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Abstract

In this paper we consider the range of prices consistent with no arbitrage for

European options in a general stochastic volatility model� We give conditions under

which the in�mum and the supremum of the possible option prices are equal to the

intrinsic value of the option and to the current price of the stock respectively and

show that these conditions are satis�ed in most of the stochastic volatility models

from the �nancial literature� We also discuss properties of Black�Scholes hedging

strategies in stochastic volatility models where the volatility is bounded�

Keywords� Stochastic Volatility� Option Pricing� Incomplete Markets� Superrepli�

cation�

� Introduction

A signi�cant part of the recent research in �nance has concentrated on building models

for asset price �uctuations that are �exible enough to cope with the known empirical

de�ciencies of the geometric Brownian motion model of Black and Scholes� In particular�

there is a growing literature on stochastic volatility models �SV�models� including Hull

and White ��	
��� Hofmann� Platen� and Schweizer ��		��� Heston ��		
� or the survey

articles Ball and Roma ��		�� or Frey ��		��� In this class of models the volatility is

�We would like to thank Freddy Delbaen� N� Touzi and H� Pham for helpful remarks and interesting

discussions� We also thank the anonymous referees for their suggestions� Financial support from the

Union Bank of Switzerland �UBS� is gratefully acknowledged�
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modelled by a stochastic process which is not adapted to the �ltration generated by the

Brownian motion driving the asset price process� SV�models are able to capture the

succession of periods with high and low activity we observe in most �nancial time series�

However� this increase in realism leads to new conceptual problems in the pricing and

hedging of derivatives� It is well�known that SV�models are incomplete� i�e� one can no

longer perfectly replicate the payo� of a typical derivative by a dynamic trading strategy

in the stock and some riskless asset� By the second fundamental theorem of asset pricing

this is equivalent to the fact that the model admits many equivalent martingale measures�

Hence for typical derivatives such as options there are many prices consistent with absence

of arbitrage��

In this paper we determine for a large class of SV�models the supremum and the

in�mum of the set of possible option prices� i�e� the supremum and the in�mum of the

expected value of the terminal payo� of an option under all equivalent martingale mea�

sures� Obviously in an arbitrage�free market a call option is always worth less than the

underlying security� On the other hand we know from Merton�s theorem on the equiva�

lence of European and American call options that the price of a European call option on

some non�dividend paying asset must exceed the intrinsic value� For a general SV�model

we give conditions on the distribution of the average volatility which are equivalent to

supremum and in�mum of the set of option prices being equal to these extreme values�

Here our arguments rely strongly on the observation that in a SV�model the asset price

process can be represented as a time�changed Brownian motion� In the second part of

the paper we show that these conditions are satis�ed for a large class of SV�models in

which volatility is modelled as a one�dimensional di�usion� This class contains most of

the models that have been considered in the �nancial literature including Wiggins ��	
���

Hull and White ��	
��� Heston ��		
� and Renault and Touzi ��		���

These �ndings are of importance for the hedging of options in the context of SV�

models� It is easily seen that the minimum initial value of a self��nancing strategy

that super�replicates the payo� of a derivative is no smaller than the supremum of the

expected value of the terminal payo� under all equivalent martingale measures�� our

�Of course the market may still be complete� if there are other options on the underlying asset with

di�erent strike traded in the market� A detailed analysis of market completion by the introduction of

options is carried out in Bajeuz and Rochet �������
�A deep result from mathematical 	nance shows that for derivatives with payo� bounded below these

two quantities are actually equal� see e�g� Delbaen ����
�� El Karoui and Quenez ������� or Kramkov

�������
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results therefore show that for a large class of SV�models with unbounded volatility

there is no nontrivial super�replicating strategy for options� Similarly� our results on

the in�mum of the set of feasible option prices show that for most SV�models there

is no nontrivial sub�replicating strategy either� Hence in most popular SV�models the

concept of super� or sub�replication does not lead to satisfactory answers for the pricing

and hedging of derivative securities� Consequently interesting approaches to the risk

management of derivatives in these models must involve some sort of risk�sharing between

buyer and seller� in particular the seller must necessarily bear some of the �unhedgeable�

volatility risk�

The picture changes� if we study models where the volatility is assumed to be bounded

from above by some constant �max� As shown by El Karoui� Jeanblanc�Picqu�e� and

Shreve ��		
�� in all such models the use of a Black�Scholes strategy corresponding to

the constant volatility �max induces a superreplicating strategy� see also Avellaneda� Levy�

and Paras ��		�� or Lyons ��		�� for related results� From an economic viewpoint this

approach appears to be somewhat problematic as this �universal� superhedging strategy

neglects the particular form of the volatility dynamics in a given SV�model� Adding to

the existing literature we provide some justi�cation for the use of this strategy and show

that for a wide class of SV�models where the volatility follows a bounded di�usion process

this strategy is actually the cheapest superhedging strategy for European options�

Related results have been obtained by a number of authors in various contexts� Eber�

lein and Jacod ��		�� showed the absence of non�trivial bounds on option prices in a

model where the logarithm of the asset price process is a purely discontinuous Levy pro�

cess with unbounded jumps� Frey ��		�� observed that nontrivial bounds on option prices

do not exist in the well�known SV�model of Hull and White ��	
��� Finally� Cvitanic�

Pham� and Touzi ��		�� have independently obtained results which are very similar to

ours� They study the supremum of the set of all arbitrage prices for non�path�dependent

derivatives whose payo� satis�es certain regularity conditions� They are working in a SV�

model where the stock price and the volatility are given by a two�dimensional di�usion

process� Under regularity assumptions they are able to characterize the supremum of the

set of all arbitrage prices as a viscosity super�solution of the Bellman equation associ�

ated to the in�nitesimal generator of this two�dimensional di�usion process� From this

characterization they deduce that this supremum is independent of the current volatility

level� decreasing over time and concave in the current stock price� They conclude that

the supremum is given by the smallest concave majorant of the terminal payo�� If the






payo� is convex this is precisely our result�

Cvitanic� Pham and Touzi are able to handle non�convex payo� functions which are

not considered in the present paper� and they also deal with the problem of super�

replication under convex portfolio constraints� On the other hand there analysis is re�

stricted to models where asset price and volatility follow a two�dimensional di�usion

process whereas our general results cover also models with more general volatility dy�

namics such as the model proposed by Naik ��		
�� Moreover� in order to obtain their

viscosity super�solution characterization they have to impose relatively strong regularity

conditions on the terminal payo� and on the coe�cients of the SDE for the asset price

process� This excludes for instance the popular square root model of Heston ��		
� which

is covered by our results�

The remainder of the paper is organized as follows� Section � gives a general char�

acterization of the case when the supremum and in�mum of the range of option prices

are equal to their extreme values� In Section 
 we verify this criterion in the special case

where the volatility follows a one�dimensional di�usion process� Section � deals with the

case of bounded volatility� Section � is the conclusion�

� The General Criterion

Throughout our analysis we consider a frictionless �nancial market where securities are

traded continuously� including a risky asset called the stock and a riskless money market

account� We use the money market account as a numeraire thereby making interest rates

implicit to our model� The stock price process is given by a locally bounded nonnegative

semimartingale S de�ned on some �ltered probability space ���F � �Ft�� P � with �Ft�

satisfying the usual conditions� In this paper we are mainly interested in the case where

the evolution of the stock price is described by some stochastic volatility model �SV�

model�� In this class of models it is assumed that �Ft� is rich enough to support a Wiener

process Bt and that St is a solution to the equation

dSt � St�tdBt � St�tdt � S� � x�����

for suitably integrable adapted processes �t and �t�

Fix a time horizon T ��� The following two sets of probability measures Q equiva�
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lent to P on ���FT � will be very important�

Me �� fQ jQ � P and S is a Q�local martingale g

Q �� fQ jQ � P and S is a Q�martingale g �

It is well known that our model precludes arbitrage if and only if the set Me is

nonempty� We make the slightly stronger assumption that also the smaller set Q is

nonempty�� As shown in Theorem �
 of Delbaen and Schachermayer ��		��� the set Q

is nonempty if and only if the claim ST � S� is maximal� i�e� if and only if there is no

admissible trading strategy that requires an initial investment of S� and that yields a

terminal value VT � ST with P �VT � ST � � �� As nonmaximality of the claim ST � S�

is an undesirable feature of any model used for pricing derivative securities on S� our

assumption that Q is nonempty makes economic sense� According to Theorem ��� of

Delbaen and Schachermayer ��		��� if the set Q is nonempty it is dense in Me in the

following sense��

Proposition ���� Suppose that S is a locally bounded nonnegative semimartingale and

that Q is nonempty� Then for every Q �Me there is a sequence Qn � Q such that����dQn

dP
�
dQ

dP

����
L����FT �P �

� � ������

We consider a European call option on the stock with strike K and maturity T � and

denote by CQ
K its expected payo� under the measure Q �Me� i�e� CQ

K � EQ��ST �K�	��

Now let

CK � supfCQ
K � Q � Qg and CK � inffCQ

K � Q � Qg �

Using Jensen�s inequality and the martingale property of S we obtain for all Q � Q the

bounds

�S� �K�	 � �EQ�ST ��K�	 � CQ
K � S�����
�

Hence we have the estimate �S� �K�	 � CK � CK � S��

Remark ���� It follows easily from Proposition ��� and Fatou�s Lemma that we may

replace Q by Me in the de�nition of CK � i�e� CK � supfCQ
K � Q � Meg� This is not true

for the lower bound CK � as EQ�ST � � S� for Q � Me � Q� It may even happen that

�Sin ������ gives an example of an SV
model where both Q and Me
�Q are nonempty�

�We are very grateful to Freddy Delbaen for bringing this result and its implications for our analysis

to our attention�
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inffCQ
K � Q �Meg � �S� �K�	� see e�g� Emanuel and Macbeth ��	
�� or Sin ��		�� for

examples in the context of the constant elasticity of variance models� This shows that

the distinction between the sets Q and Me is of economic signi�cance�

As mentioned already in the introduction� the quantities CK and CK are of impor�

tance for the hedging of options� Results from El Karoui and Quenez ��		�� and Kramkov

��		�� imply that CK is the minimum initial value of an admissible self��nancing strategy

that super�replicates the payo� of the call option� Similarly� by imposing extra integrabil�

ity conditions on the admissible strategies� it is possible to show that CK is the maximum

initial value of a trading strategy that sub�replicates the call� see El Karoui and Quenez

��		�� for details� The following two results provide conditions under which the quan�

tities CK and CK are equal to their extreme values S� and �S� � K�	 respectively� in

which case there is no non�trivial super� or sub�replicating strategy for the option�

Proposition ���� Let S be a locally bounded nonnegative semimartingale such that the

set Q of equivalent martingale measures is nonempty� Then the following four conditions

are equivalent�

i� There exists some K� � � such that CK� � S��

ii� There exist Q�� Q�� � � � �M
e such that the law of ST under Qn converges weakly to

�� �the Dirac�measure in ���

iii� There exist Q�� Q�� � � � � Q such that the law of ST under Qn converges weakly to

���

iv� CK � S� for all � � K �� �

If S follows a SV�model� i�e� if the dynamics of S are of the special form ������ each of

the above statements is equivalent to

v� There exists a sequence of probability measures Q�� Q�� � � � � M
e such that for all

constants L � R	

Qn

�Z T

�
��t dt � L

�
� � as n�� ������

Proposition ���� Let S be a locally bounded nonnegative semimartingale such that the

set Q of equivalent martingale measures is nonempty� Then the following four statements

are equivalent�
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i� CS� � �

ii� There exist Q�� Q�� � � � �M
e such that the law of ST under Qn converges weakly to

�S� �

iii� There exist Q�� Q�� � � � � Q such that the law of ST under Qn converges weakly to

�S� �

iv� CK � �S� �K�	 for all � � K �� �

If the dynamics of S are given by form ����� each of the above statements is equivalent to

v� There exists a sequence of probability measures Q�� Q�� � � � � M
e such that for all

constants L � R	

Qn

�Z T

�
��t dt � L

�
� � as n�� ������

Remark ���� The most important result in Propositions ��
 and ��� is of course the

implication v� �� iv�� These implications are very intuitive� as stated by the referee� �we

would expect the supremum of the option price over all equivalent martingale measures to

be as high as possible� i�e� equal to the stock price� if we can �nd a sequence of martingale

measures under which the price becomes more and more volatile� thus making the option

more �valuable�� Similarly� the in�mum of all possible option prices will be as low as

possible� if we can �nd a sequence of martingale measures under which the price becomes

less and less volatile and� in the limit� �freezes� at S���

An easy proof of the implication v� �� iv� that draws directly on this intuition can be

given for SV�models where� conditional on the realization of the volatility path ��t���t�T �

the asset price is lognormally distributed under a sequence Qn of martingale measures

satisfying v�� In that case the expected values CQn

K can be represented as mixture of

Black�Scholes prices� and the result follows immediately from v�� see e�g� Frey ��		��

for details� However� in many SV�models the asset price is not lognormally distributed

conditionally on the volatility� which is why our proof is based on a di�erent idea� see

Remark ���� As an empirically relevant example we mention the SV�models treated in

Section 
� where the volatility follows a one�dimensional Brownian motion and where the

Brownian motion driving the volatility is correlated to the Brownian motion driving the

asset price process�
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Remark ���� The key idea behind the proof of the equivalence of ii� and v� is the use

of a stochastic time change

St � S� exp�BhMit � ���hMit� �� S�Ut �

where hMit ��
R t
� �

�
sds is the quadratic variation of the local martingale Mt ��

R t
� �sdWs�

and where B is a Qn�Brownian motion w�r�t� a new �ltration �Gt�� see also ���
� below�

U is therefore a Qn�geometric Brownian Motion adapted to �Gt� and CQn

K equals the

Black�Scholes price of a call with strike price K and random maturity date hMiT � As

this maturity date tends to �� or � the Black�Scholes price tends to S� or �S� �K�	

respectively�

Remark ���� Our results allow us to draw conclusions on the cheapest superhedging

strategy for certain other derivatives as well� Consider for instance any bounded convex

payo� function g� Obviously g�x� � g��� for all x � �� Now Proposition ��
 implies

that under condition v� supfEQ�g�ST �� � Q � Qg is equal to g���� Hence the cheapest

superhedging strategy is trivial and consists of g��� units of the money market account

and a zero position in the stock� More generally Propositions ��
 and ��� allow us to draw

inference on the minimal super�replicating strategy and maximal sub�replicating strategy

for any convex function by the representation theorem for convex functions�

Proof of Proposition ����

i	 �� ii	� By assumption there is a sequence Qn � Q such that EQn��ST �K��	� �

S�� Hence we get from the put�call�parity and the fact that S is a Qn�martingale

EQn��K��ST �	� � EQn�K��ST � �ST �K��	� � K��S� �EQn��ST �K��	� � K� �

as n��� This immediately implies that for all � � � we have that Qn�ST � �� � � as

n�� and hence iii� and therefore also ii��

ii	 �� iii	� It su�ces to show that for every 	 � � there is some Q � Q such that

Q�ST � �� � 	� Let 	� � be given� By ii� there is some �Q � Me with �Q�ST � �� � 	���

By Proposition ��� we can �nd some Q � Q so that
���d 
QdP � dQ

dP

���
L����FT �P �

� �
� � Hence

Q�ST � �� � �Q�ST � �� �

Z
fST��g

�����d �Q

dP
�
dQ

dP

����� dP �
	

�
�

�����d �Q

dP
�
dQ

dP

�����
L����FT �P �

� 	 �

iii	 �� iv	� This implication follows again from the put�call�parity� as iii� implies

that for every put option limn��EQn��K � ST �	� � K�






iv	 �� i	 trivial�

Now assume that under P the stock price process S is given by a SV�model �a solution

to the SDE ������� By Girsanov�s theorem there exists for every Q �Me a new Q�Wiener

process Wt such that St satis�es

dSt � St�tdWt � S� � x������

We de�ne Mt �
R t
� �sdWs� a Q�local martingale with quadratic variation process hMit �R t

� �
�
sds� It�o�s formula yields that S is given by St � S� exp�Mt �

�
�hMit��

v	 �� ii	� By de�nition of MT we have for every � � �

Qn�ST � �� � Qn�log�ST � � log���� � Qn

�
MT �

�

�
hMiT � log

�
�

S�

��
������

Levy�s characterization of continuous local martingales implies that the process

Bt � Mft � where ft � inffs � � �

Z s

�
��udu � tg���
�

is a Brownian motion relative to the new �ltration �Gt� � �Fft�� and Mt � BhMit � see

e�g� Section 
���B of Karatzas and Shreve ��	

�� By the law of large numbers for the

Brownian motion we can �nd for every 	 � � some L large enough such that

Q

�
	t � L�

Bt

t
�

log���S��

t
�

�

�

�
� ��

	

�
for all n �

and by assumption we �nd n large so that Qn�hMiT � L� � �� 	��� Hence

Qn�ST � �� � Qn�ST � �� hMiT � L� � Qn�hMiT � L�

� Qn�BhMiT �
�

�
hMiT � log

�
�

S�

�
� hMiT � L� �

	

�

� Qn�
Bt

t
�

�

�
�

log���S��

t
for some t � L� �

	

�
� 	 �

Therefore� for any � � � we have Qn�ST � �� � � as n�� which is equivalent to ii��

ii	 �� v	� We prove this claim by contradiction� Suppose there are L and 	 � �

such that Qn�hMiT � L� � �� 	 for in�nitely many n� We have for these n

Qn�ST � K� � Qn�ST � K� hMiT � L� �Qn�hMiT � L� �

Now we have the following estimate for the �rst term on the right�

Qn�ST � K� hMiT � L� � Qn

�
BhMiT � log�

K

S�
� �

�

�
hMiT � hMiT � L

�
� Qn

�
inf

��t�L
Bt � log�

K

S�
� �

�

�
L

�
� 	�� for K small enough�

	



so Qn�ST � K� � 	�� for in�nitely many n which contradicts ii�� �

Proof of Proposition ����

i	 �� ii	� For Q � Q the put�call�parity yields that EQ��ST � S��
	� � EQ��S� �

ST �	�� Now let Qn � Q be a sequence with

lim
n��

EQn��ST � S��
	� � lim

n��
EQn��S� � ST �	� � � �

Then for any � � � we get from the �rst submartingale inequality

Qn

�
sup

��t�T
�St � S�� � �

�
�
EQn ��ST � S��

	�

�
� ����	�

as n�� and also

Qn

�
inf

��t�T
�St � S�� � ��

�
�
EQn ��S� � ST �	�

�
� �������

as n�� which implies iii� and hence ii��

ii	 �� iii	� This follows as in the proof of Proposition ��� from the fact that Q is

dense in Me�

iii	 �� iv	� This implication follows again from the put�call�parity� as iii� implies

that for every put option limn��EQn��K � ST �	� � �K � S��
	�

Now consider the case where S is given by the SV�model ������ We �rst show that v�

implies iii�� Suppose there exist Q�� Q�� � � � � M
e that satisfy ������ Then� for any � � �

and every 	 � � we have

Qn�ST � S� � �� � Qn�ST � S� � �� hMiT � L� � Qn�hMiT � L�

� Qn

�
BhMiT �

�

�
hMiT � log

�
S� � �

S�

�
� hMiT � L

�
� Qn�hMiT � L�

� Q

�
inf

��t�L
Bt �

�

�
L � log

�
S� � �

S�

��
� Qn�hMiT � L� � 	 �

provided L � � small enough such that the �rst probability is less than 	�� and then n

large enough such that the second probability is less than 	��� Similarly

Qn�ST � S� � �� � Q

�
sup

��t�L
Bt � log

�
S� � �

S�

��
� Qn�hMiT � L� � 	 �

which together imply �ii��

Conversely assume that i� is satis�ed and let Qn be a sequence with limn��EQn��ST�

S��
	� � �� De�ne 
� � infft � � � jSt�S�j � �g� By ���	� and ������ for arbitrary 	 � �

��



we can �nd n large such that Qn�
� � T � � 	� Hence we get

Qn�hMiT � L� � Qn�hMiT � L� 	t � T jSt � S�j � �� � 	

� Qn�hMiT��� � L� � 	

� Qn�hSiT��� � L�S� � ���� � 	

�
EQn�hSiT��� �

L�S� � ���
� 	

�
EQn��ST��� � S��

��

L�S� � ���
� 	

�
��

L�S� � ���
� 	

for arbitrarily small �� 	 � � and hence Qn�hMiT � L� � � as n���

� The Case of Di�usion Volatility

We now consider a large class of stochastic volatility models where the instantaneous

variance follows itself a di�usion process� As we are only interested in the range of possible

arbitrage prices for options it is legitimate to model the asset price dynamics directly

under a local martingale measure Q� We assume that � possibly after an equivalent

change of measure � S satis�es the equations

dSt � Stjvtj
���dW

���
t � S� � ��
���

dvt � a�vt�dt � ���vt�dW
���
t � ���vt�dW

���
t � v� � ����
���

for Wt � �W
���
t �W

���
t � a Wiener process under Q� This implies that St is a positive

local martingale under Q �the semimartingale exponential of
R
jvtj

���dW
���
t � and vt is a

one�dimensional di�usion�

We will impose a further set of conditions on the coe�cients�

A�� The SDE �
��� has a strictly positive� non�exploding solution�

A�� The real functions a� ��� �� are locally Lipschitz in R	� and b�x� �
p
����x� � ����x�

belongs to C��R	��

A�� ���v� � � for all v � R	� This condition ensures that volatility innovations and

asset returns are not perfectly correlated which in turn implies that the market is

incomplete�

��



Remark ���� The above class of volatility models contains the models considered by

Wiggins ��	
��� Hull and White ��	
��� Heston ��		
� and Renault and Touzi ��		�� as

special cases� Note that in contrast to most of these papers we allow for nonzero �� and

hence for nonzero correlation between volatility innovations and asset returns�

We will moreover assume that the set Q of equivalent martingale measures for S is

nonempty� The following Proposition from Sin ��	

� is very helpful when it comes to

verifying this condition for a particular model� Sin ��	

� shows that in general the

solution to �
���� �
��� can be a strictly local martingale� so checking the martingale

property of S is not just a purely technical exercise�

Proposition ���� Suppose that weak uniqueness holds for the following SDE

devt � a�evt�dt � ���evt�jevtj���dt � ���evt�dW ���
t � ���evt�dW ���

t � ev� � ��� ��
�
�

Then St de�ned in ���	� and ���
� is a Q�martingale if and only if the SDE evt admits a

non�exploding solution�

The proof of this result follows exactly the one that appears in Lemma ��� of Sin

��		
� for the case where v is given by a linear di�usion�

Remark ���� Under assumptions A��� A�� this condition is for instance satis�ed when�

ever �� � �� For a proof note �rst that for �� � � the comparison theorem for SDE�s

implies that ev � v� As v has a global solution by A�� it follows that ev cannot explode�

As shown by Black ��	��� and many subsequent studies a negative ��� i�e a negative

correlation between volatility innovations and asset returns is the empirically relevant

case�

Theorem ���� Suppose that assumptions A��� A	�� A
� are satis�ed and that the set

Q of equivalent martingale measures is non�empty� Then the range of possible prices

for the European call option with strike K and maturity T is given by the open interval

��S� �K�	� S���

Proof of Theorem ����

While the actual proof of Theorem 
�� is rather technical� the idea underlying our

approach is very intuitive� We choose a sequence of martingale measures Qn� n � Z such

that the drift of v under Qn tends to � uniformly on compact sets as n�� and to ��

as n � ��� respectively� As n � � the large positive drift then �drives the volatility

��



up�� whereas for n � �� the volatility is �driven down to zero� by the large negative

drift�

For n � Z we de�ne the probability measure Qn by its Radon�Nikodym derivative

with respect to Q�

dQn

dQ
� exp

�
nW

���
T �

�

�
n�T

�
�

Now the process �S� v�t solves the SDE

dSt � Stjvtj
����dW

���
t � S� � ��
���

dvt � a�vt�dt � n���vt�dt � ���vt�dW
���
t � ���vt�dW

�n���
t v� � ��� ��
���

for a Qn�Wiener process W
�n�
t � �W

���
t �W

�n���
t �� In particular S is a Qn�local martingale�

Now consider the solution v
�n�
t to the following one�dimensional SDE

dv
�n�
t � �a�v

�n�
t � � n���v

�n�
t ��dt � b�v

�n�
t �dBt � v

�n�
� � x�
���

with a� �� and b satisfying A��� A�� and with Bt a one�dimensional Wiener process on a

probability space ���F � P �� We will explicitly use Px to denote the law of the process v�n�

starting at v
�n�
� � x� Observe that under Qn the process v satis�es this equation with an

appropriate Qn Brownian motion B�n� and x � ��� � Hence there exists a non�exploding

strictly positive weak solution to �
��� for all n � �� �� �� � � � � and then the locally Lipschitz

property of the coe�cients implies the existence and uniqueness of a strong solution� As

shown below Theorem 
�� follows from the following two lemmas�

Lemma ���� Assume that for n � Z the SDE �
��� has a global solution which is strictly

positive� Then the following holds�

i� For every L � �� T � �� x � � and 	 � � there exists N� � Z
	 such that

Px�v
�n�
t � L for some � � t � T � � �� 	 for all n � N��

ii� For every L � �� T � �� x � � and 	 � � there exists N� � Z
� such that

Px�v
�n�
t � L�� for some � � t � T � � �� 	 for all n � N��

Lemma ���� Assume again that for n � Z the SDE �
��� has a global solution which is

strictly positive� Then the following holds�

i� For every L � �� T � � and 	 � � there exists N� � Z
	 such that

P�L�v
�n�
t � L for all � � t � T � � �� 	 for all n � N��

�




ii� For every L � �� T � � and 	 � � there exist N� � Z
� such that

PL���v
�n�
t � L for all � � t � T � � �� 	 for all n � N��

Using these Lemmas the proof of Theorem 
�� is now relatively easy� Recall that

under Qn the process vt satis�es the equation �
���� In view of Proposition ��
 and

Proposition ��� we have to show that� for all M � �� 	 � � we have


N � Z	� 	n � N Pv�

�Z T

�
v
�n�
t dt � M

�
� �� 	 and�
���


N � Z�� 	n � N Pv�

�Z T

�
v
�n�
t dt � M

�
� �� 	 ��
�
�

According to Lemma 
�� i� by choosing n large enough we may drive the process v�n� above

any threshhold L with probability arbitrarily close to one� Lemma 
�� i� ensures that for

n su�ciently large we can keep v�n� above any threshhold L with probability arbitrarily

close to one� provided that we started v�n� at the level �L� The Markov property of v�n�

now allows us to combine these two properties in order to verify Condition �
���� For a

veri�cation of �
�
� we proceed analogously� First we �drive v�n� down� arbitrarily fast�

using Lemma 
�� ii�� Lemma 
�� ii� then allows us to conclude that for n large enough

v�n� will remain small with su�ciently high probability� We now give a formal proof of

�
���� Choose some L � � with LT�� �M � De�ne for L � �



�n�
L � infft � � � v

�n�
t � Lg and �

�n�
L � infft � � � v

�n�
t � Lg �

Then

Px

�Z T

�
v
�n�
t dt � M

�
� Px

�


�n�
�L �

T

�
� v

�n�
t � L on t �

�


�n�
�L � 


�n�
�L �

T

�

��
� Px

�


�n�
�L �

T

�

�
P�L

�
�
�n�
L �

T

�

�
by the strong Markov property of v�n�� Now Lemmas 
�� and 
�� imply �
����

For a proof of �
�
� we �rst choose some L such that Px��v����supT � L� � 	��� where

vsupT � sup��t�T jvtj� It follows from the comparison theorem for SDE�s that for all n � �

we have �v�n��supT � �v����supT and hence also Px��v�n��supT � L� � 	��� Now

P

�Z T

�
v
�n�
t dt � M

�
� P

�Z T

�
�v

�n�
t � L�dt � M

�
� P ��v�n��supT � L� �

Let L � M
�T � On the set fv

�n�
t � L for M

�L � t � Tg we estimateZ T

�
�v

�n�
t � L�dt �

�
L
M

�L

�
�

�
T �

M

�L

�
L �M �

��



hence

Px

�Z T

�
�v

�n�
t � L�dt � M

�
� Px

�
�
�n�

L��
�

M

�L
� v

�n�
t � L on  �

�n�

L��
� T !

�
� Px

�
�
�n�

L��
�

M

�L

�
PL��

	


�n�

L
� T



�

again by the strong Markov property� and the result follows from Lemmas 
�� and 
���

Proof of Lemma ����

Part i	
 De�ne the function F �v��
R v
�

�
b�x�dx� As b�x� � � and C� on ������ the function

F is well�de�ned� strictly increasing and C� on ������ We get from It�o�s formula

F �v
�n�
t � � F �v

�n�
� � �

Z t

�

a�v
�n�
u � � n���v

�n�
u �

b�v
�n�
u �

�
�

�
b
�

�v�n�u �du � Bt �

i�e� the process F �v�n�� is a Brownian motion with �stochastic� drift� The proof now uses

the fact that this drift tends to � as n � � uniformly on compacts� Find � � � such

that Px��v����infT � �� � 	�� �such � exists as v��� is strictly positive�� By the comparison

theorem for SDEs we get that for n � �

Px��v�n��infT � �� � Px��v����infT � �� � 	�� �

This implies that

Px

	


�n�
L � T



� Px

	
F �v

�n�
T � � F �L�



� Px

	
F �v

�n�
T � � F �L�� �v�n��infT � �



� 	�� �

Now by A�� and A�� we can �nd constants M� and M� with M� � � such that

	v �  �� L!
a�v�

b�v�
�

�

�
b
�

�v� � M� and
���v�

b�v�
� M� �

Now Px��Bt � F �v��� F �L� � TM� � nTM�� � 	�� for n su�ciently large� Hence

Px�

�n�
L � T � � Px��Bt � F �v��� F �L� � TM� � nTM�� � 	�� � 	 �

Part ii	
 Essentially this part of the Lemma follows by applying i� to the process

y
�n�
t ���v

�n�
t � We have

Px��
�n�
L � T � � Px�v

�n�
t � L for some t �  �� T !� � Px���v

�n�
t � L�� for some t �  �� T !� �

Now� writing vt for v
�n�
t we get by It�o�s formula

d�v��t � � �v��t �a�vt�� v��t b��vt��� n���vt�v
��
t dt� v��t b�vt�dBt ��
�	�

��



De�ning new functions ea�y� � �a�y���y� � b��y���y�� e���y� � ���y
���y� and eb�y� �

b�y���y� we get from �
�	� that y
�n�
t ���v

�n�
t satis�es the SDE

dy
�n�
t � �ea�y

�n�
t �� ne���y�n�t ��dt �eb�yt��n�dBt ��
����

and applying the result of part i� to �
���� yields the claim�

Proof of Lemma ����

We consider only statement ii�� i� follows as in the proof of Lemma 
�� by considering

the process yt � v��t � First we replace v
�n�
t by the solution ev�n�t of the SDE

dev�n�t � �a�ev�n�t � � n
�ev�n�t ����ev�n�t ��dt � b�ev�n�t �dBt � ev�n�� � L��

where 
 �  �� L! �  �� �! is an increasing Lipschitz continuous function with


�x� � �� � � x �
L

�

�x� � �� x �


L

�
�

By the comparison theorem for SDEs we get for n � � that ev�n�t � v
�n�
t for all t and hence�

for every � �  �� L��!

PL����v
�n��supT � L� � PL����ev�n��supT � L�

� PL����ev�n��supT � L� �ev�n��infT � �� � PL����ev�n��infT � �� �
�
����

so to �nish the proof we only need to show that for n large enough each of these two

probabilities is less than 	�� for arbitrary 	 � ��

To show that the �rst term is less than 	�� observe that we can replace ev�n�t by the

stopped process ev�n�t�� where 
 � infft � � � v ��  ���� �L!g� Therefore we shall assume

that ev�n�t takes values in the interval  ���� �L!� For every n we consider the socalled

scale function p�n� of ev�n�� p�n� is a strictly increasing function which solves the ordinary

di�erential equation �p�n��
�

�a � ��n
� � �
��p�n��

��

b� � � � Hence� by It�o�s formula the

process p�n��ev�n�� is a local martingale� In our case the scale function is given by

p�n��v� �

Z v

L��
exp

�
��

Z x

L��

a�u� � ���u�n
�u�

b��u�
du

�
dx �

see also Section ����B of Karatzas and Shreve ��	

�� As ev�n�t �  ���� �L! we know that

p�n��ev�n�t � is bounded for every n so it is in fact a real martingale� Now the large negative

drift of ev�n�t implies that the scale function is rapidly increasing on the interval �L��� L��

in particular our assumptions on ��� a and b imply that limn��� p�n��L� � �� Now we

obtain

PL����ev�n��supT � L� �ev�n��infT � �� � PL����p
�n��ev�n���supT � p�n��L��

�
EL����p

�n��ev�n�T ��	�

p�n��L�
�

��



where the last inequality follows from the �rst submartingale inequality� Now the mar�

tingale property of p�n��ev�n�t � and the de�nition of the scale function implies that

EL����p
�n��ev�n�T ��� � p�n��L��� � � �

Hence
EL����p

�n��ev�n�T ��	�

p�n��L�
�
EL����p

�n��ev�n�T ����

p�n��L�
�
jp�n������j

p�n��L�
�

Note that on the set ��� L��� p�n� is independent of n by the de�nition of the drift of ev�n��
Hence for n� �� the last fraction tends to zero�

In order to show that the second term in �
���� is small� we consider the solution xt to

the following SDE with re�ection at L�� �for an introduction to equations with re�ection

see for example El Karoui and Chaleyat�Maurel ��	�
��

dxt � a�xt�dt � b�xt�dBt � dKt x� � L��

with xt � L�� for all t� and Kt is a continuous increasing process with
R T
� �xt�L���dKt �

�� The locally�Lipschitz property of the coe�cients implies the existence and uniqueness

of the solution� which is also a strong Markov process�

Observe that� by the de�nition of 
� xt and ev�n�t satisfy the same equation on the inter�

val ��� L��� for all n� therefore xt must be positive with probability � and the uniqueness

of the solution to the re�ection problem implies ev�n�t � xt hence

PL����ev�n��infT � �� � PL���x
inf
T � �� � �

as � � � which takes care of the second term in �
���� and we can conclude that for �

small and n large PL����v
�n��supT � L� � 	�

� Models with Bounded Volatility

We now consider superhedging strategies for European call and put options in a SV�model

of the form ����� where the volatility is bounded from above� In this case we are able

to obtain superhedging strategies which are at least potentially of practical interest� We

assume that

A
� There is a constant �max �� such that a�s� �t � �max for all t�

Remark ���� In practice it might be impossible to determine a �nite upper bound on

the asset price volatility which holds true with a probability of ��� percent� In that case

��



one could choose �max as some upper quantile of the volatility distribution such that

�max is exceeded by the realized volatility path only with a given small probability� The

superhedging strategy will work for all volatility path ��t���t�T for which A
� holds� see

Proposition ��� below for details� Superhedging of options with subjective bounds on

the volatility can therefore be viewed as �pragmatic� approach to pricing and hedging of

derivatives under stochastic volatility�

We now show that under A
� the value of a superhedging strategy for a European call

option is given by the Black�Scholes price of this option corresponding to the volatility

�max� This result has �rst been obtained by El Karoui and Jeanblanc�Piqu�e ��		���

see also El Karoui� Jeanblanc�Picqu�e� and Shreve ��		
�� Avellaneda� Levy� and Paras

��		�� and Lyons ��		�� have independently developed several extensions of this idea�

We de�ne the tracking error of a hedge strategy as the di�erence between the actual and

the theoretical value of a self��nancing portfolio for a European call with strike price K

and maturity T calculated from the Black�Scholes formula with constant volatility �max�

The theoretical value is given by the Black�Scholes price c�t� St� �� CBS�t� St��max�K� T ��

The actual value Vt of the self��nancing portfolio de�ned by initially investing V� �

c��� S�� and holding �
�S c�t� St� shares of the underlying at any time t � T is given by the

cumulative gains from trade� i�e�

Vt � V� �

Z t

�

�

�S
c�s� Ss� dSs�

The tracking error et is then de�ned as the di�erence between actual and theoretical

value� et �� Vt � c�t� St�� Since c�T� ST � � �ST �K�	� eT measures the deviation of the

hedge portfolio�s terminal value from the payo� it is supposed to replicate� In particular�

if the tracking error is always positive� the terminal value of the hedge portfolio of an

investor following the above strategy always completely covers the option�s payo��

Proposition ���� Suppose that S follows the SV�model ������ Then the tracking error

for a European option is given by

et �
�

�

Z t

�

�
��max � ��s

�
S�
s

��c

�S�
�s� Ss� ds ������

In particular� if �max � �t for all t� the tracking error is always positive�

Proof�

By It�o�s formula�

c�t� St� � c��� S�� �

Z t

�

�c�s� Ss�

�S
dSs �

Z t

�

�
�c�s� Ss�

�t
�

�

�
��t S

�
s

��c�s� Ss�

�S�

�
ds �

�




Now by the Black�Scholes PDE

�c�s� Ss�

�t
� �

�

�
��maxS

�
s

��c�s� Ss�

�S�
�

Substituting this into the last integral on the r�h�s� yields the formula for the tracking

error� Moreover� c�s� Ss� being convex in S� its second derivative is always positive� Hence

by ����� the sign of the tracking error is entirely determined by the sign of the volatility

di�erence ��max � ��t �

Note that this superhedging strategy is universal in the sense that it works for all SV�

models satisfying A
�� It is of course interesting to know� if for a given parametric SV�

model superhedging strategies can be found which are less expensive than the universal

superhedging strategy based on Black�Scholes hedging with volatility �max� We now give

a criterion analogous to Proposition ��
 v� on the average volatility that implies that

CK � supfEQ��ST �K�	� � Q � Qg is equal to CBS�t� St��max�K� T ��

Proposition ���� Assume that there is a sequence of martingale measures Qn � Q such

that for all � � �

lim
n��

Qn

�Z T

�
��t dt � ��max�T � ��

�
� � ������

Then CK � CBS�t� St��max�K� T � for all K � ��

Proof�

By the put�call parity we may equivalently show that ����� implies that for all K � �

supfEQ��K � ST �	� � Q � Qg � PBS�t� St��max�K� T � �

where PBS�t� St��max�K� T � denotes the Black�Scholes price of a European put in a model

with volatility �max� Fix some arbitrary K � � and � � � and de�ne the function

g�x� � �K � x�	 and the stopping time


 �� infft � �� hMit �

Z t

�
��s ds � ��max�T � ��g �

We get from Jensens inequality and the optional sampling theorem

EQn�g�ST �� � EQn
�
EQn�g�ST �jF��T �

�
� EQn

�
g�EQn�ST jF��T ��

�
� EQn�g�S��T ��

� EQn�g�S� ���EQn�g�S� �� g�ST � � 
 � T �

� EQn�g�S� ���KQn�
 � T � �

�	



Now ����� implies that limn��Qn�
 � T � � �� Recall the time change introduced in the

proof of Proposition ��
� We get by de�nition of 


EQn�g�S� �� � EQn
�
g
�
S� exp�BhMi� � ���hMi� �

��
� EQn

�
g
�
S� exp�B��max�T���

� �����max�T � ���
��

� PBS�t� St��max�K� T � �� �

which implies the result as � � ��

Remark ���� In Proposition ��� we will verify ����� for a large class of SV�models where

the volatility follows a one�dimensional di�usion process� Note however� that Proposition

applies also to models with more general volatility dynamics such as the model proposed

by Naik ��		
�� where the volatility is modelled as a �nite�state Markov chain� In this

model condition ����� is easily veri�ed directly�

Proposition ���� Suppose that S follows a SV�model of the form �
���� �
��� and that

A��� A	�� A�� and the following version of A
� hold

A
a� There is some � � �min � �� � �max such that ���v� � � for all v � ���min� �
�
max��

Then CK � CBS�t� St��max�K� T � for all K � �� i�e� the hedging strategy described in

Proposition ��
 is the cheapest superhedging strategy for European call options�

Remark ���� According to well�known results on one�dimensional di�usions Assump�

tions �A�� and �A�a� ensure that the interval ���min� �
�
max� is contained in the range of �t

for all t � ��

Proof�

We have to show that our SV�model satis�es condition ������ Note �rst that under A
� the

sets Q and Me coincide by the Novikov�criterion� see e�g� Section 
���D of Karatzas and

Shreve ��	

�� In order to reduce our problem to the situation considered in Theorem 
��

we use some smooth and strictly increasing function � that maps the interval ���min� �
�
max�

onto ������ By It�o�s formula yt �� ��vt� solves the SDE

dyt � �a�yt�dt � ����yt�dW
���
t � ����yt�dW

���
t

where the coe�cients �a� ���� ��� and �b ��
p

���� � ���� satisfy A�� and A��� As in the proof

of Theorem 
�� we use for n � � equivalent martingale measures Qn � Q de�ned by

dQn�dP � exp�nW
���
T � ���n�T �� Under these measures y solves the SDE

dynt � �a�ynt � � n����y
n
t �dt � �b�ynt �dBn

t ����
�

��



Note that Lemma 
�� i� and Lemma 
�� i� apply to ���
�� Hence the Proposition follows

from these Lemmas by the arguments used already in the proof of Theorem 
���

� Conclusion

In this paper we studied the range of prices consistent with no�arbitrage for European op�

tions in a SV�model� The supremum and in�mum of this range are of �nancial interest as

they give the initial prices of the cheapest superreplication strategy and the most expen�

sive subreplication strategy respectively for the option� Our main result is that in most

SV�models with unbounded di�usion�volatility the cheapest superreplication strategy for

a European call option is to �buy the stock�� Hence in these models the concept of su�

perreplication is of little practical use� and di�erent approaches for the risk�management

of derivatives under stochastic volatility are called for� One possible approach is to in�

troduce �subjective� bounds on the volatility� We proved that in many SV�models where

the volatility is bounded above by some constant �max the value process of the cheapest

superreplication strategy for European options is given by the Black�Scholes price corre�

sponding to the volatility �max� This result shows that hedging under the assumption of

bounded volatility is at least potentially of practical relevance�

There are of course other approaches to the risk�management of derivatives under

stochastic volatility� We refer the reader to F"ollmer and Schweizer ��		�� or Hofmann�

Platen� and Schweizer ��		�� for information about the concept of risk�minimization

and applications to stochastic volatility models and to Pham and Touzi ��		�� for an

equilibrium analysis of option pricing in SV�models�
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