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It is well-known that the saddlepoint approximation can give a quite accurate
approximation for the distribution of a random variable. We study Stochastic
Volatility models (SV-models). Although the cumulant generating function
of the marginals may not be analytically tractable for many SV-models or
may even not exist, one can often quite easily compute the cumulant gener-
ating function of an approximation by using a stochastic Taylor expansion.
We examine the applicability of this procedure for some explicit examples.
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1 Introduction

The main objects of this work are continuous-time SV-models as proposed in
Frey (1997) and Hofman et al. (1992). The evolution of some �nancial asset
(stock price) is in these models described by the following two-dimensional
SDE.

dSt = a(t; St; vt)Stdt+ �(t; St; vt)StdW1;t (1)

dvt = b(t; St; vt)dt+ �1(t; St; vt)dW1;t + �2(t; St; vt)dW2;t; (2)

where W1 and W2 are two independent standard Brownian motions on some
probability space (
;F ; P ). The �ltration (Ft)t�0 is the augmented �ltra-
tion generated by the Brownian motions. There are several restrictions on
the di�erent terms of these two equations to ful�ll for example existence and
uniqueness of the solution. These can be looked up in Frey (1997) and Hof-
man et al. (1992), the former gives an excellent overview over previously
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discussed stochastic volatility models and related models.

Although these models seem to �t better to real-world conditions than
the standard Black-Scholes model they have a major drawback, namely they
are analytically less tractable. If we don't want to do time-consuming simu-
lations, we have to use some approximations. The aim of this work is to show
that a classical statistical tool namely the saddlepoint approximation can be
used for solving some problems concerning SV-models. We use a stochastic
Taylor expansion to approximate the marginals of the SV-models to ensure
existence of the cumulant generating function. This will also help us to cal-
culate the saddlepoint approximation. Unfortunately this procedure restricts
the applicability of the methodology since the stochastic Taylor expansion
may only be accurate for short time-horizons.

The paper is organized as follows. In Section 2 we give the basic technical
background which is needed, and can be omitted if one has already met
stochastic Taylor expansions and saddlepoint approximations. In Section
3 we �rst analyse the methodology in the well-known Black-Scholes model
which is not a SV-model, but can nevertheless be used to highlight the pros
and cons of our methodology. We then move on to SV-models and compare
the analytical results with results obtained from simulations. As already
mentioned, the methodology is only applicable for \short-time" problems.
But this is exactly the case for most applications in risk management. We also
give some easy methods to approximate shortfall probabilities and expected
shortfall.

2 A saddlepoint approximation for Stochas-

tic Volatility models

2.1 Classical Saddlepoint Approximations

The saddlepoint approximation was already developed in the �fties by Da-
niels (1954) for the average of independent and identically distributed random
variables. We only want to outline the idea of the saddlepoint approximation
for a density in the one-dimensional absolutely continuous case. The inter-
ested reader may look up all the necessary details in the excellent textbook of
Jensen (1995). Then we give an overview over the formulas used in the sequel.

Let X be a one-dimensional random variable on (
;F ;P) with density
f and moment generating function MX(�) = E[e�X ]. The domain of MX is
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� = f� 2 IR : MX(�) < 1g. Let KX(�) = logMX(�) denote the cumulant
generating function of X. One way to explain the idea of the saddlepoint
approximation is by introducing the so-called Esscher or exponential tilting.
To approximate the density of X in x, we are looking for a measure Q
equivalent to P , such that x is the expectation of X under the measure Q,
i.e.

dP

d�
(x) =

dP

dQ
(x)

dQ

d�
(x) =

�
dQ

dP
(x)

��1
dQ

d�
(x); (3)

where EQ[X] = x:

The �rst term of the right hand side of (3) can be calculated, because we
restrict ourselves to the class of exponentially tilted measures, i.e.

dQ

dP
(x) =

dP�
dP

(x) = e�xMX(�)
�1 = e�x�KX(�):

One easily checks that K 0(�) = E�[X], where E� denotes the expectation
under the measure P�. This means that we can calculate the saddlepoint
approximation for all x such that there exists a �0 2 � with K 0(�0) = x.
The second term of the right hand side of (3) is approximated from a \local"
Edgeworth expansion (see Field and Ronchetti (1990) or Jensen (1995)) un-
der the tilted measure P�0. The Edgeworth expansion uses an expansion of
the characteristic function of a random variable to determine an approxima-
tion of the density. In its most simple form the value of the tilted density in
x is approximated by the density of a normal random variable with variance
Var�0(X), the variance of X under the measure P�0, at the mean:

dP�0
d�

(x) � (2�K 00(�0))
�1=2 (4)

After introducing the idea of the saddlepoint approximation we give
some well-known results. We formulate the saddlepoint approximation in
the following set-up. Let X1; : : : ; Xn be independent and identically dis-
tributed random variables with Xi 2 IRd and with a positive de�nite vari-
ance. Let K(�) = logE[exp(�X1)] be the cumulant generating function
de�ned for � 2 �. We assume that 0 2 int� and ' 2 Lp(IRd) for some
p � 1, where ' is the characteristic function of X1. Let �(�) =

@
@�
K(�) and

�(�) = Var�(X) = @2

@�@�T
K(�) denote the mean resp. the variance of X1

under the tilted measure P�. The error terms we give below hold uniformly
for all � 2 C where C is a compact subset of int�.
We can calculate the saddlepoint approximation only for values of x such
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that there exists a �0(x) 2 int� with E�0 [X] = x. The density fn of
�X = (X1 + � � �+Xn)=n can be written as

fn(x) = en(K(�)��x)nd=2�(0; �(�))(1 +O(n�1)); (5)

where �(x; �(�)) denotes the density of a normal random variable with co-
variance matrix �(�) and mean 0.
We can also calculate tail probabilities in the one-dimensional case in a sim-
ilar way. We content ourselves by giving two tail formulas for the continuous
case. The �rst one can be found in Jensen (1995, p. 27) and the second also
in Jensen (1995, p. 79 �) :

P [ �X > x] =
en(K(�)��x)
p
n��(�)

�
B0(�) +

�3(�)
6
p
n
(�)B3(�) +

1
n

�
�4(�)
24

B4(�)

+
�23
72
B6(�)

�
+O(B0(�)n

�3=2)
�
: (6)

P [ �X > x] = (1� �(r)) + �(r)

�
1

�
� 1

r

�
+O(n�3=2); (7)

The formulas (6), (7) are valid for x � �(0). We denote by B0, : : : ,B6

the so-called Esscher functions (see Appendix C), �(r) and �(r) denote the
distribution function resp. the density function of a standard normal ran-
dom variable, r(y) =

p
2n(�y �K(�)) and � =

p
n ��(�). The formulas for

x < �(0) are very similar.
Formula (7) is called the Lugannani-Rice formula. It was derived in Lugan-
nani and Rice (1980).

Remark. It is also possible to use other distributions than the normal as
approximating densities in (4). One possible alternative is a Gamma-based
approximation as discussed in Jensen (1995).
Although the saddlepoint approximation has its major applications for big
n, we show that in the cases studied in this paper it is already a reasonable
approximation for n = 1.

2.2 Stochastic Taylor expansion

As already mentioned, it may be impossible for models of the type (1), (2)
to determine the cumulant generating function of the marginals which is a
key instrument for the saddlepoint approximation. But often we are able to
determine this function for some approximation of the marginals. As a key
example, we consider a Hull-White type model discussed in Hull and White
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(1987):

dSt = St
p
vt dW1;t; (8)

dvt = vt dt+ Æ�vt dW1;t + Æ
p
1� �2vt dW2;t; (9)

where Æ > 0;�1 < � < 1 and ; S0; v0 2 IR. The inclusion of a drift com-
ponent in the asset price does not change the problem signi�cantly, but we
want to capture correlation between the asset price and the volatility.
As the processes St and vt stay positive almost surely, we can take the loga-
rithm in both components and use the Itô formula (see also Lamberton and
Lapeyre (1997)). This procedure, although not necessary, simpli�es both the
stochastic Taylor expansion and the saddlepoint approximation. Let Rt de-
note logSt and Ut = log vt, then we have the following form for the resulting
SDE:

dRt = �1

2
exp(Ut) dt+ exp(Ut=2) dW1;t; (10)

dUt = ( � Æ2=2) dt+ Æ� dW1;t + Æ
p
1� �2 dW2;t: (11)

Following the notation of Kloeden and Platen (1992, p. 180 �), by taking
the hierarchical set �2, we get the following truncated Taylor-Itô expansion
for the transformed SDE (10), (11).

~Rt =

x0z }| {
logS0 � 1

2
(v0 + Æ�

p
v0
2

)t+

x1z}|{p
v0 W1;t +

x2z }| {
Æ�

p
v0
4

W 2
1;t

+

x3z }| {
Æ
p
1� �2

p
v0
2

Z t

0

W2;s dW1;s; (12)

~Ut = log v0 + ( � Æ2

2
)t| {z }

o0

+ Æ�|{z}
o1

W1;t + Æ
p
1� �| {z }
o2

W2;t: (13)

Remark. The basic principle of the stochastic Taylor expansion is an iter-
ative use of the Itô formula.

Now one can either compute the cumulant generating function of the
marginals of this 2-dimensional process or of one of the components. By using
a formula of Yor (1980) (see Appendix A) we get the following expression for
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the cumulant-generating functions:

K( ~Rt; ~Ut)
(�) = g(�)� log

sin b(�)

b(�)
� 1

2
log j��1(�)j+ 1

2
u(�)T� u(�); (14)

where g(�) = x0�1 + o0�2;

b(�) = �x3t�1
2

;

��1(�) =

�
b(�) cot b(�)� 2u3(�) �a(�)

�a(�) b(�) cot b(�)

�
; (15)

a(�) = �b(�);
u(�) = (u1(�); u2(�)) = ((x1�1 + o1�2)

p
t; o2

p
t �2);

u3(�) = x2t�1:

The function K( ~Rt; ~Ut)
is C1 in a suitably chosen domain of IR2 including 0

and similarly for K ~Rt
and K ~Ut

(see Appendix A).

K ~Rt
(�1) = K( ~Rt; ~Ut)

(�1; 0)

= g(�1; 0)� log
sin b(�1)

b(�1)
� 1

2
log j��1(�1)j

+
u1(�1; 0)

2b(�1) cot b(�1)

2j��1(�1)j ; (16)

K ~Ut
(�2) = g(0; �2) +

1

2
(o21 + o22) t �

2
2: (17)

Remark. K ~Ut
is just the cumulant generating function of a normal random

variable, as it should be.

3 Risk measures and saddlepoint techniques

Let X 2 L1(P ) be the stochastic outcome of holding a position in a �nancial
asset over some �xed period t. We tackle the task of computing the market
risk of this position. The �rst task is the choice of an appropriate risk mea-
sure. We do not classify di�erent risk measures but examine the two following
measures to calculate market risk of a position (we neglect interest rates).
We start with the popular Value-at-Risk (V aR). A possible mathematical
de�nition of VaR proposed in Delbaen (1998) is the following:

V aR�(X) = �q+� (X); where q+� (X) = inffqjP [X � q] > �g:
This risk measure can be found in the guidelines of the Basle Committee
(1996a and 1996b) which is one reason for its popularity. Its simplicity and
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analytical tractability are certainly other reasons. But VaR lacks in most
cases the subadditivity property which is required in the axiomatic approach
of coherent risk measures of Artzner et al. (1999). Therefore we study also
another risk measure called tail conditional expectation (TCE).

TCE�(X) = �E[XjX � �V aR�(X)]: (18)

The de�nition is given in Artzner et al. (1999). By adapting a technique
outlined in Rogers and Zane (1998) we can also approximate tail conditional
expectation, which is a coherent risk measure under some conditions (see
Delbaen (1998)).

3.1 Tail conditional expectation for log-return models

We examine models where the asset price dynamics St are given through
speci�cation of the dynamics for the log-return Xt = logSt. We suppose that
Xt has a density fXt and the cumulant-generating function KXt = logMXt

exists in an open interval containing 0 and 1. We �x the desired level � and
set a = �V aR�(S), then we have the following (we drop the subscript t):

E[SjS � a] = E[eX jeX � a] = E[eX jX � log a]

=

Z log a

�1
ex

f(x)

P [X � log a]
dx =

MX(1)

P [X � log a]

Z log a

�1
g(x) dx;

where g(x) = exp(x)f(x)=MX(1) is just the density of X under an exponen-
tially tilted measure P1 with dP1 = exp(X � KX(1))dP . So the cumulant-
generating function of g, Kg can easily be derived from KX :

Kg(u) = KX(u+ 1)�KX(1):

Finally we put all together and get the following easy expression:

E[SjS � a] = MX(1)
P1[X � log a]

P [X � log a]
: (19)

Now we can use a tail formula to approximate tail conditional expectation.

Remark. This method is used in Rogers and Zane (1998) to price options
for models with log-returns given by L�evy processes. Unfortunately the ap-
proximation is in this case too bad for small time horizons so that especially
for risk management purposes we can not use it.
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3.2 Tail conditional expectation for negative random

variables

We can also use saddlepoint approximations where it is not appropriate to
work with log-returns. Suppose X � 0, set a = �V aR�(S), then we can
approximate TCE in the following way:

�E[XjX � a] = � 1

P [X � a]

Z a

�1
x f(x) dx =

E[�X]

P [X � a]

Z 1

�a

x f(�x)
E[�X]| {z }

h(x)

dx

= E[�X]
Ph[�X � �a]
P [X � a]

= E[�X]
Ph[X � a]

P [X � a]
(20)

The only remaining task is calculating the cumulant generating function of
the random variable Z having density h.

Mh(u) =

Z 1

0

euxh(x) dx =
MX(�u)
E[�X]

Z 1

0

x
euxf(�x)
MX(�u)| {z }

g(x)

dx

=
MX(�u)
E[�X]

Eg[�X] =
M 0

X(�u)
M 0

X(0)
, as (21)

Mg(~u) =
MX(u+ ~u)

MX(u)

Hence by taking logarithms we have the expression for the cumulant genera-
ting function of the conditional distribution and can apply the tail formulas.
It is obvious how to extend this method to random variables which are
bounded from above.

4 Applications for risk management

The outlined methodology is perfectly matched for short-time risk man-
agement. Not only can one easily determine shortfall probabilities via the
Lugannani-Rice formula (7), which was already used for option pricing in
Rogers and Zane or other tail formulas, e.g. (6), but we are also able to
approximate the whole distribution which allows us to determine other func-
tionals. We compare the results derived from the approximation with the
exact results in the Black-Scholes case and with results derived from simula-
tions in the Hull-White case.
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4.1 The Black-Scholes model

We consider the following well-known model for the evolution of the asset
price:

dSt = �St dt+ �St dWt: (22)

By the same \trick" as in the Hull-White case, i.e. taking the logarithm of
the asset price, the resulting process becomes Brownian motion. This does
not yield a convincing example. The saddlepoint approximation is exact in
this case as pointed out in Daniels (1980). So let Ct denote a call option in
the Black-Scholes case. We compare the exact distribution of Ct for t days
with the saddlepoint approximation and it is even possible to calculate eas-
ily the exact distribution of the stochastic Taylor expansion, which is just a
non-central chi-square distribution.
Figure 1 shows the relative error of the approximation. The solid line shows

–0.03

–0.02

–0.01

0

0.01

0.02

4 6 8 10 12

Figure 1: Relative error for the density of Ct in the Black-Scholes Case. The
parameter values are S0 = K = 100; � = 0:2; r = 0 and T = 125 days. We
consider a time horizon t = 5 days.

the relative error of a saddlepoint approximation (5). The dashed line shows
the relative error of the exact distribution of the stochastic Taylor expansion.
The interval shown captures over 99.7% of the mass of the exact distribu-
tion.
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It is quite easy to approximate the density of a call in the Black-Scholes
model, but in more complex models the cumulant generating function may
be too complicated to determine the whole distribution. So instead of solving
many equations of the type K 0(�) = x, we might only be interested in short-
fall probabilities. By using a tail formula we can easily calculate approximate
shortfall probabilities. We compare them in Figure 2 for the case of the call
with the exact shortfall probabilities. The solid line represents the relative
error for the tail formula (6) in the upper tail, the dashed line for formula (7)
respectively. Although we underestimate the probability of a big up move,
the relative error goes only up to about 3%.

–0.03

–0.02

–0.01

0
7 8 9 10 11 12

Figure 2: Comparison of the relative error for the shortfall probabilities using
tail formulas (6) and (7) (dashed line) for the call in the Black-Scholes model.

As outlined in the previous section we are also able to calculate TCE by
the adapted saddlepoint approximation (20). The TCE approximation for
the underlying would be exact, as we are dealing with normal returns. So
we only examine the TCE for the call. In Figure 3 we compare the relative
error of using (6) or (7) (dashed line) in formula (20) to the exact TCE. The
approximated TCE matches almost perfectly the true value. The errors in
the nominator and denominator of (20) and (21) cancel very nicely.
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–0.0007

–0.0006

–0.0005

–0.0004

–0.0003

–0.0002

7 8 9 10 11 12 13

Figure 3: Comparison of the relative error for the approximated TCE for a
call in the Black-Scholes model using tail formulas (6) and (7) (dashed line)
in formula (20). The probability of the value of the call rising above 13 is
0:01%!

4.2 Stochastic Volatility models

We examine the Hull-White model (10), (11). We are now dealing with a
two-dimensional saddlepoint approximation and as the cumulant generating
function is more complicated than in the Black-Scholes case it is harder to
solve an equation of the type K 0(�) = x. But nevertheless it is still possible
to approximate the joint density of ( ~Rt; ~Ut). But as the true density in the
Hull-White model is unknown we have to simulate according to (10), (11) to
compare the results obtained from the approximations.
We simulate 40000 paths of (10), (11) up to a time horizon t by the Euler
scheme (see Kloeden and Platen (1992 p. 305 �)). Before we perform some
statistical tests we �rst make some simple graphical comparisons. We divide
IR2 in many small rectangles. We calculate the approximate measure of each
rectangle induced by ( ~Rt; ~Ut). In Figure 4 we put a \0" on each rectan-
gle having approximate expected frequency for 40000 independent trials of
( ~Rt; ~Ut) less than 1. For all the other rectangles we set a \+" sign, where the
expected frequency is bigger than the observed frequency from 40000 simu-
lations, a \�" sign otherwise. The time horizon chosen is again t =5 days.
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00000000000000000-+++---0000
00000000000000--++-+-+++++00
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–3.8

–3.6

–3.4

–3.2

–3

–2.8

4.5 4.55 4.6 4.65 4.7

Figure 4: Graphical description of the di�erence of the approximation and
the results from simulations for the joint density of ( ~Rt; ~Ut), t = 5 days.

We also compare the marginal density of the approximation for the log-
arithmic returns with a non-parametric density estimation from 40000 sim-
ulated points x1; : : : ; x40000. In Figure 5 we include over 99:9% of the points
received by simulations and compare the relative error of the approximat-
ing density with the non-parametric density estimation and a simple normal
approximation, i.e. we use a normal density where we match the �rst two
moments of ~Rt.
In Table 1 we compare the (0:001; 0:005; 0:01; 0:05; 0:1) quantiles obtained
by simulations and the corresponding upper quantiles of the approximation
by saddlepoint approximation and by the simple normal approximation. In
Table 2 we calculate approximate TCE for the 5 day time horizon, i.e. we
use (19) for exp( ~Rt). Again we compare the relative error with respect to the
results from the simulations and also include results from a simple normal
approximation.
In Tables 1 and 2 the �rst column gives the chosen level �, the second column
gives the result obtained from the simulations, i.e. quantile or TCE�, the
third column describes the relative error from the results of the saddlepoint
approximation in percent and �nally the fourth column gives the quotient of
the relative error from the saddlepoint approximation and the relative error
from the simple normal approximation.
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–0.4

–0.2

0

0.2

0.4

4.52 4.54 4.56 4.58 4.6 4.62 4.64 4.66 4.68 4.7

Figure 5: Relative error for the marginal density of X5 in the Hull-White
model. The dashed line represents the error from a simple normal approxi-
mation.

These tables suggest that we can approximate these risk measures in the
Hull-White case almost perfectly. Although the saddlepoint approximation
is especially in the quantile case and in the lower tail for the TCE much
better than the simple normal approximation, already the simple normal
approximation works very well. But this fact is due to the special form of
these two measures. If we approximate E[(q+�i(S5)� S5)+] for �1 = 0:01 and
�2 = 0:05 we get the following results. We divide the simulations into two
parts of 20000 trials each and then estimate the quantity E[(q+�i(S5)� S5)+]
so we get intervals [ai; bi] for i = 1; 2. For both quantiles the results from
the saddlepoint approximation lie in the corresponding interval whereas the
simple normal approximation is about 4% smaller than a2 and even 20%
smaller than a1. The following statistical tests also suggest that we make a
signi�cant improvement by using a saddlepoint approximation.

The �rst test is a simple chi-square goodness-of-�t test. We divide IR2 in
many small rectangles. We join all rectangles with approximated expected
frequency for 40000 trials less then 1. In our example we have 406 regions.
The chi-square statistic has a value of 405.7 so the P-value is 48%.
Another test is based on the integrated square error

R
(fn(x)�f(x))2 a(x) dx
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level emp. V aR Rel. error of Comparison with
appr. in % normal appr.

0.001 91.076 0.105 0.203
0.005 92.568 0.099 0.283
0.01 93.300 0.090 0.339
0.05 95.284 0.063 0.714
0.1 96.358 0.022 - 4.200
0.9 103.57 0.029 1.000
0.95 105.75 - 0.011 1.046
0.99 106.59 -0.047 - 0.417
0.995 107.31 - 0.075 -0.533
0.999 108.75 - 0.055 - 0.207

Table 1: Comparison of V aR in the Hull-White model.

level emp. TCE Rel. error of Comparison with
appr. in % normal appr.

0.001 90.409 - 0.142 - 0.299
0.005 91.696 - 0.040 - 0.100
0.01 92.330 - 0.012 - 0.033
0.05 94.061 - 0.004 - 0.021
0.1 94.970 - 0.036 - 0.315
0.9 104.92 - 0.086 - 1.125
0.95 105.80 - 0.095 - 0.833
0.99 107.56 - 0.158 - 0.944
0.995 108.19 - 0.157 - 0.708
0.999 109.64 - 0.255 - 1.077

Table 2: Comparison of TCE in the Hull-White model.
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(ISE), where a is a bounded integrable function whose set of discontinuities
has 2-dimensional Jordan content zero, fn is a non-parametric estimation of
f . This ISE is under some assumptions (which are ful�lled in our example)
asymptotically normal (see Bickel and Rosenblatt (1973) or Appendix B).
So we take the approximating density and calculate the integrated square
error with respect to the density estimation. For the joint density we have a
P-value of 53%. These tests suggest no signi�cant di�erence for the case of
the joint distribution.
We can do exactly the same tests for the marginal distributions. For the
marginal distribution of the log-stock, the corresponding P-values are 13%
for the chi-square test (91 regions) and 38% for the ISE based test.
For the marginal distribution of the log squared volatility which is in fact
a normal distribution we get the following P-values. We have 85% for the
chi-square test and 69% for the ISE based test. So we have no signi�cant
statistical di�erences for all performed tests on a 5%-level. If we use the
same tests for the case of the simple normal approximation the P-values for
the joint distribution and the log-stock are much smaller than 1%.

5 Conclusion

We have shown that saddlepoint techniques yield excellent approximations
to the shape of the distribution in a stochastic volatility set-up. We have
further tested the method to many more examples in the case of market risk
management; in many cases we obtained fast and accurate answers. The
combination of stochastic Taylor expansion and saddlepoint approximations
may therefore add a useful analytic tool to quantitative �nance. Further
investigation is needed to see how the method can be adapted to longer
periods, beyond 10 days, say.

Appendix

A Calculation of the Characteristic function

We want to calculate the cumulant generating function of the two-dimensio-
nal random variable ( ~Rt; ~Ut) where ~Rt and ~Ut are given by (12) and (13).
As a �rst step we adapt a result outlined in Yor (1980) which was originally
presented in L�evy (1950). For completeness we give a proof of the result. We
follow quite closely the proof in Yor (1980).
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Lemma A.1 Let (Xt; Yt) be a two-dimensional standard Brownian motion
starting at 0. For all b 2 IR n f0g:

E
h
eb

R
1

0
(Xu dYu�Yu dXy)

���X1 = x; Y1 = y
i
=

b

sin b
e(

x2+y2

2
)(1�b cot b): (23)

Proof. Z
Xu dYu � Yu dXu =

Z
X 0

u dY
0
u � Y 0

u dX
0
u

where
�
X0

Y 0

�
= O

�
X
Y

�
with O being an orthogonal transformation.Z
Xu dYu � Yu dXu =

Z �
A

�
X

Y

�
; d

�
X

Y

��

A =

�
0 �1
1 0

�
and OTAO = A.

On the other hand the law of
�
X
Y

�
is invariant under all orthogonal transfor-

mations. Because of these two remarks we have that

E
h
eb

R
1

0
(Xu dYu�Yu dXy)

��X1=x;Y1=y

i
= E

h
eb

R
1

0
(Xu dYu�Yu dXy)

��X2
1+Y

2
1 =x

2+y2

i
:

We are now considering the following three processes

�t =
p
X2

t + Y 2
t (24)

�t =

Z t

0

Xu dXu + Yu dYu
�u

(25)

t =

Z t

0

Xu dYu � Yu dXu

�u
: (26)

By inspection of the quadratic variations and the quadratic covariation of �
and , we see that � and  are one-dimensional orthogonal Brownian motions.
By a result in Yor (1979) we know that the natural �ltrations of the processes
� and � coincide and conclude that � is independant of . Hence

E
h
eb

R
1

0
(Xu dYu�Yu dXy)

��X2
1
+Y 2

1
=x2+y2

i
= E

h
eb

R
1

0
�u du

���1 = �
i

= E
h
e�

b2

2

R 1
0
�2u du

���1 = �
i

=
b

sin b
e(

x2+y2

2
)(1�b cot b):

The �rst two equalities follow from the remarks above while the last follows
from the fact that we are dealing with a Brownian bridge and so we can
apply Corollary 3.3 from Revuz and Yor (1991, p. 430). 2

With the help of this lemma we can prove formula (14).
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Proposition A.1 The cumulant generating function K( ~Rt; ~Ut)
(�1; �2) of the

two-dimensional random variable ( ~Rt; ~Ut) given by (12) and (13) exists 8 �2 2
IR and �1 2] � arccot(�x1); arccot(x2)[ with 0 < �x1 < x2. And it has the
form (14).

Proof. Let us �rst recall the de�nitions of ~Rt and ~Ut. We leave out the
deterministic terms x0; o0. Let A denote the set fW1;t = w1

p
t;W2;t =

w2

p
tg. Then

~Rt = x1W1;t + x2W
2
1;t + x3

Z t

0

W2;s dW1;s;

~Ut = o1W1;t + o2W2;t:

To use Lemma A.1 we apply Itô's lemma:

Z t

0

Yu dXu =
1

2
XtYt � 1

2

Z 1

0

(Xu dYu � Yu dXu) (27)

Now we �rst calculate the conditional expectation with respect to A,

E[e�1Xt+�2 ~UtjA] = E[ef(W1;t;W2;t)+�
R t
0
W2;s dW1;s jA] =

E[ef(
p
tX1;

p
tY1)+�t

R
1

0
Ys dXsjA] = E[ef(

p
tX1;

p
tY1)+

�t
2
X1Y1��t

2

R
1

0
(Ys dXs�Xs dYs)jA] =

ef(w1;w2)
b(�1)

sin(b(�1))
e(

w2
1
+w2

2
2

)(1�b(�1) cot b(�1));

where Xu = 1p
t
W1;tu; Yu = 1p

t
W2;tu f(w1; w2) = (�1x1 + �2o1)w1 + �2o2w2 +

�1w
2
1.

For the third equality we use (27), while the fourth equality follows from
Lemma A.1. We integrate over IR2,

�
X1

Y1

�
has a two-dimensional standard

normal density and A= fX1 = w1; Y1 = w2g, thus

E[e�1
~Rt+�2 ~Ut] = b(�1)

2� sin b(�1)

R R
ef(w1;w2)�w2

1
+w2

2
2

b(�1) cot b(�1) dw1 dw2 =

b(�1)
2� sin b(�1)

R R
e<�̂;w>�

1

2
wT��1w dw1 dw2 =

b(�1)
sin b(�1)

1
j��1(�)j

j��1(�)j
2�

R R
e<u(�);w>�

1

2
wT��1(�)w dw1 dw2:

The result now follows easily from the well-known formula for the moment
generating function of a multivariate normal.
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The calculations are possible as long as ��1(�) stays positive de�nite. So we
have to look at the equation j��1(�)j = 0.

j��1(�)j = b(�)2 cot2(b(�))� 2u3(�)b(�) cot(b(�))� a(�)2;

b; a; and u3 are of the form a constant times �. So the value of j��1(�)j in
0 is 1. We know further that j��1(�)jb(�)=��

2
< 0. By continuity there exist

I1 < 0; I2 > 0 such that I1 is the �rst time j��1(I1)j hits 0 coming from 0
on the negative half-line and I2 respectively on the positive half-line. They
can now be calculated. We just remark that in our case a(�) = �b(�) and
assume that they are not identically 0:

c21�
2 cot2(c1�)� 2c1c2�

2 cot(c1�)� c21�
2 = 0,

c21 cot
2(c1�)� 2c1c2 cot(c1�)� c21 = 0 set x = cot c1�

c21x
2 � 2c1c2x� c21 = 0,

x1;2 = c2 �
q
c22 + c21:

So the smallest roots are given by I1 = �arccot(�x1) and I2 = arccot(x2).2

B A quadratic measure of deviation

In this appendix, we give the necessary background for a test used in Section
4. The interested reader �nds in Bickel and Rosenblatt (1973) and Rosen-
blatt (1975) further details.

Our goal is to test whether a density approximation is close to the true
density of some random vector.
Let X1; : : : ; Xn denote iid random two-vectors with continuous density func-
tion. By choosing a bounded weight function w with �nite support one can
estimate the density from X1; : : : ; Xn.

fn(x) =
1

nb(n)2

nX
j=1

w

�
x�Xj

b(n)

�
; (28)

where b(n) is some reasonably chosen bandwidth such that b(n) # 0 and
nb(n)2 !1 as n!1. We make the following assumptions:

a1: w is bounded and zero outside [�1
2
; 1
2
]2 and

R
w dx = 1,

a2: f is bounded and positive on IR2 and f 2 C2(IR2),
a3: w(u) = w(�u),
a4: the function a is bounded, integrable and its set of discontinuities

has 2-dimensional Jordan content zero.
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Theorem B.1 Under assumptions a1 � a4, if nb(n)
2 ! 1, b(n) = o(n�

1

5 )
for n!1,

b(n)�1
�
nb(n)2

Z
(fn(x)� f(x))2a(x) dx�

Z
f(x)a(x) dx

Z
w(u)2 du

�
(29)

is asymptotically normally distributed with mean zero and variance

2w�4(0)
Z
a(x)2f(x)2dx; (30)

where w�n(x) denotes the n-th convolution of w.

Proof. see Rosenblatt (1975)

Corollary B.1 Suppose one considers the one-dimensional analogue of the
result obtained in Theorem B.1 with a01�a04 the corresponding one-dimensio-

nal assumptions. If nb(n)2 !1 and b(n) = o(n�
2

9 ) for n!1.

b(n)�
1

2

�
nb(n)

Z
(fn(x)� f(x))2a(x) dx�

Z
f(x)a(x) dx

Z
w(u)2 du

�
(31)

is asymptotically normally distributed with mean zero and variance (30).

Remark. It is straightforward to use the results from this section as possible
statistical tests whether the density approximation yields an accurate answer.

C Esscher functions

In formula (6) we use certain non-standard functions. According to Jensen
(1995, p. 23) we call them Esscher functions. They appear naturally as
inversion integrals when we approximate tail probabilities. We include them
here to make the paper as self-contained as possible. For � > 0 we de�ne
Bk(�), k = 0; 1; : : : ; by

Bk(�) =
1

2�

Z 1

�1
e�

t2

2

(it)k

1 + it=�
dt: (32)

One can prove an easy lemma to connect the Esscher functions with the
standard normal distribution function.
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Lemma C.1

Bk(�) = (�1)k d
k

dxk

�
�e

�2

2
+�x

�
1�N(� + x)

�� ���
x=0

(33)

Proof. Jensen (1995, p. 24) 2

The lemma allows us to write down the Esscher functions in a more
convenient way.

B0(�) = � exp

�
�2

2

�
(1�N(�))

B1(�) = ��
�
B0(�)� (2�)�

1

2

�
B2(�) = �2

�
B0(�)� (2�)�

1

2

�
B3(�) = �

�
�3B0(�)� (�3 � �2)(2�)�

1

2

�
B4(�) = �4B0(�)� (�4 � �2)(2�)�

1

2

B5(�) = �
�
�5B0(�)� (�5 � �3 + 3�)(2�)�

1

2

�
B6(�) = �6B0(�)� (�6 � �4 + 3�2)(2�)�

1

2

...

etc:
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