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This paper develops a model for volatility sensitivity to the underlying asset price ∂σ/∂S. It has 
applications to option pricing and dynamic delta hedging under stochastic volatility. The model, which 
corresponds to a quadratic approximation to the volatility surface, extends the linear parameterizations 
of Derman (1999) by allowing ATM volatility sensitivity to change continuously with S. The extension 
to fixed strike volatility sensitivities is achieved using a principal component analysis on the deviation 
of fixed strike volatilities from ATM volatility. 
 
1. Introduction 
 
Many financial markets are characterized by a high degree of collinearity. It occurs when 
there are only a few important sources of information in the data, which are common to many 
variables. This paper is about a standard method for extracting the most important 
uncorrelated sources of variation in a multivariate system, which is called principal 
component analysis (PCA).  
 
PCA is not just about term structures of interest rates or futures, although most readers will be 
familiar with the method in this context. The standard interpretation of the first component as 
the trend, the second component as the tilt and the third component as the curvature holds for 
any highly correlated ordered system, not just a term structure. So when implied volatilities 
are ordered by strike or moneyness, an application of PCA will reveal the standard trend-tilt-
curvature interpretation of the first three principal components. 
  
Several principal component models of volatility smiles and skews have been based on daily 
changes in implied volatilities, by strike and/or by moneyness. Derman and Kamal (1997) 
analyze S&P500 and Nikkei 225 index options where the daily change in the volatility 
surface is specified by delta and maturity. Skiadopoulos, Hodges and Clewlow (1998) apply 
PCA to first differences of implied volatilities for fixed maturity buckets, across both strike 
and moneyness metrics. And Fengler et. al. (2000) employ a common PCA that allows 
options on equities in the DAX of different maturities to be analyzed simultaneously. 
 
There is an important difference between the research just cited and the approach taken in this 
paper. Instead of applying PCA to daily changes in implied volatilities, a PCA is applied to 
daily changes in the deviations of fixed strike volatilities from at-the-money volatility. The 
advantages of this approach are both empirical and theoretical.  
 
On the empirical front, time series data on fixed strike or fixed delta volatilities often display  
much negative autocorrelation, possibly because markets over-react. But the daily variations 
in fixed strike deviations from ATM volatility are much less noisy than the daily changes in 
fixed strike (or fixed delta) volatilities. Consequently the application of PCA to fixed strike 
deviations from ATM volatility, denoted ∆(σK - σATM), yields more robust results. 
  
There is also a theoretical model that supports this. It will be shown below that the models of 
the skew in equity markets that were introduced by Derman (1999) can be expressed in a 
form where fixed strike volatility deviations from ATM volatility always have the same 
relationship with the underlying index. The particular market regime is determined only by a 
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different behaviour in ATM volatility. Thus the stability of PCA on ∆(σK - σATM) is implied 
by Derman's models. 
 
Derman (1999) asked 'how should implied volatilities be changed as an equity index moves?'. 
Derman's models are described below and in each model there will be a parallel shift in all 
volatilities as the index moves, where the size of this shift is determined by the current market 
regime. The model presented in this paper extends Derman's models to allow non-parallel 
shifts in the skew as the index moves. It uses PCA to actually quantify the sensitivities of 
implied volatilities to changes in the underlying price.  
 
The results in this paper have two important applications: to dynamic delta hedging and the 
quantification of price-volatility scenarios in different market regimes. The delta of an option 
with value f(S, σ), written as a function of the underlying asset price S and its volatility σ is 
given by 
 

∆ = ∆BS + (∂f/∂σ)(∂σ/∂S) 
 
where ∆BS is the Black-Scholes delta. Assuming constant volatility the delta of a European 

call option is ∆ = ∆BS = Φ(x) where ( ) 2óóS/Keln  x r τ+τ= τ−  measures the 

'moneyness' of the option.1 However if volatility is not constant the additional term 'vega 
(∂σ/∂S)' needs to be included in the delta. Vega = ∂f/∂σ is the volatility sensitivity of the 
option value and it is normally approximated with finite differences. However ∂σ/∂S is more 
difficult to quantify. Many traders assume that ∂σ/∂S = ∂σ/∂K; that is, the volatility 
sensitivity to movements in the underlying price is taken from the slope of the skew (or smile) 
by strike. 
 
This paper explains how principal component analysis can be used to obtain more precise 
measures of the volatility sensitivity to movements in the underlying price. The method used 
to measure these sensitivities is shown to be equivalent to a quadratic parameterization of the 
volatility surface; as such it extends Derman's linear skew parameterization. This paper will 
show how to generate scenarios for non-parallel movements in the smile surface that are 
appropriate for given movements in the underlying price.  
 
The model has applications to all types of implied volatility surfaces, including currency 
option smiles and swaption skews. The present paper focuses on its application to the skew in 
the FTSE 100 between 4th January 1998 and 31st March 1999. It is found that the sensitivity of 
a fixed strike volatility to movements in the index will change according to market conditions 
and that the range of the skew (the difference between low strike volatility and high strike 
volatility) will normally fluctuate over time. However in jumpy markets the range of the skew 
is quite static and shifts in fixed strike volatilities are more likely to be parallel, as predicted 
by Derman's models. 
 
2. Volatility Regimes in Equity Markets 
 
Figure 1 shows the 1-month implied volatilities for European options of all strikes on the 
FTSE100 index for the period 4th January 1998 to 31st March 1999.2 The bold red line 

                                                        
1 With the standard notation, K denotes the strike, τ the time to expiry and r the interest rate. 
2 The fixed maturity implied volatility data used in this section have been obtained by linear 
interpolation between the two adjacent maturity option implied volatilities. However this presents a 
problem for the 1 month volatility series because often during the last few working days before expiry 
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indicates the ATM volatility and the bold black line the FTSE100 index price (on the right-
hand scale).  
 
Observation of data similar to these, but on the S&P500 index option 3 month volatilities, has 
motivated Derman (1999) to formulate three different types of market regime and to define a 
different linear parameterization of the volatility skew in each regime. These are known as 
'sticky' models, because each parameterization implies a different type of 'stickiness' for the 
local volatility in a binomial tree. Denote by σK(τ) the implied volatility of an option with 
maturity τ and strike K, σATM(τ) the volatility of the τ-maturity ATM option, S the current 
value of the index and σ0 and S0 the initial implied volatility and price used to calibrate the 
tree:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) In a range bounded market skews should be parameterized as 

 
σK(τ) = σ0 - b(τ) (K-S0)      

                                                                                                                                                               
data on the near maturity option volatilities are totally unreliable. So the 1 month series rolls over to the 
next maturity, until the expiry date of the near-term option, and thereafter continues to be interpolated 
linearly between the two option volatilities of less than and greater than 1 month. 

Figure 1: 1mth Fixed-Strike Volatilities, At-the-Money Volatility and 
the FTSE 100 Index Level
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If the index changes, fixed strike volatilities σK(τ) will not change but σATM will decrease 
as the index increases: this can be seen by substituting in S = K above, giving 
 

σATM(τ) = σ0 - b(τ) (S-S0)      
 
 

(b) In a stable trending market skews should be parameterized as: 
 

σK(τ) = σ0 - b(τ) (K-S)      
 
In this model fixed strike volatility σK(τ) will increase with the index level but σATM(τ) = 
σ0 so it will be independent of the index.    
 

(c) In jumpy markets skews should be parameterized as: 
 

σK(τ) = σ0 - b(τ) (K+S) + 2b(τ)S0      
 
Fixed strike volatility σK(τ) will decreases when the index goes up, and increase when the 
index falls. Since  

 
σATM(τ) = σ0 - 2b(τ) (S-S0)      

 
the ATM volatility will also decreases as the index goes up and increases as the index 
falls, and twice as fast as the fixed strike volatilities do. 
 

The range-bounded model (a) is called the 'sticky strike' model because local volatilities will 
be constant with respect to strike. That is, each option has its own binomial tree, with a 
constant volatility that is determined by the strike of the option. As the index moves all that 
happens is that the root of the tree is moved to the current level of the index. The same tree is 
still used to price the option. 
 
The trending markets model (b) is called the 'sticky delta' model because local volatilities are 
constant with respect to the moneyness (or equivalently the delta) of the option. That is, it is 
the moneyness of the option that determines the (still constant) local volatility in the tree. As 
the index moves the delta of the option changes and we consequently move to a different tree, 
the one corresponding to the current option delta.  
 
In the 'sticky tree' model (c) the local volatilities are no longer constant. There is, however 
one unique tree that can be used to price all options, that is determined by the current skew. 
This is the implied tree described in Derman and Kani (1994).  
 
3. Fixed Strike Deviations from ATM Volatility 
 
The relationship between fixed strike deviations from at-the-money volatility and the 
underlying price is the same in all of Derman's 'sticky' models. In fact for any maturity τ there 
will be a linear relationship between the deviation of a fixed strike volatility from ATM 
volatility and the underlying price that is given by: 
 

σK(τ) −  σATM(τ) = − b(τ) (K−S)      (1) 
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For any given maturity, the deviations of all fixed strike volatilities from at-the-money 
volatility will change by the same amount b(τ) as the index level changes, as shown in figure 
2a. Four strikes are marked on this figure: a low strike KL, the initial at-the-money strike K1, 
the new at-the-money strike after the index level moves up K2, and a high strike KH. The 
volatilities at each of these strikes are shown in figure 2b, before and after a unit rise in the 
index level. In each of the three market regimes the range of the skew between KL and KH, 
that is σL - σH, will be the same after the index move. Thus as the underlying price moves, the 
fixed strike volatilities will shift parallel, and the range of the skew will remain constant. The 
direction of the movement in fixed strike volatilities depends on the relationship between the 
original ATM volatility σ1 and the new ATM volatility σ2:  
 
Ø In a range bounded market σ2 = σ1 - b(τ), but fixed-strike volatilities have all increased by 

the same amount b(τ), so a static scenario for the skew by strike should be applied; 
Ø When the market is stable and trending, σ2 = σ1 and there is an upward shift of b(τ) in all 

fixed-strike volatilities; 
Ø In a jumpy market σ2 = σ1 - 2b(τ), so a parallel shift downward of b(τ) in the skew by 

strike should be applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

σΚ(t) - σATM(t)

KL K1 K2 KH

dL

dH

Strike

Figure 2a: Parallel Shift in Skew Deviations as Price Moves Up
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Figure 2b: Parallel Shifts in Fixed-Strike Volatilities as Price Moves Up
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These observations suggest that a method for testing whether Derman's 'sticky' models are 
supported by empirical evidence is to perform a PCA of ∆(σK - σATM). Equation (1) implies 
that only the first principal component should be significant, but if it is found that the second 
or higher principal components are significant factors for determining movements in ∆(σK -  
σATM), then the parallel shifts in the skew that are implied by the 'sticky' models will not 
apply. 
 
4. Principal Component Analysis of the Skew Deviations 
 
There are around 60 different strikes represented in figure 1, and their implied volatilities 
form a correlated, ordered system that is similar to a term structure. It is therefore natural to 
consider using principal component analysis to identify the key uncorrelated sources of 
information, and there will only be a few.  
 
A principal components analysis of daily changes in the fixed-strike volatilities shown in 
figure 1 may not give very good results, because the data will be rather noisy as mentioned 
above. But look at the deviations of the same fixed strike volatilities from the at-the-money 
volatility, shown in figure 3. The fixed strike deviations display less negative autocorrelation 
and are even more highly correlated and ordered than the fixed strike volatilities themselves. 
A strong positive correlation with the index is evident during the whole period. 
  
 
 
 

 
 
 

Figure 3: Deviations of 1mth Fixed-Strike Volatility from At-the-Money 
Volatility
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The PCA of fixed strike deviations ∆(σK - σATM) of a fixed volatility maturity τ is based on 
the model3  
 

∆(σK - σATM) ≈ ωK,1  P1  + ωK,2  P2  + ωK,3  P3      (2) 
 
Daily data on ∆(σK - σATM) is used to estimate the first three principal components (these are 
the daily time series  P1,  P2 and  P3 ) and the constant factor weights ωK,1 , ωK,2  and ωK,3.  
 
A PCA for 3 month implied volatility skew deviations based on the data shown in figure 4b 
gives the output in table 1. It is clear from table 1a that the first principal component is only 
explaining 74% of the movement in the volatility surface and that the second principal 
component is rather important as it explains an additional 12% of the variation over the 
period. It is interesting that the factor weights shown in table 1b indicate the standard 
interpretation of the first three principal components in a term structure, as parallel shift, tilt 
and convexity components. Note that sparse trading in very out-of-the money options implies 
that the extreme low strike volatilities show less correlation with the rest of the system, and 
this is reflected by their lower factor weights on the first component. 

                                                        
3 Now that a time series analysis will be employed, to avoid confusing notation the time variable τ 
which indicates the volatility maturity has been dropped. The exposition in sections 4 and 5 takes it as 
given that a volatility maturity has been fixed (at either 1 month, 2 months or 3 months in this paper). 

Figure 4a: 3mth Fixed Strike Volatilties, ATM Volatility and the FTSE
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Figure 4b: 3mth Fixed Strike Volatility Deviations from ATM Volatility
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Figure 4c: 2mth Fixed Strike Deviations from ATM Volatility
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Table 1a: Eigenvalues of Correlation Matrix 
 

 
Component Eigenvalue Cumulative R2 

   

P1 13.3574 0.742078 

P2 2.257596 0.8675 

P3 0.691317 0.905906 

 
 

Table 1b: Eigenvectors of Correlation Matrix 
 

Factor Weights 

    

 P1 P2 P3 

4225 0.53906 0.74624 0.26712 

4325 0.6436 0.7037 0.1862 

4425 0.67858 0.58105 0.035155 

4525 0.8194 0.48822 -0.03331 

4625 0.84751 0.34675 -0.19671 

4725 0.86724 0.1287 -0.41161 

4825 0.86634 0.017412 -0.43254 

4925 0.80957 -0.01649 -0.28777 

5025 0.9408 -0.18548 0.068028 

5125 0.92639 -0.22766 0.13049 

5225 0.92764 -0.21065 0.12154 

5325 0.93927 -0.22396 0.14343 

5425 0.93046 -0.25167 0.16246 

5525 0.90232 -0.20613 0.017523 

5625 0.94478 -0.2214 0.073863 

5725 0.94202 -0.22928 0.073997 

5825 0.93583 -0.22818 0.074602 

5925 0.90699 -0.22788 0.068758 

 
Principal component analysis of ∆(σK - σATM) for a fixed maturity τ has given some excellent 
results (Box 2). Alexander (2000) shows that for fixed maturity volatility skews in the 
FTSE100 index option market during most of 1998, 80-90% of the total variation in skew 
deviations can be explained by just three key risk factors: parallel shifts, tilts and curvature 
changes. The parallel shift component accounted for around 65-80% of the variation, the tilt 
component explained a further 5 to 15% of the variation, and the curvature component 
another 5% or so of the variation. The precise figures depend on the maturity of the volatility 
(1 month, 2 month or 3 month) and the exact period in time that the principal components 
were measured. 
 
The immediate conclusion must be that linear parameterizations of the skew and the 
consequent limitation of movements in volatility surfaces to parallel shifts alone is an over 
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simplification of what is actually happening in the data. The next section develops a model 
that encompasses changes in the tilt and curvature of the volatility skew as well as a parallel 
shift. So the range of the skew can widen or narrow as the underlying price moves up or 
down, and change its curvature also.  
 
5. The Dynamics of Fixed Strike Volatilities in Different Market Regimes 
 
It follows from (2) that the movement in fixed-strike volatilities as the underlying moves will  
be determined by the movement in the principal components. Each component is assumed to 
have a linear relationship with daily changes ∆S in the underlying. A linear model with a 
time-varying parameter γi, t  is estimated for each component: 
 

Pi, t = γi, t  ∆St + εi, t     (3) 
 
where the εi are independent i.i.d processes. The movement in fixed-strike volatility 
deviations in response to movements in the underlying will be determined by the (constant) 
factor weights in the principal component representation (2) and the (time-varying) gamma 
coefficients in (3).  
 
Figure 5 depicts the movement in skew deviations as the index price moves up, according to 
the signs of γ2 and γ3. Note that γ1 represents the trend component and is always assumed to 
be positive, an assumption that is justified by the empirical analysis below. The coefficient γ2 
determines the tilt of the fixed strike deviations and γ3 determines the convexity, so the four 
combinations shown represent all stylized movements in the skew deviations.  
 
 
 
σΚ(t) - σATM(t)

KL K1 K2

KH
dL

dH

Strike

Figure 5a: Non-Parallel Shift in Skew Deviations as Price Moves Up

S  

γ 1  > 0, γ2 < 0, γ 3 > 0

eH

σΚ(t) - σATM(t)

KL K1 K2

KH
d L

dH

Strike

Figure 5c: Non-Parallel Shift in Skew Deviations as Price Moves Up
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eH

σΚ(t) - σATM(t)
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d H
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Figure 5d: Non-Parallel Shift in Skew Deviations as Price Moves Up
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Figure 5b: Non-Parallel Shift in Skew Deviations as Price Moves Up

S  

γ 1 > 0, γ 2 > 0, γ3 > 0

eL



Principal Component Analysis of Volatility Smiles and Skews 

Prof. Carol Alexander, ISMA Centre 11 30/04/01 

The deviation at the high strike KH is denoted dH before the move and eH after the move, and 
similarly dL and eL denote the before and after deviations at the low strike volatility KL. The 
relation between dH and eH and the relation between dL and eL will depend on the values of γ1, 
γ2 and γ3. When γ2 is negative it is clear from figures 5a and 5c that eH will be less than dH and 
that eL is normally a little greater than dL, unless γ2 is very large and negative.4 On the other 
hand when γ2 is positive as in figures 5b and 5d, it is clear that eL > dL but now the sign of eH - 
dH will ambiguous. But normally eH will be a little less than dH unless γ2 is very large indeed.  
 
The movements in skew deviations are translated in figure 6 to movements in the fixed strike 
volatilities themselves. In both cases there will be a change in the range of the skew as the 
index moves. When γ2 is negative the range will narrow as the index moves up and most of 
the movement will be coming from low strike volatilities. But when γ2 is positive the range 
will widen as the index moves up and there will be more movement in high strike volatilities. 
 

                                                        
4 If γ3 were extremely large and negative then eH would be less than dH but this never occurs 
empirically. 
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Figure 6b: Effect on Fixed-Strike Volatilities as Price Moves Up (γ2 > 0)
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Figure 6a: Effect on Fixed-Strike Volatilities as Price Moves Up (γ2 < 0)
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Normally eL is a little 

greater than dL  unless γ2 

becomes very large and 
negative. The range of the 
skew will narrow, more so 
when γ2 is very large and 
negative.

But eH will be less than dH 

so most of the movement 
in the skew will come from 
the low strike volatilities 
and there may be little 
movement in high strike 
volatilities.
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The principal components have zero unconditional covariance; however by (3) their 
conditional covariance Covt (Pi, t , Pj, t ) = γi, t  γj, t  σt

2 where σt
2 is the conditional variance of 

the index, Vt (∆St). In this paper the time-varying parameters are estimated using an 
exponentially weighted moving average model as an approximation to an integrated bivariate 
GARCH(1,1). This choice allows one to bypass the issue of parameterization of the bivariate 
GARCH which is a difficult issue in its own right.5 It does of course introduce another issue, 
and that is which smoothing constant should be chosen for the exponentially weighted 
moving averages. For the sake of conformity with standard covariance calculations such as 
those in JP Morgan/Reuter's RiskMetrics6 the smoothing constant λ = 0.94 has been taken. 
 
Exponentially weighted moving average estimates of γ1, γ2 and γ3 for each of the 1 month, 2 
month and 3 month maturities have been calculated for each day from the beginning or March 
1998 to the end of March 1999. These time series are shown in figure 7. The first point to 
note about all the graphs is that the estimate of γ1 is positive throughout, and that it is 
generally higher and more stable than the estimates of γ2 and γ3. Since γ1 captures the parallel 
shift component of movements in the skew, we can deduce that most of the movement in the 
skew at all maturities can be attributed to a parallel shift up when the index falls. 
  

                                                        
5 A detailed discussion of this is given in Alexander 2001a, b or c.  
6 Available from www.riskmetrics.com. 

Figure 7a: Gamma Estimates for 1mth Volatilities
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Figure 7b: Gamma Estimates for 2mth Volatilities
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Figure 7c: Gamma Estimates for 3mth Volatilities
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The second point to note about figure 7 is that for the 2 month and 3 month maturities the 
index seems to have little effect on the second and third principal components, in fact the 
estimates of γ2 and γ3 are close to zero for almost all the sample period. There are a couple of 
negative γ2 periods during the springs of 1998 and 1999, when the range of the skew will have 
narrowed as the index moved up and widened as it moved down. But this effect is not as 
pronounced as it is in the 1 month skew. Therefore, and particularly during the crash period, 
the results show that it is reasonable to apply parallel shift scenarios for fixed strike 
volatilities of 2 month and 3 month skews in the strike metric. 
 
A different picture emerges, however, for the movement of the 1 month skew (figure 7a). The 
estimate of γ2 is often negative, particularly during the spring of 1998 and the spring of 1999. 
At these times the range of the skew was clearly decreasing when the index rose and 
increasing when the index fell, an effect that is very evident in figure 1. But there are two 
notable periods, just before the beginning of the crash and during the market recovery, when 
the estimate of γ2 was strongly positive and γ3 was strongly negative (this is the case shown in 
figure 5d). On 14th July 1998, several days before the FTSE 100 price started to plummet, 
there was a dramatic increase in γ2 and decrease in γ3 so that γ2 > 0 and γ3 < 0. During this 
period the range of the 1 month skew will have narrowed as the index fell. Then between 8th 
and 12th October 1998, the FTSE 100 jumped up 8% in 2 days trading, from 4803 to 5190. At 
the same time γ2 jumped up and γ3 jumped down, so that again γ2 > 0 and γ3 < 0, and the range 
of the 1 month skew will have widened as the index moved up. The narrowing of the range of 
the skew as the index fell, and the consequent widening again as the market recovered, has 
been driven by movements in high strike volatilities. Examination of figure 1 shows that 
during this unusual period the high strike volatilities did indeed move more than usual. 
 
 
6. Quantification of ∂∂σσ/∂∂S and the Volatility Surface 
 
For a fixed volatility maturity τ we assume that 
 

∆σATM, t = β t  ∆St + εt        (4) 
 
where the error process is again i.i.d. To capture the dependence of ΑΤΜ volatility changes 
on the current market the time-varying parameter βt is again estimated with an exponentially 
weighted moving average with λ = 0.94. These estimates are shown for τ = 1, 2 and 3 months 
in figure 8. As expected the sensitivity of ATM volatility to changes in the FTSE is greater in 
1 month options than in 2 month options, which in turn have greater sensitivity than 3 month 
options.  
 
There is a striking pattern in figure 8: it is very clear indeed that the sensitivity of ATM 
volatility moves with the level of the index. It does not jump unless the index jumps. This 
finding contradicts the assumptions of Derman's models that have three distinct regimes, 
according as β = 0 (sticky delta), β < 0 (sticky strike) and β << 0 (sticky tree); in this 
framework the market will jump between different regimes as the value of β jumps between 
different constant values and ∂σATM/∂S = β. 
 
The empirical results of figure 8 suggest that that ATM volatility sensitivity βt changes over 
time because the level of the index changes over time. Suppose therefore that 
 

∂σATM(τ)/∂S = 2a(τ)S where  a(τ) < 0. 
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From (1), ∂σK(τ)/∂S = 2a(τ)S + b(τ), giving the quadratic parameterization of the volatility 
surface: 
 

σ(S,τ) = a(τ)S2 + b(τ)S + c(τ) 
 
The model of time-varying ATM volatility sensitivity that depends on the index level is 
therefore equivalent to a second order Taylor approximation to the volatility surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the discrete time framework, combining (2), (3) and (4) yields: 
 

∆σK, t ≈ βK, t ∆St     (5) 
 
where the sensitivity of the fixed strike volatility to the index is given by 
 

 βK, t = βt + Σ ωK,i γi,  t    (6)  
 
Figure 9 shows the estimates of βK, t for strikes K between 4675 and 5875 and volatilities of 1 
month maturity that are obtained from (6). These lowest and highest strikes are picked out in 
red and green. The index sensitivity of all fixed strike volatilities are negative, so they move 
up as the index falls but by different amounts.  
 
During the crash period the sensitivities of all volatilities are greater and the change in the 
5875 strike volatility sensitivity is very pronounced at this time. Before the crash it ranged 
between -0.005 and -0.01, indicating an increase of between 0.5 and 1 basis points for every 
FTSE point decrease. At the beginning of the crash the 5875 sensitivity increased to about 1.5 
basis points, and since the FTSE fell by 1500 points during the crash, that corresponds to a 
22.5% increase in 5875 volatility. Then at the height of the crash between 1st and 9th October 
the 5875 sensitivity became increasing large and negative as the FTSE index reached a low of 
4786 on 5th October. On 9th October the 5875 sensitivity was an impressive -0.028, indicating 
a further 2.8 basis point increase in 5875 volatility would have occurred for every point off 
the FTSE at that time. 
 

Figure 8: ATM Volatility Sensitivity and the FTSE 100
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Around the time of the crash an increase in low strike volatility sensitivities is much less 
pronounced. What is interesting about the 4675 volatility sensitivity is that it is often far 
greater (in absolute terms) than the high strike volatility sensitivities. So most of the 
movement will be coming from the low strikes as the range of the skew narrows when the 
index rises and widens when the index falls. Very approximately the 4675 volatility gains 
about 1 or 2 basis points for every point fall in the FTSE index during the period, although the 
sensitivity varies considerably over the period. At the end of the data period it is 
extraordinarily large, and it can be seen in figure 1 that range narrowing of the skew was very 
considerable at this time.  
 
7. Summary and Conclusion 
 
This paper has presented a new principal component model of fixed strike volatility 
deviations from ATM volatility. It has been used to quantify the change that should be made 
to any given fixed strike volatility per unit change in the underlying, that is ∂σ/∂S. This 
quantity is an important determinant of an option delta when volatility is not constant. Market 
traders often approximate this sensitivity by ∂σ/∂K but the method outlined here explains how 
to calculate the volatility sensitivity to underlying price changes directly. This sensitivity has 
been found to depend on the current conditions in the equity market. 
 
The methods of this paper have also been used to construct scenarios for the skew surface in 
equity markets that should accompany given moves in the underlying price. In many cases 
these scenarios should involve non-parallel shifts in the surface. Derman's 'sticky' models 
only allow for parallel shifts, and correspond to a local linear approximation for the volatility 
surface. The principal component approach that has been developed here allows for non-
parallel shifts, which are shown to be particularly important for short maturity volatilities. It 
has also been shown that the model corresponds to a local second order approximation for the 
volatility surface. 
 

Figure 9: Change in 1mth Fixed Strike Volatility per Unit Increase in Index
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Empirical application of the model to the FTSE 100 index options has shown that 2 month 
and 3 month skews should normally be shifted parallel as the index moves, as predicted by 
Derman's models. In the range-bounded markets in the spring of 1998 and 1999 there was 
also some narrowing in the range of the skew as the index moved up (and widening as the 
index moved down) but the range narrowing of the skew in a range bounded market scenario 
is much more pronounced in the1month skew.  
 
The empirical analysis has revealed two distinct regimes for short-term volatility in equity 
markets. In stable markets the range of the 1 month skew narrows as the index moves up and 
widens as the index moves down. Most of the movement is in low strike volatilities and high 
strike volatilities remain relatively static as the underlying moves. There is a second regime in 
short-term volatilities that applies to the jumpy markets during a market crash and recovery 
period. In this regime the high strike volatilities move much more than usual and in the 
recovery period after the 1998 crash the 1 month skew range actually widened as the index 
moved up. 
 
The model present in this paper has very general applications because it admits non-linear 
movements in the volatility smile as the underlying moves. Principal component analysis is 
shown to be a powerful analytical tool for the construction of scenarios of the implied 
volatility smile surface in different market regimes. 
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