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Abstract

The construction of appropriate scenarios for movements in the implied volatility smile
surface corresponding to movements in the underlying price is facilitated by using only a
few key independent risk factors. The empirical model presented here is applied to equity
index option markets to identify the current market regime and the price-volatility
scenarios that should be applied. The framework is quite general and has applications to
implied volatilities of many types of financial assets. It builds on the regime models of
volatility introduced by Derman (1999) in two ways. First it provides an empirical
investigation into the existence of the regimes that were hypothesized by Derman, and
secondly it extends the linear parameterization of the skew that is implied by Derman's
models to allow non-linear movements in fixed-strike implied volatilities as the
underlying price changes.

JEL Classifications: C13, C22, C51, G19
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Introduction

Following the Basle Accord Amendment in 1996 for the calculation of market risk capital

using internal models, the Basle Committee on Banking Supervision have recommended two

methods for generating a unified set of risk measures on a daily basis. These methods have

become industry standards for measuring risk not only for external regulatory purposes, but

also for internal risk management.

The first approach is to calculate a Value-at-Risk (VaR) measure, which is a lower percentile

of an unrealized profit and loss distribution that is based on movements of the market risk

factors over a fixed risk horizon. Central to most VaR models are large covariance matrices

that encompass all risk positions - even historical simulation may employ covariance matrices

for portfolio stress testing and scenario analysis. The efficient computation of large positive

semi-definite covariance matrices is a difficult problem and simplifying assumptions are

common.1 Although large covariance matrices that are based on generalized autoregressive

conditional heteroscedasticity (GARCH) models would have clear advantages2 unfortunately

multivariate GARCH models of more than a few dimensions are impossible to apply in

practice. However Alexander (2000) uses key risk factor methods, similar to those used in

this paper, to generate very large GARCH covariance matrices in an efficient and robust

manner.

The focus of the present paper is on the second approach to modelling market risks that was

recommended in the 1996 Amendment. That is to quantify the maximum loss of portfolios

over a large set of scenarios for movements in the risk factors. The applicability of maximum

loss measures depends on portfolio revaluation over all possible scenarios, including

movements in both prices and implied volatilities of all risk factors. But given the huge

number of market risk factors affecting the positions of a large financial institution, scenario-

                                                       
1 For example the RiskMetrics methodologies designed by JP Morgan use either simple equally weighted
moving averages, or exponentially weighted moving averages with the same smoothing constant for all
volatilities and correlations of returns. There are substantial limitations with both of these methods, described in
Alexander (1996).
2 Unlike moving average models, GARCH volatility term structures will converge to the long-term average
volatility level. But the real beauty of GARCH stems from the fact that a stochastic volatility is built into the
model, which is closer to the real world, yet it does not introduce an additional source of uncertainty and
therefore delta hedging is still sufficient. See Engle (1982) and Bollerslev (1986).
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based loss models may become very complex indeed. In fact their implementation becomes

extraordinarily cumbersome, if not impossible, without making assumptions that restrict the

possibilities for movements in the risk factors. In complex portfolios the computational

burden of full revaluation over thousands of scenarios would be absolutely enormous, and

certainly not possible to achieve within an acceptable time frame unless analytic price

approximations and advanced sampling techniques are employed in conjunction with a

restriction of the possibility set for scenarios.

Jamshidian and Zhu (1996) have shown how principal components may be used to improve

computational efficiency for scenario based risk measures in large multi-currency portfolios.

This paper uses similar ideas but applies the analysis to the construction of scenarios for an

implied volatility smile or skew surface. An empirical model of equity index option markets

shows that the most likely scenarios for volatility skew surfaces as the underlying price

moves will depend on the current market regime.

At the heart of the model is the identification of a few key market risk factors that capture the

most important independent sources of information in the data. Such an approach is

computationally efficient because it allows an enormous reduction in the dimension of the

problem whilst retaining a very high degree of accuracy. For example, in some of the

FTSE100 index option data that is analyzed here there are sixty different fixed-strike fixed-

maturity volatility series. However these time series are highly co-dependent and in fact they

may be modelled, to a very high degree of accuracy, by only three series: the trend, tilt and

curvature principal components of fixed-strike deviations form at-the-money volatility. Any

movements that are not captured by these factors are deemed to be insignificant 'noise' in the

system, and by cutting out this noise the empirical model for smile scenarios becomes more

stable.

How should fixed-strike volatilities be changed as the underlying price moves?

Scenario based maximum loss calculations require at least the definition, if not the joint

distribution, of scenarios for implied volatilities and underlying asset prices. In the absence of
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Figure 1a: At-the-Money Volatility vs FTSE 100 
(Daily Changes) May and June 1998
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Figure 1b: At-the-Money Volatility vs FTSE 100 
(Daily Changes) February and March 1998
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Figure 1c: At-the-Money Volatility vs FTSE 100 
(Daily Changes) August and September 1998
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an effective model of how implied volatilities change with market price, these scenarios may

be rather simplistic. The base scenario that the smile surface remains unchanged over all risk

horizons is often augmented by a only a few simple scenarios. For example the 1996 Basle

Amendment recommends parallel shifts in all volatilities that are assumed to be independent

of movements in underlying prices.

But for equity options there is often a negative correlation between at-the-money volatility

and the underlying price. This is clear from figure 1 which shows, for three different two

month periods during 1998, a scatter plot of the daily changes in 1mth at-the-money volatility

vs daily changes in index price for the FTSE100 European option. The periods chosen were

(a) May and June 1998; (b) February and March 1998; and (c) August and September 1998.3

Casual observation of these scatter plots indicates a significant negative correlation between

the 1mth implied volatility and the index price, but the strength of this correlation depends on

the data period. Period (b) when the UK equity market was very stable and trending, shows

less correlation than period (a), when daily movements in the FTSE100 index were limited to

a ‘normal’ range; but the negative correlation is most obvious during the mini-crash period

(c) that followed the LTCM crisis in July 1998.  These observations are not peculiar to the

1mth at-the-money FTSE100 volatilities, and not just during the periods shown: negative

correlations, of more or less strength depending on the data period, are also evident in other

fixed term at-the-money volatilities and in other equity markets.

So realistic scenarios for at-the money volatility and index prices would be for movements in

at-the-money volatility to occur in the opposite direction to the index price movements. But

how large should these movements be in relation to each other? Does the answer depend on

current market conditions? If so, how can we model the current market conditions to quantify

the correlation effect? And what about the fixed-strike volatilities? Since positions are likely

                                                       
3 The fixed maturity implied volatility data used in this section have been obtained by linear interpolation
between the two adjacent maturity option implied volatilities. However this presents a problem for the 1mth
volatility series because often during the last few working days before expiry data on the near maturity option
volatilities are totally unreliable. So the 1mth series rolls over to the next maturity, until the expiry date of the
near-term option, and thereafter continues to be interpolated linearly between the two option volatilities of less
than and greater than 1 month.
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to move in- or out-of-the-money during the risk horizon, we need to know what scenarios are

most probable for the whole volatility skew.

Derman's volatility regimes

Figure 2a shows the 1mth implied volatilities for European options of all strikes on the

FTSE100 index for the period 4th January 1998 to 31st March 1999. The bold red line

indicates the at-the-money volatility and the bold black line the FTSE100 index price (on the

right-hand scale). Look at the movements in the index and the way that at-the-money

volatility is behaving in relation to the index during the three different periods chosen in

figure 1.

Figure 2a: Fixed-Strike Volatilities, At-the-Money Volatility and 
the Index Level
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Observation of data similar to these, but on the S&P500 index option 3mth volatilities, has

motivated Derman (1999) to formulate three different market regimes:

(a) Range-bounded, where future price moves are likely to be constrained within a certain

range and there no significant change in realized volatility;

(b) Trending, where the level of the market is changing but in a stable manner so there is

again little change in realized volatility in the long run; and

(c) Jumpy, where the probability of jumps in the price level is particularly high so realized

volatility increases.

Different linear parameterizations of the volatility skew for pricing and hedging options apply

in each regime. These are known as Derman's 'sticky' models, because each parameterization

implies a different type of 'stickiness' for the local volatility in a binomial tree.4 Denote by

σK(t) the implied volatility of an option with maturity t and strike K, σATM(t) the volatility of

the t-maturity at-the-money option, S the current value of the index and σ0 and S0 the initial

implied volatility and price used to calibrate the tree:

(a) In a range bounded market Derman proposes that skews are parameterized by the 'sticky

strike' model:

σK(t) = σ0 - b(t) (K-S0) (1a)

So fixed strike volatility σK(t) is independent of the index level S.

Since σATM(t) = σ0 - b(t) (S-S0) this model implies that σATM decreases as index increases.

(b) For a stable trending market skews are parameterized by the 'sticky delta' model:

σK(t) = σ0 - b(t) (K-S) (1b)

                                                       
4 The 'sticky strike' is so called because local volatilities are constant with respect to strike, changing only with
moneyness; the 'sticky delta' model has local volatilities that are not constant with strike, but are constant with
respect to moneyness or delta; and only in the 'sticky tree' model is there one, unique tree for all strikes and
moneyness.
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So fixed strike volatility σK(t) increases with the index level S.

Since σATM(t) = σ0 this model implies that σATM(t) is independent of the index.

(c) In jumpy markets skews are parameterized by the 'sticky tree' model:

σK(t) = σ0 - b(t) (K+S) + 2b(t)S0 (1c)

So fixed strike volatility σK(t) decreases as the index increases.

Since σATM(t) = σ0 - 2b(t) (S-S0) , the at-the-money volatility σATM(t) also decreases as index

increases, and twice as fast as the fixed strike volatilities.

Fixed-strike volatility deviations from at-the-money volatility

Time series data such as that shown in figure 2a should contain all the information necessary

to estimate the skew parameterization that is appropriate for the current market regime. But

there are around 60 different strikes represented there, and their volatilities form a correlated,

ordered system that is similar to a term structure. It is therefore natural to consider using

principal component analysis to identify the main independent sources of information. Both

analytic simplicity and computational efficiency would result from a model that is based only

on these key risk factors.

Principal component analysis of the volatility skew has been used before, by Derman and

Kamal (1997). However their work is based on quite different data to that shown in figure

2a.5 Time series data on fixed strike or fixed delta volatilities often display very much

negative autocorrelation, possibly because markets over-react, so the ‘noise’ in daily changes

                                                       
5 Dermand and Kamal use weekly mid-market volatility of S&P500 index options from May 1994 to September
1997 where the surface is specified by 12 numbers corresponding to three different deltas for 1mth, 3mth, 6mth
and 12mth maturities; and daily Nikkei 225 index volatility from September 1994 to May 1997 for 9 deltas and
5 different maturities. For each of these markets they analyze the principal components of the changes in the
whole implied volatility surface.
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of fixed strike volatilities is a problem. Therefore a principal components analysis of daily

changes in fixed-strike volatilities may not give very good results.

Figure 2b: Deviations of Fixed-Strike Volatility from At-the-
Money Volatility (1mth)
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But look at the deviations of fixed strike volatilities from at-the-money volatility, shown in

figure 2b. These display less negative autocorrelation, they are even more highly correlated

and ordered than the fixed strike volatilities themselves, and their positive correlation with

the index is very evident indeed during the whole period.

The reason for this becomes evident when (1a) – (1c) are rewritten in terms of fixed-strike

volatility deviations from at-the-money volatility σK(t) - σATM(t). Each of Derman’s models

yields the same relationship between fixed-strike volatility deviations from at-the-money

volatility and the current index price, viz.:
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σK(t) - σATM(t) = -b(t) (K-S) (2)

So all three models imply the same, positive correlation between the index and the skew

deviations σK(t) - σATM(t).  In fact an alternative formulation of Derman’s sticky models is (2)

with a different specification for the behaviour of at-the-money volatility in relation to the

index in each regime, viz.

(a) Range-bounded: σATM(t) = σ0 – b(t) (S – S0)

(b) Stable trending: σATM(t) = σ0

(c) Jumpy: σATM(t) = σ0 - 2b(t)(S– S0).

Effective methods for identification of the current market regime

The above formulation of Derman's regime models suggests that one might perform an

empirical investigation into which regime currently prevails by estimating linear regressions

of the form:

∆σATM(t) = α(t) + β(t)∆S + ε(t) (3)

where ∆σATM(t)  denotes the daily change in at-the-money volatility of maturity t and ∆S is

the daily change in the index. In general, due to the negative correlation, each β(t) will be

negative. But if all the coefficients β(t) are insignificantly different from zero the market is

stable and trending, so the sticky delta model should be used. A signal that the market has

entered a different regime occurs when β(t) undergoes a significant change in value. In a

jumpy market that is characterized by the sticky tree model, the value of β(t) will be

approximately twice the value that it takes in a range-bounded market where the sticky strike

model is valid.
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Figure 3a: At-the-Money Volatility Sensitivity to Change in 
the Index
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Figure 3a shows the values obtained for β(t) for t = 1mth, 2mths and 3mths. In order to

capture the current market conditions one month of daily data is used in each regression.

These regressions were rolled over the whole period from 4th January 1998 to 31st March

1999 and each time the coefficient and its t-statistic are recorded.

The response of at-the-money volatility to changes in the underlying index level increases as

options approach expiry, and this fact is reflected in figure 3a since at all times

β(1mth) > β(2mth) > β(3mth).

Figure 3b: Significance of At-the-Money Volatility Sensitivity
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However no such order is apparent in the accompanying t-statistics, shown in figure 3b, so

the negative correlation between at-the-money volatility and index price is not a simple

function of the maturity of volatility.

Casual observation of figure 2a has indicated that February and March 1998 might be

characterized as a stable and trending market. Derman's sticky model for this regime has no

correlation between at-the-money volatility changes and underlying price changes, and now

figure 3b provides quantifiable evidence of this: During February and March 1998 the t-

statistics on the β coefficients are less significant than at other times.6 Two other periods were

picked out in the earlier discussion: May and June 1998, when the market seemed to be

operating in a range-bounded regime, and the mini-crash period that began after the LTCM

crisis in July 1998 and initiated a very jumpy market until the November of that year. Recall

that Derman's sticky models have at-the-money volatility responding to price moves twice as

much in the jumpy regime as in the range bounded regime. And again, from figure 3a, it is

apparent that the values of the β coefficients during the mini-crash period, although not

exactly double their values during May and June 1998, were far greater than at any other

time.

A rapid decline in β, for all maturity volatilities, occurred at the end of July 1998, at the time

of the equity market mini-crash that was precipitated by the LTCM crisis. Thus the model is

providing a leading indicator of a change in market regime.  It was not until November 1998

that the level of β returned to more normal levels, when the market appears to pass back into

a range-bounded regime.

Using key risk factors to formulate appropriate skew scenarios

The simple regressions just described may be used to identify the current volatility regime,

and to forewarn risk managers of any change in market conditions. It is now shown how such

information may be put to practical advantage in the construction of the 'most likely'

movements in the implied volatility skew surface. We now ask, which type of skew scenarios

should accompany the scenarios on movements in the underlying? Are simple static or



Discussion Papers in Finance: 2000-10

© ISMA Centre, The Business School for Financial Markets 14

parallel shift scenarios for the volatility skew appropriate at the moment? If so, is it the

volatility by strike that should remain static, so the volatility by moneyness or delta has a

parallel shift? Or is it volatility by delta that is static, which is equivalent to a parallel shift in

volatility by strike? But perhaps one should be placing more importance on scenarios that

encompass changes in the tilt or curvature of the volatility skew? If so, at which end: should

in-the-money volatilities be changed as much as out-of-the-money volatilities?

The following discussion illustrates how all these questions can be answered by an empirical

model of the relationship between the equity price and the key risk factors of the skew.

Derman's models are based a linear parameterization of the skew given by (2). For any given

maturity, the deviations of all fixed strike volatilities from at-the-money volatility will change

by the same amount b(t) as the index level changes, as shown in figure 4a. Four strikes are

marked on this figure: a low strike KL, the initial at-the-money strike K1, the new at-the-

money strike after the index level moves up K2, and a high strike KH. The volatilities at each

of these strikes are shown in figure 4b, before and after an assumed unit rise in index level

(∆S = 1). In each of the three market regimes the range of the skew between KL and KH, that

is σL - σH, will be the same after the rise in index level. Thus all of Derman's model's imply a

parallel shift scenario for the skew by strike.

σΚ (t) - σA TM(t)

KL K1 K2 KH

d L

d H

Strike

Figure 4a: Parallel Shift in Skew Deviations as Price Moves Up

S  

                                                                                                                                                                           
6 The 99% significance level is approximately 2.5.
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The extent of the parallel shift depends on the relationship between the original at-the-money

volatility σ1 and the new at-the-money volatility σ2, and this will be defined by the current

market regime. In a range bounded market σ2 = σ1 - b(t), but fixed-strike volatilities have all

increased by the same amount b(t), so a static scenario for the skew by strike should be

applied, as depicted in figure 4b. When the market is stable and trending, σ2 = σ1 and there is

an upwards shift of b(t) in all fixed-strike volatilities. Finally, in a jumpy market σ2 = σ1 -

2b(t), so a parallel shift downwards of b(t) in the skew by strike should be applied.

σL

σ1

σH

σ1 = σ2

σ2  = σ1  - b(t)

σ2  = σ1  - 2b(t)

σ2  + dL +  b(t)

σL = σ1 + dL

σH = σ1 -  d H

σ2  -  dH  +  b(t)

σ2 + dL +  b(t)

σ2  + dL  +  b(t)

σ2 -  d H +  b(t)

σ2  -  dH  +  b(t)

 dL

 dH

Trending Range-bounded Jumpy

Figure 4b: Parallel Shifts in Fixed-Strike Volatilities as Price Moves Up

Whilst a linear parameterization of the skew may be good approximation for the 3mth or

longer maturities, empirical observations show that it may not be very realistic at the shorter

end. Figure 5 shows the correlations from simple cross-section regressions based on (2). It is

clear that whilst the skew is fairly linear at the 3mth maturity, it becomes quite non-linear at

the 1mth maturity, particularly during the summer of 1998. So the parallel shift scenarios for

volatility skews that are a consequence of Derman's models may be reasonable for 3mth

volatilities, but for shorter-term volatilities a simple, effective non-linear model of the skew

would be advantageous.
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Such a model can be based on a principal component analysis of ∆(σK(t) - σATM(t)), the daily

changes in t-maturity fixed-strike volatility deviations from t-maturity at-the-money

volatility. In this way the key risk factors for the volatility skew will be identified and

consequently used in an empirical justification for skew scenarios that encompass more

change at either or both of the wings. Whether one should change volatilities at the out-of-

the-money wing or at the in-the-money wing of the skew, or both, will be shown to depend

on the current market conditions.

Principal component analysis of ∆(σK(t) - σATM(t)) has given some excellent results. For fixed

maturity volatility skews in the FTSE100 index option market during most of 1998, the

parallel shift component accounted for around 65-80% of the variation, the tilt component

explained a further 5 to 15% of the variation, and the curvature component another 5% or so

of the variation. The precise figures depend on the maturity of the volatility (1mth, 2mth or

3mth) and the exact period in time that the principal components were measured. But

generally speaking 80-90% of the total variation in skew deviations can be explained by just

three key risk factors: parallel shifts, tilts and curvature changes.7

                                                       
7 For example, the principal component analysis for 3mth implied volatility skew deviations over the whole data
period gives the following output. Note that sparse trading in very out-of-the money options implies that the
extreme low strike volatilities show less correlation with the rest of the system, and this is reflected by their
lower factor weights on the first component.

Component Eigenvalue Cumulative
R2

P1 13.3574 0.742078

P2 2.257596 0.8675

P3 0.691317 0.905906

Factor Weights

P1 P2 P3

4225 0.53906 0.74624 0.26712

4325 0.6436 0.7037 0.1862

4425 0.67858 0.58105 0.035155

4525 0.8194 0.48822 -0.03331

4625 0.84751 0.34675 -0.19671
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Figure 5: R-Squared from Linear Skew Parameterization
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This identification of the important risk factors allows one to quantify the expected

movements in the volatility skew as the index moves under different market

circumstances. The first stage is to represent fixed-strike skew deviations by three principal

components:

∆(σK(t) - σATM(t)) = ωK,1(t)  P1(t)  + ωK,2(t)  P2(t)  + ωK,3(t)  P3(t)    (4a)

                                                                                                                                                                           
4725 0.86724 0.1287 -0.41161

4825 0.86634 0.017412 -0.43254

4925 0.80957 -0.01649 -0.28777

5025 0.9408 -0.18548 0.068028

5125 0.92639 -0.22766 0.13049

5225 0.92764 -0.21065 0.12154

5325 0.93927 -0.22396 0.14343

5425 0.93046 -0.25167 0.16246

5525 0.90232 -0.20613 0.017523

5625 0.94478 -0.2214 0.073863

5725 0.94202 -0.22928 0.073997

5825 0.93583 -0.22818 0.074602

5925 0.90699 -0.22788 0.068758
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The second part of the model employs simple linear regressions of each component Pi (i = 1,

2, or 3) on the daily changes ∆S in the index, viz.:

Pi (t) = γ0,i (t) + γi (t) ∆S + ηi (t) (4b)

where t is the volatility maturity (1mth, 2mth or 3mth). Thus the movements a t-maturity

volatility at strike K consequent to a change in index level will be determined by the factor

weights ωK,i and the sensitivities of the key risk factors to index movements, γi (t) for i = 1, 2,

3. Note that Derman's models are a special case of this model, where there is just one

principal component in the representation (4a) and so in Derman's models a perfect

correlation is assumed between all fixed-strike volatility deviations from at-the-money

volatility.

In order to capture the current market conditions, the regressions (4b) have been performed

using just one month of the FTSE 100 index data. These regressions were rolled over the

whole period from 4th January 1998 to 31st March 1999, and each time the coefficients γi(t)

are recorded, for i = 1, 2, and 3 and t = 1mth, 2mths and 3mths. The statistical significance of

these coefficients is as interesting as their actual value. In fact it is the significance levels that

provide the important information for risk managers when coming to a decision about which

types of risk should be the current focus.

Figure 6: Significance of the Key Risk Factors
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Figure 6 shows the t-statistics on γi(t) for i = 1, 2 and 3 and t = 1mth from one month rolling

regressions (4b). Clearly γ1, which captures a parallel shift in all fixed-strike volatility

deviations, is significant throughout the period, always positive and particularly important

during the mini-crash period and the consequent market recovery. But the tilt component γ2 is

much less significant. It is only playing a really important role during the spring of 1998 and

again in the spring of 1999. At both these times the tilt has a negative relationship with index

moves, indicating that as the index moves up the low strike deviations will decrease and the

high strike deviations will increase. It is interesting to see that γ3, which captures the

curvature component of the skew deviations, almost always has the opposite sign to the tilt

coefficient.

The implication of these observations, for constructing scenarios to model the likely

behaviour of the volatility skew as the index moves will now be explained in the two cases

that arise empirically. The first case is when γ1 > 0, γ2 < 0 and γ3 > 0 and the second case is

when γ1 > 0, γ2 > 0 and γ3 < 0.

Figure 7a illustrates how the skew deviations move in response to an upward movement in

the index when γ1 > 0, γ2 < 0 and γ3 > 0. In this case the upward movements in volatility

deviations from at-the-money volatility are far greater at high strikes than at low strikes. In

fact a result of the upward movement in the index is that one of the high strike deviations, at

strike K2 say, will change from a negative value to a value of zero because the at-the-money

strike has moved from K1 to K2. Strikes above K2 will still have volatilities that are lower

than the at-the-money volatility, strikes between K1 and K2 now have volatilities that are

above at-the-money volatility, and strikes below K1 always have and remain to have

volatilities above the at-the-money volatility. For the lowest strikes there will be little change:

their volatility deviation from the new at-the-money volatility is about the same as it was

before the index move.
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σΚ(t) - σATM(t)

KL K1 K2

KH
dL

dH

Strike

Figure 7a: Non-Parallel Shift in Skew Deviations as Price Moves Up

S  

γ 1 > 0, γ 2 < 0, γ 3 > 0

eH

Figure 7b translates the effect of index moves on fixed-strike volatility deviations from at-

the-money volatility, into movements in the actual fixed strike volatilities. It is a

generalization of figure 6b, using the non-linear model of the skew (4a) and (4b), to

accommodate scenarios that are more general than simple parallel shifts.

σL

σ1

σH

σ1 = σ2

σ2 = σ1 - b(t)

σ2 = σ1 - 2b(t)

σ2 + dL +/- ε

σL = σ1 + dL

σH = σ1 - dH

 dL

 dH

Figure 7b: Range Narrowing of Fixed-Strike Volatilities as Price Moves Up

Trending Range-bounded Jumpy

σ2 + dL +/- ε

σ2 + dL +/- ε

σH = σ2 - eH

σH = σ2 - eH

σH = σ2 - eH

As before the three volatility regimes are shown according as, after a unit rise in the index

level, the new at-the-money volatility σ2 equals the original at-the-money volatility σ1 (in a
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stable trending market), or σ2 =  σ1 - b(t) (for a range-bounded market), or σ2 =  σ1 - 2b(t) (a

jumpy market). The difference between this figure and figure 6b is that there is no longer a

uniform response b(t) for all fixed-strike volatility deviations when the index level changes.

In fact figure 7a shows that there will in fact be little change in low-strike volatility

deviations from at-the-money volatility, whereas high strike volatility deviations from at-the-

money volatility will change considerably. Therefore the range of the skew between KL and

KH, that is σL - σH, will become narrower after the rise in index level. Figure 7b also shows

that it is the current volatility regime that determines whether the movement should occur at

the high in-the-money strikes, the low out-of-the-money strikes, or both.

Similar remarks apply to the effect of a downward move in the index. It is left to the reader to

depict the effect of a unit decrease in the index level on (a) fixed-strike deviations from at-

the-money volatility, and (b) fixed-strike volatilities themselves, again when γ1 > 0, γ2 < 0

and γ3 > 0. The net effect is that the range of the skew will widen as the index moves down

with most of the movement in fixed-strike volatilities coming from the low strikes whereas

the high strike volatilities move very little.

The model has shown that when γ1 > 0, γ2 < 0 and γ3 > 0 there will be less movement in high

strike volatilities and more in the low strikes. If one refers back to figure 2a it is clear that

much of the time the low strike volatilities are indeed moving down and up considerably as

the index moves up and down. There is much less movement in high strike volatilities, except

possibly during the mini-crash period in the late summer of 1998. The widening and

narrowing effects in the skew are also quite obvious in figure 2a, particularly during the last

few months of the data period. At times like this the simple parallel shift scenarios for the

skew, as implied by Derman's model, would not be sufficiently general. Instead, the non-

linear model (4a) and (4b) can be used to build non-parallel shift skew scenarios as described

above, that are more appropriate for these market conditions.

Now consider what happens when the major risk factor is still the trend component, but when

the tilt and curvature components of the skew deviations have the opposite influence to that

just discussed. That is when γ1 > 0, γ2 > 0 and γ3 < 0. We have already seen from figure 6 that
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the parameter values γ1 > 0, γ2 > 0 and γ3 < 0 only occurred during the mini-crash and

recovery period, so it may be assumed that the market will be in a jumpy regime.

Figure 8 shows the effect of a unit increase in the index level on (a) fixed-strike volatility

deviations from at-the-money volatility, and (b) fixed-strike volatilities themselves, when γ1 >

0, γ2 > 0 and γ3 < 0. The net effect from all three principal components is for high strike

volatility deviations from at-the-money volatility to change very little, whereas the low strike

deviations will increase further. Thus the range of the skew will widen as the index moves up

and narrow as the index moves down. The at-the-money volatility response, which depends

on the current market regime, will determine whether the movement occurs at low strikes,

high strikes or both. Although for completeness all three regimes are shown in figure 8b, it

has been observed that the case γ1 > 0, γ2 > 0 and γ3 < 0 only arises during a jumpy market

regime, so the fixed-strike volatility movements in the last column of figure 8b are

appropriate. When the index level increases high strike volatilities should be adjusted down,

about the same amount as the at-the-money volatility. But low strike volatilities should be

adjusted less far down, or even upwards.8 Similarly, if the index level falls, high strike

volatilities should be adjusted up, about the same amount as the at-the-money volatility, but

low strike volatilities should be adjusted less, and they may even move downwards.

                                                       
8 From figure 8b, it is clear that low strike volatilities will move down as the index increases (and up as the
index decreases) if and only if dL > eL - 2b(t).
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Figure 8a: Non-Parallel Shift in Skew Deviations as Price Moves Up
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Figure 8b: Range Widening of Fixed-Strike Volatilities as Price Moves Up

Trending Range-bounded Jumpy
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Summary and Conclusions

To summarize the modelling procedure, first regression models of the form (3) that are based

only on recent market data are used to indicate which volatility regime is likely to prevail in

the near future, and the relevant sensitivity of at-the-money volatility to changes in the index

level. Then the key risk factors of a volatility skew are quantified by the trend, tilt and

curvature components of the deviations of fixed-strike volatilities from at-the-money

volatility, as in the model (4a). The response of fixed-strike volatilities to changes in the

index level depends on which of these key risk factors are important in the current market

conditions and this information is obtained from regression models of the form (4b).

Typically the trend component will always be the most significant risk factor. If it is the only

significant risk factor then the parallel shift scenarios that are implied by Derman's models

will apply. But when the tilt or curvature are also significant risk factors, adjustments should

be made for greater changes at out-of-the-money volatilities and perhaps also at in-the-money

volatilities in the skew. The magnitude and direction of such changes are determined by the

sensitivities of the three key risk factors to changes in the index level. When measured by

models of the form (4b) these sensitivities are found to depend very much on the current

market regime.

Application of this model to daily data on the FTSE 100 European index option has produced

some likely scenarios for FTSE 100 volatility skews and indicated the circumstances in

which they should be applied. Typically the range of volatility in the skew with respect to

strike will widen as the index level decreases and narrow as the index level increases. When

the market is in a stable trending or range-bounded regime most of the change should be

coming from the low strike out-of-the money volatilities. But in a market crash the high strike

in-the-money volatilities will also move in the opposite direction to the index.

It is a common problem in risk management today that risk measures and pricing models are

being applied to a very large set of scenarios based on movements in all possible risk factors.

The dimensions are so large that the computations become extremely slow and cumbersome,

so it is quite common that over-simplistic assumptions will be made. For example simple
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parallel shifts in smile surfaces are often the only scenarios considered, and these may be

assumed to be independent of the underlying price movements.

The approach taken in this paper is to simplify the analysis by using only a few key,

independent risk factors of the volatility smile surface. Thus dimensions are considerably

reduced, from up to sixty fixed-strike volatilities to only three principal components, for each

maturity in the smile surface. An empirical model of price-volatility scenarios has been

described and implemented using daily data on the FTSE100 index option from 4th January

1998 to 31st March 1999. The analysis is greatly simplified by the fact that it is based on only

a few orthogonal risk factors, but these risk factors are still capturing most of the risk, so

there is little loss of accuracy.

Non-linear skew parameterizations and non-parallel shift scenarios for the volatility skew are

accommodated very easily in this framework. And the empirical nature of the model allows

the actual quantification of appropriate moves in the volatility skew as the underlying price

changes. The model first provides a leading indicator of the expected market regime. Then,

given the expected regime, and for a given change in underlying price, the regression models

may be used to provide a numerical forecast of the most likely change in the at-the-money

volatility, and in all fixed-strike volatilities, of any maturity.

The general method used here may be applied to other equity index markets and to other

types of options, and this is the subject of ongoing research. It is possible that these methods

could be used to determine the swaption volatility skew as a function of the key risk factors

of cap volatility skews. And the use of three key risk factors in a non-linear model of price-

volatility scenarios should be particularly useful in currency option markets, where smile

models will be better modelled by a non-linear parameterization.
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