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Main Risks in Options Markets

Volatility changes in time

Most models ignore at least one of these risks

Markets jump

l  Index volatility is mean-reverting

l  It is negatively correlated with the price

l  A jump in price often entails a volatility jump    
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What Is the Shape of Smile?

What underlying processes produce such skews?

Implied volatility vs. 
standard deviation 

l  Implied volatility decreases with strike price

l  The skew slope is the greatest for short maturities
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Is the Skew Due to Jumps?

The jump diffusion model works well for short maturities

l  Jump Diffusion model 

– between jumps

– in a jump

– jumps arrive with rate 

l  For S&P 500
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What Happens at Longer Maturities?

Stochastic volatility models work well for long maturities

l  Stochastic volatility  

l  For S&P 500
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How to Combine Stochastic Volatility
and Jump Diffusion ?

European option prices can be computed analytically

l  between jumps    
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l  market crashes form a Poisson process with rate     λ

l  the option price obeys the equation    
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What Is the Distribution of Stock Prices?

This model accounts for the main risks of options markets
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Calibration errors

Does the Model Fit the Smile?

S&P500 volatility surface
on June 11, 1997

The whole volatility surface is described by
one set of constant parameters
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Are Smile Parameters Stable Over Time?

Mean reversion, correlation and crash size are constant

l Volatility parameters:

– current volatility
– correlation
– vol of vol
– long run volatility
– mean reversion rate

l Market crash parameters:

– crash rate
– crash magnitude
– vol jump magnitude
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Patterns in Stochastic Volatility Parameters
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What Is the Intuition?

How to construct the weak smile expansion?

l How does each source of risk affect the smile slope
– at long maturities
– at short maturities

l What is its effect on
– ATM volatility
– smile curvature

l For many models, the “weak smile expansion” is a good
guide.

l However, the natural expansion is for the characteristic
functional, not the implied volatilities.
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Linking Characteristic Functionals to
Implied Volatilities

l The characteristic functional

l Introduce implied standard deviation

l Then

The probability distribution

Parametrize                         
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Linking Characteristic Functionals to
Implied Volatilities

l Changing the integration variable to
and integrating by parts

l In terms of

is related to the analytic continuation of
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What Is the First Order Perturbation?

l Assume

l Then

l As a result

The smile slope is a simple integral of

with       independent of     .
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What Is the Effect of Price Jumps?
l In the Merton model

– stable calibration of expected loss
– more noise in      and

l The smile curvature

– at small    , very straight skews
– strong dependence on    when    is large

The ATM smile slope
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What Is the Effect of Stochastic Volatility?
l Black-Scholes variance

l As            ,

l As             ,

– calibration of        more stable
– long run skew often too flat

Hence the smile slope (in stdev space)

The long run Heston smile is often too flat
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How Jumps in Volatility Change the Picture?
l If                 , only the change in volatility level

l Interaction of vol jumps with price jumps

Volatility jumps significantly affect the skew

for the jump from 15% to 35%
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What Is the Delta?
l When the spot moves, the smile can move too

l Three regimes

Stochastic volatility and jump diffusion yield relative smiles
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How to Minimize the P(L) Variance?

l Given       and      ,

l In a stochastic volatility model

l Since

Hedge with     shares:

Minimize with respect to    :

Optimal “risk management” delta <
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What Is the Meaning of the Implied Tree?

l Imagine the world is described by a stochastic volatility model,
but we hedge with the implied tree model

l Then the smile slope

l When we move the spot, keeping the implied tree fixed,

Implied tree delta mimicks the risk management delta
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Summary and Overview

l Stochastic volatility and market jumps produce a skewed
surface of implied volatilities

l The effect of volatility jumps on the skew is highly significant

l Perturbative expansions are a useful tool for understanding
the smile

l The optimal delta depends on the dynamics of volatility


