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Stochastic volatility models have become popular for derivative pricing and hedging in
the last ten years as the existence of a non
at implied volatility surface (or term-structure)
has been noticed and become more pronounced, especially since the 1987 crash. This phe-
nomenon, which is well-documented1, stands in empirical contradiction to the consistent use
of a classical Black-Scholes (constant volatility) approach to pricing options and similar se-
curities. However, it is clearly desirable to maintain as many of the features as possible that
have contributed to this model's popularity and longevity, and the natural extension pursued
both in the literature and in practice has been to modify the speci�cation of volatility in the
stochastic dynamics of the underlying asset price model.

There are many stories behind why we should model volatility to be a random process.
For example, it could simply represent estimation uncertainty, or it can arise as a friction from
transaction costs, or it could simulate non-Gaussian (heavy-tailed) returns distributions. In
other words, stochastic volatility is a far-reaching extension of the Black-Scholes lognormal
model, describing a much more complex market.

Any extended model must also specify what data it is to be calibrated from. The pure
Black-Scholes procedure of estimating from historical stock data only is not possible in an
incomplete market if one takes the view (as we shall) that the market selects a unique
risk-neutral derivative pricing measure, from a family of possible measures, which re
ects
its degree of "crash-o-phobia". This pricing measure is re
ected in traded at-the-money
European options prices, so, as is common practice, this \smile data" is used for calibration.

Parameter estimation and stability of the estimates in time presents the major mathe-
matical and practical challenge here. Without a formula for option prices under a particular
stochastic volatility model, estimating the risk-neutral parameters is computationally inten-
sive (we have to run a tree or simulations at each step in an iterative search procedure).
Often models are chosen so that there is a closed-form solution, and this usually means tak-
ing the volatility to be independent of the Brownian motion driving the stock price, whereas
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common experience (and empirical evidence) suggests a negative correlation: when volatility
goes up, stock prices tend to go down.

Now suppose that we have estimated the parameters. How good will these estimates be
tomorrow? It is possible to have a very tight �t over a short time, but often these break down
signi�cantly thereafter. This is certainly a problem with estimates of volatility surfaces2,
where (unlike in stochastic volatility modeling), volatility is modeled to be a function of
time and stock price with no independent randomness.

We present here a new approach to stochastic volatility that has the following features:

� It requires that volatility be mean-reverting, but, other than that, does not depend in
an essential way on how the volatility is modeled.

� It translates the slope and intercept of the implied volatility skew into information
about the correlation between volatility and stock price shocks and the market's volatil-
ity risk premium.

� It simpli�es enormously the parameter estimation problem.

� It gives a recipe for pricing (and hedging) other derivatives in a stochastic volatility en-
vironment by identifying their e�ective approximating derivative security in a constant
volatility environment. This includes barriers, Asians and Americans.

� It produces parameter estimates from implied volatility skews that are stable.

This is achieved by exploiting the mean-reverting behaviour of volatility and the much-
noted observation that volatility is persistent.

Framework

The stock price (St)t�0 satis�es

dSt = �Stdt+ �tStdWt;

where (�t)t�0 is the volatility process. To incorporate the correlation with the Brownian
motion (Wt) (which leads to the implied volatility skew in these models), it is convenient
to take (�t) to be a di�usion process too, although it can have jumps as well. To �x
ideas, we shall write volatility as a positive function of a mean-reverting Gaussian (Ornstein-
Uhlenbeck) process: �t = f(Yt), where

dYt = �(m� Yt)dt+ �
�
�dWt +

q
1� �2 dZt

�
;

with Z an independent Brownian motion (the source of the additional randomness) and

2See Dumas, B., Fleming, J. and Whaley, R., 1998, Implied Volatility Functions: Empirical Tests, Journal
of Finance 53(6), pages 2059-2106 for an empirical study of this and, for a mathematical analysis, Lee, R.,
1999, Local Volatilities under Stochastic Volatility, to appear in International Journal of Theoretical and
Applied Finance.
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� = the rate of mean-reversion;
m = the long-run mean of Y ;
� = the \v-vol";
� = the correlation coe�cient:

Our objective is to analyze the e�ect of stochastic volatility in the basic Black-Scholes
model. Therefore, we assume that these parameters, as well as the rate of return � are,
for simplicity, constant. For the same reason we assume that f(Yt) does not depend on t
explicitly. In fact we do not need to specify f in detail since the mean reversion asymptotics
give results that are insensitive to all but a few general features of f . The precise model
for the process (Yt) driving the volatility does not matter either, so long as it is an ergodic
process like the Ornstein-Uhlenbeck process above.

Three observable quantities emerge from the asymptotics and they are the only ones that
must be calibrated from historical data and the term structure of volatility. These quantities
are complicated functions of the primitive model parameters, the function f and the market
price of volatility risk 
 introduced below, which need not be calibrated separately. This is
a new approach to the study of stochastic volatility models.

Volatility Persistence

It is often noted in empirical studies of stock prices that volatility is persistent or bursty - for
days at a time it is high and then, for a similar length of time, it is low. However, over the
lifetime of a derivative contract (a few months), there are many such periods, and looked at
on this timescale, volatility is 
uctuating fast, but not as fast as the rapidly changing stock
price.

In terms of our model, we say that the volatility process is fast mean-reverting relative to
the yearly timescale, but slow mean-reverting by the tick-tick timescale. Since the derivative
pricing and hedging problems we study are posed over the former period, we shall say that
volatility exhibits fast mean-reversion without explicitly mentioning the longer timescale of
reference.

The rate of mean-reversion is governed by the parameter �, in annualized units of years�1.
Fast mean-reversion means that � is in fact large and that �2=(2�), the variance of the
invariant distribution of the OU process, is a stable O(1) constant. As an illustration,
Figure 1 shows simulated volatility paths for the model above in which � = 1 on the top
and � = 200 below. In practice the volatility process is not directly observable. In fact the
true observable is the de-meaned returns process

dSt
St

� �dt = �tdWt ;

at discrete times. In Figure 2 we show simulated trajectories of this returns process corre-
sponding to these volatility trajectories in the �rst two graphs. We observe that the size

of the 
uctuation in the returns process of the top picture is relatively constant over time,
while for the large � picture, in the middle, it is changing a lot. This is exactly what we call
fast mean-reverting or persistent stochastic volatility.
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Figure 1: Simulated volatility for small and large rates of mean-reversion for the OU model, with

the choice f(y) = ey. Note how volatility \clusters" in the latter case.

In the bottom graph of Figure 2, we show the returns process for the S&P 500 over the
�rst �ve months of 1996. By comparing with the top two paths, we note how the structure
of the returns 
uctuation size resembles more the one from a fast mean-reverting stochastic
volatility model (middle), than one from a model with slow mean-reversion (top). A detailed
analysis of the mean reverting structure of the S&P 500 is presented in a forthcoming paper3.

In the methodology we describe next we will not need the precise value of �, only that
it is large.

Derivative Pricing

We start with European derivatives with terminal payo� h(ST ). The no arbitrage price Pt

depends on the present stock price St and the present level of the volatility-driving process
Yt. It is given by the risk-neutral expected discounted payo�

Pt = IEQ(
)fe�r(T�t)h(ST )jSt; Ytg;
where Q(
) represents probabilities in the risk-neutral world and 
 is the volatility risk
premium4. In this world,

dSt = rStdt+ �tStdW
?
t ;

3Fouque, Papanicolaou, Sircar and Solna, 1999, Mean-Reversion of S&P500 Volatility.
4A stochastic volatility model is an incomplete market model, and as such there is a whole family of

risk-neutral pricing measures, unlike in the constant volatility case when there is only one. It can be shown
from Girsanov's theorem, that each possible measure in this Itô framework corresponds to a choice of the
volatility risk premium, also known as the market price of volatility risk. See, for example, Hull, J. and

4



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1

0

1

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1

0

1

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1

0

1

2

�
=
1

�
=
20
0

S
&
P
50
0

Time

Figure 2: The top and middle graphs show simulated returns for small and large rates of mean-

reversion for the OU model, with the choice f(y) = ey. The bottom graph shows 1996 S&P 500

returns computed from half-hourly data.

�t = f(Yt);

dYt =

"
�(m� Yt)� �

 
�
(�� r)

f (Yt)
+ 
(Yt)

q
1� �2

!#
dt+ �

�
�dW ?

t +
q
1� �2 dZ?

t

�
;

where (W ?; Z?) are independent Brownian motions under the Equivalent Martingale Measure
Q(
). The interest rate r is assumed to be constant and known. As for the other model
parameters, we assume a market price of volatility risk 
(Yt) driven only by the volatility-
driving process (Yt). This can be validated a posteriori when the formula presented below is
�tted to implied volatility data. The new function 
(y) is included in the asymptotics and
not directly estimated (using other derivatives for instance).

The main result of an asymptotic analysis of this problem5 says that when volatility per-
sists, we can approximate the derivative price Pt in the stochastic volatility environment by
pricing a more complicated (path-dependent) security in the Black-Scholes constant volatil-
ity environment. The payo� structure of the new security depends on the Black-Scholes
pricing formula for the original one and accounts appropriately for volatility risk.

The procedure is as follows:

1. Let ( �St)t�0 be the Black-Scholes lognormal model:

d �St = r �Stdt+ �� �StdW
?
t ;

White, A., 1987, The Pricing of Options on Assets with Stochastic Volatilities, Journal of Finance 42(2),
pages 281-300.

5See Fouque, Papanicolaou and Sircar, 1999, Mean-Reverting Stochastic Volatility, to appear in Interna-
tional Journal of Theoretical & Applied Finance, for details of the calculation.
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with �� the usual constant historical volatility. Price the derivative with this model.
That is, �nd

PBS(t; S) = IE?fe�r(T�t)h( �ST )j �St = Sg:
2. The stochastic volatility price Pt is well-approximated by the price in the Black-Scholes

model ~Pt of the path-dependent contract with the same terminal payo� h( �ST ) and a
payout rate H(t; �St) between times t and T , given by

H(t; S) = V2S
2@

2PBS

@S2
(t; S) + V3S

3@
3PBS

@S3
(t; S);

where V2 and V3 are constants related to the original parameters (�; �;m; �) and the
functions f and 
. They contain information about the market, but are not speci�c to
any derivative contract. That is, ~P is given by themodi�ed Black-Scholes formula

~Pt = IE?

(
e�r(T�t)h( �ST )�

Z T

t
e�r(u�t)H(u; �Su)duj �St

)
:

The path-dependent payment stream H(t; S) is computed from the second and third
order derivatives of the classical Black-Scholes price PBS . It may be positive or negative
and accounts dynamically for volatility randomness in a robust model-independent way.
It also accounts for the market price of volatility risk e�ectively selected by the market.

3. There is a simple explicit formula whenever there is a formula for the Black-Scholes
price of the contract PBS(t; S), for example calls, puts, binaries. It is given by

~Pt = PBS(t; St)� (T � t)H(t; St):

The Black-Scholes price is corrected by a term containing the Gamma of the contract
and a term containing its third derivative which we name Epsilon since it is related
to a small correction.

The error is of order less than 1=
p
� which is small when mean-reversion is fast. Notice

that this approximation does not depend on the present level of volatility, which is not
directly observable and usually di�cult to estimate.

Calibration

Where this simpli�cation is extremely useful is in parameter estimation. We �rst estimate
in the usual way the historical volatility �� which can be related to the model parameters:
it is the square root of the average of f 2 with respect to the invariant distribution of the
OU process Yt. We are not using this explicit relation since we are not aiming at estimating
the model parameters. The quantities V2 and V3 are easily calibrated by using the full term
structure of the volatility smile across strikes and maturities. If we take h(ST ) = (ST �K)+,
a call option, compute the approximation to the stochastic volatility price described above
and then work out the implied volatility I, we obtain the simple formula

I = a
log(K=S)

(T � t)
+ b:

6



The parameters V2 and V3 are related to the smile parameters a; b and the mean volatility ��
by

V2 = ��
�
(�� � b)� a(r +

3

2
��2)
�
;

V3 = �a��3:

It turns out that a has the same sign as �, so that a downward sloping skew indicates a
negative correlation. In the particular uncorrelated case, � = 0, we deduce that, at this order
of approximation, the smile gives only a constant correction to the historical volatility ��. In
that case, one can verify that the corrected price itself satis�es a Black-Scholes equation with

the corrected volatility
q
��2 + 2��(b� ��) used e�ectively by the market (b is close to �� for

fast mean-reverting stochastic volatility markets). This can be thought of as a pure kurtosis
e�ect, as pointed out to us by a referee. The general case � 6= 0 is more interesting since it
re
ects the skew e�ect. The formulas above are derived in the paper cited in footnote 5.

So, the calibration procedure is as follows:

1. Fit near-the-money implied volatilities for several maturities, to a straight line in the
composite variable called the log-moneyness-to-maturity-ratio (LMMR)

LMMR :=
log

�
Strike Price
Stock Price

�
Time to Maturity

:

Estimate the slope a and the intercept b. Since LMMR = 0 when stock price = strike
price, b is exactly the at-the-money implied volatility.

2. Estimate ��, the historical volatility from stock price returns, and compute V2 and V3
using the formulas above.

3. Price any other European by pricing the adjusted claim (with the payout rate H for
that contract) in a Black-Scholes world using the explicit formula given above. A
similar procedure that needs only the market-describing parameters V2 and V3 holds
for Asian, American6 and barrier7 options.

We stress again that this is not model speci�c: it does not depend on a particular choice
of the functions f or 
 or a particular ergodic driving di�usion Y , in the sense that many
such choices will lead to the three observable quantities ��; a; b (or (��; V2; V3)) with no need
to estimate the parameters (�; �;m; �) separately: only the V 's, which contain these, are
needed. Nor is the present value Yt required.

6See Fouque, Papanicolaou and Sircar, 1999, From the Implied Volatility Skew to a Robust Correction to

Black-Scholes American Option Prices, preprint.
7See Fouque, Papanicolaou and Sircar, 1999, Financial Modeling in a Fast Mean-Reverting Stochastic

Volatility Environment, Asia-Paci�c Financial Markets 6(1), pages 37-48.
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Stability of Parameter Estimates

We have undertaken, in the reference in footnote 3, a detailed empirical study of high-
frequency S&P 500 index data to establish that volatility reverts slowly to its mean compared
to the tick-by-tick scale 
uctuations, but it reverts fast when looked at over the longer time
scale of months. The key conclusion of this study is that while the rate of mean-reversion (in
units years�1) is large, it is a di�cult parameter to estimate precisely, being the reciprocal
of the correlation time of a hidden Markov process. However, the asymptotic derivatives
theory does not need the value of �, only that it be large.

We have also tested a posteriori the feasibility of the theory-predicted LMMR line�t
for actual implied volatility data. We show in Figure 3 daily estimates of the slope and
intercept coe�cients â and b̂ from �tting Black-Scholes implied volatilities from observed
S&P 500 European call option prices:

Iobs(t; S;K; T ) = â

 
log(K=S)

T � t

!
+ b̂ ;

across strikes K and maturities T .
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Liquid Slope Estimates: Mean= �0:154, Std= 0:032

Liquid Intercept Estimates: Mean= 0:149, Std= 0:007

Trading Day Number: 9/20/94 - 12/19/94

Figure 3: Daily �ts of S&P 500 European call option implied volatilties to a straight line in LMMR,

excluding days when there is insu�cient liquidity (16 days out of 60).

We observe from the results that the slope coe�cients â are small. This strongly supports
the fast mean-reverting hypothesis and validates use of the asymptotic formula as the full
skew formula shows that a is a term of order 1=

p
�. We also �nd that the estimates â and
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b̂ over a sixty-day period are stable as attested to by the standard deviations of the daily
estimates reported in the Figure.

Hedging

There is a related theory for hedging which we do not describe here in detail8. It relies
on the parameter V3 estimated from the smile to account for the e�ect of correlation or
leverage. The amount of stock to hold is given by a correction to the Black-Scholes Delta
by a combination of the Gamma, Epsilon and the fourth derivative which we call Kappa:

@PBS

@S
(t; St)� V3(T � t)

St

 
4S2

t

@2PBS

@S2
+ 5S3

t

@3PBS

@S3
+ S4

t

@4PBS

@S4

!
(t; St):

This strategy removes a bias in the shortfall of a Black-Scholes hedge used in a random
volatility market. The new average hedging error (measured, for example, as the expected
shortfall) is of order 1=�.

Conclusion

We have presented a modi�ed Black-Scholes pricing and hedging methodology to account for
persistent stochastic volatility. It is e�ective in identifying the important components of the
implied volatility skew, from which we calibrate, and gives a recipe for pricing and hedging
more exotic securities. As the implied volatility �ts show, the calibrated group parameters
are quite stable over time.

It dynamically captures the main skewness of the observed implied volatility surface,
independent of speci�c modeling of volatility. This, plus the simplicity of the procedure,
makes the results extremely suitable for practice.

8The hedging problem and a presentation from �rst principles of the work discussed here plus application
to interest-rate derivatives appears in the forthcoming book Derivatives in Financial Markets with Stochastic

Volatility by the authors of this article.
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