)=v+0Z,. (3)

where (Z,,) is a sequence of independent normal random variables with zero mean and
variance (1/365). Again this choice of normalisation ensures that o can be interpreted as
an annualised volatility. The assumption that the innovations have a normal distribution
means that the increments have a natural nesting property. For example the proportional
price changes of a weekly time series also have a normal distribution. Thus the dynamics
are not dependent on the choice of timescale.

Two contradictory philosophies are available here. It is possible to view the discrete
time series as a 6-skeleton of the underlying continuous Markov process given by (1) with
the understanding that even tick data provides only an approximation to the inherently
unobservable true process. Alternatively the SDE formulation, whose merit is tractability,
can be viewed as a limiting approximation to a discrete stochastic difference equation.
Discrete models are suited to qualitative and descriptive analyses, whereas continuous
time models provide the natural framework for theoretical option pricing. We shall take
the view that the fundamental problem in mathematical finance is the calculation of
derivative prices and in particular formulae which relate the price of an option to the
price of the underlying asset and other key variables. Hence we shall concentrate on
continuous time diffusion models for the price process and volatility.

In principle, if the continuous time model can be observed perfectly (and in con-
tinuous time) then it is possible to read off the instantaneous value of the volatility from

the asset price. (The square of the volatility is the quadratic variation of the log-price



process.) In practice however the volatility must be estimated from the data. Suppose
that the data consists of a series of daily observations of the price of an asset (Py)r<n.
Our first estimate of the volatility, &, is called the historic volatility. At time n, the
historic volatility based on the last J days is the maximum likelihood estimator obtained

from the model (3) and the data P,_j_q,... P,:

365 17 ’

The factor of 365 converts daily volatility into an annualised term. Typically .J is taken to
be 90 or 180 days. These choices are a compromise between the desire for a large number
of observations and a realisation that the dynamics of the price process are unlikely to

remain constant over several years.
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Figure 1: The September 1995 futures price for the FT-SFE 100 index.

Figure 1 gives a plot of the September 1995 futures price of the FT-SE 100 index
(the Financial Times — Stock FErchange index of the stock prices of 100 leading UK
companies) over the period December 1992 to July 1995 and Figure 2 gives an estimate
of the 90-day historic volatility based on this data. The advantage of considering the

futures price (the amount which it is agreed now is to be paid in September 1995 for
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Figure 2: 90-day historic volatility for the FT-SE 100 index based on the FT-SE

price data in Figure 1.



delivery, again in September 1995, of (the cash value of) the basket of stocks in the FT-SFE
index) is that our analysis is not confounded by interest rate and discounting effects.
Figure 2 gives an estimate of the 90-day historic volatility based on the above
data. This limited evidence supports the contention that stock volatility is not constant
and moreover that volatility shocks persist through time. This conclusion was reached
by Mandelbrot (1963), Fama (1965), Blattberg and Gonedes (1974), and Scott (1987)
amongst others. Stochastic volatility models are needed to describe and explain volatility

patterns.

1.3 The Black-Scholes paradigm and Option pricing

One of the key contributions of mathematics to finance has been the development of
formula for the pricing of options and other derivative securities. Black and Scholes
(1973) showed that, subject to certain modelling assumptions, there is a strategy for
risklessly hedging options in the sense that it is possible to perfectly replicate the payoff
of the option through dynamic trading. Thus there is a unique preference-independent
rational price for an option. This price corresponds to the fortune needed to purchase the
initial portfolio which is required to hedge the option. This observation has revolutionised
financial markets and contributed greatly to the explosion in the volume of trading in
derivative securities.

The purchaser of a European call option on an asset with strike K and expiry T'
has the right, but not the obligation, to buy one unit of the asset at time 7' for a price
K. (An American call option conveys the right to buy the asset at any time before T
the option is European style if the right to buy is restricted to the time 7" alone.) This
right will only be exercised if the price Pr of the asset at time T is above K'; otherwise at
expiry the option is worthless. It is often convenient to think of an option as a derivative
security which at time 7' pays the cash amount (Pr — K)* = max{Pr — K,0}. The
fundamental problem in mathematical finance is to find the fair price of such an option
at a time ¢ prior to expiry.

In order to price this option it is necessary, following Black and Scholes (1973) to
make a number of regularity assumptions about the financial market in which the under-
lying asset is traded. In particular the market is assumed to be perfect and frictionless,
so that there are no transaction costs, there is no taxation, and the underlying asset is
available in arbitrary amounts. There is a constant rate of interest r for both borrowing
and lending, there are no dividends and there are no restrictions on short selling of stock
provided that the net wealth of the trader remains non-negative. In particular a trader
may sell stock or bonds that he does not own provided that by the end of the trading
period he has repurchased sufficient quantities to cover his obligations. Many of these

assumptions can be weakened. For example it is easy to relax the assumption about con-



stant interest rates to an assumption of deterministic interest rates. Finally Black and
Scholes assume that the asset price process is given by the solution to (1) with constant
and known parameter values p and o.

The Black-Scholes price €' of a call option is given by
C(P,t; K, T;o,r) = C = Ke " T (M,®(dy) — ®(dy)), (5)
where M, = (Pt/Ke_T(T_t)) is the moneyness of the option and d; and d, are given by

In(M;) + %JZ(T —1)
T —t

d2 = dl—G'\/T—t

dl —

respectively. (The term moneyness refers to the fact that if M; > 1 then the option is
said to be in-the-money and if the futures price remains unchanged then the option will
make a payout on expiry. An option for which M; < 1 is said to be out-of-the-money
since unless the underlying value of the asset increases the option payout will be zero.)
In the expression (5) ®(.) denotes the cumulative normal distribution function, and K
and T are the strike and expiry as before. In the sequel we will be flexible in deciding
which of the quantities P;, ¢, K, T, o are to be considered as variables, and which are fixed
parameters.

There are several important remarks which should be made about this formula.
Firstly the justification for calling C' the fair price of the option is based on the fact that
the quantity €' can be used to finance a trading strategy which at maturity is guaranteed
to match the payoff of the option. Models with this replication property are said to be
complete. Secondly the drift parameter p does not appear. Indeed it is as if the option
price was calculated as the discounted expected payoff of an option on an asset whose

dynamics are given by the SDE

d?P = odW + rdit

rather than (1). In particular the call price can be expressed as a conditional expectation

given the current price:
C=C(P,t)=e"TIE[(Pr — K)*|P] (6)

where E denotes expectation with respect to the risk-neutral probability measure. This is
the measure under which W is a Brownian motion. Thirdly, and as a direct consequence
of the second remark, there is a single unknown parameter in the Black-Scholes formula.
The strike K and time to expiry (7' — t) are part of the specification of the option; the

interest rate r is assumed known and the current price P; is observable. Thus the price



of the option depends solely on the value of the volatility. Moreover the option price
depends on the volatility only through the quantity o*(T — ¢), which is the integrated
squared volatility over the remaining lifetime of the option. This illustrates a more
general comment that the Black-Scholes model can easily be adapted to allow for time
varying parameter values for the volatility parameter, provided that the behaviour is
deterministic, and provided that the term o(T —t) is replaced by ftT olds.

The call option pricing function C' = C'(¢) is an increasing function of the volatility
o. This observation can be verified by differentiation of (5), or is immediate from the
representation (6); see also Figure 5. This means that not only can we calculate the price
of an option given a value for the volatility parameter, but also that given the price of an
option it is possible to deduce the unique value of the volatility which must be substituted
into the Black-Scholes formula to obtain the observed option price. We define the implied
volatility &, to be the value of the volatility parameter o which is consistent with the
Black-Scholes formula and the observed call price.

Thus we have a new measure of volatility. Implied volatility is a market assessment
of the expected future volatility over the lifetime of the option. Implied volatility is a
useful device because it provides a convenient shorthand for expressing the option price,
and because it facilitates price comparisons of options with different characteristics.

Suppose that the assumptions of the Black-Scholes model are satisfied, so that in
particular the price process of the underlying asset is given by the solution to the SDE
(1). Provided that the market prices options using the Black-Scholes formula, then the
implied volatility & should be identically equal to the true parameter value o. For all
strikes K and maturities 7' we can define &(K,T) to be the implied volatility of the call
option with maturity 7' > ¢ and strike K. If the Black-Scholes model is correct then a
plot of &(K,T) should yield a constant surface.

Analyses of implied volatility patterns have been attempted by Rubinstein (1985),
Skeikh (1991), Fung and Hsieh (1991), Heynen, Kemma and Vorst (1994) and Xu and
Taylor (1994) amongst others. These authors all find systematic biases in the implied
volatility surface. In particular there is strong evidence of an implied volatility smile
(so that for the cross section of the implied volatility surface corresponding to a given
maturity implied volatility is a convex function of the strike) and some evidence of skews
(so that added to convexity of the cross-sectional implied volatility, there is an additional
linear relationship). Skews are particularly evident in implied volatilities for indices
rather than individual stocks; see Wiggins (1987).

Figure 3 presents implied volatility data for a set of call options traded on the Lon-
don Financial Futures Exchange on the 18th April 1995. The call options are European
style options on the FT-SE 100 Index. The plot is presented as a surface parameterised
by the date of the expiry of the option and the moneyness of the option. For each of
the five expiry dates there are between 13 and 18 options traded with different strikes.
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Figure 3: Implied volatilities of European call options on the FT7-SFE 100 Index
on the 18th April 1995. The normalised strike is the ratio of the true strike and
the relevant futures price of the index. The graph has been interpolated by Splus.



There is clear evidence of a skew and some evidence of a volatility smile. These effects
become less pronounced as maturity increases. Finally it appears the implied volatility
of an at-the-money option is an increasing function of time to expiry. A modification of
the Black-Scholes model is required to account for these effects and stochastic volatility

models provide a potential explanation.

2 Non-constant volatility models

In the first section of this chapter we described the standard exponential Brownian motion
model for asset prices and noted some of the discrepancies and inconsistencies which
arise when this model is compared with market experience. In particular Figure 2 shows
time series plots of realised volatility which contradict a stationary normal hypothesis.
Moreover plots of implied volatility in Figure 3 are inconsistent with market belief in
Black-Scholes with constant volatility. In this section we aim to outline some of the
models which attempt to explain, or at least account for, these inconsistencies. Although
there are other potential explanations for the observed biases (for example non-zero
transaction costs will require modifications of the Black-Scholes formula and liquidity
considerations may inflate the prices of options which are away from the money) we will
focus on explanations and models in which the volatility becomes non-constant.

In the 1960s empirical studies of asset price behaviour by Mandelbrot (1963) and
Fama (1965) found leptokurtosis in the distribution of the daily changes in the log-price.
These authors were led to suggest an innovations process consisting of random variables
with stable Paretian distributions with characteristic exponents between one and two
in an attempt to explain the observed fat-tails of the empirical distribution relative to
a normal law. Second and higher moments do not exist for such distributions so that
the notion of volatility becomes ill-defined, with serious implications for the pricing of
options, at least within the Black-Scholes paradigm.

The stable Paretian hypothesis continues to have its proponents (see for exam-
ple Peters (1991)). However the tractability that the Black-Scholes model derives from
the Gaussian character of its underlying variables allows it to retain it’s pre-eminence
amongst the class of asset price models as the reference model against which others are
compared. Instead of rejecting normality financial economists have searched for alterna-
tive explanations for the observed kurtosis and apparent randomness of volatility which

rely on modification of the Gaussian framework.

2.1 Subordinators and volume effects

One attractive explanation for the apparent randomness of volatility claims that the asset

price process is an exponential Brownian motion, but only when the time parameter ¢ is



interpreted as an intrinsic clock rather than real or calendar time. Relative to real time
the daily changes are a mixture of normals. This model was proposed by Clark (1973)
who argued that the daily proportional price change is a sum of a random number of
within-day price changes and that the number of such changes is related positively to
the rate of information flow or the volume of trading. Strong supporting evidence for
his general thesis was found by Epps and Epps (1976) and Tauchen and Pitts (1983); in
particular a mixture of normals hypothesis was observed to fit the data more accurately
than a stable Paretian distribution. Karpoff (1987) documents several studies relating
asset price volatility to traded volume.

In general the model is as follows. Let A; be a subordinator so that A; is a non-
decreasing Markov process with stationary independent increments. The price process

(P:)¢>0 is a random time-change of an exponential Brownian motion and is given by
Py = Pyexp(Bay — pA¢ + vt)

for a pair of drift parameters p and v. For the subordinator A; = 0%t we recover the
standard Black-Scholes model.

Madan and Senata (1990) proposed a particular choice of subordinator and termed
the resulting stock price model the Variance-Gamma model. In this model the subordi-
nator is a Gamma process. The Gamma process is a pure jump process and the price
process inherits this property also. Madan and Senata note that their model has the
following desirable properties: firstly the distribution of proportional price changes is
fat-tailed relative to the normal; secondly the distribution has finite moments, at least
of lower orders; thirdly the process is consistent with an underlying continuous-time
stochastic process; and finally that the model can be extended to a multi-dimensional
process. The model also has one serious disadvantage however, the existence of jumps in

the asset price makes the pricing and hedging of options very awkward.

2.2 Leverage effects and implied volatility skews

A second observed feature of stock price volatility is a correlation between volatility and
price level. This relationship is implicit in implied options prices; the market expects
volatility to rise as prices fall. One common explanation for this relates volatility to
leverage effects.

Imagine a firm with debt whose share value represents the surplus of the firm’s
assets over this debt. Suppose that the value of the firm’s assets fluctuates like an
exponential Brownian motion with constant variance whilst the value of the debt remains
fixed. Then the magnitude of the proportional changes in the share value is greater than
the magnitude of the proportional change in the asset value, though of course the absolute

changes are the same. Hence the volatility of the share price is greater than the volatility
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of the assets. Moreover if the value of the assets rises then the ratio of the stock value to
asset value approaches unity and fluctuations in the value of assets are directly reflected
in the stock price. Conversely if the value of the assets falls then the debt factor becomes
significant and the effect is to magnify changes in the asset value as represented via the
stock price. In this way leverage introduces a negative correlation between volatility and
price level.

The above arguments provide a direct inspiration for the equity price models of
Geske (1979), Rubinstein (1983) and Bensoussan, Crouhy and Galai (1994). In essence
these models propose that the stock price is the solution of a SDE

dP,

— =o(P)dB; + pdt (7)
P,

which is a modified form of (1) in which the volatility component is allowed to depend
on the price level. Geske deduces an explicit form for the function o(P) which is related
to the debt structure of the firm, but it is also possible to consider models which begin
by specifying arbitrary forms for equations (7). One class of such models is the Constant
Elasticity of Variance (CEV) class of models proposed by Cox and Ross (1976) for which
o(P) = cP*! for some a € (0,1). In the CEV model there is a negative correlation
between the volatility and price level.

The class of models of the form (7) have several desirable features. Firstly, for suit-
able choices of o(P) the dependence between volatility and price level can be modelled.
Secondly, the model is complete and as in the Black-Scholes model there is a unique
preference independent price for an option.

Given a new model it is illuminating to compare the options prices from this model
with those from the Black-Scholes formula. Consider the following exercise; calculate
the prices of call options under the alternative model for a range of different strikes and
exercise dates. Use these prices to derive the Black-Scholes implied volatility of each
option. Finally plot the resulting implied volatility surface, and compare with market
implied volatility data.

Figure 4 illustrates the results of such an exercise for the CEV model. Motivated
by the calculations of Schroder (1989) we set o = 2/3 so that there are simple explicit
expressions for the prices of call options. There is a negative skew in the implied volatility
surface and this factor dominates any convexity or smile effects. There is also a small
increase in implied volatility with maturity.

In general leverage effects result in a negative skew in the shape of the implied
volatility smile, and they may help explain some of the observed biases in market data.
However it is not possible to capture volatility smiles in models which are motivated by

leverage considerations alone.
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Figure 4: Implied volatilities for the CEV model. Note the strong inverse rela-

tionship between implied volatility and strike, which decreases only slightly with
time.
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2.3 Models of Stochastic Volatility

Volume and leverage effects can partially account for the observed patterns in volatility.
However these explanations remain incomplete and more sophisticated models for the
volatility are required which allow for further random changes in the level of volatility.
In response to this need a series of models for asset price processes were proposed in the
late 1980s which took volatility as an exogenous stochastic process.
Scott (1987), Wiggins (1987), Hull and White (1987, 1988), Stein and Stein (1991)
and Heston (1993) each proposed models of the form
@ = 0vdB; + pdt (8)
P
where o, the stochastic volatility process, is itself the solution of a stochastic differential
equation. Several candidate SDEs for the volatility process have been suggested. The
candidate models have generally been motivated by intuition, convenience and a desire
for tractability, rather than because of an empirical relationship with realised volatility.

In particular the following models have all appeared in the literature:

do, = oyadl +~ydWy) (9)

doy = o(a— Poy)dt + vdWy) (10)

doy = [la—o)dt +~vdW; (11)
6

dO't = <— — ﬂat) dt + ’7th (12)
Ot

In each case W is a Brownian motion, perhaps correlated with the Brownian motion B
which forms part of the specification (8). Denote this correlation by p so that (dB,dW;) =
pdt. We will assume that p is a constant with modulus less than one.

The model (9) was introduced by Hull and White (1987) who took p = 0 and
Wiggins (1987) who considered the general case. The volatility is an exponential Brown-
ian motion (or equivalently the logarithm of the volatility is a drifting Brownian mo-
tion). Scott (1987) considered the case (10) in which the logarithm of the volatility is
an Ornstein-Uhlenbeck (OU) process. The discrete time analogue of an OU process is
an AR(1) time series, see Section 4.1 below. The models specified by (9) and (10) have
the advantage that the volatility is strictly positive for all time. However even though
the model (11) allows the process o to become negative, this need not be a major hand-
icap since (8) remains well defined for negative values of o, and it is possible to define
volatility as the positive square root of the process o?. This third model was proposed
by Scott (1987) and further investigated by Stein and Stein (1991). In both these articles
the authors specialised to the case p = 0. In this model the volatility process itself is an

OU process with mean reversion level a. The final model (12) was proposed by Hull and
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White (1988) and Heston (1993). In this model the volatility is related to the square-root
process of Cox, Ingersoll and Ross (1985) and o can be interpreted as the radial distance
from the origin of a multidimensional OU process.

Two other models of note were proposed by Johnson and Shanno (1987) who mod-
elled both the price and volatility as CEV processes, and Melino and Turnbull (1990)
who took the price to be a CEV process and the logarithm of the volatility to be an OU

Process.

2.4 Transition densities

Consider the model

dP,
P,
doy = ~(oy)dW, + v(oy)dl (14)

where, for the moment, B and W are independent Brownian motions. Then ¢ and B are
independent and, conditional on (o,)o<s<t, we have that fg o,dB, is a Gaussian random
variable with zero mean and variance V; = [j o2ds. In particular, from the analogue
of the representation (2), we have that P, = Pyexp{Z} where 7 is a Gaussian random
variable with mean pt — 1V; and variance V;. Thus the transition density is a ‘mixture of
normals’, with the mixing distribution depending on the autonomous stochastic process
o. If the value of the volatility is related to the rate of transactions then we recover
the volume of transactions model described in Section 2.1, with a volume described by a
random process.

Thus, for a stochastic volatility model in which the volatility is independent of the
Brownian motion which drives the SDE for the price process, it is sufficient to characterise
the law of V; in order to derive the transition law for the price. Stein and Stein (1991)
illustrate this result when the volatility process i1s an OU process and give an explicit
form for the transition density.

When p is non-zero the interactions between the volatility and the driving Brownian
motion complicate the analysis. However there is strong empirical evidence that p is
non-zero. A negative value of p provides one method of capturing the observed negative
correlation between volatility and price. Hence it is worthwhile to pursue the general
case and to resort to numerical methods if necessary (see Johnson and Shanno (1987)
and Wiggins (1987)). Heston (1993) has devised an efficient method for calculating
options using characteristic functions.

It is possible to recover the level dependent volatility models of, for example, Cox
and Ross and Geske by taking |p| = 1 and choosing an appropriate, though potentially
unwieldy, specification for the parameters 4 and v in (14). If p = 1 then the diffusion

(P:,04) is degenerate and there is a deterministic relationship between the processes P
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and . The model is then similar in spirit to GARCH models, see Section 4.2. See also
Hobson and Rogers (1996) who define a continuous time model of the form (8) in which
B and W are perfectly correlated.

3 Option pricing for Stochastic Volatility Models

In this section we consider the option pricing implications of diffusion models for the
volatility. In particular it is no longer true that there are unique preference independent
options prices. Insted the model is incomplete and economic considerations (such as risk
aversion) must be introduced to obtain pricing formulee.

Suppose that P and o are defined as in Section 2.4 above, without the assumption
that B and W are independent. Indeed write W; = pB; + /1 — p*Z; for a Brownian
motion Z which is independent of B. Suppose that the aim is to price an option, and
that the price of that option is given by a (differentiable) function H which depends on
the current value of the asset, the current volatility and the time to go. Then we can
apply It6’s formula to H(P,, 04, T —t) to obtain

dH = HldP + Hgda' + Adt,

where suffices denote partial differentiation with respect to the relevant co-ordinate of H

and

Adt = %Hll(dP)Q + ng(dP)(dJ) + %HQQ(dO‘)Q — Hgdt
= {%HHPQUQ + pyH2Po + %’YQHM — Hs}dt.

If volatility were a traded asset then it would be possible to invest in volatility and
the stock to form a riskless hedge portfolio for the option. However this is not the
case so there is no riskless hedge and the prices of options will depend on the risk
preferences of investors. These preferences may be expressed via a utility function (see
Hodges and Neuberger (1989) or Karatzas, Lehoczky, Shreve and Xu (1991)), or via a
local-risk minimisation criterion (Hofmann, Platen and Schweizer (1992) or Platen and
Schweizer (1994)).

Substituting for do we obtain

it = Pl iy (a2 | 1= rdz )|+ Ade
P c | P
= <H1P + 7’OHQ) d?P + Hyyy /1 — p2dZ + <H2 [l/ - —W)M] + A) dt.
a a

Now define ¥ = W(P,, 04, T — t) via




Observe that the martingale term of (dH + W(dP/P)) only involves dZ so that a portfolio
consisting of a call and an amount ® invested in the stock is uncorrelated with the stock.
Asset pricing models imply that the rate of return on this portfolio must be r with an

extra return for risk:
dP

where \* is the market price of volatility risk associated with dZ. Typically the value
H + U of the portfolio is negative which explains the sign convention for the market price

of risk. Equating finite variation terms we obtain

H, (1/— M) +A=r(H+ V)= XN Hyyy/1 — p?

g

Finally some algebraic manipulation of this equation yields the stochastic volatility option

pricing partial differential equation for H:
YH\ P*0? + pyHy3Po + 34*Hy, — Hy — rH
+rH P+ H, (y— 1P =T) |y /i —p2) =0 (15)

g

subject to the boundary condition H(z,y,0) = (x — K)*. Thus the price of an option
has an interpretation as the expected payoff of the option under a model in which the
price process and the volatility satisfy the SDEs

dP
- = o0:dB + rdt

doy = ~(oy)dW + v(oy)dt

where

(o) = o) = L= x0T
The option pricing equation (15) has an analogue in expressions given by Wiggins (1987,
Equation (8)), Scott (1987, Equation (4)) and Stein and Stein (1991, Equation (14)). In
principle we solve (15) to deduce theoretical options prices. Before we comment on the
discussion in the literature on the (numerical) solutions of (15) some general comments
are in order.

Firstly suppose that v = 0 = v so that the stochastic process (o;) is in fact a
deterministic constant. Then we can view ¢ as a constant parameter of the model rather
than a stochastic variable, and the option pricing equation (15) for the price C' = C(P,u)
of a call option as a function of the price P of the underlying asset and the time to go u

reduces to

%PQO'QOPP—Ou—I-TPOP—TO:O
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with boundary condition C'(z,0) = (z— K)*. This is the Black-Scholes partial differential
equation, and C'is the Black-Scholes price of an option.
Secondly, if volatility is stochastic but uncorrelated with the asset, (so that p = 0),

then the option price can be expressed as

H(Py, 01, T —t)=E[(Pr — K)*] = E[E[(Pr— K)*|(0,)i<s<r]]

(=)

Thus the option price is an average of Black-Scholes prices. To investigate this relation-

= E

ship further consider the dependence of the Black-Scholes formula on o. Suppose ¢ = 0
and define o7 = (/(2/T)|In m| where m is the moneyness of the option. Thus oy is zero
for at the money options. Then C' is convex in ¢ for ¢ < o7, and concave for ¢ > oy;
see Figure 5. Thus for an at the money option with Black-Scholes implied volatility & it

follows from Jensen’s inequality that
C(&) = E[C((Ve/T)V*)] < C(E((Vr/T)'?)

where Vp = fOT o%ds. By monotonicity of the Black-Scholes formula, for an at the money
option, the Black-Scholes implied volatility is less than the expected average volatility,
under the risk-neutral pricing measure. Conversely, for a far in or out of the money

option, then for oq sufficiently small
C(5) = E[C((Ve/T))] = C(E((Vr/T)'?).

Thus we expect that the implied volatility for away from the money options will exceed

the expected average volatility, and that there will be an implied volatility smile.
Renault and Touzi (1995) show that, again in the case p = 0, the volatility smile is

symmetric. Consider the Black-Scholes call price C' as a function of the moneyness M,

and the time to go u, then (5) yields

C(AM_I,U) = Ke_TT(M_ICD(—dz)—q)(_dl))
_ K?\ZT(Q — M)+ M®(dy) — &(dy))

= M7'C(M,u)+ Ke™"(M™' —1).

Hence there is a simple expression relating the prices of in and out of the money calls.
Moreover, if we think of the stochastic volatility option pricing function H as a function
of moneyness, the current value of the volatility o;, and the time to expiry u, then an

investigation of the solutions to (15) yields that, provided p = 0,
H(M™ op,u) = M "H(M,04,u) + Ke7" (M~ — 1)
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Figure 5: The price of an option as a function of volatility. The plot is based on
an option with strike K = 0.9, and expiry T' = 3, for an underlying asset whose

price is unity. Thus o7 = 26.5%.

To verify this claim observe that M H(M~',o,u) + Ke™"T(1 — M~!) also solves (15) and
the same boundary condition. From this it is a simple exercise to deduce that if the option
with moneyness M has an implied volatility &as, so that H(M, o, u) = C(M,u;ém),
then also H(M™', 0y,u) = C(m™',u;5p). Now, since -1 is the value of the implied
volatility for which H(M ™, o,,u) = C(m™", u;p-1), we must have that &y = dpr-1.
In more general situations with non-zero correlation p the picture is more compli-
cated. Several authors have attempted to solve (15) in this case. Hull and White (1988)
consider solutions which take the form of power series expansions in the volatility of

volatility parameter :
H(Mv Utvu) = C(Mvu) + fO(Mv Jtvu) + ’Yfl(Ma Jtau) + 72f2(M7 Jtvu) +...

Explicit, though complicated, forms can be deduced for the functions fy, fi, fo.... See
Figure 6 for the predicted implied volatility surface based on an expansion to second order
of the Hull and White option pricing series. Alternatively Johnson and Shanno (1987),
Wiggins (1987) and Heston (1993) calculate numerical solutions to (15). In each case
the authors find that when the correlation is negative out of the money call options
are relatively more expensive under a stochastic volatility model when compared with
Black-Scholes prices. This is consistent with the biases found in Rubinstein (1985),
Wiggins (1987), Heynen, Kemma and Vorst (1994), and Figure 3. Wiggins attempts to
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derive an estimate for p. His estimates support the hypothesis that p is negative, but the
precise estimates vary widely depending on the particular method he uses. However he
does provide evidence that the negative correlation is more pronounced for indices rather
than individual stocks.

Continuous-time stochastic volatility provides an attractive and intuitive explana-
tion for observed volatility patterns and for observed biases in implied volatility. In par-
ticular smiles, skews and upward and downward implied volatility term structures arise
naturally from a stochastic volatility model. However the fact that stochastic volatility
models fit empirical patterns is not conclusive evidence that those models are correct and

the biases in market prices may be the result of other factors such as liquidity problems.

4 Discrete-time Models

Whilst continuous time models provide the natural framework for an analysis of option
pricing, discrete time models are ideal for the statistical and descriptive analysis of the
patterns of daily price changes. There are two main classes of discrete-time models for
stock prices with volatility. The first class, the autoregresive random variance (ARV)
or stochastic variance models are a discrete time approximation to the continuous time
diffusion models we outlined in Sections 2 and 3. The second class of autoregressive
conditional heteroskedastic (ARCH) models and its descendents are motivated by an
attempt to explain volatility clustering and the habit of large price changes to be followed
by further large changes.

4.1 ARV models

Let Y, =1n P, so that Y,, denotes the log price. Then the natural discrete time analogue
of (13) and (14) is to take
Yn = Yn—l + v+ O'n_lzn (16)

where (Zn)nZO is a sequence of independent standard normal variables and o, is the solu-
tion of a stochastic difference equation. Many authors including Chesney and Scott (1989)
and Duffie and Singleton (1993) consider a model of the form

Ino, =a—¢(lno,—1 —a) + 0z, (17)

for parameters a, ¢, and z, a sequence of independent identically distributed random
variables such that (Z,, z,) forms a bivariate normal sequence with correlation p. Equa-
tion (17) is a direct analogue of (10). The model specified by (16) and (17) is called an
ARV model (Taylor (1986)).

The ARV model is stationary if |¢| < 1 and then Ino; has mean o and variance
B = 6%/(1—¢?). Provided that p = 0 the unconditional distribution of the return ¥;—Y;_4
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Figure 6: Implied volatilities from the Hull White expansion to second order for
an option on an underlying asset whose current price is unity. Note that p = —0.2
and that for options which are close to maturity there is a pronounced volatility

smile, and some evidence of an additional inverse relationship between strike and
implied volatility. These effects decrease with maturity.
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is a mixture of normal distributions, with analogues in the rate of transaction models of
Clark (1973) and Tauchen and Pitts (1983).

In the ARV model the volatility process is unobservable which contrasts with the
continuous time situation in which the instantaneous value for volatility can be inferred
from the quadratic variation of the log-price. As an unfortunate consequence most ARV
models lack one-step transition densities for the process Y,. This means that it is fre-
quently not possible to obtain maximum likelihood estimates for parameter values.

Instead parameter values are frequently estimated using methods of moments tech-
niques, see Taylor (1986), Melino and Turnbull (1990) and Duffie and Singleton (1993).
Of particular interest is the autoregressive co-efficient ¢ which governs the persistence
of volatility shocks. According to Taylor (1994) most estimates of this parameter which
are based on daily observations yield values greater than 0.95. Harvey, Ruiz and Shep-
hard (1996) find that a multivariate ARV model fits well to to exchange rates data
and captures movements in volatility, though for certain currencies they are led to sug-
gest a heavy tailed distribution for the innovations process. See Ghysels, Harvey and
Renault (1996) for a thorough discussion of ARV models and their statistical properties.

Since the A RV model is an approximation to diffusion models of stochastic volatil-
ity there is a correspondence between options prices in an ARV model and numerical
solutions of the stochastic volatility option pricing equation (15). Thus options prices in
ARV models are preference dependent, and an ARV model can account for smiles and

skews in implied volatility.

4.2 ARCH and GARCH models

Autoregressive conditional heteroskedastic models were introduced by Engle (1982) in an
attempt to model persistence in volatility shocks by assuming an autoregressive structure
for the conditional variances. Retaining the convention that Y,, = In P, an ARCH model
assumes that

Y, =Y. 1+ v+ .6, €n 1.1.d. D(0,1) (18)

where D is a general distribution with zero mean and unit variance, and 5, is a function of
the past proportional price changes. The simplest ARCH model, an ARCH(1) combines
(18) with

= a+ B(Yno1r =Yg — V)2 = a+ B 6, (19)

ARCH models have the advantage that it is straightforward to write down the log-
likelihood and hence to derive maximum likelihood estimators for the parameters.

In empirical applications higher order ARCH(g) models with a large number of
parameters are often needed to characterise the behaviour of financial time series. To cir-

cumvent this problem Bollerslev (1986) devised a class of generalised ARCH or GARCH
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models which allow the conditional variance to depend directly on previous values. In a

GARCH(1,1) model (independently proposed by Taylor (1986)) we have that
Mo =a+B(Yoa = Yia —v)’ + 90,y = a+ B, 161 + 70, (20)

Other extensions are also possible, see Bollerslev, Engle and Nelson (1994), Harvey, Ruiz
and Shephard (1994) or Shephard (1996) for comprehensive surveys.

As defined in (19) and (20) the updates of the conditional variance depend on
the squares of the residual process. Hence these simple models cannot capture leverage
effects. However the exponential ARCH model of Nelson (1991) does not treat positive
and negative innovations symmetrically and can allow for a correlation between volatility,
as expressed by 7, and price level.

The natural candidate distribution for D(0,1) is standard normal. However some
empirical studies of stock prices, including for example Bollerslev (1986) and Bollerslev,
Engle and Nelson (1994), have found that the standardised innovations process (Y, —
Y,—1—v)n; ! displays excess kurtosis. Taylor (1994) suggests use of a scaled ¢-distribution
or a generalised error distribution. With these choices there are two sources of the kurtosis
in the unconditional distribution for the log-price, namely the kurtosis from the price
innovations and the changes in the underlying volatility level 7.

GARCH models have been extremely successful in the modelling of equity markets.
Highly significant test statistics have been reported by Engle and Mustafa (1992) in
an analysis of stock returns, and Schwert (1990) for futures markets. See Bollerslev,
Chou and Kroner (1992) for an extensive survey of articles reaching similar conclusions.
The autoregressive structure imposed by GARCH model for the conditional variances
allows volatility to persist over time and captures the observed clustering of large price
movements. Note however that Lamoureux and Lastrapes (1990) find that daily trading
volume has a significant explanatory power regarding the variance of daily returns and
that furthermore A RCH effects tend to disappear when volume is included in the variance
equation.

In an ARV model the volatility process is an autonomous process. In contrast in
GARCH models the volatility process is a deterministic function of the innovations ¢,.
Neverthless Nelson (1990) has shown that with judicious choice of parameter values the
continuous time limit of a GARCH process is a diffusion model with stochastic volatility
of the form (8) and (11). However the rate of convergence to the diffusion limit is much
slower than that from an ARV model. Bollerslev, Engle and Nelson (1994) show both
how a GARCH model can be used to approximate a diffusion and how a diffusion process
can be used to approximate a GARCH model.

Consideration of the SDE high frequency limit of GARCH processes raise the
problem of temporal aggregation of GARCH processes. The non-linearities of GARCH
models mean that if a low-frequency sample is taken from a high frequency GARCH
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model, then the resulting time series is not GARCH , at least in the sense defined above.
Although Drost and Nijman (1993) have introduced the concept of weak GARCH models
which are stable under temporal aggregation, in general the frequency of observations
has an important bearing on the statistical properties of the model. For example an i.i.d.
innovations process in the definition of the price process (¥},),>0 will generally result in

time dependence of the innovations of (Yz,)n>o for £ > 1.

4.3 GARCH option pricing

Even for discrete time models the pricing of options remains an important issue, and there
has been much recent interest in GARCH option pricing formule which is summarised
in the paper by Duan (1995).

Duan assumes a model in which the innovations ¢, are normal variables and v takes
the form

v=r+ /\*nn—l - %772—1

where A\* is a volatility risk premium, and the —in?_, term ensures that when \* = 0
the discounted price process is a martingale. With this specification the price process

evolves as

P, =P, GXP{T + )\*T]n—l + Nn—1€n — %7]2—1'}

The concept of a locally risk neutral valuation relationship is used to argue that options
should be priced as the discounted expected payoff under a model in which the price and

volatility update according to the stochastic difference equations

Yn = Yn—l +r— %nn—l + nn—lgn
Mo = o+ Bipuca(Ear = N)? + 15

for an i.i.d. sequence €, of standard normal variables.

Duan estimates the parameters of the model from market prices and uses Monte
Carlo techniques to obtain options prices. He finds implied volatility smiles which become
weaker as time to maturity increases. Depending on the initial value of the conditional
volatility the term structure of implied volatility of an at the money option can be either
downward or upward sloping.

In general prices from the GARCH option pricing model are consistent with the
biases found by Rubinstein (1985) and Skeikh (1991). However although this evidence
supports the GARCH modelling hypothesis, it cannot guarantee the veracity of the
model. Moreover Monte Carlo techniques are a computationally expensive technique for

calculating options prices.
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5 Conclusions

The Black-Scholes exponential Brownian motion model provides an approximate descrip-
tion of the behaviour of asset prices and a benchmark against which other models can
be compared. The volatility parameter is a crucial component of the model and stochas-
tic volatility models aim to reflect the apparent randomness of the level of volatility, as
observed in empirical studies.

To this extent stochastic volatility models are partially successful and moreover they
can capture, and potentially explain, some of the observed biases in the Black-Scholes
formula for options. Both diffusion models and GARCH models can account for smiles,
skews and term structures which have been observed in market prices for options, and
stochastic volatility models are widely used in the financial community as a refinement
of the Black-Scholes model. Exotic options are frequently even more sensitive to levels
of volatility than standard calls, and as trading in such instruments blossoms, those
financial institutions which have models with the ability to reasonably and consistently

price and hedge derivatives will have a competitive advantage.
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