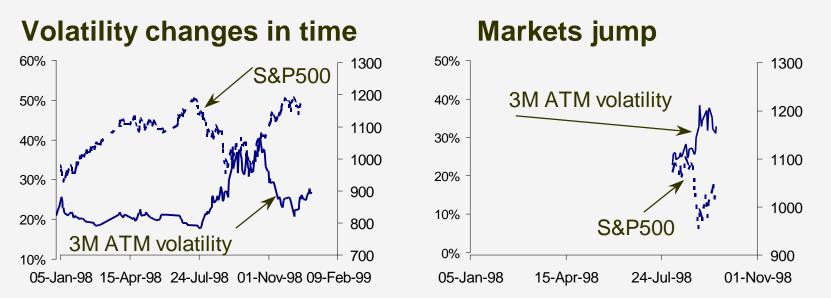
Perturbative Analysis of Volatility Smiles

Andrew Matytsin (212) 648 0820

New York, 29 January 2000

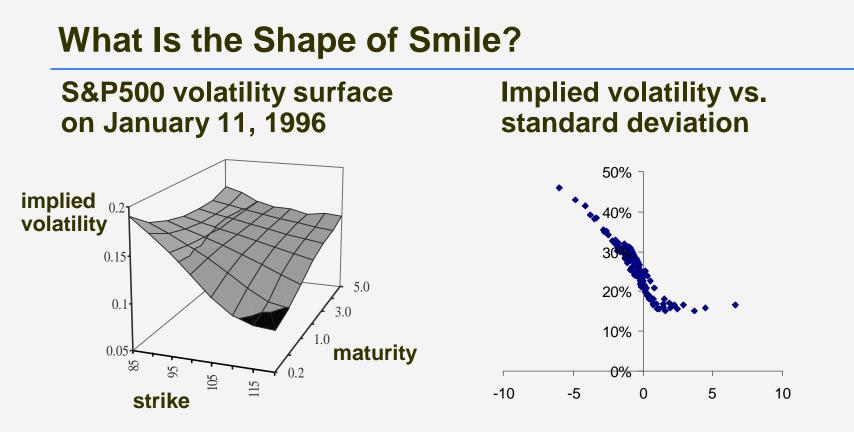
This report represents only the personal opinions of the author and not those of J.P. Morgan, its subsidiaries or affiliates.

Main Risks in Options Markets



- Index volatility is mean-reverting
- It is negatively correlated with the price
- A jump in price often entails a volatility jump

Most models ignore at least one of these risks

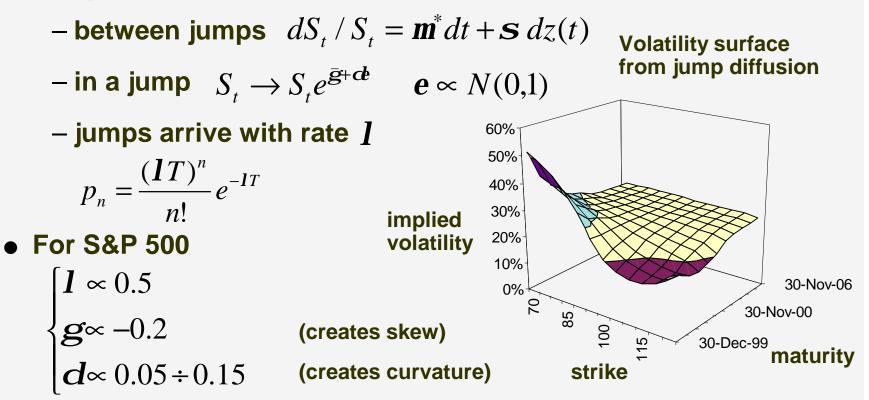


- Implied volatility decreases with strike price
- The skew slope is the greatest for short maturities

What underlying processes produce such skews?

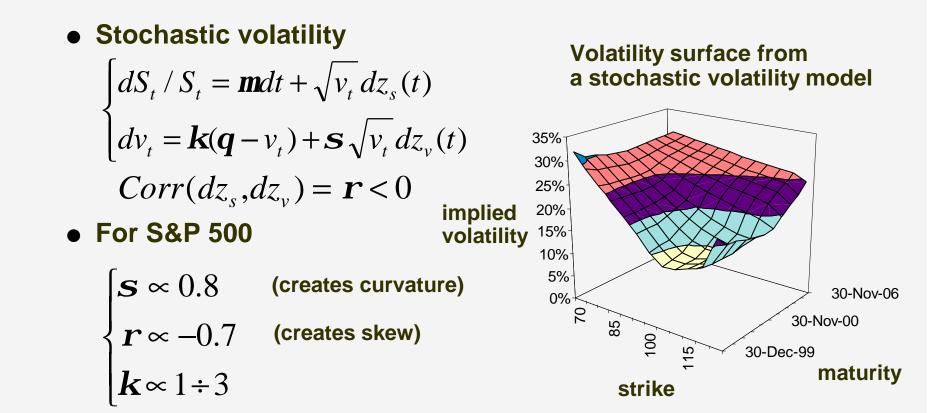
Is the Skew Due to Jumps?

Jump Diffusion model



The jump diffusion model works well for short maturities

What Happens at Longer Maturities?



Stochastic volatility models work well for long maturities

How to Combine Stochastic Volatility and Jump Diffusion ?

- between jumps $\begin{cases} dS/S = \mathbf{m}dt + \sqrt{v}dz_1 \\ dv = \mathbf{k}(\mathbf{q} v)dt + \mathbf{s}\sqrt{v}dz_2 \end{cases}$ Corr(dz₁, dz₂) = **r**
- market crashes form a Poisson process with rate \boldsymbol{l} $\begin{cases} \log S \to \log S + \boldsymbol{g} + \boldsymbol{d} \boldsymbol{e} & \boldsymbol{e} \propto N(0,1) \\ v \to v + \boldsymbol{g} \end{pmatrix}$
- the option price obeys the equation

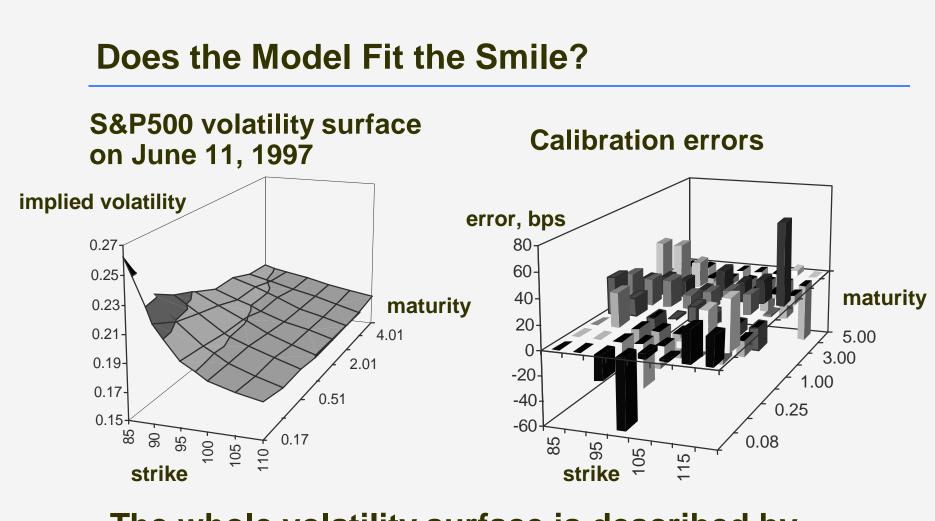
$$\frac{\partial f}{\partial t} + \mathbf{m}^* S \frac{\partial f}{\partial S} + \mathbf{k}(\mathbf{q} - v) \frac{\partial f}{\partial v} + \frac{1}{2} v \left\{ S^2 \frac{\partial^2 f}{\partial S^2} + \mathbf{s}^2 \frac{\partial^2 f}{\partial v^2} + 2 \mathbf{rs} S \frac{\partial^2 f}{\partial S \partial v} \right\}$$
$$+ \mathbf{I} E^* \left[f (Se^{\mathbf{g} + \mathbf{d} \mathbf{e}}, v + \mathbf{g}) - f (S, v) \right] = rf$$

European option prices can be computed analytically

What Is the Distribution of Stock Prices?

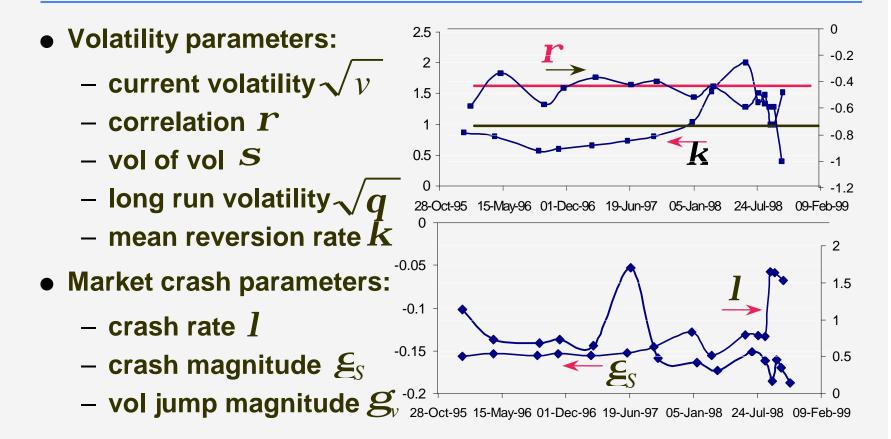
- Call prices equal $C = S P_1 K e^{-rT} P_0$
- Find the characteristic functional $f(t, f) = E^* \left[e^{if \ln(S/F)} \right] = \text{Fourier Transform of } P'_0$ • Use the affine ansatz $\hat{P}_n = e^{C(T-t, j) + D(T-t, j) \vee}$ to derive $\begin{cases} C(t, j) = C_H(t, j) + It \left[e^{ijg - j^2 d^2/2} I(t) - 1 \right] & p_{\pm} = \frac{\mathcal{E}_{\nu}}{s^2} (b - rsj i \pm d) \\ D(t, j) = D_H(t, j) & I(t) = \frac{1}{t} \int_0^t e^{g D(t, j)} dt = -\frac{2g}{p_+ p_-} \int_0^{-g D(t, j)} \frac{e^{-z} dz}{(1 + z/p_+)(1 + z/p_-)} \end{cases}$

This model accounts for the main risks of options markets



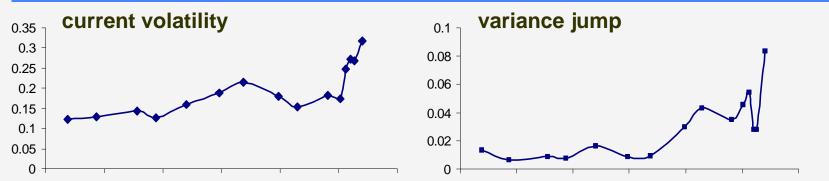
The whole volatility surface is described by one set of constant parameters

Are Smile Parameters Stable Over Time?

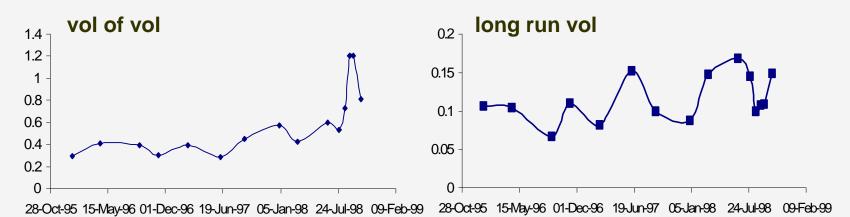


Mean reversion, correlation and crash size are constant

Patterns in Stochastic Volatility Parameters



28-Oct-95 15-May-96 01-Dec-96 19-Jun-97 05-Jan-98 24-Jul-98 09-Feb-99 28-Oct-95 15-May-96 01-Dec-96 19-Jun-97 05-Jan-98 24-Jul-98 09-Feb-99



Long run diffusion volatility is relatively stable

What Is the Intuition?

- How does each source of risk affect the smile slope
 - at long maturities
 - at short maturities
- What is its effect on
 - ATM volatility
 - smile curvature
- For many models, the "weak smile expansion" is a good guide.
- However, the natural expansion is for the characteristic functional, not the implied volatilities.

How to construct the weak smile expansion?

Linking Characteristic Functionals to Implied Volatilities

• The characteristic functional

The probability distribution

$$F_t(\mathbf{h}) = \int_0^\infty p(K) e^{i\mathbf{h}\ln(K/F)} dK$$
$$p(K) = e^{rT} \frac{\partial^2 C}{\partial K^2}$$

• Introduce implied standard deviation $\mathbf{j} = \mathbf{\bar{s}}(K,T)\sqrt{T}$ Parametrize $\mathbf{j} = \mathbf{j}(z)$ where $z \equiv d_2 = \frac{\ln(F/K)}{\mathbf{j}} - \frac{\mathbf{j}}{2} = \ln(M/K), \qquad M = Fe^{-\mathbf{j}^2/2}$ • Then $p(K) dK = N'(z) dz \left\{ -1 + \frac{z}{\mathbf{j}/\mathbf{j} + z + \mathbf{j}} - \frac{\partial}{\partial z} \left(\frac{1}{\mathbf{j}/\mathbf{j} + z + \mathbf{j}} \right) \right\} \qquad \mathbf{j} \equiv \frac{\partial \mathbf{j}}{\partial z}$

Linking Characteristic Functionals to Implied Volatilities

• Changing the integration variable to *z* and integrating by parts

$$F(\mathbf{h}) = \int_{-\infty}^{+\infty} dz \, N'(z) \, e^{-i\mathbf{h}\mathbf{j}\left(\frac{1}{2}\mathbf{j}+z\right)} (1+i\mathbf{h}\mathbf{j})$$

• In terms of $w \equiv z + ihj(z)$

$$F(\mathbf{h}) = \int_{-\infty}^{+\infty} dw \, N'(w) \, e^{-\frac{1}{2}\mathbf{h}(\mathbf{h}+i)\mathbf{j}^{2}(w)}$$

$$w = \frac{\ln(F/K)}{j(w)} + \left(ih - \frac{1}{2}\right)j(w)$$

$F(\mathbf{h})$ is related to the analytic continuation of \mathbf{j}

What Is the First Order Perturbation?

- Assume $\mathbf{j}^{2}(w) \cong \mathbf{j}_{0}^{2} + \mathbf{y}_{1}(\mathbf{h}, w)$ with \mathbf{j}_{0} independent of w. • Then $F(\mathbf{h}) = e^{-\frac{1}{2}\mathbf{j}_{0}^{2}\mathbf{h}(\mathbf{h}+i)} \{1 + F_{1}(\mathbf{h})\}$ $\int_{-\infty}^{+\infty} dw N'(w)\mathbf{y}_{1}(\mathbf{h}, w) = -\frac{2}{\mathbf{h}(\mathbf{h}+i)} F_{1}(\mathbf{h})$ $w = -\frac{x}{\mathbf{j}_{0}} + \mathbf{j}_{0}\left(i\mathbf{h}-\frac{1}{2}\right) + O(\mathbf{y}_{1})$
- As a result

$$\mathbf{y}_{1}(x) = -\frac{2\mathbf{j}_{0}}{\sqrt{2\mathbf{p}}} e^{\frac{x^{2}}{2\mathbf{j}_{0}^{2}}} \int_{-\infty}^{+\infty} \frac{F_{1}(\mathbf{h}^{*}) d\mathbf{h}^{*}}{\mathbf{h}^{*2} + \frac{1}{4}} e^{-\frac{1}{2}\mathbf{j}_{0}^{2}\mathbf{h}^{*2} - ix\mathbf{h}^{*}} \qquad \mathbf{h}^{*} = \mathbf{h} + i/2$$

The smile slope is a simple integral of $F_1(\mathbf{h}^*)$

What Is the Effect of Price Jumps?

• In the Merton model

The ATM smile slope

$$\frac{\partial \mathbf{y}_{1}}{\partial x}\Big|_{x=0} = 2\mathbf{I}T(e^{\mathbf{g}}-1) \qquad \Rightarrow \quad \frac{d\overline{\mathbf{s}}}{dx}\Big|_{x=0} = \frac{\mathbf{I}(e^{\mathbf{g}}-1)}{\mathbf{s}_{0}}$$

- stable calibration of expected loss $I(e^g-1)$

– more noise in l and $\underline{\beta}$

• The smile curvature $(\boldsymbol{\xi} = 0)$

$$\frac{\partial^2 \mathbf{y}_1}{\partial x^2} \bigg|_{x=0} = \frac{\mathbf{I} T \mathbf{d}^4}{4 \mathbf{j}_0^2} \qquad \mathbf{\overline{S}} \approx \mathbf{S}_0 + \frac{\mathbf{I}}{16} \frac{\mathbf{d}^4 x^2}{\mathbf{S}_0^3 T}$$

at small *d*, very straight skews
strong dependence on *d*when *d* is large

What Is the Effect of Stochastic Volatility?

- Black-Scholes variance $\mathbf{j}_{0}^{2} \equiv \mathbf{q}T + \frac{\mathbf{v} \mathbf{q}}{\mathbf{k}}(1 e^{-\mathbf{k}T})$
- As $T \rightarrow 0$, $y'_{1}(x) = \frac{1}{2} rsT$ Hence the smile slope (in stdev space)

$$\frac{1}{\overline{\boldsymbol{s}}_0}\frac{d\overline{\boldsymbol{s}}}{dz} = \sqrt{T}\,\frac{d\overline{\boldsymbol{s}}}{dx} = \frac{\boldsymbol{rs}}{4\sqrt{v_0}}\,\sqrt{T} \approx 0.16$$

• As
$$T \to \infty$$
, $y'_{1}(x) = \frac{\mathbf{rs}}{\mathbf{k}}$
 $\frac{1}{\mathbf{s}_{0}} \frac{d\mathbf{s}}{dz} = \frac{\mathbf{rs}}{2\mathbf{k}\sqrt{qT}} \propto 0.06$

- calibration of *rs* more stable

long run skew often too flat

The long run Heston smile is often too flat

How Jumps in Volatility Change the Picture?

• If $\boldsymbol{\xi} = \boldsymbol{d} = 0$, only the change in volatility level

$$\mathbf{y}_{1}(x) = -(\mathbf{I}T)(\mathbf{g}T) \frac{1 - \mathbf{k}T - e^{-\mathbf{k}T}}{(\mathbf{k}T)^{2}} \qquad \qquad \rightarrow \frac{1}{2}(\mathbf{I}T)(\mathbf{g}T) \qquad \text{as } T \to 0$$
$$\rightarrow \frac{\mathbf{I}g}{\mathbf{k}}T \qquad \qquad \text{as } T \to \infty$$

• Interaction of vol jumps with price jumps

$$y_{1}(x) = \frac{(lT)(gT)}{2} \frac{g}{j_{0}^{2}} \frac{1-kT-e^{-kT}}{(kT)^{2}}$$

$$-as T \rightarrow 0, \quad \overline{s}'_{x} = \frac{lg}{s_{0}} \rightarrow (1+a_{0}) \frac{lg}{s_{0}} \qquad a_{0} = \frac{g}{4s_{0}^{2}}$$
for the jump from 15% to 35%
$$g \approx 0.10 \Rightarrow a_{0} \approx 1.0$$

$$-as T \rightarrow \infty, \quad y_{1}'(x) = \frac{lgg}{kq} \quad vs. \quad \frac{rs}{k} \qquad \Rightarrow a_{\infty} = \frac{lgg}{rsq} \approx 0.9$$
Volatility jumps significantly affect the skew

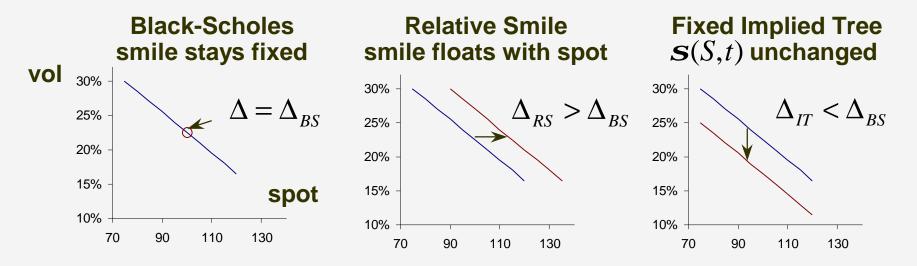
What Is the Delta?

• When the spot moves, the smile can move too

hus
$$\Delta = \frac{dC}{dS} = \frac{\partial C}{\partial S} + \frac{\partial C}{\partial \overline{S}} \frac{d\overline{S}}{dS}$$

• Three regimes

T



Stochastic volatility and jump diffusion yield relative smiles

How to Minimize the P(L) Variance?

• Given d and d, $dC = \Delta dS + \Lambda dr$

Hedge with y shares:

P/L = dC - y dS

• In a stochastic volatility model $Var(P/L) = (\Delta - y)^2 Var(ds) + 2(\Delta - y) \Lambda Cov(ds, dr) + \Lambda^2 Var(dr)$ Minimize with respect to y: $y = \Delta + rs\Lambda/S < \Delta$ • Since $\Delta = \Delta_{BS} - \Lambda \overline{s}^2(x)'/S$ $y = \Delta_{BS} + rs\Lambda/2S$

Optimal "risk management" delta < Δ_{BS}

What Is the Meaning of the Implied Tree?

- Imagine the world is described by a stochastic volatility model, but we hedge with the implied tree model
- Then the smile slope $\frac{d\overline{s}}{dx} = \frac{rs}{4\overline{s}}$
- When we move the spot, keeping the implied tree fixed,

$$\frac{d\mathbf{\bar{s}}^{2}(x,T)}{dt} = \frac{1}{T} \int_{0}^{T} dt \ E_{BB} \left[\frac{\partial \mathbf{\bar{s}}^{2}(\mathbf{x},t)}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{BB}(t)} \right]$$

Thus

$$\Delta_{IT} = \Delta_{BS} + \mathbf{rs} \Lambda / 2S = y$$

Implied tree delta mimicks the risk management delta

Summary and Overview

- Stochastic volatility and market jumps produce a skewed surface of implied volatilities
- The effect of volatility jumps on the skew is highly significant
- Perturbative expansions are a useful tool for understanding the smile
- The optimal delta depends on the dynamics of volatility