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Abstract

ARCH
models have become popular for modelling nancial time series� They seem� at rst�
however� to be incompatible with the option pricing approach of Black� Scholes� Merton et
al�� because they are discrete
time models and posess too much variability� We show that
completeness of the market holds for a broad class of ARCH
type models dened in a suitable
continuous
time fashion� As an example we focus on the GARCH�����
M model and obtain�
through our method� the same pricing formula as Duan ������� who applied equilibrium
type
arguments�

This is an extended version of Kallsen and Taqqu ������� It includes additional comments
and detailed proofs� It also includes a chapter concerning �the equality of ltrations� which
deals with the following issue� Trading strategies should be based on information �ltration�
that traders posess� In practice� however� one typically assumes that thay are predictable
with respect to the ltration generated by a Brownian motion which serves as a background
source of randomness� It is thus necessary to show that the two ltrations coincide� We do
this here�
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Chapter �

Pricing options in ARCH�like

models

��� Introduction

Many papers have now been written on the pricing of stock options� One common approach
� initiated by the work of Black� Scholes and Merton in the early seventies � is to assume
that the underlying stock price behaves like a specic stochastic process and to make further
assumptions about how trade takes place in order to nally derive an option pricing formula�

In the Black
Scholes model� for example� the underlying stock price follows geometric
Brownian motion� In addition� the market is assumed to be frictionless� to allow for continuous
trading and � this is important � to o�er no arbitrage opportunities� These conditions are
enough to ensure completeness of the market� that is to derive a fair price for various types
of contingent claims� The property of completeness� however� often ceases to hold when
geometric Brownian motion is replaced by some other process�

In order to determine option prices when there is no completeness further assumptions
concerning risk premia and�or traders� preferences are usually made� This is the case for
example in the models considered by Hull � White ������� Johnson � Shanno ������� Scott
������� Wiggins ������� Stein � Stein ������� Melino � Turnbull ������� Heston ������ and
Duan �������� It may very well be the case that many realistic models � those that meet
statistical scrutiny � lack completeness�

However� one appealing feature of the Black
Scholes pricing formula is that it relies � apart
from assumptions concerning the stock price behaviour � mainly on the fact that the market
o�ers no �free lunches�� i�e�� no arbitrage� It seems thus worthwhile to investigate whether
stock price models that are more realistic than geometric Brownian motion continue to t
into such a framework�

In the past dozen years ARCH
models have become popular for modelling nancial time
series since they are able to account for several empirical features like volatility clustering and
leptokurtosis �fat tails� in the distribution of returns� While they di�er substantially in their
detailed expression� most ARCH
models involve a sequence of uncorrelated innovations whose

�Other approaches to option pricing under speci�c assumptions include Cox � Ross ������	 Merton ������	
Geske ������ and Rubinstein ���
��� For an overview see Hull �������

�
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variance is random� Conditioned on the past� the variance depends only on the previous inno

vations and previous conditional variances� Typically� large �resp� small� absolute innovations
increase �decrease� the conditional variance and therefore subsequent absolute innovations
tend to be large �small� again� This leads to volatility clustering�

Viewed as discrete
time models� ARCH
models do not allow for option pricing along the
lines of Black � Scholes ������� Cox� Ross� Rubinstein ������ and Harrison � Pliska �������
because they are not complete�� Roughly speaking� there is too much variability in the stock
price between successive time steps� Our way out� is to consider continuous
time ARCH
type
models� These are models where the variance is a deterministic function of the past returns�

In Section ��� we investigate a general ARCH
like continuous time model and establish
completeness� We show� in Section ���� how to extend the usual discrete
time ARCH models
to continuous time so that they t into this framework� This is done by letting the process
evolve like a geometric Brownian motion between any two discrete ARCH times� This point of
view is often taken implicitly in practice where� in order to estimate the volatility at a discrete
ARCH time� one assumes that the volatility is constant between these times and uses high
frequency return data to estimate it �see for example Taylor and Xu ������ and Christensen
and Prabhala ��������

We use the GARCH�����
M model to illustrate our methodology� The pricing formula we
obtain for the corresponding continuous time model coincides in this case with one considered
by Duan ������� who derived it based on the discrete
time model by using equilibrium
type
arguments� In addition to obtaining pricing formulas and trading strategies �these have com

plicated expressions� we focus on the delta of the option� i�e�� the rst derivative of the option
price with respect to the stock� If the underlying variables are not chosen in the right way
then the delta of the option does not yield the correct strategies� We show how to select the
right variables�

A brief conclusion is given in Section ���� The proofs can be found in Chapter �� Finally�
Chapter � deals with �the equality of ltrations� and contains the proof of Lemma � that is
needed to establish completeness with respect to the appropriate information structure�

��� Completeness of a general ARCH�like model

We use the now classical mathematical setting of Harrison � Pliska ������� Our general model
for a market consisting of one kind of stock and bond is the following�

Prerequisites� Let ���F � P � be a probability space� T a positive real number �the terminal
time�� �Bt���t�T a standard Brownian motion on ���F � P �� and �Ft���t�T the P 
completion
of the ltration generated by �Bt���t�T � We assume F � FT � The ltration �Ft���t�T fullls
the usual conditions� i�e�� F� contains all null sets of P and �Ft���t�T is right continuous �e�g�
Protter ������� Theorem I�������

�One therefore has to make more assumptions in order to price contingent claims� In his paper about
option pricing in ARCHmodels	 Duan ������ makes assumptions concerning traders� utility functions� In
their empirical study	 Engle � Mustafa ������ assume that the riskneutral probability measure is that of an
ARCHmodel and estimate its parameters by equating theoretical and observed option prices�
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The Brownian motion B will be the only source of randomness in the model considered
below�

The model� As in Harrison � Pliska ������� the bond is represented by a stochastic process
�S�

t ���t�T � For simplicity we assume a xed constant interest rate r� i�e�� S� is a function of
the form S�

t � ert�
The stock in our model is the stochastic process �S�

t ���t�T meeting the following conditions�

S�
t � S�

� exp

�Z t

�

�
���s��� ��s�

�

�
ds�Xt

�
� �������

where the drift � � R� � R is a given function with continuous rst derivative and where the
process �Xt���t�T solves the stochastic di�erential equation

Xt �

Z t

�
�s� dBs �������

with
� �� F �X� � �� �������

where F � D��� T � � D��� T � is a given functional Lipschitz operator� Observe that �t� �
F �X�t� depends on �Xs���s�t� that is� on the past values of X � Assume� moreover� that F
has a lower bound K � � and that lim supx�� ��x��x ���

The motivation� To obtain some insight into the model apply the It o
formula to ������� and
observe that S solves the stochastic di�erential equation

S�
t � S�

� �

Z t

�
���s��S

�
s ds�

Z t

�
�s�S

�
s dBs� �������

or� in di�erential notation�
dS�

t

S�
t

� ���t�� dt� �t� dBt� �������

This means that the relative stock price change �or instantaneous return� has a drift component
� dt �maybe dependent on �� and a noise component �t� dBt� Equation ������� coincides for
constant � and � with the stock price in the Black
Scholes model� Our model� however�
allows for a changing volatility� More precisely� �t� is a function of X up to time t� Since X
is � ignoring the drift � � the integral of the instantaneous return in �������� equation �������
expresses the volatility in terms of past returns and is therefore an ARCH
type relationship�

Our setting is related to the models by Hull � White ������� Scott ������� Wiggins �������
Stein � Stein ������� and Heston ������ in that S follows equation ������� with a time
varying
volatility �� The di�erence lies in the specication of �� Here it is a function of past returns�
whereas in these models� it involves a second source of randomness�

The following remarks clarify the assumptions in the model�
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Remarks	

�� D��� T � denotes the space of functions f � ��� T � � R that are c�adl�ag� i�e�� right

continuous with existing left
hand limits� Almost all integrands in stochastic integrals
occuring in this paper are c�agl�ad �left
continuous with existing right
hand limits� so that
integrability is ensured�

�� F � D��� T �� D��� T � is called functional Lipschitz if for all f� g � D��� T � the following
conditions hold�

�i� For any t� F ���t � D��� T �� R is measurable with respect to the �
eld of D��� T �
that is generated by the projections �s � D��� T �� R� f �� f�s�� s � t�

�ii� for all t we have that f j���t� � gj���t� implies F �f�j���t� � F �g�j���t�
�iii� there exists a constant K � � �independent of f� g� such that for all t we have

jF �f�t � F �g�tj � K sups�t jfs � gsj�
Condition �i� implies that F �X� is adapted for any adapted c!adl!ag process X � Therefore
this denition is a special case of the one given in Protter ������� V��� or the one given
in Chapter �� Observe that ��t����t�T can be used as an integrand� since � is c!adl!ag�

�� According to Theorem �� in Chapter � �or Protter ������� Theorem V������ there exists
a unique solution to the stochastic di�erential equation �������� Therefore X and S� are
uniquely dened by �������� �������� ������� �provided S�

� � �� F are given�� Furthermore
X and S� are continuous since they are stochastic integrals with respect to continuous
processes�

�� The assumptions concerning the lower bound of F and the limiting behaviour of � en

sure that the process �����t�� r���t���t�T is a bounded adapted c!adl!ag process�

We now introduce the discounted price process �Z�
t ���t�T �

Zt ��
S�
t

S�
t

� e�rtS�
t � �������

With the help of Girsanov�s theorem we obtain

Lemma � �� There is a well�de�ned probability measure P � equivalent to P such that

dP �

dP
�� exp

�Z T

�
����s��� r

�s�
dBs � �

�

Z T

�

�
���s��� r

�s�

��
ds

�

is its Radon�Nikodym density�

�� The discounted price process Z is a positive local martingale �and also a supermartingale	
with respect to P �
 and is given by

Zt � Z� exp

�
�
Z t

�

��s�
�

ds�
Z t

�
�s� dWs

�
�������
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where �Wt���t�T 
 de�ned by

Wt ��
Z t

�

���s��� r

�s�
ds� Bt� �������

is a standard Brownian motion with respect to P ��

In the beginning of this chapter we assumed that the ltration under consideration is the
ltration generated by B� From an intuitive viewpoint however� the ltration generated by S
�or Z� rather than B is the more natural one� since S is the actually observed process� The
following lemma� proved in Section ���� shows that we need not worry about this point in our
setting� �See also the remark following Theorem ���

Lemma � The P �completed �ltrations generated by either B
 W 
 S
 or Z coincide with
�Ft���t�T �

We now recall some denitions and statements from Harrison � Pliska ������� Suppose
that Z is a martingale under P �� A process 	 � �	�t � 	

�
t ���t�T is called trading strategy if 	 is

predictable and

�Z t

�
�	�s�

� d�Z� Z�s

��
�

� � � t � T � is locally integrable under P �� �������

We say that a trading strategy 	 is admissable if it is self��nancing� i�e�� the discounted value
process V �	� �� 	� � 	�Z solves

V �	� � V��	� �
Z �

�
	�dZ� ��������

and if� in addition� V �	� is a non
negative martingale under P � �V is the V � of Harrison
� Pliska �������� A contingent claim is a positive random variable C� We call it attainable
if there exists an admissable strategy 	 that generates C� i�e�� VT �	� � e�rTC� For such a
claim C� 
� �� V��	� � EP ��e

�rTC� is called the price associated with C and this is the only
reasonable price for C at time � if we assume the absence of arbitrage opportunities� For times
t between � and T the fair price of the claim is given by 
t � ertVt�	� � ertEP ��e�rTCjFt�� We
call a market complete if every P �
integrable claim is attainable� A P �
martingale Y is said
to have the representation property if any martingale M with respect to ���F � �Ft���t�T � P ��
can be written as M � M� �

R
HdY for some H � L�Y �� where L�Y � denotes the set of all

predictable processes such that �
R t
��Hs��d�Y �s�

�
� � � � t � T is locally integrable under P �� If

the discounted price process Z has the representation property� then the market is complete
in the above sense�

Theorem � Suppose that Z is a martingale under P �� Then the model is complete� In
particular
 
� � EP ��e

�rTC� is the price at time � for a given integrable contingent claim
C �e�g�
 the European call option with expiration date T and strike price K de�ned by C �
�S�

T �K��	�
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Remarks	

�� In order to derive fair option prices Z must be a martingale� not just a local martingale�
This is why we assume in Theorem � that Z is a martingale under P �� Since Z is a
positive supermartingale �Lemma ��� in order to show that Z is a martingale under P �

it is enough to prove that E�ZT � � Z�� where T is the terminal time �see Harrison �
Pliska ������� �����

�� The next remark underlines the importance of ltrations in contingent claim pricing�

The proof of Theorem � makes use of Lemma �� We derive the representation property
of Z with respect to �Ft���t�T from the representation property ofW with respect to its
own natural ltration� which was possible because the ltrations coincide� One can still
prove Theorem � without knowing that the ltrations generated by B� W and Z tally
by using a result that can be found e�g� in Stroock � Yor ������� Lemma ���� Applied
to our situation it yields that since �Ft���t�T is the natural ltration of the Brownian
motion B and� since W and B are related to each other by Girsanov�s theorem �see
the proof of Lemma ��� W has the predictable representation property with respect to
�Ft���t�T and the probability measure P ��

However� Theorem � would be unsatisfactory from an intuitive point of view if one
ignored the equality of ltrations given in Lemma �� Indeed� completeness of the model
implies the existence of a unique fair option price 
� which is also achievable by using
trading strategies� These trading strategies� however� should be based on information
that traders posess� This will not be the case if we only claim that trading strategies
are predictable with respect to �Ft���t�T but not with respect to the natural ltration
of S �or Z� which represents the information that is really available to traders� Lemma
� removes this di"culty�

��� Example� GARCH����	�M

Our interest lies � as indicated in Section ��� � in models that can be made complete so that
options can be priced assuming only the absence of arbitrage� For a discrete
time market
consisting of only two securities �stock� and �bond� to be complete it is necessary� roughly
speaking� that over any single time period the stock price has at most only two possible values
to move to �see Harrison � Pliska ������� Willinger � Taqqu �������� The stock may go up
or down but it is not supposed to take several or worse� innitely many values� as in the case
of ARCH�

We want to indicate a way to sidestep this di"culty� The idea is to interpolate the usual
�e�g� daily� ARCH models in a continuous
time fashion� As an example we consider the
particular ARCH
model known as GARCH�p�q�
M�

Denoting by S�
t the stock price at time t we may formulate the GARCH�p�q�
M model as

follows�

log
S�
t

S�
t��

� ���t�� ��t
�

� �t�t� �������
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where � is a given function� ��� ��� � � � is a sequence of i�i�d� standard normal random variables�
and �t satises�

��t � � �
pX

i��

�i��t�i�t�i�
� �

qX
j��

j�
�
t�j � �������

�� ��� � � � � �p� �� � � � � q being xed constants�

The innovations in this model are xt �� �t�t� t � �� �� � � �� Their variance �i�e�� ��t �
conditioned on �the past� is given by the GARCH�p�q�
equation �������� which indicates
that ��t is a linear function of the earlier squared innovations x�t��� x

�
t��� � � � � x

�
t�p and the

conditional variances ��t��� �
�
t��� � � � � �

�
t�q� The drift in the return in equation �������� namely

���t� � ��t ��� also depends on �t� Models with this property are known as ARCH
in
mean
or ARCH
M� The meaning of equation ������� is that high volatility can result from large
absolute returns x�t�i or from a large volatility ��t�j in the preceding time periods� For more
details on ARCH
models� see Bollerslev et al� �������

����� Continuous�time GARCH

We now illustrate the continuous time embedding methodology with the GARCH�����
M
model� We will replace the i�i�d� random variables �t in ������� and ������� by increments
B�t� � B�t��� of a standard Brownian motion B� More specically we assume the following
continuous time model�

Let ��� �� ��  be positive real numbers and let � � R� � R be a given function with
continuous rst derivative and such that lim supx�� ��x��x � �� Now dene St� Xt� �t� Zt

as in Section ��� with

F �X�t �

	
� �� for � � t � ��
� � ��X�t� �X�t����

� � F �X���t���

� �
�

for t � ��
�������

Explicitly�

S�
t � S�

� exp

�Z t

�

�
���s���

��s�
�

�
ds�Xt

�
� �������

Xt �
Z t

�
�s� dBs� �������

� �� F �X�� �������

Zt �� e�rtS�
t � �������

Note that F � p
� � �� The processes S�X� �� Z are well dened because

Lemma 
 F is functional Lipschitz�

In order to see that this model is in fact an extension of �������� ������� observe that for
integer values of t�

log
S�
t

S�
t��

� ���t��� ��t�
�

� �t��Bt �Bt���
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and

��t� � �F �X�t��
� �

�
��� for t � �
� � ���	t�����Bt�� �Bt���

� � ��	t���� for t � ��

Thus for n � t � n��� the price process St behaves like geometric Brownian motion with drift
���n� and volatility �n� The parameter �n is in fact random and changes from one integer
time to the next according to the GARCH�����
M model�

����� Completeness

Assuming again a constant interest rate r� we note that Lemmas � and � from Section ���
apply� Here the equivalent measure P � is given by

dP �

dP
� exp

�Z t

�
����s��� r

�s�
dBs � �

�

Z t

�

�
���s��� r

�s�

��

ds

�

� exp

	
�
�T �X
i��

��
����i���� r

�i��

�
�Bi �Bi���� �

�

�
���i���� r

�i��

��
�

�

�
�����T ��� r

��T �

�
�BT �B�T ���

�

�

�
����T ��� r

��T �

��
�
�

Lemma � Z is a martingale under P ��

Combining this result with Theorem � we obtain

Theorem � �Completeness� Our continuous�time GARCH��
�	�M model is complete and
the price for any integrable claim C is


� � EP ��e
�rTC�� �������

Remarks	

�� It is not necessary to modify the model if the time t for which we want the option price
does not coincide with the beginning of an ARCH time step �e�g� a day�� The price of
the option for any time � � t � T is


t � ertEP ��e
�rTCjFt�� �������

�� The derivation of the option price works in the same way for other ARCH
models� in
particular for GARCH�p� q�
M� where we consider

F �X�t � ��t� for � � t � max�p� q�

and

F �X�t �

�� �
pX

i��

�i�X�t��	i��� �X�t��i�
� �

qX
j��

jF �X���t��j

�A
�
�

for t � max�p� q��

�with xed constants �� ��� � � � � �p� �� � � � � q� ��� � � � � �max	p�q���� instead of equation
��������
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Let us now look at how the discounted stock price Z behaves under the equivalent mar

tingale measure P �� Using relations ������� and �������� we can replace in equations �������
� ������� the process B �the standard Brownian motion with respect to P � by W �the stan

dard Brownian motion with respect to P �� and also the stock price S by the discounted price
process Z and get

Zt � Z� exp

�
�
Z t

�

��s�
�

ds� Yt

�
��������

with

Yt �

Z t

�
�s� dWs ��������

and

��t �

	
� ��� for � � t � �

� � �
�
Y�t� � Y�t��� � ����t����� r

��
� ���t��� for t � ��

��������

We may now observe an interesting di�erence with the Black � Scholes case� The discounted
price Zt in �������� is a function of the volatility � but because the evaluation of �� as given
by ��������� involves �� the option price at time �� namely 
� � EP ��e�rTC�� is a function of
the drift � of the stock� This will be the case even if we choose � constant� This� in fact� is
the typical state of a�airs� The Black � Scholes case is� in this regard� a degenerate situation�

Equations �������� � �������� and Theorem � correspond to Theorem ��� and Corollary
��� in Duan ������� Therefore Duan�s option pricing formula coincides for integer times with
ours� if we choose the same type of drift function as Duan ����t� � r� ��t for some positive
constant ���

����� Pricing formula and trading strategies

We want to derive a more detailed expression of the price 
t given in �������� To this end
we consider a claim of the form C � ��ZT � for some measurable� P �ZT 
integrable function
� � R� R�� In the following� x an integer n � T and let n � t � min�n� �� T ��

Theorem � �Pricing formula� The discounted price of the claim C � ��ZT� at time t

equals

e�rt
t � pn�Zt� Zn� �n� t� T �

��

Z
�

�
Zt exp

�
��

�
n

�
�n� �� t� � �nx�

�
�T ��nX
i��

�

�
f i
�
��n� x� �

�

�n
log

Zt

Zn

� �n
�
�t� n�� x�� � � � � xi

�
��

�
f �T ��n

�
��n� x� �

�

�n
log

Zt

Zn

� �n
�
�t� n�� x�� � � � � x�T ��n

�
��T � � �� T �

�

�T ��nX
i��

h
f i
�
��n� x� �

�

�n
log

Zt

Zn

� �n
�
�t � n�� x�� � � � � xi

�i�
�
xi��

��
N��� diag�n� �� t� �� � � � � �� T � �T ���d�x�� � � � � x�T ��n��� ��������

�resp� N��� T � t��dx�� for �T � � �t�	
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where n � �t� and the functions fk � R� 	Rk � R�
 k � �� �� �� � � �
 are de�ned recursively
by

f����� �� ���

f����� x�� �� � � ���x� � ����� r�� � ���

fk������ x�� � � � � xk��� �� f��fk���� x�� � � � � xk�� xk����

In order to obtain the generating trading strategies we need the following technical lemma
which will allow us to apply It o�s formula� Recall that P � is a probability measure on � and
that the claim C is assumed integrable� We use the notation P �X to denote the probability
measure induced by a random variable X �

Lemma � Fix an integer n � T � For P �	Zn��n��almost all � z�  �� the function �z� t� �� pn�z�  z�

 �� t� T � has continuous second order partial derivatives in R� 	 �n�min�n� �� T ���

Theorem � �Trading strategies� The following trading strategy 	 � �	�� 	�� de�ned by

	�t �

	�
��
D�pn�Zt� Zn� �n� t� T � for n � t � min�n� �� T ��

lims�t 	
�
s if the limit exists

� else

�
for t integer

and
	�t � e�rt
t � Zt	

�
t for � � t � T�

generates the claim C� �D� denotes the partial derivative with respect to the �rst argument

and 
t is given by �������		�

Remarks	

�� Note that the denition of 	� for integer times is of no importance �as long as 	 is
predictable� since it does not a�ect the stochastic integrals� Note also that 	 will usually
have jumps at integer times �in the sense that limt��n 	

�
t 
� limt��n 	

�
t �� since � is typically

discontinuous as well�

�� For higher order GARCH we get essentially the same result for the trading strategy�
More specically� for GARCH�p� q�
M we may express the discounted price at time
t � max�p� q� as

e�rt
t � pn�Zt� Zn� � � � � Zn���p� �n� � � � � �n���q� t� T ��

where pn is again a measurable function that has continuous second order partial deriva

tives with respect to �Zt� t�� The statement and the proof of Theorem � apply analo

gously in this case�

�� In undiscounted terms we may write


t � ertpn�e
�rtS�

t � e
�rnS�

n� �n� t� T �

�� epn�S�
t � S

�
n� �n� t� T �

and thus have
	�t � D�epn�S�

t � S
�
n� �n� t� T � for n � t � n� ��



��
� CONCLUSION ��

�� Theorem � expresses the generating trading strategy in terms of the functional depen

dence of 
t on Zt� Zn� �n� t� T � As in the Black
Scholes case� the number of shares of
stock in the duplicating portfolio is the partial derivative of the �discounted� option
price with respect to the �discounted� stock price� It is often called the delta of the op�
tion in the economics literature and it also determines the optimal hedge �see e�g� Hull
������� Section ����� Eades ������� p� ������ Here� however� the function that has to be
di�erentiated is not the same as in the Black
Scholes case# it depends on the additional
variables Z�t� and ��t��

Note that the choice of the variables in the functional representation of 
t is of utmost
importance� We could also have expressed 
t in terms of �S�

t �Wt �Wn� �n� t� T �� say�


t �  pn�S
�
t �Wt �Wn� �n� t� T �� ��������

But the partial derivative D� pn�S
�
t �Wt�Wn� �n� t� T � does not� in general� equalD�epn�S�

t �
S�
n� �n� t� T �� Indeed� by �������� we have

�n�Wt �Wn� � �
��n
�
� r��t� n� � logS�

t � logS�
n ��������

for n � t � n � �� and thus the expression relating Wt � Wn to S�
n involves S�

t as
well� Hence D� pn�S

�
t �Wt �Wn� �n� t� T � does not correspond to the generating trading

strategy�

����� Monte�Carlo simulation

Due to the complexity of the formulas it is not easy to nd an explicit analytical expression
for 
 and even numerical approximation seems to be a hard task� However� some Monte
Carlo
simulations have been performed by Duan ������� which give some insight in the features of
this option pricing model�

As noted above� Duan�s simulations �apart from those concerning the option delta� apply
to our case� They reveal that if we are in a GARCH setting and wrongly use the Black
Scholes
formula for option valuation� then inconsistencies similar to those observed in real markets
appear� e�g�� U
shaped implied volatilities ��smile�� and underpricing of out
of
the
money
options� In particular� it is generally not true that the option price at time t can be computed
by plugging a good estimate for � into the Black
Scholes formula� If this were true then we
would still have implied volatilities independent of the strike price� i�e�� no smile�

��
 Conclusion

We have seen that it is possible to consider a general continuous
time ARCH
type setting which
allows for option pricing based on absence of arbitage� We have analyzed the GARCH�����

model in detail� but other commonly used ARCH
models t into this framework as well� As
in the Black
Scholes case� the delta of the option leads to a generating trading strategy# the
pricing formula is more complicated and not given in a simple analytical form�
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The procedure we demonstrated in Section ��� for GARCH�����
M yields continuous
time
models that still carry a strong discrete
time $avour� Namely their instantaneous variance
changes only at the end of xed time intervals �e�g� days�� Future research will focus on models
obtained by using smoother operators�



Chapter �

Proofs

This chapter contains the proofs of the lemmas and theorems of Chapter �� The proof of
Lemma �� however� is to be found in Chapter ��

Proof of Lemma �� Since �����t� � r���t���t�T is uniformly bounded� Girsanov�s theorem
�Protter ������� Theorem III������ yields the rst statement of the lemma and shows that
W is a standard Brownian motion under P �� in particular a square integrable martingale�
Moreover�

Zt � e�rtS�
t

� S�
� exp

�Z t

�

�
���s��� r � ��s�

�

�
ds�

Z t

�
�s� dBs

�

� Z� exp

�
�
Z t

�

��s�
�

ds�

Z t

�
�s� dWs

�
�������

� Z� E
�Z t

�
�s� dWs

�

���� �� denotes the quadratic variation and E the stochastic exponential�� Therefore Z is a
solution of

Zt � Z� �
Z t

�
Zs�s� dWs

�Protter ������� Theorem II������� Since �Zt�t����t�T is an adapted left
continuous pro

cess and W is a locally square integrable martingale under P �� we conclude that Z is a
locally square integrable martingale as well �Protter ������� Theorem II������� Z is also a
P �
supermartingale� because any positive local martingale is a supermartingale �see e�g� Har

rison � Pliska ������� ����� �

Proof of Lemma �� See Theorem �� in Chapter �� �

Proof of Theorem �� The proof follows the lines of the proof for geometric Brownian motion
in Harrison � Pliska ������� Let M be a martingale with respect to ���F � �Ft���t�T � P

���
Since W is Brownian motion under P � and since� by Lemma �� �Ft���t�T is the P 
completed

��
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ltration generated by W � we have

Mt � M� �

Z t

�
�s dWs� � � t � T�

for some predictable process ��t���t�T with P ��
R T
� j�tj�dt � �� � � �e�g� Protter �������

Theorem IV����� and Corollary ��� The process Ht �� �t���t�Zt�� � � t � T � is well
dened
because �t�Zt � � for all t�

Since Z is continuous� �Ht���t�T is predictable and

�Z t

�
�Hs�

� d�Z� Z�s

� �
�

�

�Z t

�
�Hs�

���s�Z
�
s ds

� �
�

�

�Z t

�
��sds

� �
�

�

which is continuous� hence locally integrable� Moreover�Z t

�
Hs dZs �

Z t

�

�s
�s�Zs

dZs �

Z t

�

�s
�s�Zs

�s�Zs dWs �

Z t

�
�s dWs � Mt �M��

This proves� since M is arbitrary� that Z has the representation property �with respect to
�Ft���t�T � which is also the P �
completed ltration generated by Z��

The integrability of the European call option follows from � � �S�
T � K�� � erTZT and

E�ZT� �� �Lemma ��� �

Proof of Lemma �� Observe rst that F � D��� T �� D��� T � satises �i� and �ii� in the deniton
of �functional Lipschitz�� Fix f� g � D��� T �� t � ��� T �� We prove �iii� by induction� Dene
h�x� y� �

p
� � �x� � y� for x� y � R� Letting D �� � �

�x
� �
�y
�� we have that

Dh�x� y� �

�
�xp

� � �x� � y�
�

yp
� � �x� � y�

�

and hence
sup

x�y	R�

kDh�x� y�k � p
��

p
 ��M�

where here k�x� y�k �� jxj� jyj denotes the sum norm on R�� We prove by induction on n that
jF �f�t�F �g�tj � �nM sups�t jfs� gsj for all t � n� This relation holds for n � � because the
left
hand side is �� Assume it holds for n� Applying the mean value theorem on h� we obtain

jF �f�t � F �g�tj � jh�f�t� � f�t���� F �f��t����� h�g�t� � g�t���� F �g��t����j
� sup

x�y	R�

kDh�x� y�k
�
j�f�t� � f�t����� �g�t� � g�t����j

� j�F �f��t��� � F �g��t����j
�

� �M sup
s�t

jfs � gsj� �nM sup
s�t

jfs � gsj

� ��n� ��M sup
s�t

jfs � gsj�

Thus �iii� holds with K �� ��T � ��M � �



��

Proof of Lemma � We prove that EP ��ZtjFs� � Zs for �s� � s � t � �s� � �� By induction
over �t�� �s� it follows EP ��ZtjFs� � Zs for all s � t�

Let �s� � s � t � �s� � � and let W be dened as in Equation �������� By �������

EP ��ZtjFs� � EP �

�
Zs exp

�Z t

s

�u� dWu �
Z t

s

��u�
�

du

������Fs

�

� EP �

�
Zs exp

n
��s��Wt �Ws��

���s�

�
�t� s�

o���Fs

�
� Zs exp

�
�
���s�

�
�t� s�

�
EP ��exp���s��Wt �Ws�jFs��

Since Wt �Ws is independent of Fs under P � and since E�eU� � e
�
�

� N��� ���
distributed�
we conclude that

EP ��exp���s��Wt �Ws��jFs� � exp
�
�
���s�
�

�t� s�
�

and therefore EP ��ZtjFs� � Zs� �

Proof of Theorem �� We have� by ��������

ZT � Zt exp

�
�
Z T

t

��s�
�

ds�
Z T

t

�s� dWs

�

� Zt exp

�����n
�
�n� �� t� �

�T �X
i�n��

��i
�
�
���T �
�

��T � � �� T �

��n�Wn�� �Wt� �

�T �X
i�n��

�i�Wi�� �Wi�� ��T ��W�T ��� �WT �

�� � �������

�Note that the undened variable W�T ��� that has been introduced to simplify the computa

tions appears twice and therefore cancels out��

The expression for f� is based on ��������� f� yields the �� for the subsequent time period�
Because of relations �������� and ��������� we can rewrite ������� as

ZT � Zt exp

�
��

�
n

�
�n� �� t� � �n�Wn�� �Wt�

�
�T �X

i�n��

�

�
f i�n���n�Wn�� �Wn� � � � �Wi �Wi���

��

�
f �T ��n���n�Wn�� �Wn� � � � �W�T ��W�T ������T � � �� T �

�
�T �X

i�n��

�
f i�n���n�Wn�� �Wn� � � � �Wi �Wi���

��
� �Wi�� �Wi�

�
�
f �T ��n���n�Wn�� �Wn� � � � �W�T � �W�T ����

� �
� �W�T ����WT �

�
�
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Since n � t � n � �� �������� and �������� yield

log
Zt

Zn

� �
Z t

n

��s�
�

ds�

Z t

n

�s� dWs

� ��
�
n

�
�t � n� � �n�Wt �Wn�� �������

Hence dening g � R� 	R� 	R� 	 ��� ��� R� by

g�Zt� Zn� �n� t� n� ��
�

�n
log

Zt

Zn

� �n
�
�t� n��

we may write Wt �Wn � g�Zt� Zn� �n� t � n� and Wn�� �Wn � Wn�� �Wt �Wt �Wn �
Wn�� �Wt � g�Zt� Zn� �n� t� n�� We then obtain the following expression for ZT �

ZT � Zt exp

�
��

�
n

�
�n � �� t� � �n�Wn�� �Wt�

�
�T �X

i�n��

�

�
f i�n���n�Wn�� �Wt � g�Zt� Zn� �n� t� n��Wn�� �Wn��� � � � �Wi �Wi���

��

�
f �T ��n���n�Wn�� �Wt � g�Zt� Zn� �n� t� n��Wn�� �Wn��� � � � �W�T ��W�T ����

��T � � �� T �

�

�T �X
i�n��

�
f i�n���n�Wn�� �Wt � g�Zt� Zn� �n� t� n��Wn�� �Wn��� � � � �Wi �Wi���

��
�

�Wi�� �Wi�

�
�
f �T ��n���n�Wn�� �Wt � g�Zt� Zn� �n� t� n��Wn�� �Wn��� � � � �W�T � �W�T ����

� �
�

�W�T ��� �WT �

�
�� h�Zt� Zn� �n� T�Wn���Wt�Wn�� �Wn��� � � � �W�T ��W�T ����WT �W�T ���

where h � R�T ��n�
 � R is measurable� Hence we can express the discounted price at time t
for the claim ��ZT� as

e�rt
t � EP ��e
�rT��ZT�jFt�

�
Z
e�rT��h�Zt� Zn� �n� T� x�� � � � � xk��N�����d�x�� � � � � xk�� �������

where k � �T � � n � � �this is roughly the number of remaining time periods� and � �
diag�n� �� t� �� � � � � �� T � �T �� � Rk
k � �

Proof of Lemma �� We start by outlining the proof� In �������� pn is represented as
R
AdB�

where both A and B depend on �z� t�� To prove di�erentiability� we want to express pn asR
f d�� where � does not depend on �z� t� and where f and its derivatives are functions of

�z� t� that are majorized by a function D independent of �z� t� such that
R
Dd� ���



��

Observe that� with the notation of the preceding proof�

h�Zt� Zn� �n� T� x�� x�� � � � � xk� � h��� Zn� �n� T� x��
�

�n
logZt� x�� � � � � xk��

because

g�Zt� Zn� �n� t� n� � g��� Zn� �n� t� n� �
�

�n
logZt�

Since the claim is assumed integrable� it follows

� � EP ��e
�rT��ZT ��

�
Z
e�rT��h�Zt� Zn� �n� T�Wn���Wt�Wn�� �Wn��� � � � �W�T ��W�T ����

WT �W�T ��� dP
�

�

Z
e�rT��h��� Zn� �n� T�Wn���Wt �

�

�n
logZt�Wn�� �Wn��� � � � �W�T ��W�T ����

WT �W�T ��� dP
�

�
Z
e�rT��h���  z�  �� T� x�� � � � � xk���
P �
	Wn���Wt��

��
n logZt�Wn���Wn�� �����W�T ��W�T ����WT�W�T ��j	Zt�Zn��n�

� P �Ztj	Zn��n�

�P �	Zn��n�
�
d�x�� � � � � xk� z�  z�  ��

�

Z Z Z
e�rT��h���  z�  �� T� x�� � � � � xk��

P �	Wn���Wt����� log z�Wn���Wn�� �����W�T ��W�T ����WT�W�T ��
d�x�� � � � � xk�

P �Ztj	Zn��n��	�z�����dz�P
�
	Zn��n�d� z�  ���

where k � �T �� n� �� Fix � z�  ��� The following holds P �	Zn��n�
almost surely�
By Fubini�s theorem the innermost integral is a�e� nite� More precisely�Z

e�rT��h���  z�  �� T� x�� x�� � � ���P
�
	Wn���Wt����� log z�Wn���Wn�� �����

d�x�� � � � � xk�

is nite for P �
Ztj	Zn��n��	�z����
almost all z� i�e�� �
almost all z� since� by �������� the probability

measure P �
Ztj	Zn��n��	�z���� is equivalent to Lebesgue measure� As this is true for all t � �n� n���

we conclude that e�rT��h���  z�  �� T� ��� is N�ma��b�
integrable with ma �� �a� �� � � � � �� �
Rk��b �� diag�b� �� � � � � �� T � �T �� � Rk
k for � � b � � and for �
almost all a�

Now dene a measure � on R by its density

��dx�

dx
�

Z
e�rT��h���  z�  �� T� x� x�� � � � � xk�N��� diag��� � � � � �� T � �T ���d�x�� � � � � xk��

We have already shown that any normal density with variance between � and � is integrable
with respect to �� In view of �������� we have

pn�z�  z�  �� t� T � �
Z

�p
�
�n� �� t�

exp

�
��

�

�x�  ��� log z��

n� �� t

�
��dx��
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One can easily show that the rst and higher order derivatives of

f�x� z� t� ��
�p

�
�n� �� t�
exp

�
��

�

�x�  ��� log z��

n� �� t

�

with respect to �z� t� are of the form f�x� z� t�g�x� z� t�� where g is a polynomial in x with
coe"cients that are continuous in �z� t��

Fix �z� t�� Note that for any j � N� a � R� b � �� � � �� � � � there exists a C � � such
that for all %a � R with ja� %aj � �� all %b � � with jb� %bj � �� and all x � R we have

jxjj exp
�
��

�

�x� %a��

%b

�
� C exp

�
��

�

�x� a��

b� ��

�
�

Thus for any � � � there exists a neighbourhood of �z� t� and a C � � such that for all �%z� %t�
in this neighbourhood

jf�x� %z� %t�g�x� %z� %t�j � Cjf�x� z� t� ���j�
which is integrable with respect to � if � is small enough� By iterating Theorem ���� in
Billingsley ������ �interchanging di�erentiation and integration� we conclude that pn is C�

with respect to �z� t�� in particular C�� �

Proof of Theorem �� We know from Theorem � that there exists an admissable strategy � that
generates C� Hence � satises ������� and ��������� We want to show that our 	 � �	�� 	��
satises these conditions as well and V �	� � V ���� Note rst that Vt�	� � e�rt
t � Vt��� by
the denition of 	 and because � generates C�

Although� by Lemma �� pn may not be a C�
function in all its arguments �namely Zn

and �n�� we can still apply the It o
formula� because� for t � �n�min�n � �� T ��� the random
variables Zn and �n do not depend on t �as long as n is xed�� For t in this interval� we obtain
by ��������� ��

t dZt � dVt��� � d�e�rt
t�� that is�

��
t dZt � D�pn�Zt� Zn� �n� t� T � dZt�D�pn�Zt� Zn� �n� t� T � dt

�
�

�
D��pn�Zt� Zn� �n� t� T � d�Z�Z�t�

where Di and Dii denote partial derivatives� Hence the process

U� �
Z �

n�
���

t �D�pn�Zt� Zn� �n� t� T �� dZt

is a nite variation process� Since Z is a continuous local martingale �with respect to P ���
the process U� is� moreover� a continuous local martingale� It must be identically �� because
a continuous local martingale with bounded variation is constant �Protter ������� Theorem
III������ It follows that

R �
n� ��

t dZt �
R �
n�D�pn�Zt� Zn� �n� t� T � dZt� Considering the quadratic

variation of both sides� we also haveZ �

n�
���

t �
� d�Z�t �

Z �

n�
�D�pn�Zt� Zn� �n� t� T ��

� d�Z�t�

Conditions ������� and �������� for 	 now follow from the same conditions for �� �



Chapter �

Equality of �ltrations

In this chapter� we give a proof of Lemma � which states that the ltrations generated by the
processes B� W and S of Section ��� are all equal� While one could do this under the specic
assumptions of that section� it is more instructive to consider arbitrary locally functional
Lipschitz operators� For a more general but somewhat di�erent context� see Kallsen � Taqqu
�������

��� Locally functional Lipschitz operators

We x throughout a ltered probability space ���F � P� �Ft�t��� where �Ft�t�� satises the
usual conditions� i�e�� F� contains all null sets of P and �Ft�t�� is right continuous�

The following notation will be used� k � k �without sub
 and superscripts� is the Euclidean
norm �in Rd�� Dd denotes the set of �non
random� functions f � R� � Rd that are c!adl!ag�
Dd stands for the set of adapted c!adl!ag processes in Rd� We let Sd � Dd denote the space
of semimartingales in Rd� For a process X � Dd� small superscripts refer to components and
greek superscripts to stopping times� Thus X� means the process X stopped at time � # Xk

and �Xk�� mean respectively the k
th coordinate process of X and that coordinate process
stopped at � � Stochastic integrals Z �

R
Y dX � whereX isRd� 
 and Y isRd�
d� 
valued� are to

be interpreted in the sense of matrix multiplication� i�e�� Zj �
Pd�

k��

R
Y jk dXk� j � �� � � � � d��

Let � be a predictable stopping time� We say that a function X � ��� � �� Rd is a semi�
martingale on ��� � � if X� �i�e�� the mapping �X��t�t�� � R�	�� Rd� is a semimartingale for
any stopping time � � � � Let �Gt�t�� be a sub
ltration of �Ft�t�� �i�e�� Gt  Ft� t � ��� We
call a semimartingale X on ��� � � adapted to �Gt�t�� if X� is �Gt�t��
adapted for any stopping
time � � � � We call an operator F � Dd� � Dd� adapted to �Gt�t�� if the process F �X� is
�Gt�t��
adapted for any �Gt�t��
adapted process X �Dd� �

Recall that a function f � Rd� � Rd� is called locally Lipschitz if for any x� � Rd� there
is an open neighbourhood U of x� and a constant K � � such that for all x� y � U we have

kf�x�� f�y�k � Kkx� yk�

��
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The corresponding denition for operators acting on stochastic processes takes a slightly
di�erent form� We call an operator F �Dd� � Dd� locally functional Lipschitz if the following
holds�

�i� for any X� Y � Dd� and any stopping time � � X�� � Y �� implies F �X��� � F �Y ����

�ii� for any b � � there exists an increasing �nite� process �Kt�t�� such that for any X� Y �
Dd� with supt�� kXtk � b and supt�� kYtk � b� and for any t � � we have

kF �X�t � F �Y �tk � Kt sup
��s�t

kXs � Ysk a�s�

If the condition supt�� kXtk � b and supt�� kYtk � b� in �ii� above� is suppressed� then we say
that F � Dd� � Dd� is functional Lipschitz�

��� Stability properties

The rst proposition shows how to commonly obtain locally functional Lipschitz operators�

Proposition �� �� If f � Rd� � Rd� has continuous �rst partial derivatives
 or more gen�
erally
 is locally Lipschitz
 then the operator F �Dd� � Dd� 
 F �X���� t� �� f�X��� t��

is locally functional Lipschitz and adapted to any sub��ltration of �Ft�t���

�� Any process U � Dd� �viewed as an operator F � Dd� � Dd� of the form F ��� � U	
 and
in particular any constant
 is functional Lipschitz and hence locally functional Lipschitz�

Proof�

�� Functions with continuous rst partial derivatives are locally Lipschitz �e�g� Lang �������
p� ����� Assume therefore that f is locally Lipschitz� The operator F � Dd� � Dd� is
well
dened because the image of an adapted c!adl!ag process under a continuous function
is again an adapted c!adl!ag process �e�g� Protter ������� Theorem III������� Condition
�i� in the denition of �locally functional Lipschitz� is satised because F involves here
a pointwise transformation� Using a compactness argument we conclude that f jB is
Lipschitz for any compact set B� i�e�� there exists a Lipschitz constant K � � such that
for any x� y � B we have kf�x�� f�y�k � Kkx� yk� Fix b � �� Let K be the Lipschitz
constant for the choice B � Bn �� fx � Rd� � kxk � bg� Condition �ii� then holds with
Kt �� K for all t � ��

�� �i� and �ii� in the denition of ��locally� functional Lipschitz� hold trivially� since F �X�
does not depend on X � �

The following proposition shows that the locally functional Lipschitz condition is closed
under several commonly used operations� Its statements can be read with or without the
inclusion of the parentheses involving adaptedness�
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Proposition �� �� F � Dd� � Dd� is locally functional Lipschitz �and adapted to a sub�
�ltration �Gt�t��	 if and only if all F j � Dd� � D�
 j � �� � � � � d�
 are locally functional
Lipschitz �and adapted to �Gt�t��	�

�� If F � Dd� � Dd� and G � Dd� � Dd� are locally functional Lipschitz �and F�G are
adapted to a sub��ltration �Gt�t��	 then the composition G � F � Dd� � Dd� is locally
functional Lipschitz �and adapted to �Gt�t��	 as well�

�� If F�G � Dd� � Dd� are locally functional Lipschitz �and adapted to a sub��ltration
�Gt�t��	
 so is F�G and
 for d� � �
 so is FG �in the sense of pointwise multiplication	�

If F � Dd� � Dd�
d� is locally functional Lipschitz �and adapted to a sub��ltration
�Gt�t��	
 and if there is a decreasing function L � R� � R�nf�g with det�F �X���� t���
L�t� for all X��� t
 then the pointwise matrix inverse F�� � Dd� � Dd�
d� is locally
functional Lipschitz �and adapted to �Gt�t��	� In particular
 if F � Dd� � D� is locally
functional Lipschitz and F � c � �����
 then ��F � Dd� � D� is locally functional
Lipschitz�

Proof� The statements have two versions� the second involving the adaptedness of an operator
F � We leave the easy adaptedness part of the proof to the reader�

�� This is evident�

�� Condition �i� holds for G �F � since X�� � Y �� implies F �X��� � F �Y ��� which itself
implies G�F �X���� � G�F �Y ����� Let b � �� In order to show �ii� it su"ces to show
that for any r � � there exists an increasing �nite� process �Lt���t�r such that for any
X� Y � Dd� with supt�� kXtk � b and supt�� kYtk � b� and for any t � r we have

kF �X�t � F �Y �tk � Lt sup
��s�t

kXs � Ysk a�s�

Let r � �� Let �KF�b
t �t�� be a process to F and b as in �ii� of the denition of �locally

functional Lipschitz�� It follows that for any X � Dd� with supt�� kXtk � b we have

sup
��t�r��

kF �X�tk � sup
��t�r��

kF ���tk� sup
��t�r��

kF �X�s � F ���sk

� sup
��t�r��

kF ���tk�Kr�� sup
��t�r��

kXsk

� sup
��t�r��

kF ���tk�Kr��b �� c

Let �KG�c
t �t�� be a process to G and c as in �ii� of the denition of �locally functional

Lipschitz� and dene the increasing process �Lt���t�r by Lt �� KF�b
t KG�c

t for all t � r�
Fix t � r and X� Y � Dd� with supt�� kXtk � b and supt�� kYtk � b� Dening the

processes eX� eY � Dd� by eXt �� F �X�t�	r���� eYt �� F �Y �t�	r��� for all t � �� we have

supt�� k eXtk � c� supt�� k eYtk � c� It follows for any t � r�

kG � F �X�t � G � F �Y �tk � kG� eX�t �G� eY �tk
� KG�c

t sup
��s�t

k eXs � eYsk
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� KG�c
t sup

��s�t
kF �X�s � F �Y �sk

� K
G�c
t K

F�b
t sup

��s�t
kXs � Ysk

� Lt sup
��s�t

kXs � Ysk�

�� By Statement � the mapping �F�G� �Dd� � Dd��d� is locally functional Lipschitz if F�G
are locally functional Lipschitz� The functions � � Rd��d� � Rd� � �x�� x�� �� x� � x�
and � � R� � R� �x�� x�� �� x�x� have continuous partial derivatives� It follows from
Proposition ���� that the induced operators � � Dd��d� � Dd� and � � D� � D�

are locally functional Lipschitz� Applying Statement � we conclude that F � G �
��� � �F�G� � Dd� � Dd� and FG � ��� � �F�G� � D� � D� are locally functional
Lipschitz�

In order to prove the statement concerning F�� we may assume that d� � �� Otherwise
note that by Cramer�s rule the inverse of a matrix A � Rd�
d� has components of the
form s� detA where both s and detA are sums of products of components of A� In view
of ��� �� �for sums and products�� and �� it su"ces to prove the statement for d� � ��

Condition �i� in the denition of �locally functional Lipschitz� is satised for F���
For the proof of Condition �ii� observe that for any b � �� for any X� Y � Dd� with
supt�� kXtk � b and supt�� kYtk � b� and for any t � � we have

��� �

F �X�t
� �

F �Y �t

��� �
����F �Y �t � F �X�t�

� �

F �X�tF �Y �t

����
� L�t���kF �Y �t � F �X�tk
� L�t���Kt sup

��s�t
kXs � Ysk

where �Kt�t�� is dened as in the denition of �locally functional Lipschitz�� �

��� Existence� pathwise uniqueness and adaptedness

We now turn to the problem whether the solution to a stochastic di�erential equation �SDE�
is adapted to a given ltration� Under a locally functional Lipschitz condition we get this
adaptedness as a by
product of an existence and uniqueness theorem that can be found in
M&etivier ������ or in slightly di�erent versions in M&etivier � Pellaumail ������ and Jacod
�������

Consider the following stochastic di�erential equation�

Xt � Jt �
Z t

�
F �X�s� dZs� �������

We are interested in su"cient conditions for J � Z� and F that guarantee the existence� pathwise
uniqueness and adaptedness of a solution X �
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Theorem �� Let J be a semimartingale in Rd�
 Z a semimartingale in Rd� with Z� � �

and F �Dd� � Dd�
d� a locally functional Lipschitz operator�

�� Then there exists a predictable stopping time � and a semimartingale X on ��� � � with
values in Rd� such that

�a	 lim supt�� kXtk �� on f� ��g a�s�

�b	 X solves the SDE ������� on ��� � �
 i�e�
 for any stopping time � � � we have

X�
t � J�t �

Z ��t

�
F �X�s� dZs� �������

�� We have pathwise uniqueness of the solution X
 i�e�
 if �  is a predictable stopping time
and X  is a semimartingale on ��� � � such that �a	 and �b	 hold with � � X  instead of
��X then � � �  a�s� and X�X  are indistinguishable�

�� If F is functional Lipschitz
 then � �� a�s�

�� Let
 moreover
 �Gt�t�� be any P �complete sub��ltration of �Ft�t��� If J
 Z and F are
�Gt�t���adapted �F in the sense of Section ���	 then the unique solution X from State�
ment � is adapted to �Gt�t�� as well�

Proof� Statements ��� and � follow from Theorem ����� Corollary ����� and Remark ���� in
M&etivier �������

Let J � Z and F be adapted to a P 
complete sub
ltration �Gt�t��� If we replace the orig

inal ltration by �Gt�t�� �and restrict F to the set of �Gt�t��
adapted processes� it follows
that Equation ������� has a solution X  on ��� � �� where �  is a �Gt�t��
predictable stop

ping time �and hence also a �Ft�t��
predictable stopping time� and X  a ���F � �Gt�t��� P �

semimartingale on ��� � �� Note that X  is also adapted to the bigger ltration �Ft�t���
Since X  � Dd� � the right
hand side of Equation ������� with �X � � � instead of �X� �� is
a semimartingale w�r�t� ���F � �Ft�t��� P �� It follows that X  is also a ���F � �Ft�t��� P �

semimartingale� From �� we conclude that �  � � a�s� and X�X  are indistinguishable� Hence
X is adapted to �Gt�t��� �

��
 Equality of the �ltrations in the ARCH models

We can now return to the setting of Section ��� and prove Lemma ��

Theorem �� The P �completed �ltrations generated by either B
 W or S coincide�

Proof� The processes are dened on ��� T � where T is a xed real number whereas the results
of Chapter � apply to processes dened for all t � �� To apply these results we replace any
process �Xt���t�T by �Xt�T�t�� and accordingly for ltrations and operators�

Since by construction W and S are adapted to the given ltration� which is the natural
ltration of B� it su"ces to show that B is adapted to the P 
completed ltration generated
by W and that generated by S�
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First we prove that B is adapted to the P 
completed natural ltration of W � To show
this� we express X as a solution to a SDE with W as integrator� From Equation ������� we
have

Bt �

Z t

�
���F �X�s��� r

F �X�s�
ds�

Z t

�
� dWs� �������

and from Equation ������� it follows

Xt �

Z t

�
����F �X�s��� r� ds�

Z t

�
F �X�s� dWs�

The functional Lipschitz operator F dened in Section ��� induces a functional Lipschitz and
hence locally functional Lipschitz operator eF � D � D that is adapted to any P 
complete
sub
ltration of �Ft�t��� Let e� � R� R be a di�erentiable continuation of � � R� � R with
continuous derivative� The induced operator e� � D � D is locally functional Lipschitz by
Proposition ����� Applying Proposition �� and Statement � of Proposition �� shows that the
operator

J �D� D�� Z �� �����F �Z�s�� r�� F �Z�s��

is locally functional Lipschitz as well� and we have

Xt �

Z t

�
J��X�s� ds�

Z t

�
J��X�s� dWs�

Since eF is adapted to all P 
complete sub
ltrations of �Ft���t�T we conclude that J has this
property as well� We can now apply Theorem �� with X t �� Xt� J t �� �� Zt �� �t�Wt��
F �� J � and conclude that X is adapted to the P 
completed ltration generated by W �
Now� since all the processes on the right hand side of Equation ������� are adapted to the
P 
completed natural ltration of W � the same is true for B�

We nally prove that B is adapted to the P 
completed natural ltration of S� As in the
rst part� we express X as a solution to a SDE with S as integrator� From Equation �������
we know that S� solves the SDE

S�
t � S�

� �
Z t

�
���s��S

�
s� ds�

Z t

�
�s�S

�
s� dBs�

Hence�

Bt �
Z t

�

�

�s�S
�
s�

�s�S
�
s� dBs

� �
Z t

�

��F �X�s��

F �X�s�
ds�

Z t

�

�

F �X�s�S�
s�

d�S� � S�
��s� �������

and from Equation ������� we get

Xt �

Z t

�
���F �X�s�� ds�

Z t

�

�

S�
s�

d�S� � S�
��s

�
Z t

�
K��X�s� ds�

Z t

�
K��X�s� d�S

� � S�
��s�
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where we denote
K � D� D�� Z �� ����F �Z�s�� ��S�

s�

As in the rst part of the proof� K is a locally functional Lipschitz operator adapted to
the P 
completed ltration generated by S� Applying Theorem ��� with Xt �� Xt� J t �� ��
Zt �� �t� S�

t � S�
��� F �� K� we conclude that X is adapted to the P 
completed ltration

generated by S� As above we conclude from Equation ������� that B is adapted to the P 

completed natural ltration of S as well� �
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