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Abstract

We present derivative pricing and estimation tools for a class of stochastic volatility
models that exploit the observed �bursty� or persistent nature of stock price volatility�
An empirical analysis of high�frequency S�P ��� index data con�rms that volatility
reverts slowly to its mean in comparison to the tick�by�tick �uctuations of the index
value	 but it is fast mean�reverting when looked at over the time scale of a derivative
contract 
many months�� This motivates an asymptotic analysis of the partial di�eren�
tial equation satis�ed by derivative prices	 utilizing the distinction between these time
scales�
The analysis yields pricing and implied volatility formulas	 and the latter is used to

��t the smile� from European index option prices� The theory identi�es the important
group parameters that are needed for the derivative pricing and hedging problem for
European�style securities	 namely the average volatility and the slope and intercept of
the implied volatility line	 plotted as a function of the log�moneyness�to�maturity�ratio�
The results considerably simplify the estimation procedure	 and the data produces es�
timates of the three important parameters which are found to be stable within periods
where the underlying volatility is close to being stationary� These segments of station�
arity are identi�ed using a wavelet�based tool�
The remaining parameters	 including the growth rate of the underlying	 the cor�

relation between asset price and volatility shocks	 the rate of mean�reversion of the
volatility and the market price of volatility risk can be roughly estimated	 but are not
needed for the asymptotic pricing formulas for European derivatives� The extension to
American and path�dependent contingent claims is the subject of future work�
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� Introduction

A derivative pricing theory is successful if the parameters that describe it remain constant
when they are estimated from updated segments of historical data� Often only the simplest
models have sucient ease of tractability that the latter issue can be tested without a highly
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computationally�intensive empirical study appearing years after the model is proposed� For
example� the Black�Scholes theory has been of great use historically in markets and over
time frames where the volatility has been close to constant�

We present here a framework for derivative pricing that is tractable enough that the
stability of the parameters it needs can be investigated eciently on large datasets that are
increasingly available� and we do so with high�frequency S�P ��� index values and option
prices� Such eciency is obtained through simple asymptotic formulas that approximate
the model�implied volatility surface when volatility persists� as it has been widely observed
to do� Volatility clustering has not previously been used to simplify the basic pricing and
estimation problems� and the methodology detailed here has many other applications to risk
management and portfolio selection questions�

��� Background

Stochastic volatility models have become popular for derivative pricing and hedging in the
last ten years as the existence of a non�at implied volatility surface �or term�structure� has
been noticed and become more pronounced� especially since the �
	� crash� This phenom�
enon� which is well�documented in� for example� ���� ���� stands in empirical contradiction
to the consistent use of a classical Black�Scholes �constant volatility� approach to pricing
options and similar securities� However� it is clearly desirable to maintain as many of the
features as possible that have contributed to this model�s popularity and longevity� and the
natural extension pursued in the literature and in practice has been to modify the speci�ca�
tion of volatility in the stochastic dynamics of the underlying asset price model�

Any extended model must also specify what data it is to be calibrated from� The pure
Black�Scholes procedure of estimating from historical stock data only is not possible in an
incomplete market if one takes the view �as we shall� that the market selects a unique
derivative pricing measure� from a family of possible measures� which re�ects its degree of
�crash�o�phobia�� Thus at least some derivative data has to be used to price other deriva�
tives� and much recent work uses only derivative data to estimate all the model parameters
so that the assumed relationship between the dynamics of derivative prices and the dynamics
of the underlying is not exploited at all�

This is largely the case in the implied deterministic volatility �IDV� literature where
volatility is modeled as a deterministic function of the asset price Xt� volatility � ��t� Xt��
The stochastic di�erential equation modeling the asset price is

dXt � �Xtdt� ��t� Xt�XtdWt�

and the function C�t� x� giving the no�arbitrage price of a European derivative security at
time t when the asset price Xt � x then satis�es the generalized Black�Scholes PDE

Ct �
�

�
���t� x�x�Cxx � r�xCx � C� � ��

with r the constant risk free interest rate and terminal condition appropriate for the contract�
This has the nice feature that the market is complete which� in this context� means that the
derivative�s risk can �theoretically� be perfectly hedged by the underlying� and there is no
volatility risk premium to be estimated�
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Numerically inferred local volatility surfaces from market data by tree methods ���� or
relative�entropy minimization ��� or interpolation ���� have yielded interesting qualitative
properties of the �risk�neutral� probability distribution used by the market to price deriva�
tives �such as excess skew and leptokurtosis in comparison to the lognormal distribution��
In addition� these estimates are extremely useful for contemporaneous calibration of exotic
securities� but this approach has not yet produced a stable surface that can be used consis�
tently and with con�dence over time� See ���� for a detailed empirical study of this issue
and ���� for a mathematical explanation of why these surface��ts are outperformed by ��xed
smile� �projected� implied volatilities� Possibly this shortcoming could be improved by using
historical underlying data as well� though it is not clear how to implement this�

We also refer the reader to recent surveys of the stochastic volatility literature such as
���� ��� ����

��� Present Approach

We concentrate on the �pure� stochastic volatility approach in which volatility �t is modeled
as an It�o process driven by a Brownian motion that has a component independent of the
Brownian motion Wt driving the asset price�

����� Stochastic Volatility World and Implied Volatility Curves

In practice� traders are given to buying and selling in units of implied volatility corresponding
to option prices through the Black�Scholes formula� often known as �trading the skew��
This synoptic variable has been used to express a signi�cant discrepancy between market
and Black�Scholes prices� the implied volatilities of market prices vary with strike price and
time�to�maturity of the contracts� Commonly reported shapes of the curve plotted against
strike price with expiration �xed� are U�shaped ����� called the smile curve and� more recently�
negative or positive sloping ����� known as skew�

This particular shortcoming is remedied by stochastic volatility models �rst studied by
Hull �White ����� Scott ���� and Wiggins ��
� in �
	�� The underlying asset price is modelled
as a stochastic process which is now driven by a random volatility It�o process that may or
may not be independent� It was shown by Renault � Touzi ���� that stochastic volatility
European option prices produce the smile curve for any volatility process uncorrelated with
the Brownian motion driving the price process� and this robustness to speci�c modeling
of the volatility gives this extension of Black�Scholes a little more tractability than earlier
ones� Of course a smile curve exhibited by options data does not necessarily imply stochastic
volatility�

When there is correlation between volatility and price shocks� a similar global result is not
known� However� numerical simulations in ���� with volatility a geometric Brownian motion
give a negative skew for negative correlation and positive skew for positive correlation� This
is con�rmed by small �uctuation asymptotic results in ���� for any It�o volatility process�
and also the results of Section �� The explicit formulas for the implied volatility curve are
di�erent in the limit of small �uctuations and in the limit of fast mean�reversion as here�
See also ���� for detailed calculations in the former regime�
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����� Separation of Scales

There has been much analysis of speci�c It�o models in the literature by numerical and
analytical methods� for example ��	� ��� �	�� many of which have ignored correlation e�ects
and�or the volatility risk premium for tractability� Our goal is to identify and estimate from
market data the relevant parameters for derivative pricing� and to test their stability over
time� and thus the potential usefulness of stochastic volatility models for accurately assessing
market risks and pricing exotics�

What is �to our knowledge� new here in comparison with previous empirical work on sto�
chastic volatility models is our keeping of these two factors� use of high�frequency �intraday�
data� and an asymptotic simpli�cation of option prices predicted by the model that identi�es
the important groupings of the basic parameters that determine the observed deviation of
implied volatilities from historical volatility� These turn out to be easily estimated from
at�the�money market option prices�

The latter exploits the separation of time�scales introduced �in this context� in ����� It
is often observed that while volatility might �uctuate considerably over the many months
comprising the lifetime of an options contract� it does not do so as rapidly as the stock price
itself� That is� there are periods when the volatility is high� followed by periods when it is
low� Within these periods� there might be much �uctuation of the stock price �as usual�� but
the volatility can be considered relatively constant until its next �major� �uctuation� The
�minor� volatility �uctuations within these periods are relatively insigni�cant� especially as
far as option prices� which come from an average of a functional of possible paths of the
volatility� are concerned�

Many authors� for example ���� have proposed nonparametric estimation of the pricing
measure for derivatives� The analysis in ���� is independent of speci�c modeling of the
volatility process� but results in bands for option prices that describe potential volatility
risk in relation to its historical autocorrelation decay structure� while obviating the need
to estimate the risk premium� However� the market in at� and near�the�money European
options is liquid and its historical data can be used to estimate this premium�� We attempt
this with a parsimonious model that is complex enough to re�ect an important number of
observed volatility features�

�� volatility is positive�

�� volatility is mean�reverting� but persists�

�� volatility shocks are negatively correlated with asset price shocks� That is� when volatil�
ity goes up� stock prices tend to go down and vice�versa� This is often referred to as
leverage� and it at least partially accounts for a skewed distribution for the asset price
that lognormal or zero�correlation stochastic volatility models do not exhibit� The
skew is documented in empirical studies of historical stock prices� for example ���� and
past implied volatility data ����

�This was suggested to us by Darrell Du�e
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��� Main Result

�� When the rate of volatility mean�reversion �� de�ned in ���� is large �volatility persis�
tence�� the implied volatility curve from European call options is well�approximated by
a straight line in the composite variable labelled the log�moneyness�to�maturity�ratio

�LMMR�

LMMR ��
log

�
Strike Price
Stock Price

�
Time to Maturity

�

That is� if Ccall is the stochastic volatility call option price with payo� function h�x� �
�x�K��� then I de�ned by

Ccall � CBS�I��

where CBS is the Black�Scholes formula� is given by

I � a
log�K�x�

�T � t�
� b�O������ ���

The parameters a and b are easily estimated as the slope and intercept of the line�t�

�� The price Ch of any other European�style derivative with terminal payo� h�x�� includ�
ing for example binary options and barrier options� is given by

Ch � Ch
� �  C� �O������ ���

where Ch
� ��� is the solution to the corresponding Black�Scholes problem with constant

volatility �� and  C��t� x� solves

LBS���  C� � V�x
��

�Ch
�

�x�
� V�x

��
�Ch

�

�x�
�

with

LBS��� ��
�

�t
�

�

�
��x�

��

�x�
� r

�
x
�

�x
� �
�
� ���

V� �� �a��� ���

V� �� �
�
�� � b�� a�r �

�

�
���

�
� ���

and � is the long�run historical asset price volatility� The terminal condition is  C��T� x� �
� and any boundary conditions are zero also� The example of a knock�out barrier option
is computed in �����

The table below then distinguishes the model parameters� de�ned in Section �� from the
parameters that are actually needed for the theory� The latter can be written as groupings
of the former by the formulas given in Section �� but for practical purposes� there is no need
to do so� We pursue this in Section � for empirical completeness�
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Model Parameters Parameters that are needed

Growth rate of stock �
Mean historical volatility of stock �

Mean�level of log volatility m

Rate of mean�reversion of volatility �
Slope of implied volatility line�t a

Volatility of volatility 	

Correlation between shocks 

Intercept of implied volatility line�t b

Volatility risk premium �

The three parameters on the right�side of the table are easily estimated and found to be
quite stable from S�P ��� data�

Outline

Section � describes the basic model� its motivation and how it is used to price derivatives�
The asymptotic results are given in Section � in which the simple implied volatility surface
formula is presented� Then in Section �� we validate use of the asymptotics using S�P
��� data to quantify volatility persistence by its �large� mean�reversion rate coecient�
The implied volatility formula is �tted to near�the�money observed smirks in Section �
and the stability of its estimated slope and intercept over di�erent sections of the data is
demonstrated� Finally for completeness� we give ballpark estimates of the correlation and
the volatility risk premium in Section �� We conclude and outline future plans for using the
separation of scales methodology in Section ��

� Mean�Reverting Stochastic Volatility Models

��� Model

We analyze models in which stock prices are conditionally lognormal� and the volatil�
ity process is a positive increasing function of a mean�reverting Ornstein�Uhlenbeck �OU�
process� That is�

dXt

Xt
� �dt� f�Yt�dWt� ���

dYt � ��m� Yt�dt� 	d �Zt� ���

�Zt �� 
Wt �
q
�� 
�Zt�

where W and Z are independent Brownian motions� and 
 is the correlation between price
and volatility shocks� with j
j � ��
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The solution to ��� is

Yt � m� �Y� �m�e��t � 	
Z t

�
e���t�s�d �Zs� �	�

and� given Y�� Yt is Gaussian�

Yt � Y��e
��t � N

�
m
�
�� e��t

�
� ��

�
�� e���t

��
� �
�

where �� �� 	�� ����� Thus Y has a unique invariant distribution� namely N �m� ���� and is
a simple building�block for a large class of stochastic volatility models described by choice of
f���� We call these models mean�reverting because the volatility is a monotonic function of
a process Y whose drift pulls it towards the mean value m� The volatility is correspondingly
pulled towards approximately f�m�� We note that another suitable building�block process is
when Yt is a mean�reverting Feller �or Cox�Ingersoll�Ross or square�root� process�

dYt � ��m� Yt�dt� 	
q
Ytd �Zt� ����

and this could be analyzed similarly� However� we believe that leaving free the choice of f
a�ords sucient �exibility� while our subsequent pricing formulas are structurally unchanged
by di�erent choices� The simplest example� f�y� � ey was proposed by Scott ���� and was
also studied by Wiggins ��
�� It is related to EGARCH models by Nelson ��
�� the asymptotic
analysis of Section � for this particular case appears in �����

Figure � shows the estimate S�P ��� twenty�day transition probability density �from
the high�frequency data using methods described in Section � and ��� It is shown in com�
parison to the corresponding constant volatility lognormal density� The empirical density is
generated by simulation of ������� using the estimated parameter values� Clearly even the
Gaussian�based volatility model fattens the tails of the lognormal distribution� The negative
correlation generates the asymmetrically fatter left�tail�

��� Fast mean reversion

It is often noted in empirical studies of stock prices that volatility is persistent or bursty � for
days at a time it is high and then� for a similar length of time� it is low� However� over the
lifetime of a derivative contract �a few months�� there are many such periods� and looked at
on this timescale� volatility is �uctuating fast� but not as fast as the rapidly changing stock
price�

In terms of our model� we say that the volatility process is fast mean�reverting relative to
the yearly timescale� but slow mean�reverting by the tick�tick timescale� Since the derivative
pricing and hedging problems we study are posed over the former period� we shall say that
volatility exhibits fast mean�reversion without explicitly mentioning the longer timescale of
reference�

The rate of mean�reversion is governed by the parameter �� in annualized units of years���
In the next section� we present empirical evidence from S�P ��� data that � is in fact large
and that �� is a stable O��� constant� so that our large�� option pricing formulas of Section
� can be used�
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Figure �� Density functions for the index distribution twenty days forward� The Black�Scholes

density uses the constant volatility �� and the stochastic volatility density is generated by simula�

tion using the S�P ��� parameter values estimated for the �rst �� trading days of ����� The

comparison is qualitative because of the uncertainty in these estimates� as explained in Section 	�

As an illustration� Figure � shows sample stock price paths for the model ����� in which
� � � and � � ��� Since� from �
�� �

�
log � is the time for the expected distance to the mean

to halve� � � � corresponds to ��� of a year �roughly 	 months�� and � � �� corresponds to
about half a week� Alternatively� under the invariant distribution N �m� ���� the covariance
of Ys and Ys�t is �

�e��t and ��� is the correlation time of the OU process� For � � � this
correlation time is a year while for � � �� it is about a week�

An initial visual indication that intraday S�P ��� values exhibit the kind of persistence
associated with a small correlation time is shown in Figure �� which compares the index�s
returns process �or normalized �uctuation sequence de�ned in ����� with simulated returns
processes� The data compares better with the � � ��� simulation than the � � � simulation�

��� Derivative Pricing

We are interested in pricing European�style derivative contracts on the underlying stock�
When volatility is supposed constant� the classical Black�Scholes theory applies� when it is
modeled as a stochastic process as here� the derivative price C�t� x� y� is given by

C�t� x� y� � E
Q���
t�x�y fh�XT �g� ����

where E
Q���
t�x�y denotes the expectation given that Xt � x� Yt � y� and under an Equivalent

Martingale Measure �EMM� Q���� The payo� function of the derivative is h�x�� Under such
an EMM the discounted stock price is a martingale� By standard no�arbitrage pricing theory�
there is more than one possible EMM because the market is incomplete �the volatility is not
a traded asset�� the nonuniqueness is denoted by the dependence of Q on �� the market price
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Figure �� Simulated paths of �t � f
Yt� � eYt � fYt� t � �g the OU process de�ned by 
��� The

top �gure shows a path with � � � and the bottom one shows a path with � � ��� In both cases�

�� � ����� 
Efe�Ytg� �� � ��� Note how volatility clusters in the latter case�

of volatility risk� A detailed study of possible ways to de�ne this concept� along with other
results� is given in �����

By Girsanov�s theorem�

 Wt � Wt �
Z t

�

��� r�

f �Ys�
ds�

 Zt � Zt �
Z t

�
�sds�

de�ne independent Brownian motions �  W�  Z� underQ���� assuming for instance that � ��r
f�Yt�

� �t�

satis�es the Novikov condition ����� Obviously this will not be the case with f�y� � ey and
Y Gaussian� Nevertheless ey can be cuto� at � and the cuto� removed at the end to obtain
the formula given as an example in Section ��

The expectation in ���� is then with respect to the processes

dXt

Xt
� rdt� f�Yt�d  Wt� ����

dYt �

�
��m� Yt�� 	

�


��� r�

f �Yt�
� �t

q
�� 
�

��
dt� 	d� Zt� ����

� Zt �� 
  Wt �
q
�� 
�  Zt�

Further details of this derivation can be found� for example� in the review articles ���� ����
In particular� �t is the risk premium factor from the second source of randomness Z that
drives the volatility� in the perfectly correlated case j
j � � it does not appear� as expected�
In the uncorrelated case� 
 � �� �t is the only source of change in the drift of Yt�

��
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Figure �� The top � �gures show simulated paths of Dn� the de�meaned returns process de�ned in


��� with � �  and � � ���� respectively� The other parameter values are� � � ����� � � � � �
���� The simulations are done over 	� days with ���� points per day� This time series is then

decimated to � points per day� leaving ��� points� which is what is shown� The �rd �gure is the

S�P ����s normalized �uctuation process from the �rst 	� trading days of ���� decimated to ���
points total�

Assumption� The market price of volatility risk �t is constant�

As already stated� we will not need � by itself� but rather a derived quantity containing
� that is seen in the implied volatility skew� Most studies take � � � for simplicity� but we
take the view that the market selects a pricing measure identi�ed by a particular � which
will be shown to occur in a simple manner in our pricing and implied volatility formulas�

The market price of volatility risk � may not be constant in general� just as the other
parameters in the model ��� m� 	� 
� �� might not be constant� In Section ����� we
identify intervals of approximate stationarity for the historical index data wherein the model
parameters can be taken as constant� The market price of volatility risk � is not� however�
determined from the historical data but from the observed option prices� We did not look
for intervals of stationarity for the option prices� we simply took � to be constant in the
intervals of stationarity of the historical data� The asymptotic theory of fast mean reversion
does not require constant parameter values� They can vary on the slow time scale� length
O�T �� that is� the parameters �� m� 	� 
� � and � can be functions of t in �����

In Section �� we shall analyze the PDE corresponding to ���� in the presence of fast
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mean�reversion�

Ct�
�

�
f�y��x�Cxx�
	xf�y�Cxy�

�

�
	�Cyy� r�xCx�C�����m� y�� 	�y��Cy � �� ����

where

�y� �� 

��� r�

f �y�
� �

q
�� 
�� ����

The terminal condition is C�T� x� y� � h�x��
Note In equation ����� we make the a priori assumption that � � O���� the order of

the drift term in the risk�neutral volatility process is governed by � and 	� From our order
estimate of � from data in Section �� we shall a posteriori validate this assumption�

To summarize� the stochastic volatility model studied here is described by the �ve para�
meters �m� �� �� 
� �� which are� respectively� the mean m and the standard deviation � of the
invariant distribution of the driving OU process� the rate of mean reversion �� the skewness

� and the market price of volatility risk �� The last parameter cannot be estimated from
historical asset price data� As we shall see in Section �� not all of these are needed for the
pricing theory�

� Price and Implied Volatility Formulas

Remark The results of this section do not assume a speci�c choice of f����

Now� if the rate of mean reversion � were to become larger and larger� the distinction
between the time scales would disappear and the major �uctuations occur in�nitely often�
In this limit� volatility can be approximated by a constant as far as averages of functionals of
its path are concerned �that is� weakly�� and we return to the classical Black�Scholes setting�
What is of interest is the next term in the asymptotic approximation of C�t� x� y�� valid for
large �� that describes the in�uence of 
� � and the randomness �� � �� of the volatility�

In Appendix A� we derive the following formulas for a European call option whose payo�
is h�x� � �x�K��� The method of course applies to any payo� function� and there is likely
to be a closed�form solution for the stochastic volatility approximations whenever there is
one for the analogous classical Black�Scholes problem�

�� To lowest order� C�t� x� y� is approximated by the Black�Scholes formula CBS�t� x� with
the OU�averaged volatility coecient

� ��
�
hf �i

����
�

where h�i denotes the expectation with respect to the invariant measure N �m� ����

hgi � �p
����

Z �

��
e��y�m������g�y�dy�

The correlation 
 and volatility risk premium � have so far not played a role� and we
only have a crude approximation around the classical theory with a suitably averaged
constant volatility parameter�
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�� The implied volatility surface I�t� x�K� T �� de�ned by C�t� x� y� � CBS�t� x� I�� is cor�
respondingly approximated at this lowest order by ��

�� A higher order approximation for the option price is given by

C�t� x� y� � CBS�t� x� �� �
xe�d

�
���

�
p
��

�
V�
d�
�

� �V� � V��
p
T � t

�
����

where

V� �
�

�
p
��
h���
F � 
��� r�  F �

q
�� 
� !��f � � hf �i�i�

V� �
�


�
p
��
hF �f � � hf �i�i�

d� is de�ned in ����� and F �y� and  F �y� are antiderivatives of f�y� and ��f�y� respec�
tively� Note that y does not explicitly appear in the �rst two terms of the approxima�
tion� so there is no need to estimate today�s volatility�

�� The implied volatility surface is approximated �to order ���� by

I � a

�
log�K�x�

�T � t�

�
� b�O������ ����

where� as in ���� we shall use the notation

a � �V�
"��

��	�

b � � �
V�
��

�
r �

�

�
��
�
� V�

�
�

for the slope and intercept of implied volatility as a linear function of the LMMR� It
remains asymptotic �and thus is a good approximation� for T�t

j log�x�K�j
�� ������ that

is� as long as the contract is not very close to expiration or very far away from the
money� These extremes are not of concern here� Looked at as a surface in �K� T ��
the formula tells us that it is linear in the composite log�moneyness�to�maturity�ratio
�LMMR� variable log�K�x���T � t�� and the evolution in �t� x� is built into this vari�
able too� This strikingly simple description is purely a feature of fast mean�reverting
stochastic volatility and is independent of choice of f � A similar formula that suggested
interpolation of smile�smirk curves as a functions linear in both log�K�x� and T � t
was derived in ���� for the case of small amplitude correlated stochastic volatility�

Note that the implied volatility curve as a function of strike price K is decreasing if

 � � and increasing if 
 � �� This ties in with numerical experiments in ���� which suggest
sign��I��K� � sign�
� for �in their case� lognormal volatility� The same relationship is
re�ected in the small �uctuation formulas for any correlated It�o stochastic volatility model
in ����� Zhu � Avellaneda ���� also work with a lognormal stochastic volatility and derive an
explicit volatility risk premium assuming that short�term at�the�money calls are correctly

��



priced by Black�Scholes� Their risk�neutral volatility process has drift proportional to the
correlation� and simulation reveals the same dependence of the slope of the implied volatility
curve around�the�money to the correlation�s sign� In addition� their large deviation asymp�
totics show that in the regime of large strike price �deep out�of�the�money calls�� implied
volatility behaves like the square root of LMMR for the model they study� That regime is
not within the region of asymptoticity of Formula �����

A typical volatility term structure predicted by this ���� �as a function of strike price
and time�to�maturity at a �xed t and x� is shown in Figure ��
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Figure �� Implied volatility surface from the asymptotic formula 
���� The current index value is

Xt � ���� The slope and intercept values of 
��� are a � A�
p
� � ������ and b�� � B�

p
� �

������ which are typical estimates from ���� S�P ��� data found in Section ��

Note that m does not appear explicitly �it is contained in �� and that ��� 
� �� appear
as 
�

p
� and �

p
�� 
��

p
� only� In fact� the asymptotic approximation to this order for

any European security with payo� h�x� depends only on these combined parameters of the
model for the volatility �see Appendix A for details�� Thus if we obtain A and B from call
option implied volatility data� the same values are used to price �and hedge� all European
securities� The stability of the estimates is investigated in Section ��
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ExpOU Implied Volatility Formula

In the case f�y� � ey� which we shall use in Sections � and �� the averages in the constants
are easily computed to give

I � � � ��������

�



�

�
e��

��� � e��
���
� � log�K�x�

T � t
� ��

�

�
��
�
� ��

q
�� 
���

�
� ��
�

For 
 � �� which is the usual case� this gives a decreasing implied volatility curve when
plotted against strike price K� that is� a decreasing smirk� in the exponential OU case� Note
also that it is an increasing concave down function of time�to�maturity �� ��

�T�t
� when K � x�

and decreasing concave up �� ��
�T�t�

� when K � x�
The analysis gives rise to an explicit formula describing the geometry of the implied

volatility surface across strike prices and expiration dates� In particular� the relationship to
the risk premium parameter � in ���� considerably simpli�es the procedure for estimating the
�crash�o�phobia� information that it contains� which otherwise would be a computationally�
intensive inverse problem for the PDE �����

Constant dividend rate It can be shown that the formulas are simply adjusted to ac�
count for a constant dividend rate D� �see� for example ���� Chapter �� for de�nitions�� In
formula ���� and in the de�nition of B that follows� r is replaced by r � D�� In the special
expOU case� the D� does not appear in the implied volatility formula ��
��

� Rate of Mean�Reversion of S�P ��� Volatility

Remark In the empirical work of this section� we take the model f�y� � ey�

Our source of data is the Berkeley Options Database described in ����� This gives us S�P
��� index option quoted bid�ask prices and the corresponding quoted index price� time and
contract details� Since we work with quotes� the potential problem of nonsimultaneity be�
tween option and index prices does not arise� We shall present results based on European
call options� taking the average of bid and ask quotes to be the current price� Strike prices
are denoted by K and expiration dates by T �

Our data analysis in this work will be applied to the following dataset� the S�P ��� index
and European call options on it during �

�� Looking at just the index price at di�erent
times� we have �� ���� ��� index values� starting on � January and ending on �� December�

We divide the empirical work into two sections � here we use the historical index quotes
only to study the speed of mean�reversion of the volatility� and in Section �� we use option
prices to obtain the slope and intercept parameters a � A�

p
� and b � � � B�

p
� of ����

which contain the market price of volatility risk� that cannot be gotten without derivatives�
Only the estimate of the mean historical volatility � is needed for the derivatives theory� but
our study of the rate of mean�reversion will establish that it is large and that the data is
within the regime of validity of the asymptotic analysis�
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��� Review of Empirical Literature

Previous empirical work in this stochastic volatility context divides into estimation from
historical stock data by moments or likelihood methods in the ARCH�related literature�
�tting implied volatility alone� or �hybrid� approaches using both underlying and derivative
data� An extensive review appears in ��� and we give only a brief summary�

In the �rst category� the EGARCH models� whose continuous�time di�usion limit is the
�expOU� �f�y� � ey in ������ stochastic volatility model ��
�� is the most relevant here
because it contains skew� or nonzero correlation� whereas in ARCH�GARCH� there is none�
In the original EGARCH paper ����� Nelson used maximum likelihood estimation �with a
non�Gaussian random variable replacing the second Brownian increment dZ�� and subsequent
studies� especially in the stochastic volatility literature �	� ��� ��� �
� use the Generalized
Method of Moments �GMM��

In using GMM� it is necessary to choose which moments to match and what weighting
matrix to use� Indeed� there is a trade�o� between a large number of moments potentially
better exploiting the data� but greatly reducing the accuracy with which the weighting
matrix itself can be estimated� The detailed Monte Carlo study by Andersen � Sorensen ���
of this method applied to the expOU stochastic volatility model �which they refer to as the
stochastic volatility model� gives some guidelines in this regard� but they strongly caution
against using too many moments for high�frequency data series such as ours� The empirical
work mentioned so far all used daily data � for example� Scott ���� used � moments� while
Melino � Turnbull ���� used ��� We are after speci�c groupings of the original parameters
that the theory �Section �� highlights as most important� so we do not undertake a global
search for ��� 	�m� 
� at one attempt� In addition� we have a very large dataset whose points
are non�evenly spaced � this would make the GMM procedure �especially estimation of the
optimal weighting matrix� extremely complicated and computationally intensive� so we go
after the parameters as we need them�

In the second category� Heynen et al� ��
� study implied volatility as a proxy for real
volatility and conclude that EGARCH models provide a better description than GARCH or
CIR�based models �see equation ������ In Merville � Piptea ��	�� implied volatility is found
to be strongly mean�reverting� and Day � Lewis �
� �nd that implied volatilities contain
additional information to that in historical volatilities� so that the out�of�sample predictive
power of the former is greater� This motivates some authors ��� ��� to calibrate their models
using derivative data only� and some �hybrid� approaches �	� ��� get most parameters from
underlying data and the remaining �usually today�s volatility �t� and�or the volatility risk
premium� from least�squares �ts to option prices� Here� we shall certainly use the historical
index data� in the spirit of Black�Scholes� as well as near�the�money call option prices to
reveal information about the market�s �crash�o�phobia��

Bates ��� summarizes that most studies agree implied volatility is stationary and mean�
reverting�

Note that it is dicult to directly compare numbers from previous empirical surveys
such as those of Bakshi et al� ���� Duan ����� or Melino � Turnbull ���� because those and
many others use data on the coarse daily scale for which GARCH�type models are designed�
Additionally� the �tting is usually using options data only� whereas we are looking for fast
mean�reversion in intraday historical data to validate the implied volatility formula �����
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Our analysis of continuous�time models assumes that time discretization is on the �nest or
tick�by�tick time scale and allows for the simple dependence on the group parameters� Such
simplicity is not attained for coarser�grained models where estimates of all the GARCH�type
parameters are needed�

��� Preprocessing

We use the following notation for our discrete index data� The times are tn� n � �� �� � � � � N �
with non�uniform spacings #tn �� tn���tn� n � �� �� � � � � N��� The corresponding S�P ���
index values are denoted Xn� and we consider them as realizations of the Euler discretization
of ������

#Xn �� Xn�� �Xn � Xn

�
�#tn � eYn�n

q
#tn

�
� ����

#Yn �� Yn�� � Yn � ��m� Yn�#tn � 	��n
q
#tn� ����

where ��n �� 
�n�
q
��� 
���n� and f�ng and f�ng are independent sequences of independent

N ��� �� random variables�
We shall deal with the normalized �uctuation sequence�

Dn ��
�
#Xn

Xn
� ��#tn

�
�p
#tn

� ����

where

�� �
�

N

N��X
n��

#Xn

Xn#tn
�

Thus we think of Dn as a realization of eYn�n� whose moments are easily computable�� When
we speak of a segment of the data� the demeaning by subtraction of �� will be done over that
segment� though in practice� given our small time steps� we �nd that how the demeaning is
done has negligible e�ect on the results�

����� Trading time and Subsampling

In this section� the unit of time we use is the trading year� this comprises the hours 
am
to �pm Central Time each trading day� with ��� trading days in the year� In other words�
overnights and weekends �and holidays� are collapsed into continuous trading time� For the
derivative pricing theory �and the smile��tting of Section ��� the parameters ��A and B that
are needed are estimated calendar time� All we need from this section is to establish that �
is large�

All our D values are computed intraday� that is� we do not compute di�erences that
correspond to overnight di�erences� This gives us �� ���� ��� Dn�s with between �	�� and
��� 
�� per day�

In order to search for segments of stationarity and to use spectral methods for estimation�
we need to subsample the data at various rates �for example to deal with vector lengths of

�We shall not distinguish between the random variables and their samples to keep the notation simple �
which is meant will be clear in context


��



powers of two that are convenient for the Fast Fourier Transform�� This is done by resampling
at the lower rate after �ltering out high�frequencies using an eighth order Chebyshev lowpass
�lter� This removes the danger of aliasing that would occur from direct subsampling� We
used the MATLAB process decimate for this purpose� and we never subsample at a rate
greater than three in each use of the decimate function� and the data is subsampled from the
�rst ����	 � �� 

�� ��� D values� comprising just over ��� trading days� These subsampled
sequences are assumed evenly spaced� this is a safe assumption because there are so many
points each day� We could have linearly interpolated �rst� but this would not make signi�cant
di�erence given the high overall subsampling rate�

����� Segments of stationarity

We use the code BBLCT �Best Basis Local Cosines Transform� ���� to locate segments of
the data within which the Ds can be treated as stationary� Details are given in Appendix
C�

Our �ndings using this tool are summarized as follows�

�� In our �rst pass at the S�P ��� index data� we took closing prices for the �ve years
�

��� and computed ���� daily�spaced samples of the normalized �uctuation process
D� Using BBLCT� we found that one segment entirely contained the year �

� moti�
vating us to study the high�frequency within that year�

�� BBLCT uses a computationally expensive searching algorithm restricting its practical
use to datasets of length ��� � ����� We decimated our �� 

�� ��� points down to
�� ���� subsampling successively at rates of two or three� but not more� Running
BBLCT divides the ��� days into four segments of stationarity of lengths of roughly
���� ��� �� and �� days� Of course the segments do not start and end exactly at day
breaks� but we work on segments rounded to the nearest day�

�� In order to con�rm the stability of this segmentation we go inside each of the four
segments� decimate again from the full data to ���� points per segment and run BBLCT
again� We �nd that segments �� � and � are stable �that is� the routine does not re�
segment it into smaller segments�� Segment � however is quite unstable and is re�
segmented into as many as ten subsegments� For now� we will take segments �� � and
� as segments of stationarity and ignore segment ��

��� Estimation of � and �
�

Now that the segments of stationarity have been identi�ed using the decimated data� we
return to the high�frequency original D sequence to estimate � and �� within each segment�

Estimation of mean volatility

Since Dn � eYn�n� EfD�
ng � �� �� Efe�Ytg� Thus our estimator for � will be

�� �

vuut� �

N

N��X
n��

D�
n

�
� ����

�	



the square root of the sample variance of the Dn�s� In the second column of Figure �� we give
the volatility estimates from the stationarity segments of the data� We will later re�estimate
� in calendar time for use in derivative pricing�

Segment � estimate �� estimate
� ��� ���� ������ ��
���

� ����� ���� ������ ���	��
� ��	�� ���� �����	 ����
�

Figure �� Estimates of � in trading time� �� and � from the segmented data� The length in days

of each segment is given in parentheses�

Estimating the variance of the OU process

We next estimate ��� the variance of the invariant measure of the OU process� Since� by
direct computation in the expOU case �see Appendix B��

EfD

ng � ��
e
�

�

�

our estimator of �� is

��� �
�

�
log

��
�

N

N��X
n��
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�
����




�
� ����

Estimates for each segment and subsegment are given in Figure �� They establish that
� � O��� which provides an initial plausible basis for the stochastic volatility model we
study�

Stability

To test the stability of the estimates of � and �� of Figure �� we took the �rst segment
���� days�� cut it into �
 equal pieces of ��� ��� points each and found that the �uctuation
�de�ned by standard deviation divided by mean� of these estimators were ����$ and ���
$

for �� and ��� respectively�

��� Rate of mean reversion

Having established stable estimates of � and ��� we now provide evidence that volatility is

indeed fast mean�reverting� which validates applicability of the asymptotic analysis of the
previous section� This is a much harder problem than obtaining the � and �� estimates�
because it is necessary to measure correlation e�ects of the latent volatility process �recall
that ��� is like the half�life of the mean�reversion time� so we need to include lagged variables
to see it�� But our data is non�uniformly spaced so that equal lags in the index n do not
correspond to equal lags in real time� In this section� we will subsample the data using
decimate which removes the danger of aliasing and assume that the decimated data is equally
spaced in trading time�
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We present a spectral method to estimate � that indicates that � is large� or that the
half�life of mean�reversion is on the order of a trading day for our data� Such a fast mean�
reversion rate has previously been observed in exchange rate data ���� ���� and in equities
�	��

����� Rate of mean reversion from spectra

In this section we study the rate of mean reversion � from a spectral analysis of the
normalized �uctuation sequence Dn given by ����� Since for the exponential OU model
that we are considering� Dn � eYn�n� it is more convenient to do spectral analysis on
logD�

n � �Yn � log ��n� If our model is valid then log ��n is essentially an additive white
noise to the OU process whose correlation time ��� we want to estimate�

The spectrum of logD�
n should be the sum of a constant background� due to the additive

white noise� and a Lorenz spectrum of the form

���

�� � f �
�

For large � the Lorenz spectrum will be distinguishable from the constant background for
low frequencies f �

We have generated synthetic data for Dn based on the exponential OU model and carried
out the spectral analysis to determine the limits of its e�ectiveness� We then use the spectral
approach on the S�P ��� data and �nd that it provides striking evidence of a fast rate of
mean reversion� Precise quanti�cation of the rate is the subject of further investigation�

Synthetic data

In the simulations of the exponential OU model we use the parameters � � ���� and �� � ��

 � ����� The time length of the synthetic dataset is ��� trading days� with �� simulated
points per day� We use the Euler di�erence scheme ���� to obtain the sequence fYng� from
which we compute Dn � eYn�n� for n � �� �� � � � � ��� ��� � �	���

We generated synthetic data with many di�erent ��s in the range � � � � ����� This
corresponds to OU correlation times of about one year �slow mean�reversion� to an hour and
a half �very fast mean�reversion�� The low frequency peak seems to be present for � � ��
and can be resolved when � is about ��� or more� We do not use data over longer periods
because nonstationary e�ects need to be taken into consideration�

In Figure � we present three typical realizations of the spectrum of the logarithm of the
square of a simulated normalized �uctuation process Dn� corresponding to � � �� �� and
���� The horizontal frequency axis is scaled in the same units as �� In the middle and
bottom graphs� we see clearly the presence of the Lorenz spectrum with an � of about ��
and ��� respectively� which can be read as the frequency where the spectrum �rst hits the
mean�plus��$ horizontal line� A more precise criterion for identifying the � remains to be
worked out� In the top graph� the Lorenz part of the spectrum in the low frequencies is not
identi�able because of the lower resolution�

Similar success is seen in Figure � where the spectra for simulations for even larger rates
of mean�reversion � � ���� ���� ���� are shown� Clearly the spectrum best identi�es these
large rates�
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Figure �� Spectrum of the logarithm of the square of a simulated normalized �uctuation process

Dn� de�ned in 
���� with rate of mean reversion � �  in the top graph� � � � in the middle

one and � � �� in the bottom� The horizontal line is the mean plus ��� The data simulates ��
trading days with �� points per day and the window size of the FFT is ��� points 
� days��

����� Spectra of S�P �		 data

We went back to the original normalized �uctuation data Dn and within each of the three
stable segments of stationarity identi�ed by BBLCT in Figure �� we decimated the large data
set to a subsample corresponding to approximately �� points per day� With this choice of
subsampling rate� the Lorenz part of the spectrum which identi�es the rate of mean reversion
that much of the data exhibits �order ���� is most clearly visible�

The spectra are computed using discrete Fourier transforms on nonoverlapping windows
of width N�t to be chosen� and then averaged over these windows� There is a tradeo�
between choosing too small a window size which results in many windows� lots of averaging
and an overly�smoothed spectrum� and too big a window size which does not give enough
resolution in the lower frequencies to enable detection of the Lorenz part of the spectrum�

In the long segments � and �� we chose N�t� ���� which then corresponds to �� trading
days on which the Lorenz part� roughly a day �� � ���� can be observed� In the shorter
segment �� we take N�t� ���� corresponding to 	 trading days�

In Figure 	 we show the spectra for these three segments�
Looking carefully at Figure 	� we read o� the following order estimates for � in each of

the stationarity segments in the manner explained above for synthetic data�
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Figure �� Spectrum of the logarithm of the square of a simulated normalized �uctuation process

Dn� de�ned in 
���� From top to bottom� the rates of mean�reversion are � � ���� ���� ���� The

data simulates �� trading days with �� points per day and the window size of the FFT is ��� points


� days��

Segment � estimate Correlation time
�trading yrs��� �trading days�

� ��� ���� � ���� ��� � �
� ����� ���� � ���� ��� � �
� ��	�� ���� � ���� ��� � �

The correlation time is ��� trading days per year��� We note that although the estima�
tion of � so far is rough� the rate of mean reversion is clearly large� being on the order of
���� ����

����� Bootstrap validation of spectral method

We validate the spectral order estimate for � by simulating data using the estimated para�
meters �� �� from Figure � and � � ��� as observed in the data in Section ������ as well as
the nonuniform observation spacings f#tng from the real data� This is decimated in exactly
the same way as we did the real data and so we can check how our subsampling method
a�ects the computed spectrum� Then the spectra are computed using the same window and
points�per�day values as for the corresponding real data� and the identical segmentation� In
Figure 
� we give the results for the three segments� numbers �� � and �� and � � ���� We
chose 
 � ���� as a typical value� although we do not have estimates of this parameter yet�

These spectra compare very favorably with their corresponding real�data spectra in Fig�
ure 	� This gives us con�dence that the model we are using and the subsampling and
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Figure 	� Estimated spectrum of the logarithm square of the normalized �uctuation process Dn�

de�ned in 
���� for the S�P ��� in the following segments 
top to bottom�� segment � 
��� trading

days�� segment � 
���� segment � 
	��� The horizontal lines are the mean plus ���

estimation procedure presented here capture well the mean�reverting behavior of the S�P
��� index�

����� Estimation of rate of mean reversion from time correlations

An alternative to the spectral method is to use the estimator based on the covariance of the
�normalized and demeaned� squared returns�

EfD�
nD

�
n�kg � �
e
�

�e���tn�k�tn� � ����

for � �tn�k � tn� �� � �see Appendix B�� We have also used this method on real decimated
to ��� points per day� as well as simulated data�

Within each segment of stationarity� we average the empirical log�variogram given by

�

���
log

	

 �E

n
D�

nD
�
n�k

o
��



�
A ����

in nonoverlapping subsegments� Approximating e��s � �� �s for lag time s not too large�
we least�squares �t ���� to a straight line in the lag time tn�k� tn� The negative of the slope
gives us our estimate for �� The estimates we obtain are of the same order of magnitude
as the spectral estimates and have the same variability in the sense that the slope depends
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Figure 
� Spectrum of the logarithm of the square of a simulated normalized �uctuation process

Dn� de�ned in 
���� with rate of mean reversion � � ���� in the following segments 
top to bottom��

segment � 
��� days�� segement � 
���� segment � 
	��� The horizontal lines are the mean plus

���

sensitively on the maximum lag length chosen� This is analogous to extracting Lorenz part
from the spectra� That is� the moment method con�rms the presence of a large rate of mean
reversion� but a precise estimation is not possible�

An alternative to seeking � that we also tried was to estimate the combination 	
 using
the formula �see Appendix B�

EfDnjDn�kjg �
s
�

�
	
��

q
tn�k � tn �O ���tn�k � tn�� � ����

This moment has been used in ���� �
�� for example� to obtain the correlation coecient�
However� because it appears as a higher order term for small lag times� the estimator is
sensitive to the division by

p
tn�k � tn� Thus results can be expected to be even more highly

variable� and we observed this in practice�

��� Remarks on estimation of the rate of mean reversion

We �rst summarize the essential features of the estimation procedure�

� We work in trading time�

� We identify and use segments where the data can be considered stationary�

��



� We extract the rate of mean�reversion from the Lorenz part of the spectrum of the
logarithm of the squared normalized �uctuation process�

The positive aspects of estimation method are�

� We validate both the OU mean�reverting model and the estimation of the fast rate of
mean�reversion by bootstrap�

� The method separates the intrinsic variability over segments of the model parame�
ters from their statistical variability�� Note that we do not expect parameters of the
volatility process to be constant across the segments of stationarity�

� Our method is well�adapted to identifying fast mean�reversion and this is what we �nd
for the S�P ��� index�

Some negative aspects are�

� The lack of a precise quantitative estimator for the rate of mean�reversion ��

� The skew parameter 
 cannot be estimated by extension of these techniques with a
comparable degree of con�dence�

Neither of these two parameters is explicitly needed in practice�

� Fitting to the S�P ��� Implied Volatility Surface

Remark Again� no speci�c choice of f��� is assumed in this section�

We use our S�P ��� high�frequency data �described in Section �� to �t the implied volatility
surface given by ����� The unit of time is now calendar time� so that the time�to�expiration
of a contract is measured as a fraction of the standard ����day year�

First we take near�the�money call option prices of various strikes and maturities and
compute the least�squares �t to a linear function of the LMMR variable log�K�x���T �
t�� independently of any previous estimates� This indicates initial suitability of this basis
function for interpolation� We also investigate stability�

Results of smile �tting

We estimate the slope and intercept coecients �a and �b from �tting Black�Scholes implied
volatilities from observed option prices�

Iobs�t� x�K� T � � �a

�
log�K�x�

T � t

�
� �b� ��	�

where the estimates are related to V�� V� in ���� by ��	��

�A similar analysis achieves this separation for atmospheric temperature data in ���
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We split the large �rst segment of stationarity �of the S�P ��� index� into four equally
sized subsegments �of �� trading days� roughly six weeks each�� keep the second segment
complete� and divide the fourth segment into two equally sized segments�

The results of this linear regression for each subsegment�s data using only call options
whose strikes are within �$ of the stock price �jK

x
� �j � ����� are given in Figure ��� and

those using strikes within �$ are shown in Figure ��� We also eliminate very short�term
options whose maturities are less than � weeks� Finally we only take options quotes from the
ten�minute interval �����am to �����am each day to reduce the huge dataset which would
otherwise result in over�tting of two parameters if all tick data were used� In computing the
implied volatilities� we take r � ����	�D� � ������

A typical distribution of strike prices �for the �rst half of segment �� is shown in Figure
��� and the implied and �tted volatilities for that period in Figures �� and ���

Note that this is not a one�time �t of the smile or the I�K� T � term structure� the
evolution in �t� x� is built�in� so that we are not restricted to what option quotes are available
at any given time� However� we vary t and consequently x over a small range and leave a
more extensive study of the �t for future investigation�

Segment� Total number Number of points Slope Intercept St�Error Residual

subsegment of observations within �$ �a �b �����
�
��� ��	� ��	� ������	 ������ ��
� ���	
��� ���� ���� �����
� �����	 ��
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��� ��
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Figure ��� Estimates of �a and �b in each segment of stationarity from call options with strikes

within �� of current index value� and more than � weeks to expiration� The option prices are

quoted between �� and ��� each day� St�Error denotes the standard error� The �rst segment

is divided into � equal subsegments and the fourth into ��

We make the following observations from the results�

�� The slope coecients �a are small� This strongly supports the fast mean�reverting
hypothesis and validates use of the asymptotic formula�

�� The estimates �a and �b within the subsegments of the stationarity segments are relatively
stable �the low value of �a in subsegment �� � of Figure �� seems a feature of the very
low number of datapoints there�� In particular� the intercept estimates are very similar
in Tables �� and ��� There is less agreement in the slopes� depending on whether �$
or �$ moneyness derivatives are used� and it remains a matter of investigation as to
how close to the money data should be used before illiquidity of trading becomes a
concern�
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Figure ��� Estimates of �a and �b in each segment of stationarity from call options with strikes

within �� of current index value� and more than � weeks to expiration� The option prices are

quoted between �� and ��� each day� St�Error denotes the standard error� The �rst segment

is divided into � equal subsegments and the fourth into ��

�� The �uctuation of the slope estimates across segments is in concordance with the
relative variability we found in estimates of � in Section � compared with the stability
of the � estimates� the intercept is essentially � plus a correction term of order ������
while the slope is an O������� term�

�� The standard error is de�ned as the standard deviation of the implied volatilities from
the �t divided by the square root of the number of points in the �t� These errors
are small indicating that log�K�x���T � t� is a consistent basis for interpolation� The
residuals �the root of the sum of squared errors between the observations and the �t�
are also very reasonable� and do not indicate that the large number of points in the
sample has resulted in over�tting�

�� At the level of calibration� any European�style security can now be contemporaneously
priced with �a��b� � and the asymptotic formula ����

	 Other Parameters

Remark In this section� the empirical conclusions are for the expOU model� f�y� � ey�

We now combine our �t of the implied volatility surface in Section � with our model�
dependent estimates of "�� �� and the mean�reversion rate � from historical index data
in Section � to obtain estimates of the skewness coecient 
 and volatility risk premium �
for the expOU model� We shall see that while the parameters we actually need are stable�
there is a large degree of uncertainty in trying to separate out the basic model parameters�
The imprecision in the � and � estimates� is inherited by estimates of 
 and ��

Comparing ��	� and ��
�� and knowing "� and ��� gives us the values 
�
p
� from the

slope �a and �
q
��� 
���

p
� from the intercept �b� Using �� gives us the estimates

�
 �
�a�
p
��

�e����� � e������
� ��
�

��
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Figure ��� Implied volatilities against log�moneyness�to�maturity�ratio 
LMMR� in �rst half of

segment � 
roughly six weeks long�� options with strikes within �� of current index value� and

more than � weeks to expiration� The straight line is the �t to formula 
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Finally� we convert the estimate �� from Section ����� into calendar time by the factor
�������� The conversion is of course rough because trading time is a nonlinear deformation
of calendar time and not such a simple rescaling� However this inaccuracy is absorbed in the
roughness of the estimate of the rate of mean�reversion� The estimate is � is re�computed
in calendar time using the estimator of Section ��� with normalized �uctuation process data
fDng computed in that time unit� The estimates are not sensitive to estimation of the mean
growth rate ��

In the table below� we compute these over the three segments of the data corresponding
to those used in Table � and Section ������ The estimate �� is found to be extremely sensitive
to the graining of the data� high�frequency estimates are large� of the order of �� �� while
estimates from closing prices give more familiar historical index growth rates �j�j � O���$���
Nevertheless� estimates of � are highly variable over segments and as such very unsatisfactory�
but the �� estimates do not a�ect the �� estimates from high�frequency data because of the
relative insigni�cance of O�#t� terms compared to O�

p
#t� terms�

Segment �� �a �b ��� �� �� �
 ��
�length�

� �� months� ������ ������
 ������ ��
��� ������	 ���� ������ ����
�
� ���

�
months� ���

� ������� ����	� ���	�� ������ ���� ������ �����

� �� months� ������ ����			 ������ ����
� �����
� ���� ������� ������
The table separates the needed parameters� whose estimates are fairly stable� from the

ones presented only for completeness� whose estimates have a high degree of uncertainty�
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Figure ��� Implied volatilities against log�moneyness�to�maturity�ratio 
LMMR� in �rst half of

segment � 
roughly six weeks long�� options with strikes within �� of current index value� and

more than � weeks to expiration� The straight line is the �t to formula 
����

The data also validates a posteriori our assumption of � as O��� in size� That is� volatility
is fast mean�reverting in the risk�neutral world as well as the real world�


 Summary and Conclusions

�� Based on previous empirical studies and the analysis of index data presented here�
volatility is well�modeled as a fast mean�reverting stochastic process� The rate of
mean�reversion of the volatility is large�

�� Asymptotic analysis of the derivative pricing PDE simpli�es both the forward pricing
problem and the otherwise computationally�demanding inverse problem of estimating
market parameters�

�� The observed S�P ��� implied volatility surface can be stably �tted to a linear function
of log�moneyness�to�maturity�ratio� log�K�x���T�t�� as suggested by the asymptotics�

�� Only the historical mean volatility and the slope and intercept of this implied volatility
line�t are needed for the European pricing and hedging theory� and estimates of these
from the data are stable�

�� This formula also involves in a direct way the �crash�o�phobia� information contained
by the otherwise unobservable market price of volatility risk � � it is part of the intercept
of the implied volatility LMMR line�

�� Obtaining stable individual estimates of the risk premium itself� the stock growth rate�
the correlation and the rate of mean�reversion is extremely dicult� but not necessary
for the asymptotic theory�
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Figure ��� Distribution of call option strike prices for �rst half of segment � �roughly six
weeks long�� The histogram is shown in terms of moneyness K�x� ��

Future directions

Empirical

The estimation tools used here can now be used to validate a fast mean�reverting model for
other high�frequency datasets� We are presently preparing an empirical study of S�P ���
index data from other years� as well as foreign exchange rate data�

Fast mean�reverting methodology

�� The asymptotic expansion that gives the approximate form of the implied volatility� the
smile� is general and can be used to analyze the price of other derivative instruments�
for example� derivatives that depend on the price history of the underlying asset� It is
necessary to go to the second term in this expansion in order to get %smile� behavior
for the implied volatility� We have constructed a more elaborate expansion in which
more global information is incorporated into the �rst term and less in the second� But
it is still necessary to have the second term for %smile� behavior� These issues will be
addressed in detail in a paper that is now in preparation�

�� We are working on an asymptotic simpli�cation of the American option pricing problem
under stochastic volatility� which currently must be solved numerically�

�� The problem of computing optimal hedging strategies under constraints when volatility
is random is unsolved� For example� to optimize the probability of a successful hedge
with just the underlying given an initial cash input would require solving a degenerate
Hamilton�Jacobi�Bellman equation� We are looking at simplifying this problem with
separation of scales asymptotics�
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A Appendix� Asymptotic Analysis

We derive here the formulas presented in Section � and used in the empirical work of Section
��

Let us de�ne � � ���� so that fast mean reversion implies � � � �� �� We write ���� as
L�C � �� where

L� ��
�

�
L� �

�p
�
L� � L��

and

L� �� ��
��

�y�
� �m� y�

�

�y
�

L� ��
p
��
xf�y�

��

�x�y
�
p
���y�

�

�y
�

L� ��
�

�t
�

�

�
f�y��x�

��

�x�
� r

�
x
�

�x
� �
�
�

and �y� is de�ned in ����� Then� constructing an expansion

C�t� x� y� � C��t� x� y� �
p
�C��t� x� y� � �C��t� x� y� � � � � �

we �nd� comparing powers of � �� ��

L�C� � �

at the O����� level� Since L� involves only y�derivatives and is the generator of the OU
process Yt� its null space is spanned by any nontrivial constant function� and it must be that
C� does not depend on y� C� � C��t� x��

At the next order� O�������� we have

L�C� � L�C� � �� ����

and since L� takes y�derivatives� L�C� � �� By the same reasoning� ���� implies that
C� � C��t� x�� Thus� up till O���� the option price does not depend on the current volatility�

Comparing O��� terms�
L�C� � L�C� � ��

Given C��t� x�� this is a Poisson equation for C��t� x� y� and there will be no solution unless
L�C� is in the orthogonal complement of the null space of L�

� �Fredholm Alternative�� This
is equivalent to saying that L�C� has mean zero with respect to the invariant measure of the
OU process�

hL�C�i � ��

Since C� is independent of y and L� only depends on y through the f�y� coecient� hL�C�i �
hL�iC�� and

hL�i � LBS��� ��
�

�t
�

�

�
��x�

��

�x�
� r

�
x
�

�x
� �
�
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where �� �� hf �i� and C��T� x� � h�x��
So far� we have not used the terminal condition that de�nes the derivative contract� To

�x ideas� let us work with the European call� h�x� � �x � K��� This is used only in the
computation of the terms of the asymptotic sequence� and we return to the general h problem
at the end�

Thus C��t� x� � CBS�t� x� ��� and the �rst term in the expansion is the Black�Scholes
�call option� pricing formula with the averaged volatility constant �� The � and 
 have thus
far played no role� and we proceed to �nd the next term in the approximation� C��t� x��

Comparing terms of O�
p
��� we �nd

L�C� � � �L�C� � L�C�� � ����

which we look at as a Poisson equation for C��t� x� y�� Just as the Fredholm solvability
condition for C� determined the equation for C�� the solvability for ���� will give us the
equation for C��t� x�� Substituting for C��t� x� y� with

C� � �L��
� �L� � hL�i�C��

this condition is D
L�C� � L�L��

� �L� � hL�i�C�

E
� ��

where
hL�C�i � hL�iC� � LBS���C�

since C� does not depend on y�
De�ning

A ��
D
L�L��

� �L� � hL�i�
E
�

the equation determining C� is
LBS���C� � AC�� ����

as C� does not depend on y�
Again� using that L� acts only on y�dependent functions� we can write

A �

��p
�
�f�y�x

��

�x�y
�
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�
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��y�x�

��
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where
L���y� � ������y� � �m� y����y� � f�y�� � hf �i�

and so

A � V x�
��

�x�
�Wx�

��

�x�
�

with

V ��

�p
�
hf��i

W ��
�p
�
h�� ��
f � �i�
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Thus we must solve

LBS���C� � V x�
��CBS

�x�
��� �Wx�

��CBS

�x�
���

�
xe�d

�
���

�
q
�� �T � t�

�
W � V
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p
T � t
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�

where

d� �
log�x�K� � �r � �

�
����T � t�

�
p
T � t

� ����

and where we have used the explicit expression for the Black�Scholes price CBS���� The
terminal condition is C��T� x� � �� The explicit solution is given by the right�hand side of
the PDE multiplied by ��T � t�� That is�
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xe�d
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�
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V
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� �V �W �
p
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Finally� we compute

hf��i � � �
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hF
�
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hy
�
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h  F
�
f � � hf �i

�
i�

where F � � f and  F � � ��f � Rearranging ���� gives ����� where we have labelled

V� � W�
p
�

V� � V�
p
�

We can now calculate the implied volatility I de�ned by C� � CBS�I�� Constructing an
expansion I � � �

p
�I� � � � �� and comparing powers of �� we �nd that

I� � C��t� x�

�
�CBS

��
�t� x� ��

���

� ����

which leads to ����� where we have expressed the expansion for I in terms of inverse of the
fast mean reversion rate � � ���� This last computation is valid so long as �CBS

�	
is not very

small� which only occurs as x� ��� or t� T �

Extension to any European derivative

Note that the procedure is identical for any European derivative with payo� C�T� x� � h�x��
In particular� C��t� x� � Ch

BS�t� x� ��� where C
h
BS denotes the Black�Scholes price with the

payo� function h� and C� satis�es the same PDE ����� with the same operator A� Thus the
correction term C� depends only on the parameters A and B �which contain the groupings

�
p
� and �

p
�� 
��

p
��� It remains to be proven that this is also true for American

options�
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B Appendix� Estimators for the OU model parameters

We derive estimators in the continuous time situation and indicate their corresponding values
in the discrete time case�

Model and parameters

We consider the case f�y� � ey and recall that our model is

�
dXt � �Xtdt � eYtXtdWt

dYt � ��m� Yt�dt� 	dZt�
����

where Zt � 
Wt�
p
�� 
��t for Wt and �t two independent standard Brownian motions and

j
j � �� The process Yt is the OU process under its invariant distribution N �m� 	������
The process logXt satis�es

d logXt � eYtdWt � ��� �

�
e�Yt�dt� ��	�

Our problem is to estimate the four parameters �m��� 	� 
�� Actually the useful parameters

are "� �
q
Efe�Ytg� �� � 	����� � and 
 where one can easily derive "� � em��� � The �rst

two parameters� determining the one�point invariant distribution� are �easy� to estimate�

	� estimator

For � 	 �� at the order O���� Ef�logXt�
 � logXt�
�g depends only on the martingale

term eYtdWt in ��	�� De�ning the martingale Mt �
R t
� e

YsdWs� Ef�logXt�
 � logXt�
�g and

Ef�Mt�
 �Mt�
�g are equivalent at the order O��� and

Ef�Mt�
 �Mt�
�g �

Z t�


t
Efe�Ysgds � � "��� ��
�

which gives the estimator �"� used in Section ���� ����� in the corresponding discrete situation�

�
� estimator

With the same notations� Ef�logXt�
 � logXt�

g and Ef�Mt�
 �Mt�


g are equivalent at
the order O�� ��� This is equal to Ef�R t�
t eYsdWs�


g where eYs can be replaced by eYt at the
order O�� ��� One can compute

Efe
Yt�Wt�
 �Wt�

g � Efe
YtgEf�Wt�
 �Wt�


g � �� �"�
e
�
�

� ����

which gives the estimator ��� used in Section ���� ����� in the discrete case�

��



� and � estimators

We are now looking for autocorrelations of the squares of increments

Ef�logXt��
 � logXt��
��logXt��
 � logXt��

�g ����

where we assume that

� 	 t� � t� 	 �

�
� ����

the last quantity� the inverse of the rate of mean reversion� being possibly small which would
corresponds to our fast rate of mean reversion regime�

Again� at the order O�� �� only the martingale term eYtdWt in d logXt� ��	�� plays a role
and ���� is equivalent to

E
n
�Mt��
 �Mt��

� �Mt��
 �Mt��
�
o
�

E

��Z t��


t�
eYs�dWs�

�� �Z t��


t�
eYs�dWs�

���
����

At the order O�� ��� eYs� can be replaced by eYt� and eYs� by eYt� since � � s� � t� � � and
� � s� � t� � � � Using t� � � � t�� one obtains that the quantity ���� is equivalent to

�E
n
e�Yt�e�Yt� �Wt��
 �Wt��

�
o
� ����

The vector �Yt� � Yt��Wt��
 �Wt�� is Gaussian with mean �m�m� �� and covariance matrix	
BB


��

��
��

��
e���t��t�� �

��

��
e���t��t�� ��

��
C

� C �

�
CCA � ����

where the covariance C is given by

C � Ef�Yt� �m��Wt��
 �Wt��g� ����

Using the explicit form Yt� �m � e��t��Y��m� � 	e��t�
R t�
� e�sdZs� the independence of Y�

and Wt��
 �Wt� � the de�nition of Zt and the independence of the Brownian motions �t and
Wt� we get that

C � E
��


	e��t�
Z t�

�
e�sdWs

�
�Wt��
 �Wt��

�
�

E
��


	e��t�
Z t��


t�
e�sdWs

�
�Wt��
 �Wt��

�
�


	e��t�
Z t��


t�
e�sds �


	

�
e���t��t���e�
 � ��� ����

Denoting by ��u� v� w� the characteristic function of the Gaussian vector �Yt� � Yt��Wt��
 �
Wt��� we deduce that ���� is equal to �

�
� ���

�w� ���i���i� ��
�
which can easily be computed

to obtain that ���� is equal to

�

�
� �

�
�	�

��
e����t��t���e�
 � ���

�
e
m� ���

�
���e���t��t���� ��	�

��



Using the fact that �� 	 � and keeping only the terms of order O�� ��� we get that �����
and therefore ����� is equivalent to

� �e
m� ���

�
���e���t��t��� � � �"�
e
�

�e���t��t��� ��
�

which leads to the estimator �� used in Section ���� ����� in the discrete case� It can be seen
in ��	� that 
 only appears at the next order in � � This makes it even more dicult to
estimate� It is also the case for the estimator ���� and based on

Ef�logXt��
� � logXt��j logXt��
� � logXt� jg 

s
�

�
��
p
��
	"�

�� ����

obtained similarly by using ��
�w

��i��i� ��� t� � �� � t�� ��� 	 � and ��t� � t��	 ��

C Appendix� Identi�cation of intervals of approximate

stationarity

We will describe brie�y the method for identifying intervals of approximate stationarity that
is presented in ����� The software that implements this method was developed by Z� Zhang
�zzhang&ms�com�� It is Matlab�based and its main function is called BBLCT �best basis
local cosine transform��

The spectral estimation of stationary time series is a very well developed subject� How�
ever� relatively little is known about spectral estimation when the time series is only ap�
proximately stationary� If the covariance matrix of the time series is not a Toeplitz matrix�
corresponding to a stationary time series� Fourier analysis is not appropriate and the spec�
trum of the covariance matrix must be estimated from the data� not only the spectral coe�
cients� This means that the spectral analysis of a general� nonstationary� time series is quite
involved and requires a very large amount of data in order to be e�ective� So it is natural to
ask what happens when the time series is close to a stationary one so that Fourier analysis
is still applicable� Another way to state this question is this� if the covariance matrix is
not Toeplitz� it may still be decomposable approximately into blocks that are themselves
Toeplitz� so Fourier analysis can be used in each block� This is the question that is addressed
in �����

There are a couple of issues that come up immediately� how is the segmentation into
blocks to be decided and how should we measure the error in the approximation' The
recently developed technology of wavelets gives us some very good tools with which to
answer these questions� The main tool is the local cosine transform �LCT�� which we will
describe brie�y in the continuous time case�

Let ap� p � �������� ��� be a sequence of time points that go to in�nity at p�� and
negative in�nity as p � ��� The contiguous intervals �ap� ap��� form a segmentation of
the time axis which we denote symbolically by �� Given this segmentation� it is possible to
construct an orthonormal basis in L��R� which is roughly a Fourier basis in each segment�
To do this we need a sequence of cuto� functions gp�t� with support that is a little bigger
than the interval �ap� ap��� but smaller than the larger interval �ap��� ap���� and they must

��



be equal to one for most of the interior of �ap� ap���� They are required to be a partition of
unity

P
p jgp�t�j� � � for all t and they have to have some important even�odd properties

about the interval end points fapg� It is the technology of wavelets that allowed the simple
and explicit construction of such families of cuto� functions� Given the cuto� functions� we
introduce the local Fourier transform

�p�k�t� �

s
�

ap�� � ap
gp�t� cos

�
�k � �

�
��

ap�� � ap
�t� ap�

�
����

where p � �������� ��� and k � �� �� �� ���� The theorem of Coifman and Meyer �cited in ����
along with many other references� tells us that this collection of functions is an orthonormal
basis in L��R�� To emphasize the dependence of this basis on the segmantation � we write
��p�k�t��

Now given a continuous time time series Xt and a segmentation �� we de�ne the modulus
of the Fourier coecients of Xt relative to the basis ��p�k�t� by

d�p�k � j
Z
Xt�

�
p�k�t�dtj�� ����

and the segmentation dependent functional

O��� �
X
p�k

�d�p�k�
�� ����

This functional is just the sum of the squares of the diagonal entries of the unsmoothed�
empirical covariance matrix relative to this basis� The diagonal terms d�p�k are the analog of
the periodogram in the stationary case� The segmentation �� that maximizes this functional
is such that the empirical covariance relative to the basis ��

�

p�k is as diagonal as possible �see
���� for the detailed calculations�� It is natural to think of the segmentation �� as the one
relative to which the parts of Xt in each segment are close to stationary time series� We call
the intervals corresponding to the segmentation �� intervals of approximate stationarity�

It is the implementation of this method that is contained in the Matlab�based software
BBLCT� The details of the implementation are� naturally� complicated not only because it
has to be done in discrete time and over �nite segments but also because the maximization
has to be done in an ecient way� Some of the implementation details are discussed in �����

��
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