A Risk-Neutral Stochastic Volatility Model
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We construct a risk-neutral stochastic volatility model using no-arbitrage pric-
ing principles. We then study the behavior of the implied volatility of options
that are deep in and out of the money according to this model. The motiva-
tion of this study is to show the difference in the asymptotic behavior of the
distribution tails between the usual Black-Scholes log-normal distribution and
the risk-neutral stochastic volatility distribution.

In the second part of the paper, we further explore this risk-neutral stochas-
tic volatility model by a Monte-Carlo study on the implied volatility curve (im-
plied volatility as a function of the option strikes) for near-the-money options.
We study the behavior of this “smile” curve under different choices of param-
eter for the model, and determine how the shape and skewness of the “smile”
curve is affected by the volatility of volatility (“V-vol”) and the correlation
between the underlying asset and its volatility.
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1 Introduction

The Black-Scholes (BS) formula is widely used by traders because it is easy to
use and understand. An important characteristic of the model is the assumption
that the volatility of the underlying security is constant. However, practitioners
have observed, especially after the crash of 1987, the so called volatility “smile”
effect. Namely, options written on the same underlying asset usually trade,
in Black-Scholes term, with different implied volatilities®. Deep-in-the-money
and deep-out-of-the-money options are traded at higher implied volatility than
at-the-money options. There is also a time effect. For example, in Foreign
Exchange market, options with longer maturities are traded at higher implied
volatility than shorter maturities. This evidence is not consistent with the
constant volatility assumption made in Black-Scholes (Black & Scholes, 1973).

This is due to the presence of “fat tails”: extreme values for the price
are more likely in the real probability measure than in the lognormal model.
There are several ways to address this empirical issue. Merton (R. Merton,
1990) points out that a jump-diffusion process for the underlying asset could
cause such an effect. A more explored direction is the stochastic volatility
assumption. Hull and White (Hull and White, 1987) proposed a log-normal
stochastic volatility model, namely, the volatility of the underlying asset follows
another Geometric Brownian Motion. However, these models have a drawback:
since the volatility is not a traded asset, the option price in the stochastic
volatility context actually depends on investors risk preferences, that is, the
pricing formula is not risk-neutral.

In this paper, we study a risk-neutral pricing model in the context of log-
normally distributed stochastic volatility. In order to find a risk-neutral prob-
ability measure suitable for pricing options and OTC derivatives, we have to
analyze hedging strategies involving a traded asset which is perfectly correlated
with volatility of the underlying security. For this purpose, we propose to use
short term options on the underlying asset to hedge the volatility risk. The key
assumption made here is that the maturities of these options are short enough
that the options are reasonably marked-to-market (priced) by Black-Scholes
formula.

This paper is organized as follows. In Section 2 we derive a risk-neutral
stochastic process for the underlying asset and its volatility. For this, we assume
in particular a general correlation (negative, zero, positive) between the asset
price and its volatility. Section 3 is devoted to the asymptotic estimation of the

3Implied volatility is the volatility value at which the option is traded if the Black-Scholes
formula is used. Given an option price, there is a corresponding volatility value by inverting
the Black-Scholes formula.



implied volatility of the derived model, i.e., how the implied volatility behaves
for options that are deep-out-of-the-money. In Section 4 we study the implied
volatility behavior of near-money options using Monte Carlo simulation. One
of the interesting features of the model is the different behavior among positive,
zero, and negative correlations. Calls with positive correlations correspond to
puts with negative correlations, and vice versa. The analysis therefore suggests
an asymmetry between puts and calls.* The three appendices in the last section
contain mathematical details for the asymptotic analysis in section 3.

2 The Risk-Neutral Measure

In this section, the risk-neutral probability measure of the log-normal stochastic
volatility model is derived. Specifically, we consider an underlying security S,
and its volatility o;, which follow the stochastic processes:

dSt == OéStdt + O'tStdZt
doy ~youdt + Vo dW,

where Z, and W, are two standard Brownian motions with correlation coefli-
cient p. Formally, F(dZ;dW;) = pdt. Let f be the price of a derivative security
contingent on the price S of an underlying asset. Specifically,

[ = (8,00

By Ito’s lemma, the price process of the derivative security satisfies,
df(S,0,1) = fsdS + fodo + Lfdt

where L is the infinitesimal generator:

_ 1 5 0 1o, , 0 2 0
L‘:@t—l——aS——l——VU——l—paSVasaa (1)

2 05% 2 do?

In the same spirit of the original derivation of the Black-Scholes formula, we
give a hedging strategy using the underlying asset and a short-term call option
on it, along with a money market account. The riskless portfolio will include
the contingent claim with price f, underlying asset with price S and a short
term call® on asset S with price C'(S, K, o, At), where At is the maturity of the

*For example, for the options on Standard & Poor’s 500 Index of Chicago Mercantile Ex-
change, deep out-of-money puts trade at approximately o = 30%, and at-the-money options
trade at 17%.

5The strike of this short term option is to be determined.



short-term call option.® We short” 1 unit of derivative security with price f, go
long A units of the underlying asset with price S, and g units of the short term
call option on the asset S with price C'. The major approximation we make in
order to derive a risk-neutral probability measure is to assume the short term
call price C(S, K, 0, At) to be the Black-Scholes price. This assumption is the
essence of our model. If one doesn’t make such an identification, one can only
achieve, in the general framework, a no-arbitrage pricing relationship between
the short-term call and the general derivative security f.®

In addition to the underlying security and the short-term call, we consider
a money market account with riskless interest rate r For an infinitesimal time
interval dt, the value change of the portfolio is given as:

df — AdS — pdC = (fsdS + f,do+ Lfdt) — AdS — u(CsdS + Cypdo + LOdE)
= (fs —A—puCs)dS + (fo — pCy)do + (Lf — pLC)dt

where L is the infinitesimal generator defined in (1).
A riskless portfolio is obtained by setting :

A+uCs = fs

pCo = fo
specifically,
o= f_g
Co
C
A= fs—ghe

Therefore, the value change of the riskless portfolio is:
df — AdS — pdC = (Lf — pLC)dt

According to no-arbitrage pricing principle, the return of the riskless portfolio
must be identified with the riskless interest rate, i.e.,

(Lf — pLCYdt = r(f —AS — puC)dt
= r(f — fSS + /,LCSS — MC)dt (2)

5At is small compared with the maturity of the contingent claim in consideration, while
large compared with hedging period dt.

“In financial terminology, short means sell, and long means buy.

8A similar situation occurs in interest rate models. For instance, the Vascicek model
(Vascicek, 1979) is a no-arbitrage model of interest rate derivatives. This is not a risk-
neutral model because there is a non-determined parameter, the market price of risk, which
depends on investor’s risk preference. This risk premium, however, doesn’t depend on the
particular choice of a derivative security. Therefore, it serves as a price relation between
different derivative securities.




where in the second equation, we substitute A = fg — uC's into the formula.
Notice that

1 0? 1
LC = (0, + 0252 852)0 + po?SVCs, + §V2020M
= rSCs —rC + po*SVCs, + %VQUQCM (3)

where for (3) we use the Black-Scholes PDE for function C.
Substitute (3) into (2), we obtain

Cs, 1 Coo
Lf— ,OUQVSC—ifg — 50 VIG fo = nf = rfsS (4)

Now use Black-Scholes formula for C,
C(S,K,o,At) = SN(d;) — Ke "™ N(d,)

where

we have the following Greeks:

Co' - SN/(dl)\/At

Coo = SN"(d)VAL——E=
Cs = N(dy)

Css = N'(di)(-

Now, in order to have a manageable drift term for o;, we set the strike of the
short term call to be ATMF (at the money forward), i.e

K = Sexp(rAt).
Therefore we have

Co' - SN/(dl)\/A
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Substitute the above formula into (4), and neglect the higher order term of At,
we have

L~ 500V =] — 1S

L is defined as in (1). In terms of SDEs, the corresponding risk-neutral process
can be written as,

ds
? = rdt + O'tdZt
1
doy, = —§pVdet + Vo, dW, (5)

This is the risk-neutral probability for the stochastic volatility model. We
see that in the risk-neutral world, the drift term of the underlying security
is the short-term interest rate, while the drift of the stochastic volatility also
becomes independent of that in “real” probability measure.

Notice that the behavior of the volatility process is different according to
the sign of the correlation coefficient. In the case of positive correlation, the
local volatility tends to zero when time goes to infinity. In the case of negative
correlation, the local volatility blows up in finite time.? This means that when
the correlation is positive, the hedging procedure works rather nicely; while the
correlation is negative, there is a contradiction between buying the underlying
and buying the ATM call option as a hedge. In other words, in the case of
negative correlation, when market goes down, volatility goes up, one needs to
buy the short-term ATM call to “delta” hedge the volatility . But the call
price (therefore its sensitivity to volatility ) drops as the market goes down,
the result is there is not enough “volatility” to buy.!® 1!

The rest of the paper is devoted to classifying the asymptotic behavior of
the implied volatility curve as a function of strike in this risk-neutral volatility
model. One possible application of this analysis is to find a suitable function
space in which one could fit the “smile” curve observed in the market.

9The blow-up time is typically very large compared with the maturity of options. The
blow-up time can be approximated by ——2

T For a typical volatility oy = 10% per annum,
correlation p = —0.5 and “V-vol” V = 100% per annum, the blow-up time is 40 years.

10At first sight, the reader may think that the situation could be resolved by using short
term puts to hedge the volatility risk. However, the ATM puts’ prices also drop when the
market goes down. So it doesn’t make difference using puts or calls, as long as they are
at-the-money.

Negative correlation is present in general in equity market.



3 Asymptotics

This section discusses the asymptotic behavior of the implied volatility of out-
of-the-money calls for very large strikes. The main tool used is Large Deviation
theory. We classify the behaviors for positive, zero, and negative correlations.
The main result is in Theorem 7 at the end of this section. Lemma 1 through
6 are steps towards the derivation. Tedious and technical mathematical details
are presented in appendix.

To fix the notation, let BS(S,o, K,T) be the Black-Scholes formula for
an European call option price, with spot price S, strike K, volatility o, and
maturity T. Without loss of generality, we assume r = 0.

Lemma 1. In the limit where the strike is large compared with spot price of
the underlying asset, the Black-Scholes option price satisfies asymptotically

) . 1 (X — %O'QT)Q
Jim BS(S,0, K,T) = meXP(_W)’ (6)

where X = ln(%)
Proof. The key point is the following inequality, which can be found in, e.g.,
Mckean (1969):

ez < / ez du< —e 2
1+ 22 - z
or equivalently,
/ e 2dur~ —e 2 for « large
T T
We also have
© 1 _u2 1 _»2
—e" Zdur —e 7 for « large
z U x

These approximations can be proved by using change the order of integration.
By change the order of integration, we get

E[(S — K)*]
1 0 1 2
= 0= [xt+loeT (exp( v 0‘2Ty - _0'2T) — eXp(X)) exp(—y—)dy
2T \/22—T 2 9

1 jee) 2 Y 1
= T Jregen exp(—%) dy [xyy.20 €XP (VoiTz — 502T) x Vol dz
T V2T V2T

V 2T o 1 o0 2
0-7 x+lo27 eXp(\/ O'QTZ — —0'2T) dZ/ exp(_y_) dy
Ve S 2 : 2
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Comment. It can be easily verified that the deep out-of-the-money puts also
satisfies this asymptotic formula. Therefore, the discussions that follow are
also true for puts.
Lemma 2. For the above derived risk-neutral stochastic volatility model, the
call option price is

E{BS(¢, K, (1 — p?) /OT o2ds)}

where E is the expectation with respect to the stochastic process o;, and

€ = expli7 (01— o0)]

BS(S, K, 02T is defined as above.
Proof. From the last section, the risk-neutral measure of the stochastic volatil-
ity model (5) can be written as

ds
? — po‘th/t + 1 — ,OZUtdZt (7)
1 W,

Z; and Wy are two independent Wiener processes. Substitute (8) into (7), we
get

ds 1
< = %dat + §p203dt ++/1 — p?oydZ,

Formally integrating this SDE, we get
2

1 ¢
S = exp{%(at —09) + 5,02/0 olds — va < oy, 0p >}

t 1_p2 ¢ ,
-exp{/o V1 —p2odZs — 5 /0 oids}

where < 0,0, > is the quadratic variation of o, < oy, 0, >= V2 [l 52ds.

Therefore,
t — p? gt
S = exp{%(at —09)}- exp{/o 1 —plodZs — ! 2'0 /0 olds}




Since Z; and o are independent, one can think that, for each realization of
oy, the distribution of the underlying asset price at maturity is equivalent to a
geometrical Brownian Motion, starting from

€ = exply (o0 — o0

with total variance (1 — p?) fj osds. The lemma is proved. O QED

Using the asymptotic Black-Scholes formula (6), as derived in Lemma 1, we
can formally write down the asymptotic formula for the call price under the
risk-neutral stochastic volatility measure, namely,

(X = 55— o

\/%//%GXP[— 2(1 — p2) A, ) 1f (o1, Ay)dord Ay (9)

while X — o

where A; = [ 02ds. We suppose Sy = 1, X is defined as in Lemma 1. f(o:, Ar)
is the joint probability density of o; and A,.

flow Ar) = gloe|A)h(Ar)

g(0:|A+) is the probability density of o; conditional on A;.
Next we are going to characterize the probability distribution g(o:|A:).
Observe that

1 ¢ ¢
o = ——pV/ des + V/ o,dZ,
2 0 0

Let 7., be the first time o, = 0. Let
A = / - olds
0

Use the random time change formula, we have

1
oy = —§pVAt + VB(At) (At < Aoo)

where B; is another Brownian motion. Therefore, the above formula is equiva-
lent to saying that the distribution of o; conditional on A; is equivalent in law
to the distribution of a drifting Brownian motion conditional on not hitting
upon 0.

Based on the above observation, we can derive an approximate formula for
the conditional distribution g(o:|A;).

In what follows, we treat the cases of p > 0 and p < 0 differently.



Lemma 3. When p > 0 and A; > 1, the conditional distribution ¢(o|A:)
satisfles

oy p” (n+ p'Ar)? Ly
Tt e dn|A) ~ _ AT A)dn.
9(3; € dnlA) \/%nexp( o )exp(5p Ay

where we let p’ = 1p.
Proof. Let n = $t = —p'A; + Ba,. The distribution of —p’t + B; conditional
on not hitting 0 is

(P, 22) = PCO(tm, =T2)/N() - (Mekean, 1969)

where
1 (v —y)? 1
PO (t:z,y) = exp ( — ——2) exp(bxr — =b*1); 10

(t;2,y) Nz p( 5 ) exp(br — 5b%) (10)
N(t) is the normalization factor given by

_ 2 /2A

N(t) = 003 exp( — P t). (see Appendiz 1)

prAE 2

When A; > 1, we can make the following approximation

gt _ oA ZON = A0 0NN/ A
o % e dnlA) = (P (A, 22) = PO (A, =20 N (A
dP(_p/)(At;n,O) 200

- dn vV

Substituting the formula of P®) given by (10) into the above approximation,
we get the formula as stated in the Lemma.

O QED.

Lemma 4. When p > 0, the call price satisfies

p* 1
- ﬁf(At)h(At)dAt, X>1 (11)
where

(1) = 0= e (- o gty 2

as A; < L

1+
§(A) = (1 —p*)Asexp (— %(()1(—_,02)70/,013275 ) (13)

X

aSAth
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Proof. From the asymptotic call price (9) discussed after Lemma 2, under the
condition p > 0 and X — oo, the call price is

(X——At o —

// \/ﬁ)@ 2(1 — p?) A, ) )g(o1|A)h(Ar)dord Ay

Substituting the expression (3) of the conditional distribution g(o:|A;) from
Lemma 3, after some calculations (details are in Appendiz 2), we prove the
Lemma.
O QED.

The following two lemmas deal with the case p < 0. The analysis is mostly
the same as the case of positive p, so we only emphasize the part which is
different between positive and negative p, omitting the similar parts.

Lemma 5. When p < 0 and A; > 1,

(n+ 5A:)?

O
9(77 € dnl A = T(Aexp ( — =5 2=)

v

where

2001 -

SN (14)

with the normalization factor being

[(A) =

M)—%MNZ$>

Proof. This result follows from the same calculation as in Lemma 3 but with
different normalization factor N(t), The reader should refer to Appendiz 1 for
the calculation of the normalization factor N(t). O QED.

Lemma 6. When p < 0, the call price satisfies

\/ﬁ/)@ h(A)dA;, X > 1 (15)

where

) = (1= 0 Aesp (- 5 i ) (16)

['(A;) is defined in (14).
Proof. According to Lemmas 1,2,5, the call price is

C//%GXP(_(X - _?p(lA_t;zI;X_ ) JL(A) eXP(_(%z‘iAt)Z)dﬁdAt

10



Use the formula in Appendiz 2 to integrate dn part, we obtain the result.
OQED.

Now, we are in the position to prove the following result:

Theorem 7 The implied volatility of deep out-of-the-money calls has the fol-
lowing asymptotic properties:

a)When p > 0,and X — oo, 04,V T ~ V2X.

b)When p < 0,and p> < 1, X — oo, CimpVT ~ V2X.

c)When p < 0,and p* > %, X — 00, Oipmp ~ Const - VX, where Const =
V20 42 —/2C with C = %(f_—gé). Notice that Const < /2.

Proof.
a) It is shown in Appendix 3 that the tail distribution of

t
A = / o2ds
0
is log-normal, i.e.,
h(A;) ~ exp(—C - (In(Ay))?) as A — o0

From lemma 4 we know that the call price asymptotically satisfies

2
g—w/ﬁf(At)h(At)dAt

where £ is defined in (12) and (13). Use “steepest descent” technique (Ap-
pendix 2) to integrate the above call price. Notice that there is a total square
in the integrand ¢ defined in (13), and when calculating the “saddle point”, the
contribution from h(A;) is small as A; is large, (note the exponent of h(A;) is

—(In(A¢))2.) Therefore, the saddle point is A; = =25 X, and the resulted call

(1-p?)
price is (to leading order of X)

Call price &2 Cy exp(—C - (In X)?)

where Cy, 5 are constant depending on T and p, V. Compare it with the
Black-Scholes asymptotic formula 6 (to leading order of X))
(X —Lo? T)?

2~ vmp

202 T

imp

exp(— ) & exp(—C; - (In X)?)

we get

Oimp ~= V 2X.

11



b) When p < 0, we have E[A;] = oo. This is because, from Appendix 3, we
have the formula for oy:

M,
L4 8V [y Myds

gy =

When p < 0, and for finite ¢, the probability that

2
oo(—p)V
is always positive, i.e., o, goes to infinity with positive (but small) probability.

Therefore, we have E[A,;] = oo.
When we use “steepest descent” technique to integrate (15) the factor h( A;)

t
/ M,ds >
0

doesn’t contribute (refer to Appendix 2).
Moreover, when p? < %, A= %{)2 is the “saddle point”, and the exponen-
2

tial part of X disappears. When p? = %, the exponential part disappears too.
Therefore, we have

(X — 1,52 T)?

2% imp

202 T

imp

~ (Clonst

Therefore,
O'Z'mp\/T ~ vV 2X

c) Refer to Lemma 6, when
, 1
p <0, and p* > 3

there is not a complete square, the “steepest descent” technique applied to the
integral of the call price (15) results in an exponential of the form of

exp(—C - X)
where C' = %(012__5). Therefore,
P 2
207, T

We conclude that

O'Z'mp\/Tﬁ (\/QC—I- —\/ﬁ)\/y

OQED

12



Comment: Notice that the asymptotic behaviors are different for the case
p > 0 and p < 0. This actually suggests the skewness of the “smile” curve
when p is not equal to 0, i.e., the “smile” curve goes to infinity with different
exponents. The argument is the following. When

X = ln(%) — —0

the same large deviation results we get above is valid for put options. While
puts are equivalent to calls with p becomes —p. In fact, in Foreign Exchange
market, a put on currency 1/currency 2 is a call on currency 2/currency 1.
Therefore, the behavior of “smile” curve when X — —oo is the same as that
when X' — oo with opposite sign of p. The main result is therefore:

Corollary: Asymptotic behaviors for the implied volatility smile:

1. If p >0,
for deep-out-of-money calls, O'Z'mp\/T —V2X.
for deep-out-of-money puts, O'Z'mp\/T — v/2X. when p? < %

and O'Z'mp\/T—> C VX (C < \/5) when p? > %
2. If p <0,
for deep-out-of-money calls, O'Z'mp\/T — v/2X. when p? < %
and O'Z'mp\/T—> C VX (C < \/5) when p? > %

for deep-out-of-money puts, O'Z'mp\/T —V2X.

13



4 Monte Carlo Study for Near-Money Options

In this section, we use the same risk-neutral stochastic volatility model derived
before to study the implied volatility “smile” curve for the near-the-money
options. We show how the shape of the “smile” curve changes in terms of the
model parameters such as correlation p and volatility of volatility V. We also
present some results on the term structure of implied volatility.!

The methodology we use in this section is Monte Carlo simulation, due
to the fact that there is no close-form solution for the risk-neutral stochastic
volatility model. The results show that, for zero correlation between the un-
derlying asset and its volatility, one obtains a symmetric “smile” curve, i.e.,
approximately a centered parabolal®. For positive correlation, the center of
the parabola moves to the left; for negative correlation, the center moves to
the right. With other parameters fixed, the bigger the absolute value of p, the
further the center is moved. Since the observable options are those near-the-
money, when p is close to 1 or -1, the center of the parabola is further away
from at-the-money region, effectively the “smile” curve resembles a line more
than a parabola, but is actually the part of a parabola that is far away from
the center.

On the other hand, the volatility of volatility , V', has a “centering” effect
on the “smile” curve. In other words, with other parameters held fixed, the
larger the V', the larger the curvature of the implied volatility, and the center of
the parabola returns to the near-the-money region. So for the same correlation
p, the implied volatility curve with larger V' looks like a “smile”, while with
smaller V' the “smile” curve is degenerated to a line.

We use two techniques to reduce the standard deviation of the simulation.
One is the antithetic variate, the other is control variate (Hammersley, J., 1964).
The antithetic variate is to use one Brownian path along with its mirror path
in simulation. The resulting estimate is still unbiased, but with their perfect
correlation, the standard deviation is largely reduced.

Control variate is another widely used error deduction technique in Monte
Carlo simulations. The idea is to find a variable with which the unknown vari-
able is highly correlated, and which has explicit evaluation formula. One can
simulate this variable using the same sample paths as those used for simulat-
ing the unknown variable. Effectively, one simulates the difference between
two positively correlated random variables. The difference is smaller than the

12ZA more detailed study of the term structure of implied volatility is presented in the
second essay.

IBFrom the analysis of last section, the “smile” curve is not strictly a parabola out-of-
the-money or in-the-money. Nevertheless, in the near-money region, the curve can be well
approximated by a parabola.

14



original variable that is being calculated, accordingly, the standard deviation is
smaller. The original simulation is obtained by adding the simulated difference
and the theoretical evaluation of the auxiliary variable.

In our simulation, we use the Black-Scholes option price as the control
variate. Namely, we simulate the Black-Scholes price with a constant volatility
which can be chosen as the initial value of stochastic volatility , using the same
Brownian sample path. This reduces the standard deviation greatly.

Figure 1 and 2 exhibit the near-money smile curves corresponding to dif-
ferent model parameters.

Figure 1 shows how the curve changes for different correlation p. We ob-
serve that, in general, negative correlations correspond to negative skewness,
ie, out-of-money puts are more expensive than out-of-money calls; and positive
correlations correspond to positive skewness, ie, out-of-money calls are more
expensive than out-of-money puts. In particular, strong correlations (positive
or negative) corresponds to strong skewness. This can be seen in Figure 1,
which compares small correlation coefficient p = +0.2 with that as large as
p = =£0.9.

Figure 2, however, exhibits the different V' effect. One can see that the
volatility of volatility has the effect of changing the convexity as well as the
center of the “smile” curve. In the left panel, where V' is 1, what we see is
mostly a line (skewness) rather than a “smile” for non-zero correlations. In the
right panel, with V' equals 3, we see “smiles” with different center rather than
a line (skewness).

In Figure 3 and 4, we show the “smile” effect across different time horizons.
One can see that for p = +0.2, the longer the maturity, the higher level and the
more convexity for the implied volatility curve. This effect is less for p = +0.9.
This is because for p = +0.9, the volatility goes to equilibrium or blows up
fast.

15
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Figure 1: Simulated Smile Curves for Options with Maturity of 120 days. The
Volatility of Volatility, V', is Fixed at 1 per annum; the Level of Correlations,
p, varies from -0.9 to 0.9, as Marked in Fach Plot.
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Figure 2: Simulated Smile Curves for Options with Maturity of 120 days. The
Volatility of Volatility, V', is Fixed at 1 per annum for the Left Panels, and 3
per annum for the Right Panels; the Level of Correlations, p, varies from -0.5

to 0.5, as Marked in Fach Plot.
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Maturity=60 days Maturity=180days
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Figure 3: Simulated Smile Curves for Options with Maturity of 60 days and
180 days. The Volatility of Volatility, V', is Fixed at 1 per annum; the Level of
Correlations, p takes value of 0.2 as Marked in Each Plot.
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M'aturity=6'0 days
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Figure 4: Simulated Smile Curves for Options with Maturity of 60 days and
180 days. The Volatility of Volatility, V', is Fixed at 1 per annum; the Level of
Correlations, p takes value of £0.9, as Marked in Each Plot.
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A Appendix 1

In this appendiz, we calculate the normalization factor N for the conditional
probability density of g($t € n|A).
Throughout this appendix, let p’ = £.

N(A)
= /OOO dn\/%W—At(eXp( - %) —exp( — %)) rexp(—p'n — %p’zAt)
= /OOO dn\/%W—AteXp( _- %;ti%t)z) : eXp(—UOTp/)

—/OOO dn\/%W—AteXp( bt %;th%t)z) : exp(as/p/)

/
Top

= exp(= ) V(= o VA = exp(F) - N(Zh + VA

From here, it is different for p’ positive or negative. For p’ > 0,

N (A

(= oA 1 L
exp( — . —

N Gy T
10/2‘475)‘ 2\/2_(1‘/

%

= exp(— —
2 pIQAt _ AtOV
200 P Ay
2 (- 22
prPAL
For p’ < 0, we have
N(A)
oop’ oop’
~ exp(= 2 —exp( L)
/
= 2sinh(—U€/p)

B Appendix 2

The main tool of our calculation is “steepest descent”.
In general, to evaluate integrals of the form

I{a) = /eaf(z)dz (o large and positive)
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observe that for large value of «, the main contribution to the integral comes
from the small neighborhood of the maximum points of f(z).
Suppose zg is a maximal point of f(z), i.e., f'(z9) = 0. Near the point z,

1
£ Flz0) + (o) — 20
The integral is approxmated as

[(a) = ¢ / 510} (==x0)? 1,
e C . eaf(ZO)

(' is a constant depending on « and f”(zo).
In our calculation, X is the large parameter. the result is obtained by taking
the leading order of X.

When calculating € of Lemmas 4 and 6, we encountered the integral of the

form
[ e (= ESEE e (- e

i
In this case, steepest descent method actually gives the exact result. Observe

my | my
that the maximal point of the integrand is & = j-l—f . The integral can be
written as: L
(m1 — m2)2 1 % %
exp ( — ) N (- =)
2ot vl g e
1 (m1 — m2)2 mi mo
N ———exp(— ——) as —+—=>0
ERNIES 2(0% + 03) of = o}
1 1 m?  m2 m m
~ T l-exp(——(—21+—22)) as _21+_22<0
p + o 2" o a3 aq a3
while in our context,
X124 1—p?
my = 2 o} = 2'0 Ay
p p
__P 2 _
mo = —§At gy, = At

In general, for integral of the form:
0 M — 2
[ et = B exp—lne) e
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when M is large. To find the saddle point, set the derivative of the exponent
to zero, we get

M?* 1 1
M1 gng
282 2 £
In this case, the saddle point is approximately £ = M, because when M is large,
the third term on the left hand side is about zero. Therefore, the integral, to

=0.

leading order, is

C - exp(—(In M)7)

More generally, if we have an integral of the form

[ e (= L enp- e

when M is large, and f(¢) is of the form
J(&=¢
with 8 < 1, then the saddle point is ¢ = M. And the integral is
C' - exp(—f(M)).
If 3 = 1, the integral is of the form
C-exp(C' - M).

All the integral we used in Section (1.3) can be transformed into the one of
the forms of the above.

C Appendix 3

In this appendix, we show that the tail distribution of

¢
AtE/ olds,
0

for positive p’ = £, is log-normal.
Lemma 1. Let o; be the risk-neutral stochastic volatility, i.e., o; satisfies the

SDE:
do, = —p’Vdet + VoudZ,,

then

LV Myds

(17)

0t
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Proof.
Differentiate (17), and notice that

th - V . MtdZt,

we get

—M,
d = o'V M, dt
TS T Vs P

= —,OIVUE + VO'tdZt

dM,
o+ PV fo Myds

g0

i.e., 0y satisfies the original SDE.
Lemma 2. Tail distribution of fj M,ds is a log-normal distribution.
Proof.

Let M be a large number, we have the following estimations:
t t
P[/ exp(Zs)ds > M| < P[Cy exp(/ Zsds) > M]
0 0
according to Jensen’s inequality, and we have

P[/Ot exp(Z,)ds > M] > P[Cyexp(Zma)(1) > M]

where Z,,..(t) is the maximum of Brownian motion between 0 to t. Since
[y Zsds is normally distributed, the first inequality tells us that the tail of
fs exp(Z,)ds is no fatter than a log-normal distribution. Moreover, since dis-

tribution of the maximum of Brownian Motion is the same as the absolute
Brownian Motion, the tail of which is log-normally distributed. Therefore,
the second inequality shows that the the tail of fj exp(Z,)ds is no “thinner”
than a log-normal distribution. We conclude that the tail of [iexp(Z,)ds is a
log-normal distribution, and so is fj M,ds, because one can always find two

constants Dy and Dy (depending on t) such that:

¢ ¢ ¢
Dy / exp(Zs)ds < / M,ds < D, / exp(Zs)ds.
0 0 0

From Lemmas 1 and 2, we now show that the tail distribution of

L4V fy Mds

0t

is log-normal. The argument is the following.
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a) Because p’ and V' are positive, and M, is the positvie exponential Martingale,

we have
o O-OMtv

so the tail of o is no fatter than a log-normal.
b) Since the tail of fj M,ds is also log-normal, (from lemma 1), one can con-
struct a random variable ¢ such that

t
E=M, When/ Mds < M,
0

¢ ¢
52/ M,ds When/ M,ds > M.
0 0

where M is a large number. Apparently,

o> M

t % _I_p,vgv
and the latter has tail distribution of log-normal. Hence, the tail of o; is no
thinner than a log-normal. So it is log-normal.

Finally, we claim that the tail of fj o2 is also a log-normal. Since the tail
of o; is log-normal, so is that of o7. If we can conclude that a tail of the
summation of two log-normal r.v.’s is log-normal, by using induction, we can
prove that the tail of fj o2 is log-normal. The next lemma is to show that the
sum of log-normal has tail of log-normal.

Lemma 3. Let X and Y be two log-normal r.v.’s. Then the tail of 7 = X +Y
is log-normal.

Proof. Let f(Z) be the probability density function of Z. Then
112) & [exp(=(n X)) - exp(—(In(Z — X)))dX
— /exp(—[(lnX)2 +(In(Z — X))}dX

When 7 is large, we use the “steepest descent” technique to integrate it. By
differentiate the exponent

(In X)? + (In(Z — X))?
we get
2ln X 2In(Z - X)
X  Z-X
Set it to zero, we find the saddle point X = Z. Therefore, the tail distribution
of Z behaves as

exp(~2(In(5)?)

which is log-normal.
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