
Risk Management and Analysis: Measuring and Modelling Financial Risk

(C. Alexander, Ed) Wileys, (1998)

CHAPTER 4

Volatility and Correlation : Measurement, Models and Applications

Carol Alexander, University of Sussex UK

4.1 Introduction

The most widely accepted approach to ‘risk’ in financial markets focuses on the measurement of

volatility in certain returns distributions.1 The volatility of portfolio returns depends on the

variances  and covariances between the risk factors of the portfolio, and the sensitivities of

individual assets to these risk factors. In linear portfolios, sensitivities are also measured by

variances and covariances. So the primary objective of this chapter is to account for the standard

methods of estimating and forecasting covariance matrices. The practical and theoretical

advantages and limitations of each method is discussed in detail. Later it is shown how to employ

them effectively in value at risk systems, capital allocation models, investment management and

the pricing and hedging of derivative products. The chapter concludes with a short review of

other methods for measuring market risk: downside risk and regret, expected maximum loss, and

cointegration.

What is volatility? A standard non-parametric definition is that x is 'more volatile' than y if

P(x>c) > P(y>c)

for all c. So if y is a time series it becomes more volatile when  P(yt+1>c) > P(yt>c) for all c.

But when y has a symmetric distribution, such as a normal distribution, this occurs if and only if σ

                                                       

1 Returns are given by the relative change in prices (or rates) over a fixed holding period h. The return at time t is
given by (Pt - Pt-h)/Pt-h  which, for small h, is well approximated by lnPt - lnPt-h . Value at Risk is, however, based
on the volatility of a portfolio’s change in market price (the profit and loss, P&L). Both returns and P&L are
generally stationary (mean reverting) variables. But some confusion may be caused by the term ‘price volatility’,
since prices (or rates) are random walks in efficient markets, and hence have infinite (unconditional) variance.
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2
t+1 > σ2

t  where σ2
t  denotes the conditional variance of y.2  However, variance is not

standardized. If we were to plot a term structure of variances, across different maturities, variance

would simply increase with the holding period of returns. So volatility is usually quoted as an

annualised percentage standard deviation:

volatility at time t =  (100 σt √A) % (1)

where A denotes the number of observations per year. We do this so that volatilities of different

maturities may be compared on the same scale - as the variance increases with the holding period,

so the annualising factor decreases. In this way, volatilities are standardized.

If one takes two associated returns series x  and y - returns on two Gilts for example - we can

calculate their correlation as

CORR (x ,y) =  COV(x ,y) / √V(x) √V(y) (2)

that is,

ρxy = σxy  / σx  σy (3)

Note that joint stationarity3 is necessary for the existence of correlation, and that it is the

exception rather than the rule.  Two arbitrary returns series, such as a Latin American Brady bond

and a stock in the FTSE 100, should be unrelated and are not likely to be jointly stationary, so

correlations between these two time series do not exist. Of course, one can calculate a number

based on the correlation formulae given in this chapter, but it does not measure unconditional

correlation unless the two series are jointly stationary. In such cases 'correlation' is found to be

very unstable. Correlation estimates will jump about a lot over time - a sign of non-joint

stationarity.

                                                       

2 We use the notations V(.) and σ2 interchangeably, similarly COV(x,y) and σxy  . The standard deviation is the
square root of the variance. Conditional and unconditional variance are explained in section 4.3.1.

3 Loosely speaking, this means that not only are the two individual returns series stationary (mean reverting) , but
their joint distribution has stationarity properties such as constant autocorrelations.
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Correlation does not need to be annualised, as does volatility, because it is already in a

standardised form: correlation always lies between -1 and +1. A negative value means that returns

tend to move in opposite directions and a positive value indicates synchronous moves in the same

direction. The greater the absolute value of correlation, the greater the association between the

series. 4

Volatilities and correlations are just standardized forms of the variances and covariances between

returns, so the information necessary to measure portfolio risk is usually summarized in a

covariance matrix. Based on a set of n returns series y1, ….. yn , this is a square, symmetric matrix

of the form

V y COV y y COV y y

COV y y V y COV y y

COV y y COV y y V y COV y y

COV y y V y

n

n

n

n n
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The next two sections of this chapter describe the two most commonly used methods of

estimating and forecasting covariance matrices in financial markets. Section 2  assesses the

moving average volatility and correlation estimation methods that are most financial institutions

use today: the equally weighted 'historic' method and the exponentially weighted moving average

method. Section 3 gives an overview of the huge technical literature on GARCH modelling in

finance and section 4 covers implied volatility and correlation forecasts, their use in trading being

covered elsewhere in this book (chapter 18). Section 5 surveys the use of volatility and correlation

forecasts in risk management, with particular emphasis on value at risk (VAR) models. The last

section of this chapter covers certain special issues, such as estimating volatilities from ‘fat-tailed’

distributions using normal mixtures, evaluation of the accuracy of different models, and new

directions, such as ‘downside risk’ measures and cointegration.

                                                       
4 It is important to bear in mind that returns series can be perfectly correlated even when the prices are in fact
moving in opposite directions. Correlation only measures short-term co-movements in returns, and has little to do
with any long-term co-movements in prices. For the common trend analysis in prices, rates or yields the technique
of cointegration offers many advantages, and this is reviewed in the last section of the chapter.
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4.2 Moving Averages

A moving average is an arithmetic average over a rolling window of consecutive data points taken

from a time series.  Moving averages have been a useful tool in financial forecasting for many

years. For example, in technical analysis, where they exist under the name of 'stochastics', the

relationship between moving averages of different lengths can be used as a signal to trade.

Traditionally they have also been used in volatility estimation. Usually volatility and correlation

estimates are based on daily or intra-day returns, since even weekly data can miss some of the

turbulence encountered in financial markets. Moving averages of squared (or cross products) of

returns are estimates of  variance (or covariance). These are converted to volatility and correlation

as described above, or employed in a covariance matrix for measuring portfolio variance.

4.2.1 'Historic' Methods

This section describes the uses and misuses of the traditional ‘historic’ volatility and correlation

forecasting methods. Recent advances in time series analysis allow a more critical view of the

efficiency of these methods, and they are being replaced by exponentially weighted moving

average or GARCH methods in most major institutions today.

The n-period historic volatility at time T is the quantity ( )100 $ %σT A  where A is the number of

returns rt per year and

$ /σ T t
t T n

t T

r n2 2
1

  =
= −

= −

∑ (4)

Thus  $σT   is the unbiased estimate of standard deviation over a sample size n, assuming the mean

is zero.5

                                                       
5 It is usual to apply moving averages to squared returns rt

2 (t = 1,2,3,....n)  rather than squared mean deviations of
returns (rt - r )2 where r is the average return over the data window. Although standard statistical estimates of
variance are based on mean deviations, empirical research on the accuracy of variance forecasts in financial
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'Historic' correlations of maturity n are calculated in an analogous fashion: if x and y are two

returns series, then n-period historic correlations may be calculated as6

r
x y

x y
T

t t
t T n

t T

t t
t T n

t T

t T n

t T
= = −

= −

= −

= −

= −

= −

∑

∑∑

1

2 2
11

(5)

Traditionally, the estimate of volatility or correlation over the last n periods has been used as a

forecast over the next n periods. The rationale for this is that long-term volatility predictions

should be unaffected by  ‘volatility clustering’ behaviour, and so we need to take an average

squared return over a long historic period - but short-term volatility predictions should reflect

current market conditions, whether volatile or tranquil, which means that only the immediate past

returns should be used.

However, when we examine the time-series properties of ‘historic’ volatilities and correlations we

see that they have some undesirable qualities: A major problem with equally weighted averages is

that extreme events are just as important to current estimates whether they occurred yesterday or

a long time ago. Even just one unusual return will continue to keep volatility estimates high for

exactly n days following that day, although the underlying volatility will have long ago returned to

normal levels. Thus volatility estimates will be kept artificially high in periods of tranquillity, and

they will be lower than they should be during the short bursts of volatility which characterise

financial markets.7

                                                                                                                                                                                  
markets has shown that it is often better not to use mean deviations of returns, but to base variances on squared
returns and covariances on cross products of returns (Figlewski, 1994, Alexander and Leigh, 1997).

6 Again, assuming zero means is simpler, and there is no convincing empirical evidence that this degrades the
quality of correlation estimates and forecasts in financial time series

7 For this reason I suggest removing extreme events from the returns data before the moving average is calculated.
This will give a better ‘everyday’ volatility estimate, for example, in VAR models. For stress testing portfolios,
these extreme events can be put back into the series - indeed they could even be bootstrapped back into the series
for more creative stress testing.
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Figure 1 illustrates equally weighted averages of different lengths on squared returns to the FTSE.

Daily squared returns are averaged over the last n observations for n= 30, 60, 120, 240, and this

variance is transformed to an annualized volatility in figure 1. Note that the one-year volatility of

the FTSE jumped up to 26% the day after Black Monday and it stayed at that level for a whole

year because that one, huge squared return had exactly the same weight in the average. Exactly

one year after the event the large return falls outs of the moving average, and so the volatility

forecast returned to its normal level of around 13%.  In shorter term equally weighted averages

this ‘ghost feature’ will be much bigger because it will be averaged over fewer observations, but it

will last for a shorter period of time.

Ghost features are even more of an issue with equally weighted moving average correlation

estimates, where they can induce an apparent stability in correlations. It may be that

‘instantaneous’ correlations are very unstable, because the two returns are not jointly stationary.

But whatever the true properties of correlations between the two returns series, the longer the

averaging period, the more stable will moving average correlations appear to be. It may also be

Figure 1: Historic Volatilities of the FTSE from 1984 to 1995, 
showing 'ghost features' of Black Monday and other extreme events
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that, by some fluke, the series both have large returns on the same day. This will cause a ghost

feature in correlation, making it artificially high for the n periods following that day.

Even with two closely related series such as the FTSE 100 and the S&P 500, we will obtain

correlation estimates which appear more stable as the averaging period increases. This point is

illustrated in figure 2, where correlations between the two equity indices are shown for a 60-day

averaging period, compared with the 30-day period. Stability of correlation estimates increases

with the averaging period, rather than being linked to the degree of joint stationarity between the

variables, because the equally weighted moving average method is masking the underlying nature

of the relationship between variables. Thus we could erroneous conclude that correlations are

‘stable’ if this method of estimation is employed.

Equally weighted moving averages should be used with caution, particularly for correlation, on

the grounds of these ghost features alone. But there is another, finer point of consideration.

Perceived changes in volatility and correlation can have important consequences, so it is essential

Figure 2: Historical correlations between UK and US equities from just 
after Black Monday to Spring 1993
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to understand what is the source of variability in any particular model. In the 'historic' model, all

variation is due only to differences in samples: a smaller sample size yields a less precise estimate,

the larger the sample size the more accurate the estimate. So a short period moving average will

be more variable than a longer moving average. But whatever the length of the averaging period

we are still estimating the same thing: the unconditional volatility of the time series. This is one

number, a constant, underlying the whole series. So variation in the n-period historic volatility

model, which we perceive as variation over time, is actually due to sampling error alone. There is

nothing else in the model that allows for variation. There is no estimated stochastic volatility

model in any moving average method - they are simply estimates of unconditional moments,

which are constants. 8 The estimated series does change over time, but as the underlying

parameter of interest is a constant variance, all the observed variation in the estimate is simply due

to sampling variation. The 'historic' model is also taking no account of the dynamic properties of

returns, such as autocorrelation. It is essentially a 'static' model which has been forced into a time-

varying framework. So, if you 'shuffle' the data within any given n-period window, you will get

the same answer, provided of course for correlation the two returns series are shuffled 'in pairs'.

4.2.2 Exponentially Weighted Moving Averages

The 'historic' models explained above weight each observation equally, whether it is yesterdays

return or the returns from several weeks or months ago. It is this equal weighting that induces the

'ghost features', which are clearly a problem. An exponentially weighted moving average

(EWMA) places more weight on more recent observations, and this has the effect of  eliminating

the problematic 'ghost features'.

The exponential weighting is done by using a ‘smoothing constant’ λ: the larger the value of λ the

more weight is placed on past observations and so the smoother the series becomes. An n-period

EWMA of a time series x is defined as

                                                       

8 This is a limitation of moving average methods. When the estimation method also gives a model for stochastic
volatility (as it does, for example, in GARCH models) the stochastic volatility model has very useful applications
for pricing and hedging (see sections 4.5.2 and 4.5.3)
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Since the denominator converges to 1/(1-λ) as n → ∞, an infinite EWMA may be written

( )1 1
1

1

− −
− −

=

∞

∑λ λi
t i

i

x (4)

It is an EWMA that is used for volatility and correlation forecasts in JP Morgan and Reuter’s

RiskMetrics . The forecasts of volatility and correlation over the next day are calculated by

taking λ=0.94 and using squared returns r2 as the series x in (7) for variance forecasts and cross

products of two returns r1r2 as the series x in (7) for covariance forecasts. Note that the same

value of λ should be used for all variances and covariances in the matrix, otherwise it may not be

positive semi definite (see JP Morgan, 1996) .

In general this type of EWMA behaves in a reasonable way - see Alexander and Leigh, 1997 for

an evaluation of their accuracy. In fact, an EWMA on squared returns is equivalent to an IGARCH

model (see section 4.3.2). To see this, consider equation (7) :

$ ( )σ λ λt
i

t i
i

r2 1
1

2

1

1= − −
− −

=

∞

∑

This may be re-written in the form

$ ( ) $σ λ λ σt t tr2
1

2
1

21= − +− − (8)

which shows the recursion normally used to calculate EWMAs. Comparison with equation (13)

shows that an EWMA is equivalent to an IGARCH model without a constant term.

In section 4.3.3 we describe how the GARCH coefficients can be interpreted: the coefficient on

the lagged squared return determines the speed of reaction of volatility to market events, and the

coefficient on the lagged variance determines the persistence in volatility.  In an EWMA these two

coefficients are not independent - they sum to one. For the RiskMetrics data set, the persistence
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coefficient is 0.94 for all markets, and the reaction coefficient is 0.06 for all markets. But if one

estimates these coefficients rather than imposes them, it appears that  λ=0.94 is too high for most

markets.

For example, in the FTSE series shown in figure 3, the GARCH persistence coefficient is 0.88,

and so the GARCH volatility series dies out more quickly than the RiskMetrics. However their

reaction coefficient is the same (0.06) and so both volatilities exhibit a similar size of market

reaction in figure 3.

Figure 3: GARCH and Exponentially Weighted Moving Average 1-day 
Volatility Forecasts of the FTSE: 1988-1995
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The RiskMetrics daily data do have some other problems, which are explained in Alexander,

1996, but these are not insurmountable.9 However, the RiskMetrics forecasts of volatility over

the next month behave in a rather strange fashion. Since the EWMA methodology is only really

applicable to one-step-ahead forecasting the correct thing would be to smooth 25-day returns, but

                                                       

9 In fact all the RiskMetrics matrices have low rank - either because EWMA use insufficient data for the size of
matrix, or because of the linear interpolation of yield curve data.
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there is not enough data. Instead, JP Morgan have applied  exponential smoothing with a value of 

λ=0.97 to the 25-day equally weighted variance. But this series will be full of 25-day ‘ghost

features’ (see figure 1) so the exponential smoothing has the effect of augmenting the very ‘ghost

features’ which they seek to diminish. After a major market movement the equally weighted 25-

day series jumps up immediately - as would any sensible volatility forecast. But the RiskMetrics™

monthly data hardly reacts at all, at first, then it gradually increases over the next 25 days to reach

a maximum exactly 25 days after the event. The proof of this is simple: denote by s
t

2  the 25-day

'historic' variance series, so the monthly variance forecast is $ ( ) $σ λ λ σt t ts2
1

2
1

21= − +− − . Clearly

$ $ $σ σ σt t t ts2
1

2
1

2
1

2> ⇔ >− − −   . At the 'ghost feature' s
t

2  drops dramatically, and so the maximum

value of  $σ t
2   will occur at this point.

Figure 4 compares the RiskMetrics monthly forecasts for the FTSE with the equally weighted 25-

day ‘historic’ forecasts, during the same period as in figure 3. Neither forecast is useful: the

‘historic’ forecast peaks at the right time, the day after a significant maret movement, but it stays

high for 25-days, when it should probably be declining. The RiskMetrics 25-day forecast hardly

Figure 4: 25-day 'Historic' and RiskMetrics monthly volatility forecasts 
of the FTSE: 1988-1995
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reacts at all to a market movement, but it slowly increases during the next 25-days so that the

largest forecast of the volatility over the next month occurs 25-days too late.

4.2.3 Volatility Term Structures in Moving Average Models: The Square Root of Time

Rule

Term structure volatility forecasts which are consistent with moving average models are constant,

because that is the underlying assumption on volatility. Moving average models are, after all,

estimation methods, not forecasting methods. We can of course say that our current estimate of

volatility is to be taken as all future forecasts, and this is what is generally done. The current one-

day volatility estimate is taken to be the one-day forward volatility forecast at every point in the

future.

Term structure forecasts - forecasts of the volatility of h-day returns for every maturity h - are

then based on the ‘square root of time’ rule. This rule simply calculates h-day standard deviations

as √h times the daily standard deviation. It is based on the assumption that daily log returns are

independently and identically distributed, so the variance of h-day  returns is just h times the

variance of daily returns. But since volatility is just an annualised form of the standard deviation,

and since the annualising factor is - assuming 250 days per year - √250 for daily returns but

√(250/h) for h-day returns, the square root of time rule is equivalent to the Black-Scholes

assumption that current levels of volatility remain the same.

The square root of time rule implies the assumption of constant volatility. This follows from the

assumption that log returns are independent and identically distributed. To see this, introduce the

notation rt,h for an h-day return at time t, and so approximately

 rt,h = ln(Pt+h) - ln(Pt)

where Pt denotes the price at time t. Clearly

 rt,h = rt,1 + rt+1,1+……+ rt+h-1,1
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and if we assume that 1-day returns are independent and identically distributed with constant

variance σ2 we have V(rt,h) = hσ2. Annualising this into a volatility requires the use of an

annualising factor 250/h, being the number of h-periods per year:

h-period vol = 100 √(250/h) √V(rh,t) = 100 √(250/h) √(hσ2)  = 100 √(250σ2) =  1-period vol

That is, volatility term structures are constant.  Constant term structures are a limitation of

exponentially weighted moving average methods. The reason for this is that financial volatility

tends to come in ‘clusters’, where tranquil periods of small returns are interspersed with volatile

periods of large returns10. Thus volatility term structures should mean-revert, with short term

volatility lying either above or below the long term mean depending on whether current conditions

are high or low volatility. Clearly moving averages are quite limited in this respect. Substantial

mispricing of volatility can result from these methods, as a number of large banks have recently

discovered.

4.3 GARCH Models in Finance

4.3.1 Introduction

The unfortunate acronym 'GARCH' is nevertheless essential, since it stands for generalised

autoregressive conditional heteroscedasticity! Heteroscedasticity means 'changing variance', so

conditional heteroscedasticity means changing conditional variance. A time series displays

conditional heteroscedasticity if it has highly volatile periods interspersed with tranquil periods:

i.e. there are 'bursts' or 'clusters' of volatility. Autoregressive means 'regression on itself', and this

refers to the method used to model conditional heteroscedasticity in GARCH models.

Most financial time series display autoregressive conditional heteroscedasticity. A typical example

of conditionally heteroscedastic returns in high frequency data  - minute by minute data on cotton

                                                       

10 As long ago as 1963 Benoit Mandlebrot observed that financial returns time series exhibit periods of volatility
interspersed with tranquillity, where ‘Large returns follow large returns, of either sign.....’
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futures - is shown in figure 5. Note that two types of news events are apparent. The first volatility

cluster shows an anticipated announcement, which turned out to be good news: the market was

increasingly turbulent before the announcement, but the large positive return at that time shows

that punters were pleased, and the volatility soon decreased. The later cluster of volatility shows

increased turbulence following an unanticipated piece of bad news - the large negative return -

what is often referred to as the ‘leverage’ effect (see section 4.3.2 (iv))

NOTE TO COPY EDITOR <Figure 5 here - same as figure 8.4 from 1st edition, and formatted

with caption and frame as in the previous figures please>

At the root of understanding GARCH is the distinction between conditional (stochastic) and

unconditional (constant) volatility. These ideas are based on different stochastic processes which

are assumed to govern the returns data.  Figure 6 illustrates the difference between conditional

and unconditional distributions of returns. In figure 6(a) the stochastic process which generates

the time series data on returns is assumed to be independent and identically distributed. This same

distribution governs each of the data points, and since they are independent we may as well

redraw the data without taking account of the dynamic ordering, along a line. The data are then

considered to be random draws from a single distribution, called the unconditional distribution

(figure 6(b)). However, in figure 6(c) the same data are assumed to be generated by a stochastic

process with time varying volatility. In this case it is not realistic to collapse the data into a single

distribution, ignoring the dynamic ordering. The conditional distribution changes at each point in

time, and in particular the volatility process is stochastic.

NOTE TO COPY EDITOR <Figure 6 here please, please have the hand drawn figure attached

properly set by printer>.

The first ARCH model, introduced by Rob Engle (1992) was later generalised by Tim Bollerslev

(1986), and many variations on the basic ‘vanilla’ GARCH model have been introduced in the last
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ten years.11 The idea of GARCH is to add a second equation to the standard regression model -

an equation which models the conditional variance. The first equation in the GARCH model is the

conditional mean equation.12 This can be anything, but because the focus of GARCH is on the

conditional variance equation13 it is usual to have a very simple conditional mean equation, such

as rt = constant + εt.

Note that the dependent variable (the input to the GARCH model) is always the returns series,

and in the simple case that rt = constant + εt the unexpected return εt is just the mean deviation

return, because the constant will be the average of returns over the data period. Of course we can

put whatever explanatory variables we want in the conditional mean equation of a GARCH

model, but should err on the side of parsimony if we want the model estimation procedure to

converge properly (see section 4.3.4). The conditional mean equation rt = constant + εt is fairly

standard. A GARCH model conditional variance equation provides an easy analytic form for the

stochastic volatility process in financial returns. GARCH models differ only because the

conditional variance equations are specified in different forms, or because of different assumptions

about the conditional distribution of unexpected returns.

In normal GARCH models we assume that εt is conditionally normally distributed with

conditional varianceσ
t

2  . The unconditional returns distributions will then be leptokurtic - that is,

have fatter tails than the normal - because the changing conditional variance allows for more

outliers or unusually large observations. However in high frequency data there may still be

insufficient leptokurtosis in normal GARCH to capture the full extent of kurtosis in the data, and

                                                       

11 For excellent reviews of the enormous literature on GARCH models in finance see Bollerslev et.al. (1992) and
(1993).
12 The unconditional mean of a stationary time series y is a single number, a constant. It is denoted E(y) or µ, and
is usually estimated very simply by the sample mean. On the other hand, the conditional mean varies over time,
and is commonly measured by a linear regression model. The conditional mean is denoted Et(yt) or µt or E(ytΩt),

where Ωt is the information set available at time t (so Ωt includes yt-1 and any other values which are known at

time t).
13 The unconditional variance of a stationary time series y is a constant, denoted V(y) or σ2. It is often estimated
by a moving average, as explained in the previous section. On the other hand, the conditional variance σt 

2 
 is often

denoted Vt(yt)  or Vt(ytΩt). Like the conditional mean, its’ estimates will form a time-varying series.
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in this case a t-distribution could be assumed (Baillie and Bollerslev, 1989, 1990), or a GARCH

model defined on a mixture of normals (see section 4.6).

Square rooting the GARCH conditional variance series, and expressing it as an annualised

percentage in the usual way yields a time-varying volatility estimate. But unlike the moving

average methods just described, the current estimate is not taken to be the forecast of volatility

over all future time horizons. Instead, by first estimating the GARCH model parameters, we can

then construct mean-reverting forecasts of volatility as explained in section 4.3.3. GARCH is

sufficiently flexible that these forecasts can be adapted to any time period. For example, when

valuing Asian options, volatility options, or measuring risk capital requirements it is often

necessary to forecast forward volatility, such as  a 1-month volatility but in 6 months time. This

flexibility is one of the many advantages of GARCH modelling over the moving average methods

just described.

Very many different types of GARCH models have been proposed in the academic literature, but

only a few of these have found good practical applications. The bibliography contains only a

fraction of the most useful empirical research papers on GARCH. In the next section we review

some of the univariate models which have received the most attention: ARCH, GARCH,

IGARCH, AGARCH, EGARCH, Components GARCH and Factor ARCH. There is little doubt

that these GARCH volatility models are easy and attractive to use. A summary of their useful

applications in financial risk management is given in section 4.5. However, in a climate where

firm-wide risk management is the key, there is a pressing need to model volatilities and

correlations in the context of large covariance matrices which cover all the risk factors relevant to

the operations of a firm. Unfortunately it is not easy to use GARCH for large systems. In the last

part of section 3 we look at the problems with direct estimation of high dimensional multivariate

GARCH models and propose a new method for generating large GARCH covariance matrices.

4.3.2 A Survey of GARCH Volatility Models

1. ARCH
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The original model of autoregressive conditional heteroscedasticity introduced in Engle (1982)

has the conditional variance equation

σ α α ε α ε

α α α
t t p t p

p

2
0 1 1

2 2

0 10 0

= + + +

> ≥
− −...

, , ....,
(9)

where the constraints on the coefficients are necessary to ensure that the conditional variance is

always positive. This is the ARCH(p) conditional variance specification, with a memory of p time

periods. This model captures the conditional heteroscedasticity of financial returns by using a

moving average of past squared unexpected returns: If a major market movement in either

direction occurred m periods ago (m ≤ p) the effect will be to increase today's conditional

variance. This means that we are more likely to have a large market move today, so 'large

movements tend to follow large movements ... of either sign'.

2. VANILLA GARCH

The generalisation of Engle's ARCH(p) model by Bollerslev (1986, 1987) adds q autoregressive

terms to the moving averages of squared unexpected returns: it takes the form

σ ω α ε α ε β σ β σ

ω α α β β
t t p t p t q t q

p q

2
1 1

2 2
1 1

2 2

1 10 0

= + + + + + +

> ≥
− − − −... ...

, ,..., , , ...,
(10)

The parsimonious GARCH(1,1) model, which has just one lagged error square and one

autoregressive term, is most commonly used:

σ ω α ε β σ

ω α β
t t t
2

1
2

1
2

0 0

= + +

> ≥
− −

,
(11)

It is equivalent to an infinite ARCH model, with exponentially declining weights on the past

squared errors:
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σ ω α ε β σ

ω α ε β ω α ε β ω α ε β

ω β α ε β ε β ε

t t t

t t t

t t t

2
1

2
1

2

1
2

2
2

3
2

1
2

2
2 2

3
21

= + +

= + + + + + +

= − + + + +

− −

− − −

− − −

( ( (.....

/ ( ) ( ....)

The above assumes that the GARCH(1,1) lag coefficient β  is less than 1. In fact a few

calculations show that the unconditional variance corresponding to a GARCH(1,1) conditional

variance is

σ ω α β2 1= − −/ ( ) (12)

and so not only must the GARCH return coefficient α also be less than 1, the sum α + β ≤ 1.

In financial markets it is common to find GARCH lag coefficients in excess of 0.7 but GARCH

returns coefficients tend to be smaller, usually less than 0.25. The size of these parameters

determine the shape of the resulting volatility time series: large GARCH lag coefficients indicate

that shocks to conditional variance take a long time to die out, so volatility is ‘persistent’; large

GARCH reurns coefficients mean that volatility is quick to re-act to market movements, and

volatilities tend to be more 'spiky'. Figure 7 shows US dollar rate GARCH(1,1) volatilities for

Sterling and the Japanese Yen.  Cable volatility is more persistent (its lag coefficient is 0.931

compared with 0.839 for the Yen/$) - the Yen/$ is more spiky (its return coefficient is 0.094

compared with 0.052 for Cable).14 See Alexander (1995a) for more details.

NOTE TO COPY EDITOR <Figure 7 here - same as figure 8.6 of 1st edition but please reduce

size and line thickness in charts>

The constant ω determines the long-term average level of volatility to which GARCH forecasts

converge (see section 4.3.3). Unlike the lag and return coefficients, its value is quite sensitive to

                                                       

14 These are slightly different from the values given in table 1 below, because firstly they use daily data (table 1
exchange rates are based on weekly data) and secondly a different data estimation period is used.
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the length of data period used to estimate the model.15 If a period of many years is used, during

which there were extreme market movements, the estimate of  ω will be high. So current

volatility term structures will converge to a higher level. Consider for example, the generation of

a GARCH volatility term structure on the FTSE today. Long term average volatility levels in the

FTSE are around 13%, but if we include the Black Monday period in the data used to estimate

today’s GARCH model, we would find current long term volatility forecasts at around 15%.

3. INTEGRATED GARCH

When α + β = 1 we can put β = λ and re-write the  GARCH(1,1) model as

σ ω λ ε λ σ λt t t
2

1
2

1
21 0 1= + − + ≤ ≤− −( ) (13)

Note that the unconditional variance (12) is now undefined - indeed we have a non-stationary

GARCH model called the Integrated GARCH (I-GARCH) model, for which term structure

forecasts do not converge. Our main interest in the I-GARCH model is that when ω = 0 it is

equivalent to an infinite EWMA, such as those used by RiskMetrics. This may be seen by

repeated substitution in (13):

σ ω λ ε λ ω λ ε λ ω λ ε λ

ω λ λ ε λ ε λ ε
t t t t

t t t

2
1

2
2

2
3

2

1
2

2
2 2

3
2

1 1 1

1 1

= + − + + − + + − +

= − + − + + +
− − −

− − −

( ) ( ( ) ( ( ) (....

/ ( ) ( )( .....)
(14)

Currency markets commonly have close to integrated GARCH models, and this has prompted

major players such as Salomon Bros. to formulate new models for currency GARCH, such as the

components GARCH model described below (see Chew, 1993).

4. ASYMMETRIC GARCH

The asymmetric GARCH (A-GARCH) model (Engle and Ng, 1993) has conditional variance

equation

                                                       

15 For this reason it is common to impose a value of  ω = (1 - α − β) σ2  from equation (12), using an
unconditional volatility estimate for σ2
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σ ω α ε ξ β σ ω α β ξt t t
2

1
2

1
2 0 0= + − + > ≥− −( ) , , , (15)

In this model, negative shocks to returns (εt-1 < 0) induce larger conditional variances than

positive shocks. Thus the A-GARCH model is appropriate when we expect more volatility

following a market fall than following a market rise. This ‘leverage effect’ is a common feature of

financial markets, particularly equities.

5. EXPONENTIAL GARCH

The non-negativity constraints of the GARCH models considered so far can unduly restrain the

dynamics of conditional variances so obtained. Nelson (1991) eliminated the need for such

constraints in his exponential GARCH model by formulating the conditional variance equation in

logarithmic terms

( )log logσ α β σt t tg z2
1 1

2= + +− −  (16)

where  zt =  εt /σt , so zt is standard normal, and

( )g z z zt t t= + −








ω λ

π
   

2
. (17)

The asymmetric response function g(.) , which is illustrated in figure 8, provides the leverage

effect just as in the AGARCH model. Many studies have found that the E-GARCH model fits

financial data very well (for example, see Taylor, 1994, Heynen et. al., 1994, and Lumsdaine,

1995) but it is much more difficult to obtain volatility forecasts using this model.

NOTE TO COPY EDITOR <Figure 8 here - same as figure 8.7 from 1st edition>

6. COMPONENTS GARCH
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In practice, estimation of a GARCH model over a rolling data window will generate a term

structure of volatility forecasts for each day. In each of these term structures, as volatility maturity

increases, GARCH forecasts should converge to a long-term level of volatility (see section 4.3.3).

As the data window is rolled different long-term levels will be estimated, corresponding to

different estimates of the GARCH parameters. The components model extends this idea of time-

varying 'baseline' volatility to allow variation within the estimation period (Engle and Lee, 1993

and Engle and Mezrich, 1995).

To understand the components model, note that when α + β < 1 the GARCH(1,1) conditional

variance is often estimated by imposing ω. The model may be written in the form

σ α β σ α ε β σ

σ α ε σ β σ σ

t t t

t t

2 2
1

2
1 1

2

2
1

2 2
1

2 2

1= − − + +

= + − + −

− −

− −

( )

( ) ( )        
(18)

where σ2  is defined by (12). We now replace σ2  by a time-varying  permanent component in

conditional variance:

q qt t t t   (   = + − + −− − −ω ρ ω φ ε σ1 1
2

1
2) ( ) (19)

and then the formulation (18) becomes

σ α ε β σt t t t t tq q q2
1

2
1 1

2
1     = + − + −− − − −( ) ( ) (20)

The equations (19) and (20) together define the components model. If ρ = 1, the permanent

component - to which long-term forecasts mean revert - is just a random walk.

7. FACTOR GARCH

Factor GARCH allows individual volatilities and correlations to be estimated and forecast from a

single GARCH volatility - the volatility of the market. Consider the simple capital asset pricing
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model, where individual asset or portfolio returns are related to market returns Mt by the

regression equation

r M i nit i i t it= + + =α β ε 1 2, ,....., (21)

Denoting by σit the standard deviation of asset i at time t and by σijt the covariance between

assets i and j at time t, equation (21) yields

σ β σ σ

σ β β σ σ

ε

ε ε

it i Mt

ijt i j Mt

it

it jt

2 2 2 2

2 2

= +

= +
(22)

From a simultaneous estimation of the n linear regression equations in (22) we can obtain

estimates of the factor sensitivities βi and the error variances and covariances. These, and the

univariate GARCH estimates of the market volatility σM are then used to generate individual asset

volatilities and correlations using (22). The idea is easily extended to a model with more than one

risk factor, see Engle, Ng and Rothschild (1990).

4.3.3 GARCH Volatility Term Structure Forecasts

One of the beauties of GARCH is that volatility and correlation forecasts for any horizon can be

constructed from the one estimated model. First we use the estimated GARCH model to give us

forecasts of instantaneous forward volatilities, that is the volatility of rt+j, made at time t and for

every step ahead j. The instantaneous GARCH forecasts are calculated analytically: for example,

in the GARCH(1,1) model

$ $ $ $ $σ ω α ε β σt t t+ = + +1
2 2 2 (23)

and the j-step ahead forecasts are computed iteratively16 as

                                                       

16 We only know the unexpected return at time t, not  εt+j  for j>0. But E(εt+j
2) = σt+j

2.
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$ $ ( $ $ ) $σ ω α β σt j t j+ + −= + +2
1

2 (24)

To get a term structure of volatility forecasts from these forward volatilities note that the

(logarithmic) return at time t over the next n periods is

r rt n t j
j

n

, = +
=

∑
1

The volatility term structure is a plot of the volatility of these returns for n=1,2,3,…….  Since

V r V r COV r rt t n t t i
i

n

t
ji

t i t j( ) ( ) ( , ), = ++
=

+ +∑ ∑∑
1

(25)

the GARCH forecast of n-period variance is the sum of the instantaneous GARCH forecast

variances, plus the double sum of the forecast autocovariances between returns. This double sum

will be very small compared to the first sum on the right hand side of (25), indeed in the majority

of cases the conditional mean equation in a GARCH model is simply a constant, so returns are

independent and the double sum is zero.17  Hence we ignore the autocovariance  term in (25) and

construct n-period volatility forecasts simply by adding the j-step-ahead GARCH variance

forecasts (and then square-rooting and annualising in the usual way).18

                                                       
17 Even in an AR(1)-GARCH(1,1) model (with autocorrelation coefficient ρ in the conditional mean equation)
(25) becomes

$ $ $ [ ( ) / ( )],σ σ σ ρ ρ ρt n t i
i

n
n2 2

1

21 1= − −+
=
∑   +  t

2  

and the first term clearly dominates the second.
18 In this way we can also construct any sort of forward volatility forecasts, such as 3-month volatility but for a
period starting six months from now.
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Figure 9 shows 1-day, 10-day 30-day 60-day and 120-day volatility forecasts for the FTSE from

1988-1995. Note how the forecasts of different maturities converge to the long-term volatility

level of around 13%. During a volatile period GARCH term structures converge to this level

from above (figure 10(a)) and during a tranquil period they converge from below (figure 10(b)) .

Figure 9: GARCH volatility term structure forecasts 
of the FTSE: 1988-1995
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The speed of convergence in GARCH(1,1) depends on α + β. Currency markets generally have

the highest values of α + β, and hence the slowest convergence. The speed of convergence in

equity and commodity GARCH models tends to be faster, and bond markets often have the

Figure 10(a): GARCH volatility term structures of US Dollar 
rates on April 13 1995
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Figure 10(b): GARCH volatility term structures of US Dollar  
rates on March 2 1995
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lowest α + β and the fastest converge of volatility term structures to the long-term level (see

section 4.3.4).

4.3.4 Estimating GARCH Models: Methods and Results

Most of the models described above are available as pre-programmed procedures in econometric

packages such as S-PLUS, TSP, EVIEWS and MICROFIT, and in GAUSS and RATS, GARCH

procedures can be written, as explained in the manuals. The method used to estimate GARCH

model parameters is maximum likelihood estimation, which is a powerful and general statistical

procedure, widely used because it always produces consistent estimates.

The idea is to choose parameter estimates to maximise the likelihood of the data under an

assumption about the shape of the distribution of the data generation process. For example, if we

assume a normal data generation process with mean µ and variance σ2  then the likelihood of

getting returns r1 , r2 , ...., rT is

L r r r f r
T t

t

T

( , | , , .... , ) ( )µ σ2

1 2
1

=
=

∏ (26)

where f r
r

( ) exp{ }= −
−





1

2

1
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2

πσ

µ
σ

(27)

Choosing µ  and σ2 to maximise L (or equivalently to minimise -2logL) yields the maximum

likelihood estimates of these parameters.

In GARCH models there are more than just two parameters to estimate, and the likelihood

functions are more complex (for example, see Engle, 1982 and Bollerslev, 1986) but the principle

is the same. Problems arise though, because the more parameters in the likelihood function the

'flatter' it becomes, and therefore more difficult to estimate. For this reason the GARCH(1,1)

model is preferred to an ARCH model with a long lag, and parameterizations of conditional mean



Risk Management and Analysis: Measuring and Modelling Financial Risk

 (C. Alexander, Ed) Wileys, (1998)

27

equations are as parsimonious as possible - often we use just a single constant in the conditional

mean.

Convergence problems with GARCH models can arise because gradient search algorithms used to

maximize the likelihood functions fall off a boundary. Sometimes this problem can be mitigated by

changing the starting values of the parameters, or knocking a few data points off the beginning of

the data set so the likelihood function has a different gradient at the beginning of the search. The

time taken for GARCH models to converge will be greatly increased unless analytic derivatives

are used to calculate the gradient in the search. For leptokurtic data, t-distributed GARCH models

have lost ground in favour of normal mixture GARCH models since they require numerical

derivatives to be calculated at each iteration.

However, most univariate GARCH models should encounter few convergence or robustness

problems if they are well-specified. Care should be taken over the re-specification of initial

conditions if the coefficients estimates hit a boundary value, and sometimes minor changes in the

returns data can induce the occasional odd value of coefficients. These will be evident in rolling

GARCH models, where convergence conditions may need re-setting. In some cases the

coefficient values take some time to settle down but once the model is properly tuned to the data

it can be updated daily or weekly with few problems.
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Table 1: Approximate GARCH(1,1) parameters for equity markets and USD exchange rates

alpha beta

Equities

UK 0.105 0.810

GE 0.188 0.712

US 0.271 0.641

JP 0.049 0.935

NL 0.146 0.829

USD rates

DEM 0.113 0.747

JPY 0.102 0.763

GBP 0.028 0.935

NLG 0.125 0.735

ESP 0.160 0.597

AUD 0.241 0.674

Table 1 gives an idea of what to expect when estimating GARCH(1,1) parameters in some of the

major currency and equity markets. Note that very few of these markets have persistence

parameters which are as large as the value 0.94 used for the RiskMetrics data. Of course the

GARCH parameters depend on the data frequency and estimation period, but they should be fairly

robust to these differences. When rolling the estimation of a GARCH model day by day,

significant changes in the parameters should occur consequent to major market movements only.

Bond market GARCH models are more difficult to estimate, particularly since some maturities

can be quite illiquid. To estimate and forecast volatilities and correlations for an entire yield curve,

the orthogonal GARCH model is highly recommended (see section 4.3.7).

4.3.5 Choosing the Data Period and the Appropriate GARCH Model
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The plain ‘vanilla’ GARCH(1,1) model - even without asymmetric or leptokurtic effects - already

offers many advantages over the moving average methods described in section 4.2, and many

financial institutions are currently basing their systems on this model. One of the questions that

senior management will want to address is whether such a simple GARCH model does the trick -

is it capturing the right type of volatility clustering in the market - or should we be using some

sort of complex fractionally integrated GARCH model like the house next door? In this section

we show how to diagnose whether you have a good GARCH model or not, and how to employ

data to the best advantage.

A test for the presence of ARCH effects in returns is obtained by looking at the autocorrelation in

the time series of squared returns . Standard autocorrelation test statistics may be used, such as

the Box-Pierce Q  ∼ χ2  (p) :

Q T n
n

p

=
=

∑ϕ( ) 2

1

                        (28)

where ϕ(n) is the nth order autocorrelation coefficient in squared returns

ϕ( )n
r r

r

t t n
t n

T

t
t

T=
−

= +

=

∑

∑

2 2

1

4

1

               (29)

One of the main specification diagnostics in GARCH models is to first standardise the returns by

dividing by the estimated GARCH standard deviation, and then test for autocorrelation in squared

standardised returns. If it has been removed, the GARCH model is doing its job. But what if

several GARCH models account equally well for GARCH effects? In that case choose the

GARCH model which gives the highest likelihood, either in-sample or in post-sample predictive

tests.

The two important considerations in choosing data for GARCH modelling are the data frequency

and the data period. It is usual to employ daily or even intra-day data rather than weekly data
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since convergence problems could be encountered on low frequency data due to insufficient

ARCH effects. If tic data are used the time bucket should be sufficiently large to ensure there are

no long periods of no trades, and by the same token bank holidays may cause problems so it is

often better to deviate from the standard time-series practise of using equally spaced daily data,

and not fill in the zero returns caused by back holidays.

When it comes to choosing the amount of historical data for estimating GARCH models, the real

issue is whether you want major market events from several years ago to influence your forecasts

today. As we have already seen, including Black Monday in equity GARCH models has the effect

of raising long-term volatility forecasts by several percent. In the orthogonal GARCH model of

section 4.3.7 it is also important not to take too long a data period, since the principal

components are only unconditionally orthogonal so the model will become ill-conditioned if too

long a data period is chosen.19 On the other hand, a certain amount of data is necessary for the

likelihood fuction to be sufficiently well defined. Usually at least one or two years of daily data are

necessary to ensure proper convergence of the model.

4.3.6 Multivariate GARCH

Univariate GARCH models commonly converge in an instant, the only real problems being lack of

proper specification by the user, or inappropriate data. But there are very serious computational

problems when attempting to build large positive definite GARCH covariance matrices which are

necessary if one is to net the risks from all positions in a large trading book.

This section reviews the basic multivariate GARCH models, discussing the inevitable

computational problems if one attempts direct estimation of full GARCH models in large

dimensional systems. The unconditional variance of a multivariate process is a positive definite

                                                       

19 For risk management purposes, currently one does not need to go further back than 1st January 1993. The major
disruptions to financial markets during 1992 are best left out of ordinary everyday volatilities, but can easily be re-
created when the model is being stressed.
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matrix, the covariance matrix, already defined in the introduction. The conditional variance of a

multivariate process is a time-series of matrices, one matrix for each point in time. It is not

surprising therefore that estimation of these models can pose problems! The convergence

problems outlined in section 4.3.4 can become insurmountable even in relatively low dimensional

systems, so parameterizations of multivariate GARCH models should be as parsimonious as

possible. There are many ways that multivariate GARCH can be constrained in order to facilitate

their estimation  but these methods often fall down on at least one of two counts: either they are

only applicable to systems of limited dimension (something like 5-10 factors being the maximum)

or they need to make unrealistic assumptions on parameters that are not confirmed by the data

(see Engle and Kroner, 1995). However, section 4.3.7 presents a new method which falls down

on neither count. It uses orthogonal approximations to generating arbitrary large GARCH

covariance matrices using only univariate GARCH models.

Consider first the bivariate GARCH model, appropriate only if we are just interested in the

correlation between two returns series, r1 and r2 . There will now be two conditional mean

equations, which can be anything we like but for the sake of parsimony we shall assume that each

equation gives the  return as a constant plus error:

r

r
t t

t t

1 11 1

2 21 2

, ,

, ,

= +

= +

ϕ ε

ϕ ε

In a bivariate GARCH there are three conditional variance equations, one for each conditional

variance and one for the conditional covariance. Since all parameters will be estimated

simultaneously the likelihood can get very flat indeed, so we need to use as few parameters as

possible. In this section we introduce the two standard parameterizations of multivariate GARCH

models: the vech and the BEKK.

In the vech parameterization each equation is a GARCH(1,1):
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(30)

As usual, constraints on the coefficients in (30) are necessary to ensure positive definiteness of the

covariance matrices. To obtain time-series of  GARCH correlations we simply divide the

estimated covariance by the product of the estimated standard deviations, at every point in time

(see figure 11).

<Figure 11 here - same as fig 8.8 from 1st edition>

When considering systems with more than two returns series we need matrix notation. The matrix

form of equations (30) is

vech (Ht )    =    A    +    B vech (ξt-1ξt-1' )    +    C vech (Ht-1) (31)

where Ht is the conditional variance matrix at time t.  So vech(Ht) = (σ1t
2 , σ2t

2 , σ12t )' , and ξt = (

ε1t, ε2t)' , A = (ω1, ω2, ω3)', B = diag( α1, α2, α3) and C = diag (β1, β2, β3) , with the obvious

generalisation to higher dimensions.

There are severe cross equation restrictions in the vech model, for example the conditional

variances are not allowed to affect the covariances and vice-versa. In some markets these

restrictions can lead to substantial differences between the vech and BEKK estimates so the vech

model should be employed with caution.

A more general formulation, which involves the minimum number of parameters whilst imposing

no cross equation restrictions and ensuring positive definiteness for any parameter values is the

BEKK model (after Baba, Engle, Kraft and Kroner who wrote the preliminary version of Engle

and Kroner, 1995). This parameterization is given by



Risk Management and Analysis: Measuring and Modelling Financial Risk

 (C. Alexander, Ed) Wileys, (1998)

33

Ht    =    A'A    +    B' ξt-1ξt-1'  B        +    C' Ht-1 C (32)

where A, B and C are general nxn matrices (A is triangular). The BEKK parameterization for a

bivariate model involves eleven parameters,  only two more than the vech. But for higher

dimensional systems the extra number of parameters increases, and completely free estimation

becomes very difficult indeed. Often it is necessary to let B and C be scalar matrices, to reduce the

number of parameters needing estimation and so improve the likelihood surface and, hopefully,

achieve convergence. More details are given in Bollerslev et. al. (1992) and Bollerslev et. al.

(1994) .

A useful technique for calibrating multivariate GARCH is to compare the multivariate volatility

estimates with those obtained from direct univariate GARCH estimation. The multivariate

GARCH volatility term structure forecasts are computed as outlined in section 4.3.4. and

correlation forecasts are calculated in a similar fashion: simply by iterating conditional covariance

forecasts and summing these to get n-period covariance forecasts.20  These are then divided by

the product of n-period volatility forecasts for correlation term structures:

$ $ / $ $
, , , , , , ,ρ σ σ σt n t n t n t n= 12 1 2

4.3.7 Generating Large GARCH Covariance Matrices: Orthogonal GARCH

The computations required to estimate very large GARCH covariance matrices by direct methods

are simply not feasible at the present time. However indirect ‘orthogonalization’ methods can be

used to produce the large covariance matrices necessary to measure risk in large portfolios. This
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method is introduced, explained and verified for all major equity, currency and fixed income

markets by Alexander and Chibumba (1997).

In orthogonal GARCH the risk factors from all positions across the entire firm are first divided

into reasonably highly correlated categories, according to geographic locations and instrument

types. Principal components analysis is then used to orthogonalize each sub-system of risk factors,

univariate GARCH is applied to the principal components to obtain the (diagonal) covariance

matrix, and then the factor weights from the principal components analysis are used to ‘splice’

together the large covariance matrix for the whole enterprise.

An example explaining the method for just two risk factor categories can easily be extrapolated to

any number of risk factor categories: Suppose P = (P1 , ... Pn ) are the principal components of the

first system (n risk factors) and let Q = (Q1 ,...Qm ) be the principal components of the second

system (m risk factors).21 Denote by A (nxn) and B (mxm) the factor weights matrices of the first

and second systems. Within factor covariances are given by AV(P)A’ and BV(Q)B’ respectively

and cross factor covariances are ACB’ where C denotes the mxn matrix of covariances of

principal components.

An illustration of this method applies to a system of equity indices and USD exchange rates

(Alexander and Chibumba, 1997). The system is just small enough to compare the ‘splicing’

method with full multivariate GARCH estimation and figure 12 shows one of the resulting

                                                                                                                                                                                  

20 To see this, note that COV r r COV r rt t n t n t
i j

n

t i t j( , ) ( , ), , , ,
,

, ,1 2
1

1 2=
=

+ +∑ . Ignoring non-contemporaneous

covariances gives $ $
, , ,σ σ12 12

1
t n t i

i

n

= +
=
∑   .

21 One of the advantages of principal components analysis is to reduce dimension, and this is certainly an
attractive proposition for the yield curve (see chapter ?), or for systems when the reduction in ‘noise’ obtained by
using only a few principal components makes correlations more stable. However it is the orthogonality property of
principal components which is the primary attraction here, and if one does not retain the full number of principal
components, we cannot ensure positive definiteness of the final covariance matrix.
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correlations obtained by each method - between the GBP/USD exchange rate and the Nikkei

during the period 1 Jan 1993 and 17 Dec 1996.

Some care must be taken with the initial calibration of orthogonal GARCH, but once calibrated it

is a useful technique for generating large GARCH covariance matrices, with all the advantages

offered by these models. It is particularly useful for yield curves, where the more illiquid

maturities can preclude the direction estimation of GARCH volatilities. The orthogonal method

not only provides estimates for maturities with inadequate data - a substantial reduction in

dimensionality is also possible.

The factors that must be taken into account when calibrating an orthogonal GARCH are the time

period used for estimation, and the sub-division into risk factor categories. For example, if a

market that has very idiosyncratic properties is taken into a sub-system of risk factor categories,

the volatilities and correlations of all other markets in the system will be erroneously affected.

Therefore, one has to compare the volatilities and correlations obtained by direct GARCH - or

Figure 12: Comparison of orthogonal GARCH and BEKK

correlations between the Cable rate and the Nikkei index: 1993-1996
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EWMA - with those obtained from the orthogonal GARCH, to ensure successful calibration of

the model.

4.4 'Implied' Volatility and Correlation

Implied volatility and correlation are those volatilities and correlations which are implicit in the

prices of options. When an explicit analytic pricing formula is available (such as the Black-Scholes

formula - see Volume 1 Chapter 2) the quoted prices of these products, along with known

variables such as interest rates, time to maturity, exercise prices and so one, can be used in an

implicit formula for volatility. The result is called the implied volatility. It is a volatility forecast -

not an estimate of current volatility - the volatility forecast which is implicit in the quoted price of

the option, with an horizon given by the maturity of the option.

Although they forecast the same thing (the volatility of the underlying assets over the life of the

option) implied volatilities must be viewed differently from statistical volatilities because they use

different data and different models22. If the option pricing model were an accurate representation

of reality, and if investors expectations are correct so that there is no over- or under- pricing in

the options market, then any observed differences between implied and statistical volatility would

reflect inaccuracies in the statistical forecast. Alternatively, if statistical volatilities are correct,

then differences between the implied and statistical measure of volatility would reflect a mispricing

of the option. In fact, rather than viewing implied volatility and statistical methods as

complementary forecasting procedures, when implied volatilities are available they should be

taken along side the statistical forecasts. For example in the ‘volatility cones’ described below, or

in Salomon Brothers 'Gift' (GARCH index forecasting tool) the relationship between implied

volatility and GARCH volatility is used to predict future movements in prices (see Chew, 1993).

4.4.1 Black-Scholes Implied Volatility

                                                       

22 Implied methods use current data on market prices of options - hence implied volatility contains all the forward
expectations of investors about the likely evolution of the underlying. Statistical methods use only historic data on
the underlying asset price. Apart from differences in data, the mathematical models used to generate these
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The Black-Scholes formula for the price of a call option with strike price K and time to maturity t

on an underlying asset with current price S and t-period volatility σ is

( )C SN x Kr N x tt= − −−( )  σ                                  (33)

where r denotes the 'risk-free' rate of interest, N(.) is the normal distribution function

and

( )x S Kr t tt  = +−ln / σ σ 2

.

Option writers would estimate a statistical volatility and use the Black-Scholes or some other

option model to price the option. But if C is observed from the market, and so also are S, K, r and

t, then (33) may be used instead to ‘back-out’ a volatility implied by the model. This is called the

(Black-Scholes) implied volatility, σ. Options of different strikes and maturities on the same

underlying attract different prices, and therefore different implied volatilities. A plot of these

volatilities against strike price and maturity is called the ‘volatility smile’ (see figure 13).

Long term options have little variation in prices, but as maturity approaches it is typical that out-

of-the money options would imply higher volatility in the underlying than at-the-money options,

otherwise they would not be in the market. Thus implied volatility is often higher for out-of-the

money puts and calls than for at-the money options, an effect which is termed the ‘smile’. Equity

markets exhibit a ‘leverage effect’, where volatility is often higher following bad news than good

news (see section 4.3.2 (4)). Thus out-of-the money puts require higher volatility to end up in-

the-money than do out-of-the money calls, and this gives rise to the typical ‘skew’ smiles of

equity markets, such as in figure 13.

The volatility smile is a result of pricing model bias, and would not be found if options were

priced using appropriate stochastic volatility models (see Dupire, 1997). For example, when

                                                                                                                                                                                  
quantities are totally different: Implied methods assume risk neutrality and use a diffusion process for the
underlying asset price.
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options are priced using the Black-Scholes formula, which assumes log-normal prices, we observe

volatility smiles because empirical returns distributions are not normal. Most noticeable in

currency markets, returns distributions have much fatter tails than normal distributions, so out-of-

the money options have more chance of being in-the-money than is assumed under Black-Scholes.

This underpricing of the Black-Scholes model compared to observed market behaviour yields

higher Black-Scholes implied volatilities for out-of-the money options.

Figure 13: Black-Scholes smile surface for FTSE options, December 1997

Figure 13: Smile surface of the FTSE, De 1

-0.6 -0.4 -0.2 0 0.2 0
200

4000

0.2

0.4

0.6

0.8

1

Moneyness Maturity

Implied Volatlity

‘Volatility cones’ are graphic representations of the term structure of volatility, used for visual

comparison of current implied volatility with an empirical historical distribution of implied

volatilities. To construct a cone, fix a time to maturity t  and estimate a frequency distribution of

implied volatility from all t-maturity implied volatilities during the last two years (say), recording

the upper and lower 95% confidence limits. Repeat for all  t. Plotting these confidence limits

yields a cone-like structure because the implied volatility distribution becomes more peaked as the

option approaches maturity (see volume 1 chapter 8). Cones are used to track implied volatility

over the life of a particular option, and under or overshooting the cone can signal an opportunity

to trade. Sometimes cones are constructed on 'historic' volatility because historic data on implied



Risk Management and Analysis: Measuring and Modelling Financial Risk

 (C. Alexander, Ed) Wileys, (1998)

39

volatility may be difficult to obtain. In this case cones should be used with caution, particularly if

overshooting is apparent at the long end. Firstly, differences between long-term 'historic' and

implied volatility are to be expected, since transactions costs are included in the implied volatilities

but not the statistical. But also the ‘Black-Scholes bias, which tends to under price ATM options

and over price OTM options, can increase with maturity.

4.4.2 Implied Correlation

The increase in derivatives trading in OTC markets enables implied correlations to be calculated

from three implied volatilities by rearrangement of the formula for the variance of a difference: if

we denote by ρ the correlation between x and y

σ σ σ σ σ ρx y x y x y− = + −2 2 2 2

or  ρ
σ σ σ

σ σ
=

+ − −x y x y

x y

2 2 2

2
(34)

Putting implied volatilities in formula (34) gives the associated implied correlation - we just need

traded options on three associated assets or rates X, Y and X-Y. For example X and Y could be

two US dollar FX rates (in logarithms) so X-Y is the cross rate. In the above formulae, the

implied correlation between the two FX rates is calculated from the implied volatilies of the two

USD rates σx and σy and the implied volatility of the cross rate σx-y .

Similar calculations can be used for equity implied correlations: Assuming the correlation between

all pairs of equities in an index is constant allows this correlation to be approximated from implied

volatilities of stocks in the index - see Kelly (1994). Of course, the assumption is very restrictive

and not all equities will be optionable, so the approximation is very crude and can lead to implied

correlations which are greater than 1. Another way in which implied correlations can be obtained

is by inverting the quanto pricing formula. When we know the quanto price, the interest rate, the

equity and FX implied volatilities and so on we can invert the Black-Scholes quanto pricing

formula to obtain an implied correlation between the equity and the FX rate.
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There are a limited number of ways in which implied correlations can be backed out from option

prices, and even when it is possible to obtain such implied correlations, they will be very unstable.

Not only are the underlying correlations often unstable, but with implied correlations there are a

number of model assumptions which may be questionable. In short, these correlations should be

used with even more caution than implied volatilities.

4.5 A Short Survey of Applications to Measuring Market Risk

4.5.1  Factor Models

Simple factor models describe returns to an asset or portfolio in terms of returns to risk factors

and an idiosyncratic or ‘specific’ return. For example, in the simple Capital Asset Pricing Model

(CAPM) the return to a portfolio, denoted rt , is approximated by the linear regression model

rt = α + βRt + εt

where Rt is the return to the market risk factor, the error process εt denotes the idiosyncratic

return and β denotes the sensitivity (or ‘beta’) of the portfolio to the risk factor. Standard

regression models would then estimate this beta by the ratio of the covariance (between the

portfolio and the risk factor) to the variance of the risk factor:

β = COV(r,R)/V(R)

Thus beta is the relative volatility times the correlation between the risk factor and the portfolio.

Although relative volatilities may be quite stable, the same cannot be said of the correlation. This

means that portfolio betas tend to jump around quite a bit, although this will not be apparent if

equally weighted averaging methods are used to estimate them.23 But this is the case in standard

ordinary least squares (OLS) regression. And many analytics firms will be using OLS for their

                                                       

23 It is exactly the same problem of ‘ghost features’, that have already been described with respect to ‘historic’
volatilities and correlations, that makes market betas appear more stable than they really are.
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betas, so their estimates just reflect an average beta over whatever data period is used for their

estimation. If, on the other hand, we use a time-varying estimate such as EWMA or GARCH for

the covariance and variance (as in Kroner and Claessens, 1991) the beta estimate will more

accurately reflect current market conditions.

Figure 14 shows the time-varying beta for National Westminster Bank in the FTSE, calculated

using an exponentially weighted moving average for correlation and the volatility of the FTSE. It

shows significant variation over time, ranging from less than 0.2 to nearly 1 (on Black Monday).

Figure 14: EWMA Correlation and Beta for NatWest bank vs the FTSE: 1985-1991
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Unfortunately many analytics firms still employ equally weighted averages in the OLS procedures

commonly used to calculate market betas, so they provide only an average of the beta during the

estimation period, which is 0.613 for figure 14. Clearly this can produce very inaccurate measures

of the current beta when compared with time-varying methods.

More generally, in multivariate factor models, portfolio returns are attributed to several risk

factors: the portfolio return is given by

rt = α + β1R1t + β2R2t+ ..... + βnRnt + εt

where R1 , ..., Rn are the returns to different risk factors, β1 , ....., βn are the net portfolio

sensitivities (i.e. the weighted sum of the individual asset sensitivities) and ε is the idiosyncratic or

specific return of the portfolio (i.e. that part of the return not attributed to the different risk

factors). The net betas with respect to each risk factor can be calculated from the covariances

(between risk factors and between the portfolio and risk factors) and the variances of the risk

factors: Denote by X the Txn matrix of data on the risk factors and by y the Tx1 vector of data on

the portfolio returns. Then we estimate β as the inverse of the covariance matrix between risk

factors, times the vector of covariances between the portfolio and the risk factors:

β = (X’X)-1 X’y

Again, time-varying methods for calculating these variances and covariances should be employed

in order to obtain a true reflection of current market conditions. The use of OLS in factor models

is a major source of error, which has implications for risk management whenever these models are

used - in mean-variance analysis, in VAR models, and in other methods for capital allocation.

4.5.2 Capital Allocation

Suppose first that capital allocation decisions are made on the basis of risk characteristics alone.

The standard problem is of choosing a vector of weights w = (w1 , …., wn )’ in a portfolio to

minimise its variance (although variance is not necessarily the best measure of risk - see Dembo

(1997) and chapter 7 of this volume). In mathematical notation:
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Min
w
    w'Vw     such that    Σwi = 1

where V is the covariance matrix of asset returns. Assuming that weights can be negative or zero

this is a straightforward linear programming problem, having the solution

wi* = ψi  / Σψi  where  ψi =  Σ ith  column  of  V-1.

Remarks about the appropriate use of covariance matrices V are made below. For example we

may take V to be a time-varying covariance matrix such as the GARCH matrix. This will give

time-varying weights wi,t* that can be used to re-balance the portfolio within certain limits as

volatilities and correlations between the assets change.

But capital allocation decisions made on the basis of risk alone may be inappropriate since the

return characteristics are ignored. More risk may be acceptable if it is accompanied by higher

returns, and managers are in danger of under utilising capital if insufficient capital is allocated to

high risk, high return activities. Hence capital allocation is commonly viewed within the

framework of risk-return analysis. The problem is to allocate capital between assets R = (R1 , ...,

Rn)’with optimal weights w = (w1 , …., wn). Efficient allocations lie on the ‘efficient frontier’,

where it is not possible to adjust allocations w1 , …., wn to gain higher return for the same level of

risk, or less risk for the same level of return (see figure 15). Assuming markets are efficient, so

that it is not possible to gain return for no risk, the optimal allocation for a risk neutral investor

will be at the point X in figure 16, and the risk adjusted return on capital is given by the reciprocal

of the slope of the tangent at that point.

Figure 15 here - efficient frontier

In simple portfolios which can be described by a weighted sum of the constituent assets, the

current return to the portfolio is w’R where w is the vector of portfolio weights and R is the

vector of asset returns. The portfolio risk is commonly measured as variance, although this has its
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drawbacks, as described in chapter 7. The portfolio variance is w’Vw where V is the covariance

matrix of R.24  In larger linear portfolios, which are best described not at the asset level but by the

factor models described above, the portfolio variance is measured using the covariance matrix of

risk factor returns and the vector of sensitivities to different risk factors. If we ignore the

idiosyncratic risk, the portfolio return is ββ’R  and its variance is simply ββ’Vββ, where ββ is the

vector of net portfolio sensitivities and V is the covariance matrix of risk factor returns. Both V

and ββ are obtained from variances and covariances, and again the remarks already made about the

dangers of using equally weighted measures for these apply. The problem is that covariance

matrices, and in particular correlations, are often unstable. This instability may be masked by

inappropriate use of equally weighted averages (see section 4.2.1), but when more realistic

measures such as EWMA or GARCH are used, the efficient frontier and hence also the optimal

capital allocation, may vary significantly as correlations change. This implies that efficient

portfolios chosen according to risk-return analysis may need constant rebalancing to remain

optimal. Realistic transactions costs should therefore be factored in to this type of capital

allocation framework.

4.5.3 Option Pricing and Hedging

There are many basic applications of volatility and correlation to pricing and hedging options. For

example:

1.  Statistical forecasts of average volatility and/or correlation over the life of an option can be

‘plugged’ into the closed form solution (e.g. into the Black-Scholes formula for vanilla

options);

2.  Volatilities are used in numerical methods (lattices, or partial differential equations);

3.  The covariance matrix is used to simulate correlated risk factor returns for a terminal price

distribution (see chapter 5).

                                                       

24 Provided V is a positive definite matrix, the portfolio risk will always be positive, whatever the weights in the
portfolio.
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4.  Two factor models, where the underlying price process has stochastic volatility (see Hull, and

White,1987)

This section outlines some uses of GARCH models in option pricing and hedging.

First consider an example of the fourth application above: a simulation method for an option

based on a single risk factor where a GARCH model is employed in a two factor model with

stochastic volatility. To fix ideas, first recall from chapter 5 how simulation can be can be used to

price and hedge a call option on an underlying price S(t) which follows the Geometric Brownian

Motion diffusion

dS(t)/S(t) = µdt + σdZ

where Z is a Wiener process. Since volatility σ is constant this is a one factor model, and it is only

necessary to use Monte Carlo on the independent increments dZ of the Wiener process to

generate price paths S(t) over the life of the option. This is done on the discrete form of

Geometric Brownian Motion, 25 viz.

St = St-1 exp ( µ - 0.5σ2 + σzt)

where zt ~ NID(0,1). So, starting from the current price S0 , Monte Carlo simulation of an

independent series on zt for t=1,2,....T will generate a terminal price ST. Thousands of these

terminal prices should be generated starting from the one current price S0 , and the discounted

expectation of the option pay-off function gives the price of the call. For example for a plain

vanilla option

C(S0) = exp(-rT) E(max{S-K,0})

where r is the risk-free rate, T the option maturity and K is the strike. So from the simulated

distribution ST,i (i = 1,...N) of terminal prices we get the estimated call price

                                                       

25 To derive this from the continuous form use Ito’s lemma on logS and then make time discrete.
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C^ (S0)= exp(-rT) (Σi  max{ST,i - K,0} / N)

Simulation deltas and gammas are calculated using finite difference approximations, such as the

central differences

δ = [C(S0+η) - C(S0-η)]/2η

γ =  [C(S0+η) - 2C(S0) + C(S0-η)]/η2

(see Broadie and Glasserman, 1996). In this example, with constant volatility GBM for the

simulations, the delta and gamma should be the same as those obtained using the Black-Scholes

formula. But in practice, simulation errors can be very large unless the time is taken to run large

numbers of simulations for each option price26.

Now consider how to extend the standard GBM model to a two factor model, where the second

factor is GARCH(1,1) stochastic volatility.27 The two diffusion processes in discrete time are

St = St-1 exp ( µ - 0.5σt
2 +  εt)

σt
2 = ω + α εt-1

2 + βσt-1
2

where  εt  = σtzt . Starting with current price S0 and unconditional standard deviation σ0 , an

independent set of  Monte Carlo simulations on zt (t = 0,1, ... T) will now generate σt at the same

time as St for t = 1 ,..., T. Note that the simulated price paths are already based on expected

volatility levels, so the GARCH delta and gamma hedge ratios do not require additional vega

hedging (see Duan, 1993 and Engle and Rosenberg, 1995).28

                                                       

26 Simulation errors are reduced by using correlated random numbers - the variance of delta estimates is reduced
when  C(S0+η) and C(S0-η) are positively correlated.
27 Note that moving average methods do not yield stochastic volatility models and so these methods cannot be used
to generate option prices and hedge ratios which already account for stochastic volatility.

28 Note that in a world with stochastic volatility there does not always exist a perfect hedge, so the risk neutral
pricing assumption which underlies this method does not, in fact, hold.
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GARCH models can also be used to forecast option prices from the volatility smile. The idea is to

estimate the GARCH parameters using cross-section data on the market implied smile surface,

and then the dynamics of the GARCH model can be used to predict the smile. Initial values for the

GARCH model parameters are fixed, and then GARCH option prices obtained, as explained

above, for options of different strikes and maturity. These prices are put into the Black-Scholes

formula, and the GARCH ‘implied’ volatility is then backed out of the formula (just as one would

do with ordinary market implied volatilities, only this time the GARCH price is used instead of the

price observed in the market). Comparison of the GARCH smile surface with the observed market

smile surface leads to a refinement of the GARCH model parameters (that is, iteration on the root

mean square error between the two smiles) and so the GARCH smile is fitted. It turns out that the

GARCH parameters estimated this way are very similar to those obtained from time series data,

so using the GARCH smile to predict future smiles leads to sensible results (see Duan, 1996).

4.5.4 Value-at-Risk Models

Value At Risk (VAR) has become central to financial decision making - not just for risk managers

and regulators, but for anyone concerned with the actual numbers produced: traders, fund

managers, corporate treasuries, accountants etc.. Not only is capital set aside for regulatory

compliance on the basis of these measures - such things as trading limits or capital allocation

decisions may be set. Providing accurate VAR measures therefore becomes a concern for many.

VAR is the level of loss that is expected to be exceed, in normal market circumstances, if the

portfolio is left unmanaged during a fixed holding period. Since we cannot state this level with

certainty, we must provide a measure of confidence associated with this figure. For example, a

1% 10-day VAR of $10,000 means that if the portfolio is not managed for 10 days, in normal

market circumstances we would be 99% sure that we would not lose more than 10,000$.

 A VAR measure depends on two parameters, the holding period h and the significance level, α

(0.01 in the above example). A good VAR report should provide a convergent and consistent

sequence of VAR measures for every holding period from one day (or even less than a day) to
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several years. Uncertainties generally increase with time, so the VAR measure will increase as the

holding period increases. However the significance level is just a matter of personal choice: Is it

relevant to reflect potential losses one day in twenty (α=0.05) or one day in a hundred (α=0.01)?

The VAR measure will of course increase with its associated significance level. Current

recommendations of the Basle committee are that 1% VAR measures, calculated over a holding

period of 10 working days are used to calculate capital reserves for the central banks.

Two of the VAR models in common use (‘Covariance’ methods for linear portfolios and Monte

Carlo methods for options portfolios) require an accurate, positive definite covariance matrix.

The ‘covariance’ method is commonly referred to as the ‘RiskMetrics’ method, since it was

popularized by JP Morgan in their RiskMetrics database. This, and other common methods for

calculating VAR are fully described in chapter 6. In this section we only give a brief overview of

the two methods that employ covariance matrices.

Denote by ∆Pt the forecast P&L over the next h days and by µt and σ2
t its mean and variance. A

mathematical formulation of VAR is that number x such that

Prob(∆Pt < -x) = α .

That is, the VAR is the lower 100α% quantile of the P&L distribution. The covariance method

assumes P&Ls are conditionally normally distributed, and in that case we have29

 VAR = Zα σt - µt

where Zα denotes the critical value from the standard normal distribution corresponding to the

choice of significance level. It is often assumed that  µt is zero,30 and Zα is just looked up in tables,

so the sole focus of this method is on σt, the standard deviation of forecast P&L over the holding

period. This is given by

                                                       

29 Apply the standard normal transformation to ∆Pt
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  σ2
t = P’VP

where V is the covariance matrix of asset returns (or risk factor returns) over the holding period

and P is a vector of the current mark-to-market values of the assets (or the current mark-to-

market values of the risk factors times their respective sensitivities or cash flows amounts)31.

Since V is the main stochastic part of the model32 it is important to obtain good estimates of the

parameters in V, i.e. the variance and covariance forecasts of asset (or factor) returns over the

holding period. For example, the model may give zero or negative VAR measures if  V is not

positive definite.33

The covariance method is subject to a number of errors, or inappropriate usage. For example,

factor models may be mis-specified, sensitivites or covariances may be inaccurately measured, and

the assumption of normality may be violated. Also it is only applicable to linear portfolios, and the

obvious non-linearities of options pay-offs have prompted the BIS to require different methods

for VAR in options portfolios. An example of the inappropriate use of this linear method is given

in figure 16. It shows the P&L distribution of a barrier option, where the covariance method

would gives the same 1% 1-day VAR whether long or short the position (0.26$ in both cases). A

simulation method, such as ‘historical’ or Monte Carlo simulation would give a much more

accurate measure of VAR (0.05$ for the short and 0.63$ for the long).34

                                                                                                                                                                                  

30 However, this may be an unrealistic assumption for insurance companies, corporates and pension funds, who
commonly look at very long holding periods in VAR. In this case, an exogenously determined mean P&L may be
used to offset the final VAR figure.

31 Large portfolios of cash or futures will be represented either as a linear model of risk factor returns, or as a map
in cash-flow space. The P vector is (w1P 1, w2P 2, ….., w nPn) where Pi are the MTM values of the  n risk factors
(I=1, …n). In the linear factor model wi is the sensitivity of the portfolio to the ith risk factor. In the cash-flow
model the wi are the amount invested in the ith risk factor.

32 But the accurate measurement of sensitivites is also crucial, as explained earlier in this section.

33 The RiskMetrics data are not always positive definite. See Alexander (1996).

34 Many thanks to Algorithmics Inc for permitting the use of figures 16, 17 and 18.
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VAR measures for options portfolios may be calculated using Monte Carlo methods to simulate a

more realistic distribution of  P&Ls over the forthcoming holding period than that which would be

obtained using normal approximations. To calculate this distribution, correlated vectors of

underlying returns are simulated over the holding period. These are generated by first simulating

independent returns to the risk factors and then applying the Cholesky decomposition of the

covariance matrix of returns to the underlyings to obtain correlated paths for risk factors35, as

illustrated in figure 17.

                                                       

35 If r is a vector of standard independent returns, and C’C = V where C is the (triangular) Cholesky matrix, then
C’r is a vector of returns with variance covariance matrix V. If the covariance matrix is not positive semi-definite,
the Cholesky decomposition does not exist .So what can be done with the non-positive semi-definite matrices,
produced by RiskMetrics™? Ad hoc methods - such as shooting the negative or zero eigenvalues to something
small and positive - must be resorted to. Unfortunately this changes the original covariance matrix in an arbitrary
way, without control over which volatilities and correlations are being affected.

Figure 16: VAR of a single barrier option using covariance and simulation methods

© Algorithmics Inc
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Each set of correlated simulations - e,g. each yield curve in figure 17 - gives one value of the

portfolio at the end of the holding period. Lots of such curves are simulated and then used to

calculate a simulated P&L distribution from which the VAR measure can be read off directly as

the lower 100α% quantile as in figure 18.

Figure 17: Uncorrelated and correlated yield curve scenarios

© Algorithmics Inc
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Many financial institutions are using the ‘historic simulation’ method for computing VAR, which

has many advantages - and limitations. Since this method does not employ covariance matrices, it

is not discussed here, but is fully described in chapter 6.

The main problem with simulation VAR methods is the time it takes to re-value the portfolio for

each simulation of the underlying factors. There are two ways in which computational time can be

reduced. Firstly, advanced sampling techniques such as low-discrepancy sequences may be applied

to reduce the number of simulation required (see chapter 5). Secondly, a form of portfolio

compression may be used: for example delta-gamma approximations could be used instead of full

portfolio revaluation at each stage, or the portfolio may be replicated using more simple

instruments that are quick to re-value (as in the Algorithmics product RiskWatch).

The current emphasis on integrated risk systems, to measure VAR across all the risk positions of

a large bank, requires very large covariance matrices indeed. Regulators currently require the use

Figure 18: Simulated P&L distribution showing VAR compared with normal curve VAR

© Algorithmics Inc



Risk Management and Analysis: Measuring and Modelling Financial Risk

 (C. Alexander, Ed) Wileys, (1998)

53

of at least one year of historic data, so exponentially weighted moving average methods are ruled

out.36 Currently there are only two realistic alternatives: equally weighted moving averages or

GARCH. Direct multivariate GARCH models of enterprise-wide dimensions would be

computationally impossible. One way that one can construct large dimension covariance matrices

using GARCH is to employ the orthogonal GARCH model . However much care should be taken

over the calibration of the orthogonal GARCH model, as outlined in section 4.3.7. Equally

weighted moving average covariance matrices are easy to construct, and should be positive

definite (assuming no linear interpolation of data along a yield curve) but these forecasts will be

contaminated by any stress events which may have occurred during the last year, as already

explained in section 4.2.1. Therefore the stress events should be filtered out of the data before the

moving average is applied, and saved for later use when investigating the effect of real stress

scenarios on portfolio P&Ls.

4.6 Special Issues and New Directions

4.6.1 Evaluating Volatility and Correlation Forecasts

It is not unusual to read statements such as ‘…we employ fractionally integrated GARCH

volatilities because they are more accurate’. But the accuracy of volatility forecasts is extremely

difficult to assess. Results will depend on the method of evaluation employed, so no single answer

can be given to the question ‘which method is more accurate?’ Assessing the accuracy of

correlation forecasts is an even more difficult problem, not only because correlations can be so

unstable, but also because a proper statistical evaluation requires the full multivariate distribution

to be known - which it is not.

If one decides to embark on the treacherous path of forecast evaluation, the first point to note is

that different models should be ranked according to how they perform according to a certain

                                                       

36 Unless one tailors the tolerance level to the smoothing constant. For example, a smoothing constant of 0.9 would
mean that 250 days of past data is taken into account for the EWMA if the tolerance level is 10-12.
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benchmark. But problems arise when applying this type of ranking: unlike prices, volatility is

unobservable, so what should the volatility benchmark be? I would consider taking the

unconditional standard deviation over a very long data period as the benchmark against which to

test different volatility forecasting models - if a model cannot improve upon this simplest of

models there is no point in using any greater degree of sophistication!

The next problem along the route of evaluating a volatility model is ‘what do we mean by

'better'’? Is it preferable to use a statistical evaluation criterion or to assess models purely on a

P&L basis, when possible? Much research has been published in this area, mostly on statistical

evaluation, because this has a greater degree of subjectivity.37  P&L evaluations are based on

specific trading metrics so this type of operational evaluation is quite objective - and it is difficult

to come to any broad conclusions.

If statistical evaluation is used it should be emphasised that however well a model fits in-sample

(i.e. within the data period used to estimate the model parameters) the real test of its forecasting

power is in out-of-sample predictive tests. A certain amount of historic data should be withheld

from the period used to estimate the model, and then forecasts made from the model may then be

evaluated by comparing them to the out-of-sample returns data. The appropriate statistical criteria

to use is the maximization of out-of-sample likelihoods, but the effectiveness of this method relies

on correct specification of the returns distributions. Some of the literature uses root mean square

errors  to evaluate volatility and correlation forecasts, since this is a simple distance metric, not

based on a statistical distribution of returns which in many cases is erroneously assumed to be

normal. 38

                                                       

37 Alexander and Leigh, 1997, Brailsford and Faff (1996), Dimson and Marsh (1990), Figlewski (1994), Tse and
Tung (1992), and West and Cho (1995).

38 As a statistical criterion the root mean square error criterion comes from a normal likelihood function -
minimising the sum of squared differences between the actual observations and the predicted means will maximise
the normal likelihood when volatility is constant (see (27)). Hence root mean square errors are applicable to mean
predictions rather than variance or covariance predictions. Of course, a variance is a mean, but the mean of the
squared random variable, which is chi-squared distributed, not normally distributed, so the likelihood function is
totally different and does not involve any sum of squared errors
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Alexander and Leigh (1997) look at both statistical and operational evaluation of the three  types

of volatility forecasts which are in standard use: equally weighted moving averages, exponentially

weighted moving averages and GARCH. Given the remarks just made, it is impossible to draw

any firm conclusions about the relative effectiveness of any volatility forecasting method for an

arbitrary portfolio. But, using data from the major equity indices and foreign exchange rates

during 1996 it appears that whilst EWMA methods perform well for predicting the ‘centre’ of a

normal distribution the GARCH and equally weighted moving average methods are generally

more accurate for the ‘tails’ prediction required by VAR models.

4.6.2 Modelling ‘Fat-Tailed’ Distributions

One way of retaining normality assumptions whilst allowing for ‘fat-tails’ is to model returns

distributions using mixtures of normals. Mixtures of normals with different variances generate

leptokurtic distributions and if means are also allowed to vary this will capture the skewness or

multi-modal nature of some portfolio returns distributions (see figure 19).39

                                                       

39 Many thanks to Peter Williams of Sussex University for providing these figures
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Hull and White (1997, 1998) have developed a model for estimating mixtures of two normal

distributions with constant parameters. Their means are both assumed to be zero, and their

standard deviations are uσt and vσt where u < 1 and v > 1 and σt is the standard deviation of

market returns at time t. In the empirical work of Hull and White, on 12 major  USD exchange

rates between 1988 and 1994, σt is either assumed constant or an exponentially weighted moving

average estimate of  σt is obtained (for example, using RiskMetrics data). The proportions of the

two normals in the mixture are assumed constant through time, denoted p and 1-p respectively, so

that

pu2 + (1-p)v2 = 1 (35)

Figure 19: Mixtures of normal distributions
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Hull and White propose a  maximum likelihood method to estimate the model parameters which

are consistent with (35). Direct maximization of the likelihood of the normal mixture is not robust

to outliers, so the empirical data are divided into four categories: the first category consists of

returns which are less than one standard deviation, the second category contains returns which are

between one and two standard deviations, the third category of returns is between three and four

standard deviations and the fourth is for those returns more than four standard deviations. A

maximum likelihood method is employed where p, u and v are chosen to match the observed

number of returns in each category with the predicted number of returns from the normal mixture

in that category. Results are tested out-of-sample using standard diagnostics. The model fits

better when EWMA rather than constant volatilities are assumed, and when parameters are

estimated for individual exchange rates rather than using the same parameters for all. It has

natural extensions to modelling correlations and the calculation of VAR using simulation

techniques. Further details are given in Hull and White (1998).

Another robust statistical technique for estimating mixtures of normals is with a neural network

which trains on the whole likelihood function rather than the simple error surface used in standard

neural networks packages. Many neural networks output only a single vector, and back-

propagation is then used to minimise the root mean square error of the output, compared with the

actual data in the training set. But minimizing a root mean square error is equivalent to maximum

likelihood estimation of the mean of a single normal distribution with constant variance, and is

therefore very restrictive. Packaged neural networks also have the reputation of fitting well in

sample, but predicting poorly out-of-sample.40 This can be due to over-fitting the data: a neural

network is a universal approximator, and so needs to be constrained in its complexity if sufficient

flexibility is to be retained for generating future scenarios.

A method for constraining complexity which is more advanced than simply cutting off the

network after a certain point, is to use a penalized likelihood function where the value of the in-

sample likelihood is offset by an amount proportional to the number of weights and connections in

                                                       

40 See the Proceeding of the First International Non-linear Financial Forecasting Competition (Caldwell, 1997) ,
for example.
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the network. In Williams, (1995, 1996) a network is trained by maximizing the likelihood function

of a normal mixture. The training is automatically regularized to avoid over-fitting, by using a

penalized likelihood function to estimate weights and biases. Simulation of the conditional returns

distributions from such a neural network then produces term structure forecasts of all the

moments of the normal mixture - including the variance, skewness and kurtosis. Alexander and

Williams, (1997) show that for US Dollar exchange rates, kurtosis term structures generated by

this neural network are much closer to empirically expected levels than the GARCH kurtosis term

structures, although their volatility term structures are similar.

4.6.3 Downside Risk and Expected Maximum Loss

One of the problems with using variance to measure ‘risk’ is that it does not distinguish between

upside and downside risk - that is, positive returns and negative returns are regarded as equally

unfavourable. Short-term hedging based on mean-variance analysis can lead to very skewed

distributions of longer term returns without frequent re-balancing (see section 4.6.4) and  for

these portfolios the standard variance operator is totally inadequate. A risk measure which focuses

purely on downside risk, proposed by Markovitz (1959) is the semi-variance

SV = E(min(0, r-E(r))2)

When returns are greater than average min(0, r-E(r)) = 0, so only below average returns are

counted in this risk measure. Many software and data providers are now incorporating more

flexibility in their risk measures (see chapter 2), including some measure of downside risk such as

semi-variance.

Algorithmics Inc. have patented an optimizer based on ‘regret’, a well known concept from the

decision sciences which is similar to semi-variance. Returns are measured relative to a benchmark

B, which can be measured empirically or simulated based on user requirements. The regret of a

portfolio is given by

Regret = -E(min(0, r-B))
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Portfolios which appear to have similar risk attributes when standard variance or VAR is

employed can be distinguished by their regret - if variance is concentrated on the ‘upside’ the

regret is small, but ‘bad’ portfolios with distributions which are skewed on the downside will have

large regret. The use of the benchmark also has attractive applications in many areas of allocation

and risk measurement - see chapter 7 for more details.

Finally, a brief mention of a risk measure which focuses on the actual decisions faced by risk

managers. VAR only gives the frequency with which a fixed loss (or worse) should occur, but risk

managers are more likely to be concerned with the nature of losses - are they consecutive small

losses or intermittent large ones? What is the maximum loss I can expect to incur from this

portfolio during a given holding period? Both these questions are addressed with a risk measure

called ‘expected maximum loss’ (Acar and Prieul, 1997). By utilizing more information about the

dynamic nature of returns, this risk measure can be usefully employed in the simultaneous

allocation of capital and setting of trading limits.

4.6.4 Cointegration

Cointegration has had an astounding impact on applied economic modelling during the last

decade. Since the seminal work of Engle and Granger (1996), the many thousands of papers

published on the theory and application of cointegration to economics bears testimony to the huge

resources now devoted to this approach. Every modern econometrics text book will contain

details of the statistical theory necessary to master the application of cointegration to time series

data, Hamilton (1996) and Feller (1996) being two excellent sources.

However, the financial community has been less aware of the potential for cointegration

modelling. Traditionally, a portfolio risk analysis takes as its starting point the distribution of

financial returns, so the log price, rate or yield data are differenced before the analysis is even

begun. This removes any long term trends in the price, rate or yield data and, although these

trends are implicit in the returns data, the analysis of any common trends (cointegration) in the

raw data is often precluded.
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Cointegration and correlation are related, but different concepts. Correlation measures co-

movements in returns, so it is intrinsically a short run measure, liable to instabilities over time

since returns typically have low autocorrelation. Cointegration measures long run co-movements

in prices (rates or yields) and high correlation of returns does not necessarily imply high

cointegration in prices. An example is given in figure 20, with a 10 year daily series on US dollar

spot exchange rates of the German Mark (DEM) and the Dutch Guilder (NLG) from, say 1975 to

1985. Their returns are very highly correlated: the correlation coefficient is approximately 0.98

(figure 20(a)). So also do the rates move together over long periods of time, and they appear to

be cointegrated (figure 20(b)). Now suppose that we add a very small daily incremental return of,

say, 0.0002 to NLG. The returns on this NLG ‘plus’ and the DEM still have correlation of 0.98,

but the price series diverge more and more as time goes on - they are not cointegrated (figure

20(c)).41

                                                       

41 Many thanks for Wayne Weddington of Pennoyer Capital Management for providing these figures
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F i g u r e  2 0 ( a ) :  N L G  a n d  D E M  r e t u r n s
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To introduce cointegration we first define the notion of an integrated series. An example of an

integrated series is a random walk

yt = α + yt-1 + εt

where α denotes the drift and the error process εt is an independent and identically distributed

(i.i.d) stationary process.42 If financial markets are efficient, then prices (or log prices) rates or

yields are all random walks. In the random walk model we could take yt= log Pt, where Pt is a

financial price series, and in this case εt denotes the return at time t.

Now if returns are stationary i.i.d processes, then log prices are random walks, but what if returns

are not i.i.d, because they are not independent - there is some autocorrelation in returns? Provided

returns are still stationary, log prices will be an integrated series of order 1. A time series is

integrated of order 1, denoted I(1) if the stochastic part is non-stationary, but it is stationary after

first differencing.43

Two or more integrated series are termed ‘cointegrated’ if there is a weighted sum of these series

(called the cointegrating vector) which is stationary. Consider a simple case: x and y are random

walk, but x-y is stationary. This means that x and y cannot drift too far apart, because x-y is

stationary, mean-reverting. So cointegrated series are ‘tied together’ by the cointegrating vector

in the long run, even though they can drift apart in the short run.

The mechanism which ties cointegrated series together is a ‘causality’ - not in the sense that if we

make a structural change to one series the other will change too, but in the sense that turning

points on one series precede turning point in the other. This is called Granger causality (see

                                                       

42 A (covariance) stationary series has constant, finite mean and variance, and an autocorrelation which depends
only on the lag. The constant, finite variance implies that stationary series are ‘mean-reverting’. Typically,
financial returns data are stationary. We use the notation I(n) to denote a series which is non-stationary, and only
stationary after differencing a minimum of n times. Stationary series are denoted I(0), random walks are I(1).

43 Series with deterministic trends are not integrated, they are I(0)+trend. If a deterministic trend is removed from
a random walk, the result is another random walk, without a drift term. Thus standard technical analysis methods
of ‘detrending’ data by fitting a line are not removing the stochastic trend - the result will be a random walk and
not a mean-reverting series.
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Engle and Granger, 1987). The strength and directions of Granger causality can change over time,

there can be bi-directional causality, or the direction of causality can change. For example in the

‘price discovery’ relationship between spot and futures there may be times when futures lead spot,

whereas at other time spot prices can lead futures prices. The necessity for causality between

cointegrated series is revealed by the error correction model, which is a dynamic model of returns

where deviations from the long-run equilibrium are corrected. More details may be found in

Alexander and Johnson (1992, 1994) and in any standard econometrics text.

Consider two cointegrated series. Each is individually a random walk - which means that given

enough time they could be anywhere (because they have infinite unconditional variance) and the

best forecast of any future value is the value today. But since they are cointegrated we know that,

wherever one series is in x years time, the other series will be right there along with it.

When only two integrated series are considered for cointegration, there can be at most one

cointegrating vector, because if there were two cointegrating vectors the original series would

have to be stationary. More generally, taking n series in cointegration analysis, the maximum

number of cointegrating vectors is n-1. Each cointegrating vector is a ‘bond’ in the system, and so

the more cointegrating vectors found the more the coherence and co-movements in the prices.

Yield curves have very high cointegration - if each of the n-1 independent spreads is mean-

reverting, there are n-1 cointegrating vectors.

Examples of cointegrated series abound in financial markets:

• Spot and futures prices: If spot and futures prices are tied together, the basis can never get too

large - it will be mean-reverting. The basis is the cointegrating vector (see Beck, 1994,

Schwarz and Szakmary, 1994)

• Yields of different maturities: Yields are random walks - they could be anywhere given enough

time. But wherever the 1mth yield is in x years time, the 3mth yield will be right along there

with it, because the spread can never get too large. The spreads are mean-reverting, so they are

the cointegrating vectors (see Bradley and Lumpkin, 1992, Hall et. Al., 1992)
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• Any pair of series with a mean-reverting spread: For example two different equity indices (or

bond indices) or pairs of bond and equity indices in the same country can be cointegrated, but

they are not always so. It depends on the time series properties of the spread (see Alexander,

1995, Alexander and Thillainathan, 1996, Clare et. al., 1995)

• Related commodities: Carry costs represent the difference in prices between related

commodities. If carry costs are mean-reverting, then commodities based on the same

underlying market will be cointegrated (see Brenner and Kroner, 1995.)

• Equities within an index: since the index is by definition a weighted sum of the constituents,

there should be some sufficiently large basket which is cointegrated with the index. The

cointegrating vector is the tracking error, between that basket and the index. Baskets found by

cointegration will have mean-reverting tracking errors, so the basket cannot drift away from

the index, they are ‘tied together’ in the long run (see Alexander, Giblin and Weddington,

1998)

4.7 Conclusion

This chapter has covered a very wide subject area, which is of central importance for effective

measurement of market risks. It is a very active area for both practical and academic research, and

in places the chapter gives only a brief indication of the key issues, but with supporting references

for further reading whenever possible.

The first part of the chapter provides a critical overview of some of the most commonly used

methods for estimating volatility and correlation: moving averages and GARCH models. Common

pitfalls in the use of these models are explained, and the chapter should provide the reader with

enough information to employ these statistical models appropriately for market risk measurement.
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After a short discussion of implied volatility and correlation, its calculation and use in trading and

risk management, the chapter has focused on the main applications of volatility and correlation for

market risk systems. Special issues, such as the use of GARCH models in option pricing and smile

fitting, and the proper implementation of covariance matrices in Value at risk models have been

explored. The chapter closes with an overview of some of the key areas of current research: in

particular we have examined the use of alternative risk measures such as regret and cointegration

for market risk analysis.
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