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Abstract

The paper proposes an original class of models for the continuous time price process

of a �nancial security with non-constant volatility. The idea is to de�ne instantaneous

volatility in terms of exponentially-weighted moments of historic log-price. The instanta-

neous volatility is therefore driven by the same stochastic factors as the price process, so

that unlike many other models of non-constant volatility, it is not necessary to introduce

additional sources of randomness. Thus the market is complete and there are unique,

preference-independent options prices.

We �nd a partial di�erential equation for the price of a European Call Option.

Smiles and skews are found in the resulting plots of implied volatility.
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1 Stochastic Volatility

The work on option pricing of Black and Scholes (1973) represents one of the most

striking developments in �nancial economics. In practice both the pricing and hedging

of derivative securities is today governed by Black-Scholes, to the extent that prices are

often quoted in terms of the volatility parameters implied by the model.

The Black-Scholes model is based upon the common assumption that the propor-

tional price changes of the asset form a Gaussian process with stationary independent

increments. This assumption has been the subject of much attention over the interven-

ing years. An insight of the Black-Scholes model is that the crucial parameter is the

volatility of the underlying price process: consequently research has focussed on this pa-

rameter. Empirical analysis of stock volatility has shown that it is not constant | see

Blattberg and Gonedes (1974), Scott (1987) and the references therein. Moreover the

prices at which derivatives (and especially call options) are traded are inconsistent with

a constant volatility assumption.

For this reason a number of authors have suggested variants of the Black-Scholes

model. These alternative theories separate into two broad genres. (Since we are interested

in models of changing volatility we exclude models with jumps such as the jump-di�usion

model of Merton (1976).) The �rst approach, as represented by Cox and Ross (1976),

Geske (1979), Rubinstein (1983) and recently Bensoussan et al (1994) describes the stock

price as a di�usion with level dependent volatility. This may either be a modelling

assumption or follow from more fundamental properties, for example by relating stock

price to the value and the debt of a �rm. The second approach, exempli�ed by Johnson

and Shanno (1987), Scott (1987), Hull and White (1987, 1988) and Wiggins (1987)

de�nes the volatility as an autonomous di�usion driven by a second Brownian motion.

(The asset price process is driven by the �rst Brownian motion.) Further details of these

two approaches, which we label as level-dependent volatility and stochastic volatility,

are given in Sections 2.1 and 2.2 respectively. Hull (1993) and Merton (1990) are also a

valuable source of reference.

In this paper we suggest a new class of non-constant volatility models, which can

be extended to include the �rst of the above classes, but also share many characteristics

with the second approach. The volatility is non-constant, but it is an endogenous factor

in the sense that it is de�ned in terms of the past behaviour of the stock price. This

is done in such a way that the price and volatility form a multi-dimensional Markov
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process.

We believe that this class of models has twin advantages over existing stochastic

volatility models. Firstly, unlike the stochastic volatility models, since no new sources of

randomness are introduced, the market remains complete and there are unique preference-

independent prices for contingent claims. Secondly, in contrast with the level-dependent

volatility models, it is possible to specify a single, simple model within the new class

which over time will exhibit smiles and skews of di�erent directions.

A natural e�ect of the model is to make volatility self-reinforcing. Since volatility

is de�ned in terms of past behaviour of the asset price it will be high precisely when

there have been large movements in the recent past. This is designed to re
ect real

world perceptions of market volatility, particularly if practitioners are to compare historic

volatility with implied volatility.

An observed e�ect in options markets is the presence of `smiles' and `skews' in

the implied volatilities across strikes. Rubinstein (1985) has demonstrated the presence

of this phenomena in options data and noted moreover that the direction of the skew

may change over time. Similarly Fung and Hsieh (1991) discovered smiles in the prices

of options based on underlying securities in each of the stock, bond and currency mar-

kets. Fung and Hsieh also ask whether implied volatility is a better predictor of realised

volatility over the lifetime of an option than historic volatility.

A potential explanation for the presence of smiles and skews is the concept of non-

constant or stochastic volatility. Hence it is natural to investigate the implied volatility

implications of any model of non-constant volatility. Such analysis has been attempted

for the Constant Elasticity of Variance model of Cox and Ross by Beckers (1980) and

for the stochastic volatility model of Hull and White by Stein and Stein (1991) and

Paxson (1994). In this paper we show that the proposed class of volatility models has

the desirable feature of explaining smiles and skews.

There are similarities between the proposed class of stochastic volatility models and

the ARCH (Engle (1982)) and GARCH (Bollerslev (1986)) models favoured for �nancial

time series modelling by econometricians. These models are formulated in discrete time

and postulate a log-price process for the stock which has a conditional variance depending

on a set of exogenous and lagged endogenous variables and past residuals. See Duan

(1995) for a discussion of GARCH models and option pricing.

The remainder of this paper is structured as follows. Section 2 describes the set of

existing models with level-dependent or stochastic volatility and outlines their implica-
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tions for option pricing. The new model itself is introduced in Section 3. The penultimate

section describes the implications of this model for option pricing and demonstrates the

existence of skews and smiles via numerical solution of the option pricing partial di�er-

ential equation. The direction of the skew is seen to be a function of the recent history of

the asset price process. The �nal section provides a summary of the theoretical �ndings

and a comparison with competing models. The task of comparing the predictions made

by the new class of volatility models with market experience is left to a subsequent paper.

Finally, in an appendix, we discuss some of the technical results that we require to ensure

that when we switch to a martingale measure, the new (pricing) measure is equivalent

to the original (real world) measure. Our measures arise as the laws of solutions of SDEs

and the conditions for equivalence are of interest in their own right.

2 Non-constant Volatility Models

The ubiquitous Black-Scholes pricing formula for stock options assumes that the price

(Pt)t�T of a stock is the solution to a stochastic di�erential equation (SDE)

dPt = Pt(�dBt + �dt)(1)

where � is a known and constant volatility parameter and B is a Brownian motion.

Notwithstanding the widespread use of the Black-Scholes formula, concern has been

expressed about some of the assumptions necessary for the derivation of the formula. The

most criticised of these assumptions are the requirement of a perfect frictionless market

(and in particular the absence of transaction costs) and the imposition of a constant

volatility. It is exclusively the second of these assumptions that we address here.

The basic �nancial environment in which our asset trades consists of the stock with

price process Pt and a bond which pays a �xed and constant rate of interest r. There is

a perfect market with no transaction costs and no restrictions on short selling of stock

or bond provided that the net wealth of the trader remains non-negative. In particular

a trader may sell stock or bonds that he does not own provided that by the end of the

trading period he has repurchased su�cient quantities to cover his obligations.

3



2.1 Level Dependent Volatility

There is a long history of alternative models for the stock price process in which Pt

satis�es the SDE
dPt

Pt
= �P (Pt)dBt + �dt(2)

where �P is a function of P . For example in their Constant Elasticity of Variance (CEV)

model Cox and Ross (1976) take �P (x) � �x�(1��): This is a di�usion model for the price

process and following Harrison and Pliska (1981) the model is complete with unique,

preference-independent option prices. In general these prices may only be known as the

solution to a partial di�erential equation.

Cox and Ross suggest (2) in direct competition to the exponential Brownian motion

model, suggesting that the form of the equation may represent leverage e�ects. Geske

(1979), Rubinstein (1985) and Bensoussan et al (1994) derive explicit forms for (2) by

reference to the value and debt of the �rm.

Suppose the aim is to price a European Call option with exercise date T and strike

price K. By considering a riskless portfolio consisting of the stock call option, asset and

cash, standard arguments show that the value H = H(Pt; T � t) of the call is the solution

to

0 = rP
@H

@P
� rH � @H

@t
+ 1

2 (P�P )
2@

2H

@P 2
(3)

with boundary condition

H(P; 0) = (P �K)+:

Beckers (1980) investigates the solution to (3) for the Constant Elasticity of Vari-

ance model of Cox and Ross. Compared with standard Black-Scholes prices, options

prices for the CEV model are higher for in-the-money options and lower for out-of-the-

money options. Equivalently implied volatilities decrease as the strike of the option

increases.

Geske (1979) suggests modelling stock prices as an option on the value of a �rm

with debt. If the value Vt of the �rm is given by an exponential Brownian motion, (so

that it has constant volatility �V ), then the stock-price Pt is given by the Black-Scholes

formula with the strike set equal to the value of the debt D, and the exercise date set

equal to the maturity date of the debt TD:

Pt = Vt�

�
log(Vt=D) + (r + 1

2
�2V )(TD � t)

�V
p
TD � t

�
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�De�r(TD�t)�
�
log(Vt=D) + (r � 1

2
�2V )(TD � t)

�V
p
TD � t

�
;

where �(:) denotes the cumulative normal distribution. In practice we infer V from the

observables P , D and TD. The volatility of the stock price is then

�P � �V
Vt

Pt

@Pt

@V

= �V
Vt

Pt
�

�
log(Vt=D) + (r + 1

2
�2V )(TD � t)

�V
p
TD � t

�

> �V :

The value of a call option in this model is given by the solution of (3) with this new

speci�cation of �P . If D = 0 or TD = 1 then the option price collapses to the usual

Black-Scholes result. Otherwise the e�ect is to modify the Black-Scholes stock option

price: if for example the stock price falls then stock volatility rises and the Geske option

price rises relative to the Black-Scholes price, although it still falls in absolute terms.

Figure 1 shows the implied volatility curves for the CEV model and the Geske

model. The impled volatility is that value for the volatility, which, when substituted

into the Black-Scholes formula gives the options price as calculated from the alternative

model. For each alternative model it is seen that the implied volatility falls as the strike

price rises. Formul� for the prices of call options are taken from Schroder (1989) and

Geske (1979). As Schroder points out � = 2=3 is a special case of the CEV model for

which the prices of call options can be expressed in terms of normal distributions.

Rubinstein (1985) analysed options price data to see if there was any systematic

variation of implied volatility with strike. For one of the periods under consideration he

found that implied volatility did indeed decrease as the option moved out-of-the-money.

However in a later period the implied volatility increased as the strike increased. The

level-dependent volatility models of Cox and Ross and Geske are unable to explain this

change over time in the direction of the implied volatility skew.

In a pair of innovative articles Dupire (1993, 1994) incorporates options price data

into the speci�cation of a level dependent volatility model. Rather than postulate the

dynamics of the asset price process he uses options price data to infer the form of the

volatility so that the model is guaranteed to price European call options consistently with

the market. In spirit this model is similar to term structure models of interest rates.

Dupire assumes that the asset price is a di�usion (and thus that the volatility of

the asset depends on the price level and time alone), and that the price of an option is the
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0.195
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0.205

0.21
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Figure 1: Implied Volatilities for the CEV and Geske models. In each case the

option is a European Call with time to exercise T = 0:25, and the initial price is

unity. For the CEV model (less steep curve) � = 0:2 and � = 2=3; for the Geske

model TD = 0:25, D = 1 and the volatility of the value of the �rm is 0.1.
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discounted expected value of its payo� under some equivalent martingale measure. He

shows that if there is a continuum of market prices for European calls of every potential

strike, and for every potential exercise date then this uniquely speci�es the volatility.

However this model cannot explain smiles or skews, since they are taken as inputs.

Platen and Schweizer (1995) have developed a further model in this category. They

postulate a model in which a non-constant level-dependent volatility arises endogenously.

They assume that market traders have portfolios consisting of both the underlying asset

and option liabilities which they must dynamically hedge. The e�ect of the hedging

requirements is to a�ect the asset volatility. As in this paper the authors derive a partial

di�erential equation for an option price which they solve numerically.

2.2 Stochastic Volatility via an SDE

Several authors have proposed models of volatility in which the volatility is de�ned

via a stochastic equation. The following model is due to Hull and White (1987). For

related papers see Johnson and Shanno (1987), Scott (1987), Wiggins (1987) and Hull

and White (1988). Hofmann et al (1993) consider a more general Markovian model which

contains the model of Hull and White as a special case.

Let the stock price Pt and the volatility �t be de�ned via the pair of stochastic

di�erential equations

dPt = Pt(�tdBt + �(Pt; �t; t)dt)(4)

dVt = Vt(�(�t; t)dWt + 
(�t; t)dt)(5)

where Vt � �2t and B and W are Brownian motions with covariance dBdW = %dt, for

some correlation �1 < % < 1.

If the volatility is a traded asset then there are two risky securities and the market

is complete. Otherwise the introduction of the second Brownian motion W makes this

model incomplete. In particular there are no unique prices for stock options.

It is feasible to consider the above model with j%j = 1. In this case completeness

is regained, but the volatility becomes a complicated function of the history of the price

process.

Now consider the option pricing implications of these stochastic volatility models.

Our analysis follows Scott (1987). Suppose that the aim is to price a European call option

with exercise date T and strike price K. Then by considering a portfolio consisting of
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the riskless bond, the asset and two call options with di�erent maturities, Scott shows

that the option pricing function H � H(Pt; Vt; T � t) must satisfy

�Ht +
1

2
vp2Hpp + %�v3=2pHpv +

1

2
�2v2Hvv � rH + rpHp = bHv;

subject to the boundary condition

H(P; V; 0) = (P �K)+:

Here b � b(Pt; Vt; t) is independent of the exercise date T .

The function b cannot be deduced from arbitrage considerations alone. Conse-

quently there is no unique option pricing function.

Although there is no unique price for the option some authors have suggested

particular choices. When % = 0 the choice b = �
V corresponds to setting the market

price of risk to be zero (see for example Stein and Stein (1991); Wiggins (1987) builds on

the equilibrium approach of Cox, Ingersoll and Ross (1985) to provide some justi�cation).

It is also equivalent to pricing options under the minimal martingale measure of F�ollmer

and Schweizer (1990). Suppport for this idea is to be found in Hofmann et al (1993).

However other authors propose di�erent criteria for determining b. For a utility based

approach see for example Karatzas et al (1991) and Du�e and Skiadas (1994).

The implications for options pricing of a stochastic volatility model have been

considered by many authors. Stein and Stein (1991), who assume no correlation between

the pair of Brownian motions driving the asset price and the volatility, �nd implied

volatility smiles. By allowing a negative correlation between the asset and the volatility

Wiggins (1987) shows that implied volatility may be higher for in-the-money options than

out-of-the-money options. Both he and Scott (1987) �nd that, when considered across a

range of strikes, options prices from models with stochastic volatility provide a superior

�t to market prices when compared with a constant volatility model. Paxson (1994) is

able to conclude that, in most but not all cases, stochastic volatility can account for both

smiles and skews. On a theoretical note, Renault and Touzi (1992) have shown that

under a zero correlation (% = 0) assumption a stochastic volatility model must exhibit

volatility smiles in the option price.

2.3 GARCH Models

The acronym GARCH stands for generalised autoregressive conditional heteroskedastic

and describes a popular class of discrete time models used to model time series with
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non-constant volatility. In discrete time the GARCH(1,1) model for the log-price process

Zt and conditional variance �t is of the form

Zt = Zt�1 + �t + �t�t

�2t = ! + ��2t�1 + ��2t�1�
2
t�1

(6)

Here �t is an i.i.d. sequence of zero mean unit variance random variables. If �t is a

function of �t then the model is GARCH(1,1)-M. More generally GARCH models allow

for �t to be an arbitrary function of past conditional variances and past residuals.

GARCH models generate data with fatter tails than those from a model where �

is constant in (6). This is consistent with many studies on observed stock prices.

Whilst GARCH models may capture essential qualitative properties of an asset

price process, they are an unsuitable class of models for a prospective option replicator

since, save in the simplest binomial cases, exact replication is infeasible in discrete time.

In general there is no natural continuous time analogue of the discrete time GARCH

process. With judicious choice of parameter values Nelson (1990) has demonstrated

convergence in the Skorokhod topology to a continuous-time process similar to the model

described in Section 2.2; however if this limit process is sampled at equally spaced discrete

time points then the resulting process is not GARCH. Recently however a new class of

weak ARCH models has been proposed by Drost and Nijman (1993). These models have

the embeddibility property that if a weak ARCH process is sampled at regular intervals

then the resulting process is again weak ARCH.

Kind et al (1991) proved a convergence result for a di�erent stochastic volatility

model. In their GARCH-type model the quadratic variation of the stock has an interpre-

tation as the `historic' volatility de�ned over a �nite time window. Unfortunately in the

continuous time limit the volatility process is deterministic. In either case the GARCH

model fails to yield preference independent option pricing in the presence of stochastic

volatility. However under assumptions on the utility of the investor Duan (1995) is able

to derive a unique price for an option.

3 A Complete Model with Stochastic Volatility

In this section we de�ne a new class of stock-price models. The new feature is the

speci�cation of instantaneous volatility in terms of exponentially weighted moments of

the historic log-price. This introduces a feedback e�ect into the volatility process: present

shocks in the asset price result in higher future uncertainty.
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The �rst step is to introduce some convenient notation. De�ne the discounted log-

price process Zt by Zt = log(Pte
�rt). De�ne also the o�set function of order m, denoted

S
(m)
t , by

S
(m)
t =

Z 1

0

�e��u(Zt � Zt�u)
mdu(7)

The constant � is a parameter of the model which describes the rate at which past

information is discounted. Then, for some value n,

Assumption 3.1 Zt solves the SDE

dZt = �(S
(1)
t ; : : : ; S

(n)
t )dBt + �(S

(1)
t ; : : : ; S

(n)
t )dt(8)

where �(:) and �(:) are Lipschitz functions, and �(:) is strictly positive.

Remark 3.1 More generally it is possible to allow �(:) to be a function of the price level

Pt also. In this sense this model can be extended to include the class of level-dependent

volatility processes as a special case.

Remark 3.2 The key feature to note at this early stage is that no new Brownian motions

(or other sources of uncertainty) have been introduced in the speci�cation of the price

process. This will imply that the model yields unique option prices without the need to

specify market prices for risk.

Remark 3.3 The model is designed so that movements in the price of an asset may

result in changes in the volatility of that asset. If the volatility of stock prices is related

to the amount of trading in a stock then this corresponds to the scenario that price

changes encourage further interest and activity in the market.

The reason for our de�nition of the processes S
(m)
t is seen in the following lemma.

Lemma 3.1 (Zt; S
(1)
t ; : : : ; S

(n)
t ) forms a Markov process. The o�set processes S(m) sat-

isfy the coupled SDEs

dS
(m)
t = mS

(m�1)
t dZt +

m(m� 1)

2
S
(m�2)
t dhZit � �S

(m)
t dt(9)

Proof

Since the functions � and � are assumed to be Lipschitz, the existence and uniqueness

of a non-explosive solution to (8) and (9) is guaranteed (see Rogers and Williams (1987,

p132)). Moreover the Markov property also follows (Rogers and Williams (1987, p162)).
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The stochastic calculus is easier with the following equivalent de�nition for S(m):

e�tS
(m)
t =

Z t

�1

�e�u(Zt � Zu)
mdu

=

mX
k=0

�
m
k

�
(Zt)

k

Z t

�1

�e�u(�Zu)
m�kdu:

Then

�e�tS
(m)
t dt+ e�tdS

(m)
t

=

mX
k=0

�
m
k

��Z t

�1

�e�u(�Zu)
m�kdu

�
k(Zt)

k�1dZt +
k(k � 1)

2
(Zt)

k�2dhZit
�

+�e�t(�Zt)
m�kdt(Zt)

k

�

= m

mX
k=1

�
m� 1
k � 1

��Z t

�1

�e�u(�Zu)
(m�1)�(k�1)du

�
(Zt)

k�1dZt

+
m(m� 1)

2

mX
k=2

�
m� 2
k � 2

��Z t

�1

�e�u(�Zu)
m�2�(k�2)du

�
(Zt)

k�2dhZit

= e�t
�
mS

(m�1)
t dZt +

m(m� 1)

2
S
(m�2)
t dhZit

�
:

2

4 Option pricing

4.1 The General Theory

For any model of stock prices a key feature is the price equation for options. The aim

of this section is to price a European Contingent Claim with exercise date T and payo�

q(PT ). For simplicity we assume that n = 1 in (8) so that the volatility depends only on

the �rst order o�set S(1). As a result we can simplify notation in this section by writing

S as a shorthand for S(1). Note that (9) collapses to dSt = dZt � �Stdt and that we

can combine (8) and (9) to conclude that S is an autonomous di�usion satisfying the

stochastic di�erential equation

dSt = �(St)dBt + (�(St)� �St)dt:(10)

11



Then

logfPte�rtg � Zt = Z0 + (St � S0) + �

Z t

0

Sudu:

Note also that St is adapted to the �ltration Ft of B.

De�ne �(S) = 1

2
�(S)+f�(S)=�(S)g and consider the process ~Bt � Bt+

R t
0
�(Su)du.

Let P be Wiener measure for B. De�ne a new measure ~P by specifying that on Ft

d~P

dP
= exp

�
�
Z t

0

�(Su)dBu � 1

2

Z t

0

�(Su)
2du

�
:

See Appendix A for a discussion of the conditions under which ~P is a probability measure,

and under which ~P is equivalent to P.

If we assume that these conditions are satis�ed then we can rewrite (10) as

dSt = �(St)d ~Bt � ( 1
2
�(St)

2 + �St)dt;(11)

where ~B is a ~P Brownian motion. Then under ~P the discounted price process e�rtPt is

a martingale, and we can apply the elegant martingale pricing theory of Harrison and

Kreps (1979) and Harrison and Pliska (1981) to conclude that the option price can be

written

f(Pt; St; T � t) = e�r(T�t)~E [q(PT )jFt]:(12)

Subject to integrability conditions on q(:), the Brownian martingale representation Theo-

rem implies that the contingent claim can be replicated using a previsible trading strategy.

By the Feynman-Kac formula (Karatzas and Shreve (1988, p366)) f satis�es the

partial di�erential equation

0 = (rpfp � rf � �sfs � ft) +
�
� 1

2
fs +

1

2
p2fpp +

1

2
fss + pfsp

�
�(s)2(13)

subject to the boundary condition

f(p; s; 0) = q(p):(14)

Assuming that ~E (jq(PT )j) <1, the recipe (12) de�nes a solution to the partial di�erential

equation (13) with boundary condition (14), the necessary smoothness of the f so de�ned

being assured by H�ormander's Theorem (for a statement, see, for example, Rogers and

Williams (1987, Theorem V.38.16)). In general uniqueness requires a further argument,

but in the sequel we consider a situation which can be reduced using put-call parity to

the case where q is bounded, and then the optional sampling theorem guarantees that
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all bounded solutions can be expressed via (12) and it is clear that there is a unique

bounded solution to the PDE.

Note that if the stock volatility is constant so that dhZit=dt � �(St)
2 = �2 and f

depends only on P and t we recover

0 = rpfp � rf � ft +
1

2
�2p2fpp

which is the standard pde for the Black-Scholes option price.

4.2 A Speci�c Example: Smiles and Skews

The purpose of this section is to calculate the option price by numerically solving the

partial di�erential equation (13) subject to the boundary condition (14). This results

in an option price surface and, to facilitate comparison with the standard Black-Scholes

model, Black-Scholes implied volatilities are calculated. A numerical solution is necessary

because even in the simple example presented below it seems di�cult to derive properties

of the solution analytically; see however the end of this section for a few observations.

The speci�c example considered is potentially one of the simplest non-trivial cases,

namely to price a European call with the interest rate r taken to be zero (or equivalently

working with forward prices) and dynamics for the discounted log-price process Z given

by

�(s) = �
p
1 + �s2 ^ N;(15)

for some large constant N . The function � has the useful properties of being even (see the

remarks at the end of this section) and bounded. While more complicated functions �

depending on higher order o�set functions could be studied, it will be demonstrated below

that even the simple example speci�ed by (15) e�ectively accounts for the possibilities

of smiles and skews.

The intuition that we hope to capture with this model is that if the current price

di�ers greatly from a past average, then the volatility is high. Moreover, by basing �(s)2

on a quadratic in s with non-zero linear coe�cient (so that �(s) = �
p
1 + �s+ �s2 ^N),

then we could model markets in which volatility changes are correlated with price changes.

Thus for example, it is possible to construct a model in which volatility is higher when

the current (log)-price is below the past average, than when it is above the past average

by the same amount. Finally note that for suitable choice of the drift �, the o�set S is

mean reverting (see (10)), and this property will be inherited by the volatility �.
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By assumption � and � are Lipschitz continuous and time-homogeneous so that the

SDEs (10) and (11) each have a pathwise unique strong solution. Moreover, since �(S)

is both bounded above and bounded away from zero, S is non-explosive under both of

the probability measures P and ~P, and by Theorem 7.19 in Liptser and Shiryayev (1977)

these measures are equivalent. Thus the pricing theory of the previous section applies.

Note that if the volatility speci�cation (15) was replaced by �(s) = �
p
1 + �s2, then the

di�usion S would explode with positive probability under the candidate pricing measure

~P, thus contradicting the assumption that P and ~P are equivalent.

The option valuation formula becomes a function of the current price Pt, the current

o�set St and the time to go (T � t), as well as the parameters K (the strike), �, � and

�. Taking (for the moment) K = 1, and using the transformation P � eZ, U � Z � S,

the option pricing problem simpli�es to solving for V � V (Zt; Ut; T � t) � V (Zt; Ut; T �
t;�; �; �), where V satis�es the partial di�erential equation

Vt =
1

2
�(z � u)2[Vzz � Vz] + �(z � u)Vu(16)

subject to the boundary condition

V (Z;U; 0) = (eZ � 1)+:(17)

Since the numerical solution of (16) subject to (17) is calculated over �nite regions of the

z and u variables, the choice of N does not a�ect the solution V . Furthermore, in order

to guarantee existence and uniqueness of the solution it is better to solve (16) subject to

the boundary condition V (Z;U; 0) = (1� eZ)+. The price of a call can then be deduced

using put-call parity.

Now V gives the price of a call with �xed unit strike as a function of the asset

price at time 0, but it is a simple exercise using scaling to then calculate the price

~V � ~V (K;S; T ) of a call with arbitrary strike assuming, as we shall from now on, that

the initial asset value satis�es P0 = 1. (Here the analysis depends critically on the fact

that in our example � is a function of the o�set S alone, and is otherwise independent

of the price level.) Denote by pBS(�) the Black-Scholes option price as given by

pBS(�) = �[(� lnK + �2T=2)=(�
p
T )]�K�[(� lnK � �2T=2)=(�

p
T )]:(18)

Then we can de�ne a model implied volatility via

�BS(K;S; T ) = p�1BS(
~V (K;S; T )):

14
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Figure 2: European Call Prices: For an option with time to maturity T = 0:25,

and strike K = 1 the upper curve gives the Black-Scholes price for a volatility of

0.21, the lower curve the Black-Scholes price for a volatility of 0.2, and the middle

curve the price from the model proposed in (13) with � = 0:2, � = 5, � = 1 and

Z0 � U0 � S0 = 0:1. The intrinsic value of the option is also shown.
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By de�nition �BS(K;S; T ) is the volatility which, when substituted into the Black-Scholes

pricing formula (18) together with the strike K and the time to exercise, gives the cal-

culated option price.

Implied volatility provides a convenient measure for expressing the price of deriva-

tive securities in a language which can be applied accross di�erent security payo�s. The

results presented below are expressed in terms of the implied volatility �BS which is a

function of the in-the-moneyness of the option (given by the strike K; recall that the

current value of the asset is unity), the time to maturity T and the initial value of the

o�set S0. To begin with we set T to be 0.25, though later we consider implied volatilities

as a function of time.

Figure 3 shows the calculated implied volatility as a function of the �rst order

o�set S0 and the strike K, for parameter values � = 0:2, � = 5 and � = 5. The

immediate conclusion is that the presence of the non-constant volatility term has the

e�ect of increasing implied volatility, and that this e�ect is strongest when the initial

o�set is non-zero, and the option is not at-the-money.

At any moment in time there may trade a family of options with di�erent degrees of

in-the-moneyness, or correspondingly di�erent strikes. Thus it is illuminating to consider

cross-sections of this implied volatility surface, each cross-section corresponding to a

di�erent value of S0. In principle, with the bene�t of historical data, the value of S0 is

an observable so that the options trader will know which of the possible regimes for S0

describes the current situation. In practice it may be that the options trader will use

current options prices to infer the value of S0.

For all values of S0 the implied volatility is a convex function of the strike. Moreover

skew e�ects are also plainly visible: the smile has a pronounced positive skew for positive

values of S0 and a negative skew when the current log-price is below a past average. This

is in agreement with an intuitive understanding of the behaviour of the asset process.

Consider the situation of an out-of-the-money option with initial o�set S0 > 0.

This option will be worthless until the asset price rises to the strike price, and the larger

S0, the sooner this will happen. Given that the strike price is reached before exercise,

the o�set at that time will always be positive, and typically at least as large as S0.

The volatility will then be quite high, in
ating the option price. If we now consider what

happens to this argument as we allow S0 to get smaller, and then go negative, we see that

it becomes more di�cult (at least assuming that �S0 is not too large) for the price of the
asset to reach the strike before exercise, since the volatility has got smaller. Also, if �S0
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Figure 3: The Volatility Surface: The volatility surface is a function of the initial

value of the o�set, here ranging from -0.2 to +0.2, and shown from left to right,

and the logarithm of the strike, which varies from -0.2 (in the money) in the

foreground, to 0.2 (out of the money) at the back. The vertical scale showing the

implied volatility ranges from 0.2 to 0.218.
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0.206
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Implied Volatility

Figure 4: Sectional Smiles: A plot of Implied Volatility versus Strike; for the

example in Figure 3 with the three curves representing S0 = �0:1, S0 = 0 and

S0 = 0:1 taken from top to bottom on the left. In each case there is an observable

smile, and the skew varies with the initial o�set.
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is not too large, once the price reaches the strike, S will be nearer zero; the instantaneous

volatility will therefore be low, and so the price of the option will be reduced. Of course,

if �S0 gets to be large then �S will still be large when the exercise price is reached, and

so the option price will again be larger. This gives a qualitative explanation of the curves

seen in Figure 4.

To date the analysis has concentrated on options with maturity T = 0:25. We

now relax this condition. Figure 5 displays plots of implied volatility as a function of

both time to maturity and strike. There are two graphs corresponding to di�erent initial

values of the o�set. An immediate observation is that the magnitude of the skews and

smiles decreases with time. (Note that the main reason why the smile appears more

pronounced when the initial o�set is zero, is that the vertical scales in the two plots

are di�erent.) In both plots there are cross sections of constant strike along which the

implied volatility increases with time, and cross sections along which it decreases with

time. Both these observations are a corollary of the fact that the implied volatility is a

measure of the average instantaneous volatility over the lifetime of the option, and this

averaging leads to smoothing e�ects.

To complete the discussion of this numerical example we consider the sensitivity of

the implied volatilities to changes in the parameters of the model.

There is a strong qualitative similarity between the families of smiles for each

parameter pair (�; �) as illustrated by Figure 6. However parameter choice is seen to

a�ect the magnitude of the smiles; the size of the smiles is directly related to � and

is inversely related to �. The �rst of these relationships is immediate from (15). The

explanation for the second observation is that large values of � are associated with a

shorter half-life for the lookback period in the de�nition of the past average. Typically

this will decrease the values of the o�set function St, (see (9)), which in turn reduces the

volatility as de�ned via (15). Thus the nature of dependence on both the parameters �

and � follows from the particular speci�cation of the dynamics for the price process.

Finally we make some observations concerning the shape of the option price surface

V � V (Z;U; T ). If �(S) is an even function then it is easy to verify from the partial

di�erential equation (16) and the boundary condition (17) that

V (z; u; t) = ezV (�z;�u; t) + (ez � 1):

This property is shared by the Black-Scholes formula pBS(z; t):

pBS(z; t) = ezpBS(�z; t) + (ez � 1)
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Figure 5: Term Structure of Volatility: two plots of implied volatility as a function

of the logarithm of the strike and time to maturity of the option, with di�erent

initial values of the o�set S0.
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Figure 6: Sectional Smiles for di�erent values of the parameters � and �. Note

the changes in magni�cation of the y-scale. Each of the four plots displays a

triple of volatility smiles for the initial o�sets S0 = �0:1; 0; 0:1, in a manner

similar to Figure 4. The parameter � has the value 5 for the upper two graphs,

and one for the lower pair; � has value 5 on the left and one on the right.
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where pBS is considered as a function of the current log-price z, and time to go t, assuming

a unit strike. As a corollary, (see Renault and Touzi (1995) for details of this argument

in a similar context),

�BS(K;S; T ) = �BS(K
�1;�S; T ):

Thus the implied volatility of an in-the-money option is equal to that of an out-of-the-

money option subject to the sign of the current �rst-order o�set being switched. This

explains why in Figures 4 and 6 the skewed volatility smiles corresponding to S0 = �0:1
intersect at unit strike, and why in Figure 5 we have not shown a plot with initial o�set

S0 = �0:1.

5 Summary

In this paper we have introduced a new class of models for asset prices. The chosen

dynamics of the price processes are motivated by a desire to have a model which satis�es

two criteria. Firstly the instantaneous volatility should be related to the recent history

of the price process, and secondly, through the mechanism of options replication, there

should be preference-independent contingent-claim prices.

The new class of complete models with stochastic volatility proposes a causal link

between current asset price movements and future volatility. In contrast in the level-

dependent volatility models, the volatility depends solely upon the asset price process,

and in the stochastic volatility models the volatility is frequently taken to be an au-

tonomous process. The class of level-dependent volatility models may be thought of as a

special case of the new class of complete models with stochastic volatility. It shares the

property of preference-independent options prices, but there is no opportunity for shocks

in volatility to persist through time. In this sense the new class of models is similar in

spirit to the class of stochastic volatility models.

Smiles and skews in the implied volatility of traded options are a common phe-

nomenon. By considering one of the simplest non-trivial examples we have shown that

smiles and skews arise naturally through the new model. For the parameters used in x4.2
the magnitude of the smile and skew of a three month option ranges from almost nothing

to 10%. These values agree with the magnitudes of smiles found in empirical tests, for

example by Fung and Hsieh. Moreover without changing the underlying dynamics of the

price process the shape of the smile may change as the o�set changes.

In the model used in x4.2 there is a simple qualitative relationship between the
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shape of the smile and the recent history of the price process. In particular there is a

negative skew if and only if the asset price is below its recent average value. With a more

complicated speci�cation of the volatility in (15) other more complicated relationships

between the shape of the implied volatility curve and the values of the �rst and higher

order o�sets will arise. Such volatility models have the potential to describe and explain

both the prevailing implied volatility smiles and the dynamic changes of these smiles over

time.

A Appendix

Recall that in Section 4.1 we introduced a new probability measure ~P under which the

discounted price process was a martingale, and we assumed that ~P was equivalent to P.

The purpose of this appendix is to discuss that assumption.

Suppose that P0 is a probability measure on (
; fFtg0�t�T ;FT ) and suppose that

we attempt to de�ne a probability measure P1 by

dP1

dP0

� Yt

where Y is a non-negative continuous P0-local martingale with Y0 = 1. We require

conditions on Y which will guarantee that Y is a true martingale, and hence that P1 is

well de�ned.

Lemma A.1 De�ne �n = inffu : Yu > ng ^ T , and set Y n
t = Y (t ^ �n). De�ne the

probability measures Pn1 via (dPn1=dP0)jFt = Y n
t so that for A 2 Ft, P

n
1[A] = E0[Y

n
T IA].

Then the following are equivalent:

(i) Y is a martingale;

(ii) E0(YT ) = 1;

(iii) Pn1(�n < T )! 0 as n " 1:

If any of these conditions holds then P1 is well de�ned and P1 is absolutely continuous

with respect to P0.

Proof
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First let us remark that by Fatou's Lemma Y is a supermartingale and E0(YT ) � 1.

Clearly (i) implies (ii) and the converse is easily shown using the supermartingale property

and proof by contadiction.

For the remaining implications observe that Y n is a true martingale, and

1 = E0 [Y
n
T ] = E0[YT ; �n = T ] + E0 [Y

n
T ; �n < T ]

= E0[YT ; �n = T ] +Pn1[�n < T ]:

Now if (iii) holds then E0 [YT ; �n = T ]! 1 so that E0 [YT ] = 1. Conversely if E0 [YT ] = 1

then from Doob's submartingale inequality we deduce that P0[�n < T ] ! 0 and hence

E0 [YT ; �n = T ]! 1.

Finally for A 2 FT we can de�ne P1(A) = E0 [YTIA] and if P0(A) = 0 then neces-

sarily P1(A) = 0 also. �

There is little more to be said in such a general setting, but when P0 and P1 are the

laws of the solutions of stochastic di�erential equations there is hope of further progress.

Consider the special case 
 = C([0; T ];R) as our sample space, with canonical

process (Xt)0�t�T , and canonical �ltration F�
t � �(fXu : u � tg). For i = 0; 1 consider

the SDE

dxt = �(t; xt)dBt + �i(t; xt)(19)

where � : [0; T ]�R! R and �i : [0; T ]�R! R are measurable, and � is everywhere pos-

itive. More generally we could consider a d-dimensional process Xt, and a d-dimensional

SDE with � everywhere invertible, but the one-dimensional case has the twin advantages

of notational simplicity and su�ciency for the example we have in mind.

Assume in addition that for each i = 0; 1 the SDE (19) has a pathwise unique

strong solution; a su�cient condition for this assumption to hold is that � and �i are

time homogeneous and Lipschitz continuous, and hence our example from Section 4.2 �ts

into this setting. See Rogers and Williams (1987, Chapter V) for a discussion of concepts

of solutions of SDEs.

Now for i = 0; 1, let Pi be the law of the solution of (19) with a given initial value

x0 2 R. Consider Pi as a law on (
;F�
T ) and form the usual augmentation (Ft)0�t�T of

(F�
t )0�t�T with respect to 1

2
(P0+P1).

De�ne �t = �(t;Xt)
�1f�1(t;Xt)� �0(t;Xt)g.

Proposition A.1 The following are equivalent:

(i) P1 is absolutely continuous with respect to P0;
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(ii) P1[
R T
0
�2sds <1] = 1.

By interchanging the roles of P0 and P1 we immediately obtain the following corol-

lary:

Corollary A.1 P0 and P1 are equivalent if and only if
R T
0
�2sds is �nite almost surely

under both P0 and P1

Proof of Proposition A.1

For i = 0; 1 de�ne

dW i
t = �(t;Xt)

�1fdXt � �i(t;Xt)g:

Then for each i, W i is a (Pi;Ft)-Brownian motion, and the two are related by

dW 0
t = dW 1

t + �tdt:

Suppose that (i) holds. Then we can de�ne the Radon-Nikodym derivative Yt via

dP1

dP0

����
Ft

� Y (t) = exp

�Z t

0

�udW
0
u � 1

2

Z t

0

�2udu

�

= exp

�Z t

0

�udW
1
u +

1

2

Z t

0

�2udu

�
:

Now Yt is a non-negative P0-local martingale so that P0(supt Yt < 1) = 1, and by our

assumption of absolute continuity, P1(inft(Yt)
�1 > 0) = 1. Moreover Y �1

t is a P1-local

martingale; indeed

Y �1
t = exp(Mt � 1

2
hMit)

where Mt =
R t

0
�sdW

1
s and thus we can conclude that P1[inftfMt � 1

2
hMitg > �1] = 1.

Hence P1[supthMit <1] = 1 which is condition (ii).

For the converse de�ne

Yt = exp

�Z t

0

�udW
0
u � 1

2

Z t

0

�2udu

�
:

Then Y �1
t = exp

n
�
R t

0
�udW

1
u � 1

2

R t

0
�2udu

o
and since by assumption P1[

R T
0
�2sds <1] =

1 we have that P1[inft Y
�1
t = 0] = 0. Now let �n and Pn1 be de�ned as in Lemma A.1

Under Pn1 the canonical process X solves the SDE

dXt = �(t;Xt)dBt + (�1(t;Xt)Ift��ng + �0(t;Xt)Ift>�ng)dt:
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Pathwise uniqueness implies that

P
n
1(�n < T ) = P1( inf

0�t�T
Y �1
t < 1=n) # 0

so that by Lemma A.1, Y is a true (P0)-martingale, such that (dPn1=dP0)jFt = Y (t ^ �n)

and in particular P1 is absolutely continuous with respect to P0. �

For many examples it is straightforward to check the condition

Z T

0

�2sds <1 Pi almost surely.

For example if the functions �, �0 and �1 do not depend on t then the additive functional

At =
R t
0
a(Xu)du of the one-dimensional di�usion Xt does not explode if and only if a is

locally integrable with respect to the speed measure m of X.

Finally, for the speci�c example we considered in Section 4.2, let St, the �rst order

o�set, be the canonical process. Then �, as given by (15) is bounded above and below, �0

is Lipschitz (by Assumption 3.1 and Equation (10)), and �1 given by �1 � �( 1
2
�2+�s) is

again Lipschitz. As a corollary � is bounded above and below on compact intervals and

St is non-explosive under both P0 and P1, or rather Pand ~P in the notation of Section 4.2.

Hence by Corollary A.1, P and ~P are equivalent as desired.
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