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12 Spanning Generalized European Payoffs

As usual, we assume that European options with all possible strikes and
expirations are traded. In the spirit of the paper by Carr and Madan (1998),
we now show that any twice-differentiable payoff at time T may be statically
hedged using a portfolio of European options expiring at time T .

From Breeden and Litzenberger (1978), we know that we may write the
pdf of the stock price ST at time T as

p(ST , T ; St, t) =
∂2C̃(St, K, t, T )

∂K2

∣∣∣∣∣
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∂K2

∣∣∣∣∣
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where C̃ and P̃ represent undiscounted call and put prices respectively.
Then, the value of a claim with a generalized payoff g(ST ) at time T is

given by
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where F represents the time-T forward price of the stock. Integrating by
parts twice and using the put-call parity relation C̃(K) − P̃ (K) = F − K
gives
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0
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By letting t → T in Equation 49, we see that any European-style twice-
differentiable payoff may be replicated using a portfolio of European options
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with strikes from 0 to ∞ with the weight of each option equal to the second
derivative of the payoff at the strike price of the option. This portfolio of
European options is a static hedge because the weight of an option with a
particular strike depends only on the strike price and the form of the payoff
function and not on time or the level of the stock price. Note further that
Equation 49 is completely model-independent.

Example: European Options

In fact, using Dirac delta-functions, we can extend the above result to payoffs
which are not twice-differentiable. Consider for example the portfolio of
options required to hedge a single call option with payoff (ST −L)+. In this
case g′′(K) = δ(K − L) and Equation 49 gives

E
[
(ST − L)+

]
= (F − L)+ +

∫ F

0
dK P̃ (K) δ(K − L) +

∫ ∞

F
dK C̃(K) δ(K − L)

=

{
(F − L) + P̃ (L) if L < F

C̃(L) if L ≥ F

= C̃(L)

with the last step following from put-call parity as before. In other words,
the replicating portfolio for a European option is just the option itself.

Example: Amortizing Options

A useful variation on the payoff of the standard European option is given
by the amortizing option with strike L with payoff

g(ST ) =
(ST − L)+

ST

Such options look particularly attractive when the volatility of the underly-
ing stock is very high and the price of a standard European option is pro-
hibitive . The payoff is effectively that of a European option whose notional
amount declines as the option goes in-the-money. Then,

g′′(K) = − 2L

ST
3 θ(ST − L) +

δ(ST − L)

ST
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Without loss of generality (but to make things easier), suppose L > F . Then
substituting into Equation 49 gives

E

[
(ST − L)+

ST

]
=

∫ ∞

F
dK C̃(K) g′′(K)

=
C(L)

L
− 2L

∫ ∞

L

dK

K3
C̃(K)

and we see that an Amortizing call option struck at L is equivalent to a
European call option struck at L minus an infinite strip of European call
options with strikes from L to ∞.

12.1 The Log Contract

Now consider a contract whose payoff at time T is log(ST

F
). Then g′′(K) =

− 1
ST

2 and it follows from Equation 49 that

E
[
log

(
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F

)]
= −
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0
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F
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Rewriting this equation in terms of the log-strike variable y ≡ log
(

K
F

)
, we

get the promising-looking expression

E
[
log

(
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F

)]
= −

∫ 0

−∞
dy p(y) −

∫ ∞

0
dy c(y) (50)

with c(y) ≡ C̃(Fey)
Fey and p(y) ≡ P̃ (Fey)

Fey representing option prices expressed
in terms of percentage of the strike price.

13 Variance and Volatility Swaps

We now revert to our usual assumption of zero interest rates and dividends.
In this case, F = S0 and applying Itô’s Lemma, path-by-path

log
(

ST

F

)
= log

(
ST

S0

)

=
∫ T

0
d log (St)

=
∫ T

0

dSt

St

−
∫ T

0

σSt
2

2
dt (51)
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The second term on the RHS of Equation 51 is immediately recognizable
as half the total variance WT over the period {0, T}. The first term on the
RHS represents the payoff of a hedging strategy which involves maintaining
a constant dollar amount in stock (if the stock price increases, sell stock; if
the stock price decreases, buy stock so as to maintain a constant dollar value
of stock). Since the log payoff on the LHS can be hedged using a portfolio
of European options as noted earlier, it follows that the total variance WT

may be replicated in a completely model-independent way so long as the
stock price process is a diffusion. In particular, volatility may be stochastic
or deterministic and Equation 51 still applies.

13.1 Variance Swaps

Although variance and volatility swaps are relatively recent innovations,
there is already a significant literature describing these contracts and the
practicalities of hedging them including articles by Chriss and Morokoff
(1999) and Demeterfi, Derman, Kamal, and Zou (1999).

In fact, a variance swap is not really a swap at all but a forward contract
on the realized annualized variance. The payoff at time T is

N × A×




1

N

N∑

i=1

{
log

(
Si

Si−1

)}2

−
{

1

N
log

(
SN

S0

)}2


 − N ×Kvar

where N is the notional amount of the swap, A is the annualization factor
and Kvar is the strike price. Annualized variance may or may not be defined
as mean-adjusted in practice so the corresponding drift term in the above
payoff may or may not appear.

From a theoretical perspective, the beauty of a variance swap is that it
may be replicated perfectly assuming a diffusion process for the stock price
as shown in the previous section. From a practical perspective, market op-
erators may express views on volatility using variance swaps without having
to delta hedge.

Variance swaps took off as a product in the aftermath of the LTCM
meltdown in late 1998 when implied stock index volatility levels rose to
unprecedented levels. Hedge funds took advantage of this by paying variance
in swaps (selling the realized volatility at high implied levels). The key to
their willingness to pay on a variance swap rather than sell options was that
a variance swap is a pure play on realized volatility – no labor-intensive delta
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hedging or other path dependency is involved. Dealers were happy to buy
vega at these high levels because they were structurally short vega (in the
aggregate) through sales of guaranteed equity-linked investments to retail
investors and were getting badly hurt by high implied volatility levels.

13.2 Variance Swaps in the Heston Model

Recall that in the Heston model, instantaneous variance v follows the pro-
cess:

dv(t) = −λ(v(t)− v̄)dt + η
√

v(t) dZ

It follows that the expectation of the total variance WT is given by

E [WT ] = E

[∫ T

0
vt dt

]

=
∫ T

0
v̂t dt

=
1− e−λT

λ
(v − v̄) + v̄T

The expected annualized variance VT is given by

VT ≡ 1

T
E [WT ] =

1− e−λT

λT
(v − v̄) + v̄

We see that the expected variance in the Heston model depends only on v, v̄
and λ. It does not depend on the volatility of volatility η. Since the value of
a variance swap depends only on the prices of European options, it follows
that a variance swap would be priced identically by both Heston and our
local volatility approximation to Heston.

13.3 Dependence on Skew and Curvature

We know that the implied volatility of an at-the-money forward option in
the Heston model is lower than the square root of the expected variance
(just think of the shape of the implied distribution of the final stock price
in Heston). In practice, we start with a strip of European options of a given
expiration and we would like to know how we should expect the price of a
variance swap to relate to the at-the-money-forward implied volatility, the
volatility skew and the volatility curvature (smile).
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13.4 Volatility Swaps

Realized volatility ΣT is the square root of realized variance VT and we know
that the expectation of the square root of a random variable is less than (or
equal to) the square root of the expectation. The difference between

√
VT

and ΣT is known as the convexity adjustment.
Figure 1 shows how the payoff of a variance swap compares with the

payoff of a volatility swap.

Figure 1: Payoff of a variance swap (dashed line) and volatility swap (solid
line) as a function of realized volatility. Both swaps are stuck at 30% volatil-
ity. ΣT
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Intuitively, the magnitude of the convexity adjustment must depend on
the volatility of realized volatility. Note that volatility does not have to be
stochastic for realized volatility to be volatile; realized volatility ΣT varies
according to the path of the stock price even in a local volatility model.

In fact, there is no replicating portfolio for a volatility swap and the
magnitude of the convexity adjustment is highly model-dependent. As a
consequence, market makers’ prices for volatility swaps are both wide (in
terms of bid-offer) and widely dispersed. As in the case of live-out options,
price takers such as hedge funds may occasionally have the luxury of being
able to cross the bid-offer – that is, buy on one dealer’s offer and sell on the
other dealer’s bid.

Assuming no jumps however (Matytsin (1999) discusses the impact of
jumps), the convexity adjustment is not so model dependent. We will now
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compute it for the Heston model.

13.5 Convexity Adjustment in the Heston Model

To compute the expectation of volatility in the Heston model we use the
following trick:

E
[√

VT

]
=

1

2
√

π

∫ ∞

0

1− E
[
e−ψV

]

ψ3/2
dψ (52)

From Cox, Ingersoll, and Ross (1985), the Laplace transform of the total
variance WT =

∫∞
0 vt dt is given by

E
[
e−ψWT

]
= Ae−ψvB

where

A =

{
2φ e(φ+λ)T/2

(φ + λ)(eφT − 1) + 2φ

}2λv̄/η2

B =
2 (eφT − 1)

(φ + λ)(eφT − 1) + 2φ

with φ =
√

λ2 + 2ψη2.
With some tedious algebra, we may verify that

E [WT ] = − ∂

∂ψ
E

[
e−ψWT

]∣∣∣∣∣
ψ=0

=
1− e−λT

λ
(v − v̄) + v̄T

as we found earlier in Section 13.2.
Computing the integral in Equation 52 numerically using the usual pa-

rameters from Homework 2 (v = 0.04, v̄ = 0.04, λ = 10.0, η = 1.0), we get
the graph of the convexity adjustment as a function of time to expiration
shown in Figure 2.

Using Bakshi, Cao and Chen parameters (v = 0.04, v̄ = 0.04, λ =
1.15, η = 0.39), we get the graph of the convexity adjustment as a func-
tion of time to expiration shown in Figure 3.
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Figure 2: Annualized Heston convexity adjustment as a function of T with
parameters from Homework 2.
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Figure 3: Annualized Heston convexity adjustment as a function of T with
Bakshi, Cao and Chen parameters.
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To get intuition for what is going on here, compute the limit of the
variance of VT as T →∞ with v = v̄ using

var [WT] = E
[
WT

2
]
− {E [WT ]}2

=
∂2

∂ψ2
E

[
e−ψWT

]∣∣∣∣∣
ψ=0

−




∂

∂ψ
E

[
e−ψWT

]∣∣∣∣∣
ψ=0





2

= v̄T
η2

λ2
+ O(T 0)
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Then, as T → ∞, the standard deviation of annualized variance has the
leading order behavior v̄√

T

η
λ
. The convexity adjustment should be of the

order of the standard deviation of annualized volatility over the life of the
contract. From the last result, we expect this to scale as η

λ
. Comparing

Bakshi, Cao and Chen (BCC) parameters with Homework 2 parameters, we
deduce that the convexity adjustment should be roughly 3.39 times greater
for BCC parameters and that’s what we see in the graphs.

14 Epilog

I hope that this series of lectures has given students an insight into how
financial mathematics is used in the derivatives industry. It should be ap-
parent that modelling is an art in the true sense of the word – not a science,
although when it comes to implementing the chosen solution approach, sci-
ence becomes necessary. We have seen several examples of claims which may
be priced differently under different modelling assumptions even though the
models generate identical prices for European options. The importance of
lateral thinking outside the framework of a given model cannot be over-
emphasized. For example, what is the impact of jumps? of stochastic
volatility? of skew? and so on. Finally, intuition together with the abil-
ity to express this intuition clearly is ultimately what counts; without this
intuition, financial mathematics is useless in practice given that the ultimate
users of models are overwhelmingly non-mathematicians.
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