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ABSTRACT

We consider a model of a �nancial market where the volatility of the interest�
rate is not known exactly� but rather it is assumed to lie within two a�priori
known bounds� These bounds may represent for instance the extreme values of
the implied volatility of liquidly traded options� In this model� the interest�rate
process consistent with no�arbitrage and with the initial term�structure of forward
rates is not determined uniquely� More precisely� there exists one interest�rate
process for for each volatility path within the �band� determined by the minimal
and maximal volatilities�
Due to uncertainty in the volatility� the present values of an interest�rate sen�

sitive security cannot be determined exactly� unless it is equivalent to a series of
discount bonds� Nevertheless� it is possible to calculate extreme values � corre�
sponding to to worst�case scenarios of future volatility for short positions ��ask
price�� and long positions ��bid price�� in any security or portfolio of securities�
These extreme values are functions of the time�to�maturity� the current spot rate
and an additional variable	 the �accumulated variance�� We show that the extreme
prices can be found by solving a simple� nonlinear partial di
erential equations�
In these equations� the �instantaneous�� or �local� volatility used for pricing a a
particular claim is determined dynamically	 it is either the minimal or the maximal
volatility according to the claim�s convexity with respect to the state�variables�
A new feature of the model is that the value of a portfolio of interest�rate or

bond options is di
erent than the sum of the prices of the options taken separately�
Thus� the model shows how volatility risk is diversi�ed by holding mixed� Gamma
positions� In particular� the model suggests that the capital required to hedge an
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option portfolio will be less than the sum of the present values of the options taken
individually if the entire portfolio is hedged as a single contingent claim�
Numerical evidence is provided by comparing the present model to the stan�

dard Ho�Lee model� In particular� the e
ectiveness of the new pricing scheme for
diversifying volatility risk is illustrated in the case of a spread of two bond options�





� Introduction

The increasing popularity of interest rate contingent claims establishes the valu�
ation of these securities as a signi�cant problem in �nancial research� The No�
Arbitrage Yield�Curve Approach �NA� introduced by Ho � Lee ��� and followed by
Black � Derman � Toy ���� Black � Karasinski ��� Hull � White ���� constitutes
an important progress in this problem� No�Arbitrage Yield�Curve models have the
following properties	 i� calculated bond prices �t exactly the present yield curve
ii� the yield curve evolves in such a way that there exist no arbitrage opportuni�
ties from buying�selling bonds of di
erent maturities� Simple NA models �t the
only the initial term structure of forward interest rates ���� while more complex
ones also �t the initial volatility structure ��� �� and even the cap curve ��� The
state�of�the�art achievement in the NA approach is the Heath� Jarrow � Morton
model ���� a multifactor model based on the joint evolution of forward rates�
A one�factor NA model can be understood as a binomial tree describing the

evolution of short�term interest rate as a function of time and state of the world�
Hull � White ��� describe how a derivative valuation is carried out in practice
for one�factor models	 the change in interest rate� during a small time interval is
assumed to consist of a random jump centered around a deterministic mean� called
drift� No�arbitrage requirements imply that the drift is completely determined
by the current yield�curve and the volatility ���� The volatility of the change in
the interest rate� which is simply the standard deviation of the random jump�
is assumed to be known a�priori� The value of any interest�contingent claim is
calculated by working back through the tree	 the value at a node is the discounted
expectation of the values taken at node�s leaves�
We have emphasized in the previous paragraph the assumption of an a�priori

known volatility on purpose� It seems to us that this parameter is known only to
the extent that it can be estimated from historical data of by �tting the model�s
prices to market prices� There is not a unique procedure for determining the
volatility�ies� to input in NA interest�rate models from market data� Volatility
shocks may arise� for instance� from exogenous factors� such as central bank mon�
etary policy� political events� etc� It would be therefore desirable incorporate into
NA models the inherent uncertainty of future rate volatility� This is the purpose
of this work�
We shall postulate here that the information available for pricing a interest rate

contingent derivative security consists of lower and upper bounds �min and �max
on the instantaneous volatility of the interest�rate �� In this case� there is not a
unique stochastic process for the evolution of interest rates which is consistent with
no�arbitrage and �ts the initial term structure of forward rates� Instead� there exist
in�nitely many binomial trees for the evolution of the interest�rate� namely one for
each volatility path contained within the band �min � ��t� � �max� The situation

�In the sequel we call the short term interest rate simply the interest rate�
�More generally� these upper and lower bounds could be time	dependent�
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is interpreted as follows	 we assume that investors will have di
erent views on the
forward volatility and thus value securities accordingly� Each investor constructs
his or her tree for the interest rate evolution� From a �node�� representing a certain
value of interest rate R at a certain trading date t� stem two nodes representing
the two possible values of the rate at the next trading date� These two values are
assigned probabilities by the investor� The corresponding variance of the interest
rate change represents the investor�s subjective view on the volatility over that
trading period� The volatility at each node is restricted only by the a�priori known
lower and upper bounds �min and �max�
Let us de�ne the risk�averse prices� or extremal prices� of an interest�contingent

claim as its value to investors under worst case volatility scenarios	 for the short
position� the risk�averse price will be the highest realizable price given by a NA
model over all possible volatility scenarios� For the long position it will be the
lowest realizable price under all possible volatility scenarios�
To �x ideas� we assume that investors construct interest�rate trees according

to the well�known Ho � Lee model� allowing for local �deterministic� changes in
the volatility of the spot rate� Heath� Jarrow � Morton ��� established that the
No�Arbitrage condition forces a relation between the mean and the term structure
of volatility for interest rate process� This relation has a fundamental importance
for our pricing equation so we recall it brie�y� Consider the trading period which
begins at the date t� The absence of yield�curve arbitrage opportunities implies
that the average change in the interest rate over this period is equal to the sum of
the change in initial forward rate curve over this interval and the variance of the
interest rate change from time zero to time t � the accumulated variance up to

time t� Accordingly�

drift�t� � f�t��t� � f��t� �
t��t� �X
j��

���j�t�

� f�t��t� � f��t� � V �t� �

where f�t� represents the forward rate curve observed at time zero� At time t� the
investor is thus left with the choice of up� and down�variations and corresponding
probabilities� which should be consistent with the above drift and the volatility
over the next period� ��t� �unknown��
The risk�averse prices of an interest�contingent claim at time t are determined

by the volatility bounds �min �max and the two state�variables R�t� and V �t�� We
assume that the spot rate R�t� and the accumulated variance V �t� are observable
at time t by all investors� At this time� if s � t� then R�s� is random and V �s�
will be viewed di
erently by di
erent investors�
Our ultimate goal is to understand risk�averse pricing in a continuous�time

economy with uncertain volatility with known a�priori bounds� We shall follow
the Cox� Ross � Rubinstein ���� approach	 we approximate a continuous economy
by a discrete economy with a very large number of short trading periods� The
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volatility realized at nodes of investor�s trees is scaled so that the annualized

volatility remains bounded even when the number of trading periods within� say�
ten years� is very large� We develop recurrence relations for the risk�averse �worst
case scenario� prices� As the duration of the time period between trades decreases�
the Taylor expansion of the recurrence relation yields limiting partial di
erential
equations for the prices�
The notion of pricing contingent claims with respect to the lower and upper

bounds on volatility was originally developed by Avellaneda� Levy � Paras ���� ���
in the context of equity derivatives� In that case� the pricing scheme is based on
the hedge between the derivative and the stock� Here� hedging is done with cash
�short�term funds� and longer�term �xed�income securities�
In our model the upper risk averse price ��ask price� for short�B of an interest�

contingent claim satis�es the partial di
erential pricing equation in t� R� V 	

Bt � �f
��t� � V �BR � ��

�
BV �

�


BRR

�
�BV �

�


BRR��RB � �� �����

with the �nal condition de�ned at time t � T � the maturity of the claim� and
determined by the payo
 function� The �ask� volatility coe�cient ���� is given by

��X� �

�
�max if X � ��
�min if X � ��

����

The lower bound on the price of the contingent claim ��bid price�� is determined
by equation ����� but with a �bid� volatility coe�cient� obtained by interchanging
���� �min and �max in �����
Equation ����� is used in practice as follows� Consider the case of a European�

style call option� with exercise price K and maturity � on a �� face�value zero�
coupon bond with maturity T � � � To �nd the price of the option� we �rst �nd
the �upper� price of the bond B�t� R� V �T �� It satis�es the equation ����� for t
between zero and T with the �nal condition B�T�R� V �T � � �� Then� we �nd the
price of the option O�t� R� V � � � by solving equation ����� for t between zero and
� with the �nal condition at t � �

max�B���R� V �T ��K� ��� �����

As the accumulated variance is zero at time t � �� the option�s price is given by
O��� R� �� � � where R is the initial interest rate�
The call option example illustrates a general property of our pricing scheme	

at time t � �� the risk�averse price of a contingent claim depends on the time to
maturity � � the minimal and maximal annualized volatilities �min and �max� the
initial instantaneous forward rate curve f and the �nal payo
�
We o
er the following �nancial interpretation of the pricing equation ������

In a short time interval �t the interest rate changes by an amount �R and the
accumulated variance changes by an amount �V � As a result� the value of the

�



contingent claim will change by �B� �B consists of a random� mean�zero com�
ponent and a deterministic component which depends on the realized volatility�
Because our analysis is carried out in a risk�neutral world� the value of the con�
tingent claim is its expected value discounted at the current interest rate� Since
the volatility of the interest rate over the next trading period is not known� a fully
risk�averse investor will base the value of a short �long� position on the maximal
�minimal� possible value of �B� Applying the Taylor expansions� we �nd that the
volatility�dependent deterministic component in �B is simply ��X where �� is
the interest rate volatility during time interval �t and X � BV �

�
�
BRR� Thus�

in the case of a short position� the derivative is valued with �� � ��max if X � �
and �� � ��min if X � �� This is fully consistent with de�nition ����	 the risk�
averse price evolution equation is simply based on the curvature of the price as a
function of the interest rate and volatility� The above intuitive argument can be
made fully rigorous following Hull�s derivation of the Black�Scholes equation �����
In this paper a di
erent approach� in which the pricing equation is obtained as the
approximation to a backward�induction scheme for a discrete economy with many
trading periods�
The interest of pricing contingent claims with equation ����� lies in the fact

that the model is capable of accounting for diversi�cation of volatility risk� In
fact� equation ����� represents the premium that will be acceptable to an investor
that will bear both the �price risk� and the �volatility risk� associated with the
short position� It is then clear that the worst�case volatility scenario may be
di
erent according the particular contingent claim that is being considered� Thus�
a portfolio of options� with some options held long and others held short� will have
a lower �ask price� than if the options in the portfolio were priced separately using
����� and the prices added together� This result is easy to verify mathematically
and follows almost immediately from the de�nition of extremal prices� The non�
linearity of the �ask� volatility coe cient causes the price of a portfolio not to be
the sum of the prices of its components in general� This suggests that investors
or market�makers with inventories of contingent claims will be willing to quote
narrower bid�o
er spreads for buying and selling derivative securities than those
with smaller endowments� while assuming the same level of volatility risk�
We illustrate this risk�diversi�cation e
ect by pricing a call spread in aggregate

fashion and separately using ����� for a call spread� We also compare the prices
obtained with ����� with those obtained using the Ho�Lee model with maximal and
minimal volatilities�
The rest of this paper is organized as follows� In Section  we illustrate the ef�

fectiveness of our pricing schemewith numerical calculations of the calendar spread
value� Section � and � describe the discrete economy	 the No�Arbitrage�restricted
interest rate process and the recurrence relation for the price of a derivative� In
Section � we derive the continuous�time pricing equation from the discrete�time
recurrence relation of Section �� The exact form of the interest rate process is
rigorously inferred from the No�Arbitrage condition in Appendix A� In Appendix
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Figure �	 Pricing curves for a call spread on a bond with the face value of ����
and  years to the maturity� with the maturity of the spread in � year and exercise
prices ��� and ���� The continuous lines are the asking and bidding prices as
given by our model� The dashed lines are the values obtained by pricing both
calls separately� The dashed�dotted line is the value at the middle volatility� The
initial instantaneous forward rate is �at� The minimal and maximal volatilities are
��min � ���� and �

�
max � �����

B we present a hedge of the derivative against the zero�coupon bond�

� Numerical Calculations

The asking and bidding prices of a derivative are found by solving the pricing
equation ����� from the maturity of the derivative backwards to the present time�
We note� however� that the bond prices in our model are known in a closed form�
This fact has important consequences	 solving the pricing equation for a bond�
based derivative� we start at the maturity of the derivative instead of the maturity
of the bond� The actual formula for the time t value of the bond with maturity T
is simply�

P�t� T � � exp
�
�R�T � t��

V


�T � t�� �

Z T

t
�f�s� � f�t�� ds

�
� ����

The e
ectiveness of our model is clearly visible in valuation of option portfolios�
A simple portfolio consisting of a single call on a bond is valued at the highest

�Note that for V 
 ��t we recover the standard Ho	Lee value of the bond �����
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R �"� HLmaxmin Ask HLmid Bid HLmin
max

� ��!�! ����� ����� ����� ����
� ��! ��!� ����� ����� ���
� ���� ���!� ����� ��� ����
�� ����� ����� ���� ���� ������
� ��� ���� ���� ����� �����!

Table �	 Numerical values corresponding to Figure � for di
erent levels of the
interest rate� The Ask� Bid are the prices given by our model� HLmaxmin � HL

min
max

are the prices when the calls are valued separately at their maximal and minimal�
minimal and maximal volatility according to the standard Ho�Lee model� HLmid is
the price at the middle volatility�

volatility ��max for selling and at the lowest volatility �
�
min for buying� This fact is a

result of the positive curvatureX � �
�
BRR�BV of the �nal payo
 function for the

call and the curvature preserving character of the pricing equation� Consequently�
the asking �bidding� price of the call in our model is given by the standard Ho�
Lee formula ���� with volatility equal to ��max ��

�
min�� However� a more complex

portfolio that has a mixed curvature X is priced with a dynamically selected
volatility� In e
ect� the asking price of such a portfolio is lower than the sum of
the prices of its elements and the bidding price of the portfolio is higher than the
sum of the prices of its elements�
We illustrate the above considerations by pricing a spread� In Figure � and

Table � we present the equation ����� based asking and bidding prices for the
spread together with the values obtained by decomposing the spread into two calls
and pricing them separately� We show also the prices at middle volatility ��mid�
They are calculated independently by the �nite�di
erence solver �with minimal
and maximal volatilities set to ��mid� and the standard Ho�Lee model formulas�
The agreement between these numbers serves as a measure of quality of our �nite�
di
erence solver�

� Interest Rate Process

We consider a discrete trading economy with the basic time unit� i�e� the minimal
time between trades� equal �t� and all trading dates being multiples of it� The
economy consists of a large number of investors� each with its own view on the evo�
lution of the interest rate� In this section we describe a simple model of the interest
rate process as it is seen by a particular investor� This process is constrained by
the No�Arbitrage condition� Heath� Jarrow � Morton ��� were the �rst to observe
the relation between the drift� i�e� the mean value� of the interest rate and its
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volatility� i�e� its variance� While we derive this relation for a discrete economy
with changing volatility in the Appendix� here we simply state the assumed form
of the interest rate process�
We assume a particular investor sees the interest rate R�t� as a binomial pro�

cess� Given the value R�t��t� a time t��t there are two possible values of R�t�
time t 	 RU �t� and RD�t�� These two values are taken with probabilities �Ut and
�Dt � s�t� �

U
t � �Dt � �� i�e�

R�t� �

�
RU �t� with probability �Ut �
RD�t� with probability �Dt �

�����

Denoting the mean value of R�t� by RM �t� we write the upper and lower values of
R�t� as variations around the mean	

RU �t� � RM �t� � Ut�t
����

RD�t� � RM �t��Dt�t
���� ����

where �Ut�Dt� �
U
t � �

D
t �

� is constrained by the fact that RM �t� is a mean of R�t�	

Ut�
U
t �Dt�

D
t � �� �����

Note that the variations of the interest rate R�t� around it mean RM �t� are scaled
according to �t���� This scaling achieves a �nite annualized volatility of the in�
terest rate for any �t�
The No�Arbitrage condition demands	 a fourplet �Ut�Dt� �

U
t � �

D
t � is chosen

by an investor according to its own view� The mean value RM �t�� however� is
completely determined by

� initial forward rate change �f�t� � f�t�� f�t��t��
� the t��t value of interest rate R�t��t��
� all previous investor�s choices of fourplets �Us�Ds� �

U
s � �

D
s � at trading dates

between time zero and time t��t	

RM �t� � R�t��t� � �f�t� � �t
t��t��X
j��

�t ���j�t�� �����

where ���s� is the annualized volatility of the interest rate over the trading period
�s� s��t�	

���s� �
�

�t
Vars��t fR�s�g � U�

s �
U
s �D�

s�
D
s � �����

Note that as �t ���s� is the volatility realized at time s� the sum in formula �����
is the accumulated variance between time zero and time t � �t� This sum has
magnitude O���� Thus� the accumulated variance remains �nite for any �t�

�The simplest binomial process occurs when Ut 
 Dt 
 r and �Ut 
 �Dt 
 ���� i�e� the rate
moves equally likely up or down form its mean by r�
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It is convenient to denote the accumulated variance at the time t as V �t�	

V �t� �
t��tX
j��

�t ���j�t�� �����

Concluding� a particular investor�s view of the interest rate evolution process is
fully described by a binomial tree of fourplets �U�D� �U � �D�� A fourplet �Ut�Dt�
�Ut � �

D
t � assigned to a particular time t��t node of the tree determines the two

possible values of the interest rate at time t according to the formula

R�t� � R�t��t� ��f�t�� V �t��t��t�

�
�Ut�t

��� with probability �Ut �

�Dt�t
��� with probability �Dt �

���!�
The accumulated variance V �t� at a node is determined as a sum of volatilities
realized along the path of the binomial tree leading to this particular node� Its
value at a time t node stemming from some time t ��t node with accumulated
variance V �t��t� is given by

V �t� � V �t��t� � Vart��tfR�t�g � V �t��t� � �U�
t �

U
t �D�

t�
D
t ��t� �����

We stress here a following observation	 although the evolution of interest rate
R�t� from time t onward depends on all choices of fourplets taken between time
zero and time t� this dependence is through a simple quantity	 the accumulated
variance V �t�� Once this quantity is known� in order to build the binomial tree
of interest rates for times s � t starting from a particular node with the level of
interest rate R�t�� it is enough to remember just V �t�	 the accumulated variance
necessary to construct R�s� at s is a sum of the volatilities realized between time
t and time s along the path leading to s and the accumulated variance V �t�� In
other words� the formulas ���!� and ����� constitute a recurrence relation for the
interest rate R and the accumulated variance V that can be used to construct the
tree of interest rates from the tree of fourplets�
The simplest model for the interest rate� as described above� involves just two

fourplets	 ��min���min�
�
�
� �
�
� and ��max���max�

�
�
� �
�
�� In this process the interest

rate increases and decreases with equal probability and the upward and downward
variations from its mean value have equal magnitude� An investor chooses at a
node only a lower or upper value of volatility applicable to the present trading
period�
We assume that there exists only one restriction on the investor�s fourplets�

There exist two� a�priori known numbers ��min and ��max� speci�c to the whole
economy� that restrict all possible fourplets �U�D� �U � �D� according to

��min � U��U �D��D � ��max� �����

We �nally note that a choice of a �xed fourplet �U�D� �U � �D� for all nodes
of the tree makes the limiting �as �t � �� process for the interest rate R to be
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the standard Ho�Lee interest rate process with annualized volatility �� � U��U �
D��D� Thus� the multiple tree discrete economy contains approximations of all
standard Ho�Lee interest rate process with annualized volatilities �� between ��min

and ��max� However� it clearly contains also much more	 interest rate processes
where the volatility �� is a function of the interest rate level itself �� � ���R��
processes where the volatility depends on the whole history of the interest rate
until the current time �path�dependent models�� etc� It is a truly �rich� economy�

� Price Recurrence Relation

The risk�averse price of a derivative in an economy with many possible interest
rate evolution process is a worst case scenario price� We derive here a recurrence
relation for this price as a function of current time� interest rate and accumulated
variance� To �x our attention we consider here the asking price� i�e� the price of
a short derivative� The biding price� i�e� the price of a long derivative� is found
analogously�
We �rst recall how a particular investor� say investor I� prices a derivative on

the basis of the binomial tree for the interest rate� We call this price the I�price�
Let Trftg denote a binomial tree of fourplets extending between the present time t
and the maturity of the derivative T expressing investor I view on the interest rate
evolution� Let the time t value of the interest rate and the accumulated variance
by R and V � Construct a binomial tree of interest rates	 at time t start from
the interest rate R and the accumulated variance V and follow the interest rate
evolution process given by formulas ���!� and ����� in Section �� The I�price at
time t of a derivative with a known payo
 at maturity is found by working back
through the interest rate tree from maturity T to the present time t according to
the standard expectations procedure� Let at the node N the interest rate equal R�
Let NU and ND be two nodes stemming out of the node N and describing the
upper and lower values of the interest rate at the next trading date� The nodes
NU and ND are assumed with probabilities �U and �D� If BU and BD are the
I�prices of the derivative at nodes NU and ND then the I�price of the derivative
at the node N is simply

e�R�t��UBU � �DBD�� �����

Applying rule ����� repeatedly� investor I �nds its I�price at time t� Let us denote
this I�price by B�t� R� V � Trftg�� The risk�averse asking price of the derivative is
simply the maximal	 I�price over all investors �or alternatively over all trees of
fourplets�	

B�t� R� V � � max
Tr�Trftg

B�t� R� V � Tr�� ����

In order to simplify the derivation of the recurrence relation� we assume that
every investor chooses fourplets �U�D� �U � �D� from a �nite� but perhaps very

�The biding price is the minimal I	price over all investors�
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large set f�Ui�Di� �
U
i � �

D
i � 	 i � ��Mg� Denote the fourplet �Ui�Di� �

U
i � �

D
i � by Fi�

its variance by ��i 	
��i � U�

i �
U
i �D�

i �
D
i � �����

Similarly� letF�t� denote a time t fourplet �Ut�Dt� �
U
t � �

D
t �� Finally� let TrftjF�t� �

Fig denote a binomial tree of fourplets starting at time t with the fourplet Fi� Then�
clearly

B�t� R� V � � max
i

�
max

Tr�TrftjF�t
�Fig
B�t� R� V � Tr�

�
� �����

as the time t fourplet F�t� in any tree Tr must be one of the fourplets Fi� i � ��M �
Now� let i be �xed� We show that

max
Tr�TrftjF�t
�Fig

B�t� R� V � Tr� � e�R�t �
�
�Ui max

Tr�Trft��tg
B�t��t� R � Ui�t

��� ��f � V�t� V � ��i�t� Tr�

��Di max
Tr�Trft��tg

B�t��t� R�Di�t
��� ��f � V�t� V � ��i�t� Tr�

�
�����

The relation ����� is a consequence of the following observation� The maximum
in the L�H�S� of ����� is achieved at some tree Tr ftjF�t� � Fig� because there is
only a �nite number of possible trees� We denote the maximizing tree by Tr�� We
form two new trees TrDft��tg and TrUft��tg that start at time t��t from
the upper and lower nodes of Tr�� In other words� the tree Tr� consists of TrU and
TrD bound together by time t node Fi� By de�nition� the value B�t� R� V � Tr

�� is
discounted by e�R�t expected value found on trees TrU and TrD	

B�t� R� V � Tr�� � e�R�t��Ui B�t��t� R
U
i � V � ��i�t� Tr

U�

��Di B�t��t� R
D
i � V � ��i�t� Tr

D��� �����

where RU
i � R

D
i are values of the interest rate R�t��t� at time t��t dictated by

R�V and Fi according to the equation ���!�	

RU
i � R � Ui�t

��� ��f�t��t� � V�t�

RD
i � R�Di�t

��� ��f�t��t� � V�t� ���!�

Therefore� the R�H�S� of ����� is larger �or equal� than B�t� R� V � Tr��� Similarly�
both maxima in the R�H�S� of ����� are achieved at some trees TrUft � �tg and
TrDft � �tg� By binding these two trees together with a time t node Fi we
construct a new tree Tr�ftg starting at time t� Again the value B�t� R� V � Tr�� is
exactly equal to the R�H�S� of ������ Thus� the L�H�S� of ����� is larger �or equal�
than B�t� R� V � Tr��� This proves the equality between both sides of ������
The recurrence relation follows easily from ����� and �����	

B�t� R� V � � max
Tr�Trftg

B�t� R� V � Tr�

�



� max
i

�
e�R�t�Ui max

Tr�Trft��tg
B�t��t� RU

i � V � ��i�t� Tr�

�e�R�t�Di max
Tr�Trft��tg

B�t��t� RD
i � V � ��i�t� Tr�

�

� e�R�tmax
i

�
�Ui B�t��t� R

U
i � V � ��i�t�

��Di B�t��t� R
D
i � V � ��i�t�

�
�����

This recurrence relation is nonlinear and it relates the time t value of B at the
interest rate R and the accumulated variance V to time t��t values of B at the
new up and down levels of interest rate and new accumulated variance�

� Continuous Economy

Consider a discrete economy where the minimal time between trades �t tends to
zero	 in the limit a binomial tree for the interest rate evolution over trading periods
becomes a continuous time process� and any function of the trading period number
becomes a function of the continuous time� The family of continuous time process
which arises as limits of interest rate binomial trees of Section � constitutes the
continuous economy�
We analyze her in detail the price recurrence relation derived in Section �� We

show that in the limit �t � � the price satis�es a non�linear partial di
erential
equation� which we call a pricing equation in the continuous economy� We also
show that in a special case of no uncertainty in volatility� the equation reduces to
the standard Ho�Lee model Black�Scholes equation�
The derivation is based on the Taylor expansion of the recurrence relation ������

which we repeat here for completeness	

eR�tB�t� R� V � � max
i

n
�Ui B�t��t� R� Ui�t

��� ��f � V�t� V � ��i�t�

� �Di B�t��t� R �Di�t
��� ��f � V�t� V � ��i�t�

o
�

�����

We observe that the �t change in the time coordinate t results in the O��t����
change in the interest rate coordinate R and the O��t� change in the accumulated
variance coordinate V � as it is apparent from the R�H�S� of ������ Consequently�
the following Taylor expansion of B around the point �t� R� V � is useful	

B�t��t� R���R�V ��V � 	 B��tBt��RBR��VBV �
�


��R��BRR� ����

which is accurate up to the error of order O��t���� provided that �V 
 O��t�
and �R 
 O��t����� We apply the expansion ���� to a term under maximum in

��



the R�H�S� of ���!�� obtaining� up to the error O��t�����

�Ui

�
B��tBt � ��Ui�t

��� � f
�

�t� V�t�BR � ��i�tBV �
�


U�
i �tBRR

�

��Di

�
B��tBt � ��Di�t

��� � f
�

�t� V�t�BR � ��i�tBV �
�


D�
i�tBRR

�

� B��tBt � �f
�

� V ��tBR � ��i�tBV �
�


��i�tBRR� �����

where we used the fact that ��i is the volatility of the fourplet �Ui�Di� �
U
i �

D
i �� see

������ Now� the approximation eR�t � � � �tR yields that the L�H�S� of �����
equals� up to the error O��t���

B��tRB� �����

Applying expansions ����� and ����� to the recurrence relation ����� we obtain
a relation that contains terms of order O��t� and higher� only� Thus� dividing
the resulting relation by �t and letting �t tend to zero� we derive the following
equation

RB � max
i

�
Bt � �f

�

� V �BV � ��i �BV �
�


BRR�

�
� �����

However� the maximum in the R�H�S� of ����� is achieved either for ��i � ��max or
��i � ��min depending on the sign of X � BV �

�
�BRR	

Bt � �f
�

� V �BV � ���BV �
�


BRR��BV �

�


BRR��RB � �� �����

Where the volatility coe cient ����� is given by

���X� �

�
��max if X � �
��min if X � ��

���!�

Equation ����� constitutes the pricing equation for the continuous economy with
uncertain volatility constrained by the lower and upper bounds ��min and �

�
max�

The standard Ho�Lee model Black�Scholes equation is a special case of equation
������ This is seen as follows� Assume that the maximal and minimal values of
volatility are equal	 ��min � ��max � ��� The equation ����� becomes a linear

di
erential equation as the volatility coe cient ����� becomes constant	 ����� �
��� Note that the dependence of the solution B of equation ����� on the interest
rate variable R is signi�cantly di
erent from the dependence on the accumulated
variance variable V �� It is not di cult to check that if B is a solution of equation
����� then a function A�t� R� V � de�ned by

A�t� R� V � � e�V t
���

B�t� R� V t� V � ��t�� �����

�Mathematically� equation ���� is parabolic in R and hyperbolic in V �

��



satis�es the following partial di
erential equation	

At � �f
�

� ��t�AR �
�


ARR �RA � �� �����

However� as the equation ����� does not involve variable V � the accumulated vari�
ance V is only an external parameter in the solution A�t� R� V � of the equation
������ Because at time t � � the accumulated variance is zero� the �nancially
interesting solution of equation ����� is the one with the parameter V set to zero�
i�e� A�t� R� ��� According to the A�to�B relation ������ A�t� R� �� � B�t� R� �� t��
Thus� in the standard Ho�Lee model with volatility ��� the price of a derivative
is given by the solution to equation ������ which is a well known fact ���� This
shows that our model of uncertain volatility economy is an extension of the stan�
dard Ho�Lee model�

� Conclusions

We have developed a simple No�Arbitrage model for pricing interest rate con�
tingent claims in a market where the volatility of the interest rate is not known
exactly� and� consequently� the interest rate process is not uniquely determined�
In our model� the value of a derivative satis�es a new� non�linear pricing partial
di
erential equation� which generalizes the Black�Scholes equation for the Ho�Lee
model� The derivation of the pricing equation is based on the worst case predic�
tion for the possible value of the investor�s position� We present a hedge against
a zero�coupon bond which assures the pricing equation value of the position� The
model generates the spread in the ask�bid prices in a natural way	 it is caused by
two di
erent ��hedges� one for a short and the other for a long position� in the
presence of non�uniqueness of the interest rate process�
The prices of zero�coupon bonds and simple puts and calls are known explicitly

in our model� We illustrate the e
ectiveness of our scheme by pricing a calendar
spread�
Our model does not posses the mean�reversion of the interest rate� However� an

extension of our approach to the Vasicek mean�reverting model is straightforward
and it will be carried out in a separate paper� Similarly� the generalization to a
multifactor model is possible as well and it is in preparation�
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� Appendix A� Interest Rate Process

The No�Arbitrage condition constrains the evolution of the interest rate in a sig�
ni�cant way ���� In this section we derive the No�Arbitrage form of the interest
rate process as observed by one particular investor�
Let f�t� T � denote the forward rate at time t for the time interval �T� T ��t��

Let P�t� T � denote the price at time t of a zero�coupon bond with maturity T � The
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face value of the bond is ��� i�e� P�T� T � � �� The relation between the price of
the bond and the forward rate is given by

P�t� T ��t� � P�t� T � exp���tf�t� T ��� �!���

Consequently

P�t� T � � exp
�
��t

T��t��X
j�t��t

f�t� j�t�
�
� �!��

We assume that the forward rate f�t� T �� when observed as a function of time
t� initiates as a �xed� deterministic rate f��� T � � f��T � and it evolves by random
jumps ��t� T �	

f�t� T � � f�t��t� T � � ��t� T �� �!���

We consider here a simple two�state model	 forward rates of all maturities T either
all go up or all go down between time t��t and the time t� If the upstate prevails�
then ��t� T � � a�t� T � for all T � if the downstate prevails then ��t� T � � b�t� T ��
where a�t� T � and b�t� T � are constants such that a�t� T � � b�t� T ��
The No�Arbitrage condition is easily understood in the context of the relation

between bond prices at two consecutive trading dates� We derive from �!�� and
�!��� that

P�t� T � � exp
�
��t

T��t��X
j�t��t

f�t� j��t�
�

� exp
�
��t

T��t��X
j�t��t��

f�t��t� j�t� � �tf�t��t� t��t�

��t
T��t��X
j�t��t

��t� j�t�
�

� exp
�
��t

T��t��X
j�t��t

��t� j�t�
�
P�t��t� T �

P�t��t� t�

� h�t� T �
P�t��t� T �

P�t��t� t�
� �!���

Note that according to our assumption of the two�state model� the function h�t� T �
takes only two values

h�t� T � �

�
hU�t� T � � exp���t

P
a�t� T �� if the upstate prevails�

hD�t� T � � exp���t
P
b�t� T �� if the downstate prevails�

�!���

The No�Arbitrage condition simply states that a portfolio of two bonds with
di
erent maturities that realizes a risk�free return� �i�e� a return independent of

�The risk	free hedge for a trading period �t� t��t� contains one bond with maturity T� and
Pt� T��h

U t��t� T���hDt��t� T����Pt� T��h
Dt��t� T���hU t��t� T��� of bonds with

maturity T�� see ����

�!



state of the economy on the next trading date� must make a return of a one�period
bond� This condition constrains hU and hD in the following way	 There exists a
pair of constants �Ut � �

D
t �independent of maturity T but not necessarily of present

state of the economy and time� such that �Ut � �Dt � � and

�Ut h
U�t� T � � �Dt h

D�t� T � � �� �!���

Therefore� as hU and hD are the values taken by h in the upstate and the downstate�
we think of �Ut and �

D
t as probabilities of the upstate and the downstate� In other

words� we may think of �Ut and �Dt as given probabilities of the events that the
upstate or the downstate prevails on the next trading date� In that case� given the
probabilities �Ut and �

D
t � the condition �!��� is just a restriction on the upstate and

the downstate values of ��t� T �� i�e� a restriction on constants a�t� T �� b�t� T ��
Condition �!��� constitutes a set of equations on a�t� T �� b�t� T � that can be

solved� in terms of probabilities �U � �D and volatilities of the forward rates

Vart��tff�t� T �� f�t��t� T �g � Vart��tf��t� T �g� �!�!�

We assume that one period volatilities �!�!� are independent of maturity T and
they are scaled so that the annualized volatility remains �nite when the length �t
of the basic trading period decreases� This amounts to

�

�t
Vart��tf��t� T �g � ���t�� �!���

The conditional distribution of ��t� T � is binomial� so we have

�a�t� T �� b�t� T ����Ut �
D
t � ���t��t �!���

Solving �!��� for a�t� T � in terms of b�t� T �� ��t�� and substituting the resulting
formula into the restriction �!��� we obtain

T��t��X
j�t��t

�tb �t� j�t� � log
�
�D� � �Ut exp

�
��t����T � t��t���t�	��Ut �

D
t �

���
��

�

�!����
By subtracting equations �!���� with maturities T and T ��t we get

b�t� T � �
�

�t
log

	

�


�
�Dt � �Ut exp

�
��t����T � t��t���t�	��Ut �

D
t �

���

�

�Dt � �Ut exp
�
��t����T � t���t�	��Ut �

D
t ����

�


�


�

� ���t��Ut �t
���	��Ut �

D
t �

��� � ���t��T � t��t�O��t���� �!����

where the last equation is a simple Taylor expansion result� Formula �!���� to�
gether with equation �!��� yield up to the error O��t�����

��t� T � � ���t��T�t��t�

�
���t���Dt 	�

U
t �

����t��� with probability �Ut �

���t���Ut 	�
D
t �

����t��� with probability �Dt �
�!���

	This observation is due to Heath� Jarrow � Morton ����
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Thus� ��t� T � can be written� up to the error O��t����� as

��t� T � � 
�t��t��� � ���t��T � t��t� �!����

where 
�t� is a mean zero� variance ���t� random variable�
The interest rate R�t� is simply the forward rate f�t� t�� Thus� the evolution

equation for forward rate �!��� implies

R�t� � f��t� �
t��tX
j��

��j�t� t�� �!����

Using equations �!���� and �!����� we �nd the interest rate R�t� to be� up to the
error O��t�����

R�t� � f��t� �

�
�t��tX
j��


�j�t�

�
A�t��� �

�
�t��tX
j��

���j�t��t� j�t�

�
A�t �!����

Thus� the interest rate as seen by an individual investor in the two�state Ho�Lee
model may be modeled by the following evolution equation	

R��� � R��

R�t� � R�t��t� � f��t�� f��t��t� � 
�t��t���

�
�t��t��X

j��

���j�t��t
�
�t� �!����

where 
 is a mean�zero� variance ���t�� two�state random variable� f��t� is the
instantaneous forward rate for period �t��t� t� as seen at the initial time t � ��
and R� is the initial interest rate�

	 Appendix B� Hedging in Markets with Uncer


tain Volatility

The asking and bidding prices of an interest rate dependent derivative are found
from the pricing equation ������ The hedging procedure to achieve these prices
constitutes an important part of our model� Here we concentrate on a bidding

price� i�e� the valuation of a long position in the derivative�
The hedge is based on a additional position in a zero�coupon bond� Let P�t� T �

be the time t price of a bond with maturity T � This price changes during one
trading period �t��t� t� as follows	

P�t� T � � exp
�
��t

T��t��X
j�t��t

��t� j�t� � �tR�t��t�
�
P�t��t� T �� �����

��



where R�t��t� is the interest rate at the time t��t and ��t� s� is the change in
the forward rate for the period �s� s� �t� between times t � �t and t� cf� �!����
The No�Arbitrage condition restricts ��t� T � to be given by

��t� T � � 
�t��t��� � ���t��T � t��t� ����

where 
�t� is a mean zero� variance ���t� random variable� For simplicity we as�
sume that 
�t� takes values ���t� with equal probabilities��� Combining equations
����� and ���� we �nd that the price of the bond changes according to the following
equation	

�P�t� T � � P�t� T ��P�t��t� T � � ��
�t��T�t��t����R�t��t��t�P�t��t� T ��
�����

up to the error O��t�����
Consider the portfolio consisting of one long derivative B and � units of the

bond� Let B�t� denote the time t value of the derivative� During the trading period
�t��t� t�� the interest rate R and the accumulated variance V change by

�R � R�t��R�t��t� � ��f � V�t� � 
�t��t����

�V � V �t�� V �t��t� � ���t��t� �����

where �f � f�t� � f�t ��t� and V � V �t � �t�� cf ���!�������� Consequently�
the value of the derivative moves by

�B � B�t��B�t��t� 	 Bt�t�BR�R�BV�V �
�


BRR��R�

�

� �Bt �BV �
��t� �BR�f

� � V � �
�


BRR�

��t���t�BR
�t��t
���������

where all partial derivatives are evaluated at the time t��t values of the interest
rate and accumulated variance� Here we used the special form of the 
�t� random
variable� utilizing the equality 
��t� � ���t�� Thus� combining equations ����� and
������ we see that a hedge constructed of one long derivative and of

� �
BR

�T � t�P
�����

units of the bond is risk�less in the sense that its value does not depend on the
random change in the interest rate� Note that both BR and P in the hedge ratio
����� are evaluated at the time t��t levels of the interest rate and the accumulated
variance� When we recall that the totally risk�averse investor values its portfolio at
a minimal price attainable for any possible volatility ���t� in the band ���min� �

�
max��

we �nd that the value of the portfolio changes by

min
�
f�B� ��Pg

� min
�

�
Bt �BR�f

� � V � � �BV �
�


BRR��

��t� �RBR	�T � t�
�
�t����!�

�
This assumption� however� has no bearing on the generality of our hedging procedure�

�



Now� note that during the time interval �t the risk�free portfolio makes R�t per�
cent of its original worth� i�e� R�t�B � �P� � R�t�B � BR	�T � t��� This
quantity equated with ���!� yields again the pricing equation ����� for the deriva�
tive B� closing the proof that our hedge recovers the equation ����� value of the
derivative�
We conclude by observing the �nancial interpretation of the bidding volatility

coe cient minf�BV �
�
�
BRR��

�g� It simply represents the risk exposure of the
hedge to the uncertain volatility of the interest rate ��� In fact� the pricing equation
����� can be understood as a �fair� pricing of the di
erence between the value of
the portfolio and the value attainable through the hedge� This di
erence is caused
by fact that the hedge is a the linear approximation of the curvature in the price
as a function of the interest rate and the accumulated variance�
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