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Abstract

In this survey we discuss models with level�dependent and stochastic volatility from

the viewpoint of derivative asset analysis
 Both classes of models are generalisations

of the classical Black�Scholes model� they have been developed in an e�ort to build

models that are exible enough to cope with the known de�cits of the classical Black�

Scholes model
 We start by briey recalling the standard theory for pricing and hedging

derivatives in complete frictionless markets and the classical Black�Scholes model
 After

a review of the known empirical contradictions to the classical Black�Scholes model

we consider models with level�dependent volatility
 Most of this survey is devoted

to derivative asset analysis in stochastic volatility models
 We discuss several recent

developments in the theory of derivative pricing under incompleteness in the context

of stochastic volatility models and review analytical and numerical approaches to the

actual computation of option values


� Introduction

Over the last �� years the classical Black�Scholes model has proven to be a very e�ective

tool for the valuation and the risk�management of derivative securities� and even today

most of the trading activity on markets for equity and currency options is based on this

model	 Nonetheless� in recent years a number of empirical observations have been compiled

that are di
cult to reconcile both with the assumptions the model imposes on the price

process of the underlying asset and with the predictions the model makes on the behaviour

of option prices	 To mention only a few of these issues that currently mark many debates

in derivative asset analysis� most time series of asset returns are said to exhibit �excess

kurtosis� and �fat tails� and on options markets we encounter �smile� or �skew� patterns

of implied volatility	

Researchers have therefore attempted to build new option pricing models that are exible

enough to cope with these empirical facts	 A good deal of this research concentrates on

relaxing the stringent and unrealistic assumption of constant volatility imposed on the price

process of the underlying security	 Basically the continuous�time approaches to a more
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re�ned volatility modelling can be divided into two classes	 The deterministic volatility

models �DV�models� take the volatility to be a function of the price level of the underlying

security whereas the stochastic volatility models �SV�models� assume that the volatility is

itself given by a stochastic process that is only imperfectly correlated with the asset price

process	

In this survey we discuss both approaches from the viewpoint of derivative asset analysis	

We are mainly concerned with the derivation and computation of prices and hedge portfolios

for options and with an analysis of their qualitative properties	 Our focus is on models which

are set up in continuous time� but we briey treat discrete�time GARCH�models as these

are both helpful tools for the estimation of continuous�time models and interesting models

in their own right	

We start our analysis in section � by briey recalling the standard theory for pricing and

hedging derivatives in complete and frictionless markets and apply this theory in the frame�

work of the Black�Scholes model	 This section serves several purposes	 It is a quick in�

troduction for the �newcomer� to the �eld	 Moreover� it illustrates that option pricing

formulae such as the celebrated Black�Scholes formula hinge on several strong assumptions

on the price processes of the underlying assets	 To the extent that these are violated sim�

ply applying the recipes of standard option pricing theory may lead to answers which are

nonsensical from an economic viewpoint and which may have severe consequences for the

practioner who does not take the necessary care when applying a particular option pricing

model	

In section � we discuss more thoroughly the empirical evidence contradicting underlying

assumptions and predictions of the classical Black�Scholes model	 We then go on and study

the class of deterministic volatility models in section �	 Here we are mainly interested in

the so�called implied deterministic volatility models proposed for instance by Dupire ������

and Rubinstein ������	 In these models one tries to determine a volatility function for the

price process of the underlying asset in order to ��t� the prices of traded option contracts	

The models thus obtained can then be used for the pricing and hedging of more complex

derivatives	 The main virtue of this class of models is completeness�� conceptual di
culties

concerning the way options should be priced and hedged do therefore not arise in this

framework	

As most of the recent extensions of the classical Black�Scholes model belong to the class

of stochastic volatility models� we devote the greatest part of this survey to the study of

derivative asset analysis in this class of models	 We start by introducing di�erent popular

speci�cations from the recent literature in section �	 We introduce certain GARCH�models

and discuss the convergence of GARCH�models to continuous�time di�usions	

In section �	� we consider the conceptual problems for derivative asset analysis in SV�

models	 We show that there is a price to pay for the increase in realism gained by modelling

volatility as a stochastic process� stochastic volatility models are typically incomplete� and

there are many possible price processes for an option that are consistent with no arbitrage	

�A model for the price process of the underlying security is termed complete if every derivative contract

can be replicated by a dynamic trading strategy�

�



We demonstrate by means of an example that arbitrage pricing alone may be of no help

when it comes to restricting the range of possible option prices	 This casts some doubts on

the stochastic volatility option pricing models proposed in the Finance literature where one

of the price processes consistent with no arbitrage is picked more or less ad hoc	 Moreover�

the problem of hedging derivatives is not adressed in this literature	 As this is a key issue

for practioners we review two approaches to derivative asset analysis in incomplete markets

that are based mainly on hedging arguments� namely superreplication as introduced by

El Karoui and Quenez ������ and �local� risk minimization as developed in F�ollmer and

Schweizer ������ and related papers	

In the theory of superreplication one seeks to �nd the cheapest sel
nancing trading strategy

that yields a terminal payo� no smaller than the payo� of the derivative one wants to cover	

Using a deep result from El Karoui and Quenez ������ we show that in the case of certain

SV�models with unbounded volatility there exists only a trivial superreplication strategy	

Therefore� at least for these models� superreplication in the sense of El Karoui and Quenez

������ does not seem to be a viable approach to the hedging of derivatives	

The theory of local risk minimization seeks to determine a trading strategy in the underlying

asset that reduces the risk of a derivative to its �intrinsic component�	 While the �hedgeable

part� of a derivative can be priced by standard replication arguments� economic equilibrium

arguments or concepts from insurance pricing are needed to �nd a price of the �cost process�

that represents the intrinsic risk of the derivative	 We show that the general recipe for the

computation of locally risk minimizing hedging strategies given in F�ollmer and Schweizer

������ is easily applied to SV�models and yields very intuitive results	 In doing so we

moreover take the chance to correct a minor error of Hofmann� Platen� and Schweizer

������	

Section �	� forms the core of this paper	 It presents a view on derivative analysis in SV

models that is rarely taken in the literature on option pricing under stochastic volatility

and it contains in addition some new results	

We discuss several approaches to the actual computation of option prices in section �	�	

Here we review both� theoretical and analytical approaches	 We conclude our analysis of

option pricing under stochastic volatility by collecting evidence on the qualitative behaviour

of option prices in SV�models	 It turns out that these prices exhibit the same qualitative

properties than do the observed prices of traded option contracts	 This gives some hope

that SV models might be a useful tool for the risk�management of derivatives	

We do not devote much attention to the estimation of SV�models and sketch only one

possible approach	 This is not meant to imply that this is an uninteresting or unimportant

topic� it is simply due to the fact that the author�s �eld of expertise lies elsewhere	 For

further information on the estimation of SV�models and more generally the estimation of

di�usion models from discrete observations see for example Dacunha�Castelle and Florens�

Zmirou ������ or the survey articles G�oing ������� Shephard ������� Ait�Sahalia ������

and Ghysels� Harvey� and Renault ������	 Another interesting survey on option pricing

under stochastic volatility is Hobson ������	 As in our paper the latter article considers

mainly the pricing of options in SV�models	 The author does not address the issue of option

pricing under incompleteness in great detail� but he is more explicit about the estimation
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of SV�models than we are� in particular this article contains an excellent bibliography on

this subject	

� Pricing and Hedging Derivatives � Standard Theory

We start our survey by briey reviewing the standard theory for the pricing of derivative

securities such as options	 Our exposition largely follows F�ollmer ������	 We consider a

market where a risky asset� in the sequel simply referred to as the stock� and some riskless

bond or money market account B are traded	 The price uctuations of the stock are

described by some stochastic process X � �Xt���t�� which is de�ned on some �ltered

probability space ���F � P �� �Ft�t��	 For simplicity we assume that Bt � � for all t � �	� A

typical model for the price process of the risky asset is the generalized Black�Scholes model

where X is given by the solution of the following SDE

dXt � ��t�Xt�Xtdt� ��t�Xt�XtdWt � ��	��

Here W is a standard Brownian Motion on ���F � P � and � and � are su
ciently smooth

such that there is a unique solution to ��	�� which is moreover strictly positive	 When

talking of a generalized Black�Scholes model we shall always assume that �Ft�t�� is the

�ltration generated by the Brownian motionW 	 The model ��	�� has the following intuitive

interpretation� at a given point in time ��t�Xt� describes the instantaneous growth rate

of the asset� while the volatility ��t�Xt� measures the instantaneous variance of the return

process lnX	 Hence ��t�Xt� can be interpreted as �local� measure of the risk incurred by

investing one unit of the money market account into the stock	 In case that ��t� x� is a

constant or at most a function of time model ��	�� is termed the classical Black�Scholes

model	

Now imagine an investor such as a bank who considers selling a contingent claim� i	e	 a

FT �measurable random variable �H	 �H is interpreted as payo� at date T of some �nancial

contract	 Typically �H is a derivative asset� i	e	 the value of �H is determined by the

realisation of the price path of X	 The most popular examples are European call and put

options with maturity date T and exercice priceK where �H � �XT�K�� or �H � �K�XT �
��

respectively	 As �H is typically unknown at date t � � such a contingent claim constitutes

a risk	 Therefore two questions arise for our investor� How should he price the claim and

how should he deal with the risk incurred by selling the contract The �modern� answer to

these questions dates back to the seminal papers by Black and Scholes ������ and Merton

������	 They showed that under certain assumptions the payo� of a derivative security

can be replicated by a dynamic trading strategy in the underlying asset� such that its risk

can be eliminated	 This concept of dynamic hedging� which can be carried over to more

sophisticated models than ��	��� and not the celebrated Black�Scholes formula which holds

only in the classical Black�Scholes model should be viewed as major contribution of these

papers	

�This assumption does not exclude nonzero interest rates from our analysis� if we interprete X as forward

price process of the stock� i�e� if we choose the bond as numeraire� For a general discussion of the role of

numeraires in derivative asset pricing theory see for instance �Geman� El Karoui� and Rochet ������
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Let us now explain their argument in more detail	 Assume that the asset price process

X admits an equivalent martingale measure Q� i	e	 a probability measure with the same

nullsets as P such that X is a Q�martingale	 This assumption excludes arbitrage oppor�

tunities from our model	� Moreover it ensures that X is a P �semimartingale such that we

may de�ne stochastic integrals with respect to X	

Now consider a dynamic trading strategy ��� �� where �t gives the amount held in the risky

asset at time t and �t gives the position in the bond	 Of course our position at t should

depend only on information available up to time t� that is we require � to be predictable

and � to be adapted with respect to �Ft�t��	 At time t the value of our hedge portfolio

equals

Vt � �tXt � �t � ��	��

As Bt � � the cumulated gains from trade of following this strategy up to time t are

measured by the stochastic integral
R t
� �sdXs	 Hence the cumulative cost Ct from following

this strategy up to time t is given by

Ct � Vt � V� �
Z t

�
�sdXs � ��	��

The strategy will be called sel�nancing if the cumulative cost is zero� i	e	 if we have

Vt � V� �

Z t

�
�sdXs for all � � t � T � ��	��

Suppose now that our contingent claim can be represented as a stochastic integral with

respect to X� i	e	 �H � H� �
R T
� �Hs dXs	 Then we may construct a dynamic hedging

strategy for H as follows	 De�ne

� � �
�H and �t � H� �

Z t

�
�
�H
s dXs � �

�H
t Xt � ��	��

This strategy is sel
nancing with value process V
�H
t � H� �

R t
� �

�H
s dXs	 In particular

V
�H
T � �H	 Therefore� at any time t � T we can replicate the claim by starting with an

investment of V
�H
t and following the above strategy	 There are no further payments and

hence no further risk	 This implies that at time t the fair price of the claim should be equal

to V
�H
t 	

Harrison and Pliska ������ proposed the following shortcut to computing V
�H
t 	 Under certain

integrability conditions the stochastic integral
R t
� �

�H
s dXs is a Q�martingale and hence

EQ

�Z T

t
�
�H
s dXs j Ft

�
� � for all t �

This yields the so�called risk�neutral pricing rule for the claim �H

Ht �� V
�H
t � EQ� �H j Ft� � ��	��

�Roughly speaking an arbitrage opportunity is a sel�nancing strategy with zero initial investment and

a nonnegative value process Vt with P 	VT � 
� � 
� Absence of arbitrage opportunities is known to be

�essentially equivalent to the existence of an equivalent martingale measure� There is a long literature

on this subject starting with �Harrison and Kreps ����� and culminating in �Delbaen and Schachermayer

������
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in particular the fair price process H � �Ht���t�T is a Q�martingale	 Harrison and Pliska

moreover showed that the market is complete� i	e	 every Q�integrable claim admits a repre�

sentation as stochastic integral with respect to X� if and only if there is only one equivalent

martingale measure for X	

This elegant approach to pricing and hedging contingent claims hinges on several crucial

hypotheses	 Obviously if our argument is to work for all claims the market must be com�

plete	 Moreover� in our de�nition of the gains from trade we implicitely assumed that there

are no market frictions such as taxes and transaction costs� and that our potential seller is

�small� compared to the size of the market� meaning that the implementation of his hedg�

ing strategy doesn�t a�ect the price process of the stock	 Much of the recent research in

Finance has concentrated on relaxing these assumptions	 We will survey recent approaches

to pricing and hedging of derivatives in incomplete markets in the course of our analysis

of stochastic volatility models in section �	�	 A representative example of recent work on

transactions costs is Bensaid� Lesne� Pages� and Scheinkman ������� the pricing and hedg�

ing of options in markets with a large trader is for instance studied by Jarrow ������ or

Frey and Stremme ������ and Frey ������	

Let us now apply the above approach to pricing and hedging derivatives in the context of

the generalized Black�Scholes model ��	��	 De�ne

GT �� exp

�
�
Z T

�
���t�Xt����t�Xt��dWt � �

�

Z T

�
���t�Xt����t�Xt��

�dt

�
�

Under some integrability conditions we have E�GT � � �	 In that case we may de�ne a new

probability measure Q on FT by putting dQ�dP �� GT 	 According to Girsanov�s theorem�

the process X solves under Q the SDE

dXt � ��t�Xt�XtdW
Q
t ��	��

for the Q�Brownian motion WQ
t �� Wt �

R t
� ���s�Xs����s�Xs��ds	 Hence X is a local Q�

martingale and a martingale under some integrability assumptions	

If the volatility function ��t� x� is strictly positive� market completeness follows from the

martingale representation theorem for Brownian motion� see e	g	 �Karatzas and Shreve

����� Section �	� D�	 This theorem ensures that for any Q�integrable FT measurable random

variable �H the martingale Ht � EQ� �H j Ft�� � � t � T can be represented as stochastic

integral� i	e	 there is a predictable process �
�H such that Ht � H� �

R t
� �

�H
s dWs	 If we now

de�ne �
�H
s �� �

�H
s ����s�Xs�Xs� we immediately get

�H � H� �

Z T

�

�
�H
s

��s�Xs�Xs
��s�Xs�XsdW

Q
s � H� �

Z T

�
�
�H
s dXs �

Now there remains of course the task of computing price and hedging strategy	 For the

purposes of this paper it is enough to consider claims whose payo� has the form �H �

�For an account of Girsanov�s theorem for Brownian motion and su�cient conditions for E	GT � � � see

for instance �Karatzas and Shreve ����� Section �����
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g�XT �	
� For those derivatives price and hedge portfolio can be computed by means of a

parabolic partial di�erential equation	 Denote by h�t� x� the solution of the terminal value

problem
	

	t
h�t� x� �

�

�
���t� x�x�

	�

	x�
h�t� x� � �� h�T� x� � g�x� � ��	��

By It!o�s formula we obtain from ��	��

g�XT � � h�T�XT � � h�t�Xt� �

Z T

t

	

	x
h�s�Xs�dXs �

Hence �
�H
t � �

�xh�t�Xt� and the fair price of the derivative is given by Ht �� h�t�Xt�	

If we work in the classical Black�Scholes model with only time�dependent volatility and if g

equals the payo� of a European option the PDE ��	�� can be solved explicitely	 The usual

approach is to transform the problem to the heat equation� see e	g	 �Wilmott� Dewynne�

and Howison ����� section �	��	 This yields the famous Black�Scholes formula for European

call options�

h�t� x� � CBS �t � x � ��t� � where

CBS�t� x� ��t� � N �d�t ��KN �d�t � � ��t � �T � t��� �
Z T

t
���s�ds � ��	��

d�t �
ln �x�K� � �

��T � t���tp
�T � t���t

� d�t � d�t �
q
�T � t���t � ��	���

and where Ndenotes the distribution function of the one�dimensional standard normal

distribution	 Alternatively one could derive the Black�Scholes formula using probabilistic

methods to compute the conditional expectation in ��	��	 For an application of this ap�

proach in a more general setting see for instance Frey and Sommer ������	 If the volatility

is a function of the current price of the risky asset� usually explicit formulas for option

prices are no longer available	 See however Miltersen� Sandmann� and Sondermann ������

for a notable exception and certain applications to the pricing of interest rate derivatives	

� Empirical Evidence Contradicting the Classical Black�Scholes Model

Over the last �� years the classical Black�Scholes model has proven to be a very e�ective

tool for the valuation and the risk�management of derivative assets	 Nonetheless in the last

years a number of observations have been reported which are at odds with both underlying

assumptions and predictions of the simple model ��	�� with constant volatility	

Empirical evidence on the price process of the underlying security suggests that the classical

Black�Scholes model does not describe the statistical properties of most �nancial time series

very well	 According to this model the return over a short period of time should be normally

�For the pricing of path�dependent options in the framework of the classical Black�Scholes model see for

instance �Wilmott� Dewynne� and Howison ����� and the references given therein�
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distributed	 Now since the early work of Mandelbrot ������ and Fama ������ researchers

have compiled a huge amount of evidence for excess curtosis in �nancial time series		

A casual observation of �nancial time series also reveals the presence of volatility clusters�

i	e	 there are usually periods with high volatility and other periods where volatility is

low	 This has lead researchers to develop ARCH models which are designed to mimic

this behaviour	 A brief introduction to these class of models is given in section �	�� for a

detailed survey see Bollerslev� Chou� and Kroner ������	 As shown in this survey this class

of time series models has been applied with great success to �nancial data	 We will see

in section �	� that ARCH models can be considered as discrete�time versions of stochastic

volatility models	 In the latter class of models the volatility itself follows a stochastic

process whose innovations are only imperfectly correlated to the stock returns	 Hence the

success of ARCH�models can be seen as evidence against the assumptions underlying the

classical Black�Scholes model	 Finally many researchers have found evidence for negative

correlation between volatility and stock price movements on equity markets	 Following

Black ������ this phenomenon is termed the leverage e�ect	 Again this evidence contradicts

the assumption of constant volatility	

There are also empirical observations on option prices contradicting the predictions of the

theory	 These observations relate to the behaviour of implied volatilities	 Suppose we

observe that at time t and a given price level �x of the underlying asset X an option con�

tract is traded at a certain price c	 Then we may invert the formula ��	�� to obtain the

implied volatility �� of the option	 Formally �� is the positive solution to the equation

CBS�t� �x� ��
���� � c	 If the stock price process actually followed the classical Black�Scholes

model� in an arbitrage�free market these implied volatilities should be independent of ex�

ercice price and time to maturity of the traded option contracts and moreover constant

over time	 However� implied volatilities seem to vary systematically with the exercice price	

The implied volatility of �at the money options� �options with K � �x� are typicallly lower

than implied volatilities of �out of the money� options or �in the money options�	 This

phenomenon� which was �rst discovered by Rubinstein ������� is usually termed the �smile

pattern� of implied volatility	 In many equity markets researchers have also found �skews�

that is the implied volatility of put options with K 

 �x is signi�cantly higher than the

implied volatility of put options with K �� �x	 For more evidence on the relation between

exercice price and implied volatility of traded option contracts see Rubinstein ������ or

Taylor and Xu ������ and the references given in these papers	 Finally implied volatilities

also tend to vary stochastically over time� for instance Harvey and Whaley ������ have

shown that implied volatilities can be described very well by autoregressive models	 Again

this is at odds with the predictions of the classical Black�Scholes model	

� Implied Deterministic Volatility Functions� Theory and Empirical Tests

The recent research by Dupire ������� Derman and Kani ������ and Rubinstein ������

concentrates on building models for the price process of X that can �t a certain observed

�Roughly speaking this means that the tails of the distribution of the return process are fatter than those

of a normal distribution�

�



smile pattern of implied volatility	 These models can then be used for the pricing and the

hedging of exotic options	 Here we will describe the work of Dupire who uses the generalized

Black�Scholes model ��	�� as framework of his analysis	
 Dupire assumes that at a given

point in time t he can observe prices for European call options for all maturity dates T � t

and all exercice pricesK � �	 Denote the surface of option prices by C�K�T �� K � �� T � t

and assume that C is a smooth function	 Dupire�s aim is to show that there is a unique

volatility function ��t� x� such that the observed option prices are consistent with model

��	��	 He argues in two steps	

First he invokes earlier work by Breeden and Litzenberger ������ to show that the surface

C�K�T � determines for all T � t the Lebesgue�density fT of the distribution of XT under

the risk�neutral measure Q	 In fact in our case the risk�neutral pricing rule yields

C�K�T � �

Z �

�
�x�K��fT �x�dx �

Di�erentiating this with respect to K we get �
�KC�K�T � � � R�K fT �x�dx and hence

	�

	K�
C�K�T � � fT �K� � ��	���

As a second step Dupire shows that the function ��t� x� can be inferred from the family

�fT �T�t of density functions using the Kolmogorov forward equation	 This is remarkable�

as it is well�known that in general one�dimensional marginal distributions are not enough

to specify the law of a di�usion process	 Under some regularity conditions the density

function of a di�usion process satis�es the following PDE� which is usually referred to as

the Kolmogorov forward equation� see for instance �Karatzas and Shreve ����� equation

��	�	�����
	

	T
fT �K� �

�

�

	�

	K�
�a�T�K�fT �K��� 	

	K
�b�T�K�fT �K�� � ��	���

where b is the drift and a is the square of the dispersion coe
cient of the di�usion	 In our

case b � �� as X is assumed to be a Q�martingale	 Moreover� a�T�K� � ���T�K� � K�	

Hence ��	��� becomes

	

	T
fT �K� �

�

�

	�

	K�

�
���T�K�K�fT �K�

�
�

If we integrate this twice with respect to K and use ��	��� we obtain

	

	T
C�K�T � �

�

�
���T�K�K� 	�

	K�
C�K�T � � a�K � a� � ��	���

Dupire now shows that if the surface of option prices actually stems from an arbitrage�

free di�usion model for the underlying price process we must have ��

�K�C�K�T � � � and

a� � a� � �	 Hence we may solve ��	��� for the volatility function to obtain

���T�K� �
� �
�T C�K�T �

K� ��

�K�C�K�T �
� ��	���

�Derman and Kani and Rubinstein are developing discrete�time models that are extensions of the binomial

model of Cox� Ross� and Rubinstein �������
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To price exotic or American options in this model one may now use numeric methods for

PDEs or Monte Carlo simulation as described for instance in �Du
e ����� chapter���	

As an alternative Dupire and Derman�Kani propose an algorithm to build a discrete�time

trinomial tree model incorporating the information contained in the observed option prices	

The great advantage of the above models with implied deterministic volatility �IDV�models�

is completeness	 Hence they allow for the derivation of hedging strategies and for unique

pricing of derivative securities other than call options in a way that is consistent with an

observed smile pattern	 Unfortunately the IDV�models require an exact observation of call

prices for more strikes and maturities than are available on most real options markets	

However� this drawback can be overcome by using a parametric form for the volatility

function or by using an interpolation algorithm	

The most serious empirical test of the IDV�approach has been carried out by Dumas� Flem�

ing� and Whaley ������	 They consider the major empirical issue regarding the credibility

of the IDV�models� namely the stability over time of the �estimated� implied volatility

functions� the volatility function derived from an observed surface of option prices at time

t� �h and the volatility function derived from the option prices observed at time t� should

�roughly� coincide on their common domain of de�nition	 As they write� �in this case the

IDV framework should provide a better means of setting hedge ratios and valuing exotic

options	 On the other hand� if the function is not stable it cannot be claimed that the true

volatility function of the underlying asset has been identi�ed	�

Dumas� Fleming� and Whaley ������ �t di�erent parametric forms for the implied volatility

functions to observed prices of exchange�traded S"P ��� index options	 Usually they obtain

a very good �t	� They then use this implied volatility functions to compute the theoretical

option prices that should prevail at the spot level of the S"P ��� index one week later if

the implied volatility function hadn�t changed over time	 These values are then compared

to the actually observed prices	 It turns out that the discrepancy between the observed

prices and the prices predicted by the model is relatively large� meaning that at least in

this particular case the implied volatility functions are unstable over time	 Interestingly

they �nd that this di�erence between observed and predicted options prices is larger for

complex parametrizations of the implied volatility functions than for a constant volatility

speci�cation	 This is interpreted as evidence that �more complex volatility speci�cations

over�t the observed structure of option prices	�

These �ndings cast some doubts on whether the IDV approach really is an improvement

over the traditional �theoretically inconsistent� method of using the Black�Scholes formula

with changing volatility	 Further testing of this issue is called for	 Of course if such

research con�rms the results of Dumas� Fleming� and Whaley ������� the task of �nding

a complete model that is a better risk�management tool than the classical Black�Scholes

formula remains an important topic for further investigation	 There are several interesting

new approaches in this area	 Bibby and Sorensen ������ propose a model with level�

dependent volatility where the asset returns follow approximately a hyperbolic distribution	

Kallsen and Taqqu ������ and Hobson and Rogers ������ develop models where the asset

�Their �t cannot be perfect as the parametric forms they use have less degrees of freedom than there are

observed options prices�

��



price volatility depends on past asset returns	 The volatility dynamics in these models are

very similar to the volatility dynamics in the celebrated discrete�time GARCH�models� but

in contrast to the latter class of models the models of Kallsen�Taqqu and Hobson�Rogers

have the virtue of being complete	

� Stochastic Volatility Models

Most of the extensions of the classical Black�Scholes model that have been proposed in

recent years belong to the class of stochastic volatility �SV� models	 Contrary to the ap�

proach taken in section �� in this class of models the stock price volatility is described by

an additional stochastic process whose innovations are only imperfectly correlated to the

stock price process	

��� Continuous�Time Models

Following Hofmann� Platen� and Schweizer ������ we consider the following Markovian

model which is general enough to encompass all the continuous�time stochastic volatility

models proposed in the recent literature	

Assumption ��� The evolution of the stock price X can be described by the following

two�dimensional SDE�

dXt � a�t�Xt� vt�Xtdt� ��t�Xt� vt�XtdW��t ��	���

dvt � b�t�Xt� vt�dt� ���t�Xt� vt�dW��t � ���t�Xt� vt�dW��t � ��	���

where W� and W� are two independent standard Brownian motions on some probability

space ���F � P �� The �ltration �Ft�t�� is the augmented �ltration generated by the Brownian

motions� We assume that the SDE ���	��
 ���	�� has a unique weak solution
 whose �rst

component X is moreover strictly positive� Finally a�t� x� v� can be decomposed as

a�t� x� v� � ��t� x� v���t� x� v� ��	���

for a bounded function ��

The process v plays the role of an unobservable state�variable that inuences the drift and

in particular the volatility of the stock price process	 We will always assume that �� is

di�erent from zero� meaning that the state variable is inuenced by the second Brownian

motionW� which is orthogonal� to the martingale part of X	 The instantaneous covariation

between X and v is given by

���t�Xt� vt���t�XT � vt�Xt �

it vanishes if �� � �	

We now list the stochastic volatility models from the literature and explain how they �t

into the above framework	 The �rst stochastic volatility model was proposed by Hull and

	Two �local� martingales are called orthogonal if their quadratic covariation process is zero�
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White ������	 These authors assume that ��t � the square of the volatility� follows a geometric

Brownian Motion which is orthogonal to the martingale part of X	 To obtain their model

we put

��t� x� v� ��
p
v� b�t� x� v� �� �bv� ���t� x� v� �� � and ���t� x� v� �� �v ��	���

for constants �b� � with � � �	

Wiggins ������ assumes that the logarithm of ��t follows an arithmetic Ornstein�Uhlenbeck

process	 To obtain his model we put ��t� x� v� �� exp���v�� b � �v � v� ���t� x� v� �� � and

���t� x� v� �� � for constants � �v and � with � � �	

Scott ������ and Stein and Stein ������ assume that the state variable v follows the

same arithmetic Ornstein�Uhlenbeck�process as in the model of Wiggins but they take

��t� x� v� �� jvj	 If �v � � their model allows for an equivalent� more convenient description	

We take ��t� x� v� ��
p
v and model the dynamics of v by the familiar square root process

introduced by Cox� Ingersoll� and Ross ������ as a model for the short�term interest rate�

dvt � ��� � �vt�dt� ��
p
vt dW��t ��	���

As shown by Ikeda and Watanabe ������ this SDE admits a unique strong solution which

is nonnegative	 It can be shown that the law of the two�dimensional process �Xt� �
�
t ���t��

is the same� no matter which of the two descriptions we use	 Hence from an empirical

viewpoint the two models are equivalent� as an observer is of course con�ned to recording

the trajectories of X	�� This clari�es a point raised by Ball and Roma ������	

Heston ������ also works with the speci�cation ��t� x� v� �
p
v and models the dynamics

of v by a square root process	 In contrast to all the previous models he allows for nonzero

covariation between X and v	 As mentioned in section � this is of empirical relevance

as many �nancial time series exhibit signi�cant negative correlation between returns and

volatility innovations	 Formally we obtain Heston�s model by putting

a�t� x� v� �� �v� b�t� x� v� �� � � v� �� �� ��
p
v� �� �� �

q
�� ��

p
v ��	���

for constants �� �� � � and � with � � � and � � ���� ��	��

Remark� Heston ������ and in particular Duan ������ suggest that # as in the case of

the Stein and Stein ������ model # the model ��	��� is equivalent to a model where the

dynamics of v are given by an arithmetic Ornstein�Uhlenbeck process which is driven by

W� and W� and where ��t� x� v� �� jvj	 However� if the covariation between X and v does

not vanish� by computing the in�nitesimal generator of �X���� it can be shown that the

law of the process �X���� obtained in that way di�ers from the law this process obeys in

the Heston model	

�
With continuous observations of the asset price process an observer can �theoretically� back out the

path followed by ��t from the observed path of the stock price process using the quadratic variation of X

along a suitable sequence of re�ning partitions of the time axis� see �Protter ����� chapter ����� However�

he is unable to distinguish between the di�erent models for v� Of course in practice X can be observed

only at discrete points in time� such that even the estimation of ��t poses a serious problem� see section ���

below�

��The reason for assuming ��t� x� v� � �
p
v� which contradicts ������ will become apparent in section ����

��



��� GARCH�Models as Di�usion Approximations

We now discuss the approximation of continuous�time SV�models by GARCH models which

are set up in discrete time	 This problem was �rst studied by Nelson ������� extensions of

Nelson�s results can be found in Duan ������	

The approximation results we shall present here are of interest in the study of continuous�

time SV�models for a number of reasons	 To begin with such results are very helpful

when it comes to estimating the parameters of SV�models	 In practice we can observe the

stock price process only at discrete points in time	 We may now �t a discrete�time time

series model such as a GARCH�model to our observations	 If the time elapsing between

the observations is �small� an approximation theorem gives some support to using the

parameters of the discrete�time model in determining the parameters of the di�usion model	

However� a word of warning is in order	 While this procedure seems to work quite well�

see e	g	 the discussion in �Ghysels� Harvey� and Renault ����� section �	�� it is unclear

wether the estimates obtained in this way are actually unbiased	 This is an important

topic for research	 For further information on the estimation of di�usion models from

discrete observations see e	g	 Dacunha�Castelle and Florens�Zmirou ������ or the survey

articles G�oing ������� Ait�Sahalia ������ and Ghysels� Harvey� and Renault ������	

Moreover some authors have recently developed option pricing models where the price

process of the risky asset is given by a GARCH�type model� see e	g	 Amin and Ng ������

or Duan �����b�	 Now the convergence of GARCH�models to continuous�time SV�models

implies that the option prices obtained in these models are close to the option prices ob�

tained in the limiting di�usion model� see also section �	� below	 Hence we may use the

results obtained in the discrete time framework to draw conclusions concerning the qualita�

tive properties of option prices in certain continuous�time models	 Finally there has always

been some discussion if real�world asset prices are better described by discrete�time models

or by continuous�time models	 Approximation results are of interest here� as they may help

to reconcile both approaches	 For an in�depth discussion of results on weak convergence of

asset price processes and their signi�cance for derivative asset analysis see e	g	 Du
e and

Protter ������	

Assume that we are given a sequence of observations �Xtk�k�IN of our stock price process

at discrete� equidistant points in time �tk�k�IN	 De�ne the return process �Rk�k�IN by

Rk � lnXtk � lnXtk�� 	 All GARCH�type models considered in this paper assume the

following dynamics for the sequence �Rk�k�IN

Rk �
�

�
hk�� �

q
hk����k � �� ��	���

Here ��k�k�IN is an i	i	d sequence of standardized random variables and � is a constant	

Hence hk�� # which is supposed to be known at time tk # equals the conditional variance

of Rk given information up to time tk��	
�� The existing GARCH�models mainly di�er in

the speci�cation of the dynamics imposed on the sequence �hk�k�IN	 An exhaustive survey

��Note the slightly di�erent parametrization� Most authors denote the conditional variance of Rk by hk
which is taken to be predictable� whereas we denote this variance by hk�� and assume the series �hk�k�IN
to be merely adapted�
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of these models is given in Bollerslev� Chou� and Kroner ������	 Here we con�ne ourselves

to introducing the models we need for our analysis of option pricing in stochastic volatility

models	 The �rst GARCH�model in the literature is the linear GARCH����� �LGARCH��

model introduced by Bollerslev ������	 Here we have the following dynamics of h�

hk � �� � ��hk�� � ��hk���
�
k ��	���

for positive constants ��� ��� ��	

The following models have been developed because researchers wanted to incorporate the

correlation between asset return and volatility innovations into their analysis	 Nelson ������

proposed the EGARCH�model �exponential GARCH� where

lnhk � �� � �� lnhk�� � �� �j�kj �E�j�kj�� � ���k � ��	���

Here the term ���k takes account of the correlation between asset return and volatility	

Engle and Ng ������ used the following extension of the LGARCH�model� which is usually

referred to as NGARCH�model�

hk � �� � ��hk�� � ��hk����k � c�� � ��	���

for positive constants ��� ��� ��	 For c � � �c 
 �� returns and innovations of hk are

negatively �positively� correlated� for c � � we are back to the model ��	���	

We will now of certain GARCH�processes to a limiting di�usion process belonging to the

class of SV�models	 For each n consider a sequence of equidistant time points � � tn� 


� � � 
 tnk 
 � � � and suppose that $n �� tnk�tnk�� tends to zero as n�		 Suppose �Xn�n�IN
is a sequence of stock price processes where each process Xn is observed at the sequence

�tnk�k�IN	 Suppose further that every process Xn follows one of the previously introduced

GARCH�models	 In what follows we will identify a sequence �n� � �
n
� � � � � de�ned for times

tn� � t
n
� � � � � with the RCLL �right continuous with left limits� function

�nt ��
�X
k�

�nk �ftnk�t�t
n
k��

g ��	���

This allows us to talk of convergence in distribution on the Skohorod space� see e	g �Ethier

and Kurtz ����� chapter ��	

The results on the convergence of GARCH models we present here are due to Nelson

������ and Duan ������	 Their results can be proved by applying �Ethier and Kurtz �����

Theorem �	�	��	 The essence of this theorem can be summarized as follows� Suppose that

the conditional mean and the conditional covariance of a given sequence of processes Xn

converge after suitable rescaling to certain well�behaved functions b and a on IRd� and that

the jumps of Xn converge to zero	 Then the sequence Xn converges in distribution to the

solution X of the SDE with drift b�Xt� and with quadratic variation a�Xt�dt� provided that

this equation admits a unique weak solution	

Let us now consider the previously introduced GARCH�models	 De�ning Zn
k �� lnXn

k we

get from equation ��	��� the following dynamics for Zn
k

Zn
k � Zn

k�� �
�

�
� hnk�� �

q
hnk���

p
$n � �nk � �n� � ��	���

��



We make the following

Assumption ��� As n�	 we have �$n��� � �n � � for some constant �� For every n

��nk �k�IN is an i�i�d sequence of random variables with variance equal to �� The distribution

of the �nk is symmetric around the origin
 has �nite moments up to order � and  for

simplicity  is independent of n�

Convergence of the EGARCH�model� If we de�ne vnk �� ln�hnk � the EGARCH spec�

i�cation implies the following form of dynamics for vn�

vnk �� vnk�� � �n� � �n�v
n
k�� � �n� �j�nk j �E�j�nk j�� � �n� j�nk j � ��	���

where �n� corresponds to �� � � in ��	���	 Now we may state

Proposition ��� Assume that as n�	
�

$n
�n� � �� �

�

$n
�n� � �� �

�p
$n

�n� � �� and
�p
$n

�n� � ��

for constants ��� � � � � ��� Then the two�dimensional process �Zn
t � v

n
t � obtained from �Zn

k � v
n
k �

via the identi�cation ������ converges in distribution to the solution of the SDE

dZt � ��
p
ht �

�

�
ht�dt�

p
htdW��t � ��	���

dvt � ��� � ��vt�dt� ��dW��t � ��

q
var�j���j�dW��t � ��	���

where ht is shorthand for exp�vt�� Hence the EGARCH�model yields  under suitable

rescaling  a di�usion approximation to the exponential Ornstein�Uhlenbeck model pro�

posed for instance by Wiggins �	�����

Remark� Suppose we are given parameter estimates ��� � � � � �� for the EGARCH model

��	��� obtained from discrete� equidistant observations of X� where $t� the time between

two observations is relatively small	 We then de�ne estimates for the di�usion model ��	���

��	��� as follows	

�� � �� � �$t���� �� � ��� � �� � �$t���� �� � �� � �$t������ �� � �� � �$t����� �

Proposition �	� applied to the sequence of EGARCH models with coe
cients �n� � ���$
n��

� � � � �n� � ���$
n���� tells us that for $t small our estimated EGARCH model and the

di�usion model are close to each other in the sense of convergence in distribution which

supports our choice for the parameters of the di�usion	

Convergence of the NGARCH�model� Consider a sequence of NGARCH�models with

return dynamics given by equation ��	��� and Assumption �	� and with dynamics of the

conditional variance given by

hnk � �n� � �n� h
n
k�� � �n� h

n
k����

n
k � cn�� � ��	���

To guess the form of a possible di�usion limit we decompose ��nk�cn�� into two uncorrelated

random variables as follows

��nk � cn�� �
�
��nk�

� � �
�
�
�
��cn�nk � �cn�� � �

�
�

��



and introduce new coe
cients �n� � � � � � �
n
� via

�n� � �n� � �
n
� � �n� � � � �n�

�
�cn�� � �

�
� �n� � �n� � �

n
� � �n� ���cn� � ��	���

Now ��	��� writes itself in the following form

hnk � hnk�� � �n� � �n�h
n
k�� � �n�h

n
k��

�
��nk �

� � �
�
� �n�h

n
k���

n
k � ��	���

From this representation we get�

Proposition ��� Suppose that for n�	
�

$n
�n� � �� �

�

$n
�n� � �� �

�p
$n

�n� � �� and
�p
$n

�n� � ��

for constants ��� � � � � ��� Then the two�dimensional process �Zn
t � v

n
t � obtained from �Zn

k � v
n
k �

via the identi�cation ������ converges in distribution to the solution of the SDE

dZt � ��
p
ht �

�

�
ht�dt�

p
htdW��t � ��	���

dht � ��� � ��ht�dt� ��htdW��t � ��

q
var������

��htdW��t � ��	���

The proposition shows that the NGARCH yields a di�usion approximation to an �extended�

Hull�White model� possibly with nonzero covariation between stock price process and state

variable	 To obtain an estimate for the coe
cients of ��	��� from an estimate ��� ��� ��� c

of the parameters of the NGARCH�model we may proceed as in case of the EGARCH�

model	 Of course in this case we must use ��	��� when de�ning the parameters ��� � � � � ��
of the limiting di�usion model	 Note in particular that the sign of the covariation between

stock price process and state variable is entirely determined by the sign of the estimated

parameter c	

	 Pricing and Hedging of Derivatives in SV�Models

	�� Approaches to Derivative Pricing under Incompleteness

While SV�models do a better job in �tting the behaviour of actual �stock��market data

than DV�models� this increase in realism comes at a cost	 SV�models are incomplete� that

is there are derivative assets that cannot be replicated by dynamic trading in stock and

bond	 As explained in section � this is equivalent to the fact that there are now many

probability measures Q 
 P such that the stock price process is a �local� Q�martingale	

	���� The Set of Equivalent Martingale Measures

The next proposition characterizes the set of all equivalent local martingale measures for

the stock price process de�ned in Assumption �	�	 For similar results see e	g	 �Hofmann�

Platen� and Schweizer ����� and the references given therein	
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Proposition 	�� 	� Under Assumption ��	 a probability measure Q that is equivalent to

P on FT is a local martingale measure for X on FT if and only if there is a progressively

measurable process � � ��t���t�T with
R T
� ��sds 
 	 P a�s� such that the following holds�

The local martingale �Gt���t�T with

Gt �� exp

�Z t

�
���s�Xs� vs�dW��s �

Z t

�
�sdW��s � �

�

Z t

�
���s�Xs� vs� � ��s ds

�
��	���

satis�es E�GT � � � and we have GT � dQ�dP on FT �
�� Suppose that Q is an equivalent local martingale measure corresponding to some process

�� Then X and v solve the following SDE under Q

dXt � ��t�Xt� vt�XtdW
Q
��t ��	���

dvt � �b�t�Xt� vt�� ���t�Xt� vt���t�Xt� vt� � ���t�Xt� vt��t� dt ��	���

����t�Xt� vt�dW
Q
��t � ���t�Xt� vt�dW

Q
��t �

The proof is given in Appendix A	

Remark� Sin �����a�� Sin �����b� gives conditions for the solution in ��	��� to be actually

a martingale �and not only a local martingale�	 He shows that for the examples introduced

in section �	� the martingale property of X is equivalent to the covariation between X and

v being nonpositive	

In the Finance literature the process � is usually referred to as market price of volatility risk

process	 Proposition �	� shows that there is a one to one correspondance between market

price of volatility risk processes � satisfying some regularity conditions and equivalent �local�

martingale measures	 In particular market incompleteness is equivalent to nonuniqueness

of the market price of risk process	

Let us now turn to the pricing and hedging of derivatives	 Here a conceptual problem

arises� how should we value a contingent claim �H for which a replicating portfolio does not

exist From the viewpoint of arbitrage pricing theory any price process H � �Ht���t�T
with HT � �H is in order� provided that the two�dimensional price system �X�H� precludes

arbitrage opportunities	 Following the fundamental paper by Delbaen and Schachermayer

������ we are �on the safe side� if the process �X�H� admits an equivalent local martingale

measure	 Hence every price process of the form Ht � EQ� �HjFt� where Q 
 P and X

is a local Q�martingale is acceptable� provided of course that �H is Q�integrable	 We will

therefore call every conditional expectation EQ��XT �K��jFt� an option value	

The next proposition shows that for certain SV�models only very elementary bounds on the

range of option values can be given	 Consider within the framework of assumption �	� the

Hull�White model ��	���	 Denote by Q the set of all equivalent local martingale measures

for X	 Then we have the following result on the range of option values for a European call

option with exercice price K � ��

Proposition 	�� In the Hull�White model ���	�� we have for any � � t 
 T

sup
Q�Q

EQ 	�XT �K��jFt


� Xt and inf

Q�Q
EQ 	�XT �K��jFt



� �Xt �K�� �

��



The proof is given in Appendix B	 I have chosen to state this result in the framework

of the Hull�White model ��	���� because the corresponding SDE has an explicit solution

which allows for an easy proof	 A similar statement should hold in most SV�models where

the stock price volatility is an unbounded process	�� However� at least to my knowledge� a

formal proof has not yet been given and even the above proposition is new	 Related results

on the range of option prices in a model where lnX follows a Levy�process with unbounded

jumps have been obtained by Eberlein and Jacod ������	

Obviously in an arbitrage�free market a call option is always worth less than the underlying

security	 On the other hand we know fromMerton�s theorem on the equivalence of European

and American options that the price of a European call on some non�dividend paying asset

must exceed the intrinsic value �Xt �K��	 Proposition �	� now tells us that # at least in

case of the model ��	��� # these elementary bounds are the sharpest possible bounds for

the range of option prices consistent with absence of arbitrage	

In light of Proposition �	� we need additional arguments to arrive at a well�determined

price for options	 Many articles in the Finance literature simply choose one particular

market price of risk process and justify their choice by # often rather loose # economic

equilibrium arguments	 For instance it is often argued that �volatility risk can be diversi�ed

away� which is used as a rationale for simply taking �t � �	 This approach is taken in the

work mentioned in section �	�	

The literature on option pricing in a GARCH framework proceeds similarly� see Duan

�����b� or Amin and Ng ������	 In these models option prices are de�ned as expected

value of the terminal payo�� expectations are taken in a transformed GARCH model where

the return process is given by ��	��� but with � � � # hence the asset price process forms

a martingale # and where the conditional variance follows one of the models introduced

in section �	�	 Again there are many equivalent martingale measures and equilibrium

arguments are used to justify the choice of a particular �pricing measure�	

These approaches are not very satisfactory as the arguments justifying the choice of a

particular �pricing measure� are often somewhat ad�hoc	 Moreover� the risk�management

of derivatives� is not adressed in this literature	 As this topic is of great importance to

practioners we will now discuss two approaches to derivative asset analysis in incomplete

markets which are based on hedging arguments	

	���� Superreplication

If the precise duplication of a contingent claim is not feasible one might try to �nd a

superreplicating strategy� i	e	 the �cheapest� sel
nancing strategy with terminal value no

smaller than the payo� of the contingent claim	 This concept is developed by El Karoui

and Quenez ������	 To explain the results of this paper we have to introduce some formal

de�nitions	 Remember the de�nition of the cost process C in ��	��	

De
nition 	�� Consider a contingent claim �H� An adapted RCLL process H with HT �
�H is called an admissible price for sellers
 if H is the value process of some trading strategy

��This conjecture is con�rmed by ongoing work of C� Sin and the author�

��



��� �� with nonincreasing cost process� An admissible price process for sellers H� will be

called the ask price for the contingent claim �H
 if we have for any other admissible price

process for sellers H and for all t � ��� T � the inequality H�
t � Ht P a�s��

This de�nition deserves a comment	 Suppose that an investor sells at time t 
 T the claim
�H at an admissible selling price Ht	 By following the corresponding portfolio strategy he

can then completely eliminate the risk incurred by selling the claim and moreover he earns

the nonnegative amount ��CT �Ct�	 Hence he will certainly agree to sell the claim for the

price Ht	 The following is an example for an admissible price process for sellers in the case

of a European call option	 De�ne

Ht � Xt � �t � � for � � t 
 T and HT � �XT �K�� � �T � � � ��	���

The cost process is then given by Ct � � for t 
 T and CT � �XT �K�� �XT 	

Note that it is not clear that an ask�price for a contingent claim exists	 At least for

nonnegative claims combining �El Karoui and Quenez ����� Theorem �	�	� and Theorem

�	�	�� yields the following remarkable result	

Theorem 	�� Under Assumption ��	 the ask price process H� exists for every contingent

claim �H whose payo� is bounded below and satis�es supQ�QE
Q� �H� 
	� It is given by

H�
t � sup

Q�Q
EQ� �HjFt� �

The crucial point of this theorem is the fact that that the process supQ�QE
Q� �H jFt�� which

is a natural lower bound for every admissible price process for sellers� can be represented as

sum of a stochastic integral with respect to X and a nonincreasing process	 Theorem �	�

holds in very general setups	 El Karoui and Quenez ������ proof it for a general di�usion

model� for an extension to general semimartingales see Kramkov ������	

At a �rst glance superreplication seems to be a very attractive concept for the pricing

and the hedging of derivatives in incomplete markets �in particular from the viewpoint of

risk�management of written derivative contracts�	 Unfortunately in our SV�framework it

may lead to answers which are not very satisfactory	 Remember Proposition �	�	 There we

showed that for some typical SV�model supfEQ��XT �K��jFt� � Q � Qg � Xt	 As a call

option satis�es the hypothesis of Theorem �	� the ask price process and the corresponding

hedge portfolio are given by ��	���� in other words the superreplicating strategy for a call

option is to buy the stock	

Note however� that the idea of superreplication may lead to interesting results on pricing

and hedging derivatives if a priori bounds for the stock price volatility are known� i	e	 if

we know that a	s	 ��t�Xt� vt� � �� for some constant �� for all t	 In that case the Black�

Scholes price for the upper volatility bound is an admissible price process for sellers� the

portfolio strategy is given by the Black�Scholes strategy corresponding to ��	 For a proof

and extensions of this result see the interesting paper El Karoui� Jeanblanc�Picqu%e� and

Shreve ������	

��



	���� �Local� Risk�Minimization

Even in an incomplete market a part of the risk incurred by selling derivatives can be hedged

by dynamic trading in the underlying asset	 In the theory of �local� risk�minimization which

has been developed in the papers F�ollmer and Sondermann ������ Schweizer ������ and

F�ollmer and Schweizer ������� one seeks to �nd a trading strategy that reduces the actual

risk of a derivative position to some �intrinsic component	� While the computation of the

strategy usually involves the computation of �prices� for contingent claims� the focus of

this theory is not on the valuation of derivatives but on the reduction of risk	

Let us now explain this approach in more detail	 Recall for a trading strategy ��� �� the

de�nition of the cost�process C in ��	�� and assume that value process and cost process are

square integrable	 In the theory of local risk�minimization the conditional variance of C

under the �real�world� probability measure P is used as a measure for the risk of a strategy	

For a given claim �H one tries to determine a strategy ���� ��� with terminal value equal to
�H that minimizes at each time t the remaining risk

Rt �� EP ��CT � Ct�
�jFt�� ��	���

Here the minimization is over all admissible continuations of ���� ��� after t with terminal

value equal to �H	

F�ollmer and Sondermann ������ have studied existence and uniqueness of such a strategy

if the stock price process is a P �martingale	 In that case a unique risk�minimizing strategy

exists	 It can be computed by means of the well�known Kunita�Watanabe decomposition��

of the P �martingale Ht � EP � �HjFt� with respect to the P �martingale X	

Let us now turn to the general situation where X is only a semimartingale under P 	 As

shown by Schweizer ������ in that situation a globally risk�minimizing strategy need not

exist	 He therefore introduces a criterion of local risk�minimization	 Roughly speaking

a strategy ���� ��� is locally risk�minimizing if it minimizes the remaining risk over all

strategies that �deviate� from ���� ��� only over a su
ciently short time period	 Schweizer

������ shows that under some technical conditions�� a strategy is locally risk�minimizing

if and only if the associated cost process is a martingale orthogonal to the martingale part

of X	 To compute such a strategy we have to �nd a decomposition of our claim �H of the

following form

�H � H� �

Z T

�
�Hs dXs � LHT � ��	���

where LH is a P �martingale orthogonal to the martingale part of Xunder P 	 Given such

a decomposition we may de�ne a locally risk�minimizing strategy by putting �� �� �H

and C �� L	 In particular the strategy is still mean�sel�nancing� i	e	 the cost process is

a P �martingale and EP �CT � � �	 Note that in the case where X is a P �martingale the

decomposition ��	��� reduces to the Kunita�Watanabe decomposition of the P �martingale

��see e�g� �Karatzas and Shreve ����� Proposition �������

��Besides certain integrability conditions he assumes that the �nite variation part in the semimartingale

decomposition of X is a continuous process� This condition is satis�ed for all continuous semimartingales

and hence in particular for our SV�models�

��



H with respect to X	 If X is only a semimartingale the decomposition ��	��� is usually

referred to as F�ollmer�Schweizer decomposition	

In the case whereX is a semimartingale with continuous sample paths # hence in particular

in our SV�models # F�ollmer and Schweizer ������ have proposed the following approach

to computing the decomposition ��	���	 As a �rst step one has to determine the minimal

martingale measure Q�	 It is characterized by the following property�

X is a Q� martingale and every P �martingale that is orthogonal to the martin�

gale part of X under P remains a martingale under Q�	

F�ollmer and Schweizer ������ show that for a contingent claim �H which is Q��integrable the

decomposition ��	��� is uniquely determined	 It exists under some integrability assumptions

and is then given by the Kunita�Watanabe decomposition of the Q� martingale Ht �

EQ� � �HjFt�� � � t � T with respect to the Q��martingale X	 To compute the decomposition

��	��� one can therefore compute this Kunita�Watanabe decomposition under Q� and check

the integrability conditions	

Let us now turn to the application of this recipe in the context of our SV�models	 The

minimal martingale measure Q� is the martingale measure corresponding to a market price

of volatility risk process � � �	 This follows either from the property characterizing Q� or

from the formula for the density dQ��dP given by F�ollmer and Schweizer ������	 Consider

a European call option	 We get from the Markov property of the process �X� v� under Q�

EQ� ��XT �K��jFt� � EQ�

�Xt�vt�
��XT�t �K��� �� g�t�Xt� vt� � ��	���

Under some regularity conditions on the coe
cients of the di�usion the function g is smooth	

In that case we have

Proposition 	�� Suppose that �X� v� satisfy Assumption ��	 and that the function g de�

�ned in ����	� is of class C������� T � � IR��� Then the local risk minimizing hedge strategy

���� ��� for a European call option is given by

��t �
	

	x
g�t�Xt� vt� �

���t�Xt� vt�
�
�v g�t�Xt� vt�

��t�Xt� vt�Xt
and ��t � g�t�Xt� vt�� ��tXt ��	���

In particular the value process of this strategy is given by V �t �� g�t�Xt� vt��

Remark� Note that classical $�hedging where �t � �
�xg�t�Xt� vt� is not optimal in the

sense of local risk�minimization whenever the covariation between X and v is di�erent from

zero	 ��	��� also points to a minor error in Hofmann� Platen� and Schweizer ������	 These

authors claim that the locally risk�minimizing hedge�portfolio in a SV�model is always given

by �t � �
�xg�t�Xt� vt� and �t � g�t�Xt� vt� � ��tXt � see equations ��	�� and ��	�� of their

paper	 As shown above this is wrong whenever �� �� �	

Proof� As g is of class C������� T �� IR�� we may use It!o�s formula to obtain the dynamics

of g�t�Xt� vt� under Q
�	 Note that the �nite variation terms must cancel as g�t�Xt� vt� is a

Q��martingale	�	 Using the SDE solved by �X� v� under Q� �see Proposition �	�� yields

�XT �K�� � g�T�XT � vT �

��This yields a parabolic PDE for g which can be used to compute g numerically� see section ��� below�

��



� g��� X�� v�� �

Z T

�

	

	x
g�t�Xt� vt���t�Xt� vt�XtdW

Q�

��t

�

Z T

�

	

	v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t �

Z T

�

	

	v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t

� g��� X�� v�� �

Z T

�
��t dXt �

Z T

�

	

	v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t �

We now de�ne the Q��martingale L by Lt ��
R t
�

�
�v g�s�Xs� vs����s�Xs� vs�dW

Q�

��s 	 As WQ�

�

and WQ�

� are orthogonal� L is orthogonal to
R t
� �

�
sdXs	 This shows that we have found

the Kunita�Watanabe decomposition of the Q��martingale g�t�Xt� vt� with respect to the

Q��martingale X and hence the F�ollmer�Schweizer decomposition of our call option	

Remark� Note that we have identi�ed the cost process of our locally risk�minimizing

hedging�strategy in the proof of the above proposition	 It is given by

Ct ��

Z t

�

	

	v
g�s�Xs� vs����s�Xs� vs�dW

Q�

��s ��	���

As the market price of volatility risk process corresponding to Q� is given by � � � we

have the equality WQ�

� � W�� this shows again that C is both a P �martingale and a

Q��martingale	

Often the minimal martingale measure is used for the pricing of contingent claims	 This

implies that one associates a price of zero to the claim with payo� CT 	 As this claim has

zero expected value under P � using Q� for the pricing of contingent claims implies that the

seller has to bear the whole intrinsic risk of the claim without receiving any compensation

for it	 When selling derivatives to clients a market maker could charge the Q��price plus

some markup which might for instance be proportional to the variance of the cost process	

More generally one could use principles from insurance mathematics to determine a price

for the totally unhedgeable claim CT � see Embrechts ������ for a stimulating discussion on

the interplay of actuarial and �nancial pricing principles	 The minimal martingale measure

could be used for the internal valuation and the risk�measurement of a book of derivative

assets	

In section �	� we compile some evidence on the qualitative properties of option prices in

SV�models	 It turns out that these option prices exhibit the same qualitative behaviour

as market prices for options	 Since option traders usually correct for the known de�cits

of the classical Black�Scholes model when quoting their prices� this gives some hope that

the concept of local risk�minimization applied in the framework of SV�models could be a

valuable tool for improving the risk�management of derivatives	 Clearly this is an important

issue for further testing and research	

	�� Computation of Option Values

As every approach to pricing and hedging options in SV�models involves the computations of

option values� we will now survey certain analytical and numerical approaches to computing

these conditional expectations	 By the Markov property of our basic SV�model outlined in

��



Assumption �	� it is enough to consider the computation of expected values EQ ��Xt �K���

where Q is an equivalent local martingale measure for X	

	���� Analytical Approaches

When looking for an analytical solution to this problem we have to distinguish two cases	

First assume that the martingale parts of volatility process and asset price process are

orthogonal and that drift and dispersion coe
cient of the state variable do not depend on

X	 In that case the distribution of XT conditional on the path followed by v is lognormal

and we get

EQ��XT �K��� �

Z
IR�

CBS��� X�� ����
Q�d��� � ��	���

Here CBS���X�� ��� is the Black�Scholes price of the option as given by ��	�� and ��	��� and

�Q denotes the distribution of the average variance �� � ��T �R T� vsds under Q	 To compute

the expectation ��	��� one hence has to identify the distribution �Q	 In the literature on

option pricing under stochastic volatility several techniques have been proposed for this	

Most of the papers concentrate on computing the moment generating function of �Q	 As

these approaches are reviewed in detail by Ball and Roma ������ we will not treat them

here	

The only contribution that deals with the computation of option values in a model where

X and v are correlated is Heston ������� who works in the model ��	���	 We now give

a slightly simpli�ed version of his derivation of option prices� as this allows us to review

certain arguments that are used over and over in modern continuous�time derivative asset

analysis	 We assume that �X� v� follow under Q the SDE

dXt �
p
vtXtdW��t ��	���

dvt � �� � &vt�dt� �
p
vt��dW��t �

q
�� ��dW��t� ��	���

for constants �� &� � � � and � � ���� ��	 We moreover assume that � � ����	 As shown by

Sin �����b�� under this assumption X is a martingale and v is strictly positive	 Note that

it follows from Proposition �	�� that �X� v� solve the above SDE if we consider the model

��	��� under the minimal martingale measure	�
 We have

EQ��XT �K��� � EQ�XT � �flnXT � lnKg��KEQ��flnXT � lnKg� ��	���

Since X is a strictly positive Q�martingale we have EQ�XT � � X�	 Hence we may de�ne a

new probability measure�� QX by putting dQX�dQ �� XT �X� and get

EQ�XT � �flnXT � lnKg� � X�E
QX ��flnXT � lnKg� �

While the �exercice probabilities� in ��	��� cannot be computed explicitely� it is possible

to give an analytic expression for the characteristic functions �� and �� of the distribution

��Essentially this is the rationale behind our choice of the risk premium � in ����
��

��For a systematic analysis of the role of the measure QX from the viewpoint of the change of numeraire

theory see Geman� El Karoui� and Rochet �������

��



of lnXT under QX and Q	 By de�nition we have

����� � EQX �exp�i� lnXT �� and ����� � EQ�exp�i� lnXT �� �

We deal only with ��	 AsXT is given byXT � X� exp�
R T
�

p
vsdW��s� �

�

R T
� vsds�� Girsanov�s

theorem yields the following dynamics for the process �lnX� v� under QX 	

d lnXt �
p
vt�dW

X
��t �

p
vtdt�� �

�
vtdt �

p
vtdW

X
��t �

�

�
vtdt

dvt � �� � &vt� � ��vtdt� �
p
vt��dW

X
��t �

q
�� ��dW��t��

where WX
��t �� W��t�

R t
�

p
vsds is a QX�Brownian motion	 By the Markov property the con�

ditional expectation EQX �exp�i� lnXT �jFt� is given by some function g��t� lnXt� vt�� obvi�

ously ����� � g���� lnX�� v��	 Applying It!o�s formula we see that the process g��t� lnXt� vt�

can be written as sum of stochastic integrals with respect to the Brownian motionsWX
� and

W� and �nite variation terms	 As the process g��t� lnXt� vt� is a martingale by de�nition�

the �nite variation terms must cancel	 This yields the following PDE for g��

� �
	

	t
g��t� y� v� �

�

�
v
	

	y
g��t� y� v� � �� � ���� &�v�

	

	v
g��t� y� v� ��	���

�
�

�
v
	�

	y�
g��t� y� v� � ��v

	�

	y	v
g��t� y� v� �

�

�
��v

	�

	v�
g��t� y� v� �

g��T� y� v� � exp�i�y� �

Guided by the form of the solution of the bond price equation in the term structure model

of Cox� Ingersoll� and Ross ������� Heston �guesses� a solution of the form

g��t� y� v� � exp�C�T � t� �D�T � t�v � i�x�

for functions C�D � ��� T � � IR with C��� � D��� � �	 Substituting this candidate

solution into the above PDE yields ordinary di�erential equations for C and D which are

solved explicitely in Heston ������	 The option value can now be computed by inverting

the characteristic functions �� and �� and evaluating the exercice probabilities� see again

Heston ������ for details	

	���� Numerical Approaches

The numerical techniques used for the computation of option values belong to two groups	

On the one hand researchers have used a Monte�Carlo approach combined with discretiza�

tion schemes for the SDE ��	���� ��	��� to compute the option value	 Monte�Carlo simu�

lation is a well�known tool in option pricing� a general survey of modern developments is

�Boyle� Broadie� and Glasserman �����	 Techniques for the discretization and numerical

solution of SDEs can be found in the book �Kloeden and Platen ������ for an application of

these techniques in the context of SV�models see �Hofmann� Platen� and Schweizer �����	

Monte Carlo simulations are also always used for the computations of option values in

GARCH�models	

Alternatively researchers have noticed that # at least under some regularity conditions #

in Markovian models the option value can be characterized by a parabolic PDE	�� Usually

�	This PDE can be derived by an analogous argument as it is used in the derivation of the PDE �������

��



�nite di�erence methods are used for solving this PDE numerically	 See �Du
e �����

chapter �� H� for an introduction to this technique and the book �Wilmott� Dewynne� and

Howison ����� for an extensive treatment and applications to option pricing	 Note that

the �pricing PDE� contains two state variables� namely x and v� such that certain simple

methods which are designed particularly for equations with only one state variable cannot

be applied to SV�models	 As to a comparison of the two approaches� according to �Du
e

����� p	 ���� it can be said that �for problems involving one or two state variables it is

typically the case that the PDE�approach requires fewer computations than the Monte�

Carlo approach to achieve the same accuracy�� whereas for higher dimensional problems

the Monte Carlo approach seems preferable	

	�� Qualitative Properties of Option Values

We now collect evidence on the qualitative behaviour of option prices both in stochastic

volatility models and in a GARCH framework	 The convergence in distribution of GARCH

models to continuous time SV models implies that option values obtained in GARCH

models converge to the option values one would obtain in the limiting SV�model	�� Hence

the qualitative behaviour of option values in both classes of models is the same	 Therefore

we will not distinguish between these types of models in this section	

Generally speaking it can be said that the qualitative properties of option values predicted

by the SV�models are close to the qualitative properties of observed option prices	 In all

SV�models we observe the smile pattern of implied volatility� i	e	 increasing the volatility

of the volatility leads to rising implied volatilities of in the money options and out of the

money options whereas the prices of at the money options remain �roughly� unchanged	 In

case that volatility innovations and asset returns are uncorrelated there is even a formal

proof of this observation which is due to Renault and Touzi ������	 This interesting paper

also compares hedge ratios in the Black�Scholes model to hedge ratios in SV�models	 The

authors �nd that �the usual hedging methods� through the Black�Scholes model� lead to

an underhedged �resp	 overhedged� position for in�the�money �resp	 out of the money�

options and a perfect partialyl hedged position for at the money options	�

Heston ������ shows that SV�models can explain the skew pattern of implied volatility	

If the covariation between X and v is negative # remember that this is the empirically

relevant case # the left tail of the return distribution is spread out	 Hence put options with

a relatively low strike price rise in price	 Option prices in SV�models seem to exhibit term

structure e�ect� the implied volatility of options with short time to maturity reacts much

stronger to changes in the current stock price volatility than does the implied volatility

of options with a relatively long time to maturity	 Again this behaviour is typical for the

implied volatility of traded option contracts	

�
The convergence of the models must of course take place under the martingale measures Qn and Q

used for the computation of option values� The convergence of the values of put options� whose payo� is

bounded� follows directly from the de�nition of convergence in distribution� the convergence of call values

is implied by the put�call�parity and the convergence EQn 	Xn
T � � EQ	XT � which in turn follows from the

martingale property of Xn and X and the assumed convergence of the initial values� Xn

 � X
�

��



Duan �����a� carries out an analysis similar in spirit to the IDV models of section �	 He

determines the parameters of an NGARCH�model by minimizing the distance between the

option values predicted by the NGARCH model and an observed implied volatility smile	

He obtains a very good �t	 More importantly� the parameter values he obtains have the

same order of magnitude than the parameters one usually obtains by �tting an NGARCH

model directly to the time series of the underlying asset price	 In contrast to the IDV�

models the parameter values obtained by Duan are relatively stable over time	 By this we

mean that the option prices predicted by a NGARCH model that has been calibrated to an

implied volatility smile prevailing one week before �t the current volatility smile reasonably

well	

Duan�s paper is only a �rst study and should therefore not be taken as a rationale for

claiming that SV�models are a better risk�management tool than IDV�models	 Clearly

more testing of both models is called for before a de�nitive statement of this type can be

made	 Also some care should be taking in saying that �stochastic volatility is the reason

why we observe volatility smiles� or �the correlation between stock price volatility and asset

returns causes the skew� as there are other possible explanations such as jumps� transaction

costs� liquidity problems or even feedback e�ects from dynamic hedging� see �Ghysels�

Harvey� and Renault ����� section �	�� and �Platen and Schweizer �����	 Nonetheless

the evidence compiled above suggests that SV�models are a good description of �nancial

markets and might therefore help �nancial institutions to deal with the volatility risk of

derivative contracts in a reasonable and consistent manner	
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Appendix

A Proof of Proposition 	��

Suppose that Q is an equivalent local martingale measure on FT and denote by G the

density martingale Gt � dQ�dP jFt 	 By the martingale representation theorem we know

that G can be written as stochastic integral

Gt �

Z t

�
���sdW��s �

Z t

�
���sdW��s

��



for progressively measurable integrands �� and ��	 As Q and P are equivalent G is strictly

positive such that lnG is well�de�ned	 We get from It!o�s formula

lnGt � lnG� �

Z t

�

���s
Gs

dW��s �

Z t

�

���s
Gs

dW��s �

Z t

�

�
���s
Gs

��
�

�
���s
Gs

��
ds�

Hence G is of the form ��	��� with �t � ���t�Gt	 It remains to show that ��t�Xt� vt� �

����t�Gt	 Now we obtain from Girsanov�s theorem that X solves under Q the SDE

dXt � ��t�Xt� vt�Xt

�
dWQ

��t �

�
��t�Xt� vt� �

���t
Gt

�
dt

�
�

Hence X is a Q�local martingale if and only if ��t�Xt� vt� � ����t�Gt	

Conversely� de�ne for � such that E�GT � � � the measure Q by dQ�dP jFT � GT 	 Now

it follows immediately from Girsanov�s theorem that �X� v� solves the SDE ��	���� ��	���

under Q� hence X is a local Q�martingale	

B Proof of Proposition 	��

We will denote for � � IR the equivalent martingale measure belonging to the constant

market price of risk process �t � � by Q� 	�� Obviously it is enough to show that

sup
��IR

EQ� ��XT �K��jFt� � Xt and inf
��IR

EQ� ��XT �K��jFt� � �Xt �K�� �

By the Markov property of �X� v� under Q� it is enough to consider the case t � �	 As

the covariation between X and v vanishes the distribution of XT conditional on the path

followed by v is lognormal� and we get

EQ� ��XT �K��� �

Z
IR�

CBS���X�� ����
��d��� � �B	���

Here CBS���X�� ��� is the Black�Scholes price of the option as given by ��	�� and ��	��� and

�� denotes the distribution of the average variance �� � ��T � R T� vsds under Q� 	 Inspection

of the de�nition of CBS immediately yields that for all x � �

lim
����

CBS��� x� ��� � x and lim
����

CBS��� x� ��� � �x�K�� � �B	���

Now the process v solves under Q� the SDE dvt � vt��dt� vt�dW
Q�

��t 	 Hence it equals

vt � v� exp���t� � exp��WQ�

��t �
�

�
��t� �

The distribution of the second factor is independent of � # it is a geometric Brownian

motion with zero drift # and the �rst factor obviously converges to in�nity as � � 		

Hence for all M � � we have

lim
���

�� �M�	� � � � �B	���

��The boundedness of the function � in Assumption ��� ensures that for bounded �t G de�ned in ������

actually satis�es E	GT � � ��

��



Combining �B	���� �B	��� and �B	��� now immediately yields lim���EQ� ��XT �K��� �

X�	 Similarly we obtain that for every M � �

lim
����

����� ��M � � �

and hence lim����EQ� ��XT �K��� � �X� �K��	
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