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5 Getting Implied Volatility from Local Volatil-

ities

5.1 Motivation

For a model to be useful in practice, it needs to return (at least approxi-
mately) the current market prices of European options. That implies that
we need to fit the parameters of our model (whether stochastic or local
volatility model) to market implied volatilities. A number of ways have
been suggested to do this for local volatility models. For example, we could
work with the European option prices directly in a trinomial tree framework
as in Derman, Kani, and Chriss (1996) or we could maximize relative entropy
(of missing information) as in Avellaneda, Friedman, Holmes, and Samperi
(1997). These methods are non-parametric (assuming actual option prices
are used, not interpolated or extrapolated values). On the other hand, we
could parameterize the risk-neutral distributions as in Rubinstein (1998) or
parameterize the implied volatility surface directly as in Shimko (1993). For
a recent review of the literature, see Jackwerth (2000).

It might be surprising at first to learn that getting local volatilities from
the implied volatility surface is very difficult in practice given that we have
a reasonably straightforward formula for doing that. The problem is that we
don’t have a complete implied volatility surface, we only have a few bids and
offers per expiration. To apply a parametric method, we need to interpolate
and extrapolate the known implied volatilities. It is very difficult to do this
without introducing arbitrage. The arbitrages to avoid are roughly speaking,
negative vertical spreads, negative butterflies and negative calendar spreads
(where the latter are carefully defined). Even non-parametric methods fail
because of noise in the prices and the bid/offer spread.

In what follows, we will concentrate on the implied volatility structure of
stochastic volatility models so we won’t have to worry about the possibility
of arbitrage which is excluded from the outset.

First, we derive an expression for implied volatility in terms of local
volatilities. In principle, this should allow us to investigate the shape of
the implied volatility surface for any local volatility or stochastic volatility
model because we know from Section 2.5 how to express local variance as
an expectation of instantaneous variance in a stochastic volatility model.
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5.2 A Formula to get Implied Volatility from Local
Volatility

In Section 2.3, we saw how to get local volatilities from implied volatilities.
We could try to invert the complicated-looking equation for local volatility
in terms of implied given in that section. However, it is no surprise that this
approach doesn’t yield any easy results (at least not to me).

Instead, by extending the work of Blacher (1998), we derive a general
path-integral representation of Black-Scholes implied variance. We start by
assuming that the stock price St satisfies the (local volatility) SDE

dSt

St

= µtdt + σt,StdZt

and that the market prices contingent claims accordingly so that, in partic-
ular, the value V of a contingent claims must satisfy a generalization of the
Black-Scholes equation:
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Path-by-path, for any suitably smooth function f (St, t) of the random stock
price St, the difference between the initial value and the final value of the
function f (St, t) is obtained by anti-differentiation. Then, applying Itô’s
Lemma, we get
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In particular, the Black-Scholes (BS) formula CBS (St, t, T ) for a call option
expiring at time T with some arbitrary time-dependent volatility parameter
is a smooth function of the stock price and must satisfy equation (23). Recall
the form of the Black-Scholes formula

CBS (St, K, t, T ) = Ft,T N (d1)−K N (d2)

with

d1 =
ln (Ft,T /K)

σBS

√
T

+
σBS

√
T

2
; d2 = d1 − σBS

√
T
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where the time -T forward price at time t is denoted by Ft,T , the strike price
of the option by K and σBS = σBS(K, t, T ) is the Black-Scholes implied
volatility which is of course a function of calendar time t, strike K and T .

CBS (St, K, t, T ) must satisfy the Black-Scholes equation (assuming zero
interest rates and dividends):

∂CBS

∂t
= −1

2
vK,T (t) S2

t

∂2CBS

∂S2
t

(24)

where the forward Black-Scholes variance vK,T (s) is given by

vK,T (s) =
∂

∂s

{
σBS(K, t, s)2(s− t)

}

Under the usual assumptions, the non-discounted value C(S0, K, 0, T )
of a call option is given by the expectation of the final payoff under the
risk-neutral measure. Then, applying (23), we obtain:

C (S0, K, 0, T ) = E
[
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]

= E [CBS (ST , K, T, T ) |S0 ]
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Finally, we use the BS equation to substitute for the time derivative ∂CBS

∂t

and obtain:

C (S0, K, 0, T ) = CBS (S0, K, 0, T )

+E
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(26)

where the second equality uses the fact that St is a martingale.
By definition of implied volatility, CBS (S0, K, 0, T ) = C (S0, K, 0, T )

when vK,T is the Black-Scholes implied forward variance (i.e. the Black-
Scholes formula must give the market price of the option). Then the second
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term in equation (26) must vanish. A sufficient condition for this is to have

vK,T (t) =
E

[
σ2

St,tS
2
t ΓBS(St) |S0

]

E [S2
t ΓBS(St) |S0 ]

(27)

where we define ΓBS(St) := ∂2

∂S2
t
CBS(St, K, t, T ) .

Now we have a formula for the Black-Scholes implied volatility of a Eu-
ropean option in terms of local volatilities. From the definition of vK,T (t),
we have that

σBS(K, T )2 =
1

T

∫ T

0
vK,T (t)dt

Then, explicitly

σBS(K,T )2 =
1

T

∫ T

0

E
[
σ2

St,tS
2
t ΓBS(St) |S0

]

E [S2
t ΓBS(St) |S0 ]

dt (28)

Note however that equations (27) and (28) are implicit because the gamma
ΓBS(St) of the option depends on all the forward implied variances vK,T (t).

Special Case (Black-Scholes)

Suppose σSt,t = σt, a function of t only. Then

vK,T (t) =
E [σ2

t S
2
t ΓBS(St) |S0 ]

E [S2
t ΓBS(St) |S0 ]

= σ2
t

The forward implied variance vK,T (t) and the local variance σ2
t coincide. As

expected, vK,T (t) has no dependence on the strike K or the option expiration
T .

Interpretation

In order to get better intuition for equation (27), first recall how to compute
a risk-neutral expectation:

E [f (St)] =
∫

dSt p (St, t; S0) f (St)

We get the risk-neutral pdf of the stock price at time t by taking the second
derivative of the market price of European options with respect to strike
price.

p (St, t; S0) =
∂2C (S0, K, t)

∂K2

∣∣∣∣∣
K=St
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Then we may rewrite equation (27) as

vK,T (t) =
1

E [S2
t ΓBS(St) |S0 ]

∫
dSt p (St, t; S0) S2

t ΓBS(St) σ2
St,t

=
∫

dSt q (St, t; S0, K, T ) σ2
St,t (29)

where we further define

q (St, t; S0, K, T ) :=
p (St, t; S0) S2

t ΓBS(St)

E [S2
t ΓBS(St) |S0 ]

(30)

q (St, t; S0, K, T ) is a probability density which looks like a Brownian Bridge
density for the stock price given that the initial stock price is S0 and the
time-T stock price is K.

For convenience, we rewrite Equation (29) in terms of xt ≡ log
(

St

S0

)
. In

terms of xt,

vK,T (t) =
∫

dxt q (xt, t; xT , T ) σ2
xt,t (31)

Figure 1 shows how q (xt, t; xT , T ) looks in the case of a 1 year European
option struck at 1.3 with a flat 20% volatility. We see that q (xt, t; xT , T )
peaks on a line (which we will denote by x̃t) joining the stock price today
with the strike price at expiration. Moreover, the density looks roughly
symmetric around the peak. This suggests an expansion around the peak x̃t

(at which the derivative of q (xt, t; xt, T ) with respect to xt is zero). Then
we write:

q (xt, t; xT , T ) ≈ q(x̃t, t; xT , T ) +
1

2
(xt − x̃t)

2 ∂2q

∂x2
t

∣∣∣∣∣
xt=x̃t

(32)

In practice, the local variance σ2
xt,t is typically not so far from linear in xt in

the region where q (xt, t; xT , T ) is significant so we may further write

σ2
xt,t ≈ σ2

x̃t,t + (xt − x̃t)
∂σ2

xt,t

∂xt

∣∣∣∣∣
xt=x̃t

(33)

Substituting (32) and (33) into the integrand in equation (31) gives

vK,T (t) ≈ σ2
x̃t,t
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Figure 1: Graph of the pdf of xt conditional on xT = Log(K) for a 1 year
European option, strike 1.3 with current stock price = 1 and 20% volatility.
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and we may rewrite equation (28) as

σBS(K,T )2 ≈ 1

T

∫ T

0
σ2

x̃t,tdt (34)

In words, equation (39) says that the Black-Scholes implied variance of an
option with strike K is given by the integral from valuation date (t = 0)
to the expiration date (t = T ) of the local variances along the path x̃t that
maximizes the Brownian Bridge density q (xt, t; xT , T ).

Of course, in practice, it’s not easy to compute the path x̃t. However,
we now have a very simple picture for the meaning of Black-Scholes implied
variance of a European option with a given strike and expiration - it is
approximately the integral from today to expiration of local variances along
the most probable path for the stock price conditional on the stock price at
expiration being the strike price of the option.
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6 The Structure of Implied Volatility in the

Heston Model

6.1 Local Volatility in the Heston Model

From Section 3.1 with xt ≡ Log (S(t)/K) and µ = 0, we have

dxt = −vt

2
dt +

√
vt dZt

dvt = −λ(vt − v̄)dt + ρη
√

vt dZt +
√

1− ρ2η
√

vt dWt (35)

where dWt and dZt are orthogonal. Eliminating
√

vtdZt, we get

dvt= −λ(vt−v̄)dt + ρη
(
dxt +

1

2
vtdt

)
+

√
1− ρ2η

√
vtdWt (36)

Our strategy will be to compute local variances in the Heston model and
then integrate local variance from valuation date to expiration date to get
the BS implied variance following the results of Section 5.

First, consider the unconditional expectation v̂s of the instantaneous vari-
ance at time s. Solving equation (36) gives

v̂s = (v0 − v̄)e−λs + v̄

Then define the expected total variance to time t through the relation

wt ≡
∫ t

0
v̂sds = (v0 − v̄)

{
1− e−λt

λ

}
+ v̄ t

Finally, let ut ≡ E[vt |xT ] be the expectation of the instantaneous variance
at time t conditional on the final value xT of x.

Ansatz

(By “ansatz”, I mean some working assumption which I haven’t been able
to justify and may not even be true). Without loss of generality, assume
x0 = 0 . Then,

E[xs |xT ] = xT
ws

wT
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where wt ≡
∫ t
0 ds v̂s is the expected total variance to time t . To see that

this ansatz is plausible, note that

E (xs) = E(xT )
ws

wT

= −wT

2

ws

wT

= −ws

2

In fact, if the process for xt were a conventional Brownian Bridge process,
the result would be true but in this case, the result is only approximately
true. If you manage to derive the correct result, please let me know.

Assuming the ansatz to be correct, we may take the conditional expec-
tation of (36) to get:

dut = −λ(ut− v̄)dt +
ρη

2
utdt + ρη

xT

wT

dwt +
√

1− ρ2η
√

vt E[dWt |xT ] (37)

If the dependence of dWt on xT is weak or if
√

1− ρ2 is very small, we may
drop the last term to get

dut ≈ −λ′(ut − v̄′)dt + ρη
xT

wT

v̂tdt

with λ′ = λ− ρη
2
, v̄′ = v̄ λ

λ′ . The solution to this equation is

uT ≈ v̂′T + ρη
xT

wT

∫ T

0
v̂s e−λ′(T−s)ds (38)

with v̂′s ≡ (v − v̄′) e−λ′ s+v̄′.
From Section 2.5, we know that the local variance σ2(K, T, S0) = E [vT |ST = K ].

Then, Equation 38 gives us an approximate but surprisingly accurate for-
mula for local variance within the Heston model (an extremely accurate
approximation when ρ = ±1) . We see that in the Heston model, local

variance is approximately linear in x = log
(

F
K

)
.

In summary, we have made two approximations: the Ansatz and drop-
ping the last term in equation (37). For reasonable parameters, equation
(38) gives good intuition for the functional form of local variance and when
ρ = ±1, it is almost exact.

6.2 Implied Volatility in the Heston Model

Now, to get implied variance in the Heston model, following the results of
Section 5, we need to integrate the Heston local variance along the most
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probable stock price path joining the initial stock price to the strike price
at expiration (the one which maximizes the Brownian Bridge probability
density).

In the notation of Section 5, the Black-Scholes implied variance is given
by

σBS(K,T )2 ≈ 1

T

∫ T

0
σ2

x̃t,tdt =
1

T

∫ T

0
ut(x̃t)dt (39)

where {x̃t} is the most probable path (as defined above).
Recall that the Brownian Bridge density q (xt, t; xT , T ) is roughly sym-

metric and peaked around x̃t, so E [xt − x̃t |xT ] ≈ 0. Applying the Ansatz
once again, we obtain

x̃t = E [x̃t |xT ] = E [x̃t − xt |xT ] + E [xt |xT ] ≈ wt

wT

xT

We substitute this expression back into equations 38 and 39 to get

σBS(K,T )2 ≈ 1

T

∫ T

0
ut(x̃t)dt

≈ 1

T

∫ T

0
v̂′tdt + ρη

xT

wT

1

T

∫ T

0
dt

∫ t

0
v̂s e−λ′(t−s)ds (40)

The BS Implied Volatility Term Structure in the Heston Model

The at-the-money term structure of BS implied variance in the Heston model
is obtained by setting xT = 0 in equation (40). Performing the integration
explicitly gives

σBS(K, T )2
∣∣∣
K=FT

≈ 1

T

∫ T

0
v̂′tdt =

1

T

∫ T

0

[
(v − v̄′) e−λ′ t + v̄′

]
dt

= (v − v̄′)
1− e−λ′ T

λ′ T
+ v̄′

We see that in the Heston model, the at-the-money Black-Scholes implied
variance σBS(K, T )2|K=FT

→ v (the instantaneous variance) as the time to
expiration T → 0 and as T → ∞, the at-the-money Black-Scholes implied
variance reverts to v̄′.
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The BS Implied Volatility Skew in the Heston Model

It is possible (but not very illuminating) to integrate the second term of equa-
tion (40) explicitly. Even without doing that, we can see that the implied
variance skew in the Heston model is approximately linear in the correlation
ρ and the volatility of volatility η.

In the special case where v0 = v̄, the implied variance skew has a par-
ticularly simple form. Then v̂s = v̄ and wt = v̄ t. The most probable path
x̃t ≈ t

T
xT is exactly a straight line in log-space between the initial stock

price on valuation date and the strike price at expiration. Performing the
integrations in Equation 40 explicitly, we get

σBS(K,T )2 ≈ w′
T

T
+ ρη

xT

T 2

∫ T

0
dt

1

T

∫ t

0
e−λ′(t−s)ds

=
w′

T

T
+ ρη

xT

λ′T



1−

(
1− e−λ′T

)

λ′T



 (41)

From equation (41), we see that the implied variance skew ∂
∂xt

σBS(K, T )2

is independent of the level of instantaneous variance v or long-term mean
variance v̄. In fact, this remains approximately true even when v 6= v̄. It
follows that we now have a fast way of calibrating the Heston model to
observed implied volatility skews. Just two expirations would in principle
allow us to determine λ′ and the product ρη. We can then fit the term
structure of volatility to determine the long term mean variance v̄ and the
instantaneous variance v0. The curvature of the skew (not discussed here)
would allow us to determine ρ and η separately.

We note that as we increase either the correlation ρ or the volatility of
volatility η, the skew increases.

Also, the very short-dated skew is independent of λ and T :

∂

∂xt

σBS(K, T )2 = ρη
1

λ′T



1−

(
1− e−λ′T

)

λ′T



 → ρη

2
as T → 0

and the long-dated skew is inversely proportional to T :

∂

∂xt

σBS(K, T )2 = ρη
1

λ′T



1−

(
1− e−λ′T

)

λ′T



 ∼ ρη

λ′T
as T →∞
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Finally, increasing η causes the curvature of the implied volatility skew
(related to the kurtosis of the risk-neutral density) to increase but we haven’t
shown that here.

7 The SPX Implied Volatility Surface

Up to this point, we have concentrated on understanding the shape of the
implied volatility surface implied by a stochastic volatility model – in par-
ticular the Heston model. However, we still have no idea whether implied
volatilities produced by the Heston model look like implied volatilities in the
market. In the accompanying file (SPXvols000128.pdf), you can find graphs
of the SPX implied volatility surface as of January 28, 2000.

After fitting a quadratic to observed variance as a function of xt for each
expiration t, we get the at-the-money forward variance levels and skews listed
in Table 1. (Recall that by at-the-money skew, I mean ∂

∂xt
σBS(K, T )2).

Table 1: At-the-money SPX variance levels and skews on January 28, 2000.

Expiration Time (years) ATM Variance ATM Skew

17-Feb-2000 0.0548 0.0619 -0.2586
16-Mar-2000 0.1315 0.0550 -0.2360
20-Apr-2000 0.2274 0.0528 -0.2013
15-Jun-2000 0.3808 0.0532 -0.1722
14-Sep-2000 0.6301 0.0539 -0.1453
14-Dec-2000 0.8795 0.0560 -0.1292
14-Jun-2001 1.3781 0.0574 -0.1108
20-Dec-2001 1.8959 0.0554 -0.1018

Skew is plotted as a function of time in Figure 2. Just looking at the
pattern of the points, we would suspect that a simple functional form should
be able to fit. However, the solid and dashed lines show the results of fitting
the approximate formula

ρη
1

λ′T



1−

(
1− e−λ′T

)

λ′T





to the observed skews. The solid line takes all points into account; the
dashed line drops the first three expirations from the fit. We can see that
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the fitting function is too stiff to fit the observed pattern of variance skews;
there is no choice of λ′ that will allow us to fit the skew observations. The
fact that the observed variance skew increases significantly faster as T → 0
than the skew implied by a stochastic volatility model may indicate that
jumps need to be included in a complete model as in Matytsin (1999) for
example.

Figure 2: Graph of SPX ATM skew vs. time. The dashed fit excludes the
first 3 data points.
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In Figure 3, we see that trying to fit at-the-money variance using a simple
model is a pretty hopeless endeavor. Once again, for reference, we show the
solid and dashed line best fits of the function

σBS(K, T )2
∣∣∣
K=FT

≈ (v − v̄′)
1

λ′T



1−

(
1− e−λ′T

)

λ′T



 + v̄′

Now we understand one reason why practitioners prefer local volatility
models – a stochastic volatility model with time-homogeneous parameters
cannot fit market prices! Perhaps an extended stochastic volatility model
with correlated jumps in stock price and volatility (Matytsin (1999)) might
fit better? But how would traders choose their input parameters? How
would the SPX index book trader choose his volatility of volatility param-
eter – or worse, the correlation between jumps in stock price and jumps in
volatility ?
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Figure 3: Graph of SPX ATM variance vs. time. The dashed fit excludes
the first 3 data points.
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