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Abstract

Derivative pricing is especially challenging in novel
and illiquid markets where pricing relies greatly on
assumptions and models rather than on known flow
of market prices. In the novel market of shekel bond
options the estimate of implied volatility for different
strikes could be based on the information about other
- sometimes more liquid - financial instruments in the
market. Here we show relevance but not equivalence
of the information from the market of swaps (volatil-
ity of swap rates) to the market of bonds (volatility
of bond prices). In particular we show why the proxy
to bond’s yield to maturity from the swap market
should be based on the swap rate maturing simulta-
neously with the bond. Numerical simulations and
analysis of historical data are applied to examine the
approximation and assumptions which, in the pres-
ence of swaption market, can be applicable for in-
ferring information about bond price volatility smile.
Hypothetically the procedure is invertible - inferring
information about swap rate volatility smile based on
the data from the bond options market. Our analysis
is implemented for the Israeli market while the ratio-
nale is relevant for similar instruments elsewhere.

1 Introduction

Pricing of vanilla contingent claims (our case con-
sists of bond options and swaptions) in the market is
based on Black-Scholes formula. Black-Scholes for-
mula assumes that the fluctuations of the logarithm
of the asset price (bond price or swap rate in our case)
are normally distributed. Traders correct that gener-
ally vague assumption by using non-constant implied
volatility represented as either a function of strike or
as a function of option’s delta in the Black-Scholes
formula. Therefore the notion of implied volatility is
an alternative way to cite an option price.

In illiquid market (the market of shekel bond op-
tions1 belongs to this category) the flow of bid and
ask prices is not readily available or the spreads be-
tween bid and ask prices at various strikes are large.
However, bond price is not a standalone asset as its
price is defined by the corresponding interest rate
curve. Therefore we expect interplay between options
in two interest rate markets: 1) bonds and 2) swaps.
Although the 1) bond yields and 2) swap rates are
derived from different interest rate curves, the values

1Shekel options are traded on specific bonds listed in Table

1. An alternative practice of trading options on cheapest to

deliver bond futures is adopted, for example, in the US market.
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and fluctuations over time of these two notions pos-
sess similarities which is supported by our empirical
analysis of the shekel market.

Here we analyze the plausible connection between
the contingent claims on bonds and on swaps. As-
suming that sometimes the swaption market could be
more liquid than the bond options market, our goal
is to estimate how a gist about the volatility smile
for bond options can be practically inferred from the
volatility smile for swaptions. Of course in cases when
bond options market is more liquid than the swap-
tions market the procedure is reversible.

A simple approximate relationship between bond
price volatility (σB) and yield volatility (σy) is pro-
vided by a well known approximation formula σB ≈
Dy σy (D is bond’s duration, y is yield to maturity,
more details about the formula are provided further
in text). Here we analyze the validity of this relation-
ship for pricing purposes in the framework of infer-
ring implied volatility from one market to the other
as described above.

The notation and methodology are introduced in
”Background and methods”. The findings are pre-
sented in the ”Results” sections which is followed by
”Discussion”. Derivations and more details are pro-
vided in Appendices A, B.

1.1 Background and methods

Given a zero coupon interest rate curve derived from
the bonds’ market, the price of a bond is related to
the interest rates as follows:

Bond’s dirty price = C

N∑
i=1

Ti − Ti−1

(1 + ri)
Ti

+

Par · 1

(1 + rN )
TN

with

C Fixed coupon
i i-th future cashflow
ri Annually compounded zero coupon in-

terest rate corresponding to time Ti
N Number of future annual coupon pay-

ments
Ti Time from now to the i-th cash flow

measured in years, T0 = 0
Par Bond’s price at maturity without inter-

est; the amount of coupon payment cor-
responds to the percent of Par

We will further assume that the term Ti − Ti−1
which is very close to 1 for bonds with annual
coupon2, is equal to 1:

Bond’s dirty price = C

N∑
i=1

1

(1 + ri)
Ti

+

Par · 1

(1 + rN )
TN

(1.1)

1.1.1 Bond price volatility versus yield
volatility

A more convenient representation of the bond price
in terms of interest rates is based on the notion of a
single interest rate called yield to maturity (y) which
defines a discounting of the future cashflows leading
to the correct bond price instead of discounting with
a number of different interest rates from the curve in
formula (1.1):

Bond price = C

N∑
i=1

1

(1 + y)
Ti

+Par· 1

(1 + y)
TN

(1.2)

Following ample literature, eg [1], [3], the linear
sensitivity of the bond price (B) to small fluctuations
in continuously compounded yield to maturity is re-
lated via a notion called duration (D) for the case of
continuous compounding. It is called modified dura-

2Bond options in Tel Aviv stock exchange are traded on

Shahar bonds which bear fixed annual coupon.



3

tion for the case of non-continuous compounding3:

dB

dy
= −DB . (1.3)

Therefore the relative change in bond price can
be approximated to the first order with the relative
change in yield to maturity as follows:

∆B

B
≈ (−Dy)

∆y

y

implying an approximate relationship between the
volatilities of bond price and yield (eg. [1]).

σB ≈ Dyσy . (1.4)

However we could not find information concerning
the validity of approximation (1.4) for bond option’s
pricing, in case yield volatility is available, in the lit-
erature and our study intends to fill at least part of
this gap.

The implied volatility of the option is derived from
the option price. Option price is equal to the dis-
counted expectation of option’s payout at maturity
[1]:

Call(Bond price) =

e−rT
∫ ∞

Strike B
(B − StrikeB)πB(B) dB

Call(yield) =

e−rT
∫ ∞

Strike y
(y − Strikey)πy(y) dy .

Here π(·) denotes the risk neutral probability den-
sity4 of the corresponding asset value at option’s ma-
turity, T is the time to delivery of option’s payout if

3For the case of annual compounding the value of duration

is computed as follows, based on formulae from Chapter 4 of

[1]: D =

C

N∑
i=1

1

(1 + ri)
Ti

+BTN ·
1

(1 + rN )TN

B·(1+y)
with y being

yield to maturity.
4Using the terminology of [1], in the world which is risk

neutral with respect to zero-coupon bond maturing at time T .

the option expired in the money and r is continuously
compounded interest rate corresponding to T .

To see how the implied volatilities for yield and
bond price can be related, we notice from formula
(1.2) that whenever the yield grows the bond price
decreases and vice versa - when the yield decreases
the bond price grows. That is the relationship be-
tween the bond yield and bond price is monotonous.
Therefore whenever we know the risk neutral proba-
bility of the yield (at option expiry) to be below some
number, say Πy(y < a) = A, we also know that the
risk neutral probability for the bond price (at option
expiry) to be above B(a) is the same5:

ΠB(B > B(a)) = Πy(y < a) = A . (1.5)

In this case, whenever we know the probability distri-
bution of bond yield (at option expiry), we will know
the probability distribution of bond price (at option
expiry). So the price of a vanilla option on bond
price can be computed given risk neutral probability
distribution of bond’s yield to maturity as presented
in Appendix B. Therefore, whenever we are provided
with yield volatility smile and thus with the option
prices on yield, we can estimate the prices of the op-
tions on bond and to further derive volatility smile
for the bond price.

The above mentioned approach is based on the nu-
merical differentiation of option prices and further
integration with respect to risk neutral probabilities.
Therefore one needs to know the yield volatility smile
for a wide range of strikes covering probability almost
1 of yield’s forward value being in the range. So the
approach is purely theoretical in case of poorly liquid
market and is called ”theoretical” later on in text. Fi-
nally, in simulations, the volatility smile for the bond
price obtained based on the theoretical approach can
be compared with the volatility smile obtained based
on the approximation in formula (1.4). In this way
the feasibility of the approximation formula (1.4) is
tested. Figure 1 depicts the schematic representation
of the above mentioned approach.

5Formula (1.5) is correct as payouts of digital calls on bond

price are simultaneous with the payouts of digital puts on yield

with corresponding strikes.
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Figure 1: Schematic representation of the ”theoretical” (A) and approximation based on formula (1.4) (B)
approaches to computing bond price implied volatility smile when the volatility smile for yield to maturity is
known. (A) Given volatility smile for bond’s yield, corresponding option prices are computed. Bond option
prices are derived from the prices of the yield options using equivalence of probabilities mentioned above.
Volatility smile for bond price is computed directly from the option prices. (B) An approximated volatility
smile for bond price is computed directly from the yield volatility smile using formula (1.4). Yield option
prices and bond option prices can be directly computed given corresponding volatility smiles. The simulations
aimed at analyzing the accuracy of approach based on formula (1.4) provide us with the volatilities and bond
option prices in (A) which are further compared with the volatilities and bond option prices in (B). Yield
volatilities in (A) and (B) are the same. Bond price volatilities and bond option prices in (A) and (B) are
different.
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Pricing of bond options by traders should satisfy
high standard of accuracy. Here we consider the
requirement for the price to be within the bid-ask
spread (which is usually limited by several tens basis
points6 of the principle in the shekel swaption mar-
ket). Nevertheless, the validity of using the approx-
imation (1.4) for bond option pricing is unknown.
To this end, the ”theoretical” approach is used to
assess the accuracy of formula (1.4) in simulations:
bond option prices are derived based on two meth-
ods: 1) ”theoretical”, 2) approximation based on for-
mula (1.4) and the results of the two approaches are
compared.

We attempt to use the implied volatility of swap
rates (from swaption market) as a proxy for pricing
bond options. Here we rely on a possible closeness
between the fluctuations of the swap rate and bond’s
yield to maturity7. The closeness of fluctuations is
tested for empirical data. An example of interest rate
curves from the swap and government bonds markets
is depicted in figure 2A. The spread between the two
curves is depicted in Figure 2B. In this example the
curves are usually very close one to the other. The
magnitude of the difference between the interest rates
corresponding to the same periods is smaller than the
interest rates by tens times, which is typical. However
the spread between the swap and bond curves is large
enough to consider these two markets separately.

Options on swap rate (swaptions) and bond op-
tions are both priced based on Black Scholes formula.
The Black-Scholes framework assumes normal distri-
bution of asset’s relative fluctuations. However rel-
ative fluctuations of bond price and yield (assuming
that swap rate is a proxy for the bond yield) can-
not be normal simultaneously8. Therefore simplis-

6One basis point of a quantity is equal to 0.0001 or 0.01%

of that quantity. If the principle of the option is 10 million

shekel, then 1 basis point would be equal to 1,000 shekel.
7Interest rate curves in the swap and bond markets are dif-

ferent due to different credit properties of swaps and bonds.

The differences between zero coupon interest rates in those two

markets vary along the interest rate period and along registra-

tion time. Anyhow, the difference is tens times smaller than

the rates themselves.
8Assume that σy is constant in formula (1.4). Different

tic assumption of constant implied volatility for both
parameters simultaneously necessarily leads to arbi-
trage opportunities. So the volatility smile for at least
one of the two parameters (1. bond price, 2. bond
yield) must be non flat. Finally, if one of the two as-
sets, say yield, has non-flat volatility smile, still the
non-flat shape of yield smile does not necessarily lead
to the flat bond price smile. Therefore we apriori use
the entire volatility smile (instead of a single value
of the at the money volatility) for the swap rates in
order to infer information about presumably non-flat
volatility smile for the bond price.

1.2 Swap rate versus bond yield to
maturity

From year 2011 bond options in Tel Aviv stock ex-
change are traded on two Shahar bonds paying fixed
annual coupon. The two bonds are listed in Table 1.
Options’ time to expiry is up to 3 months.

Here we consider the bond and the fixed leg of the
swap9 both paying fixed annual coupon. Bond and
swap both pay annually a constant amount, coupon
and swap rate respectively. However, only bond pays
Par amount at maturity, which constitutes the con-
ceptual difference between the bond price and the
net present value (NPV) of the swap (fixed) rate pay-
ments10. Still, in the simplistic world where bond and
swap are priced based on the same interest rate curve,

strikes y would then imply non-constant values of σB . Mod-

ifications of D due to changing y do not compensate for the

effect of changing y. Our argument is applied to approxima-

tion formula and is not a rigorous proof. However it clearly

demonstrates a clear phenomenon. A more rigorous proof can

be constructed based on the definition of the yield to maturity

notion.
9We consider swap whose fixed leg provides annual pay-

ments. The market swap rate then is equal to the fixed annual

payments whose net present value (NPV: the sum of future

cashflows discounted to today) is equal to the NPV of the float-

ing leg payments. Standard shekel interest rate swaps (IRS)

provide quarterly floating rate payments and annual fixed rate

payments.
10Formally the Par value might be paid at the maturity of

the swap however the payments would identical at the floating

and the fixed legs and therefore practically this formal payment
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Figure 2: Upper plot. Interest rate curves from the bond (blue) and swap (orange) markets measured in
percents. Below plot. Difference between the interest rates of the two curves (spread) measured in basis
points; 1bp = 0.01%. The spread is tens times smaller than the interest rates themselves. For most frequently
used time periods (up to 20 years) the spread is bounded by 15 basis points. The curves correspond to April
11, 2012. In this typical example the two curves are close to each other both in terms of their values and in
terms of how the interest rates change over the tenor. Chart courtesy of Bloomberg LP.

Table 1: Shahar bonds on which options with 3 types of time to maturity (0-1 month, 1-2 months, 2-3
months) were traded in 2011-2012. The table corresponds to August 2012.
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bond coupon and swap rate are equal when the bond
is at par11 (see Appendix A). Moreover bond coupon
and swap rate are equal to annually compounded
yield to maturity of a bond in such a case (Appendix
A). However bonds are rarely traded at par. For ex-
ample, bond may pay 5% coupon while bond’s yield
to maturity is only 3.5%. Nevertheless, as we show in
Appendix A, the value of bond’s yield to maturity is
rather conservative compared to ”fluctuations”12 of
bond’s coupon from the yield to maturity. Therefore,
when bond and swap are priced with the same inter-
est rate curve13 (a seemingly vague simplification is
discussed based on the results of the analysis of em-
pirical data further in text), bond’s yield to maturity
and swap rate will be close14 even if the difference be-
tween bond’s yield to maturity and coupon is large,
say 3% (see Table 3 and Figure 13 in Appendix A).
In such cases bond’s yield to maturity and swap rate
correspond to nearly equivalent notions but in differ-
ent markets, assuming the schedule for swap’s fixed
payments and bond’s coupon payments is the same,
say annum.

Similarity of the two notions (1. bond yield to ma-
turity; 2. swap rate) when both bond and swap’s
fixed leg have the same schedule of payments justi-
fies our motivation to relate information about the
volatility of swap rates to volatility of bond’s yield
to maturity or vice versa. Note that bond’s duration
used in formula (1.4) is usually smaller than bond’s

is irrelevant when both legs are of the same currency.
11That is (clean) bond price is equal to bond’s par value

(value for which interest is paid).
12The value of the coupon is fixed during bond’s life and only

yield to maturity may fluctuate according to the fluctuations

of the interest rate curve. However mathematically we can

model the situation when the coupon changes and see that

the consequences for the yield to maturity (which depends on

both the interest rate curve and the coupon) are significantly

weaker than coupon’s ”change” (see Appendix A).
13An empirical comparison of yield to maturity and swap

rate is presented in Results section.
14Even when some bond is not at par, its yield to maturity

will usually be close to that of another bond at par, both bonds

having the same payments schedule, see Appendix A for more

details.

time to maturity. The relationship between the bond
and swap markets is analyzed for empirical data in
the Results section.

A practical tool to computing the bond price
volatility smile based on yield volatility smile would
be approximation formula (1.4). However approxi-
mation accuracy is a critical issue for correct trad-
ing. To this end we apply the simulations illustrated
in Figure 1 in order to test the accuracy of the ap-
proximation in formula (1.4) for the whole range of
strikes. We are not aware of other studies which have
analyzed the applicability of the accuracy of formula
(1.4) for pricing derivatives.

1.3 Data analysis

Similarity between the swap rates and bond yields
is the core assumption in our analysis. In order
to compare the swap rates and yield to maturity
from the market we analyze the historic data for
synthetic bond yield to maturity (5 years to matu-
rity, 5% coupon; bond yields were defined via his-
toric sovereign interest rate curves, data source: Hed-
geTech)15 and 5 years swap rate (data and chart in
Figure 2 courtesy of Bloomberg LP). Both sets of
data correspond to end of day measurement.

At each analyzed date the historic volatility was
computed for 66 previous measurements (approxi-
mately 3 months) as follows:

σhist(i) =√√√√ 1

65

i∑
k=i−65

(
ln

x(k)

x(k − 1)
− 1

66

i∑
k=i−65

ln
x(k)

x(k − 1)

)2

,

where x stands either for bond yield to maturity or
swap rate, the computed parameter corresponds to
day i.

Closeness of the data dynamics (simultaneous de-
crease or increase) was measured with the correlation
coefficient. Positive correlation (over time) between,
for example, volatility measurements in bond and
swap markets means that on average both param-
eters increase or decrease simultaneously. Correla-

15Shekel bond options are traded for the bonds whose ma-

turity is either below 5 years or above it, see Table 1.
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tion being 1, maximal possible value, also means that
the ratio between the fluctuations of both parame-
ters is constant: ChangeBonds(i) / ChangeSwaps(i)
= ChangeBonds(k) / ChangeSwaps(k) for any two
dates i, k. However positive correlation does not im-
ply that the changes are identical.

Most of time over the analyzed period the two pa-
rameters 1) 5Y swap rates and 2) yield to maturity
of 5 years bond paying 5% annual coupon are close
and decrease or increase simultaneously, see Figure
3. The correlation between the two parameters is al-
ways positive and most of time is above 0.8. The
correlation between the daily relative fluctuations of
the two parameters is depicted in Figure 4; it is al-
ways positive and most of time is above 0.5.

2 Results

Formula (1.4) and historic observations may serve as
a basis of a practical tool for inferring bond price im-
plied volatility smile from a swap rate implied volatil-
ity smile. Firstly the ”theoretical” approach (see
Methods) is applied to test the accuracy of the for-
mula (1.4) for bond yield to maturity instead of the
swap rate. Secondly we analyze the closeness be-
tween the volatility of bond yield to maturity and
swap rates for historic data. Finally the findings are
discussed.

2.1 Testing with the ”theoretical” ap-
proach: accuracy of approximat-
ing bond price vol based on bond
yield vol according to formula (1.4)

The tests were conducted for the options having the
properties similar to those of the traded bond op-
tions (Table 1). Tested options had 3 months to
maturity16 and the underlying bonds had 5 years to
maturity. The tests were implemented for two kinds
of yield volatility smile: 1) artificial flat smile with

16The ”theoretical” approach compares option prices (Fig-

ure 1). The difference between option prices decreases when

option’s time to maturity decreases. We consider the maximal

possible (for shekel bond options) time to maturity to account

for maximal possible errors.

volatility 0.35; 2) volatility skew observed once in
USD swaption market. Detailed demonstrations of
the exemplar results for both kinds of volatility smile
are depicted in Figures 5-8. Upper parts of Figures
5-8 demonstrate volatility smile for the yield and two
volatility smiles of the bond price, one obtained via
formula (1.4) and the other resulting from ”theoret-
ical” reconstruction. The lower parts of figures 5-8
demonstrate option prices obtained based on the two
volatility smiles for the bond price and difference be-
tween the option prices. The graphs in Figures 5, 7
are depicted versus strikes while in Figures 6, 8 the
graphs are depicted versus delta. Visualization of the
results versus delta provides the possibility to see how
”probable” are certain parameters, eg. whether the
strike corresponding to the maximal difference be-
tween the two graphs of option prices is close to the
at the money value or not.

Maximal values of the difference between option
prices in the examples depicted in Figures 5 - 8 reach
7 and 2 basis points for the artificial flat and realistic
smile respectively as can be seen in the lower part
of these figures. The difference for the flat smile is
noticeably greater than the difference for the exam-
ple with the realistic shape of the smile. The graphs
versus delta (Figures 6, 8) show that the probabil-
ity of achieving the asset value with the greatest dif-
ference is not negligible however such event is not
that certain as it corresponds to a delta close to 0.1.
We conclude that existence of approximation errors
should be accounted for when formula (1.4) is used
to approximately construct volatility smile.

The examples in Figures 5, 7 correspond to specific
values of the bond coupon and yield to maturity: the
coupon and the at the money (ATM) yield are equal
to 3.5%17. Therefore the bond is almost at par (Ap-

17Here bond price corresponding to the yield equal to ATM

yield (B(ATM yield) = 100 as here ATM yield is equal to

the coupon) is not identical to the ATM bond price (ATM

Bond price = 100.0481) due to convexity adjustment [1]. For

more clarity, ATM bond is not necessarily at par when the

ATM yield = coupon, that is its price is different from 100, as

appears as example in column 6 of Table 2. ATM bond is at

par when (forward yield) = coupon. Forward yield is the yield

corresponding to the forward bond price
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Figure 3: Yield to maturity for 5 year bond and 5 year swap rate for the period of more than 6 years.
The values of the two parameters are usually close and usually increase or decrease simultaneously. Their
correlation coefficient (right axis) is always positive and is above 0.8 most of time.

Figure 4: Correlation between daily relative fluctuations of 5Y swap rates and yield to maturity of 5 years
bond with 5% annual coupon. Each correlation coefficient was computed for 3 months of measurements.
The correlation coefficients are always positive and most of time above 0.5.
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pendix A). We expanded the list of synthetic bonds
under consideration and implemented the same anal-
ysis for the bonds with coupon and yield ranging from
1% to 10%. The results for the cases when coupon
and ATM yield are the same are presented in Ta-
ble 2. We see that the maximal difference (column
2 of Table 2) increases with increase of the rates.
However what happens when coupon and yield to
maturity undergo unequal changes? Such cases are
demonstrated in Figures 9, 10. Figure 9 shows the
differences when the value of the (flat) yield volatil-
ity is equal to 0.15, and the differences for the case
of the flat volatility being equal to 0.35 are shown in
Figure 10. The differences between the option prices
increase with increase of volatility (Figure 9 vs Fig-
ure 10) and with increase of the interest rates. The
differences are rather small in case of volatility be-
ing 0.15. However in the case of volatility level equal
to 0.35 and when the rates approach 10% the differ-
ences in turn approach the level of the bid-ask spread
for option prices in the market. Anyhow for the cur-
rent level of 5Y interest rates, coupons below 6%,
and yield to maturity below 4%, the differences are
tolerable being below 10 basis points.

2.2 Swap rate versus bond yield to
maturity, analysis of historic data

This work tests an approach suggesting to use the
information about swap rate implied volatility smile
to assess the bond price implied volatility smile. As
the first step simulations have been used to test the
accuracy of approximating the bond price volatility
smile given bond yield volatility smile. However swap
rates and bond yields are not identical notions. To
this end as the next step of the tests the similarities
and differences between the swap rate and bond yield
to maturity are analyzed based on historic data. The
swap and bond’s fixed leg are assumed to have the
same schedule of payments in our analysis. At each
date yield to maturity of the bond paying 5% coupon
was derived based on the corresponding interest rate
curve (see Methods).

Historical volatilities for 5 years swap rates and
yield to maturity of 5 years bond paying 5% annual
coupon are depicted in Figure 11A. Visually both

volatilities possess similar pattern along time, nev-
ertheless there are differences between their values.
Volatilities weighted with the level of the rate, the
way volatilities appear in formula (1.4), are depicted
in Figure 11B together with correlation between the
values corresponding to the swap rates and bond
yields. The correlations are mostly high. Indeed,
in Figure 12 the histogram for the correlation values
shows that most of time the correlation is above 0.81.
However in rare cases and during short time periods
historical volatilities for bond yields could increase
while historical volatilities for swap rates decreased.
Still, for more than 75% of data the correlation was
above 0.5.

3 Discussion

3.1 General conclusions

• Approximation formula (1.4) connects volatility
of the bond yield to maturity to bond price.
Approximation accuracy decreases when either
yield to maturity, coupon or level of volatil-
ity increase. For the current market conditions
the accuracy is tolerable. The reason for the
approximation error lies in the ”local” validity
of the Black-Scholes formula: implied volatility
should only be used point-wise (for each strike)
to be able to correct for the price of the option.
However when the volatility smile for a bond
price option is derived from the volatility of yield
based on stochastic process with non-flat volatil-
ity smile, Black-Scholes formula (derived origi-
nally for stochastic processes with constant log
normal volatilities) would not provide a precise
price value. As explained in the Methods sec-
tion, actually volatility smiles for the bond price
and bond yield to maturity cannot be flat simul-
taneously. In simulations the accurate ”theoret-
ical” approach from the Methods section can be
implemented instead of approximation accord-
ing to formula (1.4). However the ”theoretical”
approach is impractical as it demands unrealis-
tically accurate knowledge of volatility smile for
a wide range of strikes.
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Figure 5: Example of applying the theoretical approach to specific yield volatility smile. In this example
ATM yield to maturity is equal to bond’s annual coupon being 3.5%, the yield has flat volatility. The
options have 3 months to expiry. Upper part. Red: implied volatility of bond yield, green: bond volatility
obtained by means of formula (1.4), blue: bond implied volatility obtained based on option prices. Lower
part. Left axis: option prices (based on ”green” and ”blue” volatilities from the upper panel). Right axis:
their difference (”dark green” = ”green” - ”blue”).
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Figure 6: The same example as in Figure 5, but versus delta. In this example ATM yield to maturity is
equal to bond’s annual coupon being 3.5%, the yield has flat volatility. The options have 3 months to expiry.
Upper part. Red: implied volatility of bond yield, green: bond volatility obtained by means of formula
(1.4), blue: bond implied volatility obtained based on option prices. Lower part. Left axis: option prices
(based on ”green” and ”blue” volatilities from the upper panel). Right axis: their difference (”dark green”
= ”green” - ”blue”).
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Figure 7: Example of applying the theoretical approach to specific yield volatility smile. In this example
ATM yield to maturity is equal to bond’s annual coupon being 3.5%, the yield has non-flat volatility profile
once observed in the USD swaption market. The options have 3 months to expiry. Upper part. Red:
implied volatility of bond yield, green: bond volatility obtained by means of formula (1.4), blue: bond
implied volatility obtained based on option prices. Lower part. Left axis: option prices (based on ”green”
and ”blue” volatilities from the upper panel). Right axis: their difference (”dark green” = ”green” - ”blue”).
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Figure 8: Same example as in Figure 7, but versus delta. In this example ATM yield to maturity is equal to
bond’s annual coupon being 3.5%, the yield has non-flat volatility profile once observed in the USD swaption
market. The options have 3 months to expiry. Upper part. Red: implied volatility of bond yield, green:
bond volatility obtained by means of formula (1.4), blue: bond implied volatility obtained based on option
prices. Lower part. Left axis: option prices (based on ”green” and ”blue” volatilities from the upper
panel). Right axis: their difference (”dark green” = ”green” - ”blue”).
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Table 2: Accuracy of approximation with formula (1.4) for the option maturing in 3 months on bond paying
fixed annual coupon with 5 years to maturity and constant yield volatility of 0.35. Bonds with coupons
varying from 1% to 10% (column 1) are considered assuming that (1) bond’s yield to maturity is equal
to the coupon, (2) implied volatility smile for bond’s yield is constant. Exemplar cases indicate that such
differences are larger when the volatility smile for yield is constant versus more ”realistic” smile profiles. So
by considering cases with constant smile we expect to obtain more extreme differences between option prices
computed with two different methods. The estimation of the accuracy is based on comparing ”correct” option
prices obtained with numerical simulations and option prices based on volatilities from formula (1.4). The
simulations were based on the flat yield volatility smile with volatility being 0.15. The maximal difference
in basis points (1 basis point = 1/10000 of bond’s par value) is shown in column 2. The probability of
achieving a close to maximal difference in option prices is not negligible noting that the volatility (columns
3, 4) of the bond price strikes at which the difference is maximal (column 5) is above the relative difference
between these strikes and ATM (column 6) bond prices. Yields to maturity corresponding to the ATM bond
prices in column 6 are shown in column 7. For comparison, the ATM yields are presented in column 8. One
may note that the ATM bond price (column 6), which is the expected future bond price, is not equal to
the par value (100) even though ATM yield (column 8) is equal to bond’s coupon (column 1). Actually the
ATM bond yield is not equal to the yield identified with the future bond price (column 7) due to convexity
of the relationship between bond price and bond yield. Exemplar estimates of the approximation accuracy
presented in column 2 of the Table are generalized to a wider range of coupons and yields in Figures 9, 10.
In particular the figures include cases when the bond coupon and ATM yield to maturity are different. In
Figure 9 the flat volatility is equal to 0.15 and in figure 10 the flat volatility is equal to 0.35.
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Figure 9: Generalization of the data in Table 1. Maximal difference between option prices computed
according to (1) numerical simulation demonstrated in Figure 1 and (2) based on the volatility obtained with
the approximation formula (1.4). The differences are provided for the time to expiry of 4-7 years (charts A-D
respectively), for at the money rates varying from 1% to 10% (y axis) and bond’s annual coupon varying
between 2% and 10% (x axis). The difference grows when either coupon or yield to maturity grow. However
the growth of the difference is larger for coupon’s increase than for yield’s increase. The yield to maturity
was assumed to have a flat implied volatility equal to 0.15. The differences are smaller than the differences
depicted in Figure 10 for the case of yield to maturity being equal to 0.35.
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Figure 10: Generalization of the data in Table 1. Maximal difference between option prices computed
according to (1) numerical simulation demonstrated in Figure 1 and (2) based on the volatility obtained
with the approximation formula (1.4). The differences are provided for the time to expiry of 4-7 years (charts
A-D respectively), for at the money rates varying from 1% to 10% (y axis) and bond’s annual coupon varying
between 2% and 10% (x axis). The difference grows when either coupon or yield to maturity grow. However
the growth of the difference is larger for coupon’s increase than for yield’s increase. The yield to maturity
was assumed to have a flat implied volatility equal to 0.35. The differences are larger than the differences
depicted in Figure 9 for the case of yield to maturity being equal to 0.15.
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Figure 11: Relationship between historic volatility for 5Y government bond (paying 5% annual coupon)
yield to maturity implied from Shahar zero curve and 5Y ILS IRS rate. The volatilities were computed
based on 3M measurements. A. Historic volatilities. B. Same volatilities as in A weighted with the level of
the corresponding rates. Blue line depicts the correlation coefficient between the weighted volatilities. Each
correlation coefficient was computed over 3 months of volatility measurements. Swap rates data courtesy of
Bloomberg LP.
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Figure 12: Frequency of correlation values, 3M (red, left axis) and cumulative frequency (blue, right axis).

• Rate volatilities in the swap market weighted
with the swap rate level behave similarly to the
yields in the bond market weighted with the
yield level in the sense that large modifications
occur simultaneously in both markets, although
rarely during short periods of time swap rate
historic volatility may be increasing while bond
yield historic volatility is decreasing.

3.2 Swap rates as a proxy to bond
yields

The standard approach for pricing European swap-
tions is based on the Black-Scholes formula with for-
ward swap rate being the forward asset price, e.g.
formula (26.5) in [1]. The forward swap rate is equal
to the expected forward swap rate in the risk neu-
tral measure used to derive the formula18. However
the forward bond yield is not equal to the expected
future bond yield when the expectation is computed
in the world which is risk neutral with respect to
bond maturing at time T (Chapter 27.1 of [1]). The
discrepancy between the forward yield and expected
forward yield is quantified by the notion called con-
vexity adjustment (Chapter 27.1 of [1]). For example,
the discrepancies between the ATM bond price and
the par value (100) in Figures 5, 7 are caused by the
convexity effect. It should be noted here that the sit-
uation when the ATM value of the bond option is not
equal to bond’s par is normal. Discrepancy between

18Annuity is used as a numeraire.

the way the swap rate 19 and the bond yield are con-
sidered in the pricing formulae was omitted from our
current analysis. Whenever the requirements from
the inference procedure are more than providing a
geometric proxy to the form of the volatility smile,
for example for finding arbitrages or for pricing in
the market with some non-negligible level of liquidity,
the above mentioned discrepancies should be further
analyzed.

Is the level of closeness between swap rates and
bond yields observed in Figures 3, 4 and 11 suffi-
cient to conclude that they are indeed close and the
method we analyze is eligible for producing the proxy
to the volatility smile of one of the parameters given
volatility smile of the other parameter? We pro-
pose that strictly positive non-negligible correlations
of daily relative fluctuations (Figure 4) and closeness
of the rates themselves20 (Figure 3) imply that both
rates have similar dynamics most of time. There-
fore one can apply formula (1.4) using the data from
the swap market to produce a proxy to the form of
the volatility smile for bond price. Of course the re-
sulting volatility smile should be taken as a proxy
only. For example, the level of the ”desirable” bond
price smile may presumably be corrected as if for the
at the money level uniformly along strikes, assuming
that the trader has an opinion with respect to the
at the money volatility. However when the dynamics
observed in the market is not similar (eg. relatively

19Whose volatility smile is one of the inputs for the inference

procedure.
20Most of time the level of rates is tens times higher than

the magnitude of their difference.
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rare cases of low or negative correlation between the
rates or between historic volatilities), or the levels of
either interest rates or volatilities are high (see inac-
curacy estimates in Figures 9, 10) one should keep in
mind that the procedure of volatility inference might
be less reliable.

The more liquid the market becomes the more
critical the inconsistencies between the swap rates
and bond yields become for the validity of the in-
ference procedure. Even in case of high level of bid-
ask spreads in illiquid markets of options on interest
rates we are cautious about the degree to which the
implied volatility of swap rates serves as a proxy to
bond yields. Our empirical tests can be at best re-
lated to the ATM level of volatilities. Extrapolation
of the conclusions from the analysis of empirical data
to non-ATM strikes along the volatility smile should
be considered as an ”educated guess”. Nevertheless
we propose that the geometric form of the volatility
smile reconstructed according to the inference pro-
cedure should be meaningful for volatility inference
between the markets especially when no other source
of information is readily available.

A Yield to maturity, coupon
and swap rates

Here we analyze mathematically the relationship be-
tween the bond’s coupon, yield to maturity and the
swap rate. Throughout this appendix we assume that:

1. The bond and the swap’s fixed leg have the same
schedule of annual payments.

2. The fixed and the floating legs of the swap have
the same payments’ schedule. For example, if
swap’s fixed leg pays an annual coupon then its
floating leg provides annual payments as well.

3. Bond and swap are priced based on the same
interest rates curve.

Assumptions 1 and 2 ease the formal part of deriva-
tions and their relaxing will leave us with the same
conclusions or with very close approximations replac-
ing some equalities. However assumption 3 is essen-
tial as it justifies the possibility to substitute discount

factors from the formula defining the swap rate into
the formula defining the bond price. Although the
mathematical derivations will not survive relaxing as-
sumption 3, analysis of empirical data shows that the
values of the swap rate and yield to maturity are most
of time relatively close (Figures 3 and 11). Their dif-
ference is always tens times smaller than the level of
rate and of course much smaller than the difference
between the swap rate and bond’s coupon.

A.1 Yield to maturity is equal to an-
nual coupon of the bond when
bond’s NPV is equal to par value

There is a unique yield to maturity for each bond.
Let us show that when yield to maturity is equal
to bond’s annual coupon, the NPV of such bond is
equal to its par value. Let the bond have n years to
maturity, its coupon and yield to maturity are equal
to c%, and its par value is equal to 1 (=100%). Then
we have, noting that the coupon is equal to yield to
maturity:

NPV = c

n∑
i=1

1

(1 + c)i
+

1

(1 + c)n

Now use the following propery: q + q2 + . . . + qn =
q q

n−1
q−1 by setting q = 1

1+c :

NPV = c ·

[
1

1 + c
·

1
(1+c)n − 1

1
1+c − 1

]
+

1

(1 + c)n

= c · 1

1 + c
· 1 − (1 + c)n

1 − (1 + c)
· 1 + c

(1 + c)n
+

1 + c

(1 + c)n
=

(1 + c)n − 1

(1 + c)n
+

1

(1 + c)n

= 1 = 100% .

Therefore NPV is equal to par value in this case.
In case NPV is not equal to the par value, the yield
to maturity cannot be equal to the bond’s coupon as
such equality necessarily implies the equality of the
NPV to the par value.
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A.2 Bond’s coupon being equal to the
swap rate implies that the bond is
at par and the swap rate is equal
to bond’s yield to maturity

The price of the bond can be directly computed as
the net of the future cashflows discounted based on
the interest rate curve:

B(c) = Par ·

[
c

N∑
i=1

(Ti − Ti−1)e−riTi + e−rNTN

]
.

(A.1)
For the swap rate, and assuming it is equal to the

bond coupon, we have:

N∑
i=1

(
e−(ri−1Ti−1−riTi) − 1

)
e−riTi =

c

N∑
i=1

(Ti − Ti−1) e−riTi , (A.2)

where left and right hand sides of the equality corre-
spond to the present value of the floating and fixed
legs of the swap respectively.

So for the bond under consideration, noting that
T0 = 0 in our case of computing the present value and
substituting the equality (A.2) into (A.1) we obtain:

B(c) = Par ·

[
N∑
i=1

(
e−(ri−1Ti−1) − 1

)
e−riTi

+ e−rNTN
]

= Par · e−r0T0 = Par .

Noting that the swap rate is equal to bond’s coupon
and that the bond is at par, we conclude from the
section A.1 that the swap rate is equal to the annually
compounded yield to maturity of the bond at par.

A.3 Bond’s yield to maturity is close
to the swap rate derived from the
same interest rate curve

Section A.2 shows that the yield to maturity of the
bond at par is equal to the swap rate21. Traded

21Again, our mathematical derivations here assume that the

swap and the bond are priced based on the same interest rate

curve and have the same payments’ schedule.

bonds are rarely at Par. Nevertheless here we show
that swap rate is close to bond’s yield to maturity
although they are not exactly the same as the bond
is not necessarily at par.

The price of the bond can be directly computed as
the net of the future cashflows discounted based on
the interest rate curve:

B(c) = Par ·

[
(c/k)

N∑
i=1

e−riTi + e−rNTN

]
, (A.3)

where c is bond’s coupon, k is the number of coupons
in a year, ri is continuously compounded interest rate
corresponding the time instant Ti of the i-th cashflow.
On the other hand bond’s price can be computed
based on the yield to maturity discounting:

B(y(c), c) = Par ·

[
(c/k)

N∑
i=1

e−yTi + Par · e−yTN

]
,

(A.4)
Therefore, after subtracting the left hand side of
equality (A.4) from the left hand side of (A.3) and
differentiating we have:

0 =
d

dc
[B(c) −B(y(c), c)] =

dB(c)

dc

−
(
∂B(y(c), c)

∂c
+
∂B(y(c), c)

∂y
· dy
dc

)
.

So

0 =
Par

k
·
N∑
i=1

(
e−riTi − e−yTi

)
+DB

dy

dc
,

where D is bond’s duration [1]. Finally,

dy

dc
=

Par ·
∑N
i=1

(
e−yTi − e−riTi

)
kDB

. (A.5)

The sum in the numerator of the derivative will
usually be a small number and almost zero for a
shallow interest rate curve. The ratio Par/(kBD)
will usually be close to 1/D because the bond with
Par = 100 will usually trade above 90. So in most
cases the derivative A.5 will be smaller than 1/D.
Considering a bond with 5 year to maturity, to the
first order, dy/dC will be at most 0.25 but in common
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market conditions much-much smaller. Very small
absolute value of the derivative in formula (A.5) im-
plies that to the first order bond’s yield to maturity
will usually be much closer to the swap rate than to
bond’s coupon22.

The closeness of bond’s yield to maturity to the
swap rate rather than to bond’s coupon is demon-
strated in the example presented in the Table 3. We
implemented various simulations with randomly gen-
erated zero rate curves and bond coupons and we
always got a very close proximity of yield to matu-
rity to the swap rate, always strongly outperforming
the proximity to bond’s coupon. The results of the
simulation are presented in Figure 13.

B Risk neutral probability of
the future asset value im-
plied from options’ market
(following material from [2])

It is known that the price of the call option is com-
puted via the following approach:

c(t,X, T ) =e−rτE [max(ST −X, 0)]

=e−rτ
∫ ∞
X

(ST −X)π(ST )d(ST ) .

It can be shown that

∂c(t,X, T )

∂X
= −e−rτ

∫ ∞
X

π(ST )d(ST ) = (B.1)

−e−rτ [1 − Π(X)] = −e−rτΠ(ST > X) ,

where Π stands for risk neutral cumulative probabil-
ity and π for risk neutral probability density.

Whenever bond’s yield to maturity grows the bond
price decreases and vice versa, that is the relation-
ship between the yield and bond price is monotonous.
Therefore whenever we know that the probability of
the yield is below some number, say Π(y < a) = A,
we also know that the probability for the bond price
to be above B(a) is the same:

Π(B > B(a) = 100 · e−aT ) = Π(y < a) = A . (B.2)

22As shown above, equality between bond’s coupon and yield

to maturity means that they both are equal to the swap rate

and that the bond is at par.

In this case, theoretically, whenever we know the op-
tion prices on yield (know the volatility smile for
yield), we will be able to estimate option prices for
the bond price (volatility smile for the bond price).
This approach can be used to check the formula for
approximating the bond price volatility by the yield
price volatility (from [1], p. 643):

σB = Dy0σy . (B.3)

where y0 is the initial value of the forward yield.

So, given some smile profile for σy we can build
a smile profile for σB by first computing the val-
ues of corresponding options on yield and then using
approach in formulas (B.1), (B.2) of this Appendix.
Further bond option prices are also computed based
on (B.3) and the two pricing results can be compared.
We have called it the theoretical approach, see Figure
1.

Please note, that using approach in (1.4) in order
to build a volatility smile for bond options needs in-
tegration implied from the formula (B.1) and there-
fore a value of the bond option should be known for
some strike. We assume that both options (for yield
and for a bond price) are near zero for the deepest
out of the money strike among the strikes consid-
ered in the smile. Formula (B.3) is used to find the
value of the volatility and option price (deepest out of
the money). Further option prices and volatilities for
other strikes are derived based on integration which
follows from formulas (B.1), (B.2).

The iterative procedure based on formula (B.1) is
as follows:

c(t,X + ∆X,T ) ≈ c(t,X, T ) − ∆X · e−rτ [1 − Π(X)] =

c(t,X, T ) − ∆X ·
[
e−rτ − e−rτ · Π(X)

]
=

c(t,X, T ) − ∆X ·
[
e−rτ − e−rτ · Π(ST (X) < X)

]
=

c(t,X, T ) − ∆X ·
[
e−rτ − e−rτ · Π(W (ST ) > W (x)

]
=

c(t,X, T ) − ∆X ·
[
e−rτ +

∂c(t,W, T )

∂W

]
,

where W is the strike for the yield, W (X) =
− ln(X/100)/T for zero coupon bond with continu-
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Table 3: The table contains an exemplar zero rate curve and yields to maturity for 5 year bonds with
different coupons. Yield to maturity of those bonds is very close to the 5 year swap rate (4.938%) even
though bonds’ annual coupons vary from 1% to 8%. This example demonstrates to what degree the swap
rate and bond’s yield to maturity are close to each other almost irrespective of the value of the coupon, that
is the bond may be rather far from being at par. The yield to maturity is much closer to the swap rate than
to the coupon as can be seen in the two rightmost columns of the table. The abbreviation YTM in the table
stands for yield to maturity.
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Figure 13: Relative differences between the 5 years swap rate and bond yield to maturity. The compared
values of bond yield and the swap rate are implied from the same interest rate curve. Interest rate curves and
bond’s coupons were randomly generated in 10,000,000 simulations. A. Histogram of the relative differences.
B. Cumulative distribution of the absolute value of the relative difference. For more than half of the data
the relative difference was bounded by 0.005. For almost all data the absolute value of the relative difference
was bounded by 0.03.
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ously compounded yield. Similarly,

c(t,X − ∆X,T ) ≈ c(t,X, T ) + ∆X · e−rτ [1 − Π(X)] =

c(t,X, T ) + ∆X ·
[
e−rτ +

∂c(t,W, T )

∂W

]
.
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