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�� Introduction

��� Deriving a di�usion model from option prices

It is well known that the constant�volatility assumptionmade in the Black�Scholes frame�
work for option pricing is not valid in real markets� For example� S�P � index options
are such that out�of�the money puts have higher implied volatilities than out�of�the money
calls� In the currency options markets� implied volatilities exhibit a �smile� and a �skew�
�in both maturity and strike� whereby at�the�money options trade at lower volatilities than
other strikes� and a premium for puts in one of the two currencies is manifest in the price
of �risk�reversals��� To model the strike� and maturity�dependence of implied volatility�
researchers have proposed using arbitrage�free di�usion models for the underlying index in
which the spot volatility coe�cient is a function of the index level and time� The problem
is then to determine what this volatility �surface� should be� given the observed option
prices�

This paper present a simple� rigorous� method for constructing such an arbitrage�free
di�usion process� The basic idea is to assume an initial Bayesian prior distribution for
the evolution of the index and to modify it to produce a calibrated model such that the
corresponding probability is as close as possible to the prior� For this� we use the concept
of Kullback�Leibler information distance� or relative entropy�

The basic approach is as follows� Let

dSt
St

� �tdZt � �dt �����

represent the process that we wish to determine� Here �t is a random process adapted to
the standard information �ow and � is the risk�neutral drift� which we assume is known� �
The calibration conditions for M traded options can be written as

E�
�
e�rTiGi�STi�

�
� Ci� i � �� �� � � � �M � �����

where r is the interest rate� E���� denotes the expectation with respect to the measure
corresponding to ����� and Gi�STi�� Ci� i � �� �� � � � �M represent� respectively� the payo�s
and prices of the M options that we wish to match�

We will show that minimizing relative entropy is essentially equivalent to minimizing
the functional

�A risk�reversal is a position consisting in being long a call and short a put with symmetric strikes�
�� is the interest rate di�erential 	carry
 in foreign exchange and the interest rate minus the dividend

yield for equity indices� We assume therefore a �risk�adjusted� drift�
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�Z T

�

����s �ds

�
� �����

where ����s� is a strictly convex function which vanishes at the volatility of the prior dis�
tribution�

This constrained stochastic control problem is equivalent to a Lagrange multiplier prob�
lem in which we maximize the augmented objective function

E�

�
�
Z T

�

����s�ds �

MX
i��

�i e
�rTiGi�STi�

�
�

MX
i��

�i Ci� �����

over all adapted volatility processes �t and then minimize the result
over ���� ����M ���

We show that in the absence of arbitrage opportunities the value function V ���� ��� �M �
corresponding to ����� is smooth and strictly convex in �� In particular� it has a unique
minimum� The �rst�order condition at the minimum�

�V

��i
� E�

� �
e�rTiGi�STi�

�� Ci � � i � �� �� � � � �M�

ensures that the model is calibrated to market prices� Hence� in this approach� calibrating
the model to the M option prices is equivalent to �nding the minimum of a convex function
of M variables�

The algorithm for computing V ���� ��� �M � for a given set of Lagrange multipliers con�
sists in solving the Bellman partial di�erential equation corresponding to ����� viz��

Vt �
�

�
er t�

�
e�r t

�
S� VSS

�
� �S VS � r V �

�
MX

t �Ti

�i
�
Gi�STi� � er Ti Ci

�
��t � Ti� �

where � is the Legendre dual of �� This is done numerically for successive choices of
���� ��� �M � until the minimum of

�In practice� we shall restrict our search to volatility processes that satisfy uniform bounds � � �min �

�s � �max� This constraint will typically not be binding except in a neighborhood of points in the 	S� t
�
plane corresponding to each strikeexpiration date�
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V ���� ��� �M � � V �S� � ��� ��� �M �

is reached� The optimal volatility surface is identi�ed as

��t � ��S� t� �

s
��
�
e�rt S� VSS�S� t�

�

�
� �����
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Figure �� Calibrated volatility surface for a set of �� options on Dollar�Deutchemark

	dataset in Appendix B
� The prior in this calculation is �� � ����� The surface consists of
�humps� and �troughs� originating near each strikeexpiration date which are smooth away

from these points� At the strikeexpiration points� the volatility peaks are �min � �� or

�max � ��� Notice that the surface converges to the prior volatility away from the input

strikes�

The volatility function thus obtained is what is traditionally called an �implied �spot�
volatility surface��

A few remarks are in order� First� this approach permits the user to impose his or her
preference ordering via the speci�cation of a Bayesian prior
 the di�usion selected by the
model matchesmarket prices and is also as close as possible to the prior� The speci�cation of
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Figure �� Detail of the volatility surface of Figure � corresponding to the �rst ��� days

after the trading date� Notice that the price information corresponding to maturities after ��

days a�ects the earlier values of the surface at earlier dates� as a trough inherited from the

later maturities appears in the period from �� to ��� days�

a prior distribution is a key feature of the procedure�� Minimizing the relative entropy with
respect to the prior stabilizes the far�tails of the probability distribution for the underlying
index and implies smoothness of the volatility surface ������� The procedure leads to a
simple and numerically stable method for calibrating a pricing model� The small number of
input parameters that need to be adjusted makes it tractable in practice� This is in contrast
to other proposals where ad�hoc adjustments are required to achieve a stable algorithm�

Figures � and � display a calibrated spot volatility surface ��S� t� corresponding to
a dataset corresponding to Dollar�Deutchemark over�the�counter options for the date of
August ��� ����� provided to us by a market�maker� It consisted of �� option prices�
corresponding to �� and ���delta puts and calls and ��delta calls for maturities of �� ��
�� �� and �� days	 � The model was calibrated to mid�market quotes to an accuracy of

�The prior volatility need not be a constant� It can be� for instance� a function of time andor price�
�As we shall see� a unique prescription of the volatility surface far way from traded strikes cannot be

obtained precisely from option prices� The introduction of the Bayesian prior serves as an �extrapolation
mechanism� for characterizing the volatility in regions where the price information is weak� e�g� for strikes
which are deeply away�from�the�money� as well as a mechanism for smoothing the volatility surface�

�A ���delta put is a put with a Black�Scholes delta of ������ etc� This is standard terminology for
over�the�counter currency options�
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��� �in relative terms�� The complete dataset is included in Appendix B�

Generically� the volatility surface corresponding to calibrating to a �nite number of option
prices converges to the prior volatility surface for �S� t� far away from strikes	expiration
dates� Signi�cant variations of the volatility surface occur near strikes	expiration dates�
These distortions are sharp near the strikes	expiration dates and di�use smoothly away
from these points� The peaks near strikes	maturities are caused by the in�nite Gamma of
option payo�s near expiration�
 As we shall see� these �peaks� in the volatility surface do
not a�ect the continuous dependence of the model values on the input prices
 the model
value of any contingent claim with a payo� which is continuous except on a set of Wiener
measure zero is Lipschitz�continuous with respect to the parameters C�� ��� CM �

��� Previous approaches to the �implied tree� problem

To our knowledge� the �rst solution of the implied di�usion problem was proposed
by Breeden and Litzenberger ������� and applied to capital budgeting problems in Banz
and Miller ������� Recently� there have been important contributions by Dupire �������
Shimko ������� Rubinstein ������� Derman and Kani ������� Barle and Kakici ������ and
Chriss ������� among others� This �smooth�and�di�erentiate� approach is based on the
observation that a call option price can be written as

C�K�T � �

Z
e�rT max�ST �K� �p�ST jS��dST � �����

where p�ST jS�� is the conditional probability corresponding to the pricing measure Q as�
sociated with the di�usion driving St� Di�erentiating this equation twice with respect to
K� we obtain

p�K�S�� � erT
��C�K�T �

�K�
�

This suggests a straightforward way to imply the di�usion driving St from option prices�
The discrete set of observed option prices is interpolated onto a smooth surface� giving an
approximating complete set of prices that can then be numerically di�erentiated to compute
the conditional distribution corresponding to the unknown di�usion�

However� since the price of an option is not uniquely determined in an incomplete market
�there is more than one pricing measure�� implicit in this approach is the assumption that
we can �nd an �approximating complete market�� before the computation of the transition

�The volatility surface obtained using our method is smooth in the S�variable if the option payo�s are
regularized prior to implementing the algorithm�
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probabilities� These approaches tend to be unstable since the solution is very sensitive to
the smoothness and convexity of the function used in the interpolation��

In Rubinstein ������� a methodology for constructing an implied binomial tree is de�
scribed� This method is based on an optimization principle that selects a conditional dis�
tribution at some �xed time T that is as close as possible to the distribution corresponding
to a standard CRR tree �Cox�Ross and Rubinstein ������ and that prices a set of options
that expire at time T correctly modulo the bid	ask spread�

Rubinstein�s approach is revisited in Jackwerth and Rubinstein ������� where empirical
results are discussed and a penalty approach is introduced to smooth the estimated con�
ditional probability function� The fact that Rubinstein�s original approach uses only one
expiration date has recently been addressed �Jackwerth ����a� Jackwerth ����b� � The
proposed methodology involves the solution of a large scale optimization problem� with
number of variables roughly equal to the number of nodes in the tree�

We mention also the recent paper of Bodhurta and Jermakian ������ who propose to
compute a volatility surface in the form of a perturbation series� where each term in the
series is computed by solving a partial di�erential equation containing source terms de�
termined by the previous term� The coe�cients in the partial di�erential equations are
computed as they are required by solving a least�squares problem� This approach e�ec�
tively solves a series of linear partial di�erential equations to compute approximate prices
and an approximate volatility surface� with the approximation improving as more terms are
computed�

In Rubinstein ������ a least�squares criterion is used to measure the distance between
two distributions� but the possible bene�ts of using other measures� including the relative
entropy distance� are discussed� Recent work in the one�period setting has suggested that
the relative entropy may be a good choice for such a measure� For example� it is shown
in Stutzer ������ that if we select a distribution that minimizes the relative entropy to
a prior subject to pricing constraints� the resulting distribution is maximally unbiased
and absolutely continuous with respect to the prior� Relative entropy minimization is also
studied in the one�period context in Buchen and Kelly ������ and Gulko ������ ������ The
present paper can be seen as an extension of these ideas to the multi�period setting�

��� Relationship to the Uncertain Volatility Model

	This well�known instability is a consequence of the fact that the problem that we are trying to solve
is ill�posed� This is obvious when we compare it to the problem of numerically di�erentiating a function
when we only have discrete noisy observations� At a more fundamental level we note that if we �x T and
let K vary in 	���
� we obtain a Volterra integral equation for the transition probabilities� Such equations
are known to be ill�posed� and specialized techniques such as regularization� smoothing� �ltering� etc�� are
typically required to solve them 	Tikhonov and Arsenin ����� Banks and Kunish ����� Banks and Lamm
����
�
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In Avellaneda� Levy and Par as ������ the Uncertain Volatility Model �UVM� was intro�
duced for hedging a position in a portfolio of derivative securities by selecting the worst
possible volatility path with respect to this portfolio� This model was combined with a
Lagrange multiplier approach in Avellaneda and Par as ������ in order to minimize the risk
of the worst�case hedge by using options as part of the hedge�

There exists a duality between the problem of �nding the worst�case volatility path and
the problem of implementing a one�sided hedge �that is� one that perfectly protects either
a short or a long position�� This duality and its game�theoretical implications were studied
Samperi ������� where it was shown that the duality applies even when the derivative claim
to be hedged is path�dependent�

The entropy�based approach introduced in this paper can be viewed as an application
of the aforementioned framework to a path�dependent �volatility option�� Speci�cally� con�

sider a contingent claim that pays
R T
�
����s�ds at time T � i�e�� pays ����s � for each �day�

that the spot volatility is di�erent from the prior��� The solution of the stochastic control
problem can then be interpreted as the maximum income that an investor with a long posi�
tion in this claim can earn by hedging his position with the M options� It is worthwhile to
point out that this approach can be used to modify the problem by adding other contingent
claims to the portfolio to be hedged� thus combining the entropy�minimization idea with
the Lagrangian Uncertain Volatility Model �Avellaneda and Par as ������

��	 Outline

In Section � we study the notion of Kullback�Leibler relative entropy in the context of
di�usions which are mutually singular� This section has the purpose of motivating the
constrained stochastic control problem mentioned above�

In Section �� we present a solution to the stochastic control problem using the Bellman
dynamic programming principle� and characterize the calibrated volatility surface in terms
of partial di�erential equations�

In Section � we present the basic numerical algorithm� which involves solving simultane�
ously a system of M�� partial di�erential equations for the value�function and its gradient
with respect to ���� ����M ��

In Section �� we discuss the qualitative properties of the volatility surface� on the one
hand� and present the calculation of �volatility smiles�� which consist in interpolation of

�
This assumes� however� that the spot volatility is observable� which is not the case in practice� Notice
also that the payo� is not discounted by the time�value of money� due to the way the pseudo�entropy is
derived from the Kullback�Leibler entropy distance 	see Section �
� We could also choose to discount the
�volatility payo�� at some rate with qualitatively the same results�
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the implied volatility data at di�erent maturities� We also analyze the e�ect of varying the
prior� and how this a�ects the shape of the smile�

In Section � we discuss the stability of the method with respect to perturbations in the
option prices�

The conclusions are presented in Section ��

Mathematical proofs which are overly technical or otherwise standard are presented in
an Appendix�

�� Minimizing the relative entropy of pricing

measures and the constrained stochastic control problem

��� Relative entropy of measures in path�space

Given two probability measures P and Q on a common probability space f!� " g� the
relative entropy� or Kullback�Leibler distance� of Q with respect to P is de�ned as

E�Q�P � �

Z
�

ln

�
dQ

dP

�
dQ � �����

where dQ	dP is the Radon�Nikodym derivative of Q with respect to P � E�Q�P � provides
a measure of the relative �information distance� of Q compared to P � where P represents
a Bayesian prior distribution� It is well�known that

�i� E�Q�P � �  �

�ii� E�Q�P � �  �� Q � P �

�iii� E�Q�P � � � if Q is not absolutely continuous with respect to P �
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Large values of E correspond to a large information distance �so that Q is very di�erent
from the prior P � and E �  corresponds to low information distance� i�e� proximity to
the Bayesian prior P ���

We shall study the relative entropy of no�arbitrage pricing measures for derivative secu�
rities depending on a single underlying index� Accordingly� consider a pair of probability
measures P and Q de�ned on the set of continuous paths ! � fS� �  � 
 � T g such
that

dSt
St

� �Pt dZP
t � �Pt dt � under P ����a�

and

dSt
St

� �Qt dZQ
t � �Qt dt � under Q ����b�

in the sense of It#o� Here� ��� �� are assumed to be bounded� progressively measurable
processes and Z� are Brownian motions under the respective probabilities�

The computation of E�Q� P � is straightforward if �P � �Q 	 � with probability �
under Q� In this case� dQ	dP can be found explicitly using Girsanov�s Theorem and we
have

E�Q�P � �
�

�
EQ

	

�
Z T

�

�
�Qt � �Pt

�t

�

dt

��
� � �����

For applications to the calibration of volatility surfaces we should consider situations where
the volatilities of the processes in ����� are not equal with probability �� In this case
the relative entropy is formally equal to ��� due to the fact that P and Q are mutually
singular� To overcome this problem we shall consider discrete�time approximations to these
processes and analyze the behavior of the sequence of entropies as the mesh�size tends to
zero�

Consider to this end two probability measures P and Q de�ned on discrete paths

S�� S�� ��� SN �

where N is some integer� The P �probability that such a path occurs can be written as

��For background on infomation theory and entropy see Cover and Thomas 	����
� Georgescu�Roegen
	����
� McLaughlin 	����
� Jaynes 	����
�
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N��Y
n��

�Pn �

where �Pn is the conditional probability given the information set at time n that the price
Sn� will occur at date n � �� An analogous notation will be used for Q� From ����� the
relative entropy of Q with respect to P is then given by

E �Q� P � �
X
paths

�
N��Y
n��

�Qn


� ln

�
BB�

N��Q
n��

�Qn

N��Q
n��

�Pn

�
CCA

� EQ

	��

��� ln

�
BB�

N��Q
n��

�Qn

N��Q
n��

�Pn

�
CCA
����
���

� EQ

�
N��X
n��

ln

�
�Qn
�Pn

��

� EQ

�
N��X
n��

�
EQ
n

�
ln

�
�Qn
�Pn

����
� �����

In ������ the symbol EQn represents the conditional expectation operator given the infor�
mation set at time n� The last equality states that the relative entropy is obtained by

summing the conditional relative entropies EQ
n

h
ln
�
�Qn
�Pn

�i
along each path and averaging

with respect to the probability Q�

Let us focus on a special class of approximations to the It#o processes in ����� for which the
entropy can be computed explicitly as N 
 �� These processes are based on trinomial
trees and are thus well�suited for numerical computation� We assume� speci�cally� that

Sn� � Sn Hn� � n � � �� ���

where

��



Hn� �

	������

�������

e�
p
dt � with probability PU �

� � with probability PM �

e��
p
dt � with probability PD �

with transition probabilities given by

PU �
p

�

�
� � �

p
dt

�


�

�
p
dt

��
�

PM � � � p �

PD �
p

�

�
� �

�
p
dt

�


� �

p
dt

��
� �����

Here� dt � T	N represents the time�step �measured in years�� Notice that the logarithm of

Sn follows a random walk on the lattice
n
� �
p
dt � � integer

o
� In ������ the probabilities

have been arranged so that the instantaneous mean and variance of lnSn are� respectively�
� � ��	�� p �� and p ��� consistently with ������ Thus� � and �

p
p can be interpreted�

respectively� as the carry �interest�rate di�erential for FX� interest rate minus dividend
yield for equities� and the volatility of the index� This model accommodates� by varying
the local value of p� processes with variable volatilities in the range   �t � ����

The parameters corresponding to the two probabilities P and Q will be denoted by p��
�� and p� � respectively� After some computation� we �nd that��

EQn

�
ln

�
�Qn
�Pn

��
� p ln

�
p

p�

�
� ��� p� ln

�
�� p

�� p�

�

��This last statement is true only for dt small enough so that the probabilities in 	���
 are positive�
Notice that this setup produces approximations to di�usion processes 	in which the local volatility depends
on the price and time�to�maturity
 as well as more general random�volatility processes� The latter can be
obtained by sampling the volatility from a random distribution�

��Notice that the sum of the conditional relative entropies is �nite if and only if p � p
 � In this case�
the result 	���
 is recovered by replacing the sum of the dt�terms in the right�hand side of 	���
 by an
integral� On the other hand� for p �� p
� the total relative entropy diverges as dt � ��

��



�
p

�

�
�

p�
�

��
p� �

��

dt� o�dt� � dt � � � �����

In the sequel� we shall assume for simplicity that the two processes have identical� con�
stant drift� i�e�� � � ��� that the Bayesian prior P has a constant volatility given by

��� � p� �
� �

and that p varies stochastically under Q� De�ning the instantaneous volatility for the Q�
process at time tn � ndt by

���tn� � �� p�tn� �

we conclude from ����� that the conditional relative entropy at time tn of Q with respect
to P is equal to �

�
���tn�

�
to leading order in dt� where

�
�
��
� 	 ��

��
ln

�
��

���

�
�

�
� � ��

��

�
ln

�
�� � ��

�� � ���

�
� �����

Substituting expression ����� into ����� and taking into account the estimate of equation
����� for the remainder� we conclude that

E�Q� P � � EQ

�
N��X
n��

�
�����tn�� � O�dt�

� �

�
�

dt
EQ

�
N��X
n��

�����tn�� dt

�
� O���

�
�

dt
EQ

	

�

TZ
�

�����t�� dt

��
� �O���

� N � �
T
EQ

	

�

TZ
�

�����t�� dt

��
� �O���

where T � N dt and EQ represents the expectation operator with respect to the probabil�
ity distribution of the continuous�time process ����b�� The relevant information�theoretic
quantity for dt � � is thus

��



�

T
EQ

	

�

TZ
�

�����t�� dt

��
� � �����

which represents the relative entropy per unit time�step of Q with respect to P �

The notion of entropy per unit time�step is not a property of the Ito processes ������ but
rather of the pairs of approximating sequences� �PN � QN �� In fact� the function ����� �
EQ
n

h
ln
�
�Qn
�Pn

�i
depends on the discretization used to approximate the pair �P� Q�� To

illustrate the non�uniqueness of �� we consider� for example� a discrete�time approximation
of ����� in which �Pt is constant and �Qt is piecewise constant on time�intervals of length
dt� In this case� the single�period distributions are conditionally Gaussian and

�
�
��
�

� ��

�

�
ln

�
��

���

�
� � � ��

���

�
� �����

Notice that the function � in ����� depends on the lattice constant �� For large values of �
in ������ we have

����� � �

��

�
�� ln

�
��

���

�
� �� � ���

�
�

Thus� we may choose to minimize instead the functional ����� with

����� � �� ln

�
��

���

�
� �� � ��� � �����

��� Stochastic control problem

Due to the non�uniqueness of �� it is mathematically convenient to develop a framework
for optimization of the functional ����� in which ����� belongs to a general class of functions
which includes ������ ����� and ����� as special cases�

De
nition� A pseudo�entropy �PE� function ����� with prior �� is a smooth� real�valued
function de�ned on   ��  ��� such that

��



�i�  � �����  � �

�ii� ����� is strictly convex �

�iii� ����� attains the minimum value of zero at �� � ��� �

The reader can easily check that ������ ����� and ����� are PE functions��� The simplest
PE function with prior ��� is the quadratic function��

����� �
�

�

�
�� � ���

��
� �� �  � ������

To model the minimization of the Kullback�Leibler distance in the continuous�time set�
ting� we consider the problem


Given a pseudo�entropy function ��

minimize EQ

	

�

TZ
�

�
�
���s�

�
ds

��
�

subject to EQ
�
e�Ti r Gi �STi �

�
� Ci � i � �� ��� �M

among all probability distributions Q of It�o processes of the form

dSt
St

� �t dZt � �dt �

such that �t is a progressively measurable process satisfying   �min � �t � �max 
�� �

To avoid degeneracies� we assume that there is a unique option per strike	maturity and
that there is at least one strike di�erent from zero���

��We note that the function in 	���
 is de�ned only on the interval � � �� � �� � To generate a PE
function we can extend it arbitrarily as a convex function for �� � �� �

��This function will be used in numerical computations due to its simplicity� As a rule� the choice of
the PE function does not a�ect qualitatively the results that will follow�

��In particular� we do not consider puts and calls with same strike and maturity� since their prices
should be exactly related by put�call parity in the absence of arbitrage�

��



The constraint imposed on �t�

�min � �t � �max �  � t � T � ������

where �min and �max are positive constants� is made for technical reasons� This assumption
guarantees that the class of di�usions considered in the control problem is closed with
respect to the topology of weak convergence of measures on continuous paths �Billingsley
������ It is equivalent to the uniform parabolicity of the associated Hamilton�Jacobi�
Bellman equation� a desirable feature for achieving stability of standard �nite�di�erence
schemes� Specifying a�priori bounds on volatility could also be useful in order to incorporate
beliefs about extreme volatilities�

We view the the optimization problem as a means to achieving a balance between �sub�
jective beliefs�� represented by the prior di�usion

dSt
St

� �� dZt � �dt �

and the objective information provided by the market prices Ci� Minimization of the relative
entropy implies that the pricing measure deviates as little as possible from the prior� while
incorporating the observed price information� Thus� entropy minimization corresponds�
roughly speaking� to a �minimal� modi�cation of the prior which leads to an arbitrage�free
model��	

As mentioned in the introduction� the prior plays a signi�cant role in the algorithm�
The prior probability determines the behavior of the transition probabilities far away from
the mean position �where the information contributed by option prices is �weak� bcause
the options have low Gamma�� In practice� �� should be chosen so that �a� it is near the
implied volatilities corresponding to C�� ��� CM � e�g� their geometric or arithmetic mean
and �b� it coresponds to the user�s expectations about the implied volatility of very low or
very high strikes� For instance� to adjust the prior to a market with many expiration dates�
one can assume a time�dependent initial prior� �� � ���t�� taking into account the forward�
forward volatilities derived from the volatility term�structure� Finally� to incorporate beliefs
about the implied volatility at extreme strikes one could consider a prior of the form
�� � ���S� t�� with a prescribed behavior for S � � or S � ��

�� Solution via dynamic programming

We start with an elementary result from convex duality �Rockafellar� �����

��While this interpretation is motivated by the calculation of the previous section� it is valid only in an
�asymptotic� sense� Here and in the sequel� we refer to a solution of the stochastic control problem as a
�minimum�entropy measure� irrespective of the choice of the PE function�

��



Let � be a PE function with prior ��� For  � �min  ��  �max � ��� De�ne

� �X� � sup
��min � �� � ��max

�
��X � �����

�
� �����

Lemma �� A� If �max  � �� then

�i� � �X� is convex in X �

�ii� � �� �  �

�iii� �� �� � ��� �

�iv�
� �X�

X

 ��max as X 
 �� �

�v�
� �X�

X

 ��min as X 
 �� �

�vi� �� �X� � ��max for X � �����max� �

�vii� �� �X� � ��min for X � �����min� �

B� If �max � ��� and

lim
�� � �

�
�
��
�

��
� � � �

then ��X� is convex and di�erentiable for all X and �i���vii� hold with �max � ���

We shall refer to � as the 	ux function associated with the pseudo�entropy � and the bounds
�min� �max� In the rest of this section� we assume that �� �min and �max are �xed and
that   �min  �max  ��

There exists a one�to�one correspondence between PE functions and �ux functions� in
the sense that every �ux function satisfying assumptions �i� through �vii� of Lemma �
corresponds to a PE function� In particular� any monotone�increasing function which
interpolates between the values ��min and ��max and takes the intermediate value ��� at

��



X �  can be regarded as the derivative ���X� of a �ux function of a PE function � with
prior volatility ���

Proposition �� Given a vector of real numbers � ��� ��� ��� �M �� let W �S� t�
� W �S� t� ��� ��� ��� �M � be the solution of the �nal�value problem

Wt � er t �

�
e�r t

�
S�WSS

�
� �SWS � rW �

�
X

t �Ti �T

�i � �t � Ti� Gi�S� � S � � t � T � �����

with �nal condition W �S� T�� � ��
 Let P represent the class of probability distributions
of admissible It�o processes satisfying �
��
�� Then�

W �S� t� � sup
Q�P

EQt

�
� � er t

TZ
t

�
�
��s
�
ds �

X
t �Ti�T

�i e
��Ti�t� Gi

�
 � �����

where EQ
t is the conditional expectation operator with respect to the information set at time

t and S � St� Moreover� the supremum in ����� is realized by the di�usion process

dSt
St

� � �S� t � dZt � �dt �

with

���S� t� � ��
�
e�r t

�
S�WSS �S� t�

�
�

The �nal�value problem ����� is well�posed because the partial di�erential equation is uni�
formly parabolic� This follows from the properties of � listed in Lemma �� The proof
of this Proposition follows the standard procedure for �veri�cation theorems� in Control
Theory �Krylov ������ Fleming and Soner ������� It is given in Appendix A�

��Subscripts indicate partial derivatives� e�g� Wt � �W��t� etc� W 	S� T � �
 represents the value of
W for t in�nitesimally larger than T � This notation is used to be consistent with the way in which the �nal
conditions corresponding to di�erent option maturities are expressed in 	���
�

��



Proposition �� The function W �S� t� ��� ��� ��� �M � de�ned in Proposition 
 is continu�
ously di�erentiable and strictly convex in ���� ��� ��� �M ��

For a proof� see also Appendix A� Di�erentiating equation ����� with respect to � we see
that the gradient of W �S� t� ��� ��� ��� �M � with respect to the � variables�

Wi �
�W

��i
�

satis�es the partial di�erential equation

Wi t �
�

�
��
�
e�rt

�
S�WSS

�
S�Wi SS � �SWi S � rWi � � ��t � Ti�Gi � �����

for � � i � M � with Wi�S� T � � � � These equations can be interpreted as
pricing equations for the M input options using the di�usion with volatility ���S� t� �

��
�
e�rt S�WSS �S� t�

�

�
� In particular� the model will be calibrated if

Wi�S� � � Ci � or
�W �S� � ��� ��� ��� �M �

��i
� Ci �

This shows that calibration is equivalent to minimizing the function
W �S� � ��� ��� ��� �M � �P

�i Ci� The next proposition formalizes this and shows that
this choice of volatility solves the stochastic control problem�

Proposition 	�De�ne

V �S� t� ��� ��� ��� �M � � W �S� t� ��� ��� ��� �M � �
MX
i��

�i Ci �

Suppose that� for �xed S� V �S� � ��� ��� ��� �M � attains a global minimum at the point
����� �

�
�� ��� �

�
M � in RM � Then� the class of probability measures satisfying the price con�

straints and the volatility bounds �
��
� is non�empty and the stochastic control problem
problem admits a unique solution� The solution corresponds to the di�usion process with
volatility

� �S� t� �

s
��
�
e�r t

�
S�WSS

�
�  � t � T �

��



where W is the solution of the �nal�value problem ���
� with �i � ��i � i � �� ���M �

Proof� To establish �i�� observe that

V �S� � ��� ��� ��� �M � � sup
Q�P

�
a�Q� �

MX
i��

�i bi�Q�


� �����

where

a�Q� � EQ

�
�
Z T

�

����s � ds

�

and

bi�Q� � EQ
�
e�r Ti Gi�STi�

� � Ci � i � �� � ���M �

Suppose the function attains a global minimum at some M�tuple ����� ����
�
M � and let Q�

denote the unique measure that realizes the sup in ����� for these ��values� �The measure
Q� is unique� by Proposition ��� The linear function

a�Q�� �
MX
i��

�i bi�Q
��

can be viewed as the graph of a supporting hyper�plane to the graph of V passing through
the minimum� In particular� the smoothness of V � a consequence of Proposition �� implies
that this hyper�plane is tangent to the graph of V and thus that

�
�V

��i

�
� � ��

� bi�Q
�� � EQ� �

e�r Ti Gi�STi�
� � Ci � 

for i � � ���M � The subset of measures of type P which satisfy the price constraints is
therefore non�empty
 it contains at least the element Q��

Suppose now that Q� is another measure in the class P such that

EQ� �
e�r Ti Gi�STi�

�
� Ci � i � � ���M �

Then� bi�Q�� � � so

��



a�Q�� � a�Q�� �

MX
i��

��i bi�Q
��

� sup
Q�P

�
a�Q� �

MX
i��

��i bi�Q�


�

� a�Q�� �

This establishes that Q� has the smallest relative entropy among all measures of type P
satisfying the price constraints�

	� Numerical Implementation

The numerical solution consists in computing the function V �S� � ��� ��� �M � and search�
ing for its minimum in ��space� For this purpose� we consider a system of PDEs for the
evaluation of this function and its derivatives�

Vi�S� � ��� ��� �M � � Wi�S� � ��� ��� �M � � Ci � i � i � M �

namely�

Vt � er t�

�
e�r t

�
S� VSS

�
� �S VS � r V �

�
MX

t �Ti

�i
�
Gi�STi� � er Ti Ci

�
��t � Ti� � �����

Vi t �
�

�
��
�
e�r t

�
S� VSS

�
S� Vi SS � �S Vi S � r Vi �

��



�
MX

t �Ti

�
Gi�STi� � er Ti Ci

�
��t � Ti� � �����

for � � i � M �

Concretely� the algorithm for �nding the minimum of V �S� � ��� ��� �M � consists in

 rolling back the values of the vector �V� V�� ��� VM � to the date t � �

 updating the estimate of ���� ��� �M � using the computed value of the gradient with a
gradient�based optimization subroutine�

 repeating the above steps until the minimum is found�

Our numerical method for solving ������������ uses a �nite�di�erence scheme �trinomial
tree� presented in Section ���� with the risk�neutral probabilities in ������ We implemented�
for simplicity� the quadratic pseudo�entropy function in �������

The corresponding �ux function is

��X� �

	�����

������

�
�
�X� � ��� X � ��min � ���  X  ��max � ��� �

��minX � �
�

�
��min � ���

��
� X � ��min � ��� �

��maxX � �
�

�
��max � ���

��
X � ��max � ��� �

The derivative of � varies linearly between ��min and ��max� It is given by

���X� �

	�����

������

X � ��� � ��min � ��� � X � ��max � ��� �

��min � X � ��min � ��� �

��max � X � ��max � ��� �

As a numerical approximation for the �dollar Gamma� �
�
S� VSS in the lattice� we take

�
�

�
S� VSS

�j
n

�


�

�� dt

��
� � �

p
dt

�


� V j�

n �

�
� �

�
p
dt

�


� V j��

n � �V j
n

�
� �����

��



The partial di�erential equations are approximated by local �roll�backs� using the prob�
abilities ����� with the appropriate choice for the parameter p at each node� dictated by the
value of ������ The �local volatility� in the trinomial tree is

�
�jn
��

� pjn �
� �

so we take

pjn �
�

��

�
� �

�
e�r t

�
�
�
S� VSS

�j
n

�
e�r t

�
�
�
S� VSS

�j
n

�
 

in equation ����� and

pjn �
�

��
��
�
e�r t

�
�

�
S� Vi�SS

�j
n



for equation ������

The scheme implemented for this study was explicit Euler with trimming of the tails
after ��� standard deviations��� For the numerical optimization� we used the BFGS algo�
rithm�Byrd et al ������� Byrd et al ������� Zhu et al ��������

�� The volatility surface

��� Spot volatility

We study in more detail the spot volatility surface computed by this algorithm� To
simplify the analysis� we perform a change of variables that eliminates � and r from the
right�hand side of the PDE ����� namely


$V � e�r t V � $S � e�� t S �

With these new variables��� equation ����� becomes

$Vt �
�

�
�

�
$S� $VSS

�


� �

MX
Ti � t�T

�i

h
e�r Ti Gi� $S e

�Ti� � Ci

i
��t � Ti� � �����

�	See Par�as 	����
 for a proof of consistency of the scheme�
�
The new variables correspond to the value of assets measured in dollars at time t � ��

��



with $V �S� T � � � �

Di�erentiating this equation twice with respect to $S and multiplying both sides by
�S�

�
we obtain an evolution equation for the �dollar�Gamma� of the value function

$% �
$S� $V�S �S

�
�

e�r t S� VSS
�

�

Dropping the tildes to simplify notation� the equation thus obtained is

%t �
S�

�
� ��%� �SS �

�
MX

Ti � t�T

�i e
��r���Ti �

�
S � e��Ti Ki

�
��t � Ti� � �����

or

%t �
S�

�
� ���%� %S �S �

�
MX

Ti � t�T

�i e
��r���Ti �

�
S � e��Ti Ki

�
��t � Ti� � �����

The latter equation clari�es the nature of the volatility surface

�� � �� �%� � �����

For instance� if the option prices Ci are exactly the Black�Scholes prices with volatility ���
the solution of the stochastic control problem has ��i �  for all i and % � � consistently
with the fact that ���S� t� � ��� is the minimum�entropy solution� �In this case no
information is added by considering option prices�� On the other hand� if one or more
option prices are inconsistent with the prior� the Lagrange multipliers are not all zero� Each
non�zero ��i � gives rise to a Dirac source in ������������ The resulting % pro�le is initially
singular �it is similar to the Gamma of an option portfolio� and di�uses progressively into
the �S� t��plane as a smooth function� Instantaneous smoothing of % is guaranteed by the
bounds on the volatility �� which follow from ������ �cf� Lemma ��� Using equation ������
we �nd that� immediately before time Ti and near the strike� �� is equal to �min or �max�
according to the sign of ��i � As Ti � t increases� the surface becomes smoother and the
constraint �min � �t � �max is non�binding� Generically� each point �Ki� Ti� gives rise
to a disturbance of the volatility surface� which looks like a �ridge� ���i � � or a �trough�
���i  �� To complete the picture� note that the disturbances �interact� with each other

��



due to the nonlinearity of the equation� The overall topography of the surface is determined
by the relative strengths of the Lagrange multipliers ���� ��� �

�
M ���

��� Implied volatility� interpolating between traded strikes

The main application of the implied volatility surface is to calculate the fair values of
derivative securities which are not among theM input options� An interesting diagnostic for
our algorithm consists in analyzing the implied volatility pro�les that can be generated after
calibrating the model to a �nite number of option prices� There are two features of interest
here
 the shape of the curve between strikes �interpolation� and the shape of the curve for
strikes which are smaller or larger than the ones used for calibration �extrapolation��

A �rst set of numerical experiments was done using the Dollar	Mark dataset of Appendix
B� cf� Figures � and �� At each of the standard maturities� ranging from � days to ��
days� we have � traded strikes� After calibrating to the mid�market prices of these options
using the parabolic PE function with prior �� � ���� �a rough average of the implied
volatilities of traded options�� we computed option prices for a sequence of strikes at each
expiration date using a �ne mesh� We then computed the corresponding implied volatilities
and generated an �implied smile� for each standard maturity�

The curves are shown in Figure ��

Notice that the shapes are in�uenced by the relation between the implied volatilities
and the prior� This market corresponds to an �inverted� volatility term�structure� with
near�term options trading at more than ��& or higher and ���day options trading at
approximately ��& volatility�

Given our choice of prior �arbitrarily chosen�� �� is lower than the volatilities of traded
options with short�maturities and higher than the implied volatilities of traded options
with long maturities� The minimum relative�entropy criterion tends to �pull� the implied
volatility curve towards the prior� The �pull�to�prior� e�ect can be seen in the way the
curve interpolates between strikes� For low priors� the interpolation tends to be a convex
curve while for high priors the interpolated curve tends to be concave�

The �wings� of the implied volatility curves are lower than the �extreme� ��delta volatil�
ities for short�term options� higher than the ��delta volatilities for long�term options and
are practically horizontal for the ��day puts and ��day calls� that have volatilities ap�
proximately equal to the prior� In all cases� the extreme values of the volatility tend to the
prior volatility� as we expect�

��In numerical calculations� point sources corresponding to small values of �� may not always be
observable� due to the discrete approximation of the Delta functions� Thus� weak point sources may
become �masked� by the � produced by other options with larger ���

��
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Figure �� Implied volatility curves at di�erent expiration dates computed using a

constant prior of ������ The data is given in Appendix B�
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This calculation show that� in practice� it may be necessary to consider prior volatilities
that depend on both S and t� A more conventional form of the smile could then be achieved
by choosing �� using the term�structure of volatility of at�the�money�forward options for S
between traded strikes and a higher prior to extrapolate beyond traded strikes�

To investigate in more detail the e�ect of the prior on the interpolation between traded
strikes� we considered a hypothetical market with three traded options� expiring in � days�
with strikes equal to �� �� and �� percent of the spot price� We assumed that the implied
volatilities of the options were ��&� ��& and ��&� respectively and that � � r � � We
calibrated four di�erent volatility surfaces for this dataset� using priors of ��&� ��&� ��&
and ��&� The results are displayed in Figure �� These calculations con�rms our previous
conclusions on the sensitivity of the implied volatility curve to the prior�
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Figure �� E�ect of varying the prior volatility on the interpolated implied volatility curve

	smile
� The data consists of � options with maturity �� day and volatilities ���	strike����
�

���	strike���
 and ���	strike����
� Interest rates were taken to be zero�
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� Convex duality� Lagrange multipliers

and stability analysis

We may visualize the solution of the optimality problem by considering the function

W �S� � ��� ��� �M � �

de�ned in equation ������ This function depends on r� �� Ki� Ti� i � �� ���M � on the
pseudo�entropy function � and on the volatility bounds �min and �max� We have established
that W is smooth and strictly convex in ���� ��� �M �� Solving the optimization problem
corresponds therefore to �nding� for a given a price vector �C�� ��� CM �� the quantity

U �C�� ��� CM � 	 inf
��� ��� �M

V �S� � ��� ��� �M �

� inf
��� ��� �M

�
W �S� � ��� ��� �M � �

MX
i��

�i Ci

�
� �����

and the Lagrange multipliers� The function U �C�� ��� CM � represents the �maximum en�
tropy per lattice site� of measures in the class P �i�e� Ito processes with drift � and volatility
satisfying the a priori volatility bounds� which match market prices� It is the dual of W �
in the sense of convex duality���

Geometrically� U �C�� ��� CM � corresponds to the largest value of a for which the hyper�
plane in RM�

ha ���� ��� �M � �
MX
i��

�i Ci � a

satis�es ha ���� ��� �M � � W �S� � ��� ��� �M � for all ���� ��� �M �� Notice that these
hyper�planes are normal to the direction

�C�� ��� CM � ��� �

Therefore� the stochastic control problem admits a solution if and only if the price vector
�C�� ��� CM � ��� belongs to the cone of normal directions to the graph of W � If �C�� ��� CM �

��Strictly speaking� �U is the Legendre dual of W � The functions 	 and � are in a similar correspon�
dence� if we rede�ne 	 to be �� for �� outside the interval ��min� �max ��

��



satis�es this condition� the Lagrange multipliers correspond to points of contact between
of the optimal hyper�plane ha with the graph of W �

It is noteworthy that the cone of normal directions to the graph of W � and hence the
domain of U � is independent of the choice of entropy� In fact� it coincides with the cone
generated by the vectors

�
EQ

�
e�r T� G��ST��

�
� ��� � EQ

�
e�r TM G��STM �

�
� �� � �����

as Q varies in the class P���

The next proposition is an immediate consequence of the strict convexity of W and
convex duality�

Proposition �� U�C�� ��� CM� is a concave function of class C��� in the interior of its
domain of de�nition� The Lagrange multipliers ���� ��� �

�
M are di�erentiable functions of

the price vector and satisfy

��i � � �U

�Ci
�

���i
�Cj

� � ��U

�Ci �Cj
�

Moreover�

� ��U

�Ci �Cj
is the inverse matrix of

��W

��i ��j
�

Thus� if �C�� �� CM � varies in a compact subset of the domain of U � the sensitivities
	��i
	Cj

remain uniformly bounded� We conclude that the functions W �S� t� and WS�S� t�

are Lipschitz continuous functions of the Ci� uniformly in �S� t�� The same is true for the
second derivative WSS in any closed region of the �S� t��plane which excludes the points
�Ki� Ti� � i � �� ���M � At these points� the second derivative of W is singular� because
Gi�SS � ��S�Ki� and henceWSS �S� Ti� � ��i ��S�Ki�� A discontinuity ofWSS�Ki� Ti�
with respect to �C�� �� CM � will occur when the Lagrange multiplier ��i crosses zero and
WSS changes sign��� In particular� the volatility surface

� �S� t� �

s
��
�
e�r t S�WSS�S� t�

�

�

��The reason for this is that the latter cone is the tangent cone at in�nity to the cone of normals to W �
��We note� however� that WSS is Lipschitz continuous in Ci as a signed measure�

��



is uniformly Lipschitz�continuous as a function of �C�� �� CM � for �S� t� bounded away
from the points �Ki� Ti� � i � �� ���M � Note� however� that the prices of contingent claims
obtained with this model are continuous in �C�� �� CM �� since W depends smoothly on the
Lagrange multipliers and hence on the price vector� The algorithm is therefore stable with
respect to perturbations of the price vector�

The stability of the algorithm deteriorates� however� as the price vector approaches the
boundary of the domain of de�nition of U � due to the fact that the Lagrange multipliers
increase inde�nitely and U tends to �� as �C�� �� CM ���� approaches the boundary of the
cone ������ To increase the stability of numerical computations in these cases� the volatility
band should be widened until the Lagrange multipliers are of order ��

�� Conclusions

The calibration of a di�usion model to a set of option prices can be cast as a minimax
problem which corresponds to the minimization of the relative entropy distance between
the surface that we wish to �nd and a Bayesian prior distribution�

The minimax problem can be solved by dynamic programming combined with the min�
imization of a function of M variables� where M is the number of prices that we seek to
match� The evaluation of the function that we wish to minimize and of its gradient is done
by solving a system of M � � partial di�erential equations on a trinomial tree�

The resulting volatility surfaces are essentially the minimal perturbations of the
Bayesian prior that match all option prices� Accordingly� the method allows for construct�
ing a surface that takes into account not only option prices but also the user�s expectations
about volatility �via the prior�� Qualitatively� the surface consists of ridges or troughs su�
perimposed on the prior surface� which are sharp near the strike	expiration points �Ki� Ti�
and di�use smoothly away from these points� Roughly speaking� the shapes of the distor�
tions are close to the shape of the Gamma�surface of an option�

We have shown that the prices of contingent claims generated by the model vary contin�
uously with the input option prices �C� � ��� CM �� The stability and height of the volatility
surface at the strike	maturity points is controlled by the bounds �min and �max�

Numerical calculations show that the algorithm can be used to interpolate between the
implied volatilities of traded options� The curves obtained in this fashion depend� however�
on the choice of prior distribution� In particular� for extrapolation beyond traded strikes�
prior volatilities that take into account subjective expectations about volatilities conditional
upon extreme market moves should be used� These and other qualitative features of the
algorithm will be studied in future publications�

��
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Appendix A

A�� Proof of Proposition �

Consider the It#o process

dSt
St

� �dt� �tdZt �

where �t is an adapted random process such that

��min � �� � ��max �

By It#o�s Lemma� we have

d
�
e�r t W �St� t�

�
�

e�r t �
!
WS �St� t� dSt �

�
Wt �

�

�
��t S

�
t WSS �St� t� � rW �St� t�

�
dt

"
� �A���

From the inequality

X �� � ��X� � ����� � �A���

which follows from the de�nition of �� we have

�

�
S�WSS � �� � er t �

�
e�r t

�
S�WSS � ��

�

� er t � �
�
e�r t

�
S�WSS

�
� er t ����t � � �A���

Substituting this inequality into �A��� and rearranging terms� we obtain

��



d
�
e�r t W �St� t�

�

� e�r tWS St �
�
t dZt � e�r t

!
Wt �

�

�
��t S

�
t WSS � �St � rW

"
dt

� e�r tWS St �
�
t dZt

� e�r t
!
Wt � er t �

�
e�r t

�
S�
t WSS

�
� �St � rW

"
dt � �

�
��t
�
dt

� e�r tWS St �
�
t dZt �

X
t �Ti�T

�i e
�r t � �t � Ti� Gi�St� dt � �

�
��t
�
dt �

�A���

where we used equation ����� to derive the last equality� Integrating with respect to t and
taking the conditional expectation at time t� we obtain

EQ
t

�
e�r T W �ST � T � �

� � e�r tW �S� t� �

� EQ

	

�

X
t �Ti�T

�i e
�r Ti Gi�STi� �

TZ
t

�
�
��s
�
ds

��
�

or� since �W �ST � T � � � �

EQ

	

�

X
t �Ti�T

�i e
�r �Ti� t�Gi�STi� � er t

TZ
t

�
�
��s
�
ds

��
� � W �S� t� � �A���

This shows that the function W �S� t� is an upper bound on the possible values taken by
the left�hand side of ���� as Q ranges over the family of probabilities P� The calculation
also shows that the inequality becomes equality when the volatility of the It#o process is
chosen to be precisely

�t �

s
��
�
e�r t

�
S�
t WSS �St� t�

�
�A���

��



because the inequalities in �A��� and �A��� are saturated for this particular �t� Con�
sequently� W is the value function for this control problem and �A��� characterizes the
measure where the supremum is attained�

A�� Proof of Proposition ��

We set

Wi �
�W

��i
and Wij �

��W

��i ��j
�

Di�erentiating equation ����� with respect to the variables �i� we obtain

Wi t �
�

�
��
�
e�rt

�
S�WSS

�
S�Wi SS

� �SWi S � rWi � � ��t� Ti�Gi � � � i � M � �A���

with Wi�S� T � � � � and

Wij t �
�

�
��
�
e�rt

�
S�WSS

�
S�Wij SS �

e�rt

�
S����

�
e�rt

�
S�WSS

�
Wi SSWj SS

� �SWij S � r Wij �  � � � i� j � M � �A���

with Wij �S� T � � � ���

Equation �A��� describes the evolution of the gradient of W with respect to �� It is a
Black�Scholes�type equation in which the volatility parameter� depends on S and t�

The second equation has a �source term�

e�r t

�
S����

�
e�r t

�
S�WSS

�
Wi SSWj SS

��The smoothness of the function �	X
 justi�es this formal di�erentiation procedure�

��



and no explicit dependence on the Gi�s� To show that W is convex� it is su�cient to verify
that� for all 
 � RM � we have

H �
MX

i��� j��


i 
j Wij �  � �A���

But it follows from �A��� that H satis�es

Ht �
�

�
��
�
e�r t

�
S�WSS

�
S�HSS �

e�r t

�
S����

�
�

�
S�WSS

�
�
�

MX
�


iWi SS

�

� �S HS � r H �  �A���

with �nal condition H�S� T � � � Due to the convexity of �� we have

e�r t

�
S����

�
e�r t

�
S�WSS

�
�
�

MX
�


iWi SS

�

�  � �A����

Hence� by the Maximum Principle applied to equation �A���� we conclude that H�S� t� �
 for all S and all t  T �

Finally� we show that H�S� t� �  to establish strict convexity� For this� it it su�cient
to show that the left�hand side of �A���� is positive on a subset of the �S� t� plane of positive
Lebesgue measure��� Notice that ����X� �  in a neighborhood of X � � which implies

���
�
e�r t

�
S�WSS

�
� 

in regions of the �S� t� plane where
##S�WSS

## is su�ciently small� Recalling that the cur�
vature of the payo�s decays as S tends to zero or in�nity� we conclude that the latter
inequality is satis�ed if S is su�ciently far away from all strikes�

In addition� we note that

MX
�


iWi SS

��This implies the positivity ofH because the fundamental solution of equation 	A���
 is strictly positive�
Here we use the fact that ��	X
 � �min � ��

��



cannot vanish on any open subset of the �S� t� plane� Indeed� by the Unique Continuation
Principle� this would imply that it vanishes identically and thus that

MX
�


iWi

is a linear function� This is impossible unless

X

iGi

is linear at each payo� date� which is ruled out by the assumption that there is a single
option per strike and at least one nonzero strike� We conclude that strict inequality holds
in �A���� for �S� t� in some open set� Thus� W is strictly convex in ���� ����M��
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Appendix B� Dataset for the USD�DEM example

Maturity Type Strike Bid O�er Mid IVOL

Call ������ ������ ����	� ����	� ���


Call ������ ������ ������ ����
� ����

�� days Call ����	� ������ ������ ������ ����

Put ����	
 ������ ����
� ����
� ����

Put ����	� ������ ����	� �����
 ����

Call ������ ������ ������ ����
� ����

Call �����
 ������ ������ ������ ����

�� days Call ������ ������ ������ �����
 ����

Put ������ ������ �����	 ������ ����

Put ����	� �����	 ������ ������ ����

Call ���	�� ������ ������ ������ ����

Call ������ �����	 ������ �����
 ����


� days Call ������ ����	� ������ ����	� ����

Put ����
	 ������ ������ ������ ����

Put ������ ������ ������ ������ ����

Call ������ �����
 ������ ������ ����

Call ���		
 ����	� �����	 ����
� ����

��� days Call ������ ����
� ������ ������ ����

Put ���
�� ������ ������ ������ ���	

Put ������ �����	 ����	� ������ ���	

Call ����
	 ������ ����
� ����	� ����

Call ���
�� ������ ������ ������ ����

�	� days Call ���	
� ������ �����
 ����
� ����

Put ���	�� ������ ����	� ������ ����

Put ������ ����	� ������ ����
� ����

Table �� Dataset used for the calibration example of Figs� �� � and �� Contemporaneous

USDDEM option prices 	based on bid�ask volatilites and risk�reversals
 provided to us by a

marketmaker on August ��� ����� The options correspond to ���delta and ���delta USDDEM

puts and calls and ���delta calls� Implied volatility corresponding to mid�market prices for

each option are displayed in the last column� The other market parameters are � spot FX �

����������� DEM deposit rate� ������ USD deposit rate� ����� �

��


