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1. Introduction

1.1 Deriving a diffusion model from option prices

It is well known that the constant-volatility assumption made in the Black-Scholes frame-
work for option pricing is not valid in real markets. For example, S&P 500 index options
are such that out-of-the money puts have higher implied volatilities than out-of-the money
calls. In the currency options markets, implied volatilities exhibit a “smile” and a “skew”
(in both maturity and strike) whereby at-the-money options trade at lower volatilities than
other strikes, and a premium for puts in one of the two currencies is manifest in the price
"2 To model the strike- and maturity-dependence of implied volatility,
researchers have proposed using arbitrage-free diffusion models for the underlying index in
which the spot volatility coefficient is a function of the index level and time. The problem
is then to determine what this volatility “surface” should be, given the observed option
prices.

of “risk-reversals

This paper present a simple, rigorous, method for constructing such an arbitrage-free
diffusion process. The basic idea is to assume an initial Bayesian prior distribution for
the evolution of the index and to modify it to produce a calibrated model such that the
corresponding probability is as close as possible to the prior. For this, we use the concept
of Kullback-Leibler information distance, or relative entropy.

The basic approach is as follows. Let

d
St

represent the process that we wish to determine. Here o; is a random process adapted to
the standard information flow and 4 is the risk-neutral drift, which we assume is known? .
The calibration conditions for M traded options can be written as

E7 [e7™G(ST,)] =Ci, i=1,2,... M, (1.2)

where r is the interest rate, E?[-] denotes the expectation with respect to the measure
corresponding to (1.1) and G;(St.), Ci, + = 1,2,... , M represent, respectively, the payoffs
and prices of the M options that we wish to match.

We will show that minimizing relative entropy is essentially equivalent to minimizing
the functional

2 A risk-reversal is a position consisting in being long a call and short a put with symmetric strikes.
3y is the interest rate differential (carry) in foreign exchange and the interest rate minus the dividend
yield for equity indices. We assume therefore a “risk-adjusted” drift.
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/OTn(ag)ds] : (1.3)

where n(o?) is a strictly convex function which vanishes at the volatility of the prior dis-
tribution.

This constrained stochastic control problem is equivalent to a Lagrange multiplier prob-
lem in which we maximize the augmented objective function

over all adapted volatility processes o¢; and then minimize the result
over (A1, ...A\p ).t

We show that in the absence of arbitrage opportunities the value function V(Aq, ... Aar)
corresponding to (1.4) is smooth and strictly convex in A. In particular, it has a unique
minimum. The first-order condition at the minimum,

ov
o\

= Ea’* [e_rTiGi(STi)] - Cl = 0, = 1,2,. .. 7_2\4

Y

ensures that the model is calibrated to market prices. Hence, in this approach, calibrating
the model to the M option prices 1s equivalent to finding the minimum of a convex function

of M wvariables.

The algorithm for computing V (A1, ... \3s) for a given set of Lagrange multipliers con-
sists in solving the Bellman partial differential equation corresponding to (1.4) viz.,

1 —rt
Vi + §€rt@<€2 52V55>—|— MSVS —rV =

= > N (Gi(S) — e Ci) St = T

t<T;

where @ is the Legendre dual of n. This is done numerically for successive choices of
(A1, ... Apr) until the minimum of

4In practice, we shall restrict our search to volatility processes that satisfy uniform bounds 0 < opin <
0s < 0max. This constraint will typically not be binding except in a neighborhood of points in the (.5, 7)-
plane corresponding to each strike/expiration date.



is reached. The optimal volatility surface is identified as

e~ 52 Vgo(S, 1)
2

o = o(S,t) = 4|P (1.5)
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FIGURE 1. Calibrated volatility surface for a set of 25 options on Dollar-Deutchemark
(dataset in Appendix B). The prior in this calculation is g = 0.141. The surface consists of
“humps” and “troughs” originating near each strike/expiration date which are smooth away
from these points. At the strike/expiration points, the volatility peaks are 0y, = 0.10 or
Omaz = 0.20. Notice that the surface converges to the prior volatility away from the input

strikes.

The volatility function thus obtained is what is traditionally called an “implied (spot)
volatility surface”.

A few remarks are in order. First, this approach permits the user to impose his or her
preference ordering via the specification of a Bayesian prior: the diffusion selected by the
model matches market prices and is also as close as possible to the prior. The specification of



0.18

<
S\
0.16
o
>
SOSOCS
= S S SS O SOCS
s | S=S= \
Eo12 SS=———= ==
. = S

OSSO S SSSOS SOS
R
——————
=

0\
T
‘\H\‘
0 ‘
o
o0
R
Y
iy

o

t)

i
il
il

i
“ﬁ‘\‘“

T

o\

)

o
=
\!
i
)
Y
o
A
0
i

|
i

i\
i
i

O

fhi
i
i
\\3\\‘
i
i
i

18

100

40

Price (DM/$) 1.2 20

Time (days)

FIGURE 2. Detail of the volatility surface of Figure 1 corresponding to the first 100 days
after the trading date. Notice that the price information corresponding to maturities after 90
days affects the earlier values of the surface at earlier dates, as a trough inherited from the

later maturities appears in the period from 90 to 100 days.

a prior distribution is a key feature of the procedure.® Minimizing the relative entropy with
respect to the prior stabilizes the far-tails of the probability distribution for the underlying
index and implies smoothness of the volatility surface (1.5).° The procedure leads to a
simple and numerically stable method for calibrating a pricing model. The small number of
input parameters that need to be adjusted makes it tractable in practice. This is in contrast
to other proposals where ad-hoc adjustments are required to achieve a stable algorithm.

Figures 1 and 2 display a calibrated spot volatility surface o(9, t) corresponding to
a dataset corresponding to Dollar-Deutchemark over-the-counter options for the date of
August 23, 1995, provided to us by a market-maker. It consisted of 25 option prices,
corresponding to 20- and 25-delta puts and calls and 50-delta calls for maturities of 30, 60,
90, 180 and 270 days” . The model was calibrated to mid-market quotes to an accuracy of

>The prior volatility need not be a constant. It can be, for instance, a function of time and /or price.

6 As we shall see, a unique prescription of the volatility surface far way from traded strikes cannot be
obtained precisely from option prices. The introduction of the Bayesian prior serves as an “extrapolation
mechanism” for characterizing the volatility in regions where the price information is weak, e.g. for strikes
which are deeply away-from-the-money, as well as a mechanism for smoothing the volatility surface.

A 25-delta put is a put with a Black-Scholes delta of -0.25, etc. This is standard terminology for
over-the-counter currency options.



10~* (in relative terms). The complete dataset is included in Appendix B.

Generically, the volatility surface corresponding to calibrating to a finite number of option
prices converges to the prior volatility surface for (S, t) far away from strikes/expiration
dates. Significant variations of the volatility surface occur near strikes/expiration dates.
These distortions are sharp near the strikes/expiration dates and diffuse smoothly away
from these points. The peaks near strikes/maturities are caused by the infinite Gamma of
option payoffs near expiration.® As we shall see, these “peaks” in the volatility surface do
not affect the continuous dependence of the model values on the input prices: the model
value of any contingent claim with a payoff which is continuous except on a set of Wiener
measure zero is Lipschitz-continuous with respect to the parameters Cy, ... Cyy;.

1.2 Previous approaches to the “implied tree” problem

To our knowledge, the first solution of the implied diffusion problem was proposed
by Breeden and Litzenberger (1978), and applied to capital budgeting problems in Banz
and Miller (1978). Recently, there have been important contributions by Dupire (1994),
Shimko (1993), Rubinstein (1994), Derman and Kani (1994), Barle and Kakici (1995) and
Chriss (1996), among others. This “smooth-and-differentiate” approach is based on the
observation that a call option price can be written as

C(K,T)= /e_rT max (St — K,0)p(St|S0)dST, (1.6)

where p(S7|So) is the conditional probability corresponding to the pricing measure @ as-
sociated with the diffusion driving S;. Differentiating this equation twice with respect to
K, we obtain

O?C(K,T)
K, Sy)=et— 12
p( > 0) O 2
This suggests a straightforward way to imply the diffusion driving S; from option prices.
The discrete set of observed option prices is interpolated onto a smooth surface, giving an
approximating complete set of prices that can then be numerically differentiated to compute
the conditional distribution corresponding to the unknown diffusion.

However, since the price of an option is not uniquely determined in an incomplete market
(there is more than one pricing measure), implicit in this approach is the assumption that
we can find an “approximating complete market”, before the computation of the transition

8The volatility surface obtained using our method is smooth in the S-variable if the option payoffs are
regularized prior to implementing the algorithm.



probabilities. These approaches tend to be unstable since the solution is very sensitive to
the smoothness and convexity of the function used in the interpolation.’

In Rubinstein (1994), a methodology for constructing an implied binomial tree is de-
scribed. This method is based on an optimization principle that selects a conditional dis-
tribution at some fixed time 7' that is as close as possible to the distribution corresponding
to a standard CRR tree (Cox,Ross and Rubinstein 1979), and that prices a set of options
that expire at time T' correctly modulo the bid/ask spread.

Rubinstein’s approach is revisited in Jackwerth and Rubinstein (1995), where empirical
results are discussed and a penalty approach is introduced to smooth the estimated con-
ditional probability function. The fact that Rubinstein’s original approach uses only one
expiration date has recently been addressed (Jackwerth 1996a; Jackwerth 1996b) . The
proposed methodology involves the solution of a large scale optimization problem, with
number of variables roughly equal to the number of nodes in the tree.

We mention also the recent paper of Bodhurta and Jermakian (1996) who propose to
compute a volatility surface in the form of a perturbation series, where each term in the
series is computed by solving a partial differential equation containing source terms de-
termined by the previous term. The coefficients in the partial differential equations are
computed as they are required by solving a least-squares problem. This approach effec-
tively solves a series of linear partial differential equations to compute approximate prices
and an approximate volatility surface, with the approximation improving as more terms are
computed.

In Rubinstein (1994) a least-squares criterion is used to measure the distance between
two distributions, but the possible benefits of using other measures, including the relative
entropy distance, are discussed. Recent work in the one-period setting has suggested that
the relative entropy may be a good choice for such a measure. For example, it is shown
in Stutzer (1995) that if we select a distribution that minimizes the relative entropy to
a prior subject to pricing constraints, the resulting distribution is maximally unbiased
and absolutely continuous with respect to the prior. Relative entropy minimization is also
studied in the one-period context in Buchen and Kelly (1996) and Gulko (1995, 1996). The

present paper can be seen as an extension of these ideas to the multi-period setting.

1.3 Relationship to the Uncertain Volatility Model

9This well-known instability is a consequence of the fact that the problem that we are trying to solve
is ill-posed. This is obvious when we compare it to the problem of numerically differentiating a function
when we only have discrete noisy observations. At a more fundamental level we note that if we fix T and
let K vary in (1.6), we obtain a Volterra integral equation for the transition probabilities. Such equations
are known to be ill-posed, and specialized techniques such as regularization, smoothing, filtering, etc., are
typically required to solve them (Tikhonov and Arsenin 1977; Banks and Kunish 1989; Banks and Lamm
1985).



In Avellaneda, Levy and Paras (1995) the Uncertain Volatility Model (UVM) was intro-
duced for hedging a position in a portfolio of derivative securities by selecting the worst
possible volatility path with respect to this portfolio. This model was combined with a
Lagrange multiplier approach in Avellaneda and Paras (1996) in order to minimize the risk
of the worst-case hedge by using options as part of the hedge.

There exists a duality between the problem of finding the worst-case volatility path and
the problem of implementing a one-sided hedge (that is, one that perfectly protects either
a short or a long position). This duality and its game-theoretical implications were studied
Samperi (1995), where it was shown that the duality applies even when the derivative claim
to be hedged is path-dependent.

The entropy-based approach introduced in this paper can be viewed as an application
of the aforementioned framework to a path-dependent “volatility option”. Specifically, con-
sider a contingent claim that pays fOT n(o?)ds at time T, i.e., pays n(c?) for each “day”
that the spot volatility is different from the prior.'® The solution of the stochastic control
problem can then be interpreted as the maximum income that an investor with a long posi-
tion in this claim can earn by hedging his position with the M options. It is worthwhile to
point out that this approach can be used to modify the problem by adding other contingent
claims to the portfolio to be hedged, thus combining the entropy-minimization idea with
the Lagrangian Uncertain Volatility Model (Avellaneda and Paréds 1995).

1.4 Outline

In Section 2 we study the notion of Kullback-Leibler relative entropy in the context of
diffusions which are mutually singular. This section has the purpose of motivating the
constrained stochastic control problem mentioned above.

In Section 3, we present a solution to the stochastic control problem using the Bellman
dynamic programming principle, and characterize the calibrated volatility surface in terms
of partial differential equations.

In Section 4 we present the basic numerical algorithm, which involves solving simultane-
ously a system of M + 1 partial differential equations for the value-function and its gradient
with respect to (A1, ...Ap).

In Section 5, we discuss the qualitative properties of the volatility surface, on the one
hand, and present the calculation of “volatility smiles”, which consist in interpolation of

19This assumes, however, that the spot volatility is observable, which is not the case in practice. Notice
also that the payoff is not discounted by the time-value of money, due to the way the pseudo-entropy is
derived from the Kullback-Leibler entropy distance (see Section 2). We could also choose to discount the
“volatility payoff” at some rate with qualitatively the same results.



the implied volatility data at different maturities. We also analyze the effect of varying the
prior, and how this affects the shape of the smile.

In Section 6 we discuss the stability of the method with respect to perturbations in the
option prices.

The conclusions are presented in Section 7.

Mathematical proofs which are overly technical or otherwise standard are presented in
an Appendix.

2. Minimizing the relative entropy of pricing

measures and the constrained stochastic control problem

2.1 Relative entropy of measures in path-space

Given two probability measures P and () on a common probability space {2, ¥}, the
relative entropy, or Kullback-Leibler distance, of () with respect to P is defined as

£(Q;P) = /ln (%) aQ | (2.1)

where d@Q/dP is the Radon-Nikodym derivative of @) with respect to P. £(Q; P) provides
a measure of the relative “information distance” of () compared to P, where P represents
a Bayesian prior distribution. It is well-known that

(i) EQ:P) =0 < Q =P,

(1i7)  E(Q;P) = oo if @ is not absolutely continuous with respect to P .



Large values of & correspond to a large information distance (so that @) is very different
from the prior P) and & & 0 corresponds to low information distance, i.e. proximity to
the Bayesian prior P.!!

We shall study the relative entropy of no-arbitrage pricing measures for derivative secu-
rities depending on a single underlying index. Accordingly, consider a pair of probability
measures P and @ defined on the set of continuous paths Q@ = {Ss, 0 < 6 < T} such
that

t
and
d
% = O'tQ dZtQ + /JtQ dt , under Q) (2.2b)
t

in the sense of Itd. Here, o®, p® are assumed to be bounded, progressively measurable
processes and Z°* are Brownian motions under the respective probabilities.

The computation of &(Q; P) is straightforward if o = 69 = & with probability 1
under Q. In this case, dQ/dP can be found explicitly using Girsanov’s Theorem and we
have

T Q 2
£(Q:P) = %EQ / (M) dar b (2.3)

Ot

For applications to the calibration of volatility surfaces we should consider situations where
the volatilities of the processes in (2.2) are not equal with probability 1. In this case
the relative entropy is formally equal to 4+o00, due to the fact that P and () are mutually
singular. To overcome this problem we shall consider discrete-time approximations to these
processes and analyze the behavior of the sequence of entropies as the mesh-size tends to
ZeTo.

Consider to this end two probability measures P and () defined on discrete paths

So. S, ... S

where N is some integer. The P-probability that such a path occurs can be written as

1 For background on infomation theory and entropy see Cover and Thomas (1991); Georgescu-Roegen
(1971); McLaughlin (1984); Jaynes (1996).

10



where 7 is the conditional probability given the information set at time n that the price

Sp+1 will occur at date n 4+ 1. An analogous notation will be used for Q. From (2.1) the
relative entropy of () with respect to P is then given by

N—-1
v <0
sl = X (T8 )om| 2
paths \n=0 H ﬂ-?];
n=0
N—-1
[T =%
_ 1@ n=0
= E In| ¥
I =
n=0
N—-1 Q
Tn
n=0 n
N—-1 7TQ
= E© { > (Eg [zn (F—;g)D} : (2.4)
n=0 n

In (2.4), the symbol E€ represents the conditional expectation operator given the infor-
mation set at time n. The last equality states that the relative entropy is obtained by

Q
summing the conditional relative entropies E® {ln <:—§é> } along each path and averaging

with respect to the probability ().

Let us focus on a special class of approximations to the It processes in (2.2) for which the
entropy can be computed explicitly as N — oo. These processes are based on trinomial
trees and are thus well-suited for numerical computation. We assume, specifically, that

Sn_|_1 = Sn Hn_|_1 5 n = 0, 1,

where

11



e Vit with probability Py ,

H,4 1 = 1 , with probability Py ,

e—7 Vit with probability Pp |,

with transition probabilities given by

=/t NoT
Py = 23(1 _Z ) + B2
5 5 9%
Py =1 — p,
p o/ dt A/ dt
P, = 201 _ . 2.
b 2( T ) 2% (2:5)

Here, dt = T/N represents the time-step (measured in years). Notice that the logarithm of
S, follows a random walk on the lattice {1/5\/ dt . v integer } In (2.5), the probabilities
have been arranged so that the instantaneous mean and variance of (n S, are, respectively,
p — (1/2)pa* and p5?, consistently with (2.2). Thus, 4 and 7,/p can be interpreted,
respectively, as the carry (interest-rate differential for FX, interest rate minus dividend
yvield for equities) and the volatility of the index. This model accommodates, by varying

the local value of p, processes with variable volatilities in the range 0 < oy < 7.12

The parameters corresponding to the two probabilities P and () will be denoted by po,
o and p, o respectively. After some computation, we find that!3

)] - i (2) o (50

12This last statement is true only for d¢ small enough so that the probabilities in (2.5) are positive.

Notice that this setup produces approximations to diffusion processes (in which the local volatility depends
on the price and time-to-maturity) as well as more general random-volatility processes. The latter can be
obtained by sampling the volatility from a random distribution.

I3 Notice that the sum of the conditional relative entropies is finite if and only if p = pg . In this case,
the result (2.3) is recovered by replacing the sum of the dé-terms in the right-hand side of (2.6) by an
integral. On the other hand, for p # pg, the total relative entropy diverges as dt — 0.

12



2
L P (L_+ ’“‘°_> dt+ o(dt), dt <1. (2.6)
2 \po Poo

In the sequel, we shall assume for simplicity that the two processes have identical, con-
stant drift, i.e., g = pg, that the Bayesian prior P has a constant volatility given by

2 _ =2
0y — Po0O ,

and that p varies stochastically under ). Defining the instantaneous volatility for the Q-
process at time t,, = ndt by

we conclude from (2.6) that the conditional relative entropy at time ¢, of @) with respect
to P is equal to n (6%(t,)) to leading order in dt, where

0_2 0_2 0_2 52 _ 0_2

Substituting expression (2.7) into (2.4) and taking into account the estimate of equation
(2.6) for the remainder, we conclude that

E(Q; P) = E? {i (n(o*(ta)) + O(dt) ) }

where T = N dt and E¥ represents the expectation operator with respect to the probabil-
ity distribution of the continuous-time process (2.2b). The relevant information-theoretic
quantity for dt < 1 is thus

13



T

%EQ /n(a2(t))dt : (2.8)

0
which represents the relative entropy per unit time-step of () with respect to P.

The notion of entropy per unit time-step is not a property of the Ito processes (2.2), but
rather of the pairs of approximating sequences, (Py, Q). In fact, the function n(c?) =

Q
E% {ln <:—§é>} depends on the discretization used to approximate the pair (P, Q). To

n
illustrate the non-uniqueness of r, we consider, for example, a discrete-time approximation

of (2.2) in which ¢} is constant and O'tQ 1s piecewise constant on time-intervals of length

dt. In this case, the single-period distributions are conditionally Gaussian and

n(az):—%[1n<é>+1—é] : (2.9)

Notice that the function n in (2.7) depends on the lattice constant @. For large values of @

in (2.7), we have
1 o?
77(02) ~ = <02Zn<0—8> — o r 0'3) )

Thus, we may choose to minimize instead the functional (2.8) with

2
77(02) = o%ln <0—2> — o? 4+ 0'3. (2.10)

99

2.2 Stochastic control problem

Due to the non-uniqueness of 7, it is mathematically convenient to develop a framework
for optimization of the functional (2.8) in which 1(o?) belongs to a general class of functions
which includes (2.7), (2.9) and (2.10) as special cases.

Definition. A pseudo-entropy (PE) function n(c*) with prior og is a smooth, real-valued
function defined on 0 < 0* < 400, such that

14



(i) 0 < nle?) < oo,

) o?) is strictly convex
n y )

(ii7)  n(o?) attains the minimum value of zero at o2 = o2 .

The reader can easily check that (2.7), (2.9) and (2.10) are PE functions.'* The simplest
PE function with prior o3 is the quadratic function!®

(62 —a2)" | o> > 0. (2.11)

To model the minimization of the Kullback-Leibler distance in the continuous-time set-
ting, we consider the problem:

Gwen a pseudo-entropy function n,

T
minimize E@ /n<02(3)> ds

0

subject to E@ { e_T"rGi(STi)} =C;, 1=1,...M

among all probability distributions ) of Ité processes of the form

s,

t

= O'tdZt + /,Ldt,

such that oy 1s a progressively measurable process satisfying 0 < omin < 0t < Omar <

400 .

To avoid degeneracies, we assume that there is a unique option per strike/maturity and
that there is at least one strike different from zero.!®

14We note that the function in (2.7) is defined only on the interval 0 < ¢? < 2. To generate a PE
function we can extend it arbitrarily as a convex function for o> > 2.

15This function will be used in numerical computations due to its simplicity. As a rule, the choice of
the PE function does not affect qualitatively the results that will follow.

5Tn particular, we do not consider puts and calls with same strike and maturity, since their prices
should be exactly related by put-call parity in the absence of arbitrage.

15



The constraint imposed on oy,

Omin S 0t S Omax 0 S t S T7 (2]—2)

where 0,5, and 0,4, are positive constants, is made for technical reasons. This assumption
guarantees that the class of diffusions considered in the control problem is closed with
respect to the topology of weak convergence of measures on continuous paths (Billingsley
1968). It is equivalent to the uniform parabolicity of the associated Hamilton-Jacobi-
Bellman equation, a desirable feature for achieving stability of standard finite-difference
schemes. Specifying a-prior: bounds on volatility could also be useful in order to incorporate
beliefs about extreme volatilities.

We view the the optimization problem as a means to achieving a balance between “sub-
jective beliefs”, represented by the prior diffusion

dsS

isAl— oodZy + pdt,

St
and the objective information provided by the market prices C;. Minimization of the relative
entropy implies that the pricing measure deviates as little as possible from the prior, while
incorporating the observed price information. Thus, entropy minimization corresponds,

roughly speaking, to a “minimal” modification of the prior which leads to an arbitrage-free
model. 17

As mentioned in the introduction, the prior plays a significant role in the algorithm.
The prior probability determines the behavior of the transition probabilities far away from
the mean position (where the information contributed by option prices is “weak” bcause
the options have low Gamma). In practice, og should be chosen so that (a) it is near the
implied volatilities corresponding to C1, ...Cyy, e.g. their geometric or arithmetic mean
and (b) it coresponds to the user’s expectations about the implied volatility of very low or
very high strikes. For instance, to adjust the prior to a market with many expiration dates,
one can assume a time-dependent initial prior, oo = 0¢(t), taking into account the forward-
forward volatilities derived from the volatility term-structure. Finally, to incorporate beliefs
about the implied volatility at extreme strikes one could consider a prior of the form
o9 = 09(9, t), with a prescribed behavior for S <« 1 or S > 1.

3. Solution via dynamic programming

We start with an elementary result from convex duality (Rockafellar, 1970).
17While this interpretation is motivated by the calculation of the previous section, it is valid only in an

“asymptotic” sense. Here and in the sequel, we refer to a solution of the stochastic control problem as a
“minimum-entropy measure” irrespective of the choice of the PE function.

16



Let n be a PE function with prior og. For 0 < o045 < 00 < Opmar < 400. Define

(X)) = sup [ X — n(o?) ] . (3.1)

2 2 2
Tmin <o < Tmax

Lemma 1. A. If oppar < + 00, then

(1) @®(X) isconvex in X,

(1v) 7 Omax 48 X — +oo,
O (X
(v) % — o2 as X — —oo,

lim = + o,
02 - 4oo (o2

then ®(X) us conver and differentiable for all X and (i)-(vit) hold with omey = +o0.

We shall refer to ® as the fluz function associated with the pseudo-entropy n and the bounds
Omins Omaz- 1N the rest of this section, we assume that 1, 0., and 0,4, are fixed and
that 0 < omin < Omae < 00.

There exists a one-to-one correspondence between PE functions and flux functions, in
the sense that every flux function satisfying assumptions (i) through (vii) of Lemma 1

corresponds to a PE function. In particular, any monotone-increasing function which

2 2

interpolates between the values o2 . and o2 ,, and takes the intermediate value o3 at

max
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X =0 can be regarded as the derivative ®'(X) of a flux function of a PE function n with
prior volatility og.

Proposition 2.  Given a wvector of real numbers (A1, Ao, ... Anr), let W (S, t)
= W (S, t; A1, Aa, ... Aar) be the solution of the final-value problem

—ri
W, + e”CI><€2 52W55> b uSWs — rW =
— ) NSt -T)Gi(S), S>0t<T, (3.2)
t<1y <T

with final condition W (S, T4+0) = 0.'® Let P represent the class of probability distributions
of admissible Ité processes satisfying (2.12). Then,

T
W(S,t) = sup E? | —ert /n(a?) ds + Z e (=0 g | (3.3)
e’ 1 t< T <T

where EtQ 18 the conditional expectation operator with respect to the information set at time
t and S = Si. Moreover, the supremum in (3.3) is realized by the diffusion process

dS;

— = o (S, t)dZ, + pdt,
St

with

—rt
o?(S,t) = <I>’<€2 S* Wss (S, t))

The final-value problem (3.2) is well-posed because the partial differential equation is uni-
formly parabolic. This follows from the properties of @ listed in Lemma 1. The proof
of this Proposition follows the standard procedure for “verification theorems” in Control

Theory (Krylov (1980); Fleming and Soner (1992)) It is given in Appendix A.

18Subscripts indicate partial derivatives; e.g. W, = OW/8t, etc. W(S, T + 0) represents the value of
W for t infinitesimally larger than T'. This notation is used to be consistent with the way in which the final
conditions corresponding to different option maturities are expressed in (3.2).
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Proposition 3. The function W (S, t; A1, Az, ... \pr) defined in Proposition 2 is continu-
ously differentiable and strictly conver in (A1, Az, ... \ar).

For a proof, see also Appendix A. Differentiating equation (3.2) with respect to A\ we see
that the gradient of W (S, ¢; A1, Az, ... \ys) with respect to the A variables,

ow
Wi = —,
O\
satisfies the partial differential equation
1 —rt
Wi + 5@/ <€2 52W55> Szwiss + MSWiS —rW, = — (S(t—Ti)Gi , (34)
for 1 < ¢ < M, with Wi(S, T +0) = 0. These equations can be interpreted as

pricing equations for the M input options using the diffusion with volatility o2(S, t) =
—rt g2
o’ <e &l I;VSS(S’ t)>. In particular, the model will be calibrated if

A, Ao, A
Wi(S.0) = Ci | or oW (S, 0; 61/\7‘ 2, M) _

This shows that calibration 1s equivalent to minimizing the function
W (S, 0; A1, Az, ... Aar) — >. A €. The next proposition formalizes this and shows that
this choice of volatility solves the stochastic control problem.

Proposition 4.Define

V(S t A Aoy Ay ) = WS A, Ay A ) — Y NG

Suppose that, for fized S, V (S, 0; A\, A2, ... A\pr ) attains a global minimum at the point
(A5, A3, A% ) in RM. Then, the class of probability measures satisfying the price con-
straints and the volatility bounds (2.12) is non-empty and the stochastic control problem
problem admits a unique solution. The solution corresponds to the diffusion process with
volatility




where W is the solution of the final-value problem (8.2) with \; = \!

Proof. To establish (i), observe that

QeP

V (S, 0; A, Aoy oo dar) = sup (a(Q) + ZAibi(Q)> , (3.5)

where

and

bi(Q) = BC{ eI Gi(Sr) ) = Ci , i=1,2..M .

Suppose the function attains a global minimum at some M-tuple (A}, ...A\%, ) and let Q*
denote the unique measure that realizes the sup in (3.5) for these A\-values. (The measure
Q* is unique, by Proposition 2.) The linear function

can be viewed as the graph of a supporting hyper-plane to the graph of V passing through
the minimum. In particular, the smoothness of V' ( a consequence of Proposition 2) implies
that this hyper-plane is tangent to the graph of V and thus that

(av) — W(Q7) = E® { T Gi(Sy) ) - Ci = 0
i) 5 = s

for « = 1... M. The subset of measures of type P which satisfy the price constraints is
therefore non-empty: it contains at least the element Q)*.

Suppose now that Q' is another measure in the class P such that

EY{ e TGiSr) ) = ¢, i=1..M.
Then, b;(Q') = 0, so
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M

a(Q) = a(@) + Y Nh(Q)

=1

IA

sup (a(Q) + > A bi(Q)) )

QEP i=1
= a(Q) .

This establishes that @* has the smallest relative entropy among all measures of type P
satisfying the price constraints.

4. Numerical Implementation

The numerical solution consists in computing the function V' (S, 0; A1, ... Ajr) and search-
ing for its minimum in A-space. For this purpose, we consider a system of PDEs for the
evaluation of this function and its derivatives,

Vi(S, 05 A, oo Apr) = Wi(S,0; Ay oo d) — Ciy 0 <0 <M,
namely,
e—rt
Vi + ertCI)< 5 52V55>—|— pSVeg —rV =
M
= > N (Gi(S) — e Ci) St = T (4.1)

t<T;

1 —rt
Vie + §¢’<€2 52V55> $*Viss+ uSVis — 1V =
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forl < ¢ < M.
Concretely, the algorithm for finding the minimum of V (S, 0; A1, ... Aps) consists in

e rolling back the values of the vector (V, Vi, ... Vi ) to the date t = 0,

e updating the estimate of (A1, ... \as) using the computed value of the gradient with a
gradient-based optimization subroutine,

o repeating the above steps until the minimum is found.
Our numerical method for solving (4.1)-(4.2), uses a finite-difference scheme (trinomial

tree) presented in Section 2.1, with the risk-neutral probabilities in (2.5). We implemented,
for simplicity, the quadratic pseudo-entropy function in (2.11).

The corresponding flux function is

5 X2 4+ ot X, o2 — o5 <X < 0., a5,
(I)(X) = O-Enan - % <U12711n - 03>2 ) X S O-Enin 0'3 )
O-?naxX - % <0-?na1: - 0-3>2 X Z U?nax - 0-3 )
The derivative of ® varies linearly between o2 . and o2 .. It is given by
X + 0-3 ) O-Enin - 0-3 < X < U?nax o 0-3 ’
(I)/(X) = O-Enin ’ X < O-Enin o 0‘3 ’
U?nax ’ X > U?nax - 0-3 :

As a numerical approximation for the “dollar Gamma” %S 2Vss in the lattice, we take

1 J
( 552 Vss> —

4.3
72 dt (4.3)




The partial differential equations are approximated by local “roll-backs” using the prob-
abilities (2.5) with the appropriate choice for the parameter p at each node, dictated by the
value of (4.3). The “local volatility” in the trinomial tree is

(o) = pia*,
so we take

L[ B (e (57 vss),)
T (35 Vis),

in equation (4.1) and

for equation (4.2).

The scheme implemented for this study was explicit Euler with trimming of the tails
after 3.5 standard deviations.'® For the numerical optimization, we used the BFGS algo-

rithm(Byrd et al (1994); Byrd et al (1996); Zhu et al (1994)).

5. The volatility surface

5.1 Spot volatility

We study in more detail the spot volatility surface computed by this algorithm. To
simplify the analysis, we perform a change of variables that eliminates p and r from the

right-hand side of the PDE (38), namely:
V="V, §=e"s.

With these new variables®®, equation (4.1) becomes

1 S?2 Vg M
v, = _ . =iy (& 1Ty _ . _ 7
m-+2¢< ; >_ >oon TGS ) — o s - Ty, ()

T, < t<T

19See Paras (1995) for a proof of consistency of the scheme.
20The new variables correspond to the value of assets measured in dollars at time ¢ = 0.
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with V/(S, T +0) = 0.

Differentiating this equation twice with respect to S and multiplying both sides by %
we obtain an evolution equation for the “dollar-Gamma” of the value function

f _ 52‘755 . e_rtSZVSS
2 N 2 '

Dropping the tildes to simplify notation, the equation thus obtained is

52
o+ 5 (8(D) )gs =
M
— ) N UITis (s — TR ) ot - T (5.2)
T, < t<T
or
S? ,
D+ 5 (¥(0)Ts )s =
M
— Z A e~ r=mTi g <S — e r T K; ) 5(t — Tl) . (53)
T, < t<T

The latter equation clarifies the nature of the volatility surface

o = &' (T) . (5.4)
For instance, if the option prices C; are exactly the Black-Scholes prices with volatility o,
the solution of the stochastic control problem has A} = 0for all s and I' = 0, consistently
with the fact that 02?(S,t) = 02 is the minimum-entropy solution. (In this case no

information is added by considering option prices.) On the other hand, if one or more
option prices are inconsistent with the prior, the Lagrange multipliers are not all zero. Each
non-zero A\, gives rise to a Dirac source in (5.2)-(5.3). The resulting I' profile is initially
singular (it is similar to the Gamma of an option portfolio) and diffuses progressively into
the (9, t)-plane as a smooth function. Instantaneous smoothing of I' is guaranteed by the
bounds on the volatility ®' which follow from (2.12) (c¢f. Lemma 1). Using equation (5.4),
we find that, immediately before time T; and near the strike, 02 is equal to Gy OF Tmaw,
according to the sign of A}. As T; — t increases, the surface becomes smoother and the
constraint opmin < 0y < Oy is non-binding. Generically, each point (K;, T;) gives rise
to a disturbance of the volatility surface, which looks like a “ridge” (A} > 0) or a “trough”
(AF < 0). To complete the picture, note that the disturbances “interact” with each other
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due to the nonlinearity of the equation. The overall topography of the surface is determined
by the relative strengths of the Lagrange multipliers A}, ... \%,.2!

5.2 Implied volatility: interpolating between traded strikes

The main application of the implied volatility surface is to calculate the fair values of
derivative securities which are not among the M input options. An interesting diagnostic for
our algorithm consists in analyzing the implied volatility profiles that can be generated after
calibrating the model to a finite number of option prices. There are two features of interest
here: the shape of the curve between strikes (interpolation) and the shape of the curve for
strikes which are smaller or larger than the ones used for calibration (extrapolation).

A first set of numerical experiments was done using the Dollar /Mark dataset of Appendix
B; cf. Figures 1 and 2. At each of the standard maturities, ranging from 30 days to 270
days, we have 5 traded strikes. After calibrating to the mid-market prices of these options
using the parabolic PE function with prior op = 0.141 (a rough average of the implied
volatilities of traded options), we computed option prices for a sequence of strikes at each
expiration date using a fine mesh. We then computed the corresponding implied volatilities
and generated an “implied smile” for each standard maturity.

The curves are shown in Figure 3.

Notice that the shapes are influenced by the relation between the implied volatilities
and the prior. This market corresponds to an “inverted” volatility term-structure, with
near-term options trading at more than 14% or higher and 270-day options trading at
approximately 13% volatility.

Given our choice of prior (arbitrarily chosen), og is lower than the volatilities of traded
options with short-maturities and higher than the implied volatilities of traded options
with long maturities. The minimum relative-entropy criterion tends to “pull” the implied
volatility curve towards the prior. The “pull-to-prior” effect can be seen in the way the
curve interpolates between strikes. For low priors, the interpolation tends to be a convex
curve while for high priors the interpolated curve tends to be concave.

The “wings” of the implied volatility curves are lower than the (extreme) 20-delta volatil-
ities for short-term options, higher than the 20-delta volatilities for long-term options and
are practically horizontal for the 90-day puts and 60-day calls, that have volatilities ap-
proximately equal to the prior. In all cases, the extreme values of the volatility tend to the
prior volatility, as we expect.

21In numerical calculations, point sources corresponding to small values of A* may not always be
observable, due to the discrete approximation of the Delta functions. Thus, weak point sources may
become “masked” by the I' produced by other options with larger A*.
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This calculation show that, in practice, it may be necessary to consider prior volatilities
that depend on both S and ¢. A more conventional form of the smile could then be achieved
by choosing oy using the term-structure of volatility of at-the-money-forward options for S
between traded strikes and a higher prior to extrapolate beyond traded strikes.

To investigate in more detail the effect of the prior on the interpolation between traded
strikes, we considered a hypothetical market with three traded options, expiring in 30 days,
with strikes equal to 100, 95 and 105 percent of the spot price. We assumed that the implied
volatilities of the options were 14%, 15% and 16%, respectively and that 4 = r = 0. We
calibrated four different volatility surfaces for this dataset, using priors of 11%, 13%, 14%
and 17%. The results are displayed in Figure 4. These calculations confirms our previous
conclusions on the sensitivity of the implied volatility curve to the prior.

COMPUTED SMILE vs. DATA--PRIOR 11 COMPUTED SMILE vs. DATA--PRIOR 13
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FIGURE 4. Effect of varying the prior volatility on the interpolated implied volatility curve
g

(smile). The data consists of 3 options with maturity 30 day and volatilities 14%(strike=100),

15%(strike=95) and 16%(strike=105). Interest rates were taken to be zero.
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6. Convex duality, Lagrange multipliers

and stability analysis

We may visualize the solution of the optimality problem by considering the function

W (S, 05 M, .. Aat)

defined in equation (3.2). This function depends on r, p, I;, T;, 1 = 1, ..M, on the
pseudo-entropy function 7 and on the volatility bounds 0., and 0,,4,. We have established
that 1 is smooth and strictly convex in (A1, ... Apr). Solving the optimization problem
corresponds therefore to finding, for a given a price vector ( C, ... Cjr), the quantity

U(Cy, ...Cy) = inf V(S,0; A\, ...\y)
AL, A
M
= inf | W(S, 0 A, ) — Y NG| (6.1)
Aty Am P
and the Lagrange multipliers. The function U ( C4, ... Cpr ) represents the “maximum en-

tropy per lattice site” of measures in the class P (i.e. Ito processes with drift 1 and volatility
satisfying the a priori volatility bounds) which match market prices. It is the dual of W,
in the sense of convex duality.??

Geometrically, U ( Cq, ...Cyr ) corresponds to the largest value of a for which the hyper-
plane in RM+1!

M
ha My Au) = Y NCi + a
=1

satisfies hg (A1, .. Apr) < W(S,0; Ay, ... A\py) for all (A, ... \ar). Notice that these

hyper-planes are normal to the direction

(C1,...Cary —1) .

Therefore, the stochastic control problem admits a solution if and only if the price vector
(C1, ...Cpr, —1) belongs to the cone of normal directions to the graph of W. If (Cy, ... Cyr)

228trictly speaking, —U is the Legendre dual of W. The functions n and ® are in a similar correspon-
dence, if we redefine n to be +oo for o? outside the interval [ min, Omaz |-
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satisfies this condition, the Lagrange multipliers correspond to points of contact between
of the optimal hyper-plane h, with the graph of W.

It is noteworthy that the cone of normal directions to the graph of W, and hence the
domain of U, is independent of the choice of entropy. In fact, it coincides with the cone
generated by the vectors

{E? [e7" D Gi(ST)], -, B [e77T™ Gy(Sy,)], —1} (6.2)
as () varies in the class P.??

The next proposition is an immediate consequence of the strict convexity of W and
convex duality.

Proposition 5. U(Cy, ...Cy) is a concave function of class CY1 in the interior of its
domain of definition. The Lagrange multipliers A\, ... X}, are differentiable functions of
the price vector and satisfy

N ou oNf B o*U
L ac; oc; aCc; aC;
Moreover,
o*U < the i triz of W
— ———— 1s the inverse matriz of ——— .
oC; 0C; ON; O\

Thus, if (Cy, ..Cyy) varies in a compact subset of the domain of U, the sensitivities

gé@ remain uniformly bounded. We conclude that the functions W (S, ¢t) and Wg(S, t)
are Lipschitz continuous functions of the C;, uniformly in (S5,¢). The same is true for the
second derivative Wsg in any closed region of the (9, t)-plane which excludes the points
(K;, T;), © = 1,...M. At these points, the second derivative of W is singular, because
Giss = 6(S— K;)and hence Wgg(S, T;) = AFé(S— K;). A discontinuity of Wgg (K, T5)
with respect to (Cq, ..Cyr) will occur when the Lagrange multiplier \¥ crosses zero and
Wss changes sign.?* In particular, the volatility surface

o (S, t) = \/q>/ (6‘”52 VQVSS(S, t) )

23The reason for this is that the latter cone is the tangent cone at infinity to the cone of normals to W.
24We note, however, that Wy is Lipschitz continuous in C; as a signed measure.
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is uniformly Lipschitz-continuous as a function of (Cy, ..Cy) for (5, t) bounded away
from the points (K;, T;) , « = 1, ... M. Note, however, that the prices of contingent claims
obtained with this model are continuous in (Cq, .. Cyr), since W depends smoothly on the
Lagrange multipliers and hence on the price vector. The algorithm is therefore stable with
respect to perturbations of the price vector.

The stability of the algorithm deteriorates, however, as the price vector approaches the
boundary of the domain of definition of U, due to the fact that the Lagrange multipliers
increase indefinitely and U tends to —oo as (C1, .. C'yr, —1) approaches the boundary of the
cone (6.2). To increase the stability of numerical computations in these cases, the volatility
band should be widened until the Lagrange multipliers are of order 1.

7. Conclusions

The calibration of a diffusion model to a set of option prices can be cast as a minimax
problem which corresponds to the minimization of the relative entropy distance between
the surface that we wish to find and a Bayesian prior distribution.

The minimax problem can be solved by dynamic programming combined with the min-
imization of a function of M variables, where M is the number of prices that we seek to
match. The evaluation of the function that we wish to minimize and of its gradient is done
by solving a system of M + 1 partial differential equations on a trinomial tree.

The resulting volatility surfaces are essentially the minimal perturbations of the
Bayesian prior that match all option prices. Accordingly, the method allows for construct-
ing a surface that takes into account not only option prices but also the user’s expectations
about volatility (via the prior). Qualitatively, the surface consists of ridges or troughs su-
perimposed on the prior surface, which are sharp near the strike/expiration points (K;, T;)
and diffuse smoothly away from these points. Roughly speaking, the shapes of the distor-
tions are close to the shape of the Gamma-surface of an option.

We have shown that the prices of contingent claims generated by the model vary contin-
uously with the input option prices (Cy,...Cyr). The stability and height of the volatility
surface at the strike/maturity points is controlled by the bounds 0,,;, and o 4s-

Numerical calculations show that the algorithm can be used to interpolate between the
implied volatilities of traded options. The curves obtained in this fashion depend, however,
on the choice of prior distribution. In particular, for extrapolation beyond traded strikes,
prior volatilities that take into account subjective expectations about volatilities conditional
upon extreme market moves should be used. These and other qualitative features of the
algorithm will be studied in future publications.
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Appendix A

A.1 Proof of Proposition 2

Consider the It6 process

@ = ,udt + O'tdZt 5
St

where oy is an adapted random process such that

min max *

By It6’s Lemma, we have

d (e_” W (Sy, t) ) =

e—rt . {WS (St, t) dSt —|— Wt —|— %0’? Stz WSS (St, t) - TW(St, t):| dt } . (A].)

From the inequality
Xo? < d(X) + 77(02) \ (A.2)

which follows from the definition of ®, we have

1 —ri
552WSS'0'2 :ert‘<€2 SZWSS'0-2>

IA

—ri
et CI)<€2 52W55> + e"'nla}) . (A.3)

Substituting this inequality into (A.1) and rearranging terms, we obtain
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d (e "W (S, t))

1
= e_”WSStUtZ dZ, + e "t { W, + 50,52 Stz Wss + pS¢ — TW} dt
S e_rtWS St 0_t2 dZt

—ri

+ et {Wt + e”CI><62 5,¢2W55> + 1St — TW}dt + n(of) dt

= ¢ "' Ws Sy 07:2 dZ; — Z /\ie_rt(s(t — 1) Gi(S) dt + 77(0752) dt
T (A.4)

where we used equation (3.2) to derive the last equality. Integrating with respect to ¢ and
taking the conditional expectation at time ¢, we obtain

EC (7" TW(Sp, T+0)) — e "' W(S,t) <

T
~EC0 Y e TGS - /77(09 ds
1

t<T; <T

or, since ,W(Sp, T +0) = 0,

T

E¢ > e TGSy - e”/ n(o?)ds ¢ < W(S,t). (A.5)
t< T <T 1

This shows that the function W (S,t) is an upper bound on the possible values taken by
the left-hand side of (28) as ) ranges over the family of probabilities P. The calculation

also shows that the inequality becomes equality when the volatility of the It6 process is
chosen to be precisely

o — \/qﬂ(e;”sg Wes (S, t)) (A.6)
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because the inequalities in (A.3) and (A.4) are saturated for this particular o;. Con-
sequently, W is the value function for this control problem and (A.6) characterizes the
measure where the supremum is attained.

A.2 Proof of Proposition 3.

We set

oW oW
— d W, = —— .
amd Wi = 5\ on,

Differentiating equation (3.2) with respect to the variables \;, we obtain

1 —rt
Wit + 5@/<€2 52WS$> S? Wi ss
+ uSWis — rW; = —5(t—Ti)Gi, 1 <@ < M, (A.?)

with W;(S, T +0) = 0, and

—rt

1 e Tt e et
Wiie + 5@/ (TSZ WSS) S*Wijss + 1 St @ (TSZ WSS) WissWjss
+ /JSWUS — TWZ‘]‘ =0 , 1 <0, £ M, (A.S)

with WZ‘]‘(S, T+0) = 0.2°

Equation (A.7) describes the evolution of the gradient of W with respect to A. It is a
Black-Scholes-type equation in which the volatility parameter, depends on S and ¢.

The second equation has a “source term”

e—rt

4

e—rt
St " ( 752 WSS) Wiss Wi ss
25The smoothness of the function ®(X) justifies this formal differentiation procedure.
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and no explicit dependence on the G;’s. To show that W is convex, it is sufficient to verify
that, for all § € RM, we have

H= ) 66W,;>0. (A.9)

But it follows from (A.8) that H satisfies

—ri

2
1 —rt 1 M
Hy + —CI)l<€ 52WS$> 52Hss—|-€ 54<I>”<§52Wss>-<z 9iWiss>
1

2 2 4
+ uSHs — rH =0 (A.10)

with final condition H(S, T) = 0. Due to the convexity of ®, we have

—ri

—ri M 2
64 5%“(%52%5) : (Z GiWi55> > 0. (A.11)
1

Hence, by the Maximum Principle applied to equation (A.10), we conclude that H(S, t) >
0 for all Sandall ¢t < T.

Finally, we show that H(S, t) > 0 to establish strict convexity. For this, it it sufficient
to show that the left-hand side of (A.11) is positive on a subset of the (5, ¢) plane of positive
Lebesgue measure.?® Notice that ®(X) > 0 in a neighborhood of X = 0, which implies

—ri
CI)”<€2 52W55> > 0

in regions of the (S, ¢) plane where ‘52 WSS‘ is sufficiently small. Recalling that the cur-
vature of the payoffs decays as S tends to zero or infinity, we conclude that the latter
inequality is satisfied if S is sufficiently far away from all strikes.

In addition, we note that

M
Z 0; Wiss
1

28 This implies the positivity of H because the fundamental solution of equation (A.10) is strictly positive.
Here we use the fact that ®'(X) > omin > 0.
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cannot vanish on any open subset of the (5, t) plane. Indeed, by the Unique Continuation
Principle, this would imply that it vanishes identically and thus that

M
Z 9, W,

1

is a linear function. This is impossible unless

Zei G,

is linear at each payoff date, which is ruled out by the assumption that there is a single
option per strike and at least one nonzero strike. We conclude that strict inequality holds
in (A.11) for (S, t) in some open set. Thus, W is strictly convex in (A1, ...Apr).
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Appendix B: Dataset for the USD/DEM example

Maturity Type Strike Bid Offer  Mid IVOL
Call  1.5421 0.0064 0.0076 0.0070 14.9
Call  1.5310 0.0086 0.0100 0.0093 14.8
30 days  Call  1.4872 0.0230 0.0238 0.0234 14.0
Put  1.4479 0.0085 0.0098 0.0092 14.2
Put  1.4371 0.0063 0.0074 0.0069 14.4
Call  1.5621 0.0086 0.0102 0.0094 14.4
Call  1.5469 0.0116 0.0135 0.0126 14.5
60 days  Call 1.4866 0.0313 0.0325 0.0319 13.8
Put  1.4312 0.0118 0.0137 0.0128 14.0
Put  1.4178 0.0087 0.0113 0.0100 14.2
Call  1.5764 0.0101 0.0122 0.0112 14.1
Call  1.5580 0.0137 0.0160 0.0149 14.1
90 days  Call 1.4856 0.0370 0.0385 0.0378 13.5
Put  1.4197 0.0141 0.0164 0.0153 13.6
Put  1.4038 0.0104 0.0124 0.0114 13.6
Call ~ 1.6025 0.0129 0.0152 0.0141 13.1
Call  1.5779 0.0175 0.0207 0.0191 13.1
180 days Call  1.4823 0.0494 0.0515 0.0505 13.1
Put  1.3902 0.0200 0.0232 0.0216 13.7
Put  1.3682 0.0147 0.0176 0.0162 13.7
Call  1.6297 0.0156 0.0190 0.0173 13.3
Call  1.5988 0.0211 0.0250 0.0226 13.2
270 days Call  1.4793 0.0586 0.0609 0.0598 13.0
Put  1.3710 0.0234 0.0273 0.0254 13.2
Put  1.3455 0.0173 0.0206 0.0190 13.2

TABLE 1. Dataset used for the calibration example of Figs. 1, 2 and 3. Contemporaneous
USD/DEM option prices (based on bid-ask volatilites and risk-reversals) provided to us by a
marketmaker on August 23, 1995. The options correspond to 20-delta and 25-delta USD/DEM
puts and calls and 50-delta calls. Implied volatility corresponding to mid-market prices for
each option are displayed in the last column. The other market parameters are : spot FX =
1.4885/4890; DEM deposit rate= 4.27%; USD deposit rate= 5.91% .
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