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Abstract

ARCH-models have become popular for modelling financial time series. They seem, at first,
however, to be incompatible with the option pricing approach of Black, Scholes, Merton et
al., because they are discrete-time models and posess too much variability. We show that
completeness of the market holds for a broad class of ARCH-type models defined in a suitable
continuous-time fashion. As an example we focus on the GARCH(1,1)-M model and obtain,
through our method, the same pricing formula as Duan (1995), who applied equilibrium-type
arguments.

This is an extended version of Kallsen and Taqqu (1995). It includes additional comments
and detailed proofs. It also includes a chapter concerning “the equality of filtrations” which
deals with the following issue. Trading strategies should be based on information (filtration)
that traders posess. In practice, however, one typically assumes that thay are predictable
with respect to the filtration generated by a Brownian motion which serves as a background
source of randomness. It is thus necessary to show that the two filtrations coincide. We do
this here.
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Chapter 1

Pricing options in ARCH-like
models

1.1 Introduction

Many papers have now been written on the pricing of stock options. One common approach
— initiated by the work of Black, Scholes and Merton in the early seventies — is to assume
that the underlying stock price behaves like a specific stochastic process and to make further
assumptions about how trade takes place in order to finally derive an option pricing formula.

In the Black-Scholes model, for example, the underlying stock price follows geometric
Brownian motion. In addition, the market is assumed to be frictionless, to allow for continuous
trading and — this is important — to offer no arbitrage opportunities. These conditions are
enough to ensure completeness of the market, that is to derive a fair price for various types
of contingent claims. The property of completeness, however, often ceases to hold when
geometric Brownian motion is replaced by some other process.

In order to determine option prices when there is no completeness further assumptions
concerning risk premia and/or traders’ preferences are usually made. This is the case for
example in the models considered by Hull & White (1987), Johnson & Shanno (1987), Scott
(1987), Wiggins (1987), Stein & Stein (1991), Melino & Turnbull (1990), Heston (1993) and
Duan (1995).1 It may very well be the case that many realistic models — those that meet
statistical scrutiny — lack completeness.

However, one appealing feature of the Black-Scholes pricing formula is that it relies — apart
from assumptions concerning the stock price behaviour — mainly on the fact that the market
offers no “free lunches,” i.e., no arbitrage. It seems thus worthwhile to investigate whether
stock price models that are more realistic than geometric Brownian motion continue to fit
into such a framework.

In the past dozen years ARCH-models have become popular for modelling financial time
series since they are able to account for several empirical features like volatility clustering and
leptokurtosis (fat tails) in the distribution of returns. While they differ substantially in their
detailed expression, most ARCH-models involve a sequence of uncorrelated innovations whose

!Other approaches to option pricing under specific assumptions include Cox & Ross (1976), Merton (1976),
Geske (1979) and Rubinstein (1983). For an overview see Hull (1993).
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variance is random. Conditioned on the past, the variance depends only on the previous inno-
vations and previous conditional variances. Typically, large (resp. small) absolute innovations
increase (decrease) the conditional variance and therefore subsequent absolute innovations
tend to be large (small) again. This leads to volatility clustering.

Viewed as discrete-time models, ARCH-models do not allow for option pricing along the
lines of Black & Scholes (1973), Cox, Ross, Rubinstein (1979) and Harrison & Pliska (1981),
because they are not complete.? Roughly speaking, there is too much variability in the stock
price between successive time steps. Qur way out, is to consider continuous-time ARCH-type
models. These are models where the variance is a deterministic function of the past returns.

In Section 1.2 we investigate a general ARCH-like continuous time model and establish
completeness. We show, in Section 1.3, how to extend the usual discrete-time ARCH models
to continuous time so that they fit into this framework. This is done by letting the process
evolve like a geometric Brownian motion between any two discrete ARCH times. This point of
view is often taken implicitly in practice where, in order to estimate the volatility at a discrete
ARCH time, one assumes that the volatility is constant between these times and uses high
frequency return data to estimate it (see for example Taylor and Xu (1995) and Christensen
and Prabhala (1994)).

We use the GARCH(1,1)-M model to illustrate our methodology. The pricing formula we
obtain for the corresponding continuous time model coincides in this case with one considered
by Duan (1995), who derived it based on the discrete-time model by using equilibrium-type
arguments. In addition to obtaining pricing formulas and trading strategies (these have com-
plicated expressions) we focus on the delta of the option, i.e., the first derivative of the option
price with respect to the stock. If the underlying variables are not chosen in the right way
then the delta of the option does not yield the correct strategies. We show how to select the
right variables.

A brief conclusion is given in Section 1.4. The proofs can be found in Chapter 2. Finally,
Chapter 3 deals with “the equality of filtrations” and contains the proof of Lemma 2 that is
needed to establish completeness with respect to the appropriate information structure.

1.2 Completeness of a general ARCH-like model

We use the now classical mathematical setting of Harrison & Pliska (1981). Our general model
for a market consisting of one kind of stock and bond is the following;:

Prerequisites. Let (Q, F, P) be a probability space, T" a positive real number (the terminal
time), (By)o<i<7 a standard Brownian motion on (Q, F, P), and (F)o<i<7 the P-completion
of the filtration generated by (B¢)o<i<7. We assume F = Fr. The filtration (Fy)o<i<r fulfills
the usual conditions, i.e., Fg contains all null sets of P and (Fe)o<e<T is right continuous (e.g.
Protter (1990), Theorem 1.4.31).

20ne therefore has to make more assumptions in order to price contingent claims. In his paper about
option pricing in ARCH-models, Duan (1995) makes assumptions concerning traders’ utility functions. In
their empirical study, Engle & Mustafa (1992) assume that the risk-neutral probability measure is that of an
ARCH-model and estimate its parameters by equating theoretical and observed option prices.
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The Brownian motion B will be the only source of randomness in the model considered
below.

The model. As in Harrison & Pliska (1981), the bond is represented by a stochastic process
(StO)OStST' For simplicity we assume a fixed constant interest rate r, i.e., S° is a function of
the form S? = ™.

The stockin our model is the stochastic process (Stl)ogth meeting the following conditions:

2

S} =S5 exp [/(Jt(M(US—) _ U;—) d5—|-Xt] , (1.2.1)

where the drift p : RT — R is a given function with continuous first derivative and where the
process (Xt)ogth solves the stochastic differential equation

t
X, = / o, dB, (1.2.2)
0
with
o:=F(X) >0, (1.2.3)

where I' : D[0,T] — DI[0,7] is a given functional Lipschitz operator. Observe that o, =
F(X);— depends on (X,)g<s<, that is, on the past values of X. Assume, moreover, that F
has a lower bound K > 0 and that limsup,_, . p(z)/2 < oc.

The motivation. To obtain some insight into the model apply the Ité6-formula to (1.2.1) and
observe that S solves the stochastic differential equation

¢ ¢
Sl =51 +/ j(0s_) S ds +/ 0, SLdB,, (1.2.4)
0 0
or, in differential notation,
ds1
F = ,u(at_) dt—|—0't_ dBt (125)
i

This means that the relative stock price change (or instantaneous return) has a drift component
pdt (maybe dependent on o) and a noise component o, dB;. Equation (1.2.1) coincides for
constant g and ¢ with the stock price in the Black-Scholes model. Our model, however,
allows for a changing volatility. More precisely, o;_ is a function of X up to time ¢t. Since X
is — ignoring the drift 4 — the integral of the instantaneous return in (1.2.5), equation (1.2.3)
expresses the volatility in terms of past returns and is therefore an ARCH-type relationship.

Our setting is related to the models by Hull & White (1987), Scott (1987), Wiggins (1987),
Stein & Stein (1991), and Heston (1993) in that S follows equation (1.2.1) with a time-varying
volatility o. The difference lies in the specification of . Here it is a function of past returns,
whereas in these models, it involves a second source of randomness.

The following remarks clarify the assumptions in the model.
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Remarks.

1. D[0,T] denotes the space of functions f : [0,7] — R that are cadlag, i.e., right-

continuous with existing left-hand limits. Almost all integrands in stochastic integrals
occuring in this paper are caglad (left-continuous with existing right-hand limits) so that
integrability is ensured.

. F:D[0,T] — DI[0,T] is called functional Lipschitz if for all f,g € D[0,T] the following
conditions hold:

(i) For any ¢, F'(-); : D[0,T] — R is measurable with respect to the o-field of D[0, 7]
that is generated by the projections oy : D[0,T] — R, f— f(s), s <t.
(ii) for all ¢ we have that f|o,¢) = gljo,+) implies F(f)]jo.) = F(9)jo,1)

(iii) there exists a constant K < oo (independent of f,g) such that for all ¢ we have
|E'(f)e = F(g):| < Ksup,y | fs — gsl-

Condition (i) implies that F'(X) is adapted for any adapted cadlag process X. Therefore
this definition is a special case of the one given in Protter (1990), V.3. or the one given
in Chapter 3. Observe that (O‘t_)OStST can be used as an integrand, since o is cadlag.

. According to Theorem 12 in Chapter 3 (or Protter (1990), Theorem V.3.7), there exists
a unique solution to the stochastic differential equation (1.2.2). Therefore X and S! are
uniquely defined by (1.2.1), (1.2.2), (1.2.3) (provided S§, i, F are given). Furthermore
X and S are continuous since they are stochastic integrals with respect to continuous
processes.

. The assumptions concerning the lower bound of F' and the limiting behaviour of pu en-
sure that the process ((u(0¢) —7)/0¢)o<i<T is a bounded adapted cadlag process.

We now introduce the discounted price process (ZtO)OStST:

_ 5

Zy = 50 = e S} (1.2.6)
With the help of Girsanov’s theorem we obtain
Lemma 1 1. There is a well-defined probability measure P* equivalent to P such that

ap- T (o) —r 1T (oe) = )2
iz 1= exp [/0 — o dBS_§/0 ( o ) ds

15 its Radon-Nikodym density.

2. The discounted price process 7 is a positive local martingale (and also a supermartingale)

with respect to P*, and is given by

t 2 t
Zt:Zoexp{—/O %T_ds—l—/o Oy dWS} (1.2.7)
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where (Wy)o<i<T, defined by
t _
W, ::/ %dm—&, (1.2.8)
0 5—

is a standard Brownian motion with respect to P*.

In the beginning of this chapter we assumed that the filtration under consideration is the
filtration generated by B. From an intuitive viewpoint however, the filtration generated by .S
(or Z) rather than B is the more natural one, since S is the actually observed process. The
following lemma, proved in Section 3.4, shows that we need not worry about this point in our
setting. (See also the remark following Theorem 3.)

Lemma 2 The P-completed filtrations generated by either B, W, S, or Z coincide with
(Ft)o<i<T-

We now recall some definitions and statements from Harrison & Pliska (1981). Suppose
that 7 is a martingale under P*. A process ¢ = (&Y, (b%)OStST is called trading strategy if ¢ is
predictable and

t
(/ (ph)2d[Z, Z]S) ’ , 0 <t <T,is locally integrable under P*. (1.2.9)
0

We say that a trading strategy ¢ is admissable if it is self-financing, i.e., the discounted value
process V (¢) = ¢° + ¢' 7 solves

V() = V(o) + /0 ¢'dz, (1.2.10)

and if, in addition, V(¢) is a non-negative martingale under P* (V is the V* of Harrison
& Pliska (1981)). A contingent claim is a positive random variable C'. We call it attainable
if there exists an admissable strategy ¢ that generates C, i.e., Vy(¢) = e "TC. For such a
claim C, mg := Vo(¢) = Ep=(e77TC) is called the price associated with C' and this is the only
reasonable price for C' at time 0 if we assume the absence of arbitrage opportunities. For times
t between 0 and T the fair price of the claim is given by m; = €"'V;(¢) = "' Ep«(e " TC|F;). We
call a market complete if every P*-integrable claim is attainable. A P*-martingale Y is said
to have the representation property if any martingale M with respect to (Q, F, (F)o<i<T, P¥)
can be written as M = My + [ HdY for some H € L(Y), where L£(Y) denotes the set of all
predictable processes such that (fg(Hs)Qd[Y]s)%, 0 <t < T is locally integrable under P*. If
the discounted price process Z has the representation property, then the market is complete
in the above sense.

Theorem 3 Suppose that Z is a martingale under P*. Then the model is complete. In
particular, 79 = Ep*(e_rTC) s the price at time 0 for a given integrable contingent claim
C (e.g., the European call option with expiration date T and strike price K defined by C' =
(54— K)*).
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Remarks.

1. In order to derive fair option prices Z must be a martingale, not just a local martingale.
This is why we assume in Theorem 3 that Z is a martingale under P*. Since Z is a
positive supermartingale (Lemma 1), in order to show that Z is a martingale under P~
it is enough to prove that I/(Z7) = Zy, where T is the terminal time (see Harrison &
Pliska (1981), 3.9).

2. The next remark underlines the importance of filtrations in contingent claim pricing.

The proof of Theorem 3 makes use of Lemma 2. We derive the representation property
of Z with respect to (F;)o<t<7 from the representation property of W with respect to its
own natural filtration, which was possible because the filtrations coincide. One can still
prove Theorem 3 without knowing that the filtrations generated by B, W and Z tally
by using a result that can be found e.g. in Stroock & Yor (1980), Lemma 8.1. Applied
to our situation it yields that since (ft)OStST is the natural filtration of the Brownian
motion B and, since W and B are related to each other by Girsanov’s theorem (see
the proof of Lemma 1), W has the predictable representation property with respect to
(Fi)o<e<T and the probability measure P*.

However, Theorem 3 would be unsatisfactory from an intuitive point of view if one
ignored the equality of filtrations given in Lemma 2. Indeed, completeness of the model
implies the existence of a unique fair option price 79 which is also achievable by using
trading strategies. These trading strategies, however, should be based on information
that traders posess. This will not be the case if we only claim that trading strategies
are predictable with respect to (ft)OStST but not with respect to the natural filtration
of S (or Z) which represents the information that is really available to traders. Lemma
2 removes this difficulty.

1.3 Example: GARCH(1,1)-M

Our interest lies — as indicated in Section 1.1 —in models that can be made complete so that
options can be priced assuming only the absence of arbitrage. For a discrete-time market
consisting of only two securities “stock” and “bond” to be complete it is necessary, roughly
speaking, that over any single time period the stock price has at most only two possible values
to move to (see Harrison & Pliska (1981), Willinger & Taqqu (1987)). The stock may go up
or down but it is not supposed to take several or worse, infinitely many values, as in the case
of ARCH.

We want to indicate a way to sidestep this difficulty. The idea is to interpolate the usual
(e.g. daily) ARCH models in a continuous-time fashion. As an example we consider the
particular ARCH-model known as GARCH(p,q)-M.

Denoting by S} the stock price at time ¢ we may formulate the GARCH(p,q)-M model as

follows:
1 2

o
= p(oy) — 775 + o€, (1.3.1)
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where u is a given function, €y, €, ... is a sequence of i.i.d. standard normal random variables,
and o; satisfies:
p g
o =w+ Z ai(at_iet_i)z + Z ﬁjaf_j, (1.3.2)
=1 7=1
W, 00, ...,0p, 1, ..., B3, being fixed constants.

The innovations in this model are x; = oy¢;, t = 1,2,.... Their variance (i.e., o)
conditioned on “the past” is given by the GARCH(p,q)-equation (1.3.2), which indicates
that o is a linear function of the earlier squared innovations x7_;, 27 ,...,27_, and the
conditional variances o2 ;,0% ,,.. .,Uf_q. The drift in the return in equation (1.3.1), namely

w(oy) — 02/2, also depends on o;. Models with this property are known as ARCH-in-mean
or ARCH-M. The meaning of equation (1.3.2) is that high volatility can result from large

absolute returns z7_; or from a large volatility o7_; in the preceding time periods. For more

details on ARCH-models, see Bollerslev et al. (1992).

1.3.1 Continuous-time GARCH

We now illustrate the continuous time embedding methodology with the GARCH(1,1)-M
model. We will replace the i.i.d. random variables ¢ in (1.3.1) and (1.3.2) by increments
Bp — Bjj-1 of a standard Brownian motion B. More specifically we assume the following
continuous time model:

Let 0¢,w, a, 3 be positive real numbers and let ¢ : RT — R be a given function with
continuous first derivative and such that limsup,_,. pu(z)/z < co. Now define Sy, X, 0y, 74
as in Section 1.2 with

0o for0<t <1
F(X)t = (1.3.3)
(w—l—oe(X[t] —X[t]_l)z—l—ﬁF(X)[zt]_l) for t > 1.

N

Explicitly:
t o2
St =Slexp l/ (,u(as_) — ;_) ds + Xt] , (1.3.4)
0

t
X, = / o, dB,, (1.3.5)

0
o:=F(X), (1.3.6)
Zy = "S) (1.3.7)

Note that F' > y/w > 0. The processes S, X, 0, 7 are well defined because
Lemma 4 F is functional Lipschitz.

In order to see that this model is in fact an extension of (1.3.1), (1.3.2) observe that for

integer values of ¢,

1 0.2

log —1— = p(o-) — % + 04— (Bt — Bi-1)
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and ,
9 9 o§ fort=1
= (F(X);_)" =
oi_ = (F(X):-) { w+ oea(zt_l)_(Bt_l — Bi_2)* + ﬁa(zt_l)_ for t > 2.
Thus for n < t < n+1, the price process .S; behaves like geometric Brownian motion with drift

p(o,) and volatility o,,. The parameter o, is in fact random and changes from one integer
time to the next according to the GARCH(1,1)-M model.

1.3.2 Completeness

Assuming again a constant interest rate r, we note that Lemmas 1 and 2 from Section 1.2
apply. Here the equivalent measure P* is given by

I - ol (e

+<_M) (Br — Byqp) — %(IM(L])]”‘)Q}

Lemma 5 7 is a martingale under P*.

Combining this result with Theorem 3 we obtain

Theorem 6 (Completeness). Our continuous-time GARCH(1,1)-M model is complete and
the price for any integrable claim C is

mo = Eps(e7"TC). (1.3.8)
Remarks.

1. It is not necessary to modify the model if the time ¢ for which we want the option price
does not coincide with the beginning of an ARCH time step (e.g. a day). The price of
the option for any time 0 < ¢ < 7T is

m = e Ep(e7"TC|FY). (1.3.9)

2. The derivation of the option price works in the same way for other ARCH-models, in
particular for GARCH(p, ¢)-M, where we consider

F(X);=op for0<t< max(p,q)

and

N

P q
F(X); = (w +> o (X[g—gi-1) — Xpg-0)* + 3 ng(X)ft]_j) for ¢t > max(p, q).
=1 7=1

(with fixed constants w,aq,...,ap, B1,..., 5,00, .., O'max(%q)_l) instead of equation

(1.3.3).
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Let us now look at how the discounted stock price Z behaves under the equivalent mar-
tingale measure P*. Using relations (1.2.8) and (1.2.6), we can replace in equations (1.3.3)
— (1.3.6) the process B (the standard Brownian motion with respect to P) by W (the stan-
dard Brownian motion with respect to P*) and also the stock price S by the discounted price
process Z and get

t 2
7y = Zgexp [ / U;_ ds + Yt] (1.3.10)
0
with
¢
Y, :/ o, dW, (1.3.11)
0
and
ol for0<t <1
o} = 2 ) (1.3.12)
w+a (Y[t] — Yjg-1 + plopg-1) — f‘) + oy, fort>1.

We may now observe an interesting difference with the Black & Scholes case. The discounted
price Z; in (1.3.10) is a function of the volatility o but because the evaluation of o, as given
by (1.3.12), involves u, the option price at time 0, namely 7o = Fp«(e771C), is a function of
the drift u of the stock. This will be the case even if we choose p constant. This, in fact, is
the typical state of affairs. The Black & Scholes case is, in this regard, a degenerate situation.

Equations (1.3.10) — (1.3.12) and Theorem 6 correspond to Theorem 2.2 and Corollary
2.3 in Duan (1995). Therefore Duan’s option pricing formula coincides for integer times with
ours, if we choose the same type of drift function as Duan (u(o;) = r + Aoy for some positive
constant A).

1.3.3 Pricing formula and trading strategies

We want to derive a more detailed expression of the price m given in (1.3.9). To this end
we consider a claim of the form ' = ¢(Zr) for some measurable, P} -integrable function
¢ : R — R*. In the following, fix an integer n < T and let n < ¢ < min(n + 1, 7).

Theorem 7 (Pricing formula). The discounted price of the claim C' = ¥(Zr) at time t
equals

e_rtﬂ't = pn(ZthvUnvth)

2
= /Qb{Ztexp [—Z—n(n—l— 1—t)+o,21

+ Z_: %fi((f?wfl‘l‘_nlo é_O-_n(t_n)7$27"'7$i)

L 2
1 1 Z Onp
_§f (Unvxl‘l'_logz__7@_n)7$27"-7$[T]—n)([T]+1_T)
[1]-n o 1
7 n N2
+ {f (Un,xl—l——log—— 7(t—n),x2,...,xz)} $z+1]}
( 7dmg(n—l— L=t 1., L, T—[T)d(z1, .., 2(1]—pt1) (1.3.13)

(resp. N(0,T —t)(dzy) for [T] = [t]),
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where n = [t] and the functions f* : Rt x R¥ = R*, k =0,1,2,..., are defined recursively
by

(o) = o
fl(o'27$1) =w+ 04(0'$1 + Iu(o-) _ T‘)2 ‘I’ﬁ0'27
fk+1(0-27$17"'7xk+1) = fl(fk(0'27$17...7$k)7$k+1).

In order to obtain the generating trading strategies we need the following technical lemma
which will allow us to apply Ité’s formula. Recall that P* is a probability measure on £ and
that the claim €' is assumed integrable. We use the notation Py to denote the probability
measure induced by a random variable X.

Lemma 8 Fir an integer n < T. For P(*ngn)-almost all (2,6) the function (z,t) — p,(z, 2,

&,t,T) has continuous second order partial derivatives in RT X (n,min(n 4+ 1,T)).

Theorem 9 (Trading strategies). The following trading strateqy ¢ = (¢°, ¢') defined by

Dipo(Ze, Zy 00, 8, T) forn <t <min(n+1,T)
1 _ . 1 . . . .
¢y = { Emsﬁ il Zstéze limit exists Jor t integer

and
(b? == thbi for0 <t <T.

generates the claim C. (Dy denotes the partial derivative with respect to the first argument,

and m; is given by (1.3.13)).

Remarks.

1. Note that the definition of ¢! for integer times is of no importance (as long as ¢ is
predictable) since it does not affect the stochastic integrals. Note also that ¢ will usually
have jumps at integer times (in the sense that limsy, ¢f # limyyy, ¢1), since o is typically
discontinuous as well.

2. For higher order GARCH we get essentially the same result for the trading strategy.
More specifically, for GARCH(p, ¢)-M we may express the discounted price at time
t > max(p, q) as

—rt
e " me =P (L Ly oo oy L1 —py Oy v+ oy Opge1—g, 6, 1),

where p, is again a measurable function that has continuous second order partial deriva-
tives with respect to (Zy,t). The statement and the proof of Theorem 9 apply analo-
gously in this case.

3. In undiscounted terms we may write
e = € 'p,(e7St e S ot T)

=: ﬁn (57517 S%v On, t, T)

and thus have
by = D15 (S}, 8L, 0,8, T) forn <t < n+ 1.
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4. Theorem 9 expresses the generating trading strategy in terms of the functional depen-
dence of 7y on Zy, Z,,0,,t,T. As in the Black-Scholes case, the number of shares of
stock in the duplicating portfolio is the partial derivative of the (discounted) option
price with respect to the (discounted) stock price. It is often called the delta of the op-
tion in the economics literature and it also determines the optimal hedge (see e.g. Hull
(1993), Section 13.5, Eades (1992), p. 217ff). Here, however, the function that has to be
differentiated is not the same as in the Black-Scholes case; it depends on the additional
variables 7 and ofy.

Note that the choice of the variables in the functional representation of 7; is of utmost
importance. We could also have expressed 7, in terms of (S}, W; — W, 0,,t,T), say,

ﬂ-t:ﬁn(stl7wt_wn7o-n7t7T)- (1314)

But the partial derivative Dyp, (S}, Wi—W,, 0,,t,T) does not, in general, equal Dyp, (S},
Sl o,,t,T). Indeed, by (1.2.7), we have

2
Oy

o, (W —W,,) = (7 —7r)(t —n) +log S} —log S (1.3.15)
for n <t < n+ 1, and thus the expression relating W; — W,, to S! involves S} as
well. Hence Dyp, (S}, Wy — W,,,0,,t,T) does not correspond to the generating trading

strategy.

1.3.4 Monte-Carlo simulation

Due to the complexity of the formulas it is not easy to find an explicit analytical expression
for 7 and even numerical approximation seems to be a hard task. However, some Monte-Carlo
simulations have been performed by Duan (1995), which give some insight in the features of
this option pricing model.

As noted above, Duan’s simulations (apart from those concerning the option delta) apply
to our case. They reveal that if we are in a GARCH setting and wrongly use the Black-Scholes
formula for option valuation, then inconsistencies similar to those observed in real markets
appear, e.g., U-shaped implied volatilities (“smile”) and underpricing of out-of-the-money
options. In particular, it is generally not true that the option price at time ¢ can be computed
by plugging a good estimate for ¢ into the Black-Scholes formula. If this were true then we
would still have implied volatilities independent of the strike price, i.e., no smile.

1.4 Conclusion

We have seen that it is possible to consider a general continuous-time ARCH-type setting which
allows for option pricing based on absence of arbitage. We have analyzed the GARCH(1,1)-
model in detail, but other commonly used ARCH-models fit into this framework as well. As
in the Black-Scholes case, the delta of the option leads to a generating trading strategy; the
pricing formula is more complicated and not given in a simple analytical form.
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The procedure we demonstrated in Section 1.3 for GARCH(1,1)-M yields continuous-time
models that still carry a strong discrete-time flavour. Namely their instantaneous variance
changes only at the end of fixed time intervals (e.g. days). Future research will focus on models
obtained by using smoother operators.



Chapter 2

Proofs

This chapter contains the proofs of the lemmas and theorems of Chapter 1. The proof of
Lemma 2, however, is to be found in Chapter 3.

Proof of Lemma 1. Since ((u(0y) — r)/0¢)o<i<t is uniformly bounded, Girsanov’s theorem
(Protter (1990), Theorem I11.6.21) yields the first statement of the lemma and shows that
W is a standard Brownian motion under P* | in particular a square integrable martingale.
Moreover,

—rt ¢l
Zt = € St

¢ 2 ¢
= Séexp{/ (,u(as_)—r— US_)dS—I—/ T dBS}
0 2 0
t o2 ¢
= Zyexp —/ _ds—l—/ o dW, (2.0.1)
0o 2 0
¢
= Zog</ O'S_dWS)
0

([-, ] denotes the quadratic variation and & the stochastic exponential). Therefore 7 is a

solution of

t
Zt = ZO —I—/ ZSUS— dWS
0

(Protter (1990), Theorem I1.8.36). Since (Z;04_)o<i<7 is an adapted left-continuous pro-
cess and W is a locally square integrable martingale under P*, we conclude that 7 is a
locally square integrable martingale as well (Protter (1990), Theorem 11.5.20). Z is also a
P*-supermartingale, because any positive local martingale is a supermartingale (see e.g. Har-
rison & Pliska (1981), 3.8). o

Proof of Lemma 2. See Theorem 13 in Chapter 3. a
Proof of Theorem 3. The proof follows the lines of the proof for geometric Brownian motion

in Harrison & Pliska (1981). Let M be a martingale with respect to (Q,F, (Fy)o<i<T, P).
Since W is Brownian motion under P* and since, by Lemma 2, (Fy)o<¢<7 is the P-completed

17
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filtration generated by W, we have
¢
Mi=Mo+ [ 6., 0<t<T,
0

for some predictable process (6;)g<;<7 With P*(fOT |6:)%dt < o) = 1 (e.g. Protter (1990),
Theorem 1V.3.42 and Corollary 2). The process H; := 0,/(0:-7;), 0 <t < T, is well-defined
because o;_Z; > 0 for all ¢.

Since Z is continuous, (Hy)o<i<7 is predictable and

(/;(Hs)Qd[z Z]s)% = (/Ot(H) ol 7} ds)l = (/Otogds)%,

which is continuous, hence locally integrable. Moreover,

/tHSdZS:/t b dZsz/t b o5 A dWy = /OdW M; — M.
0 0 Os—Zs 0 Os—Zs
This proves, since M is arbitrary, that Z has the representation property (with respect to
(Fi)o<i<T, which is also the P*-completed filtration generated by 7).

Tl_le_integrability of the European call option follows from 0 < (S} — K)* < T Zr and
E(Z7) < 0o (Lemma 1). ]

Proof of Lemma /. Observe first that I : D[0,T] — DJ0, T] atisfies (i) and (ii) in the definiton
of “functional Lipschitz Fix f,¢g € D[0,T], t € [0,7]. We prove (iii) by induction. Define

= Vw+ ax? + fy? for z,y € R. Letting D := (8i ai) we have that

B az By
D) = (\/w +az? + fy? Vw + ag? +ﬁyz)

and hence
sup. ([ Dh(e, Il < va+ VB =: M,
z,yER?
where here ||(z,y)|| := |z|+|y| denotes the sum norm on R?. We prove by induction on n that

|[E'(f)e— F(9)e] <2nM supye, | fs — gs| for all ¢ < n. This relation holds for n = 1 because the
left-hand side is 0. Assume it holds for n. Applying the mean value theorem on A, we obtain

1E(f)e = F(g)dl = 1h(fig = fig=1, F(Pg=1) — *lgrg — 919-1> F(9) 1)
S MM@yNO( 1= fig=1) = (919 = 90|
T,y

+1(F(N)g-1 — F@)g-1)I)
2Msup|f5 gs|—|—2nMsup|f5 s

IN

= (n-l-l)Msup|f5 gs.
s<t

Thus (iii) holds with K :=2(T' + 1)M. ]
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Proof of Lemma 5. We prove that Fp«(Z|Fs) = Z, for [s] < s <t < [s]+ 1. By induction
over [t] — [s] it follows Eps(Z|Fs) = Z; for all s < t.
Let [s] <s <t <[s]+1 and let W be defined as in Equation (1.2.8). By (1.2.7)

¢ t 2
Ep«(Z|Fs) = FEp« (Zsexp{/ Ou— qu—/ U;_ du}‘]—})

2

= Ep« (ZS exp{a[s](Wt - W) — U;] (t— S)Hfs)

2
o
= Z exp(—%(t - s))Ep*(exp(U[s](Wt — Wy)|Fs).

&2

Since W, — W, is independent of F; under P* and since E(eV) = e> N(0,0?)-distributed,

we conclude that
o

Ep+(exp(01,)(Wy = Wo))| 7)) = exp(=—2(t = s))
and therefore Fp« (2| Fs) = Zs. O

Proof of Theorem 7. We have, by (1.2.7),

T 52 T
Zr = Ziexp —/t ;_ d8+/7: oo dW,

11 9 2

g
(n—l—l—t + 3 U——%([T]—l—l—T)
i=n+1

|3w

= Ziexp

‘|’Un(Wn-|—1 Wt —|— Z Uz Z_|_1 W) —O'[ ](W[T]—I—l — WT) . (202)
i=n+1

(Note that the undefined variable W4 that has been introduced to simplify the computa-
tions appears twice and therefore cancels out.)

The expression for f1 is based on (1.3.12): f! yields the o2 for the subsequent time period.
Because of relations (1.3.11) and (1.3.12), we can rewrite (2.0.2) as

2
Zr = Ztexp[—(;—”(n—l—l—t)—l—an(WnH—Wt)

(1]
+ Z fZ n n, n_|_1 W, ---,Wi—Wi_1)

1= n—I—l

__f ( Wn—l—l Wn7"'7W[T] _W[T]—l)([T]—I_ 1_T)

[T

Z (F= (02 Wigs = Wy, Wi = Wisy))

i=n+1

Wiz = Wy)

1
_ (f[T]_n(O-ZJ Wn-l—l — Wn7 .. '7W[T] — W[T]_l)) 2 (W[T]_|_1 - WT) .
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Since n <t < n+1, (1.3.10) and (1.3.11) yield

Z 1
loth = /ng ds—l—/nas_dWS
2
= —%(t—n)—l—an(Wt W) (2.0.3)

Hence defining g : Rt x Rt x Rt x [0,1] = R™T by
1
9(Z4y Ly 0yt —n) i = —log — — —(t — n),

we may write W, — W,, = g(Z, Z,,,0p,t —n) and Wyy1 — W, =W,y — W, + W, - W,, =
W1 = Wi+ g(Z4, Zy, 0yt — n). We then obtain the following expression for Z7p:

2
o
Zr = Ztexp[—él(n—l—l—t)—l—an(wn“—Wt)

[1]
+ Z fZ n n7 n—I—l Wt+g(Ztvzn7Un7t_n)7Wn+2_Wn—|—17---7Wi_Wi—1)
1= n—I—l

——f o, W = Wi+ 9(Ze, Zpy 0yt — 1), Wy = Wogr, oo, Wiy — Wip—y)
Q]+1— T)

1
Z (/=" (02 Wags = Wet 9(Zi, Zas 0t = 1), Wigs = W, Wi = W) )
i=n+1
Wiz = Wy)
1
- (f[T]_n(U?w Wn-l-l - Wt + g(Ztv va On, t— n), Wn+2 - Wn-l-lv .. -vW[T] - W[T]—l)) ’

Wiz — Wr)

= h(Zt7 Zn7 Ty 1—77 Wn-l—l — Wt7 Wn-|—2 — I/Vn_|_17 ceey W[T] — W[T]—17 WT — VV[T])7

where b : RII=7%5 _, R is measurable. Hence we can express the discounted price at time ¢
for the claim o (Z7) as

e "ry = Ep*(e_rsz(ZTﬂ]-})
- /e—r%(h(zt,zn,an,T,xl,...,xk))N(o,x)d(xl,...,xk), (2.0.4)

where & = [T] — n + 1 (this is roughly the number of remaining time periods) and ¥ =
diag(n +1—1t,1,...,1,T — [T]) € RF¥*k, O

Proof of Lemma 8. We start by outlining the proof. In (2.0.4), p,, is represented as [ A dB,
where both A and B depend on (z,t). To prove differentiability, we want to express p,, as
[ fdv, where v does not depend on (z,t) and where f and its derivatives are functions of
(z,t) that are majorized by a function D independent of (z,t) such that [ D dv < co.
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Observe that, with the notation of the preceding proof,

1
h(Zt7 Zn7 On, T7 HA P P $k> = h(17 Zn7 On, T7 1+ — log Zt7 L2y eny $k>,
because )
g(Zt7 Zn7 Un7t_ n) = 9(17 Zn7 Un7t_ n) ‘I’ —108; Zt-
ag

n

Since the claim is assumed integrable, it follows

oo > Ep*(e_rTZb(ZT))

= / (W Zyy Zy 0y Ty Wogt = We, Wiga — Wiga, > Wiry = Wirj-1,
Wr — Wir)) dP*

— / TG (L, Ziy Oy Ts Wingr — Wi + inbg Zts Wtz = Wt -, Wiry = Wi,
Wr — Wirp)) dP*

_ /e—r%(hu,;::, 5,1, 21, ..., k)

P* 1 ® P*
(Wyg1 =Witon  log Ze, Wi =W 1 oo Wiy = Wig -1, W = Wi (Ze, Zn,on) Zt|(Zn,on)

@Fz, Un)) d(xy,...,05,2,%,0)

- /// —TTQp (1,2,6,T,21,...,21))

(Wn+1 Wt—l—cr_l logZ Wn+2 I/Vn_|.17 7VV[T] W[T] 1,WT W[T])d($17"'7xk)
P Znom)=(2,6) (%) Bz, 5. d(%,6),

where k = [T] — n+ 1. Fix (2,6). The following holds Pz, 0,)-almost surely:
By Fubini’s theorem the innermost integral is a.e. finite. More precisely,

/e—rT¢(h(17 2,6, T, x1,79,...) P(*erl_wt_l_&_1 logZ7Wn+2_Wn+17"')d(x17 ey TE)

is finite for P7 (Znsom)=(5:8)" almost all z, i.e., A-almost all z, since, by (2.0.3), the probability
measure PZt|(Zn on)=(2

we conclude that e Tt (h(1,2,5,T,e)) is N(m,, Xp)-integrable with m, := (a,0,...,0) €
R* 3, := diag(b, 1,...,1,T — [T]) € R*** for 0 < b < 1 and for A-almost all a.

Now define a measure v on R by its density

) 1 equivalent to Lebesgue measure. As thisis true for all ¢ € (n,n+1)

v(dz)
dz

- /e—f%(h(Lz,&,T,x,xz, v an) N(0, diag(1, ..., 1, T = [T]))d(zs, . . ., a3).

We have already shown that any normal density with variance between 0 and 1 is integrable
with respect to v. In view of (2.0.4), we have

(x — 67 log 2)?

1 1
n 7A7A7t7T :/ N
pula 20D = | e =y P T i

v(dz).
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One can easily show that the first and higher order derivatives of

. 1 1(z — 67 11og2)?
f($72’,).— /—Qﬂ_(n_l_l_t)exp _5 n4+1—t

with respect to (z,t) are of the form f(xz,z,t)g(x,z,t), where g is a polynomial in z with
coefficients that are continuous in (z,).

Fix (z,t). Note that for any j € N,a € R,b > 0,6 > 0,¢ > 0 there exists a C' > 0 such
that for all @ € R with |a — a| < &, all b > 0 with |b — b| < ¢, and all z € R we have

4 1(z —a)? 1(z — a)?
j i Sl i Sl
|| exp( 5 3 )<Cexp( 5 312 |

Thus for any € > 0 there exists a neighbourhood of (z,¢) and a C' > 0 such that for all (Z,7)

in this neighbourhood
f(, 2,0)g(x, 5, 1)] < C|f(, 2,1 = 26)],

which is integrable with respect to v if ¢ is small enough. By iterating Theorem 16.8 in
Billingsley (1986) (interchanging differentiation and integration) we conclude that p, is C'*
with respect to (z,t), in particular C2. O

Proof of Theorem 9. We know from Theorem 3 that there exists an admissable strategy 1 that
generates C'. Hence 1 satisfies (1.2.9) and (1.2.10). We want to show that our ¢ = (¢°, ¢')
satisfies these conditions as well and V (¢) = V(¢). Note first that V;(¢) = e "7 = Vi(¢) by
the definition of ¢ and because 1 generates C'.

Although, by Lemma 8, p, may not be a C?-function in all its arguments (namely Z,
and o,,), we can still apply the Ito-formula, because, for ¢ € (n, min(n + 1,7")), the random
variables 7, and o,, do not depend on ¢ (as long as n is fixed). For ¢ in this interval, we obtain

by (1.2.10), ¥} dZy = dVi(¢) = d(e™"'m;), that is,
Vi dZ;, = Dipa(Ziy Zny 0y t,T) dZs + Dapp(Zsy Zpy 0, t, T) dt
1
‘|’§D11pn (Zt7 Zn7 On, tv T) d[Z7 Z]t7

where D; and D;; denote partial derivatives. Hence the process

b :/ (thl _Dlpn(ZﬁvaUnvth)) dZt
n+

is a finite variation process. Since Z is a continuous local martingale (with respect to P*),
the process U, is, moreover, a continuous local martingale. It must be identically 0, because
a continuous local martingale with bounded variation is constant (Protter (1990), Theorem
I11.1.3). It follows that [* of dZ, = [* Dipn(Zi, Zn, 04,1, T) dZ;. Considering the quadratic
variation of both sides, we also have

[ whaiz = [ (D7 2,000, 1)) d12).
n+ n4+

Conditions (1.2.9) and (1.2.10) for ¢ now follow from the same conditions for . 0



Chapter 3

Equality of filtrations

In this chapter, we give a proof of Lemma 2 which states that the filtrations generated by the
processes B, W and S of Section 1.2 are all equal. While one could do this under the specific
assumptions of that section, it is more instructive to consider arbitrary locally functional
Lipschitz operators. For a more general but somewhat different context, see Kallsen & Taqqu
(1994).

3.1 Locally functional Lipschitz operators

We fix throughout a filtered probability space (2, F, P, (Fi)¢>0) where (F;);>o satisfies the
usual conditions, i.e., Fy contains all null sets of P and (]:t)tzo is right continuous.

The following notation will be used: || -|| (without sub- and superscripts) is the Euclidean
norm (in RY). D? denotes the set of (non-random) functions f : Rt — R? that are cadlag.
D? stands for the set of adapted cadlag processes in R%. We let 8¢ € D? denote the space
of semimartingales in R?. For a process X € D%, small superscripts refer to components and
greek superscripts to stopping times. Thus X7 means the process X stopped at time 7; X*
and (X*)™ mean respectively the k-th coordinate process of X and that coordinate process
stopped at 7. Stochastic integrals Z = [V dX, where X is R%- and Y is R%*% _valued, are to
be interpreted in the sense of matrix multiplication, i.e., Z7 = Zilzl [YFdXF j=1,..., ds.

Let 7 be a predictable stopping time. We say that a function X : [0, 7[— R? is a semi-
martingale on [0, 7[if X7 (i.e., the mapping (Xzns)i>0 : RT XQ — R?) is a semimartingale for
any stopping time 7 < 7. Let (G;);>0 be a sub-filtration of (Fy)i>o (i.e., Gy C Fy, t > 0). We
call a semimartingale X on [0, 7[ adapted to (G¢);>0 if X7 is (Gi)i>0-adapted for any stopping
time 7 < 7. We call an operator F : D" — D% adapted to (Gi)s>o if the process F(X) is
(Gt)i>o-adapted for any (Gy)¢>o-adapted process X € D,

Recall that a function f: R% — R% is called locally Lipschitz if for any zo € R% there
is an open neighbourhood U of ¢ and a constant K > 0 such that for all z,y € U we have

1) = FW)ll < Kllz = .

23
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The corresponding definition for operators acting on stochastic processes takes a slightly
different form: We call an operator F': D% — D% [ocally functional Lipschitzif the following
holds:

(i) for any X,Y € D% and any stopping time 7, X"~ = Y7~ implies F/(X)"~ = F(Y)" ™,

(ii) for any b > 0 there exists an increasing (finite) process (K);>¢ such that for any X, Y €
D% with supsg | Xi]] < b and sups||Yil] < b, and for any ¢ > 0 we have

|F(X): — F(Y )] < Ky sup || Xs — Y5l a-s.
0<s<t

If the condition sup,sq ||-X¢|| < b and supysg || Y]] < b, in (ii) above, is suppressed, then we say
that F: D% — D% is functional Lipschitz.

3.2 Stability properties

The first proposition shows how to commonly obtain locally functional Lipschitz operators.

Proposition 10 1. If f : RM" — R% has continuous first partial derivatives, or more gen-
erally, is locally Lipschitz, then the operator F : DY — D% F(X)(w,t) := f(X (w, 1)),
is locally functional Lipschitz and adapted to any sub-filtration of (F)>o.

2. Any process U € D% (viewed as an operator F : DI — D% of the form F(-) = U), and
in particular any constant, is functional Lipschitz and hence locally functional Lipschitz.

Proof.

1. Functions with continuous first partial derivatives are locally Lipschitz (e.g. Lang (1968),
p. 409). Assume therefore that f is locally Lipschitz. The operator I : D% — D% is
well-defined because the image of an adapted cadlag process under a continuous function
is again an adapted cadlag process (e.g. Protter (1990), Theorem I11.7.33). Condition
(i) in the definition of “locally functional Lipschitz” is satisfied because F' involves here
a pointwise transformation. Using a compactness argument we conclude that f|p is
Lipschitz for any compact set B, i.e., there exists a Lipschitz constant K > 0 such that
for any x,y € B we have || f(z) — f(y)|| < K|z — y||. Fix b > 0. Let K be the Lipschitz

constant for the choice B = B,, := {z € R% : ||z|| < b}. Condition (ii) then holds with
K;:= K forallt>0.

2. (i) and (ii) in the definition of “(locally) functional Lipschitz” hold trivially, since F'(X)
does not depend on X. a

The following proposition shows that the locally functional Lipschitz condition is closed
under several commonly used operations. Its statements can be read with or without the
inclusion of the parentheses involving adaptedness.
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Proposition 11 1. F: D% — D% s locally functional Lipschitz (and adapted to a sub-
filtration (G)i>0) if and only if all Fi:DW 5 D' j=1,...,dy, are locally functional
Lipschitz (and adapted to (G;)i>0)-

2. If F : DU — D% and G : D% — D% are locally functional Lipschitz (and F,G are
adapted to a sub-filtration (G;)i>o) then the composition G o I : D% — D% is locally
functional Lipschitz (and adapted to (G;)i>0) as well.

3. If F,G : D% — D% are locally functional Lipschitz (and adapted to a sub-filtration
(Gt)1>0), s0is F+G and, fordy =1, so is F'G (in the sense of pointwise multiplication).

If F : D — D%X% s Jocally functional Lipschitz (and adapted to a sub-filtration
(Gt)e>0), and if there is a decreasing function L : Rt — RT\{0} with det(F(X)(w,t)) >
L(t) for all X,w,t, then the pointwise matriz inverse F~! : DU — D%X% s Jocally
functional Lipschitz (and adapted to (Gi)¢>o). In particular, if I : D% — DU is locally
functional Lipschitz and F' > ¢ € (0,00), then 1/F : D% — D' is locally functional
Lipschitz.

Proof. The statements have two versions, the second involving the adaptedness of an operator
F. We leave the easy adaptedness part of the proof to the reader.

1. This is evident.

2. Condition (i) holds for G o I, since X7~ = Y7~ implies FI(X )"~ = F(Y)"~ which itself
implies G(F(X))"™ = G(F(Y))"~. Let b > 0. In order to show (ii) it suffices to show
that for any r > 0 there exists an increasing (finite) process (L;)o<¢<, such that for any
X,Y € D% with sup,sq || X¢]] < b and sup,sq [|Y:|| < b, and for any ¢ < r we have

|F(X): — F(Y) < Ly sup [| X — Y| aus.
0<s<t

Let r > 0. Let (KtF’b)tZO be a process to I and b as in (ii) of the definition of ”locally
functional Lipschitz.” It follows that for any X € D% with 8UPyso || Xi|| < b we have

sup |[F(X)el| < sup [[F(0)][+ sup [F(X)s — F(0)]
0<t<r+1 0<t<r+1 0<t<r+1
< sup FO)+ Ko sup [IX]
0<t<r+1 0<t<r+1
< sup  [|F(0)¢]] + Kpyab =:ic
0<t<r+1

Let (KtG’c)tZO be a process to G and ¢ as in (ii) of the definition of "locally functional
Lipschitz” and define the increasing process (Lt)OStST’ by L; := KtF’bKtG’C for all ¢t < r.
Fix t < r and X,Y € D% with sup,sq || X|| < & and sup;sq ||Yi]| < b. Defining the
processes X,Y € D% by X, := F(X)t_/\(,,+1), Y, = F(Y)t/\(;_l) for all £ > 0, we have
SUPsso || X¢|| < ¢, supysq [|Ye|| < e. It follows for any ¢ > r:

|GoF(X) = GoF(Y)| = [|G(X), -G )
K& sup || X, — Y|
0<s<t

IN
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IN

K{ sup [[F(X)s = F(Y),|
0<s<t

< KK sup ||X, - Vi
0<s<t

IN

Ly sup || Xs = Y.
0<s<t

3. By Statement 1 the mapping (F,G) : D% — D%1+% is Jocally functional Lipschitz if I, G
are locally functional Lipschitz. The functions @ : R%t4 — R%, (x1,22) — 1 + 22
and @ : R? - R, (1, 22) — @122 have continuous partial derivatives. It follows from
Proposition 10.1 that the induced operators @ : D%+d: D% and @ : D2 — D!
are locally functional Lipschitz. Applying Statement 2 we conclude that F + G =
(@) o (F,G) : D" — D% and FG = (®) o (F,G) : D' — D! are locally functional
Lipschitz.

In order to prove the statement concerning F~! we may assume that dy = 1: Otherwise
note that by Cramer’s rule the inverse of a matrix A € R%*% has components of the
form s/ det A where both s and det A are sums of products of components of A. In view
of 1., 3. (for sums and products), and 2. it suffices to prove the statement for dy = 1.

Condition (i) in the definition of "locally functional Lipschitz” is satisfied for F~1.
For the proof of Condition (ii) observe that for any b > 0, for any X,Y € D% with
8UP;> | X¢|| < b and sup,5 [|Yi|| < b, and for any ¢ > 0 we have

(P (V) - F<X)’f)(m)‘

< LOTFEY )= F(X)
< L)TK; sup || X, = Y|
0<s<t
where (Kt)tzo is defined as in the definition of ”locally functional Lipschitz.” a

3.3 Existence, pathwise uniqueness and adaptedness

We now turn to the problem whether the solution to a stochastic differential equation (SDE)
is adapted to a given filtration. Under a locally functional Lipschitz condition we get this
adaptedness as a by-product of an existence and uniqueness theorem that can be found in
Métivier (1982) or in slightly different versions in Métivier & Pellaumail (1980) and Jacod
(1979).

Consider the following stochastic differential equation:
t
X, = J, +/ F(X),_ dZ,. (3.3.1)
0

We are interested in sufficient conditions for J, Z, and F' that guarantee the existence, pathwise
uniqueness and adaptedness of a solution X.
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Theorem 12 Let J be a semimartingale in R, Z a semimartingale in R with Zy = 0,
and F : DY — DU X% g [ocally functional Lipschitz operator.

1. Then there exists a predictable stopping time T and a semimartingale X on [0, 7[ with
values in R such that

(a) limsupy, || X¢|| = 00 on {7 < o0} a.s.
(b) X solves the SDE (3.3.1) on [0, [, i.e., for any stopping time T < T we have

_ _ FAL
XT=J7 +/ F(X),_ dZ,. (3.3.2)
0

2. We have pathwise uniqueness of the solution X, i.e., if 7’ is a predictable stopping time
and X' is a semimartingale on [0, 7'[ such that (a) and (b) hold with 7', X' instead of
7. X then 7 = 7" a.s. and X, X' are indistinguishable.

3. If F' is functional Lipschitz, then T = 0o a.s.

4. Let, moreover, (Gi);>0 be any P-complete sub-filtration of (Fi)i>0. If J, Z and F are
(Gt)i>0-adapted (F in the sense of Section 3.1) then the unique solution X from State-
ment 1 is adapted to (Gi)¢>o as well.

Proof. Statements 1,2 and 3 follow from Theorem 34.7, Corollary 35.3, and Remark 35.4 in
Métivier (1982).

Let J, Z and I’ be adapted to a P-complete sub-filtration (G;);>o. If we replace the orig-
inal filtration by (G);>0 (and restrict F' to the set of (gt)tzo—adaf)ted processes) it follows
that Equation (3.3.1) has a solution X’ on [0,7'[, where 7" is a (G;)s>o-predictable stop-
ping time (and hence also a (Fy)¢>o-predictable stopping time) and X' a (Q,F, (G) >0, P)-
semimartingale on [0,7/[. Note that X’ is also adapted to the bigger filtration (Fi)¢>o.
Since X’ € D%, the right-hand side of Equation (3.3.2) with (X’,7’) instead of (X,7) is
a semimartingale w.r.t. (Q,F, (Fy)i>0, P). It follows that X' is also a (2, F, (Fi)i>0, P)-
semimartingale. From 2. we conclude that 7/ = 7 a.s. and X, X’ are indistinguishable. Hence
X is adapted to (Gy)¢>o0- a

3.4 Equality of the filtrations in the ARCH models

We can now return to the setting of Section 1.2 and prove Lemma 2.
Theorem 13 The P-completed filtrations generated by either B, W or S coincide.

Proof. The processes are defined on [0, T] where T is a fixed real number whereas the results
of Chapter 3 apply to processes defined for all ¢t > 0. To apply these results we replace any
process (X¢)o<i<T by (XiaT)i>0 and accordingly for filtrations and operators.

Since by construction W and S are adapted to the given filtration, which is the natural
filtration of B, it suffices to show that B is adapted to the P-completed filtration generated
by W and that generated by S.
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First we prove that B is adapted to the P-completed natural filtration of W. To show
this, we express X as a solution to a SDE with W as integrator. From Equation (1.2.8) we
have

B, = / pEX)s) = +/ 1dW,, (3.4.1)

and from Equation (1.2.2) it follows

X, = /Ot C(u(F(X)s_) —r) ds+ /OtF X

The functional Lipschitz operator F defined in Section 1.2 induces a functional Lipschitz and
hence locally functional Lipschitz operator F :D — D that is adapted to any P-complete
sub-filtration of (F;);>0. Let i : R — R be a differentiable continuation of y : Rt — R with
continuous derivative. The induced operator i : D — D is locally functional Lipschitz by
Proposition 10.1. Applying Proposition 11 and Statement 2 of Proposition 10 shows that the
operator

J:D = D2 Zw— (—(wF(2)s) —r), F(Z),),

is locally functional Lipschitz as well, and we have

t t
Xt:/ Jl(X)S_ds—l—/ J*(X)s_ dW.
0 0

Since F is adapted to all P-complete sub-filtrations of (ft)OStST we conclude that J has this
property as well. We can now apply Theorem 12 with X; := X,, J; := 0, Z, := (t,W,),
F := J, and conclude that X is adapted to the P-completed filtration generated by W.
Now, since all the processes on the right hand side of Equation (3.4.1) are adapted to the
P-completed natural filtration of W, the same is true for B.

We finally prove that B is adapted to the P-completed natural filtration of S. As in the
first part, we express X as a solution to a SDE with S as integrator. From Equation (1.2.4)
we know that S! solves the SDE

¢ ¢
Sh=S; —I—/ wlo,_)SL ds —I—/ os_S! dB,.
0 0
Hence,

t 1 N
B, = /05_51 o, SL_dB,

/M X))_ ds +/ Wd(Sl—Sé)m (3.4.2)

and from Equation (1.2.2) we get
! 1
X = / ( dS -I— / Sl_ SO)S

= /I& S_ds—l—/ K*? — S8)ss
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where we denote

K:D—D? Ze (—u(F(Z),),1/S)

As in the first part of the proof, K is a locally functional Lipschitz operator adapted to
the P-completed filtration generated by S. Applying Theorem 12, with X; := X;, J; := 0,
Zy = (t,5} = 588), F := K, we conclude that X is adapted to the P-completed filtration
generated by S. As above we conclude from Equation (3.4.2) that B is adapted to the P-
completed natural filtration of S as well. a
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