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Abstract:

The Asay (1982) option pricing model prices options on futures contracts where
the premia are margined. The model assumes that the volatility of the underlying
futures contract is constant over the life of the option. However it is an empirical
observation in many markets that options on the same underlying futures contract
with the same maturity, but at different strikes, trade at different implied
volatilities. Since the 1987 crash, it has been documented that in many markets the
volatility implied by out-of-the-money put options is higher than that implied by
out-of-the-money call options. This phenomenon has become known as the
‘volatility skew’. This paper examines the volatility structure for options on the
SPI futures contract over the period June 1993 to June 1994, and provides
theoretical explanations consistent with its shape.
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1. Introduction

he Sydney Futures Exchange (SFE) is one of the few futures exchanges to trade
options on futures where the options are subject to futures style margining.1 An

initial margin2 is deposited and the option contract is marked to market at the end
of each day, where the loss on a long option position is limited to the size of the
initial premium. The margining applied to options traded on the SFE implies that
option pricing models, developed for the situation where option premia are paid up
front, are inappropriate.

The standard option pricing model used to price options on futures contracts
is the Black (1976) model for pricing options on commodity futures. Asay (1982)
and Lieu (1990) have modified the Black (1976) model,3 to account for the daily
margining of the option contract. Using the Asay model the call premium, C, for a
European option on the underlying futures, F, satisfies:

C = FN(d1) – XN(d2), (1)

d2 = d1 – σ√t,

and F = futures price;
X = exercise price;
C = call price;
t = time to maturity; and
σ = instantaneous volatility.

The put premium, P, is given by:

P = XN(–d2) – FN(–d1) (2)

The model given by equations 1 and 2 is similar to Black’s (1976) model for
pricing options on commodity futures, the difference being the absence of the
interest rate term in the above equations. Therefore the price of an option where the
premium is margined, relative to one where the premium is paid up front, will be
higher. When the option premium is paid up front the buyer is committing funds
and the writer receives those funds, while for options which are margined the
option premium no longer flows from the buyer to the writer.

It can be shown that under certain conditions it is optimal to exercise a put
option early when the premium is charged up front. The Black and Scholes (1973)
model and the Black (1976) model which are developed for European options are
                                               
1. Another exchange which also margins its futures options is the LIFFE.
2. The SFE introduced the SPAN margining system in 1994. This system accounts for the overall risk of a

position (containing futures and options on the SPI) as both the futures price moves and the volatility
changes.

3. This modified model will be referred to as the Asay model throughout the paper.
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not immediately applicable to pricing American options because these models do
not price the early exercise flexibility of American put options (or American call
options where the underlying asset pays a dividend).4 However, Lieu (1990) shows
that under futures-style margining it is never optimal to exercise a call option or a
put option early, and therefore the model given by equations 1 and 2 above applies
to the American style options on the Share Price Index (SPI) futures contract traded
on the SFE.

The assumptions underpinning the Asay (1982) model are the same as for the
Black (1976) and the Black and Scholes (1973) models. The underlying futures
price is assumed to be lognormally distributed, markets are assumed to be
frictionless with trading taking place continuously, and the short term interest rate
is assumed to be known with certainty. The process that drives changes in the
futures price is assumed to have two components: an expected drift rate and an
uncertain or stochastic component scaled by the volatility parameter, which is
assumed constant over the life of the option.

In practice, the volatility parameter is the only unobservable parameter in the
model. Because the option price, the futures price, time to maturity, interest rate
and strike price are all observable (or measurable), we can substitute these
parameters into the equations, and solve for the only unknown parameter,
volatility.5 This volatility derived from the known parameters is called the implied
volatility and is obtained by backing the volatility out of equations 1 and 2. Using
this procedure to solve for an implied volatility assumes that market participants
are using the Asay model to price options. If the model were correctly specified
and all its assumptions valid, then the implied volatility for all options (observed at
the same time) with the same maturity but different strikes, should be equal.
Indeed, under the assumption that the market for stock index futures options is
efficient then empirical observation of implied volatility varying across strike
prices, contrasts the option valuation with the Black (1976) or the Asay (1982)
formulae.

In many markets prior to the 1987 stock market crash, there appeared to be a
symmetry around the zero moneyness, where out-of-the-money and in-the-money
options traded at higher implied volatilities than the implied volatilities for at-the-
money options. This dependence of implied volatility on the strike, for a given
maturity became known as the smile effect, although the exact structure of
volatility varied across markets and even within a particular market from day to
day. However, since the 1987 stock market crash the smile has changed shape in
many markets, particularly for traded options on stock indexes, where the function
has gone from a smile shape to more of a ‘sneer’. The idea of the volatility ‘smile’
had its genesis in the early papers documenting the systematic pricing biases of the
Black and Scholes (1973) option pricing model. Black (1975) suggests that the
non-stationary behaviour of volatility would lead the Black-Scholes model to
overprice or underprice options. Other authors have confirmed the existence of
systematic biases in the model.6

                                               
4. It may be optimal to exercise an American call option just prior to a dividend payment. Merton (1973)

shows that this will not occur in theory but it could occur in practice due to factors outside the option
pricing model.

5. This requires a numerical search procedure because the equations are not immediately solvable for
volatility.

6. See, for example, Macbeth and Merville (1979), Whaley (1982), Emanuel and Macbeth (1982),
Rubinstein (1985), Brown and Taylor (1997).
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Following Heynen, Kemna and Vorst (1994), explaining the implied volatility
structure may lead to the conclusion that option prices are better described by an
alternative underlying asset price process. Taylor and Xu (1993) study the smile
effect of implied volatilities and show that the existence of stochastic volatility is a
sufficient reason for smiles to exist. They show that an approximation to the
theoretical implied volatility is a quadratic function of ln(F/X) where F is the
forward price and X is the strike price, and that this approximate function has a
minimum when X = F. This theoretical result requires that asset price and volatility
differentials are uncorrelated and that volatility risk is not priced. Using currency
option data obtained from the Philadelphia Stock Exchange, over the period from
1984 to 1992, and regressing a function of theoretical and observed implied
volatilities on moneyness, they find little evidence of asymmetry in implied
volatilities. However, the empirical smile pattern is about twice the size predicted
by the theory.

Figure 1

Implied Volatility Smiles for German Mark/USD Call Options
(adapted from Xu & Taylor (1993))
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Figure 1 reproduces the nature of the volatility smile for foreign exchange options
as presented by Taylor and Xu (1993). On the vertical axis the ratio is the implied
volatility at the relevant strike divided by the implied volatility when the strike
price is exactly equal to the forward price of the currency.7 Thus, a ratio of 1.5 for a
5% out-of-the-money option implies that the out-of-the-money option has an
implied volatility that is 1.5 times the implied volatility of an at-the-money option.
Shastri and Wethyavivorn (1987) find similar results for foreign currency options
traded in 1983 and 1984, while Sheik (1991) has argued that a similar pattern
occurred for S&P 500 options during 1983 to 1985.

                                               
7. Because it may not be possible to observe an option trading exactly at-the-money Xu and Taylor (1994)

give a method to estimate the at-the-money implied volatility.
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In contrast to the above theoretical and empirical results showing a symmetric
pattern for implied volatility against strike price, Dumas, Fleming and Whaley
(1998) illustrate that the volatility structure for S&P 500 options has changed since
the stock market crash of 1987, and the symmetric ‘smile’ pattern has changed to
more of a ‘sneer’. Call (put) option implied volatilities are observed to decrease
monotonically as the call (put) goes deeper out-of-the-money (in-the-money).

The volatility ‘sneer’ implies that out-of-the-money put options trade at
higher implied volatilities than out-of-the-money call options. This is often referred
to in the markets as the ‘volatility skew’, and can arise when the market places a
relatively greater probability on a downward price movement than an upward
movement, resulting in a negatively skewed implied terminal asset distribution
(Bates 1997).

This paper examines empirically the volatility structure implied by SPI
options on the SFE. Section 2 describes the data set used to conduct the analysis,
while section 3 provides illustrations of the volatility structure. Section 4 provides a
discussion of the results and conclusions are contained in section 5.

2. Data
The sample consists of thirteen months of transaction data for the SPI futures
contract and call and put options on the contract, over the period June 1993 through
30 June 1994. In the data set there are 219,272 transactions in the SPI futures
contract and 9,613 option contracts, of which 5,311 are call option transactions. In
order to calculate an implied volatility, the futures price and the option price must
be observed at the same time, so the data set is used to construct a set of
contemporaneous futures and options transactions pairs.8 This results in a data set
consisting of 4,517 matched pairs, of which 2,488 involve call options and 2,029
involve put options. Trading in the far-dated contracts is not frequent, yielding few
matched futures and option pairs from the time matching process, so only the near-
dated contract is considered. The average time between the futures trade and the
option trade in the matched pair data set is 28s. On some days in the data set there
are no matched call and/or put option trades. The average number of matched call
(put) option trades per trading day is 9.4 (7.7), with the maximum number of
matched call (put) trades for any one trading day in the data set equal to 45 (38).

Option records that violate American boundary conditions are excluded.
When an option violates these conditions there is good reason to suggest that a
trade could not be made at this price, and furthermore implied volatility cannot be
calculated for prices that violate arbitrage bounds. Implied volatilities are then
calculated for each futures and option pair,9 so that the volatility structure can be
examined.

                                               
8. Option prices are matched with a futures price which preceded the option trade by one minute or less.

The data was obtained via a live feed from the SFE and constitutes what is known as ‘pit’ data, where
the data is collected via the recording of all prices in the pit, with an associated time of the trade. Thus
the time recording on both the options trades and the futures trades can be assumed accurate, although
some details may be lost in busy trade periods. This is a limitation of the data set.

9. Note that the matched pairs for each day will have the same option maturity as only the near-dated
contract is considered.
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3. The Volatility Structure
Br ow n and Ta ylor  (1997)  inve stiga te  the  pr ic ing er r or s assoc ia te d with using the 
A sa y mode l give n in equa tions 1 and 2 to pr ic e  options on the  SPI  futur e s contr a c t. 
T he y find tha t the  mode l te nds to ove r pr ic e  ca ll options and unde r pr ic e  put options,
w he n a  single  vola tility10 input is use d in the mode l. For  ca ll options, out- of - the - 
mone y options ar e  ove r pr ic e d and in- the - mone y options ar e  unde r pr ic e d while  at- 
the - mone y options ar e  not signif ic a ntly mispr ic e d. The  opposite  re sult is found for 
put options. Gene r a lly,  empir ic a l re se a r c h on sta nda r d option pr ic ing mode ls finds
tha t ma r ke t option pr ic e s ar e  not exa c tly consiste nt with pr ic e s pr e dic ted by the 
mode ls.

However, both traders and the SFE tend to use the Asay model as a
framework for quoting prices and setting margins. Traders quote an option’s price
in terms of the constant volatility that will make the option’s price consistent with
the Asay model; denote by σi this constant volatility that is backed out of the model
to make market prices and Asay model prices consistent. Traders are thus pricing
using an interpretation of the Asay model that allows σi to vary according to the
option’s exercise price and volatility. The Asay model then becomes a translator
between the traded prices and the implied volatilities, so that the implied volatility,
σi, effectively becomes a price substitute.

While the assumption of constant volatility has been relaxed in the jump
diffusion model (Merton 1976), stochastic volatility models (Hull & White 1987)
and in time varying volatility estimation techniques (Brailsford & Oliver 1994),
there have also been recent developments in lattice methods to build a binomial
tree which takes into account the volatility smile (Derman & Kani 1994; Barle &
Cakici 1995). Dupire (1994) shows how the Black-Scholes model can be extended
to account for observed volatility smiles. Bates (1997) derives a skewness premium
metric to identify the moneyness biases present in option prices. He then uses this
metric to test which of the underlying distributional hypotheses are consistent with
the observed skewness premium.

Notwithstanding the fact that other models have been developed to take
account of the empirical observation of implied volatility varying across exercise
prices, as stated previously, the Asay model is the framework used for pricing
options on the SPI futures contract by both traders and the SFE. The volatility input
to the model is the only variable that can be adapted to take account of any
inadequacies in the model; for example a trader requiring a higher premium for
holding one side of an option position because of liquidity risk will price the option
at a higher volatility. Implied volatilities then become a price reflecting the
willingness of market participants to take on and lay off risks that are not
adequately priced by the model. It is therefore of interest to explore the volatility
structure for the SPI futures option contract and search for explanations for the
shape.

                                               
10. The volatility implied by the option trading closest to the money from the previous day’s trades is used

as the input to the model.
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Figure 2

Graphs of Implied Volatility Against Degree of Moneyness for Call Options
Moneyness is defined as F/K – 1. Out of the money call options trade at lower implied

volatility than in the money call options.
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The inconsistency between traded option prices on the SPI futures contract and
those predicted by the Asay model is illustrated in the volatility structure for call
options in figure 2, for particular days from the data set.11 A polynomial of best
fit12 has been superimposed on the implied volatility plots. Dumas, Fleming and
Whaley (1998) conclude that parsimony in the specification of the volatility
function appears warranted, when they find that the volatility function that is most
robust empirically, has only linear and quadratic terms in the asset price.

Data used to create the graphs is given in table 1.

Table 1

Date Number of matched trades Days to maturity

17.8.93 19 44

14.1.94 18 76

1.2.94 45 58

11.3.94 19 20

The call option implied volatilities illustrated in figure 2 conform to the general
shape hypothesized by Dumas, Fleming and Whaley (1998) for S&P 500 options
since the 1987 crash. In-the-money call options are generally trading at higher
implied volatilities than out-of-the-money call options.

In order to investigate the volatility structure further, a three dimensional
graph of implied volatility against moneyness and maturity of the option is plotted
in figure 3. This is achieved by grouping the data over the whole period of the
analysis in intervals for moneyness and maturity and then taking the average
implied volatility over the period for each interval.13 For example, for the 2,488
matched call option trades, each trade is placed in a maturity grouping and a
moneyness grouping. Within each interval the average implied volatility is then
calculated. The results of this ordering are given for call options in table 2. An
implicit assumption in producing an average implied volatility over the period is
that trends in implied volatility will affect the different strike and different maturity
options’ implied volatilities equally. To the extent that this assumption is not
satisfied, the long term average picture for implied volatility may imply a different
volatility structure to that observed on a daily basis. Figure 3 shows that in-the-
money call options on average trade at higher implied volatilities than out-of-the
money call options.

                                               
11. The dates chosen represent the variety of shapes present in the data set.
12. For all figures where a polynomial of best fit has been superimposed, the polynomial is a quadratic.

However the convexity must be constrained so that the second derivative of volatility with respect to
the strike price is positive. For the graphs reproduced in figure 2, the polynomial of best fit is of order 2
when the convexity is of the correct sign, otherwise it is linear. The same construction has been used for
figure 4.

13. Note that the points plotted at –0.05 on the x-axis actually belong to the moneyness interval where
moneyness < –0.05, and points plotted at +0.05 belong to moneyness > 0.05. The same point applies to
Figures 4, 6 and 7.
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Figure 3

Implied Volatilities for Call Options on the SPI Futures Contract
over the Period 1 June 1993 to 30 June 1994
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Table 2

Implied Volatility Averages for Call Options

Moneyness

–0.05 –0.04 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03 0.04 0.05

Days to 10 0.215 0.239 0.206 0.210 0.196 0.190 0.158 0.217 0.297 0.290 0.281

Maturity 20 0.181 0.179 0.165 0.173 0.170 0.150 0.188 0.168 0.152 0.184 0.219

30 0.196 0.172 0.181 0.169 0.186 0.188 0.173 0.172 0.182 0.206 0.228

40 0.193 0.203 0.202 0.183 0.189 0.194 0.178 0.173 0.167 0.182 0.228

50 0.192 0.181 0.188 0.187 0.171 0.172 0.176 0.166 0.168 0.196 0.211

60 0.184 0.189 0.190 0.190 0.199 0.196 0.188 0.212 0.207 0.190 0.237

70 0.184 0.190 0.187 0.183 0.197 0.174 0.194 0.218 0.196 0.209 0.211

80 0.190 0.175 0.181 0.191 0.171 0.185 0.190 0.208 0.183 0.212 0.218

90 0.193 0.156 0.163 0.173 0.193 0.183 0.177 0.190 0.194 0.204 0.241

Generally the volatility implied by out-of-the-money put options is higher than that
implied by out-of-the-money call options, as is illustrated by comparing figures 2
and 4. The three dimensional graph for put option implied volatilities is presented
in figure 5.14 Out-of-the-money implied volatilities for put options are on average
higher than at-the-money implied volatilities, except for the longer dated options.15

                                               
14. The graph is constructed in the same manner as for figure 3 and table 2.
15. Dumas, Fleming and Whaley (1998) adjust the moneyness variable by the square root of time, because

the slope of the sneer steepens as the option’s life grows shorter. This adjustment is not done for the
options illustrated in figures 3 and 5 and partially explains the steepness of the volatility surface for the
very short dated out-of-the-money options.
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Figure 4

Graphs of Implied Volatility against Degree of Moneyness for Put Options
Moneyness is defined as K/F – 1. Out of the money put options trade at higher implied volatility

than in the money put options.
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Data used to create the graphs is given in table 3.

Table 3

Date Number of Matched Trades Days to Maturity

17.8.93 12 44

14.1.94 9 76

1.2.94 7 58

11.3.94 10 20

Figure 5

Implied Volatilities for Put Options on the SPI Futures Contract
over the Period 1 June 1993 to 30 June 1994
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In-the-money call options have a tendency to trade at higher implied volatilities
than out-of-the-money options while the reverse is true for put options. This
implies that if the horizontal axis were converted to option strike as a percentage of
the futures price, then the smile would be skewed upwards to the right for both call
options and put options. To further illustrate the relationship between implied
volatilities, figure 6 shows a plot of implied volatility against strike price as a
percentage of the SPI futures level, for prices observed on 17 August 1993.16

Implied volatilities for strikes above (below) the current SPI futures level were
calculated using out-of-the-money call (put) options. Figure 6 illustrates the
volatility skew, where implied volatilities for out-of-the-money put options are
generally higher than the implied volatilities for out-of-the-money call options.17

                                               
16. Figure 8 illustrates the typical pattern in SPI implied volatilities for the data sample.
17. The SPI futures contract multiplier was downsized from $100 times the futures level to $25 times the

futures level on 11 October 1993. On 17 August 1993, out-of-the-money put options trading at an
implied volatility of 18.5% and a price of 4 index points (equivalent to $400) would have had a price of
0.51 index points or $51 if they had been trading at the out-of-the-money call option implied volatility
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Figure 6

Implied Volatilities for Out-of-the-Money Put Options and Out-of-
the-Money Call Options

This graph is constructed with out-of-the-money put options (option strike < 100) and out-of-the-money call
options (option strike > 100).
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Thus, the volatility structure for SPI options over the sample period studied
indicates that implied volatility for put (call) options decreases monotonically as
the put (call) option goes further in (out) of the money. This result has also been
documented by Dumas, Fleming and Whaley (1998) for S&P 500 options studied
over the period from June 1988 to December 1993.

4. Discussion
A possible explanation for the volatility structure might lie in the risks associated
with option positions that are not adequately priced by the standard models.
Following the analysis of Black and Scholes (1973) and Black (1976), Asay (1982)
and Lieu (1990) construct a riskless hedge portfolio consisting of a short call option
position and a long position in (delta units of) the underlying futures contract. A
continuously adjusted delta hedged position in the futures contract will hedge the
option position, so that this overall position will earn the risk free rate of interest.
This is the key insight of the Black-Scholes analysis, and implies that the option
will be priced relative to the underlying asset so that there are no arbitrage
opportunities in the market.

The risk of an option position on the SPI futures contract can be captured by
the hedge parameters; delta, gamma, vega and theta. Vega measures the change in
the option price with respect to a change in the implied volatility. While gamma
measures how frequently the option position will have to be adjusted to remain
delta hedged, it also captures the risk of changes in option prices as a result of
changing actual volatility. The volatility, the one unknown input to the option

                                                                                                                                            
of 12.6%. This example illustrates the result that using an at-the-money option volatility to set margins
may underestimate (overestimate) the change in option price for out-of-the-money put (call) options.



Vol. 24, No. 2 Brown: VOLATILITY STRUCTURE IMPLIED BY OPTIONS

– 127 –

pricing formula, is also the most important variable affecting the price of the
option.

Development of the Asay (1982) model relies on the same risk neutral
arguments as used in Black and Scholes (1973) and Black (1976). The formation of
the riskless hedge portfolio requires volatility to be constant, or at most to be a
deterministic function of the underlying asset and time. Volatility risk is therefore
not priced by the Asay model; that is the risk of volatility changing and the
additional costs imposed on option traders to hedge volatility risk is not built into
the Asay framework for pricing options on the SPI futures contract. As stated
previously, the implied volatility σi can be viewed as a price. One explanation for
the shape of the volatility structure is that it will reflect the willingness of sellers in
the option market to lay off volatility risk and for buyers to take on volatility risk.

Murphy (1994) argues that because these risks can be hedged with shorter
dated options of the same strike, a particular demand is created for near-the-money
options because gamma and vega risks are at their greatest for at-the-money
options. The hedges have to be frequently rebalanced creating a demand for near-
the-money options and causing their implied volatilities to be lower than in- and
out-of-the-money options. This argument may not be as applicable to the SPI
futures options market as trading in contracts other than the nearest dated contract
is relatively infrequent. In terms of the matched option pairs, 2,104 pairs were out-
of-the-money, while 1,929 were at-the-money and 414 were in-the-money.18 These
statistics do not imply a particular demand for at-the-money options.19

Options on the SPI futures contract are used by institutions for hedging
purposes.20 To protect against a fall in the value of a share portfolio a fund
manager could sell SPI futures contracts. Alternatively there are two commonly
adopted option strategies to protect a share portfolio’s value. The first strategy
involves writing call options on the SPI futures contract. When a long position in
equity is held simultaneously this strategy is known as a ‘covered call’. The option
writer receives premium income, mitigating downside losses in the event of a
downturn in value for the equity portfolio, while locking in upside profits (at a
lower level than an unhedged position). In adopting this strategy, depending on the
level of protection required, out-of-the-money calls are generally written as the
probability of exercise is lower (as is the premium income).21 It is clear from
figures 2 and 3, and from table 2, that the implied volatilities for out-of-the-money
calls are lower than the at-the-money volatility. Therefore the demand by fund
managers for written call positions to implement the covered call strategy will be
largely met on the buy side of the transaction by the market makers, who will push
the price down, causing the implied volatility to be lower.

                                               
18. For these statistics, at-the-money options are defined as those where the strike price is within 2% of the

futures price, out-of-the-money (in-the-money) options are those where the strike price is more than 2%
outside (inside) the money. However 72% of matched call option trades occur with F – K < 0 and 79%
of matched put option trades occur with K – F < 0. That is, a large percentage of trades are out-of-the-
money for both call options and put options.

19. Although these are not all the option trades, almost 50% of the option trades were matched with a
futures trade to within 1 min as the futures contract is much more liquid.

20. Locals constituted around 21% as a percentage of pit traded volume in futures and options on the SPI
contract in 1995 (Futures Forum 1996). Around 80% of trade (by volume) is by institutional traders.

21. Discussion with traders from the SFE also suggests that out-of-the-money call options are written and
in-the-money call options are simultaneously purchased. This is known as a ‘collar’ strategy.
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The second strategy adopted for protecting the value of an equity portfolio is
the protective put strategy, where a put option on the SPI futures contract is
purchased against a long position in equity. In this case an absolute lower bound on
the equity portfolio value is achieved; in return some of the upside potential is
given away. Adoption by institutions of this strategy and the consequent demand
for out-of-the-money put options, may drive the implied volatility of out-of-the-
money puts up, as market makers require a higher premium to write the put
options. Thus, demand in the market for option positions that will provide a hedge
to an existing equity exposure may be influencing the implied volatility structure in
the market for SPI options.

Daigler, Sullivan and Wiley (1998) examine options on T-bond futures
contracts in the US and find that implied volatility for out-of-the-money put options
is higher than for out-of-the-money call options. They analyse option volume by
type of trader and find that option strategies, namely the protective put strategy
used in the market, can explain the volatility skew pattern.

There is little incentive to write in-the-money options unless a substantial
movement in the underlying is expected. There are only 414 matched in-the-money
option pairs, of which 273 were call option pairs. Call options also traded deeper
in-the-money than put options over the sample period.22 A simple explanation for
the fact that in-the-money call options trade at high implied volatilities is provided
by the put-call parity relationship.23 If a put at a given strike is in-the-money then a
call at the same strike will be out-of-the-money. Put-call parity then guarantees that
the out-of-the-money put option and the in-the-money call option at the same strike
price must trade at similar implied volatilities, or arbitrage opportunities will arise.
For example, if the call option prices are too high, traders will sell calls, buy puts
and go long the underlying futures contract.24 Therefore because out-of-the-money
puts trade at higher implied volatilities than at-the-money puts, then the put-call
parity relationship implies that in-the-money calls must trade at higher implied
volatilities than at-the-money call options. This argument is supported in figures 2,
3 and table 2 for call options. Again using the put-call parity relationship, because
out-of-the-money call options trade at low implied volatility, in-the-money put
options will trade at a similar implied volatility, as illustrated in figures 4 and 5.
Deep in-the-money put options are not traded over the sample period.

The volatility structure is consistent with the market view that the market falls
more quickly than it rises.25 Option writers are concerned with the direction and
nature of price movements. Call option writers prefer prices that creep upwards and
gap downwards, while put option writers like the reverse. Option traders aware of a
changing volatility may be able to take advantage of the knowledge. For example,
if there are indications that the skew may be flattening, one strategy could involve
selling at the higher volatility and reversing the position at the lower volatility.

                                               
22. Calls traded up to 17% in-the-money wheras puts traded up to 8% in-the-money.
23. The put-call parity relationship for margined options is given by C  = P + F – X. This relationship holds

independent of any pricing model and must be satisfied by puts and calls with the same strike price,
maturity date and underlying futures price, otherwise arbitrage opportunities arise in the market.

24. This strategy is called a conversion.
25. ‘Up by the stairs and down by the elevator’ is the trader’s perspective.
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5. Conclusion
This paper examines the implied volatility structure for call and put options trading
on the SPI futures contract on the SFE, and offers a possible explanation for its
shape. Rather than focusing on the pricing biases of the Asay model, implied
volatilities are viewed as prices reflective of the willingness of market participants
to take on and lay off the risks involved in trading volatility, and other risks not
priced by the model. If the supply and demand by institutional traders for out-of-
the-money options affect the implied volatility of the options, as this paper has
argued, then the put-call parity relationship implies a level for implied volatility for
in-the-money options. Thus the volatility skew arises from the hedging needs of
institutional traders and the requirement that the market be arbitrage free.

In order to accurately measure the demand for SPI options by institutional
investors to implement a protective put strategy or a covered call strategy, it would
be necessary to have the origin of the trade designated. Thus, a possible avenue for
future research, is to explore directly the significance of supply and demand in
determining option prices. An important implication of this supply and demand
effect will be in determining how to set margins that adequately account for the
riskiness of the positions. The importance of volume on option pricing may
indicate that existing models do not account for all the factors important in pricing
options. The explanation presented in this paper is one that accords with the
implied volatility structure for SPI options over the period studied, and is one that
has been used in other markets to explain the shape of the implied volatility
structure.

(Date of receipt of final typescript: September 1999
Accepted by Tom Smith, Area Editor.)
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