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1. Introduction. An option pricing model establishes a relationship between the traded
derivatives, the underlying asset and the market variables, e.g., volatility of the underlying
asset [4, 25]. Option pricing models are used in practice to price derivative securities given
knowledge of the volatility and other market variables.

The celebrated constant-volatility Black-Scholes modd [4, 25] is the most often used
option pricing model in financial practice. This classical model assumes constant volatility;
however, much recent evidence suggests that a constant volatility model is not adequate [27,
28]. Indeed, numerically inverting the Black-Scholes formula on real data sets supports the
notion of asymmetry with stock price (volatility skew), as well as dependence on time to
expiration (volatility term structure). Collectively this dependence is often referred to as the
volatility smile. The challengeisto accurately (and efficiently) model thisvolatility smile.

In practice, the constant-volatility Black-Scholes model is often applied by simply using
different volatility values for options with different strikes and maturities. In this paper, we
refer to this approach as the constant implied volatility approach. Although this method works
well for pricing European options, it is unsuitable for more complicated exotic options and
options with early exercise features. Moreover, as will be illustrated in §4, this approach
can produce incorrect hedge factors even for simple European options, assuming that the
underlying follows a 1-factor model.

A few different approaches have been proposed for modeling the volatility smile. One
class of methods (Merton [26]) assumes a Poisson jump diffusion process for the underly-
ing asset. Stochastic volatility models (Hull and White [20]) have also been used. Das and
Sundaram [10] indicate that neither of these types of models sufficiently explainsthe implied
volatility structure.

Finally, thereis the 1-factor continuous diffusion approach: an underlying asset with the

initial value Sjpit is assumed to satisfy:

® L p(Su )it + " (S W, € [0,7], 7> 0,
t

where W, is a standard Brownian motion, 7 is a fixed trading horizon, and p, o*: R x
[0,7] — R are deterministic functions. The function o *(s, t) is called the local volatility
function. The advantages of the 1-factor continuous diffusion model, compared to the jump
or stochastic model, include that no non-traded source of risk such as the jump or stochastic
volatility isintroduced [17]. Consequently, the completeness of the model, i.e., the ability to
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hedge optionswith the underlying asset, is maintained. Completenessis ultimately important
sinceit allowsfor arbitrage pricing and hedging [17].

There may be dispute regarding whether a 1-factor model (1) isthe best way to model an
underlying process. Our research will not shed light to this dispute. Instead, we demonstrate
theimportance of accurately approximating thelocal volatility functionin pricing and hedging
derivatives when the underlying followsa 1-factor model (1).

In order to price complex exotic options using a 1-factor diffusion model (1), the volatil-
ity function o*(s, t) needs to be approximated. Volatility is the only variable in this 1-factor
model which is not directly observable in the market. Similar to the implied volatility in the
constant volatility model, one possible ideais to imply thisloca volatility function from the
market option price data. Indeed, it is established [1, 17] that the local volatility function can
be uniquely determined from the European call options of al strikes and maturities, under
the no arbitrage assumption of the observable European call option prices. Unfortunately, the
market European option prices are typicaly limited to a relatively few different strikes and
maturities. Therefore the problem of determining the local volatility function can be regarded
as a function approximation problem from a finite data set with a nonlinear observation func-
tional. Due to insufficient market option price data, thisis awell-known ill-posed problem.

Computational methods have been proposed to solve thisill-posed problem [1, 2, 5, 13,
14,17, 22, 23, 27]. Most of these methods[1, 5, 13, 14, 17, 22, 27] overcome theill-posedness
of the problem by assuming the existence of a complete spanning set of European call option
prices, which, in practice, requires use of extrapolation and interpolation of the available
market option prices [5, 13, 22, 27]. This can be problematic because potentially erroneous
non-market information are introduced into the data. Rubinstein proposes to compute the
implied probability without any exogenous assumption on the model for the local volatility
function [22, 27]. In [1] the local volatility is computed at each discretization nodal point
with a PDE approach. The methods[2, 23] use a regularization approach to theill-posed local
volatility approximation problem. The closeness of the local volatility to aprior isused in [2]
and smoothnessis used in [23].

The local volatility function approximation problem is ill-posed: there are typically an
infinite number of solutionsto the problem. It isnot difficult to find alocal volatility function
o(s,t) that matches the market option price data. However, for accurately pricing exotic

options, we are not merely concerned with matching the market option prices but would like

2



to reconstruct as accurately as possible the volatility function o *(s, t) in the diffusion model
(2). Accurately approximating this volatility function is especially important for computing
hedge factors, even for ssmple European call/put options, see §4.

Smoothness of the function has long been used as a regularization criterion for function
approximation with afinite observation data[29, 30, 31]. Splines have known to possess good
approximation theoretical properties for amodel both when the function is fixed and smooth
and when it is a sample function from a stochastic process [31]. However, approximating
the local volatility function from a finite set of option prices is more complex, compared to
a standard function approximation problem, since the (observation) option price functional is
nonlinear. Nevertheless, it isintuitive that smoothness regularization will play a similar role
here.

In [23] the lack of sufficient market option price data is overcome by regularizing with
smoothnessof thelocal volatility function. Thelocal volatility iscomputed at each discretiza-
tion point to match the given option prices with an additional objective of minimizing the
change of the derivative Vo (s, t). Unfortunately, this approach requires the solution of a very
large-scale nonlinear optimization problem: the dimension is equal to the total number of
discretization points. In addition, it requires determination of a regularization parameter.

In this paper, we propose a spline functional approach: alocal volatility function o (s, t)
is explicitly represented by a spline with a fixed set of spline knots and end condition. The
volatilities at the spline knots uniquely determine a local volatility function. We choose the
number of spline knotsto be no greater than the number of option prices and they are placed
with respect to the given data. The spline is determined by solving a constrained nonlinear
optimization problem to match the market option prices as closely as possible. The dimen-
sion of the optimization problem istypically small, depending on the number of option prices
available. The approximation properties of the spline allow an accurate and smooth approxi-
mation of the local volatility function prescribing the 1-factor model in aregion withinwhich
the volatility values are significant for pricing available options.

We start with the motivation for our proposed inverse spline approximation formulation
for the local volatility in §2. Computational issues for solving the proposed optimization
problem are discussed in §3. Numerical examples illustrating the reconstructed local volatil-
ity surfaces from the European call option prices are described in §4. Using a European call

option example with the underlying foll owing the known absol ute diffusion process, we illus-
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trate the capability of the proposed method for accurately reconstructing the local volatility
function. A S&P 500 European index call option example with the real market datais also
used to illustrate the smoothness of the local volatility function and the stability of the pro-

posed approach. In §5, concluding remarks are given.

2. Local Volatility Function Approximation with Splines. Assume that the underly-
ing asset follows a continuous 1-factor diffusion process with theinitial value S it

s,

g = M(St,t)dt+ U*(St,t)th, tc [0,7’],
t

for some fixed time horizon [0, 7], W; is a Brownian motion, and u(s, t), o*(s,t): ®T x
[0, 7] — R are deterministic functions sufficiently well behaved to guarantee that (1) has a
unique solution [24]. Note that in this notation o *(s, t) can be negative as well as positive.
(The conventional notion of positivevolatility correspondsto +/a*(s, t)2 in our notation.) For
simplicity, we assume that the instantaneousinterest rate is a constant » > 0 and the dividend
rate is a constant ¢ > 0 (A general stochastic interest derivative pricing can be priced, e.g.,
[19]). Given Sinit,  and ¢, and under the no arbitrage assumption [25], an option with the
volatility o (s, t), strike price K, and maturity 7" hasauniqueprice v(o (s, t), K, T).

Assume that we are given m market option (bid,ask)-pairs, {(bid;, ask;)},, corre-

sponding to strike prices/expiration times { (K ;, Tj)}}”:l. Let
def )
’Uj(J(S,t)) = U(U(S,t),Kj,Tj)’ j=1,--- m.

We want to approximate, as accurately as possible, the local volatility function o *(s, ) :

RT x [0, 7] — R from the requirement that
(2 bid; < vj(o(s,t)) <askj, j=1,---,m.

Since the observation data { (bid;, ask;, K, T;) }7-; isfinite and the restriction is on the op-
tionvalues{v;(o(s, 1))}/, problem(2) can be considered aninversefunctionapproximation
problemfrom afinite observation data. Let 7 denote the space of measurable functionsin the
region [0, +00) x [0, 7]. Theinverse function approximation problem (2) can bewritten asan
optimization problem:

3 min ) [bid; — v;(0(s, )] + D _[vj(o(s, 1) — ask;)]",

o(s,t)eEH = =



where z+ max(z,0). Thisisa nonlinear piecewise differentiable optimization problem:

to overcome nondifferentiability in (3), one can alternatively solve a variational least squares

problem:
(4) Qi jzle»(a(s,t)) - 7j)°,
where v; def m Since the observation data is finite, problems (2,3,4) are severely

underdetermined: there are typicaly an infinite number of solutions. It is easy to find a
function o (s, t) that matches the market option price data[2, 5, 17, 13, 14, 22, 23, 27].

Thelocal volatility reconstruction problem (2,3,4) is a complicated nonstandard function
approximation problem. The option price functiona v(o (s, t), K, T) isnonlinear in thelocal
volatility function o (s, t). It isanonlinear inverse function approximation problem.

In most of the proposed methods|[1, 2, 5, 17, 13, 14, 22, 27] matching the market option
price data has been emphasized; it is often the only objective. However, a function o (s, t)
which matches the finite set of market option prices can be very different from the loca
volatility o * (s, t) which prescribes the 1-factor model for the underlying, see §4 for an exam-
ple. Moreover, the price v; generally has error (for example when a bid-ask spread exists). In
addition, the option value v ; (o (s, t)) can only be computed numerically using a tree method
or a PDE approach (there is no closed form solutionfor a general 1-factor model (1)). Hence,
it may not be desirable to insist that v ;(o (s, t)) match exactly the observed market price
forj =1,---, m. For pricing and hedging of exotic options, it is more important to compute
alocal volatility function o (s, t) which is as close as possible to the local volatility function
o*(s,t). Inother words, in addition to calibrating the market option price data sufficiently ac-
curately, we would like to reconstruct, as accurately as possible, the local volatility function
o*(s,t) of thediffusion model (1).

Smoothness has long been used [29, 30, 31] as a regularization condition for a function
approximation problem with a limited observation data. In addition, smoothness of the local
volatility function can be important in computational option valuation schemes. Convergence
of a PDE finite difference method, for example, depends on the smoothness of the function
o(s,t).

In[23] itis proposed to use smoothness as a regul arization condition to approximate the



local volatility function. The regularized optimization problem

©) i, Sl ) = ) AV s D)l

isused in [23] where ) is a positive constant and || - || o denotes the L2 norm. The change of
thefirst order derivative is minimized depending on the regularization parameter A for which
determining a suitable value may not be easy. In addition, computational implementation
of this method requires solving a large-scale discretized optimization problem: for a PDE
implementation, the dimension is N M where N is the number of discretization pointsin s
and M is the number of discretization pointsin ¢t. A simple gradient descent algorithm is
used in [23]. Since the optimization problem is (5) highly nonlinear, with such a method, the
computed solutionistypically inaccurate. To use a more sophisticated optimization a gorithm,
the Jacobian matrix of the vector function (v1, - - -, v,,,) Needsto be evaluated but thisbecomes
extremely costly due to the large dimension of the discretized problem.

Splines have long been used in approximating smooth curves and surfaces (see, e.g.,
[16]). They have also been used as a tool for regularizing ill-posedness of function approx-
imations from finite observation data [31]. In a typical 1-dimensional spline interpolation
setting, assuming values f;,i = 1,-- -, m, of the dependent variable f(z) corresponding to
values z;,i = 1,---,m, are given, a splineis chosen to fit the data ( f;, x;), ¢ = 1,---, m.
Given the number of knots p and their locations, the freedom of the spline isthe coefficient of
each spline segment. The cubic spline has long been used by craftsman and engineers as the
mechanic spline. It is the smoothest twice continuously differentiable function that matches

the observations; the minimizer of

b
min /(f”(x))2d:r, subjectto f(z;) = fi, i=1,---,m,
f(x)eSJa

isanatural cubic spline, where S is the Sobolev space of functions whose first order deriva-
tives are continuously differentiable and the second order derivatives are square integrable
(assuming m > 2). For mechanical splines, this corresponds to minimize the elastic strain
energy. For 2-dimensional surface fitting, the bicubic spline defined on aregular grid istwice
continuously differentiable [3, 16]. The bicubic spline has a similar variational minimization
property. Advantages of spline interpolation include its fast convergence on many types of
meshes, computational efficiency, and insensitivity to roundoff errors[3].

Approximating the local volatility function by a spline is particularly reasonable if the

local volatility function is smooth. |s this a reasonable expectation for the local volatility
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function? Assume that the underlying follows the 1-factor diffusion process (1). Let there
be given observable arbitrage-free market European call prices v(K, T') for all strikes K €
[0, 00) and all maturitiesT' € (0, 7]. From Proposition 1 in [1], the local volatility function
o*(s,t) of the diffusion process (1) that is consistent with the market is given uniquely by

_ gt (K D)+ K(r—a)ft

2 02v
K OK?2

(6) (0" (K,T))?

This formula suggests that, assuming v (K, T) is sufficiently smooth (note that g;% and 4%

aready exist) and g;% # 0, (o*(K,T))? is sufficiently smooth in the region (0, oo) x (0, 7]

aswell.

In this paper, we use a 2-dimensional spline functional to directly approximate a local
volatility function®. Let the number of splineknotsp < m. We choose a set of fixed spline
knots {(5;,%;)}}_, in the region [0, c0) x [0, 7]. Given {(5;,%;)};_, spline knots with cor-
responding local volatility values 7 ; def o(5;,t;), an interpolating cubic spline c(s, t) with a
fixed end condition (in our computation the natural spline end condition is used) is uniquely
defined by setting c(5;,t;) = 64,4 = 1,-- -, p. We then determine the local volatility values
a; (hence the spline) by calibrating the market observable option prices. The freedom in this
problem is represented by the volatility values {5 ;} at the given knots {(5;,%;)}. If 7 isa
p-vector, ¢ = (4, -+, ,) 7, then we denote the corresponding interpolating spline with the
specified end conditionas ¢(s, t; 7).

Let

vj(c(s,t;7)) o v(c(s, t;0), K;,T;), j=1,---,m.

To allow the possibility of incorporating additional a priori information, [ and v are lower and
upper boundsthat can beimposed on the local volatilitiesat the knots. Thus, we define thein-
verse splinelocal volatility approximation problem: Givenp splineknots, (5 1,%1) - - -, (5p, tp),

solve for the p-vector &

(7) subjectto [ <a < u,

where positive constants {w ;}7*.; are weights, allowing account to be taken of different ac-

curacies of ©; or computed v;. The determination of an approximationin the/; or [, norm

L1fitisknownthat o (s, t) isafunction of s or ¢ only, then one can use 1-dimensional spline.
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instead may be a valuable aternative although the problem becomes even more difficult to
solve computationally. Note also that the formulation (7) is quite general: European call/put
or even more complicated option prices can be used to compute the spline approximation to
the local volatility function o *(s, t).

The inverse spline local volatility problem (7) is a minimization problem with respect to
the local volatility & at the spline knots. The computed volatility function has some depen-
dence on the number of knotsp and the location of the knots { (s, ¢;)}*_,. The choice of the
number of knotsand their placement in spline approximationis generally a complicated issue
[16, 31]. The situation here is not typical for spline approximation due to the fact that the
dependent option price function is not the function to be approximated. Rather, it depends
on the values of the unknown volatility function in the region R+ x [0, 7]. Moreover, the
dependence on the unknown volatility values is not uniform in the region R + x [0, 7]. The
option premium depends little on the volatility values with small ¢ and s far from S'nit. Itis
convenient to view thisasfollows[1]: there existsaregion centered around S it within which
the volatility values are significant in pricing and hedging: we denotethisregionasD ; for the
optionv;, seeFig. 1 for illustration of itstypical shape. We can at most expect to approximate
well the local volatilitiesin the region D 1< UJL, D; from the market option data. In our ex-
periments, we often choose the number of knots equal to the number of observations. In order
to construct and evaluate a spline efficiently, the spline knots can be placed in a rectangular

mesh covering the region D and bicubic spline interpolation [3] can be used.

S\nll

Time t

Fi1G. 1. The Local Volatility in the Shaded Region D ; Is Sgnificant in Pricing and Hedging

If the number of spline knots are chosen to be no more than the number of observation
data points, the degrees of freedom, compared to that of a (discretized) formulation of (3),
is significantly decreased (several orders of magnitude). In addition to gaining smoothness
of thelocal volatility function, formulation (7) significantly decreases the computational cost

compared to that of the (discretized) formulations (3,5) due to reduction of the dimension of
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the optimization problem.

It is not appropriate to choose p much larger than m since (7) may become underdeter-
mined. If one decidesto use more spline knots, additional regularization, e.g.,
> wjlvj(e(s,t;0)) = 917 + My(e(s, ;)
j=1

. _\ def
min f(o) =

(8 subjectto [ <5 < u,

N | —

ismore appropriate: here A > 0 isaregularization parameter and n(o (s, t; o)) isasmoothing
norm for thetensor product splines[15]. (A referee has pointed out that this has recently been
considered in [21].)

In this paper, we focus on the formulation (7) and assume p is not greater than m. In
order to solve the inverse local volatility problem (7), an optimization method will be needed
to evaluate the values of options v ;(c(s, t; 7)) for any spline ¢(s, t; o); the derivatives may

also be computed. We discuss this next.

3. The Computational Procedure. Our proposal isto approximate the local volatility
surface, o* (s, t), withacubic splinec(s, t; 7) by solving (7) for thevector ¢ = (54, --,5,)%.
Problem (7), whenp < m, isdefined once the p knots (51,%1), - - -, (8, t,) have been chosen
appropriately. To express (7) more succinctly, define a vector-valued function F' : P — ™
where component j of F' isgiven by wj% [vj(c(s,t;0)) —v;], for j =1, -, m. Therefore (7)

can be rewritten:

. _\ def
min f(o) =

9) subjectto I <o <u.

1F ()13

N | —

Problem (9) is a box-constrained nonlinear |east-squares problem in ; there are a vari-
ety of optimization methods available to enable its solution. In our implementation we use
a trust region/interior point method [6, 7], in which a sequence of strictly feasible points
are generated: {7V} € int{F}, where F = {6 € ® : 1 < & < u}. Moreover,
the segquence corresponds to a monotonically decreasing sequence of function values, i.e.,
fED < B =1,... oo, where f¥) = f(3(*)). Under mild assumptions this approach
guarantees convergence, i.e., ) — 5*, where G*is alocal minimizer for problem (9).

def

The Jacobian of F' with respect to & is required: J(g) = VF(g). Notethat J isan

m X p matrix. In the square case when p = m, it ispossibleto use a standard secant update to
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approximate J, e.g., [12], which can significantly reduce the cost. Under reasonabl e assump-
tions a superlinear rate of convergence can be achieved. We note that there are optimization
approaches that do not require the calculation (or approximation) of the Jacobian matrix .J;
however, they typically converge very slowly - we have not investigated those methodsin this
work.
In this paper we explore two possibilitiesin the framework of our optimization approach:
1. Use of automatic differentiation [8] and/or finite-differencing to compute .J (¥) def
J(a®));

2. Use of a secant update to approximate J *) when p = m.

3.1. The Problem Structure. The evaluation of f(&) requires the evaluation of each
component of F, i.e., wj% [vj(c(s,t); o) — 5], for j = 1,---, m. Theseare generalized Black-
Scholes computations. There are several ways to approach this— we choose, as an example,
to use a standard PDE-discretization technique.

Given Sinit, 7, q, and o (s, t), let V (s, t) denote the option value of an underlying asset
with strike price K and expiry date T at (s, t), t € [0, T]. Under the no arbitrage assumption,
the option val ue satisfies the foll owing generalized Black-Scholes equation [25]

oV v 1 ) 202V
(10) T (r— q)sg + 50(3, t)°s 52 = rV.

The boundary conditionsfor the European call option are :

lim oV (s,t)

_ —q(T—t)
Jim P e , tel0,T],

V(0,t) =0, tel0,T),

V(s,T) =max(s — K,0).

We use a Crank-Nicholson finite difference solution strategy for solving (10), based on
discretization on auniform grid. Given a 2-dimensional grid the numerical solution of (10) is
standard and discussed in several texts. Zvan et al [32] have a good discussion of complexity
issues. It is possibleto increase efficiency by employing a number of computing techniques
such as vectorization and pipelining — description of these implementation aspects goes be-

yond the scope of this paper.

3.2. Computing the Jacobian and the gradient. The Jacobian matrix J () satisfies

o e
 9e " 05’
10

J(3)



where 2% isan m-by-M N matrix

e

, 5& Isan M N-by-p matrix.

It is useful to note that matrix €' %< g—g is constant and therefore needs to be computed
just once for the entire problem (given afixed discretization and spline knot placement). The
product g—z x C' can be computed directly using automatic differentiation (forward mode)
or approximately using finite differences (differencing v along the columns of C). In either
case the work involved is O(p - w(F')) where w(F) is the work (flops) required to evaluate
F. (In the finite-differencing case this is a tight bound whereas this bound can be undercut
considerably if automatic differentiation isused [18].)

The gradient of f, with respect to 7, issimply J 7 F. Therefore if the function F' and its
Jacobian J have been computed as described above the gradient is given by a matrix-vector
multiplication.

If the secant method is used in the square case, i.e., p = m, then the gradient is approx-
imated by A x F' where A isthe secant approximation to the Jacobian. The Jacobian is not

computed (except, possibly, for secant method restarts) with this approach.

4. Computational Examples. We now describe some computational experience with
our proposed method for reconstructing the local volatility function o *(s, ¢) from limited
observation data. We illustrate how European call options can be used to approximate the
local volatility function.

We have implemented the proposed method in Matlab using a trust region optimiza-
tion agorithm with a PDE approach for function and Jacobian evaluation. Without precise
knowledge of accuracy of the market data, the weights in the inverse spline local volatility
approximeation problem (7) are simply set to unity: w ; def 1, j=1,---,m. The generalized
Black-Scholes PDE (10) is solved with a Crank-Nicol son finite difference method. Given any
a, the bicubic spline c(s, t; ) with the variational end condition (the second order derivative
at theend is zero) is computed and eval uated using the functionsin the Matlab spline toolbox
[11]. We use a simple discretization scheme: a uniformly spaced mesh with N x M grid
pointsin the region [0, 2Sinit] x [0, 7] where 7 isthe maximum maturity in the market option
data:
an s =it =0, N -1,

tj=js—, j=0,--,M—1.
For simplicity, we have chosen the spline knots to be on a uniform rectangular mesh cov-

ering the region D in which the volatility values are significant in pricing the market options.
1



Given a European option, we do not have an explicit knowledge of the region D. In our ex-
periments, we have used [y1 Sinit, 72.Sinit] X [0, 7] as an estimate of D with v, € [.6,.8] and
v2 € [1.4,1.6] depending on the magnitude of Sinit. The number of spline knots p typically
equals the number of observation m. In the event that the option prices are calibrated to high

precision, we have experimented with p < m.

4.1. Reconstructing Local Volatility, Pricing and Hedging. In order to demonstrate
the effectiveness of the proposed method in reconstructing the local volatility surface and its
accuracy in pricing and hedging, we consider a synthetic European call option example used

in[23]. In thisexample, the underlying is assumed to follow an absolute diffusion process:

(12) d?st = u(Ss, t)dt 4 o* (S, t)dWr,
t

where thelocal volatility function o *(s, t) isafunction of the underlying only,

[0
J*(Sv t) = ;7

with o = 15, and W; representing a standard Brownian motion. We use the same parameter
setting asin[1]: Let theinitial stock index be Sinit = 100, therisk free interest rate r = 0.05
and the dividend rate ¢ = 0.02.

We consider, as market option data, 22 European call optionson the underlyingfollowing
the absolute diffusion process (12). Eleven options have half year maturity with strike prices
[90:2:110] and another eleven options have one year maturity with the same strikes. Thus

the option strike and maturity vectors are given below

K =1[90;92;---;110;90;92; - - -; 110] € R*2,

T =10.5;0.5;---;0.5;1;1;---; 1] € R,

For the absolute diffusion process (12), the analytic formula for pricing European options
exists[9] and we set the market European option call price v ; equal to thisanalytic value. The
discretization parametersin (11) aresetas M = 101 and N = 51.

For this example the lower and upper bounds for the local volatility at the knot 7 ; are
l; = —1 and u; = 1 respectively (though no variableisat the bound at the computed solution
inthiscase). First, welet p = m and place the spline knots on the grid [0 : 20: 200] x [0, 1].
Theinitial volatility values at knots are specified as&fo) =0.15,¢1=1,---,22. Theresulting

12



Reconstructed Local Volatility with 22 Observations #Jeval= 6 True Local Volatility

125 120" 145

FIG. 2. The Reconstructed and True Local \olatility

optimization problemisrelatively easy to solve. The optimization method requires7 iterations
(6 Jacobian eval uations) and the computed optimal objective function value f(& *) is1076.

Fig. 2 demonstrates the accuracy of thislocal volatility reconstruction: the reconstructed
spline surface c(s, t; a*) very accurately approximates the actual volatility surface o *(s, t) in
the neighborhood of theregion [75, 125] x [0, 1]. To better observe accuracy of reconstruction,
the three plotson theleft in Fig. 3 display thelocal volatility curvesfor¢ = 0,0.58 andt = 1
respectively. Since the calibration error is very small and the reconstructed volatility surface
is nearly linear, we experimented with choosing the number of spline knotslessthan m. The
three plots on the right of Fig. 3 display the local volatility curves reconstructed with eight
spline knots placed on the mesh [.4Sinit : .4Sinit : 1.6Sinit] % [0, 1]. We observe that the local
volatility reconstruction remains excellent, with adlightly larger deviationwhen ¢ issmall and
s isfar from Sipit.

To illustrate the accuracy of pricing using the reconstructed local volatility c(s, t; & *)
rather than the true local volatility o * (s, t), we compare prices and hedge factors of a number
of European call options using both the true local volatility and the reconstructed volatility
surfaces. The hedge factors vega (sensitivity to the change in the volatility), delta (sensitivity
to the change in the underlying), gamma (sensitivity of deltato the change in the underlying
), rho (sensitivity to change in the interest rate) and theta (sensitivity to change in the matu-
rity) are computed using a finite difference approximation. A constant shift in both volatility
surfacesis used to calculate the vega hedge factor. For European call optionswith strikesand
maturities over the grid [85:5:110] x [.4:.1:.7], the results are shown in Table 1. These

resultsindicate that fairly accurate prices as well as hedge factors are obtained using the re-

13
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max relative error | averagerelative error
Price 7.8¢73 2.1e73
Vega 9.8e—3 6.1e=3
Delta 4.8e72 1.3e72
Gamma 9.5¢72 5.9¢72
Rho 4.5¢3 2.0e73
Theta 6.9¢ 73 2.2¢73

TAaBLE1

Accuracy of Pricing and Hedging

constructed volatility surface (s, ¢; o *). Note that the PDE option eval uation with the chosen
discretization can generate errors of at least these magnitudes.

We emphasize that the formulation (7) is appropriate when the number of spline knotsp
isnot greater than the number of observationsm. If p ismuch larger than m, then formulation
(7) can become severely underdetermined. To illustrate the potentia pitfalls of allowing too
much freedom in approximating o * (s, t), we simulate the more realistic market situation when

thereis abid-ask spread in the given option prices by setting
v; = exact price of option j 4 .02rand

whererand isaMatlab generated random number. We compare thelocal volatility reconstruc-
tions using the spline knots on the rectangular meshes [.4.5 init : .4 .Sinit: 1.6Sinit) % [0, 1] (p = 8)
and [0:.01Sinit: 2Sinit] x [0, 1] (p = 202 < M N). Theplotson theleft in Fig. 4 illustrate the
reconstructed local volatility curvesusing therectangular mesh [.4.S it : .4Sinit: 1.6.Sinit) X [0, 1]
for knots. The plots on the right in Fig. 4 illustrate the reconstructed local volatility curves
using the rectangular mesh [0:2: 2Sji¢] x [0, 1] for knots. Although the available option prices
are matched with very high accuracy (error about 107%) using p = 202, the computed local
volatility surface does not resemble the true local volatility surfaces *(s, t). Using eight knots
on the rectangular mesh [.4Sinit : .4Sinit : 1.6Sinit] % [0, 1], on the other hand, yields a much
more accurate volatility surface, even though the calibration error of the available optionsis
larger (about 10~4).
Next weillustrate that, assuming the underlying follows a continuous 1-factor model (1),

a constant implied volatility approach can produce erroneous hedge factors even though the
option prices may be computed accurately. We use the same absolute diffusion model (12)

but with greater volatility: the constant o = 75 isused instead of o« = 15. The same initial
15
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underlying Sinit = 100 and the risk free interest rate » = 0.05 are used but the dividend
rate ¢ is set to zero. We consider European call options with strikes and maturities at the
grid [80 : 4 : 120] x [.25,.5, 1]. The spline knots are at the grid [0 : 20 : 2Sinit] x [0, .5, 1].
Fig. 5 displaysthe price and hedge factors of options with maturity .25 year using the true
local volatility, reconstructed volatility, and constant implied volatility. From these plots, we
see that the price and al the hedge factors computed using the reconstructed local volatility
function are fairly accurate approximation to the true values. Using the constant implied
volatility method, however, large errors exist in hedge factors (mostly noticeably in theta,
delta, gamma and vega).

In addition to choosing the number of spline knots p, the placement of the knots requires
some care as well. The spline knots should be placed to cover the region D within which
the values of the local volatility are significant in the option values. We have used the uni-
form spacing in the interval [0, 2Sini] and [.4Sinit, 1.6Sinit] in this synthetic example but an
aternative is to place them nonuniformly with a more refined placement around s = Sipit.
Moreover, one need to avoid placing spline knotstoo closely together sincethiscan lead toiill

conditioning of the Jacobian matrix VF'.

4.2. A S&P 500 Example Illustrating Smoothness and Stability. We consider now a
more realistic example of approximating the local volatility function o *(s, t) from the Euro-
pean S& P 500 index European call options. We use the same European option data of October
1995 givenin[1]. Themarket option price data (in the implied Black-Scholes constant volatil -
ity) isgiven in Table 2. Similar to [1], we use only the options with no more than two years

maturity in our computation. Theinitial index, interest rate and dividend rate are set asin [1],
Sinit = $590, r=0.06, and ¢ = 0.0262.
The discretization parametersin (11) are set as,
N =101, and M =101.

In order to solve the proposed inverse spline volatility problem (7), we compute the mar-
ket European call option prices with given strikes and maturities using the constant volatil-
ity Black-Scholes formula with the corresponding implied volatility. The Matlab function
blspriceisused.

For this example the number of splineknots p equals the number of observationsm and

the splineknotsare placed on arectangular mesh [.8 St : .066.Sinit: 1.4 Sinit] X [0:.33:2].Using
17



Maturity (in years) Strike (% of spot)
85% | 90% | 95% | 100% | 105% | 110% | 115% | 120% |130% |2140%

175 190 | 168 | .133 113 102 .097 120 142 .169 .200
425 77 | 155 | 138 125 109 .103 .100 114 130 150
.695 A72 | 157 | 144 133 118 .104 .100 101 .108 124
.94 A71 ) 159 | 149 137 127 113 .106 .103 .100 110

1 A71 | 159 | 150 138 128 115 107 .103 .099 .108
15 169 | 160 | 151 142 133 124 119 113 107 102

2 169 | 161 | 153 .145 37 130 126 119 115 JA11
3 168 | .161 | .155 .149 143 137 133 128 124 123
4 168 | 162 | .157 152 .148 143 139 135 130 128
5 168 | .164 | .159 154 151 .148 144 .140 136 132

TABLE 2

Implied Volatilities for S& P 500 Index Options

all the call option prices with maturity 7" < 2 in Table 2, the reconstructed local volatility
surfaceisgivenin Fig. 6. Thisoptimization problem seemsto be more nonlinear and difficult
to solve. After 28 iterations, the average error of v;(c(s, t;5)) — v; using the reconstructed
local volatility is0.0076. The average error using the constant implied volatility via the PDE
implementation with this discretization, compared to the Black-Scholes analytic formula, is
0.0510.

Thereconstructed local volatility surfacescan be dlightly different if different splineknots
are chosen. In order to show that the local volatility surface reconstruction, pricing and hedg-
ing are relatively robust, we consider the second spline knots placement using the rectangular
mesh K x [0:.33:2]. The average price calibrating error for the market call optionsin this
caseis.0027. The reconstructed volatility surface using this knot placement is shown in Fig.
7. Comparing Fig. 6 with Fig. 7, the reconstructed volatility surfaces are quite similar in
the region D, noting the shape of D. For options with strikes and maturities over the grid
[.85:.1:1.15]Sinit x [.85: .1 : 1.15], the relative difference of pricing and hedging factor
with the two spline knot placements are shown in Table 3. We observe that indeed they are
acceptably close.

For pricing simple European call/put options, different implied volatilitiesare often used
in practice to price options of different strikes/maturitiesin order to accommodate volatility
smile. For pricing an exotic option such as a knock-out option, a constant volatility model

is inappropriate since the price of this option depends on volatilities of different strikes and
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max rel. diff. | avg. rel. diff.
Price 6.8¢73 1.4e™3
Vega 1.3e—2 2.7¢—3
Delta 4.3¢72 1.6e72
Gamma 8.8¢72 4.1e"2
Rho 5.3¢73 2.0e73
Theta 4.9¢~2 9.2¢73

TABLE 3

Differences Between Using Two Rectangular Meshesfor Knots

max rel. diff. | avg. rel. diff.
Price 11% 6%
Vega 15% 9%
Delta 19% 11%
Gamma 271% 17%
Rho 12% 7%
Theta 29% 16%

TABLE4

Relative Differencein Pricing and Hedging Using Constant \olatility

maturities. In order to illustrate the potential error in using a constant volatility in pricing

exotic options, we examine here the price and hedge factors differences between using a
constant vol atility model and the 1-factor model with the reconstructed volatility function. We
use the same S& P 500 index option example and choose the the arithmetic average (which is
0.1319) of theimplied volatilitieswithT' < 2 asthe constant volatility. We compare the prices
atagrid [.85:.1:1.15]Sinit x [.85:.1:1.15] of strike prices and maturity dates (different from
given market data). Theresultsare in Table 4. These two methods give significantly different
prices: we notice asmuch as 11% relative difference. Similarly all the hedge factors computed
using the constant volatility have a large relative difference, we document the resultsin Table
4. To visuaize the difference in detail, we plot the price and hedge factor curves for options

with 1-year maturity in Fig.8.

4.3. Incorporate Additional Information. Using market option data to imply the lo-
cal volatility function in a diffusion model is a look-ahead technique. Frequently, historical
data has been used to estimate a constant volatility. The latter is a look-back technique. An

interesting question is whether it is possible to combine both techniques to generate better
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Tol Finite Difference quasi-Newton Update
Iterations Time | lterations Time | Jevas
le=2 7 | 321.29 11 | 131.85 3
le=3 10 | 401.43 18 | 19391 4
le4 19 | 651.89 28 | 286.78 5
le™? 25 | 795.45 36 | 332.13 6
TABLES

Quasi Newton Results

approximation to the local volatility function.

In the proposed splinevolatility formulation (7), there are two potential waysthat a priori
information can beincorporated. Thefirst isto use the simple boundsto limit the range of the
local volatilitiesat knots. The second possibility isto specify fixed local volatilities at some
chosen knots.

We have experimented with setting tighter bounds on the volatility & for the S& P 500
index European call option example. We observe that, aslong as the bounds are not too small
(I < —.3,,u > .3inthe S&P 500 example), they can influence volatility values of small ¢
and s far from Siit but do not have much impact in the region D within which the volatility
functionis significant in market option prices. However, setting boundstoo tight can impede
calibrating the market option prices. Therefore, unless one has reliable knowledge on the
bounds of the volatilities, they should be sufficiently large to ensure that the calibrating error
issufficiently small. Similar remarks can be made if one wishesto set the volatilitiesat certain
knotsto some fixed values.

Finally, wewould like to illustrate the potential computational saving by using the quasi-
Newton updates. In Table 5 we present Matlab computational results using the finite dif-
ference and quasi-Newton update for Jacibian for the S& P 500 index option example with
different termination tolerances for optimization. We observe significant total speedup using
a quasi-Newton approach. The quasi-Newton approach takes more iterationsto converge but

requires fewer Jacobian evaluations.

5. Concluding Remarks. Assuming that the underlying asset of optionsfollowsa con-
tinuous 1-factor diffusion model, we propose a method of accurately approximating the local
volatility function o *(s, t) using a finite set of option prices. We emphasize that accurate

approximation of the local volatility function in the 1-factor model is crucial in hedging all
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options (including simple European options) and pricing exotic options. Moreover, since the
market option data typically has bid-ask spreads, exact calibration of the option data (the
average of the bid-ask spreads) is hot necessary and can be harmful.

Based on the formula (6) established in [1, 17], the local volatility function o *(K, T')?
is smooth if the European call option value function v(K, T') is sufficiently smooth. We use
a spline functional approach to reconstruct this local volatility function. After choosing the
number of spline knotsand their placement, we represent alocal volatility function o (s, t) by
an interpolating splinewith afixed end condition. Thevolatility valuesat knotsare determined
by solving a small nonlinear optimization problem subject to simple bounds. The number of
variablesin the optimization (7) is no greater than the number of option observations.

We solve the proposed inverse spline approximation optimization problem using a trust
region method, with the function and Jacobian evaluated using a PDE approach. Computa:
tional efficiency through structure exploitation within the framework of finite difference and
automatic differentiation is discussed.

We consider two European call options examples illustrating the capability of the pro-
posed method. Inthefirst example, we consider synthetic European call optionsfor which the
underlying follows a known absolute diffusion model. Option observation data is simulated
by evaluating a set of European call options using the analytic formula. The reconstructed
local volatility is compared to the true local volatility, indicating a fairly accurate reconstruc-
tionin the region within which the local volatility values are significant for option evaluations.
With the same exampl e, we illustratethat the constant implied vol atility approach can produce
erroneous hedge factors, compared to that from the 1-factor model, even for simple European
options. Moreover, when the observable option prices have bid-ask spreads, calibrating mar-
ket data exactly by using too many splineknots can lead to poor reconstruction of thetruelocal
volatility function. In the second example, S& P 500 index European call optionswith market
option data of October 1995 are considered. We illustrate the smoothness of the reconstructed
local volatility and stability of the proposed method in pricing and hedging.

We have demonstrated the potential of the proposed spline volatility approach in discov-
ering, from afinite set of option prices, the local volatility functionin the 1-factor processfol-
lowed by the underlying. We plan to further investigate automatic techniquesfor the optimal
selection of the number of knotsp < m and their placement. The importance of the proposed

local volatility function reconstruction in pricing exotic optionsor American optionswill also
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be explored.
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