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Abstract

In this paper we discuss the superreplication of derivatives in a stochastic volatility

model under the additional assumption that the volatility follows a bounded process�

We characterize the value process of our superhedging strategy by an optimal�stopping

problem in the context of the Black�Scholes model which is similar to the optimal

stopping problem that arises in the pricing of American�type derivatives� Our proof

is based on probabilistic arguments� We study the minimality of these superhedging

strategies and discuss PDE�characterizations of the value function of our superhedging

strategy� We illustrate our approach by examples and simulations�
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� Introduction

The pricing and hedging of derivative securities is nowadays well�understood in the context

of the classical Black�Scholes model of geometric Brownian motion� However� recent

empirical research has produced a lot of statistical evidence that is di	cult to reconcile

with the assumption of independent and normally distributed asset returns� Researchers

have therefore attempted to build models for asset price 
uctuations that are 
exible

enough to cope with these empirical de�ciencies of the Black�Scholes model� In particular�

a lot of work has been devoted to relaxing the assumption of constant volatility in the

Black�Scholes model and there is a growing literature on stochastic volatility models �SV�

models
� see e�g� Ball and Roma �����
 or Frey �����
 for surveys� In this class of models

the stochastic di�erential equation �SDE
 that governs the asset price process is driven by

a Brownian motion� but the di�usion coe	cient of this SDE is modelled as a stochastic

process which is only imperfectly correlated to the Brownian motion driving the asset

price process�
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SV�models are able to capture the succession of periods with high and low activity

we observe in �nancial markets� However� this increase in realism raises new conceptual

problems for the pricing and the hedging of derivative securities� It is well�known that

SV�models are incomplete� i�e� one cannot replicate the payo� of a typical derivative by

dynamic trading in the underlying risky asset ��the stock�
 and in some riskless money

market account� This re
ects a real di	culty in the risk management of derivative secu�

rities and should therefore not be considered as a disadvantage of this class of models�

Today �the uncertain nature of forward volatility is recognized as one of the main factors

that drive market�making in options and custom�tailored derivatives�� see Avellaneda and

Paras �����
�

Of course� if there is a liquid market for certain standard derivative securities on the

stock� the use of dynamic trading strategies in the stock and in these securities might

restore market completeness� However� this approach is not always viable� To begin with�

there is not always trade in a su	cient number of derivative securities on a particular stock�

Even if there are derivative securities available for trading� running a dynamic hedging

strategy in these securities might prove impossible because of prohibitive transaction costs�

Moreover� this approach requires a precise parametric model for the volatility dynamics of

the underlying asset� As volatility is not directly observable� the determination of a good

model for the volatility dynamics and the estimation of the corresponding parameters

poses di	cult problems� Hence there is a considerable risk of model misspeci�cation

that might lead to �bad� hedges� This favours approaches to the risk�management of

derivative securities which require dynamic hedging only in the underlying risky asset

and in the money market account� static positions in liquidly traded derivatives can then

be used in a second step in order to improve the accuracy and reduce the cost of the

hedge� Results from the theory of superhedging imply that even in an incomplete market

it is possible to �stay on the safe side� by using a particular dynamic trading strategy

in the underlying stock and in the money market account� see e�g� Delbaen �����
 or

El Karoui and Quenez �����
 for results on continuous processes� and Kramkov �����
 for

generalisations to a general semimartingale framework� The cost of implementing such

a superhedging strategy is given by the supremum of the expected value of the terminal

payo� over all equivalent local martingale measures for the underlying asset�

Unfortunately the concept of superhedging often leads to prices that are too high

from a practical viewpoint� For instance Frey and Sin �����
 and Cvitanic� Pham� and

Touzi �����
 show that in a typical SV�model where volatility follows an unbounded

di�usion process the cost of establishing such a superhedge for a European call option is

no smaller than the current price of the underlying stock� hence in this class of models

the cheapest superhedging strategy for a European call option is to buy the underlying

asset� Additional assumptions are therefore called for� if one wants to obtain superhedging

strategies which are at least potentially of some practical interest� In this paper we restrict

ourselves to SV�models where the range of the volatility is bounded� Under this additional

assumption we are able to obtain �nontrivial� superhedging strategies for a large class of

derivatives whose payo� may even be path�dependent� These strategies are universal in

the sense that they depend only on the bounds we impose on the volatility and not on a

particular parametric model for the volatility dynamics� We characterize the value process

of our superhedging strategy by an optimal�stopping problem in the context of the Black�

Scholes model� Roughly speaking our result can be phrased as follows� the value of a

superhedging strategy for a European type derivative under stochastic volatility equals
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value of a corresponding American type derivative under constant volatility� In particular

one can draw on standard numerical methods for the pricing of American type securities

to implement our approach� The proof is based on probabilistic arguments� Our main

tools are the optional decomposition theorem of El Karoui and Quenez or Kramkov and

the results on time�change for continuous martingales�

In practice it may be impossible to determine �nite bounds on asset price volatility

which hold true with certainty� In those cases we interprete our volatility band as con��

dence interval for the range of the future volatility� By construction the success�set of our

strategy � the set where the terminal value of the hedge portfolio is no smaller than the

the payo� of the derivative � contains all asset price trajectories with volatility lying in

the volatility band� Moreover� our approach is relatively robust� if the actual volatility

exceeds one of the volatility bounds by a small amount the resulting loss will typically

be small� Recently F�ollmer and Leukert �����
 have developed a general theory of super�

hedging with a given success probability� In their approach the success set is endogenously

determined� it minimizes the superhedging cost over all strategies with a given success

probability� This yields a very elegant theory� However� by construction the terminal

value of the hedge portfolio is zero on the complement of the success�set� Hence in the

approach of F�ollmer and Leukert the occurrence of an event belonging to the complement

of the success�set may immediately lead to large losses�

It is important to know� if for a given parametric SV�model superhedging strategies

can be constructed which are less expensive than our universal superhedging strategy�

In Section � we study this question for a particular class of SV�models where volatility

follows a one�dimensional di�usion� Most parametric models from the �nancial literature

belong to this class� We show that our universal superhedging strategy is in fact a minimal

superhedging strategy� provided that the bounds on volatility are sharp and that the lower

volatility bound is zero� This generalizes the main result of Frey and Sin �����
� it extends

also certain results of Cvitanic� Pham� and Touzi �����
 to path�dependent derivatives�

In most work on superreplication in SV�models with bounded volatility the superhedg�

ing cost is characterized by a terminal value problem involving a parabolic PDE� which is

in general nonlinear� Important examples of this work are El Karoui� Jeanblanc�Picqu�e�

and Shreve �����
� Avellaneda� Levy� and Paras �����
 and Lyons �����
� In Section �

we therefore discuss under which conditions the value function of our superhedging strat�

egy can be characterized in terms of some nonlinear parabolic PDE� This gives us also

information on the minimality of our universal superhedging strategy in models where the

lower volatility bound is strictly positive�

In order to illustrate our approach to superhedging we compute in Section � for certain

examples the value function of our strategy� We present simulations for the superrepli�

cation cost of a call spread and compare our results to those of Avellaneda� Levy� and

Paras �����
� We give analytic results on the superhedging cost for a particular barrier

option� namely the down�and�out call option� Finally we present an example that shows

how static positions in traded derivatives can be used for a reduction of the superhedging

cost� an idea which is explored more systematically in Avellaneda and Paras �����
�
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� Superreplication strategies and optimal stopping

��� The general stochastic volatility model

We consider a frictionless �nancial market with continuous security trading where a risky

asset �the stock
 and a zero coupon bond with maturity T are traded� In our model the

short rate of interest is deterministic and given by some constant r � � such that B�t� T 
�

the price of the zero coupon bond at time t� is given by B�t� T 
 � exp��r�T�t

� The price
of the stock is modelled as a stochastic process S � �St
t�� on some �ltered probability

space ���F � �Ft
� P 
 with �Ft
 satisfying the usual conditions� For the purposes of this

paper it is legitimate to assume that P is already a risk�neutral measure for S� More

precisely� we assume that the dynamics of S are of the following form�

Assumption �� �general stochastic volatility model
 Consider an �Ft
�predictable pro�

cess ��t
t�� on ���F � �Ft
� P 
 with P ��t � � for all t� � P �
R t
� �

�
sds � � for all t� � ��

The stock price process S solves the SDE

dSt � St��tdWt � rdt
 ����


for a Brownian motion �Wt
t�� on ���F � �Ft
� P 
�

This class of SV�models is very general� In fact� it can be shown that in every arbitrage�

free asset price model where the price process follows continuous trajectories with abso�

lutely continuous quadratic variation the asset price dynamics are of the form ����
� see

for instance Gallus �����
� Obviously Assumption � is satis�ed by most SV�models from

the �nancial literature where volatility is assumed to follow a one�dimensional di�usion�

see Section � for examples�

Fix some maturity date T � By Zt �� er�T�t�St we denote the price of the forward

contract on S with maturity T � The following set of probability measures Q equivalent to

P on ���FT 
 will be important�

M
e �� fQ jQ � P and �Zt
��t�T is a Q�local martingaleg �

For further use we also de�ne the process Mt ��
R t
� �sdWs� M is a continuous local

martingale under all Q � Me with quadratic variation hMit �
R t
� �

�
sds� By It o!s formula

S is given by St � S� exp�rt�Mt � �
�hMit
�

Remark ���� We will use the following notation�

�i
 For a process X which is cadlag we put

Xmin
���t� �� min

��s�t
Xs and Xmax

���t� �� max
��s�t

Xs �

�ii
 Let �Gt
 be a �ltration on some probability space ���F � P 
 and �� and �� be �Gt
�
stopping times such that �� � �� a�s� We denote by G����� the set of all �nite

�Gt
�stopping times � with �� � � � �� a�s�

�iii
 By �Bt
 we denote the canonical �ltration on C������ the space of all continuos

functions from ����
 to R�
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��� Construction of superreplication strategies via optimal stopping

We consider the following class of contingent claims�

Assumption �� The payo� H of the contingent claim is of the form

H � f
�
ZT � Z

min
���T �� Z

max
���T �

�
����


for some function f � R�
	 � R such that the process ft �� f

�
Zt� Z

min
���t� � Z

max
���t�

�
��t�T

is

bounded below and cadlag�

This class of payo�s comprises all path�independent options� Most common path�

dependent options also satisfy Assumption �� if we assume that the payo� is de�ned as a

function of the forward price Z of the stock� For instance the payo� of barrier options with

barrier condition imposed on Z is of the form ����
� Note that the payo� of a portfolio of

derivatives where each individual contract is of the form ����
 is again of this form� This

facilitates the application of our method to portfolios of derivatives�

We now give a formal de�nition of superreplication strategies�

De�nition ���� Consider a contingent claim with maturity date T whose payo� H is

bounded below� A dynamic trading strategy ��� �
 � ��t� �t
��t�T in stock and bond is a

superreplicating or superhedging strategy for H if

�i
 The strategy is admissible� i�e� � is predictable� � is adapted� the integral
R t
� �

�
s�

�
sS

�
sds

is a�s� �nite and the value process Vt � �tSt � �tB�t� T 
 is bounded below�

�ii
 The terminal value VT of the strategy equals H� Moreover� the cost process associated

with the strategy is nonincreasing� i�e� we have for all � � t � T the representation

Vt � V� �

Z t

�
�srB�s� T 
ds�

Z t

�
�sdSs � Ct ����


for an non�increasing process C � �Ct
��t�T with C� � ��

A superreplicating strategy � ��  �
 whose value process  V satis�es for all � � t � T and

for any other superhedging strategy ��� �
 with value process V the inequality  Vt � Vt is

called minimal� The value process  V of this strategy� which is uniquely de�ned� is called

the ask�price of the claim H�

Remark ��	� Superhedging strategies can be characterized using discounted quantities�

in our case most conveniently in terms of the forward price Zt � St	B�t� T 
� A strategy

��� �
 with value process V is a superreplicating strategy for H if and only if the discounted

value process "Vt � Vt	B�t� T 
 � �tZt � �t admits a representation of the form

"Vt � "V� �

Z t

�
�sdZs � "Ct ����


for a decreasing process � "Ct
��t�T with "C� � �� The cost processes C and "C are related

via d "Ct � exp�r�T � t

dCt� The proof� which is an easy application of It o!s product rule�

will be omitted�

In this section we make the following assumption on the asset price dynamics�
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Assumption 	� �volatility bounds
 There are constants �min and �max such that

� � �min � �t � �max �� for all t � � � ����


The numbers �min and �max re
ect expectations about future volatility� For instance

one could use econometric techniques in order to obtain an estimate for the distribution

of historical volatility and choose �min and �max as some lower respectively upper quantile

of this distribution� in that case the interval ��min� �max� can be interpreted as con�dence

interval for the future volatility� If there is a liquid market for derivative instruments on

S� one could alternatively obtain �min and �max from extreme past values of the implied

volatilities of these contracts� In either case the volatility band should be wide enough to

ensure that current implied volatilities of liquidly traded derivatives are contained in the

band� Otherwise the use of static positions in these instruments as additional hedging

tool might lead to inconsistencies� see Section ����

Consider a claim H satisfying Assumption �� and two numbers � � � � � � � with

� � �� Denote by Rz the law of the solution of the SDE dUt � UtdWt with initial

value U� � z and recall the de�nition of the set of stopping times B���T�t�� ���T�t� from

Remark ���� De�ne the function V Am � ��� T ��R�
	 � R as value function of the following

optimal�stopping problem

V Am�t� z�m�m��� �
 ��

sup
n
ER
z

h
f�U�� m 	 Umin

������ m 
 Umax
����� 


i
� 
 � B���T�t�� ���T�t�

o
� ����


V Am has an obvious interpretation as arbitrage price of an American type derivative with

partial exercice feature in a standard Black�Scholes model with volatility equal to one

and interest rate equal to zero� Wider �volatility bounds� � and � correspond to a larger

time window for the exercice of this American�type security and hence to a larger value

of V Am�

The following theorem is the main result of this section�

Theorem ��
� Suppose that Assumptions � and � hold for S� that H satis�es Assumption

� and that the function V Am�t� x�m�m��min� �max
 is �nite for all �t� x�m�m
 � ��� T ��R��

Then the process V � � �V �
t 
��t�T de�ned by

V �
t �� e�r�T�t�V Am

�
t� Zt� Z

min
���t� � Z

max
���t� ��min� �max

�

is the value process of a superreplicating strategy for H�

Comments�

Consider a payo� of the form H � f�ST 
 for some convex function f � By Jensens

inequality we get for any stopping time 
 � B��min�T�t���
�
max�T�t�

ER
z �f�U�
� � ER

z

�
f
�
ER
z �U��max�T�t�

jB� �
�� � ER

z �f�U��max�T�t�

� �

It follows that the sup in ����
 is attained by taking 
 � ��max�T � t
� Hence V �
t equals

the price of a derivative with payo� f�ST 
 in a Black�Scholes model with volatility �max�

see El Karoui� Jeanblanc�Picqu�e� and Shreve �����
�

If H is of the form H � f�ST 
 the value function of the optimal�stopping problem ����


can be computed using the standard binomial model of Cox� Ross� and Rubinstein �����
�
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If one is dealing with path�dependent payo�s some algorithm for the pricing of American

path�dependent options such as the forward shooting grid method of Barraquand and

Pudet �����
 can be used�

Note that the superreplication cost V � is subadditive� i�e� the superhedging cost

corresponding to a portfolio of two payo�s is no larger than the sum of the superreplication

costs of the two individual payo�s� In order to keep the superreplication cost low the

method should therefore be applied to large portfolios rather than to individual derivatives�

Our approach can easily be adapted to accommodate portfolios of claims with di�erent

maturity dates� see also Avellaneda� Levy� and Paras �����
� Consider the case of two

claims H� and H� with � for notational simplicity path�independent � payo�s f��ST�


and f��ST�
 and maturity dates T� � T�� By Theorem ���

V ����ST�
 �� exp��r�T� � T�

V
Am�T�� exp�r�T� � T�

ST�


is the value at time T� of the superreplicating strategy for H�� De�ne a new claim

H with maturity date T� and payo� given by H � f��ST�
 � V ����ST�
� Obviously� a

superreplicating strategy for H� which can be computed using Theorem ���� induces a

superreplicating strategy for the portfolio consisting of the claims H� and H��

��� Proof of Theorem ���

As a �rst step we recall some well�known recent results on the existence of minimal super�

replicating strategies and in particular the optional decomposition theorems as obtained

by El Karoui and Quenez and by Kramkov� the following result is a version of Theorem

��� in Kramkov �����
�

Theorem ���� �optional decomposition
 Let Z be a locally bounded process on some

stochastic basis ���F � �Ft
� P 
 such that the set Me of equivalent local martingale mea�

sures is non�empty� Then a positive process � "Vt
t�� is a supermartingale for all Q � Me

if and only if there is a predictable� Z	integrable process ��t
t�� and a decreasing� adapted

process � "Ct
t�� with "C� � � such that

"Vt � "V� �

Z t

�
�sdZs � "Ct � ����


This theorem obviously extends to processes which are only bounded below� Together

with the following result of El Karoui and Quenez �����
� Theorem ��� ensures the ex�

istence of minimal superhedging strategies and gives moreover a characterization of the

ask�price in terms of the set Me�

Proposition ���� Let H be a contingent claim with maturity T and payo� which is

bounded below� Suppose that supfEQ�H� � Q �Meg � � � Then there is a RCLL pro�

cess H � �Ht
t�� such that Ht � ess supfEQ�HjFt� � Q � Meg� Moreover� the process H

is a Q�supermartingale for all Q �Me�

It is easily seen from ����
 that whenever ��� �
 is a superreplicating strategy for H

we must have "Vt � EQ�HjFt� for all Q � Me� as the stochastic integral
R t
� �sdZs is a Q�

supermartingale� Hence "Vt � Ht� and we have the following result� which is well�known

in the theory of superreplication�

Corollary ��
� Let H be a contingent claim satisfying the hypothesis of Proposition ��
�

Then a minimal superhedging strategy exists� the ask�price is given by �e�r�T�t�Ht
��t�T �
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We next explain the key idea behind the characterization of superhedging strategies

given in Theorem ���� In view of Corollary ��� we want to give an estimate for H�

Consider for notational simplicity some path�independent payo� H � f�ST 
� Then we

have for every Q �Me�

EQ�f�ST 
� � EQ�f�ZT 
� � EQ�f�Z� exp�MT � �	�hMiT 

� �
By changing the volatility for t � T if necessary we may assume that limt��hMit � �
P�a�s� De�ne the increasing process At via

At � A�t
 �� inffs � � � hMis � tg � ����


Note that under our assumptions on the volatility the mapping t� hMit is P�a�s� a bijec�

tion from ����
 onto itself with inverse mapping given by A� Now Levy!s characterization

of Brownian motion implies that the process Bt �� MAt is a Brownian motion relative

to the new �ltration �Gt
 � �FAt
 and Mt � BhMit � see e�g� Chapter ��� of Karatzas

and Shreve �����
� Moreover hMiT is a �Gt
�stopping time which takes its values in the

interval ���minT� �
�
maxT � by Assumption �� Hence we get

EQ�f�ST 
� � EQ�f�Z� exp�BhMiT � �	�hMiT 

� ����


� sup
�
EQ�f�Z� exp�B� � �	�


�� 
 � G��minT��

�
maxT

�
� �����


We will show in the proof of Proposition ���� below that the strong Markov property of

the geometric Brownian motion Ut �� Z� exp�Bt��	�t
 implies that the value function of

the optimal�stopping problem �����
 is independent of the particular �ltered probability

space on which U is de�ned and equal to V Am��� Z�
� Hence the ask price of H is no

larger than V �
� �

Remark ���� Obviously� these estimates are valid in the case where �max �� and where

the payo� under consideration is path�dependent but satis�es Assumption �� Hence for

every such claim and every � � t � T the ask price is no larger than

V �
t � e�r�T�t�V Am

�
t� Zt� Z

min
���t� � Z

max
���t� ��min��

�
�

Remark ���� The above argument cannot be extended to the case of options on multiple

assets S�� � � � � Sd with payo� f�S�
T � � � � � S

d
T 
� Assume that the dynamics of Si are of the

form dSit � SitdM
i
t for continuous local martingales M i� i � �� � � � � d with absolutely

continuous quadratic variation hM iit� To illustrate� what �goes wrong� we consider the

particular case where

hM i�M jit � � for all � � i �� j � d and for all t � � �

As previously we introduce Ai
t �� inf

�
s � �� hM iis � t

�
and de�ne new processes Bi�

� � i � d by Bi
t �� MAi

t
� The F� B� Knight Theorem �see for instance Karatzas and

Shreve ����� Theorem ������
 ensures that B � �B�� � � � � Bd
 is a d�dimensional stan�

dard Brownian motion w�r�t� its own �ltration �GBt 
 However� B is in general not a

d�dimensional Brownian motion w�r�t� the �ltration �Gt
 de�ned by

Gt � FA�
t

 � � � � 
FAd

t
�

On the other hand� while hM iit is for every � � i � d and every t a �Gt
�stopping time�

hM iit is not necessarily a stopping time for the �ltration �GBt 
� Hence we cannot hope to

�nd a representation for EQ�f�S�
T � � � � � S

d
T 
� of the form ����
 in this case�

�



In view of Corollary ���� Theorem ��� would follow from the previous estimates if

under Assumptions � and � V �
t was actually equal to e�r�T�t�Ht for all t� As shown in

Sections � and � below� this equality holds true for a large class of general SV�models but

is wrong in general� However� Theorem ��� follows from Theorem ��� and the following

proposition�

Proposition ����� The process V Am
�
t� Zt� Z

min
���t� � Z

max
���t�

�
��t�T

is a Q�supermartingale for

all Q �Me�

Proof of Proposition ����� De�ne for every � � t � T positive random variables

�min�t
 and �max�t
 via

�min�t
 �� A���min�T � t
 � hMit
 and �max�t
 �� A���max�T � t
 � hMit
 � �����


Lemma ���� below shows that �min�t
 and �max�t
 are �Ft
�stopping times� Moreover�

t � �min�t
 � �max�t
 P�a�s� Recall the de�nition of the process ft �� f
�
t� Zt� Z

min
���t� � Z

max
���t�

�
in Assumption � and the de�nition of the set of �Ft
�stopping times F�min�t���max�t� in

Remark ����ii
� Fix some Q � Me and de�ne a process JQt via the following optimal

stopping problem

JQt �� ess supfEQ�f�
		 Ft� � � � F�min�t���max�t�g � �����


The proof now consists of two steps�

Step �� JQt is a Q�supermartingale�

To prove the supermartingale property note �rst that the set of stopping times F�min�t���max�t�

is shrinking as t increases� We get that

�

�t
�min�t
 � A����min�T � t
 � hMit
����min � ��t 
 � � �

�

�t
�max�t
 � A����max�T � t
 � hMit
����max � ��t 
 � ��

The inequalities follow as A��x
 � � for all x � � and as ����min � ��t 
 � � and ����max �

��t 
 � � by Assumption �� Now let t � s� We get that

EQ�JQt
		 Fs� � EQ

�
ess supfEQ�f�

		 Ft� � � � F�min�t���max�t�g
		 Fs�

�i�
� ess supfEQ�f�

		 Fs� � � � F�min�t���max�t�g
�ii�

� ess supfEQ�f�
		 Fs� � � � F�min�s���max�s�g

� JQs �

Here the equality �i
 follows from Proposition A�� in Appendix A��� inequality �ii
 follows

as F�min�t���max�t� � F�min�s���max�s� for t � s�

Step �� JQt is independent of Q and given by V Am
�
t� Zt� Z

min
���t� � Z

max
���t�

�
�

For notational simplicity we treat only the case t � �� We want to write JQ� in a di�erent

way using the time change introduced in the beginning of the proof� De�ne the process

U via Ut � Z� exp�Bt � �	�t
� where Bt �MA�t� is Q�Brownian motion� We have

Zt � UhMit � Z
min
���t� � Umin

���hMit�
and Zmax

���t� � Umax
���hMit�

� �����


�



By �����
 we get that

EQ�f� � � EQ
h
f
�
UhMi� � U

min
���hMi� �

� Umax
���hMi� �

�i

for every �Ft
�stopping time � � The following Lemma� whose proof is given in the Ap�

pendix A��� shows that the mapping � 
� hMi� is a bijection from F�min�����max��� onto

G��minT� �
�
maxT

�

Lemma ����� Let � be an �Ft
�stopping time� Then 
��
 �� hMi� is a �Gt
�stopping
time� Conversely� if 
 is a �Gt
�stopping time� ��

 �� A� is an �Ft
�stopping time�

Using this Lemma and Proposition A�� we can write JQ� in a di�erent way�

JQ� � sup
n
EQ

h
f�U� � U

min
������ U

max
����� 


i
� 
 � G��minT� �

�
maxT

o
� EQ

h
ess sup

n
EQ

h
f�U� � U

min
������ U

max
����� 


		 F��minT

i
� 
 � G��minT� �

�
maxT

oi
� �����


Now U is a Q�geometric Brownian motion with zero drift� initial value U� � Z� and volatil�

ity equal to one� in particular U is Markovian� Hence the process U t �
�
Ut� U

min
���t� � U

max
���t�

�
is a R��valued Markov process� Thisd implies that the Snell�envelope of the process

ft � f�U t
 with respect to the �ltration �Gt
 coincides with the Snell envelope of f�U t


with respect to the �ltration generated by U respectively by U � see Lemma ��� of Muli�

nacci and Pratelli �����
 or Proposition ��� of Lamberton and Pag#es �����
� Hence

ess sup
n
EQ

h
f�U�� U

min
������ U

max
����� 


		 F��minT

i
� 
 � G��minT� �

�
maxT

o
�

� ess sup
n
ER
Z�

h
f�U� � U

min
������ U

max
����� 


		 B��minT

i
� 
 � B��minT� �

�
maxT

o
�

� V Am
�
�� U��minT

� Umin
�����minT �

� Umax
�����minT �

� �� ���max � ��min

���

�
�

Plugging this into �����
 yields

JQ� � EQ
h
V Am

�
�� U��minT

� Umin
�����minT �

� Umax
�����minT �

� �� ���max � ��min

���

�i
� ER

Z�

h
V Am

�
�� U��minT

� Umin
�����minT �

� Umax
�����minT �

� �� ���max � ��min

���

�i
� V Am��� Z���min� �max
 �

where the last equality follows from the de�nition of V Am� if we condition on B��minT
�

apply Proposition A�� and the Markov�property of U �

� Minimality of our superhedging strategies

In this section we study under which conditions the superhedging strategy constructed in

Theorem ��� is actually a minimal superhedging strategy� To analyze this question we have

to introduce additional assumptions on the probabilistic structure of the volatility process�

We are particularly interested in the case where the volatility follows a one�dimensional

di�usion�

��



Assumption 
� We assume that S satis�es the equations

dSt � St�jvtj���dW ���
t � rdt
 � ����


dvt � a�vt
dt� ���vt
dW
���
t � ���vt
dW

���
t � ����


for Wt � �W
���
t �W

���
t 
 a standard two�dimensional Wiener process on ���F � �Ft
� P 
� We

assume that the coe�cients are such that the vector SDE 
����� 
���� has a non�exploding

and strictly positive solution�

This class of volatility models contains the models considered by Wiggins �����
� Hull

and White �����
 or Heston �����
 as special cases� Note that we allow for nonzero ��
and hence for nonzero instantaneous correlation between volatility innovations and asset

returns�

Theorem 	��� Suppose that S is given by a SV�model satisfying Assumption �� Assume

moreover that there is some � � �max � � such that

�i
 The real functions a� ��� �� are locally Lipschitz on ��� ��max
� b�x
 ��
p
����x
 � ����x


belongs to C������max�
�

�ii
 ���v
 � � for all v � ��� ��max
�

�iii
 � � �t ��
p
vt � �max� the last inequality being strict for �max ���

Then for every claim H satisfying Assumption � the ask price equals

V �
t � e�r�T�t�V Am

�
t� Zt� Z

min
���t� � Z

max
���t� � �� �max

�
for all � � t � T � ����


Comments�

Hypothesis �ii
 ensures that volatility innovations and asset returns are not perfectly

correlated which in turn implies that the market is incomplete� Moreover� this hypothesis

ensures that for all t � � and all � � K� � K� � �max we have that P ��t � K�� � �

and P ��t � K�� � �� i�e� the open interval ��� �max
 is contained in the range of �t for

all t � �� As we assumed existence of a strictly positive solution to ����
� hypothesis �i


implies pathwise uniqueness for this SDE� see Frey and Sin �����
 for details�

Consider models with unbounded volatility� i�e� �max ��� Applying Theorem ��� to

ordinary call options we get that in a large class of SV�models where the volatility follows

a one�dimensional di�usion the ask price of a call option is equal to S�� the current price

of the stock� This is the main result of Frey and Sin �����
�

Cvitanic� Pham� and Touzi �����
 have previously obtained the characterization of

the ask price by the optimal�stopping problem ����
 for a large class of di�usion models

with unbounded volatility and path�independent payo�s� Their approach is based on

the characterization of the ask price as viscosity supersolution to the Bellman equation

corresponding to the in�nitesimal generator of the process S� Using that characterization

they conclude that the ask price is given by the smallest concave majorant f� of f � In

Lemma ��� of their paper it is moreover shown that the solution to the optimal�stopping

problem ����
 is equal to f��

As shown below� Theorem ��� follows from combining results from Frey and Sin �����


with the following Proposition which applies to general Markovian SV�models��

�The author is grateful for interesting discussions with N� Touzi and H� Pham� which were very helpful

in obtaining Proposition ����

��



Proposition 	��� Consider a model where S is given by a stochastic process satisfying

Assumption �� Suppose that there is some � � � �� such that the following holds�

�� The process Xt �� �St� �t
 is a two�dimensional strong Markov family de�ned for all

initial values X� � �S�� ��
 � R	 � ��� �
� The corresponding family of measures will be

denoted by �Px
� x � R	 � ��� �
�

�� For every � � � and every x � R	���� �
 there is a sequence of strictly positive density

martingales G��n � �G��n
t 
��t�T with G��n

� � � such that

�i
 G��n is adapted to the �ltration generated by X�

�ii
 The process Zt � er�T�t�St� � � t � T is a local martingale under the probability

measures Q��n
x de�ned by dQ��n

x 	dPx � G��n
T �

�iii
 limn��Q��n
x �hMiT � ���T � �
 � � ��

�� For every compact set K �� R	 � ��� �
 and every � � � there is a sequence G��n of

strictly positive density martingales G��n � �G��n
t 
��t�T with G��n

� � � such that

�i
 G��n is adapted to the �ltration generated by X�

�ii
 Z is a local martingale under the measures Q��n
x de�ned by dQ��n

x 	dPx � G��n
T �

�iii
 limn�� infx�K Q��n
x �hMiT � � � � ��

Then for every claim H satisfying Assumption � the ask price is no smaller than

e�r�T�t�V Am
�
t� Zt� Z

min
���t� � Z

max
���t� � �� �

�
�

Proof of Proposition ����

While the following proof is rather technical� the underlying idea is simple� Recall the

�ltration �Gt
 introduced in the proof of Proposition ����� We want to show that for every


 � G���� and every � � � there is a sequence Qn �Me such that Qn�hMiT � �
� 
����� �

as n � �� Together with the right�continuity of our payo�s this implies the result� To

construct such a sequence of local martingale measures we �rst choose a sequence of

measures Q��n �Me which put most of the mass on trajectories with �high� volatility� As

soon as hMit � 
 we �drive the volatility down� using another sequence Q��n �Me�

The crucial step in the proof is the following Lemma�

Lemma 	�	� Suppose that the hypothesises of Proposition ��� hold� Then for every 
 �
G���� and for every 
� � � � there is some Q �Me such that

Q
�hMiT � �
� 
 � ��

�
� �� 
 � ����


The proof of Lemma ��� is given in Appendix A���

We now show that Proposition ��� follows from Lemma ���� By the Markov property

of X it is enough to consider the case t � �� As in the proof of Theorem ��� we de�ne the

process Ut �� ZA�t�� We get

H � f
�
UhMiT � U

min
���hMiT �

� Umax
���hMiT �

�
�

Let "
 be a stopping time for �Bt
� the canonical �ltration on C������ Then 
 �� "
 � U
is a stopping time for �GUt 
� the sub��ltration of �Gt
 generated by the process U � and

��



hence for �Gt
� Moreover� we have for every Q � Me that EQ �f�U�
� � ER
Z�

�U
� �� as U is

Q�geometric Brownian motion�

Choose some "
 � B����T and the corresponding stopping time 
 �� "
 � U from G����T �
By Lemma ��� there exists a sequence of local martingale measures Qn � Me such that

Qn �hMiT � �
� 
 � ��� � � � �	n� By Assumption � the process t � f
�
Zt� Z

min
���t� � Z

max
���t�

�
is right continuous such that

lim
n��

Qn
h			H � f

�
U� � U

min
������ U

max
�����

�			 � �
i
� � ����


for all � � �� Consider �rst the case of bounded f � It follows from ����
 that

lim inf
n��

EQn

�H� � lim inf
n��

EQn
h
f
�
U� � U

min
������ U

max
�����

�i
� ER

Z�

h
f
�
U
� � U

min
���
��� U

max
���
��

�i
�

As "
 � B���� was arbitrary we get that lim infn��EQn
�H�� � V Am��� Z�
� In the case

of unbounded but positive f we consider for n � N the claim Hn corresponding to the

payo� fn �� f 	 n� Applying the result for bounded f we get that H is greater than

V Am
n ��� Z�
� the value function of the optimal�stopping problem ����
 with f replaced by

fn� Monotone integration now implies that H � V Am��� Z�
�

Proof of Theorem ����

We have to show that Conditions � and � of Proposition ��� are satis�ed under the

assumptions of Theorem ���� Our argument is based on results obtained by Frey and Sin

�����
 for models with unbounded volatility� If �max � � we transform our problem to

the case �max � � using some smooth and strictly increasing function � that maps the

interval ��� ��max
 onto ����
� By It o!s formula yt �� ��vt
 solves the SDE

dyt � "a�yt
dt� "���yt
dW
���
t � "���yt
dW

���
t �

where the coe	cients "a� "��� "�� and "b ��
p

"��� � "��� satisfy hypothesis �i
 and �ii
 of Theo�

rem ��� on ����
� As in Frey and Sin �����
 we consider for n � N measures Q��n and

Q��n �Me with densities given by

dQ��n

dP
� exp



nW

���
t � �

�
n�T

�
and

dQ��n

dP
� exp



�nW ���

t � �

�
n�T

�
�

As �t �
p
vt and ���vt
 are strictly positive� the �ltration generated by the two�dimensionalX ��

�S� v
 coincides with the �ltration generated by �W ����W ���
� see e�g� Harrison and Kreps

�����
� Hence our density martingales are adapted to the �ltration generated by X� By

Girsanov!s theorem �yt
t�� is under Qi�n� i � �� �� a solution to the SDE

dynt � "a�ynt 
� ���
in"���ynt 
dt�"b�ynt 
dB
i�n
t � y� � ��v�
� ����


for a new Qi�n�Brownian motion Bi�n� The next two results are Lemma ��� and Lemma ���

of Frey and Sin �����
�

Lemma 	�
� Assume that the SDE 
��
� has a global and strictly positive solution for

any n � N� any initial value y � R	 and any i � f�� �g� and denote by Ri�n
y the law of


��
� with initial value y� Then

�i
 For every L � �� T � �� y � � and 
 � � there exists N� � N such that

R��n
y �yt � L for some � � t � T � � �� 
 for all n � N��

��



�ii
 For every L � �� T � �� y � � and 
 � � there exists N� � N such that

R��n
y

�
yt � L�� for some � � t � T

�
� �� 
 for all n � N��

Lemma 	��� Assume again that for n � N� y � R	 and for i � �� � the SDE 
��
� has a

global solution which is strictly positive� Then the following holds�

�i
 For every L � �� T � �� and 
 � � there exists N� � N such that for y� � �L

R��n
�L �yt � L for all � � t � T � � �� 
 for all n � N��

�ii
 For every L � �� T � � and 
 � � there exist N� � N such that for y� � L	�

R��n
L�� �yt � L for all � � t � T � � �� 
 for all n � N��

To verify that Conditions ���iii
 and ���iii
 of Proposition ��� are implied by Lemmas

��� and ��� one now uses exactly the same arguments as in the proof of Frey and Sin

�����
� Theorem ����

� PDE�Characterisation of the value function V
Am

��� Previous results

In most of the previous work on superreplication in stochastic volatility models the value

process of superhedging strategies is characterized by a terminal value problem involving

some � often nonlinear � parabolic PDE� Important examples of this work are the

independent papers Avellaneda� Levy� and Paras �����
� Lyons �����
 and El Karoui�

Jeanblanc�Picqu�e� and Shreve �����
� These papers consider mainly path�independent

derivatives� Therefore we will concentrate on payo�s of the form H � f�ST 
 for some

continuous function f � Moreover� we start immediately with discounted quantities�

The main result of Avellaneda� Levy and Paras and Lyons can be stated as follows�

Proposition 
��� Suppose that S satis�es Assumptions � and � and that the terminal

value problem

hAVt �
�

�
x�

�
���min

�
hAVxx

��
� ��max

�
hAVxx

�	�
� � � hAV�T� x
 � f�x
 ����


has a solution in C������� t
�R	
� Then hAV�t� St
 is the value at time t of a superhedging

strategy for H�

For convenience we recall the simple proof� We get from It o!s formula

f�ST 
 � hAV�T� ST 
 � hAV��� S�
 �

Z T

�
hAVx �t� St
dSt

�

Z T

�
�hAVt �

�

�
S�
t �

�
t h

AV
xx 
�t� St
� 
z �

� � by ����


dt �

such that the strategy with value process hAV�t� St
 and stockholdings hAVx �t� St
 has a

representation of the form ����
�

��



Remark 
��� Lyons �����
 has developed an extension of this result to markets with

more than one risky asset� Cvitanic� Pham� and Touzi �����
 prove that the terminal

value problem ����
 admits a classical solution if �min � � and if the payo� is su	ciently

smooth� Moreover� they show that in a large class of SV�models of the form ����
� ����


with ���v
 � � for all v � ���min� �
�
max
 the ask price of a claim with payo� f�ST 
 is no

smaller than hAV�t� St
� provided of course that a solution to ����
 exists�

Remark 
�	� Note that the above argument also works for functions hAV � C������� t
�
R
	
� if the space derivative hAVx �t� �
 is moreover absolutely continuous in x for every t� For

an extension of It o!s formula to such situations see e�g� �Krylov ����� Theorem ������
�

We now discuss the relation between V Am and the nonlinear PDE ����
� For this we

have to distinguish the cases �min � � and �min � ��

��� The case �min � �

In this case the value function V Am of our superhedging strategy will typically not belong

to C������� T 
�R	
� as the second derivative V Am
xx is usually discontinuous at the optimal

stopping boundary of the optimal�stopping problem de�ning V Am� see also Section ���

below� We therefore contend ourselves with a local result�

Proposition 
�
� Assume that �min � ��

�i
 If the value function V Am�t� St� �� �max
 de�ned in 
��
� is of class C��� in some open

set B �� ���� T 
 � R	
� V Am solves the following version of the PDE 
�����

V Am
t �t� x
 �

�

�
x���max�V

Am
xx �� x
�	 � � for all �t� x
 � B � ����


�ii
 Suppose that there is a solution hAV of the terminal value problem 
����� which

belongs to C������� t
�R	
 and whose space derivative hAVx �t� �
 is moreover absolutely
continuous� Then V Am � hAV�

Proof� We start with �i
� From the characterization of solutions to the optimal�stopping

problem ����
 via variational inequalities we get for all �t� x
 � B

V Am
t �t� x
 �

�

�
x���maxV

Am
xx �t� x
 � � ����


V Am�t� x
 � f�x
 and V Am�T� x
 � f�x
 � ����


where at least one of the two inequalities must holds with equality� For a proof see e�g�

Jaillet� Lamberton� and Lapeyre �����
 or Myeni �����
� Moreover� V Am is decreasing in

t� i�e� we have V Am
t � � in B�t�� x�
� Choose some �t�� x�
 � B� Now we distinguish two

cases�

�a
 V Am
xx �t�� x�
 � �� We shall show that this implies V Am�t�� x�
 � f�x�
� hence equality

must hold in ����
 which shows that ����
 holds in this case� Assume to the contrary

that V Am�t�� x�
 � f�x�
� in that case we must have V Am
t �t�� x�
 � �� as V Am

t �t�� x�
 � �

would yield a contradiction to ����
� However� together with V Am
xx �t�� x�
 � � this implies

that V Am
t �t�� x�
 � V Am

xx �t�� x�
 � � which contradicts ����
�

�b
 V Am
xx �t�� x�
 � �� We show that in that case V Am

t �t�� x�
 � �� which implies the

result� Assume to the contrary that V Am
t �t�� x�
 � �� Hence strict inequality holds in

����
 such that ����
 must hold with equality� However� together with V Am
t �t�� x�
 � �

this contradicts ����
 which proves that we must have V Am
t �t�� x�
 � ��

��



Let us now turn to �ii
� As shown before hAV induces a superhedging strategy in all

SV�models satisfying Assumptions � and �� hence in all models satisfying the hypothesis

of Theorem ���� As V Am is minimal in these models we have the inequality hAV � V Am�

The converse inequality is proved in �Cvitanic� Pham� and Touzi ����� Remark ���
�

��� The case �min � �

To study the relation between V Am and solutions to the nonlinear PDE ����
 we de�ne

the function u� R	 � R	 � R	 � R by

u�t�� t�� x
 �� sup
�
ER
x �f�U�
� � 
 � Bt��t�	t�

�
� ����


where �Bt
 denotes again the canonical �ltration on C������ The function V Am is related

to u via

V Am�t� x��min� �max
 � u���min�T � t
� ���max � ��min
�T � t
� x
 � ����


Now� using Proposition A�� we may express u as follows�

u�t�� t�� x
 � ER
x

�
ess sup

�
ER
x �f�U�
jFt� � � 
 � Bt��t�	t�

��
� ER

x �h�t�� Ut�
� �

where h is de�ned via the following standard optimal�stopping problem

h�t� x
 � sup
�
ER
x �f�U�
� � 
 � B��t

�
� ����


We make the following regularity assumption on h�

Assumption �� The function h de�ned in 
���� is continuous on �����
 � R	
 and

is of class C��������
 � R	
� Moreover� for every t there is a �nite number of points

x�� � � � � xn�t�� such that for all x � R	 � fx�� � � � � xn�t�g there is an open environment

B�t� x
 � �����
 � R	
 where h is twice continuously di�erentiable in x� Moreover the

functions ht� xhx� hxx and x�hxx are uniformly bounded on ����
 � R	�

Remark 
��� These regularity assumptions typically hold for the value function of the

optimal�stopping problem ����
� provided that the terminal value f is su	ciently smooth�

see for instance the examples in Section ����

Proposition 
��� Suppose that �min � �� Under Assumption � we have the following

�i
 u belongs to C����������
 � ����
� R	
�

�ii
 We have for all �t�� t�� x
 � ����
 � ����
 � R	

ut� � �t�� t�� x
 �
�

�
x�uxx�t�� t�� x
 � ����


ut��t�� t�� x
 � ER
x

�
x��U�

t�hxx�t�� UT�

� � �

�
x��uxx�t�� t�� x
�

	 � ����


Equality in 
���� holds if and only if hxx�t�� �
 is either everywhere nonnegative or

everywhere nonpositive�

�iii
 V Am�t� x��min� �max
 satis�es the following di�erential inequality�

V Am
t �

�

�
x�
�� ��min�V

Am
xx �� � ��max�V

Am
xx �	

� � � � �����


Equality holds if and only if equality holds in 
����� in particular for f convex on

R
	 or f concave on R	� Moreover� we have V Am�t� x
 � hAV�t� x
� equality holds if

and only if 
����� holds with equality�

��



The most important result here is �iii
� This result implies that in a model with

strictly positive lower volatility bound the ask price of a derivative whose payo� is neither

everywhere convex nor everywhere concave may be smaller than V Am� However� as shown

in Section ���� numerical values of V Am and hAV are typically close to each other�

Proof� De�ne for t� �xed the function "u�t� x
 �� u�t� t�� x
� It follows immediately from

the Feynman�Kac formula that "u solves the initial value problem

"u�t� x
 �
�

�
x�"uxx�t� x
� "u��� �
 � h�t�� �
 �

Hence u is C� in t�� C� in x and it satis�es ����
� By Proposition ��� and Assumption �

the function h solves for almost all x the PDE ht �
�
�x

��hxx�
	� Again by Assumption �

we may exchange di�erentiation and expectation yielding

�u

�t�
�t�� t�� x
 � ER

x

�
�h

�t
�t�� Ut�


�

�
�

�
ER
x

�
U�
t� �hxx�t�� Ut�
�

	
�

� �

�

h
ER
x

�
U�
t�hxx�t�� Ut�


� i	
� �����


where the last estimate follows from Jensen!s inequality� Recall that U is Rx�geometric

Brownian motion with initial value U� � x� hence Ut� is Rx�a�s� equal to x exp�Wt � �
� t


such that �
�xUt� � Ut�	x� We use this information to compute the derivatives of h�t�� Ut�


with respect to x and get

��

�x�
h�t�� Ut�
 �

�

�x



hx�t�� Ut�


Ut�
x

�
�
U�
t�

x�
hxx�t�� Ut�
 �

As the last expression is bounded by Assumption � we may exchange expectation and

di�erentiation and get

��

�x�
u�t�� t�� x
 � x��ER

x

�
U�
t�hxx�t�� Ut�


�
�

Combining this with �����
 we get ut��t�� t�� x
 � �
�x

��uxx�t�� t�� x
�
	� i�e� ����
� Obviously

equality holds if and only if equality holds in �����
� which proves �ii
� Let us now turn

to �iii
� By ����
 we get that

V Am
t � ���minut� � ���max � ��min
ut�

�a�

� ���min

�

�
x�uxx � ���max � ��min


�

�
x��uxx�

	

�b�
� ��

�
x�����min�V

Am
xx �� � ��max�V

Am
xx �	
 �

which is �����
� Here �a
 follows from statement �ii
 and �b
 from the relation uxx � V Am
xx �

The inequality V Am�t� x
 � hAV�t� x
 follows now from the maximum principle for viscosity

solutions of nonlinear parabolic PDE!s� see Remark ��� of Cvitanic� Pham� and Touzi

�����
�

��



� Examples and simulations

��� Path�independent derivatives

In this section we consider path�independent derivatives whith payo� given by some func�

tion f�ST 
� As in Section � we distinguish between the cases �min � � and �min � ��

i
 The case �min � �� In the case of unbounded volatility� i�e� �max � �� V Am is

given by the smallest concave majorant f� of f � see the comments following Theorem ����

Cvitanic� Pham� and Touzi �����
 give the following description of f� as a	ne envelope

of f �

f��x
 � inf fc � � � �$ � R such that c�$�z � x
 � f�z
 for all z � �g � ����


Let us now consider a call�spread with strike prices K� � K� as more speci�c example�

the payo� of this derivative is given by f�x
 �� �x � K��
	 � �x � K��

	� This payo� is

interesting in our context as it is neither everywhere convex nore everywhere concave�

Hence the superreplication price is not simply the Black�Scholes price corresponding to

one of the volatility bounds� Using the description ����
 it is immediately seen that for

�max �� the superreplicating cost is given by

f��x
 ��

� K��K�
K�

x � � � x � K�

K� �K� � x � K�
� ����


For �max � � we have to use numerical techniques to obtain values for V Am� Figure �

shows V Am� the superreplication cost for a standard call�spread with K� � ��� K� � ����

time to maturity equal to � month and volatility bounds given by �min � � and �max � ����

Observe that V Am�t� x
 � K� �K� whenever x � K�� as for x � K� immediate exercice

is the optimal strategy in the stopping problem de�ning V Am�

Remark ���� Note that the left limit limx�K�
�
V Am
x �t� x
 must be larger than �K� �

K�
	K�� as V
Am � f�� the superreplicating cost for �max � �� V Am

x is therefore dis�

continuous in x � K�� hence in particular not absolutely continuous with respect to x�

compare also Figure �� By Proposition ��� �ii
 the terminal value problem ����
 does there�

fore not admit a classical solution�This shows that at least for �min � � the PDE�approach

to superhedging is not always as straightforward as it seems at �rst sight�

In Figure � we have graphed the superhedging cost for a �call�spread� with smooth

terminal payo� f �� time to maturity equal to � month and volatility bounds given by

�min � � and �max � ���� together with the terminal payo� f � Recall the de�nition of the

stopping boundary B� for the stopping problem de�ning V Am� Here B� is given by

B� � f�t� b��t

 � b��t
 � inffx � �� V Am�t� x
 � f�x
g �

We see that in the example with smooth terminal payo� we have �smooth �t�� i�e� the

space derivative V Am
x is continuous at b�� However� the second derivative V Am

xx is discon�

tinuous at b�� On the one hand we have

lim
x�b��t��

V Am�t� x
 � f
��

�b��t

 � � �

�f is given by the Black�Scholes price of a standard call�spread with K� � ��� K� � 
��� time to

maturity one week and volatility ����

��



On the other hand it follows from the characterization of V Am via variational inequalities

that V Am
xx �t� x
 � � whenever V �t� x
 � f�x
� see also the proof of Proposition ���� The

regularity properties of this example� which are typical for optimal�stopping problems

with su	ciently smooth payo�� motivate some of the hypothesises in Assumption ��

�

�

�

�

�

��

��

�� 	� �� 
� �� �� ��� ��� ��� ���

V ������ S


S

V �

Figure �� Superreplication cost for a standard call�spread with K� 
 ��� K� 
 ���� time to

maturity � month and volatility bounds �min 
 � and �max 
 ����

ii
 The case �min � �� We know from Proposition ��� �iii
 that V Am is typically not

equal to the ask�price of a path�independent derivative whenever the terminal payo� is

of mixed convexity� To get a feeling for the numerical size of the di�erence between V Am

and the discounted ask�price� which is given by the solution hAV to the terminal value

problem ����
� we computed V Am for the standard call�spread considered above� In Table

� we present for di�erent values of S� our solution V Am together with values for hAV

taken from Avellaneda� Levy� and Paras �����
� assuming that the volatility is bounded

by �min � ��� and �max � ���� We see that the di�erence between the two functions is

relatively small�

S� �� �� �� �� ��

V Am ���� ���� ���� ���� ����

hAV ���� ���� ���� ���� ����

V Am � hAV ���� ���� ���� ���� ����

Table �� Superreplication price for a standard call�spread with K� 
 ��� K� 
 ���� time to ma�

turity � month� and volatility bounds �min 
 ��� and �max 
 ���� V Am gives the superreplication

cost according to our approach� hAV is the solution to the terminal value problem ������

��� Barrier options

We now consider a particular barrier option namely a down�and�out call on the forward

price with strike price K and barrier H as example of a derivative with path�dependent

payo�� In the notation introduced in Section ��� its payo� is given by

f
�
ZT � Z

min
���T �

�
�� �ZT �K�	�n

Zmin
���T �

�H
o �

��



�

�

�

�

�

��

��

�� 	� �� 
� �� �� ��� ��� ��� ���

V ������ S


S

V �

f

Figure �� Superreplication cost for a �smooth call�spread� with terminal payo� f�x�� time to

maturity � month and volatility bounds �min 
 � and �max 
 ����

For this particular payo� we may give an analytic expression for the superhedging strategy

V Am� For our analysis we have to distinguish if H � K or if H � K�

i
 The case H � K� It is well�known that in this case a rational investor will never

exercise an American down�and�out call before maturity� see e�g� Reimer and Sandmann

�����
 for the corresponding portfolio argument� Hence our superhedging cost V Am equals

the price of the down�and�out call in a Black�Scholes model with constant volatility equal

to the upper volatility bound �max and zero interest rate� independently of �min� This

price is well known� see e�g� Reimer and Sandmann �����
 or Chapter � of Musiela and

Rutkowski �����
� By Theorem ��� this is the ask�price for the down�and out call in a

large class of SV�models with volatility range ��� �max�� As the optimum in the stopping

problem for V Am is attained at a deterministic stopping time� the proof of Theorem ���

shows that V Am is the ask price for the barrier option even if �min � ��

Le us now consider the case �max ��� Inspection of the formula for the Black�Scholes

price of our barrier call shows that in that case V Am is given by

V Am�t� Zt� Z
min
���t�
 � �n

Zmin
���t�

�H
o�Zt �H
 �

By Theorem ��� this is the ask�price of the down�and�out call in most of the standard

SV�models with unbounded volatility � The corresponding hedging strategy is a buy and

hold strategy� At t � � we buy one share of the stock and sell H zero�coupon bonds

with maturity T � If the barrier is hit the value of our position is zero and we dissolve the

portfolio immediately� otherwise we hold our position until maturity�

ii
 The case H � K� An elementary argument shows that for �min � � the function

V Am equals

V Am�t� Zt� Z
min
���t�
 � �n

Zmin
���t�

�H
o�Zt �K
 � ����


independently of �max� By Theorem ��� this is the ask�price for the down�and�out call

in a large class of SV�models with �min � �� Let us now look what happens if �min � ��

��



Here we have

V Am�t� Zt� Z
min
���t� 
 � �n

Zmin
���t� � H

oER
Zt

�
��
Umin
�����min�T�t��

� H
�

sup
n
ER
U���min�T�t��

h
f�U� � U

min
�����


i
� 
 � B�����max��

�
min��T�t�

o�

� ER
Zt

�
��
Umin
�����min�T�t��

� H
� �U���min�T � t

�K

� �
� ����


where the last equality follows from ����
� Obviously ����
 and hence V Am is equal to the

price of the option in a Black�Scholes model with constant volatility equal to the lower

volatility bound �min� For an explicit formula see again Reimer and Sandmann �����


or Chapter � of Musiela and Rutkowski �����
� It is not di	cult to see that V Am is the

ask�price of the option in a large class of SV�models with volatility range ��min��
�

iii
 Using �vanilla options� to reduce the hedge cost� We now present a nu�

merical example that explains how traded �vanilla options� can be used to reduce the

superhedging cost� We want to hedge a down�and�out call with strike price K � ��� bar�

rier H � ��� and time to maturity � month� assuming that the volatility range is given by

�min � ���� and �max � ���� We moreover assume that we can take arbitrary positions in

a standard call option with K � ��� and time to maturity � month� trading at an implied

volatility of �impl � ���� If we do not take any position in the vanilla call the superhedging

cost for the barrier option is given by the price of the option in a Black�Scholes model

with volatility � � ����� If we add a position of � standard calls to our portfolio� the

hedge cost is given by the sum V Am
� � �C�S�
� Here V Am

� represents the superhedging

cost of the payo�

f�

�
ZT � Z

min
���T �

�
�� �ZT � ���	�n

Zmin
���T �

����
o � ��ZT � ����	 �

and C�S�
 denotes the current markety price of the vanilla call� The following table gives

the superreplication cost for � � � and for � � �����
Superhedging cost for � � �� ����

Superhedging cost for � � ����� ����

Black�Scholes price for � � ������ ����

We see that by using a static position in the vanilla call we can achieve a drastic reduction

of our hedge cost� Our superhedging price is now much closer to the Black�Scholes price

for a �reasonable� input volatility of � � ������ Of course in our situation one should

choose � so that the superhedging cost of the portfolio is minimized� This idea is developed

systematically in Avellaneda and Paras �����
�

A Appendix

A�� Exchanging conditional expectation and essential supremum

The following proposition� which is adapted from El Karoui �����
� justi�es the exchange

of essential supremum and conditional expectation carried out at various places through�

out the paper�

��



Proposition A��� Consider two stopping times � � � on a �ltered probability space

���F � �Ft
� P 
� Let �ft
t�� denote some adapted and RCLL�stochastic process� which is

bounded below� Then we have for two points in time � � s � t � �

ess sup
�
E�f�

		 Fs� � � � F� ��� � E
�
ess sup

�
E�f�

		 Ft� � � � F� ��� 		 Fs� � �A��


Proof� We may write the lhs of �A��
 as ess sup
�
E�E�f� jFt�

		 Fs� � � � F� ��� � Hence

the lhs of �A��
 is a priori smaller than the rhs� De�ne for � � F� �� the Ft�measurable

random variable Y � by Y � �� E�f� jFt�� To show equality in �A��
 we have to show that

there is a sequence ���n
n�N such that

Y ��n converges monotonically to ess sup
�
Y � � � � F� ��

�
� �A��


in that case the claim follows by monotone integration� It is well�known from general

properties of the essential supremum that there exists a countable sequence ��n
n�N such

that ess sup
�
Y � � � � F� ��

�
� sup fY �n � n � Ng � Hence a sequence ���n
n�N with �A��


exists� if M� � �� fY � � � � F� ��g is sup�stable�

Consider �� and �� from F� �� and de�ne a set A � Ft by A �� fY �� � Y ��g� De�ne

the random variable �max���� ��
 by �max���� ��
 � ���A � ���AC � It is easily seen that

�max���� ��
 is a stopping time� so that �max���� ��
 � F� �� � Moreover� as A � Ft�

Y �max � E�f�� jFt��A �E�f�� jFt��AC � Y �� 
 Y �� �

Hence Y �� 
 Y �� belongs to M� � � showing that this set of random variables is sup�stable�

A�� Proof of Lemma ����

Let � be an �Ft
�stopping time� Then we have for any t� � �

fhMi� � t�g � f� � At�g
�i�� FAt�

� Gt� �

where �i
 follows as � and At� are �Ft
�stopping times� Conversely� as hMit� is a �Gt
�
stopping time we have for any �Gt
�stopping time 


fA� � t�g � f
 � hMit�g � GhMit�
� Ft� �

which proves that A� is an �Ft
�stopping time�

A�� Proof of Lemma ���

De�ne for a given �Gt
�stopping time 
 a random time � by � � A�

� By Lemma ���� � is

an �Ft
�stopping time� Denote by D�
���T � the two�dimensional Skorohod space� Hypothesis

���i
 and ���i
 imply that the densities Gi�n can be written as functions of the trajectories

of X�

Gi�n
t � Gi�n �t� �Xs
��s�t
 for a function Gi�n � ��� T �� D�

���T � � R
	 with

y�� y� � D�
���T �� y

� � y� on ��� t� � Gi�n�t� y�
 � Gi�n�t� y�
 �

��



Now de�ne for given n�� n� an equivalent martingale measure Q �Me by

dQ

dP
		FT

�� G��n��� 	 T � X
G��n� �T � � 	 T � ��	T �X

 � �A��


where � denotes the shift operator on D�� By de�nition � � infft � �� hMit � 
g� Hence

Q�hMiT � �
� 
 � ��� � Q�hMiT � 
� hMiT � hMi� � �� �A��


� Q�� � T � �hMiT�� � �� � �
� � �A��


Now by de�nition of Q it follows that �A��
 equals

EP
h
�f��TgG

��n��� 	 T � X
�f�hMiT��	T 
 � ��	T � �gG��n� �T � � 	 T � ��	T �X


i
�

Conditioning on F�	T we get from the strong Markov property that this is equal to

EP
�
�f��TgG

��n��� 	 T � X
EP
X�

�
G��n��T � � 	 T � X
� hMiT��	T � �

� �
� �A��


Now� using that G��n� is a martingale and that hMit is increasing� we get

EP
X�

�
G��n��T � � 	 T � X
� hMiT��	T � �

�
� EP

X�

�
G��n��T � X
� hMiT��	T � �

�
� EP

X�

�
G��n��T � X
� hMiT � �

�
�

Moreover we may obviously replace G��n��� 	 T � X
 by G��n��T � X
 in �A��
� Hence

Q
�hMiT � �
� 
 � ��

� � EP
�
�f��TgG

��n��T � X
Q��n
X�

�hMiT � ��
�

�A��


Fix some 
 � �� Choose n� large enough so that Q��n� �� � T � � 
	�� and choose

K �� R	 � ��� �� with Q��n� �Xt �� K for some t � ��� T �� � 
	�� Now choose �nally for

this set K some n� such that

Q��n�
x �hMiT � �� � �� 
	� for all x � K �

This is possible by hypothesises ��iii
 and ��iii
� Hence the rhs of �A��
 is minorized by

EP
�
�f��Tg�fX��KgG

��n��T � X
Q��n�
X�

�hMiT � ��
�

� ��� 
	�
Q��n�
�
�� � T 
 � �X� � K


�
� ��� 
	�


�
��Q��n� �� � T ��Q��n�

�
Xt �� K for some t � ��� T �

� �
� ��� 
	�
�� � �
	�


� ��� 
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