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Pricing Foreign Currency and Cross-Currency Options Under GARCH

Abstract

The main objective of this paper is to propose an alternative valuation framework for pricing

foreign currency and cross-currency options, which is capable of  accommodating existing empirical

regularities. The paper generalizes the GARCH option pricing methodology of Duan (1995) to a two-

country setting. Specifically, we assume a bivariate nonlinear GARCH system for the exchange rate

and the foreign asset price, and generalize the local risk-neutral valuation principle for pricing

derivatives. We define an equilibrium price measure in the two-country economy and derive the

locally risk-neutralized GARCH processes for the exchange rate and the foreign asset price. Foreign

currency options and cross-currency options are then valued using Monte Carlo simulations. Our

setup accommodates rich empirical regularities such as stochastic volatility, fat tailed distributions

and leverage effect extensively documented for financial data series.  Numerical results show  that

our proposed model exhibits properties that are consistent with the documented empirical regularities

for foreign currency options and quanto options.

1. Introduction

It has been well documented in the literature that stock returns possess such properties as

leptokurtosis or "fat-tails" and time-varying variances [see, e.g., Black (1976)]. The first successful

attempt to econometrically model these properties was by Engle (1982) who introduced the

Autoregressive Conditional Heteroscedasticity (ARCH) model. Extensions to this model were

subsequently made by many researchers; for example,  Bollerslev (1986) and Taylor (1986) proposed

the generalized ARCH (GARCH) model, Nelson (1991) the exponential GARCH model, Engle and

Ng (1993) the nonlinear asymmetric GARCH, among many others. The existence of a massive

GARCH literature has prompted the review article like Bollerslev, et al (1992) and the work by Duan

(1997) to encompass the existing GARCH models into a common system known as the augmented

GARCH(p,q) process. Notwithstanding many variants of the GARCH model, it is generally found

that a low-order GARCH model allowing for leverage effect is adequate for characterizing most

financial series.

Researchers have recently started using the ARCH setup to examine market prices of options.

Most studies, however, incorporated the time-varying volatility in an ad hoc fashion [see, for

example, Engle and Mustafa (1992), Day and Lewis (1992), and Noh, Engle and Kane (1994) , Engle

and Rosenberg (1995)]. The theory for pricing options in the GARCH framework was first



     1. In this paper, "cross-currency options" means options written on a foreign asset which are traded in domestic
currency. Cross-currency options can be grouped into four categories according to the specification of payoff
conversion. Consider European call options on a foreign stock. Let ST and eT be the stock price and exchange rate at
option's maturity, e0 a pre-specified, fixed exchange rate, and K the exercise price denominated in foreign currency.
Then the four possible payoff specifications are: eTmax[0, ST - K], e0max[0, ST - K], max[0, e0ST - eTK], and max[0,

eTST - e0  K].  
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developed by Duan (1995) in an equilibrium framework. By introducing the locally risk-neutral

valuation relationship (LRNVR), Duan (1995) derived an option pricing model which depends upon,

among other factors, a risk premium parameter. The proposed model can explain many well-

documented option pricing biases. In a related study based on a relatively large scale of simulations,

Chaudhury and Wei (1996) systematically compared Duan's GARCH option pricing model with the

Black-Scholes model. Consistent with Duan's finding, Chaudhury and Wei found that the GARCH

option pricing model is most useful when pricing short maturity, out-of-the-money options. On the

empirical front, Amin and Ng (1993) have found a significantly better performance by the GARCH

option pricing model in comparison to the Black and Scholes model.  Heynen, Kemna and Vorst

(1994) have shown that the "term structure of the implied volatilities" can be explained by the

GARCH option pricing model.  More recently, Duan (1996) was successful in using the GARCH

option pricing model to simultaneously fit the "volatility smile" and the "term structure of implied

volatilities".

To date, there has been no known literature which incorporates GARCH into the pricing of

cross-currency options, or options on foreign assets. Existing studies on cross-currency options all

assume lognormal asset prices and exchange rate with constant or time-deterministic volatilities [see,

e.g., Wei (1992), Dravid, Richardson and Sun (1993), and Gruca and Ritchken (1993)]. Given the

observed stock return properties mentioned earlier and the stylized facts of exchange rate movements

such as leptokurtosis and volatility clustering, it is important that we build those features into the

theoretical pricing models for foreign currency and cross-currency options.  1  

This paper generalizes the GARCH option pricing methodology to the cross-currency setting.

Specifically, we model the foreign exchange rate and the foreign asset price as a bivariate nonlinear

asymmetric GARCH process. We generalize the local risk-neutral valuation relationship in Duan

(1995) and define an equilibrium price measure in a two-country economy. Equilibrium processes

for the exchange rate and the foreign asset price are derived under this measure, and cross-currency

options can then be valued using the well-known risk-neutral valuation technique. Naturally, this
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paper also provides a framework to price foreign currency options under GARCH. The proposed

pricing framework incorporates stochastic volatility, unconditional leptokurtosis or "fat tails", and

a correlation between the lagged return and the conditional variance for both the exchange rate and

the foreign stock price.

The remainder of the paper is organized as follows. Section 2 introduces the GARCH process

for the foreign exchange rate and identifies the corresponding process under the equilibrium price

measure. This establishes a pricing framework for foreign currency options. Section 3 expands the

framework in Section 2 by introducing the GARCH process for the foreign asset price. Properties

of the asset price under the equilibrium price measure are identified, and the procedure for valuing

cross-currency options is outlined. In Section 4, we briefly surveys the empirical evidence in the

foreign currency options markets and the cross-currency options market, and then perform simulation

studies to show that our model is capable of accommodating most of the empirical regularities in

option prices. The paper is concluded in Section 5.

2. Foreign Exchange Options Valuation under GARCH 

Let et denote the exchange rate between the domestic and foreign markets at time t, defined as the

domestic currency units per foreign currency unit. The dynamic of et is governed by the probability

law P with respect to an information filtration Øt. This exchange rate is assumed to follow a

nonlinear GARCH-mean model under P. 

Assumption  1



2.  It can be verified that the following conditions are sufficient for the generalized LRNVR to hold:  A domestic
representative agent maximizes expected (time separable and additive) utility with any of the following features: 1) utility
is of CRRA and changes in the logarithm of aggregate consumption are conditionally normal under P; 2) utility is of CARA
and changes in the aggregate consumption are conditionally normal under P; and 3) utility is linear.  Notice that  the first two
moments  governing the conditional distribution  of the aggregate consumption dynamics can be stochastic unless constant
interest rates are required. 
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where rd,t+1 (rf,t+1) denotes the one-period, continuously compounded domestic (foreign) riskfree

interest rate from time t to time (t + 1); ót+1 is the unit risk premium for the exchange rate; and rd,t+1,

rf,t+1, ót+1, and qt+1 are Øt -measurable (i.e., they are all known at time t). 

To facilitate option pricing we need to define an equilibrium price measure. Similar to Duan

(1995), we adopt the following definition.

Definition An equilibrium price measure Qd for the domestic market is said to satisfy the local
risk-neutral valuation relationship (LRNVR) if for any asset value (cum dividends,
if any) measured in domestic currency, denoted by Xd,t, the following conditions are
satisfied:

(i)   Qd is mutually continuous with respect to P;

(ii) is lognormally distributed under Qd;
Xd,tø1

Xd,t

(iii)  almost surely under P; andE
Qd

Xd,tø1

Xd,t

-Øt ö exp(rd,tø1)

(iv)  almost surely under P.  Var
Qd ln

Xd,tø1

Xd,t

-Øt ö VarP ln
Xd,tø1

Xd,t

-Øt

Remark A similar definition can be given for the foreign equilibrium price measure Qf. 

Detailed discussions on LRNVR in a single-economy setting are given in Duan (1995) who

identifies forms of utility functions (for the representative agent) sufficient for the LRNVR. Here we

generalize the definition to include foreign assets. As long as the foreign asset in question is

measured in domestic currency the above definition applies. It is clear that the exchange rate is a

special foreign asset denominated in domestic currency. 2

For convenience and by convention, we work under the domestic equilibrium price measure

Qd. It can be shown that values of derivatives remain the same regardless of which measure we
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adopt.  For pricing purposes we need to bring all variables from measure P to measure Qd so that

risk-neutral discounting of expected payoffs can be applied. This is achieved in Proposition 1.

Proposition 1 Under Assumption 1, if the domestic equilibrium price measure Qd satisfies the
LRNVR, then

where

Proof: Similar to that in Duan (1995).

With (2) we can price European options on the exchange rate. For example, the value of a

European call option at time t with an exercise price of K and time to maturity of T can be expressed

as:

In our general setting there is no closed-form solution for (3). We must resort to simulations to

recursively apply the dynamics in (2) for the generation of eT.

Notice that if the two persistence parameters, û1 and û2, are set equal to zero, our pricing

result simplifies to the one under homoscedastic exchange rate returns [see, e.g., Biger and Hull

(1983), and Garman and Kohlgahen (1983)]. As mentioned earlier, our setup allows not only fat tails

in returns, but also a correlation between the lagged exchange rate return and the conditional

variance, both of which will affect the value of foreign currency options. 
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3. Cross-Currency Options Valuation under GARCH

In this section we expand the theoretical framework in Section 2 to include a tradable foreign asset,

a foreign stock. To this end, we assume that the foreign stock price also follows a nonlinear

GARCH(1, 1)-mean process.

Assumption 2 The foreign stock price (cum dividends, if any) satisfies the following dynamic:

!tø1-Øt
P
0 N(0, 1)

htø1 ö ù0 ø ù1ht (!t ÷ b)2 ø ù2ht

EP(Jtø1!tø1-Øt ) ö 'tø1

(ù0>0, ù1'0, ù2'0, and ù1(1 ø b2) ø ù2<1)

where rf,t+1 is defined in section 2 and åt+1 is the unit risk premium for the foreign stock price and is

Øt -measurable. ht+1 is the conditional variance of the stock return and is also Øt -measurable.

Notice that we allow a stochastic (Øt -measurable) conditional correlation, 't+1, between the stock

return and the exchange rate return.  The nonlinear GARCH specification of the stock price is

motivated by the well-known "leverage effect"  first discovered by Black (1976) and later

substantiated by Christie (1982). The inclusion of parameter b makes the stock return and volatility

correlated. Specifically, a positive (negative) b leads to a negative (positive) correlation.

As in Proposition 1 for the exchange rate process, we now identify the dynamic of the foreign

stock price under the domestic equilibrium price measure Qd.

Proposition 2 Under Assumptions 1 and 2, if Qd satisfies the LRNVR, then

where
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Cquanto
t ö e0 E

Qd exp ÷ M
T

s ö tø1
rd, s max 0, ST ÷ K -Øt (6)

Proof: See Appendix.

Remark The dynamic of the foreign stock price under the foreign equilibrium price Qf is the
same as that in Duan (1995) if Qf satisfies the LRNVR.

Several observations can be made about the above results. First, the conditional correlation

between the exchange rate and the stock price remains the same under both measures, which greatly

simplifies the valuation process since we can use observed data under measure P to estimate the

correlation. Second, as in Duan (1995), the local risk-neutralization does not eliminate the unit risk

premium parameter globally. The magnitude of the risk premium will affect the innovation of the

conditional variance under Qd, which in turn affects the prices of options written on the foreign

stock.  Third, the change of measure brings a conditional covariance term into the drift. This is

equivalent to the drift adjustment in the Black-Scholes  modelling framework used by Wei (1992)

to identify the domestic risk-neutralized process of a foreign asset price.    Fourth, when we set û1

and û2 in (1) and ù1 and ù2 in (4) equal to zero and the conditional correlation to a constant, the

pricing framework specified in Proposition 1 and Proposition 2  reduces to the cross-currency option

pricing framework of  Wei (1992) and others. 

With the systems in (2) and (5), we can value any European cross-currency options by

discounting expected payoffs under measure Qd. For instance, a quanto call, which is a call on a

foreign stock with fixed exchange rate payoff conversion, can be valued as:

where e0 is a pre-specified, fixed exchange rate, K is the exercise price denominated in foreign

currency, T is the option's maturity, and ST is the stock price at time T. Since a closed-form solution
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to (6) is not available, we must resort to Monte Carlo simulations.  It is interesting to note that even

for a quanto option which involves only the foreign asset in the payoff function, we need to simulate

the process in (2) jointly with that in (5). This is because the conditional mean and variance terms

in (5) are time-varying and partly driven by the past random innovations in (2).

Although the domestic and foreign interest rates, the unit risk premia and the conditional

correlation coefficient are allowed to be stochastic, implementing the pricing model will require

specifying the processes for them.  For simplicity, we assume in numerical analyses that they are

constants. It should also be noted that the use of a bivariate GARCH(1,1) model is for illustration

purposes, and the result can be straightforwardly generalized  to any bivariate GARCH(p, q) model.

4.  Price Behaviour of FX Options and Quanto Options Under GARCH

In this section we study price behaviour of foreign exchange options and quanto options

under the GARCH specification. In order to standardize the option prices corresponding to different

maturities and exercise prices, we follow the standard practice in option research to use the constant

volatility closed-form option pricing formulas to calculate the Black-Scholes implied volatilities. The

primary goal is to determine whether our proposed GARCH pricing approach has the potential of

accommodating the important empirical phenomenon - volatility smile - extensively documented for

market option prices.  

The two systems under the data generating probability measure P, i.e., (1) and (4), are jointly

estimated using daily data for the Nikkei 225 index and the U.S. dollar/Yen exchange rate covering

the period from January 4, 1994 to February 26, 1999 (1217 daily observations in total). US dollar

is taken as the domestic currency. The US dollar interest rate is the one-month LIBOR converted to

continuously compounded annual interest rate using the LIBOR convention. Since the data frequency

is on the business day basis, we have for simplicity converted the annual continuously compounded

rate to its daily equivalent by dividing 252. The Yen interest rate is the one-month LIBOR

undergoing the same conversion as for the dollar LIBOR, which is used as the foreign interest rate

in our model. To simplify the estimation we set the two risk premium parameters and the correlation

constant. 

The estimated parameter values and their respective sampling errors are reported in Table 1.

It is clear from the table that the GARCH effect is significant for both the exchange rate and the



3. It is apparent from (2) and (5) that (ó + a) and (å + b) enter the pricing as a single parameter. Therefore there
will be no loss of generality by setting ó and å to zero as long as the impact of  a and  b is examined, which we do.  
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Nikkei 225 return dynamics. The GARCH asymmetry parameter for the Nikkei 225 index return,

i.e., b, turns out to be significantly positive, which suggests the leverage effect and is consistent with

the finding for stock market indices. As to the exchange rate dynamic, the GARCH asymmetry

parameter, i.e., a, is significantly negative. Note that the sign of  a will be reversed if the exchange

rate is defined as Yen/US$ instead. According to our definition, a negative value for  a  suggests that

the increase in the exchange rate volatility will be relatively stronger when Yen appreciates than

when it depreciates.

The estimates for the exchange rate risk premium, ó,  the Nikkei 225 index risk premium,

å, and the correlation, ', are statistically insignificant. In our numerical analysis, these three

parameter values are set to zero, i.e.,  ó  = 0, å = 0 and  ' = 0, unless otherwise stated.  3  For option

valuation, we set both the domestic and foreign interest rates constant so that the standard pricing

formulas in the Black-Scholes framework can be used to obtain implied volatilities. Furthermore,

to make the interpretation easier we set both rates at 0.0%. 

Before reporting the numerical results, some general discussions are in order. In our model,

the unconditional return for both the exchange rate and the stock index is leptokurtic under the data

generating measure P. Under the locally risk-neutralized measure Qd, the returns continue to be

leptokurtic, and the locally risk-neutralized return distributions have a negative (positive) skewness

if the sum of the unit risk premium and the asymmetry parameter is positive (negative). The extent

of skewness depends on the magnitude of the sum.  Leptokurtosis tends to make an out-of-the-money

or in-the-money option worth more than its constant-variance counterpart if there is no skewness

under Qd. Positive skewness under measure Qd, however, tends to cause the constant-volatility model

to underprice out-of-the-money call options.  These two factors together determine  the properties

of the GARCH-based currency option pricing model.  

In our setup, the extent of skewness and leptokurtosis for each of the processes is affected

by all the GARCH parameters other than the constant portion of the variances, û0 and ù0. Under

measure Qd, the determining factors for the foreign exchange process are û1,  û2, a, and ó; and for

the stock index process, they are  ù1, ù2, b,  å, and '.  ((ó + a) and (å + b) enter the pricing model

as a single parameter, as mentioned before.) In nature the effect of ' is similar to that of the sum,
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å + b . However, as apparent in (5), the impact is stochastic due to the dependence on the exchange

rate process. Relatively speaking, the sum of the risk premium and the asymmetry parameter will

exert a much more manifest impact on the skewness and leptokurtosis than the correlation term. It

can be shown (rf. Appendix of Duan (1995)) that a larger sum of the risk premium and the

asymmetry parameter (regardless of its sign) will lead to a bigger leptokurtosis. Although a larger

sum will also lead to a more manifest skewness as mentioned earlier, the sign of skewness will

depend on the sign of the sum. Therefore, in an option pricing context the skewness and

leptokurtosis effects are compounded or offset depending on the parameter combination and option’s

moneyness. As for  the coefficients,  û1,  û2 (or ù1, ù2), it can be shown (rf. Appendix of Duan

(1995))  that they don’t affect skewness, and that an increase in û1 (or ù1) while keeping stationary

variance constant (by lowing  û2 (or ù2)) will lead to a more pronounced leptokurtosis. The above

general results are borne out by our numerical results to which we now turn.    

4.1   FX Options 

Previous studies which examine the performance of Black-Scholes type FX option pricing models

have come to a consensus that the constant volatility, lognormal pricing model cannot explain the

patterns observed in FX option prices. For example, Shastri and Wethyavivorn (1987) found that the

average implied volatilities of five major currencies are roughly a U-shaped function of the ratio of

the exercise price to the spot exchange rate. Using a similar data set spanning a slightly longer

period, Bodurtha and Courtadon (1987) found that the constant-volatility American option pricing

model underprices out-of-the-money options relative to at-the-money and in-the-money options.

More recently, Bates (1996a) examined whether the Black-Scholes lognormal assumption deviates

from the actual distributions of Deutsche mark and the Japanese yen. He found substantial (positive)

skewness and excess kurtosis, at least for Deutsche mark. He also found that the distribution is not

stable over time. For example, the Deutsche mark exhibits substantially positive skewness during

1984 to 1985 and a non-stable skewness thereafter. In a subsequent article, Bates (1996b) formulated

a pricing model with jump diffusion processes and re-examined the Deutsche mark options. He

concluded that  modelling stochastic volatility using diffusion processes is not adequate, and it is

necessary to incorporate jumps in order to explain the excess kurtosis. 

We now study whether our GARCH framework can conveniently accommodate the empirical



4.  All prices are simulated with 50,000 runs each.  To reduce variances, we use a combination of stratified
simulations, a control variate, and the Empirical Martingale Simulations  by Duan and Simonato (1998). Alternative numerical
procedures have been proposed recently by various authors. For example, Duan, Gauthier and Simonato (1998) propose  an
analytical approximation procedure whereby European options under GARCH can be priced by matching moments of the
return distribution; Duan and Simonato (1999) use a Markov chain to approximate the GARCH innovations and price options
accordingly; and finally, Ritchken and Trevor (1999) develop a lattice framework for most univariate GARCH processes.

5.  Figures 1, 2 and 3 are for the cases where the initial conditional variance  is equal to the unconditional variance,
Rq1 / )e =  1.0. We omit the implied volatility plots under the other two scenarios (i.e. high and low initial variance) since
qualitatively they do not add more insights other than the obvious. (For example, we will observe that a constant variance
model will underprice options when the initial variance for GARCH is high, and vice versa.) We will also omit such scenarios
later for the quanto options.
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regularities in the FX options market. FX option prices are first computed under the GARCH

specification together with the parameter estimates in Table 1, and then inverted using the constant-

volatility model (e.g., Garman and Kohlgahen (1983)) to obtain the implied volatilities. These

implied volatilities are plotted against the moneyness K / e. The GARCH option prices are calculated

by Monte Carlo simulations according to (2). 4   Calculations are done for options with different

maturities (T = 20, 60, 120, and 360 days) and degrees of moneyness (K / e = 0.85, 0.90, 0.95, 1.00,

1.05, 1.10,  and 1.15). For each maturity and moneyness combination we calculate three sets of

prices and hence implied volatilities, each with a different level of initial conditional volatility (low

initial variance: Rq1 / )e = 0.75, average initial variance: Rq1 / )e =  1.0, and high initial variance:

Rq1 / )e =  1.25). The unconditional volatility under measure P, )e, is calculated to be 0.144818 using

the parameter values in Table 1 and assuming 252 days in a year. 

The results of our numerical analyses are discussed below and partially presented in Figures

1, 2, and 3.  5

--------------------------------------
Figures 1, 2, and 3  here

--------------------------------------

Figure 1 is based on GARCH parameters in Table 1. As expected, the negative asymmetry

parameter (a = - 0.9637) leads to a positive skewness. Given a stationary volatility of 0.144818, it

can be seen from the figure that the constant variance model underprices out-of-the-money calls and

overprice in-the-money calls. (The neutral point is slightly out-of-the-money, instead of at K / e =1.0

due to skewness.) For out-of-the-money options the skewness effect and the leptokurtosis effect

reinforce each other, leading to underpricing by the constant variance model; for in-the-money

options, the skewness effect (overpricing) dominates the leptokurtosis effect (underpricing). The

shorter the maturity, the more manifest the results. The above observations are consistent with the



6. Since their findings are consistent with a zero skewness, we can infer that the sum of the risk premium and
asymmetry parameter for  currencies in their sample periods must be insignificant. Interestingly, that is what we found in an
early version of our paper for the Japanese yen for the sample period of April 1985 to December 1990.  Therefore our results
(previous and current) seem to support the findings by Bates (1996a). 
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findings in Bodurtha and Courtadon (1987), Bates (1996a) and Bates (1996b).

To demonstrate the impact of the asymmetry parameter on skewness and leptokurtosis, we

re-run simulations by setting a at -0.4 and 0.0 respectively, and the results are plotted in Figures 2

and 3.  (We adjust û0 so that the stationary volatility remains at 0.144818.) When a = - 0.4 out-of-

the-money options are still underpriced, but some of the in-the-money options, i.e. options with

T = 20 days, are also underpriced now, and the overall overpricing of the in-the-money options is

less severe. This confirms our general predictions in that a reduction in the asymmetry parameter will

make both the skewness and the leptokurtosis milder. A milder leptokurtosis is especially apparent

in the lower implied volatilities for out-of-the-money options.  

When  a is set to zero in Figure 3, the volatility curves become symmetrical smiles (centered

at K / e = 1.0), because skewness is completely absent now. In this case, it is seen that a constant

variance model will underprice away-from-the-money options and overprice at-the-money short term

options. This result is broadly consistent with the empirical findings by Shastri and Wethyavivorn

(1987) and Taylor and Xu (1994).  6

Incidentally, for out-of-the-money options, regardless of the extent of skewness, the implied

volatility is a decreasing function of time to maturity. For near-the-money options, when skewness

is absent or very mild,  the implied volatility is an increasing function of time to maturity.  All of the

above are consistent with the empirical evidence in Shastri and Wethyavivorn (1987), who found

that “for out-of-the-money, and deep-in-the-money options, implied volatilities decrease with

increasing time to maturity, while the opposite holds for options that are close to at-the-money”.

Finally, some recent empirical results indicate a broader consistency between jumps and

foreign exchange returns. (See for example, Bates (1996b).) Insofar as jumps generate “fat-tails” or

leptokurtosis, our GARCH framework is potentially equivalent to a jump-diffusion setup. However,

one must keep in mind that the former is discrete and the latter is continuous. Both can accommodate

“fat-tail” behaviour.  The question as to which model can best describe the FX return behaviour and

hence lead to more accurate pricing can only be answered empirically. The topic is best left for a

separate future research endeavour.



7. When the correlation is zero, the stock index process and the foreign exchange rate process are independent. But
when the correlation is not zero (which  we will consider), the two processes must be simulated simultaneously. 
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4.2 Quanto Options

Empirical studies of quanto option pricing are scanty. Dravid, Richardson and Sun (1993) examined

the pricing of Nikkei index warrants (listed on the American Stock Exchange) in a constant-volatility

framework and found that their model produces prices close to the market prices for Nikkei put

warrants but not for call warrants. Wei (1995) evaluated the same constant-volatility pricing model

using Nikkei put warrants listed on the Toronto Stock Exchange and found that the model tends to

overprice put warrants. (By put-call parity, one can infer that the model would also overprice call

warrants.)  There is no study to date which examines the implied volatility for quanto options, or

cross-currency options in general. The predictions presented in this section for the GARCH-based

quanto option pricing model can thus be viewed as testable implications for future studies.

Based on the parameter values given earlier, the unconditional volatility, under the data

generating probability measure, for the Nikkei index is  )s = 0.265367 (annualized based on a 252-

day year). ()e  remains at 0.144818.) The constant-variance version of the pricing model in Wei

(1992) and Dravid, Richardson and Sun (1993) is used to obtain the implied volatility of the option’s

model price based on the GARCH specification. We also fix the exchange rate volatility at its

stationary level (0.144818) and the correlation at the estimated value (0.0). 7 

The GARCH quanto option prices are computed in a fashion similar to that in Section 4.1,

except that we now use (2), (5) and (6) in simulations. As in Section 4.1, five different maturities

(T = 20, 60, 120, and 360 days), seven exercise prices (K / S = 0.85, 0.90, 0.95, 1.00,  1.05, 1.10  and

1.15),  and  three initial levels of conditional variance for Nikkei index returns are considered,

although we only report the results for the scenario whereby the initial conditional variance is equal

to the stationary variance. We again consider three levels of the asymmetry parameter. Plots are

presented in Figures 4, 5 and 6. 

--------------------------------------
Figures 4, 5, and 6 here

--------------------------------------

The general insights obtained for the FX options also apply here, except that the skewness

is in the opposite direction. Here, the skewness effect and the leptokurtosis effect reinforce each

other for in-the-money options. Notice that at the estimated asymmetry parameter level (b = 0.8567),
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the implied volatility curves are all monotonic in the degree of moneyness, which is also true for the

other two levels of the initial conditional variance (not reported here).   The highly skewed implied

volatility curves for equity index options have been empirically observed by Canina and Figlewski

(1993) for the S&P 100 index options, by Rubinstein (1994) for the S&P 500 index options, and by

Duan (1996) for the FT-SE 100 index options.  It can also be observed that the constant volatility

pricing model of Wei (1992) and Dravid, Richardson and Sun (1993) can lead to sizable pricing

errors if the true price dynamics follow the GARCH model. 

As mentioned before, the conditional correlation affects the stock index return innovation

in a complex fashion. To gain some insights into its impact, we repeat the calculations pertaining to

Figures 4, 5, and 6 by varying the correlation level. It turns out that the marginal impact of

correlation is quite similar for different levels of the asymmetry parameter and time to maturity. As

a result, we only report results for one maturity, T = 120 days in Figure 7.

--------------------------------------
Figure  7  here

--------------------------------------

It is seen that the conditional correlation does not fundamentally alter the pattern of the

volatility smile or “smirk”, although it does affect the level of implied volatility for in-the-money

options. Specifically, as the correlation moves away from zero, a higher negative correlation reduces

the implied volatility, and a higher positive correlation increases the volatility, which is to say that

an increase in the conditional correlation in general will manifest both the skewness and the

leptokurtosis.  (This can be understood by examining the variance innovation process in (5).) Given

the almost identical implied volatilities for out-of-the-money options, we can infer that the

conditional correlation mostly impacts the skewness and its effect on leptokurtosis is minimal. It is

interesting to note that in pricing terms, a quanto call option’s value is inversely related to

correlation, especially for in-the-money options. (This is shown in Wei (1997) for the constant

variance case.) For instance, in Figure 7, the option is worth the most when the correlation is -0.6.

So far, we have not been able to completely separate the skewness and leptokurtosis effects.

However, it can be shown that when the stationary variance is kept constant, an increase in the

coefficient û1 (or ù1) will leave the skewness unchanged (for a fixed asymmetry parameter) but lead

to more leptokurtic returns. (û2 or ù2 will have to be reduced accordingly to maintain the same

stationary variance.) Different indexes can have different conditional variance innovations as



8. We report only the results for an asymmetry parameter of 0.4 because it best illustrates the effect. When the
asymmetry parameter is high, the skewness effect will be too strong , which will mask some of the leptokurtosis effect.
Similarly, we choose a maturity of 60 days also for best illustration. All our conclusions remain valid for other parameter
combinations.  
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presented by Heynen and Kat (1994), it is therefore of interest to see how the relative redistribution

of weights of the two variance innovation parameters would affect the implied volatility profiles

through leptokurtosis effects. To this end, we fix the asymmetry parameter at 0.4 and re-do the plots

for different combinations of the two coefficients,  ù1 and ù2 for the index. We report in Figure 8

implied volatilities for a time to maturity of 60 days.  8  

--------------------------------------
Figure 8  here

--------------------------------------

The increasing leptokurtosis as ù1 increases is quite evident in the plots. When ù1 is 0.02, the

implied volatility is virtually flat, which makes sense because the variance is almost constant in such

a case, albeit a mild skewness still prevails. But as ù1 increases, a smile emerges, and the smile can

be quite “wide”. For instance, when ù1 is 0.32, the lowest implied volatility is around 19%, yet that

for the deep-in-the-money option is higher than 28%.  This implies that when the empirical value

of ù1 (which governs the random innovation of the conditional variance) is high a constant variance

model could potentially produce a large pricing error.   In addition, the plots clearly indicate that the

potential contribution to skewness by the leverage parameter must be viewed in conjunction with

the parameter, ù1.  

5. Conclusions

In this paper we generalize the GARCH option pricing framework of Duan (1995) to a two-country

setting. We assume a bivariate nonlinear asymmetric GARCH(1,1) model for the exchange rate and

the foreign asset price. We then identify a locally risk-neutralized pricing measure for the domestic

economy, and derive the exchange rate and foreign asset price dynamics with respect to this measure.

As a result, foreign currency options and different types of cross-currency options, or options on

foreign assets can be valued in this framework. The model can be readily generalized to a bivariate

GARCH(p,q) framework, which, for example, contains the GARCH-component model recently used

by Engle and Rosenberg (1995) in their hedging analysis.

Our setup can accommodate most observed empirical regularities of exchange rates and stock
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prices; for example, it allows a correlation between the conditional variance and the lagged returns

for both the exchange rate and the stock price. This is especially useful for the stock price

considering the existence of a negative correlation observed with many stocks (see, e.g., Black

(1976) and Christie (1982)).  Simulations show that our proposed GARCH pricing framework can

accommodate the empirical evidence in the foreign exchange options markets.  

The framework also allows flexible specifications of the conditional correlation. This

flexibility is especially useful for studying specific effects of different model inputs. For example,

we can specify different processes for the conditional correlation between the exchange rate and the

foreign asset price to study the so-called "correlation risk" for cross-currency options, which has

recently attracted much attention among academics and practitioners. Our proposed framework  can

be used to price other types of cross-currency options; for example, a  derivative whose payoff is a

direct function of the future exchange rate as well as the foreign stock price.  For this type of cross-

currency options, the pricing errors of the constant-variance model is likely to be larger, and the use

of the GARCH option pricing approach may prove to be even more relevant from a practical

standpoint. 
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Var
Qd htø1!tø1 ø qtø1Jtø1 -Øt ö VarP htø1!tø1 ø qtø1Jtø1 -Øt ,

Appendix

Proof of Proposition 2

Consider the return, measured in domestic currency, of investing in foreign stock. The cost

at time t is Stet and the gross return is St+1et+1 (cum dividends). By condition (iii) of the LRNVR,

Thus,

By  Proposition 1, Denote     by át+1. ApplyingE
Qd Jtø1 -Øt ö ÷ ótø1. E

Qd !tø1 -Øt

conditions (ii) and (iv) of the LRNVR yields

We now have

which implies

Since, by condition (iv) of the LRNVR,
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Qd Jtø1 -Øt ø 2 htø1qtø1 Cov
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Var
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E
Qd !õtø1 J

õ
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Qd !tø1, Jtø1 -Øt ö 'tø1.

we must have

Because by Proposition 1, it must beVar
Qd Jtø1 -Øt ö 1

which in turn implies

Substituting into (6) completes the proof.!õtø1

Q.E.D.
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Table 1. Parameter estimates and sampling standard errors for the joint dynamics of the
US$/Yen exchange rate and the Nikkei 225 index (daily) from January 4, 1994 to
February 26, 1999.

Parameter estimates Sampling standard
errors

Exchange rate 
process

parameters
û0 0.0000188272 0.0000019300
û1 0.1736645722 0.0193642271
û2 0.4388191542 0.0441675590
a -0.9637127481 0.1006403905
ó -0.0258114411 0.0305670171

Stock index
process

 parameters
ù0 0.0000037719 0.0000007712
ù1 0.0779830853 0.0123314186
ù2 0.8512878498 0.0146376825
b 0.8566744666 0.1081513698
å -0.0215612474 0.0291629205

Correlation
' -0.0192223444 0.0244170073

Log-likelihood 9914.6730606
Sample Size 1217

 
 

Note that the estimates for the two risk premium parameters and the
correlation are not statistically significant. Unless otherwise stated
we set them to zero for numerical analysis in Section 4. 



Figure 1.  Implied Volatility vs. Moneyness for FX Call Option Prices under GARCH
 — High Positive Skewness, a = - 0.9637 —                                  
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Figure 2.  Implied Volatility vs. Moneyness for FX Call Option Prices under GARCH
        — Medium Positive Skewness, a = - 0.4000 —                                  

0.130 

0.140 

0.150 

0.160 

0.170 

0.180 

Im
pl

ie
d 

V
ol

at
ili

ty

0.85 0.90 0.95 1.00 1.05 1.10 1.15 
      Moneyness, K / e

T = 20 days

T = 60 days

T = 120 days

T = 360 days

Figure 3.  Implied Volatility vs. Moneyness for FX Call Option Prices under GARCH
     — Zero Skewness, a = 0.0000 —                                  
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Figure 4.  Implied Volatility vs. Moneyness for Quanto Call Option Prices under GARCH
 — High Negative Skewness, b = 0.8567 —                                  
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Figure 5.  Implied Volatility vs. Moneyness for Quanto Call Option Prices under GARCH
         — Medium Negative Skewness, b = 0.4000 —                                  
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Figure 6.  Implied Volatility vs. Moneyness for Quanto Call Option Prices under GARCH
        — Zero Skewness, b = 0.0000 —                                  
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Figure 7.  Impact of Correlation on Implied Volatility for Quanto Call Option Prices 
    — Time to Maturity = 120 days —                                  
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       Figure 8.  Impact of GARCH Innovation on Implied Volatility for Quanto Call Option Prices
 — Time to Maturity = 60 days, Leverage Parameter = 0.4  —                               
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(The two innovation coefficients, ù1 and ù2 are varied such that the stationary
variance under measure P remains at 0.2654 for an asymmetry parameter of 
b = 0.4.  Specific combinations are,

ù1 = 0.02, ù2 = 0.963302,
ù1 = 0.12, ù2 = 0.847302,
ù1 = 0.22, ù2 = 0.731302,
ù1 = 0.32, ù2 = 0.615302,
ù1 = 0.42, ù2 = 0.499302.)


