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9 Asymptotic Behaviour of the Volatility Skew

9.1 Short Expirations

We start by rewriting our original general stochastic volatility SDEs (1) and
(2) in terms of the log-moneyness x = log

(
F
K

)
and under the risk neutral

measure, specializing to the case where α and β do not depend on S or t.

dx = −v

2
dt +

√
v dZ1

dv = α (v) dt + η
√

vβ (v) dZ2 (42)

We may rewrite
dZ2 = ρdZ1 + ϕdZ∗

1

with ϕ =
√

1− ρ2 and 〈dZ∗
1 , dZ1〉 = 0. Eliminating

√
vdZ1, we get

dv = α (v, t) dt + ρη β (v, t)
{

dx +
v

2
dt

}
+ ϕη β (v)

√
v dZ∗

1

Then,

E [v + dv |dx ] = v + α (v) dt + ρη β (v)
{

dx +
v

2
dt

}

so for small times to expiration (relative to the variation of α(v) and β(v)),
we have

vloc(x, t) = E [vt |xt = x ]

≈ v0 +
[
α(v0) + ρη

v0

2
β(v0)

]
t + ρηβ(v0) x (43)

The coefficient of x (the slope of the skew) here agrees with that derived by
Lee (2001) using a perturbation expansion approach.

To extend the result to implied volatility, we need the following lemma:

Lemma

The local volatility skew is twice as steep as the implied volatility skew for
short times to expiration.

32



Proof

From Section 5.2, we know that BS implied total variance is the integral
of local variance along the most probable path from the stock price on the
valuation date to the strike price at expiration. This path is approximately
a straight line (see Figure 1). Also, from Equation 43, we see that the slope
of the local variance skew is a roughly constant β(v0) for short times. The
BS implied variance skew, being the average of the local variance skews, is
one half of the local variance skew. Formally,

σBS(K, T )2 ≈ 1

T

∫ T

0

vloc(x̃t, t)dt

≈ const. +
1

T

∫ T

0

ρηβ(v0)x̃tdt

≈ const. +
1

T

∫ T

0

ρηβ(v0)xT
t

T
dt

= const. +
1

2
ρηβ(v0) xT

where x̃ represents the “most probable” path from the stock price at time
zero to the strike price at expiration. ¤

We conclude that for short times to expiration, the BS implied variance
skew is given by

∂

∂x
σBS(x, t)2 =

ρη

2
β(v0) (44)

Recall that in the Heston model, β(v) = 1; we see that equation 44
is consistent with the short-dated volatility skew behavior that we derived
earlier in Section 6.2 for the Heston model.

Note that the short-dated volatility skew is not explicitly time-dependent;
it depends only on the form of the SDE for volatility. In contrast, as we shall
see, local volatility models imply short-dated skews which decay rapidly as
time advances. So even if we find a stochastic volatility model and a local
volatility model that price all European options identically today, forward-
starting options (that is options whose strikes are to be set some time in
the future) cannot possibly be priced identically by these two models. Both
models fit the options market today but the volatility surface dynamics im-
plied by the two models are quite different.
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Figure 1: Integrating local variance to get implied variance

Equation 44 suggests a wild generalization: perhaps all stochastic volatil-
ity models, whether analytically tractable or not, have similar implications
for the BS implied volatility skew up to a factor of β(v). By investigating the
behavior of the volatility skew at long expirations, we will present evidence
which makes this claim more plausible.

9.2 Long Expirations

Fouque, Papanicolaou, and Sircar (1999) and Fouque, Papanicolaou, and
Sircar (2000) show using a perturbation expansion approach that in any
stochastic volatility model where volatility is mean-reverting, Black-Scholes
implied volatility can be well approximated by a simple function of log-
moneyness and time to expiration for long-dated options. In particular,
they study a model where the log-volatility is a Orenstein-Uhlenbeck process
(log-OU for short). That is:

dx = −σ2

2
dt + σ dZ1

d log(σ) = −λ[ log(σ)− log(σ) ]dt + ξdZ2
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They find that the slope of the BS implied volatility skew is given (for large
λT ) by

∂

∂x
σBS(x, T ) ≈ ρξ

λT
(45)

To recast this in terms of v to be consistent with the form of the generic
process we wrote down in Equation 42, we note that (considering random
terms only), dv ∼ 2 σ dσ and in the log-OU model,

dσ ∼ ξσdZ2

So
dv ∼ 2ξvdZ2

Then β(v) as defined in Equation 42 is given by

ηβ(v) = 2ξ
√

v

and, from Equation 45, the BS implied variance skew is given by

∂

∂x
σBS(x, T )2 ≈ 2ρξ

√
v

λT
=

ρηβ(v)

λT

Looking back at section 6.2 again, we see that the Heston skew (where β(v) =
1) has the same behavior for large λT . We now have enough evidence to
make our generalization more plausible: it seems that both for long and short
expirations, the skew behavior may be identical for all stochastic volatility
models up to a factor of β(v). Supposing this claim were true, what would
be the natural way to interpolate the asymptotic skew behaviors between
long and short expirations?

Clearly, the most plausible interpolation function between short expira-
tion and long expiration volatility skews is the one we already derived for
the Heston model in Section 6.2 and

∂

∂x
σBS(x, T )2 ≈ ρη β(v)

λ′T

{
1−

(
1− e−λ′T

)

λ′T

}
(46)

with λ′ = λ− 1
2
ρηβ(v).
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9.3 Dynamics of the Volatility Skew under Stochastic
Volatility

At first it might seem that a result that says that all stochastic volatility
models have essentially the same implications for the shape of the volatility
surface would it make it hard to differentiate between models. That would
certainly be the case if we were to confine our attention to the shape of the
volatility surface today. However, if instead we were to study the dynamics of
the volatility skew – in particular, how the observed volatility skew depends
on the overall level of volatility, we would be able to differentiate between
models.

Empirical studies of the dynamics of the volatility skew show that ∂
∂x

σ(x, t)
is approximately independent of volatility level over time. Translating this
into a statement about the implied variance skew, we get

∂

∂x
σBS(x, t)2 = 2σBS(x, t)

∂

∂x
σBS(x, t) ∼

√
v(x, t).

This in turn implies that β(v) ∼ √
v and that v is approximately lognormal

in contrast to the square root process assumed by Heston. This makes
intuitive sense given that we would expect volatility to be more volatile if
the volatility level is high than if the volatility level itself is low.

Does it matter whether we model variance as a square root process or
as lognormal? In certain cases it does. After all, we are using our model
to hedge and the hedge should approximately generate the correct payoff
at the boundary. If the payoff that we are hedging depends (directly or
indirectly) on the volatility skew, and our assumption is that the variance
skew is independent of the volatility level, we could end up losing a lot of
money if that’s not how the market actually behaves.

Is any stochastic volatility model better than none at all? The answer
here has to be yes because whereas having the wrong stochastic volatility
model will cause the hedger to generate a payoff corresponding to a skew that
may perhaps be off by a factor of 1.5 if volatility doubles, having only a local
volatility model will cause the hedger to generate a payoff that corresponds
to almost no forward skew at all. We will now show this.
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9.4 Dynamics of the Volatility Skew under Local Volatil-
ity

Empirically, the slope of the volatility skew decreases with time to expira-
tion. From the above, in the case of mean-reverting stochastic volatility,
the term structure of the BS implied variance skew will look something like
Equation 46. In particular, the slope of the volatility skew will decay over

time according to the time behaviour of the coefficient 1
λ′T

{
1−

�
1−e−λ′T

�
λ′T

}
.

Recall from Section 2.3 the formula for local volatility in terms of implied
volatility:

vloc =
∂w
∂T

1− x
w

∂w
∂x

+ 1
4

(−1
4
− 1

w
+ x2

w2

) (
∂w
∂x

)2
+ 1

2
∂2w
∂x2

Differentiating with respect to x and considering only the leading term in
∂w
∂x

(which is small for large T ) , we find

∂vloc

∂x
≈ ∂

∂T

∂w

∂x
+

1

w

∂w

∂T

∂w

∂x

That is, the local variance skew ∂vloc

∂x
decays with the BS implied total vari-

ance skew ∂w
∂x

.
To get the forward volatility surface from the local volatility surface in

a local volatility model, we integrate over the local volatilities from the
(forward) valuation date to the expiration of the option along the most
probable path joining the current stock price to the strike price using the
trick presented in Section 5.2. It is obvious that the forward implied volatility
surface will be substantially flatter than today’s because the forward local
volatility skews are all flatter.

Contrast this with a stochastic volatility model where implied volatility
skews are approximately time-homogeneous. In other words, local volatility
models imply that future BS implied volatility surfaces will be flat (relative
to today’s) and stochastic volatility models imply that future BS implied
volatility surfaces will look like today’s.

10 Digital Options and Digital Cliquets

In our first investigation of actual derivative contracts, we choose to study
digital options because their valuation involves the volatility skew directly.
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10.1 Valuing Digital Options

A digital (call) option D(K, T ) pays 1 if the stock price ST at expiration
T is greater than the strike price K and zero otherwise. It may be valued
as the limit of a call spread as the spread between the strikes is reduced to
zero.

D(K,T ) = −∂C(K,T )

∂K
(47)

where C(K, T ) represents the price of a European call option with strike K
expiring at time T .

To see that its price is very sensitive to the volatility skew, we rewrite
the European call price in Equation 47 in terms of its Black-Scholes implied
volatility σBS(K,T ).

D(K, T ) = − ∂

∂K
CBS (K, T, σBS(K,T ))

= −∂CBS

∂K
− ∂CBS

∂σBS

∂σBS

∂K

To get an idea of the impact of the skew in practice, consider our usual
idealized market with zero interest rate and dividends and a one year digital
option struck at-the-money. Suppose further that at-the-money volatility is
25% and the volatility skew (typical of SPX for example) is 3% per 10%
change in strike. Its value is given by:

D(1, 1) = −∂CBS

∂K
− ∂CBS

∂σBS

∂σBS

∂K

= N
(
−σ

2

)
− vega× skew

= N
(
−σ

2

)
+

1√
2π

e−
d2
1
2 × 0.3

≈ N
(
−σ

2

)
+ 0.4× 0.3

If we had ignored the skew contribution, we would have got the price of the
digital option wrong by 12% of notional!

10.2 Digital Cliquets

For an example of an actual digital cliquet contract, see the addendum. Here
is a description of the Cliquet from the IFCI site at http://risk.ifci.ch:
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“The French like the sound of ‘cliquet’ and seem prepared to apply the
term to any remotely appropriate option structure. (1) Originally a periodic
reset option with multiple payouts or a ratchet option (from vilbrequin à
cliquet – ratchet brace). Also called Ratchet Option. See Multi-period Strike
Reset Option (MSRO), Stock Market Annual Reset Term (SMART) Note.
See also Coupon Indexed Note. (2) See Ladder Option or Note (diagram).
Also called Lock-Step Option. See also Stock Upside Note Security (SUNS).
(3) Less commonly, a rolling spread with strike price resets, usually at regular
intervals. (4) An exploding or knockout option such as CAPS (from cliqueter
– to knock).”

Their payoff diagram shown in Figure 2 is also a work of art. For our

Figure 2: Illustration of a Cliquet Payoff Courtesy of IFCI.

purposes, a cliquet is just a series of options whose strikes are set on a
sequence of futures dates. In particular, a digital cliquet is a sequence of
digital options whose strikes will be set (usually) at the prevailing stock price
on the relevant reset date. Denoting the set of reset dates by {t1, t2, ..., tn},
the digital cliquet pays Coupon × θ

(
Sti − Sti−1

)
at ti where θ(.) represents

the Heaviside function.
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One can see immediately that the package consisting of a zero coupon
bond together with a digital cliquet makes a very natural product for a
risk-averse retail investor – he typically gets an above market coupon if the
underlying stock index is up for the period (usually a year) and a below
market coupon (usually zero) if the underlying stock index is down. Not
surprisingly, this product was and is very popular and as a result, many
equity derivatives dealers have digital cliquets on their books.

From the foregoing, the price of a digital cliquet may vary very substan-
tially depending on the modeling assumptions made by the seller. Those
sellers using local volatility models will certainly value a digital cliquet at
a lower price than sellers using a stochastic volatility (or more practically,
those guessing that the forward skew should look like today’s). Perversely
then, those sellers using an inadequate model will almost certainly win the
deal and end up short a portfolio of misvalued forward-starting digital op-
tions. Or even worse, a dealer could have an appropriate valuation approach
but be pushed internally by the salespeople to match (mistaken) competi-
tor’s lower prices. The homework assignment deals with exactly this set of
circumstances.

How wrong could the price of the digital cliquet be? Taking the exam-
ple of the deal documented in the addendum, neglecting the first coupon
(because we suppose that all dealers can price a digital which sets today),
the error could be up to 12% of the sum of the remaining coupons (52%)
or 6.24% of Notional. In the actual deal, the digital are struck out-of-the-
money and interest rates and dividends are not zero. Nevertheless, a pricing
error of this magnitude is a big multiple of the typical margin on such a
trade and would cause the dealer a substantial loss.
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