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This paper illustrates how to construct an unconditionally stable finite-difference lattice

consistent with the equity option volatility smile. In particular, the paper shows how to

extend the method of forward induction on Arrow±Debreu securities to generate local

instantaneous volatilities in implicit and semi-implicit (Crank±Nicholson) lattices. The

technique developed in the paper provides a highly accurate fit to the entire volatility

smile and offers excellent convergence properties and high flexibility of asset- and

time-space partitioning. Contrary to standard algorithms based on binomial trees, our

approach is well suited to price options with discontinuous payouts (e.g. knock-out

and barrier options) and does not suffer from problems arising from negative branch-

ing probabilities.

1. INTRODUCTION

The Black±Scholes option pricing formula (Black and Scholes 1973, Merton 1973)

expresses the value of a European call option on a stock in terms of seven parameters:

current time t, current stock price St, option maturity T , strike K , interest rate r,

dividend rate , and volatility1 �. As the Black±Scholes formula is based on an

assumption of stock prices following geometric Brownian motion with constant process

parameters, the parameters r, , and � are all considered constants independent of the

particular terms of the option contract. Of the seven parameters in the Black±Scholes

formula, all but the volatility � are, in principle, directly observable in the ®nancial

market. The volatility � can be estimated from historical data or, as is more common,

by numerically inverting the Black±Scholes formula to back out the level of �Ðthe

implied volatilityÐthat is consistent with observed market prices of European options.

Although the Black±Scholes pricing formula has become the de facto standard in

many options markets, it is generally recognized that the assumptions underlying the

formula are imperfect. For example, the existence of term structures in interest rates

and dividends indicate that r and  are not constants but (at least) functions of t and T .

More seriously, backing out implied volatilities from the Black±Scholes formula

frequently yields � 's that are functions of maturity and stroke. Dependent on the

shape of the mapping K 7! ��St; t;K;T�, the phenomenon of time- and strike-dependent

volatilities is referred to as the volatility smile or the volatility skew; its existence

indicates that the true probability distribution of stock prices deviates from the ideal

log-normal distribution of the a Black±Scholes analysis. In the 70s and early 80s, the

The equity option volatility smile: an implicit finite-difference approach

Winter 1997/98

5



volatility smile in US equity options was relatively mild and frequently either ignored

by market participants or handled in an ad hoc manner; indeed, using S&P 500 options

data from 1976 to 1978, Rubinstein (1985) detects no economic signi®cance of the

errors associated with using a constant volatility for options with the same maturity but

di�erent strikes. The crash in 1987, however, appears to have increased the likelihood

assigned by the ®nancial markets to extreme stock market movements, in particular

large downward movements. Sometimes known as `crash-o-phobia', this change in view

of stock price dynamics has resulted in a persistent, pronounced volatility smile in

current options markets (Shimko 1993, Rubinstein 1994).

Traditionally, the problems of nonconstant parameters in the models have been

handled pragmatically by simply maintaining vectors and tables of r, , and � to be

used with di�erent option maturities and strikes. Although this approachÐby con-

structionÐworks well for European options, it is unsuited for pricing of more

complicated structures such as exotic options and options with early exercise features

(Bermuda and American options). Consider, for example, a 2-year knock-out option

with a strike of $100 and a knock-out level of $90. In interpolating a value of � for the

knock-out option from a �K ;T� table of implied call option volatilities, should one use

$100 or $90 (or some third value) for K ? And should one use 2 years as T or, given

that the option can be knocked out before it reaches its ®nal maturity, some lower

value?2

To answer questions like the one above, many researchers have attempted to develop

models that are consistent with the existence of a volatility smile. One line of research

has focused on enriching the Black±Scholes analysis by introducing additional sources

of risk, including Poisson jumps (Merton 1976) and stochastic volatility (Hull and

White 1987). Besides being di�cult to implement and calibrate, such models lack

completeness and do not allow for arbitrage-free pricing. To preserve completeness and

avoid having to make assumptions about investor preferences and behavior, many

newer approaches stay within the Black±Scholes one-factor di�usion framework, but

introduce extra degrees of freedom by allowing the instantaneous local volatility to be a

function of both time and stock levels. As it turns out, this framework is su�ciently

rich to allow a perfect ®t to most reasonable volatility smiles and at the same time

preserves completeness and allows for application of the usual arbitrage-free pricing

techniques.

The option models based on one-factor stock di�usions take several forms. In one

approach, the local volatility function is prescribed directly, typically as a well-behaved

function of only a few parameters (Cox and Ross 1976, Beckers 1980, Platen and

Schweizer 1994). The speci®cation of the volatility function can for example be based

on a microeconomic analysis of interactions between agents in the options market, as in

Platen and Schweizer (1994). Although sometimes quite realistic smiles and skews can

be generated from a direct parametrization of local volatility, it is, in general, not likely

that this approach will lead to a satisfactory ®t to the market smile. In this paper, we

instead choose to focus on an alternative, more recent, modeling technique which takes
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the market volatility smile as a direct input and, through numerical or analytical

techniques, backs out an implied local volatility function that is consistent with the

observed volatility smile. One early e�ort along these lines was made by Dupire (1994),

who develops a continuous-time theory in a setting without interest rates and dividends.

Dupire's continuous-time results have been supplemented by a number of discrete-time

numerical methods, mostly set in a binomial framework. The ®t to the volatility smile is

obtained through careful manipulation of the local branching probabilities in the

binomial tree. Examples of such so-called implied binomial trees can be found in

Rubinstein (1994, 1995), Derman and Kani (1994), Barle and Cakici (1995), and Chriss

(1996).

The method of implied binomial trees o�ers a relatively straightforward approach to

®tting the volatility smile, but su�ers from a number of fundamental problems. First,

the degrees of freedom at each tree node are not su�ciently high to guarantee that all

binomial branching probabilities are nonnegative,3 particularly in environments with

high interest rates and steep volatility smiles. The heuristic rules that are typically

applied to override nodes where illegal branching occurs (see Derman and Kani 1994)

are not only unsatisfactory but result in loss of local process information that can easily

compound up to signi®cant pricing errors (Barle and Cakici 1995). A second problem

of binomial trees has been documented by Boyle and Lau (1994), who illustrate how

using binomial trees to price options with discontinuous payouts (such as barrier and

knock-out options) can lead to extremely erratic convergence behavior unless care is

taken to align the asset partitioning of the tree with the option barrier. As binomial

trees have very limited ¯exibility in setting the partitioning of the asset spaceÐin fact,

the asset grid can essentially only be a�ected indirectly through the choice of number of

time-stepsÐthis alignment process can frequently put severe constraints on the overall

design of the lattice. For implied binomial trees, the alignment process is generally not

even possible, as the time- and asset-varying nature of the branching process results in

trees where the asset-partitioning of each time slice is unique and not aligned with the

asset levels of other slices.

Whereas the implied binomial tree is primarily based on a discretization of the stock

price process, this paper will focus on developing a discrete-time model by discretizing

the fundamental no-arbitrage partial di�erential equation (PDE). This discretization is

accomplished by an adaptation of the method of ®nite di�erences (see, for example,

Brennan and Schwartz 1978, Courtadon 1982, Geske and Shastri 1985, Hull and White

1990, and Dewynne et al. 1993). The application of one particularly simple ®nite-

di�erence scheme, the so-called explicit scheme (or trinomial tree), to the volatility smile

problem has been described by Dupire (1994) and, in a purely probabilistic setting, by

Derman et al. (1996). As we will show in the paper, the explicit ®nite-di�erence method,

however, su�ers from many of the same problems as the binomial tree and is prone to

instability. In this paper, we instead focus on an alternative class of algorithms known

as implicit and semi-implicit (Crank±Nicholson) ®nite-di�erence schemes. While some-

what more complicated to evaluate and calibrate, the implicit and semi-implicit schemes
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are shown to exhibit much better stability and convergence properties than trinomial

and binomial trees. Further, contrary to the binomial algorithm, the algorithms

developed in this paper do not involve explicit adjustments of branching probabilities

and allow for completely independent prescription of the stock- and time-partitionings.

The high partitioning ¯exibility permits control of convergence behavior as it allows for

perfect alignment of time- and asset-slices with important dates (e.g. dividends, average

sampling dates, trigger observation dates, etc.) and price levels (e.g. strikes, barriers,

etc.).

While our numerical approach is di�erent, our paper is similar in spirit to the

original work by Dupire (1994). In particular, we assume the existence of a complete,

spanning set of European call option prices, which, in practice, requires usage of

extrapolation and interpolation methods. An alternative approach (e.g. Avallaneda et

al. 1996, Lagnado and Osher 1997, and Brown and Toft 1996) is to work only with

actively traded options and `®ll in' the gaps indirectly through assumptions about

market behavior and regularity. While this approach has its merits, it yields less control

over the resulting volatility surfaces and, as large-scale nonlinear optimization is

typically necessary, is much slower than the method used in this paper.

The rest of this paper is organized as follows. In Section 2, we summarize the

continuous-time theory of Dupire (1994) and provide some extensions to include

nonzero dividends and interest rates. Section 3, the main section of the paper, develops

the theory of our implicit ®nite-di�erence approach. In Section 4, we test the accuracy

and convergence properties of the ®nite-di�erence algorithm and exemplify its applica-

tion to exotic options by pricing down-and-out knock-out call options. Finally,

Section 5 summarizes the results of the paper and brie¯y discusses extensions and

generalizations.

2. CONTINUOUS TIME

In this section, we present the continuous-time theory behind the one-factor di�usion

approach to modeling the dynamics of the volatility smile. The material in this section

is based on Dupire (1994), but is set in a more general framework.

Let us consider a frictionless economy in which a traded asset S is driven by a one-

factor di�usion process of the form

dSt=St � ��St; t� dt� ��St; t� dWt; S0 � Sini > 0; t 2 �0; � �: �1�
for some ®xed trading horizon � and some positive constant time 0 value Sini. In (1),

Wt is a Brownian motion with respect to the real-world probability measure and

�;� : R� � �0; � � ! R are deterministic functions su�ciently well behaved to ensure that

(1) has a unique solution (see Arnold 1974: Chap. 6). We will assume that S pays

dividends at a time-varying, but deterministic, rate of �t�. For ®xed t 2 �0; � � and all
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T 2 �t; � � we further assume the existence of zero-coupon bonds P�t;T�; the evolution

of the zero-coupon bond term structure is assumed to be deterministic, i.e.

P�T1;T2� � P�t;T2�=P�t;T1�; 04 t4T1 4T2 4 �: �2�
The instantaneous interest rate r is a deterministic function of time given by

P�t;T� � exp�ÿ
�T
t

r�u� du� ) r�t� � @P�t;T�=@t
P�t;T� � @

ÿ
P�0;T�=P�0; t��

@t

P�0; t�
P�0;T�

� ÿ@P�0; t�=@t
P�0; t� ; 04 t4T 4 �: �3�

We now introduce a contingent claim on the asset S with ®nal maturity T 2 �0; � � and
payout function g : R� ! R. Arbitrage arguments (see Merton 1973) show that the

value of the contingent claim at any time before T equals V�St; t� where

V : R� � �0; � � ! R satis®es the no-arbitrage PDE

@V�S; t�
@t

� 1
2�

2�S; t�S2 @
2V�S; t�
@S2

� �r�t� ÿ �t��S @V�S; t�
@S

� r�t�V�S; t�; t 2 �0;T�
�4�

with boundary condition

V�ST ;T� � g�ST �: �5�
Under regularity conditions on r, , and �, the Feynman±Kac theorem (see Karatzas

and Shreve 1991) shows that the solution to (4) can be written as an expectation

V�S; t� � P�t;T�
�1
0

g�u�p�S; t; u;T� du; 04 t4T ; �6�

where p� E � is the risk-neutral transition density function of S (also known as the Green's

function or the fundamental PDE solution). p� E � satis®es the Kolmogorov forward (or

Fokker±Planck) equation (see e.g. Cox and Miller 1965: Chap. 5)

@p

@T
� @ �r�T� ÿ �T��up� �

@u
ÿ 1

2

@2 �2�u;T�u2pÿ �
@u2

� 0 for fixed �S; t�;T 2 �t; � �: �7�

The boundary condition to (7) is p�S; t; u; t� � ��S ÿ u�, where �� E � is the Dirac delta-

function.

In this paper, we will pay particular attention to European call options C�St; t� with
payout function

g�ST � � C�ST ;T� � max�ST ÿ K ; 0�; K > 0: �8�
In the special case of a constant volatility, ��St; t� � � > 0, the solution to (4) subject to

(8) can be written in closed form as the (extended) Black±Scholes formula:

CBS�St; t;T ;K; �� � St exp

�
ÿ
�T
t

�u� du
�
N�d�� ÿ P�t;T�KN�dÿ�; t 2 �0;T�; �9�
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d� �
ln�St=K� �

� T
t �r�u� ÿ �u�� du

�
������������
T ÿ t
p � 1

2 �
������������
T ÿ t
p

;

where N� E � is the standard cumulative normal distribution function.

Returning to the general case of nonconstant volatility, observe that, for the

European call, (6) is particularly simple:

C�S; t;K ;T� � P�t;T�
�1
K

�uÿ K�p�S; t; u;T� du: �10�

Using Leibniz's rule to di�erentiate (10) twice with respect to K yields

p�S; t;K ;T� � 1

P�t;T�
@2C�S; t;K;T�

@2K
: �11�

Given a continuum of traded European calls with di�erent strikes and maturities, (11)

shows that the risk-neutral transition densities of S can be recovered directly from

market prices, an observation originally due to Breeden and Litzenberger (1978).

Using (11), the ®rst term in the forward equation (7) becomes

@p

@T
� 1

P�t;T�
@ @ 2C=@K 2
ÿ �

@T
� @

2C

@K2

@
ÿ
1=P�t;T��
@T

� 1

P�t;T�
@2

@K2

@C

@T
� @

2C

@K2
r�T�

 !
: �12�

Applying (11) to the remaining terms in (7) gives

@2

@K2

@C

@T
� @

2C

@K2
r�T� � �r�T� ÿ �T�� @

ÿ
K�@ 2C=@K 2��

@K
� 1

2

@2 �2�K;T�K2�@ 2C=@K 2�ÿ �
@K2

;

�13�
which can be integrated twice with respect to K to yield

@C

@T
� r�T�C � �r�T� ÿ �T�� K

@C

@K
ÿ C

� �
� 1

2�
2�K ;T�K2 @

2C

@K2
� A�T�K � B�T�; �14�

where A and B are arbitrary functions of time. Following Dupire (1994), we assume

that the functions involved in (14) have su�cient regularity to make all terms involving

C approach zero as K approaches in®nity. Under this assumption, the integration

functions A and B must be zero. The forward PDE (14) is strikingly similar to the

general pricing (backward) PDE (4), but whereas (4) holds for arbitrary option payouts,

(14) is only valid for European calls (and puts). From (14) we obtain the following

result.

Proposition 1. Let S follow a continuous-time one-factor di�usion of the form (1)

and let there be given observable arbitrage-free market prices of European calls for all

strikes K 2 �0;1� and all maturities T 2 �t; � �. The instantaneous volatility function of S

that is consistent with the market is given uniquely by

�2�K ;T� � 2
@C=@T � �T�C � K �r�T� ÿ �T��@C=@K

K2�@2C=@K2� ; �15�
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or, written in terms of the observed implied volatility smile4 ��St; t;K ;T�,

�2�K;T� �
2
@�

@T
� �

T ÿ t
� 2K r�T� ÿ �T�� � @�

@K

K2 @2�

@K2
ÿ d�

������������
T ÿ t
p @�

@K

� �2

� 1

�

1

K
������������
T ÿ t
p � d�

@�

@K

� �2
" # ; �16�

where d� is de®ned in (9).

Proof. Equation (15) follows immediately from (14), and (16) follows, after some

manipulations, from (15) and (9). To verify that ��K ;T� is a real number, i.e. that

�2�K ;T�5 0, we notice from (11) that it su�ces to show that the numerator in (15) is

nonnegative in the absence of arbitrage. Portfolio dominance arguments similar to those

in Merton (1973) imply the following result:

e

� T1

T
�u� du

C
ÿ
St; t;K e

� T1

T
�r�u�ÿ�u�� du

;T1

�
5C�St; t;K ;T�; T1 > T :

Setting T1 � T � " in the left-hand side of the above inequality and evaluating the limit

as "! 0� yields
@C

@T
� �T�C � K �r�T� ÿ �T�� � @C

@K
5 0: h

For the special case of strike-independent implied volatility, (16) reduces to the well-

known expression

�2�T� � �2�T� � 2�T ÿ t���T� @�
@T

;

or
1

T ÿ t

�T
t

�2�s� ds � �2�T�:

3. DISCRETE TIME

While equations (15) and (16) in combination with the no-arbitrage PDE (4) exhaust

the theoretical speci®cation of the volatility smile model, in practice numerical methods

must be introduced to calculate the prices of speci®c contingent claims. As discussed in

Section 1, most such schemes suggested in the current literature are based on a

binomial approximation of the stochastic di�erential equation (1). In this section, we

will develop an alternative to the binomial method using the method of ®nite

di�erences.

3.1 Discretization Scheme

To increase the e�ciency of the ®nite-di�erence discretization, we ®rst shift variables in

the PDE (4). Speci®cally, we put x � ln S and H�x; t� � V�S; t� so that the governing
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equation becomes

@H�x; t�
@t

� 1
2 v�x; t�

@2H�x; t�
@x2

� b�x; t� @H�x; t�
@x

� r�t�H�x; t�; �17�
where

b�x; t� � r�t� ÿ �t� ÿ 1
2 v�x; t�; v�x; t� � �2�S; t� � �2�ex; t�:

At this point, we could use the continuous-time dividend term structure �t�, the

interest rate term structure (3) and the instantaneous volatility equations (15) and (16)

to discretize (17) directly. However, as the coe�cients in (17) would then all be based

on results from a continuous-time setting, such a discretization would only in the limit

yield correct prices of traded bonds and stock derivatives. To improve convergence and

accuracy of discrete-time prices, we replace the continuous-time coe�cients in (17) by

unknown functions r̂�t�, b̂�x; t�, and v̂�x; t� which shall be solved for so that our

discretization of the backward PDE will return the correct market prices of stock

forwards, zero-coupon bonds, and European options. We point out that r̂�t�, b̂�x; t�,
and v̂�x; t� will depend on both the discretization scheme and the selected spacing

between grid points.

Now consider determining the time-0 value of a contingent claim with ®nal maturity

0 < T < � . To discretize (17), we divide the �x; t� plane into a uniformly spaced mesh

with M � 2 nodes along the t axis and N � 2 nodes along the x axis:

xi � x0 � i�x � x0 � i
xN�1 ÿ x0
N � 1

; i � 0; . . . ;N � 1; �18a�

tj � j�t � j
T

M � 1
; j � 0; . . . ;M � 1: �18b�

The indices i � 0, i � N � 1, j � 0, j �M � 1 signify the limits of the mesh for which

boundary conditions must be prescribed. The values of x0 and xN�1 should be set

su�ciently low and high, respectively, to ensure that most of the statistically signi®cant

x space is captured by the mesh.5 Without loss of generality, we assume that the time-0

stock value Sini is contained in the mesh,6 i.e.

xini � ln Sini � x�; �19�

for some integer � 2 �1;N�. We point out that the ®nite-di�erence method does not rely

on an equidistant partitioning of t and x space (as in (18a,b)); for the sake of simplicity,

however, we maintain the assumption of a uniform mesh throughout this paper.

At an arbitrary node �xi; tj�, with i � 1; . . . ;N, j � 0; . . . ;M in the grid (18a,b) we

introduce the following di�erence approximations to the terms in the PDE (17):

@H

@t
� H�xi; tj�1� ÿH�xi; tj�

�t

; �20a�

@H

@x
� �1ÿ��H�xi�1; tj� ÿH�xiÿ1; tj�

2�x

� �
H�xi�1; tj�1� ÿH�xiÿ1; tj�1�

2�x

; �20b�
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@2H

@x2
� �1ÿ��H�xi�1; tj� ÿ 2H�xi; tj� �H�xiÿ1; tj�

�2
x

��
H�xi�1; tj�1� ÿ 2H�xi; tj�1� �H�xiÿ1; tj�1�

�2
x

: �20c�

The parameter � 2 �0; 1� determines the time at which partial derivatives w.r.t. x are

evaluated. If � � 0, the x derivatives are evaluated at time tj and the di�erencing

scheme gives rise to the fully implicit ®nite-di�erence method. If � � 1, the x derivatives

are evaluated one time-step ahead, at tj�1, and the resulting scheme is known as the

explicit ®nite-di�erence method. Finally, when � � 1
2, the x derivatives are evaluated half

a time-step ahead, at 1
2 �tj � tj�1�; the resulting scheme is an average of the explicit and

implicit schemes known as the Crank±Nicholson scheme. Values of � di�erent from 0, 1
2,

and 1 are possible but little used in practice.

Plugging (20a±c) into (17) and substituting b̂, r̂, v̂ for b, r, and v, respectively, yields
the recursive relation for i � 1; . . . ;N and j � 0; . . . ;M (with Hi; j � H�xi; tj�, etc.):

Hiÿ1; j
ÿÿ 1

2��1ÿ���v̂i; j ÿ�xb̂i; j�
�

�Hi; j 1� r̂j�t � ��1ÿ��v̂i; j
ÿ ��Hi�1; j

ÿÿ1
2��1ÿ���v̂i; j ��xb̂i; j�

�
� Hiÿ1; j�1

ÿ
1
2���v̂i; j ÿ�xb̂i; j�

��Hi; j�1�1ÿ ��v̂i; j� �Hi�1; j�1
ÿ
1
2���v̂i; j ��xb̂i; j�

�
; �21�

where � � �t=�2
x.

Equation (21) can be written compactly in matrix notation as

��1� r̂j�t�I ÿ �1ÿ��M j �H j � �M j � I
�
H j�1 � Bj ; j � 0; . . . ;M;

ÿ �22�

where I is the N �N identity matrix, H j and H j�1 are N � 1 vector of contingent claim

values,

H j �

H1; j

H2; j

..

.

HN; j

266664
377775;

Bj is a N � 1 vector that contains the prescribed values of H along the x boundary of

the mesh,

Bj �

l1; j ��1ÿ��H0; j ��H0; j�1�
0

0

..

.

0

uN; j ��1ÿ��HN�1; j ��HN�1; j�1�

26666666664

37777777775
;
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and M j is a tridiagonal N �N matrix

M j �

c1; j u1; j 0 0 0 � � � 0

l2; j c2; j u2; j 0 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 � � � lNÿ1; j cNÿ1; j uNÿ1; j
0 0 0 � � � 0 lN; j cN; j

26666664

37777775;
where

ci; j � ÿ�v̂i; j ; �23a�
ui; j � 1

2��v̂i; j ��xb̂i; j�; �23b�
li; j � 1

2��v̂i; j ÿ�xb̂i; j�: �23c�
If the matrices in (22) can be determined, i.e. if the values of r̂j , b̂i; j , and v̂i; j are known,

the price of a contingent claim at time 0 can be obtained by iteratively solving the

system of linear equations (22) backwards from the known time T payout vector HN�1.
As the vector multiplying H j is tridiagonal, the numerical solution to (22) can be coded

very e�ciently (O�N�); see e.g. Press et al. (1992: Chap. 2) for a discussion and speci®c

algorithms. In Appendix A, we derive su�cient conditions for (22) to have a unique

solution; these conditions will be satis®ed by most realistic ®nite-di�erence meshes.

Contrary to a binomial tree where the value of a contingent claim on any given node

can be determined from the state of only two nodes one time-step ahead (the `up' and

the `down' nodes), the system of equations (22) generally links the value of Hi; j to all

interior values of H at time tj�1, i.e. Hi; j � F�H1; j�1; . . . ;HN; j�1� for some function F .

An exception occurs for the explicit ®nite-di�erence scheme (� � 1) where the matrix

multiplying H j on the left-hand side of (22) is diagonal and Hi; j consequently a

function of only Hi�1; j�1, Hi; j�1, and Hiÿ1; j�1. According to (21), the equations for the

explicit ®nite-di�erence scheme are

Hi; j �
1

1� r̂j�t

li; jHiÿ1; j�1 �Hi; j�1�1� ci; j� � ui; jHi�1; j�1
� �

: �24�

From (23a±c) we see that li; j � �1� ci; j� � ui; j � 1, which allows for an interpretation of

(24) as a trinomial tree with pseudo-probabilities of up, down, and center moves equal

to ui; j , li; j , and 1ÿ li; j ÿ ui; j , respectively. While the explicit ®nite-di�erence grid has an

attractive probabilistic interpretation and a simple causal structure, it unfortunately

su�ers from stability problems. In Appendix B, we derive conditions for the explicit

®nite-di�erence scheme to be stable; in most cases, these conditions are equivalent to all

of the `probabilities' ui; j , li; j , or 1� ci; j being nonnegative. Due to the time-varying

nature of b̂ and v̂, maintaining nonnegative probabilities at all nodes in the mesh puts

heavy constraints on the spacing of the ®nite-di�erence mesh and, as in the binomial

setting, turns out to interfere quite signi®cantly with the ®tting of the volatility smile.

Consequently, the rest of this paper will assume that � 6� 1 and instead focus on the

Crank±Nicholson and implicit schemes which are known to have much better stability

properties than the explicit scheme. Indeed, as a local harmonic analysis in Appendix B
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shows, both these schemes are unconditionally stable as long as v̂i; j 5 0 for all i and j in

the mesh. In most cases, we recommend the Crank±Nicholson scheme which has the

best convergence properties of the three schemes. Speci®cally, the convergence order of

the Crank±Nicholson scheme7 is O��2
t �, whereas both the explicit and the implicit

schemes converge as O��t�. All schemes converge as O��2
x� in x space.

3.2 Fitting of Bond Prices
As in the continuous-time case, we will assume the existence of a complete initial yield

curve as given by prices of traded zero-coupon bonds maturing at all mesh times,

Pj � P�0; tj�, j � 1; . . . ;N � 1. As the strip of zero-coupon bonds can be interpreted as

contingent claims with payout functions g�Stj � � $1, their prices must satisfy the ®nite-

di�erence equation (21). At time-step tj consider the bond maturing one time-step

ahead, P�tj ; tj�1�. Since, in our setting, bond prices are deterministic and thus

independent of S (and x), (21) simpli®es to

P�tj ; tj�1� 1� r̂j�t

ÿ � � P�tj�1; tj�1� � $1; j � 1; . . . ;N: �25�
From (2) we know that

1

P�tj ; tj�1� �
P�0; tj�
P�0; tj�1� �

Pj

Pj�1
;

so (with P0 � 1)

r̂j � 1

�t

Pj

Pj�1
ÿ 1

� �
; j � 0; . . . ;N: �26�

Not surprisingly, equation (26) is related to the continuous-time equation (3) through

the ®nite-di�erence relation @P�0; tj�=@t � �P�0; tj�1� ÿ P�0; tj��=�t.

3.3 Fitting of Asset Forwards
To match the drift of S, consider at time tj a contract that pays out8 g�Stj�1� � Stj�1 at

the time-step tj�1 of the lattice. At node �xi; tj�, the value of this contract is

Hi; j � Si exp

�
ÿ
�tj�1
tj

�u� du
�
� exi

ÿj�1
ÿj

; i � 1; . . . ;N; j � 0; . . . ;M; �27�

where we have de®ned

ÿj � exp

�
ÿ
�tj
0

�u� du
�
:

Setting Hi; j � Siÿj�1=ÿj and Hi; j�1 � Si in the discretized PDE (21) and rearranging

yields

Si 1ÿ ÿj�1
ÿj

�1� r̂j�t� ÿ �v̂i; j �1ÿ��ÿj�1
ÿj

��

� �� �
� �Si�1 � Siÿ1� 1

2�v̂i; j �1ÿ��ÿj�1
ÿj

��

� �� �
��Si�1 ÿ Siÿ1� 1

2��xb̂i; j

�
�1ÿ��ÿj�1

ÿj

���
�� �
� 0; i � 1; . . . ;N; j � 0; . . . ;M: �28�

Now
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Si�1 � Siÿ1 � Sie
�x � Sie

ÿ�x � 2Si cosh �x; Si�1 ÿ Siÿ1 � Sie
�x ÿ Sie

ÿ�x � 2Si sinh �x

so (28) becomes

1ÿ �ÿj�1=ÿj��1� r̂j�t�
�1ÿ���ÿj�1=ÿj� ��

� �v̂i; j�cosh �x ÿ 1� � �b̂i; j�x sinh �x � 0: �29�

Using the identity

tanh 1
2 �x � cosh �x ÿ 1

sinh �x
;

(29) can ®nally be rearranged as

b̂i; j �
�x

�t sinh �x

Pj=Pj�1 ÿ ÿj=ÿj�1
�1ÿ�� ��ÿj=ÿj�1

� �
ÿ v̂i; j

�x

tanh
�x

2
; i � 1; . . . ;N; j � 0; . . . ;M;

�30�
where we have used the result (26) to eliminate r̂j . It can easily be veri®ed that

b̂i; j ! rj ÿ j ÿ 1
2v̂i; j when �x and �t approach zero.

3.3 Fitting European Call Options
Equipped with (26) and (30), the discretization (21) will yield the correct forward stock

and zero-coupon bond prices, irrespective of the volatility function v̂i;k. To determine

the correct local volatilities, we assume the existence of observable call option prices

with strikes and maturities spanning all nodes inside the upper and lower x boundaries

of the ®nite-di�erence mesh (18a,b). Let Ci; j
ini denote the time-0 observable value of a

European call with strike K � Si � exi and maturity of tj , where i � 1; . . . ;N and

j � 1; . . . ;M � 1.

While it would conceivably be possible to use brute-force trial-and-error techniques

to back out a volatility function that correctly prices all calls Ci; j
ini in the ®nite-di�erence

mesh, this approach requires too much computational e�ort to be useful in practice. A

signi®cantly more e�cient alternative is the so-called method of forward induction

(Jamshidian 1991, Hull and White 1994), which avoids brute-force search by, in e�ect,

introducing discrete-time versions of the Fokker±Planck forward equation (7) (or (14)).

Rather than discretizing (7) or (14) directly, we will here use fundamental arguments to

derive a discrete-time forward equation consistent with our backward discretization

scheme (22). For this purpose, it is convenient and instructive to introduce the concept

of Arrow±Debreu securities. To be speci®c, let Ai; j
ini denote the time-0 price of a Arrow±

Debreu security that at time tj pays out $1 if the asset price equals Si and $0 otherwise.

To ensure correct pricing of bonds and stock forwards, the Arrow±Debreu securities

must satisfy the following obvious constraints:XN�1
i�0

Ai; j
ini � Pj ; j � 0; . . . ;M � 1; �31a�

XN�1
i�0

Ai; j
iniSi � Siniÿj ; j � 0; . . . ;M � 1: �31b�

It also follows from the de®nition of the European call payout function (8) that
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Ci; j
ini �

XN�1
l�i�1

Al; j
ini�Sl ÿ Si�; i � 1; . . . ;N; j � 0; . . . ;M � 1: �32a�

The values of calls struck on the upper and lower x boundary cannot be speci®ed

freely9 but are determined directly by (31a, b):

CN�1; j
ini � 0; j � 0; . . . ;M � 1; �32b�

C0; j
ini �

XN�1
l�0

Al; j
iniSlÿS0

XN�1
l�0

Al; j
ini � Siniÿj ÿ S0Pj ; j � 0; . . . ;M � 1: �32c�

After a little algebra, (32a) can be inverted to yield Arrow±Debreu prices as a function

of call prices:

Ai; j
ini �

�Si ÿ Siÿ1�Ci�1; j
ini ÿ �Si�1 ÿ Siÿ1�Ci; j

ini � �Si�1 ÿ Si�Ciÿ1; j
ini

�Si�1 ÿ Si��Si ÿ Siÿ1�

� eÿ
1
2�xCi�1; j

ini ÿ 2 cosh 1
2 �xC

i; j
ini � e

1
2�xCiÿ1; j

ini

2exi sinh 1
2 �x

; i � 1; . . . ;N; j � 1; . . . ;M � 1: �33a�

The Arrow±Debreu price of the upper boundary, AN�1; j
ini , follows from

CN; j
ini � AN�1

ini �SN�1 ÿ SN� or

AN�1; j
ini � CN; j

ini

SN�1 ÿ SN

� CN; j
ini

�e�x ÿ 1�exN ; j � 1; . . . ;M � 1: �33b�

The Arrow±Debreu price of the lower boundary is given by the constraint (31a):

A0; j
ini � Pj ÿ

XN�1
i�1

Ai; j
ini � Pj ÿ

C0; j
ini ÿ C1; j

ini

S1 ÿ S0

� PjS1 ÿ ÿjSini � C1; j
ini

S1 ÿ S0

� Pje
�x ÿ ÿje

��x � C1; j
ini =e

x0

e�x ÿ 1
; j � 1; . . . ;M � 1; �33c�

where the second equality follows from (32a) and the third equality from (32c). The

integer � in (33c) is de®ned in equation (19).

The boundary condition at time 0 for the Arrow±Debreu prices is obviously

Ai;0
ini �

�
$1; if i � �
$0; otherwise

�
; i � 0; . . . ;N � 1: �33d�

Equation (33a) is the discrete-time version of the continuous-time equation (11) and

illustrates the close link between Arrow±Debreu prices and the continuous-time risk-

neutral density function. In particular, if we approximate the second derivative in (11)

with a central ®nite di�erence, (33a) implies the relation

Ai; j
ini

Pj

� 1
2 �Si�1 ÿ Siÿ1�p�Sini; 0;Si; tj�: �34�
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For obvious reasons, the term Ai; j
ini=Pj is sometimes known as the Arrow±Debreu

(pseudo-)probability of node �xi; tj�.
Being contingent claims on S, the Arrow±Debreu securities must satisfy the ®nite-

di�erence equation (22). If we use the notation Ak;l
i; j (l5 j ) to denote the price at node

�xi; tj� of the Arrow±Debreu security that pays out if and only if node �xk; tl� is reached
(so that, in particular, Ak;l

ini � Ak;l
�;0), (22) becomes (using (26)) for a ®xed interior value

of k and l � j � 1:

Pj

Pj�1
I ÿ �1ÿ��M j

� �
Ak; j�1

j � �M j � I
ÿ �

Ak; j�1
j�1 � Bk

j ; j � 0; . . . ;M; k � 1; . . . ;N:

�35�
where

Ak; j�1
j �

Ak; j�1
1; j

..

.

Ak; j�1
N; j

26664
37775; Bk

j �

l1; j ��1ÿ��Ak; j�1
0; j ��Ak; j�1

0; j�1 �
0

..

.

0

uN; j ��1ÿ��Ak; j�1
N�1; j ��Ak; j�1

N�1; j�1�

266666664

377777775;

and, due to the de®nition of Arrow±Debreu securities,

Ak; j�1
j�1 �

0

0

..

.

1

..

.

0

266666666664

377777777775
 kth row:

The boundary matrix Bk
j in (35) cannot be related to market information, but must be

speci®ed directly through assumptions about the discretized branching process on the

upper and lower x boundaries. If the ®nite-di�erence mesh spans a su�cient part of the

relevant x space, the in¯uence of Bk
j is generally negligible, and any reasonable

assumption on local boundary behavior will su�ce. For simplicity we will assume

that both the upper and lower x boundaries are absorbing, i.e. for l5 j,

Ak;l
0; j �

�
Pl=Pj

0

if k � 0

if k � 1; . . . ;N � 1

�
; j � 0; . . . ;M; �36a�

Ak;l
N�1; j �

�
Pl=Pj

0

if N � 1

if k � 0; . . . ;N

�
; j � 0; . . . ;M: �36b�

In this case, the N � 1 boundary matrix simpli®es to Bk
j � 0 �k � 1; . . . ;N�.

Let us now introduce the N �N matrices

A j�1
j � �A1; j�1

j ; . . . ;AN; j�1
j �; A j�1

j�1 � �A1; j�1
j�1 ; . . . ;AN; j�1

j�1 �; Bj � �B1
j ; . . . ;BN

j �:
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As A j�1
j�1 obviously equals the identity matrix and Bj is the zero-matrix (due to the

assumption (36a, b)), (35) can be written compactly as

Pj

Pj�1
I ÿ �1ÿ��M j

� �
A j�1

j � �M j � I ; j � 0; . . . ;M: �37�

If, as justi®ed earlier, we assume that � 6� 1, this equation can alternatively be written

(for j � 0; . . . ;M)

A j�1
j � ÿ�

1ÿ�
I � Pj

Pj�1
I ÿ �1ÿ��M j

� �ÿ1
I

�Pj=Pj�1 � �1ÿ��ÿ �
1ÿ�

� �
; �38�

where we have assumed that Pj=Pj�1I ÿ �1ÿ��M j

ÿ �
is invertible (see discussion in

Appendix A).

To transform (38) into an equation involving the known (from (33a, c)) time-0

Arrow±Debreu prices, Ai; j
ini, we use the fact that

Ai; j�1
ini �

XN�1
l�0

Al; j
iniA

i; j�1
l; j �

XN
l�1

Al; j
iniA

i; j�1
l; j ; i � 1; . . . ;N; j � 0; . . . ;M; �39�

where the second equality follows from the assumption of absorbing barriers, (36a, b).

In matrix notation (39) is just

A j�1
ini

� �T
� Aj

ini

ÿ �T
A j�1

j ; j � 0; . . . ;M; �40�

where Aj
ini is a N � 1 vector

Aj
ini �

A1; j
ini

A2; j
ini

..

.

AN; j
ini

2666664

3777775:

Applying (40) to (38) yields a recursive relation in the initial Arrow±Debreu prices

�A j�1
ini �T �

ÿ�

1ÿ�
Aj

ini

ÿ �T� Aj
ini

ÿ �T Pj

Pj�1
I ÿ �1ÿ��M j

� �ÿ1
I

�Pj=Pj�1 � �1ÿ��ÿ �
1ÿ�

� �
;

j � 0; . . . ;M: �41�

Equation (41) is the discrete-time version of the Fokker±Planck equation (7). All terms

in the equation are known except for the matrix M j which depends on the unknown

node volatilities v̂i; j . To solve for these volatilities, we rearrange (41) to

M j

ÿ �T �1ÿ��A j�1
ini ��Aj

ini

� �
� Pj=Pj�1
ÿ �

A j�1
ini ÿ Aj

ini; j � 0; . . . ;M: �42�
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From (23a, c) and (30), we notice that M j

ÿ �T
can be decomposed into

M j

ÿ �T�

ÿ�v̂1; j Uv̂2; j 0 0 0 � � � 0

Lv̂1; j ÿ�v̂2; j Uv̂3; j 0 0 � � � 0

0 Lv̂2; j ÿ�v̂3; j Uv̂4; j 0 � � � 0

0 0 Lv̂3; j ÿ�v̂4; j Uv̂5; j � � � 0

..

. ..
. ..

. ..
. ..

. � � � 0

0 0 0 � � � Lv̂Nÿ2; j ÿ�v̂Nÿ1; j Uv̂N; j

0 0 0 � � � 0 Lv̂Nÿ1; j ÿ�v̂N; j

26666666666666664

37777777777777775

�

0 ÿ�j 0 0 0 � � � 0

�j 0 ÿ�j 0 0 � � � 0

0 �j 0 ÿ�j 0 � � � 0

0 0 �j 0 ÿ�j � � � 0

..

. ..
. ..

. ..
. ..

. � � � 0

0 0 0 � � � �j 0 ÿ�j
0 0 0 � � � 0 �j 0

2666666666666664

3777777777777775
� V j � Gj ; j � 0; . . . ;M; �43�

where

U � 1
2� 1� tanh 1

2 �x

ÿ �
; �44a�

L � 1
2� 1ÿ tanh 1

2 �x

ÿ �
; �44b�

�j �
1

2 sinh �x

Pj=Pj�1 ÿ ÿj=ÿj�1
�1ÿ�� ��ÿj=ÿj�1

� �
: �44c�

(43) and (42) can now, ®nally, be combined as a linear system of equations in the

unknown volatilities

Fj v̂vj � Pj=Pj�1A
j�1
ini ÿ A j

ini

� �
ÿ Lj �1ÿY�A j�1

ini �YAj
ini

� �
; j � 0; . . . ;M; �45�

where Gj is de®ned in (43) and (44c),

v̂vj �

v̂1; j
v̂2; j

..

.

v̂N; j

2666664

3777775;

and, with �Aj
ini � �1ÿ��A j�1

ini ��Aj
ini,
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Fj �

ÿ� �A1; j
ini U �A2; j

ini 0 0 0 � � � 0

L �A1; j
ini ÿ� �A2; j

ini U �A3; j
ini 0 0 � � � 0

0 L �A2; j
ini ÿ� �A3; j

ini U �A4; j
ini 0 � � � 0

0 0 L �A3; j
ini ÿ� �A4; j

ini U �A5; j
ini � � � 0

..

. ..
. ..

. ..
. ..

. � � � 0

0 0 0 � � � L �ANÿ2; j
ini ÿ� �ANÿ1; j

ini U �AN; j
ini

0 0 0 � � � 0 L �ANÿ1; j
ini ÿ� �AN; j

ini

2666666666666664

3777777777777775
:

In principle, determination of node volatilities can now be done by solving the simple

tridiagonal system (45) for all j � 0; . . . ;M. As it turns out, however, (45) must be

applied with some care due to the sometimes very low magnitude of the elements in the

boundaries of the matrices of (45). For options maturing at low values of tj , the

extremely low likelihood of S reaching either the upper or lower x boundaries within

�0; tj � makes it di�cult to determine the short-term volatility function for values of x

close to the upper and lower boundaries in the mesh. For pricing purposes, this is

largely irrelevant as the sensitivity (vega) of all realistic options to the extreme upper

and lower edges of the short-term volatility function is virtually nonexistent. To avoid

numerical problems in (45), for each time-step tj one could limit the application of the

equation to the statistically signi®cant part of x-space (see Figure 1 and Endnote 5) and

truncate o� irrelevant rows and columns of the matrices in (45). Volatilities in discarded

regions of the mesh could, for example, be set to some appropriate constant.

In a direct solution of (45) (after truncation), it is not unlikely that small

imperfections and arbitrage opportunities in the input data will lead to spikes in

local volatilities and even, occasionally, might cause some v̂'s to become negative. At

the sacri®ce of overall speed, we can, for example, overcome such problems by
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imposing smoothness and value constraints on the v̂'s. As a simple example of such

regularization techniques, consider limiting the vector v̂j to the bounds v̂min 4 v̂j 4 v̂max

and replacing equation (45) by the minimization of a quadratic form. With the short

notation

T j � ÿ Pj=Pj�1A
j�1
ini ÿ A j

ini

� �
� Gj �1ÿY�A j�1

ini �YA j
ini

� �
; �46�

(45) reduces to

Cj v̂j � T j � 0; j � 0; . . . ;M;

which suggests the following quadratic program (for j � 0; . . . ;M)

Minimize Fj Cj v̂j � T j

ÿ �ÿ �T
Fj Cj v̂j � T j

ÿ �ÿ �
subject to v̂min 4 v̂j 4 v̂max;

�47�

where Fj is some10 appropriate N �N scaling matrix, and v̂min and v̂max are N � 1

vectors containing the speci®ed lower and upper constraints on the volatility vector. We

note that if Cj is invertible and none of the constraints binding, the solution to the

quadratic program (47) will exactly equal the solution to (45). (47) can be written in

canonical form as follows (for j � 0; . . . ;M ):

Minimize 1
2 yj
ÿ �T

Qj yj � cj
ÿ �T

yj

subject to 04 yj 4 ymax;
�48�

where
yj � v̂j ÿ v̂min;

ymax � v̂max ÿ v̂min;

Qj � EjFj

ÿ �T
EjFj

ÿ �
cj
ÿ �T � T j �Cjvmin

ÿ �T Fj

ÿ �TFjCj :

Notice that Qj by construction is a positive-de®nite real symmetric matrix. This fact

allows us to solve the canonical quadratic program with Lemke's method (see e.g.

Ecker and Kupferschmid 1988: Chap. 9), a simple e�cient algorithm that only involves

pivot operations on the matrices in (48).

With (48), the speci®cation of the implicit and semi-implicit ®nite-di�erence algo-

rithms is complete. We summarize the complete algorithm in the following proposition.

Proposition 2. The ®nite-di�erence solution to the valuation equation (17) is given by

the tridiagonal matrix equation (22). Requiring that the ®nite-di�erence mesh correctly

prices (i) zero coupon bonds; (ii) asset forward contracts; and (iii) European call

options, the matrices in (22) are determined by equations (26), (30), (33a, d), and

(45). To avoid numerical problems due to boundary-e�ects and ¯aws in the input data,

(45) can, for example, be replaced by the quadratic program (47)±(48).
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4. EXAMPLES AND TESTS

The ®rst challenge in the application of the algorithm concerns the collection of bond,

stock, and call option data to span the entire ®nite-di�erence mesh. Whereas normally

su�cient zero-coupon rates and stock dividends can be constructed from market data,

the available call price data are typically limited to relatively few di�erent strikes and

maturities. To overcome the lack of call price data, it is necessary to introduce both

interpolation and extrapolation techniques.

To focus on a speci®c example, consider the following matrix (Table 1) of implied

Black±Scholes volatilities, ��K ;T�, on European call options on the S&P 500 index

(October 1995).

The short-term volatilities (T < 1 year) could be obtained from exchange-traded

options; longer maturities must be sampled from the over-the-counter broker markets.

In practice some entries of Table 1 are not directly available in the market, in which

case interpolation/extrapolation techniques are needed to complete the grid. In par-

ticular, the upper right-hand corner (short maturities, high strikes) is typically not

quoted in the market. In our example, we have chosen an exaggerated upward-sloping

smile in this section of the volatility table (see Figure 2). While not realistic, the

resulting curve shape puts stress on the numerical algorithm and as such is a good basis

for testing. In speci®cation of tables like the one above, we point out that one must

generally be quite careful about the behavior of implied volatilities for large T (say,

T > 4±5 years). Speci®cally, the central limit theorem suggests that the volatility smile

should gradually ¯atten out as maturity is increased. If one blindly extrapolates

volatility data from short-term options to long-term options, arbitrages are likely

to arise (which will be re¯ected in local volatilities that become unstable for

large T ).
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TABLE 1. Implied volatilities of S&P 500 equity index.

Strike K (% of spot)

T K � 85% 90% 95% 100% 105% 110% 115% 120% 130% 140%

0.175 0.190 0.168 0.133 0.113 0.102 0.097 0.120 0.142 0.169 0.200

0.425 0.177 0.155 0.138 0.125 0.109 0.103 0.100 0.114 0.130 0.150

0.695 0.172 0.157 0.144 0.133 0.118 0.104 0.100 0.101 0.108 0.124

0.940 0.171 0.159 0.149 0.137 0.127 0.113 0.106 0.103 0.100 0.110

1.000 0.171 0.159 0.150 0.138 0.128 0.115 0.107 0.103 0.099 0.108

1.500 0.169 0.160 0.151 0.142 0.133 0.124 0.119 0.113 0.107 0.102

2.000 0.169 0.161 0.153 0.145 0.137 0.130 0.126 0.119 0.115 0.111

3.000 0.168 0.161 0.155 0.149 0.143 0.137 0.133 0.128 0.124 0.123

4.000 0.168 0.162 0.157 0.152 0.148 0.143 0.139 0.135 0.130 0.128

5.000 0.168 0.164 0.159 0.154 0.151 0.148 0.144 0.140 0.136 0.132



In the design of a scheme to interpolate between cells in Table 1,11 we notice from

(16) that such a scheme must be smooth enough to ensure that @�=@T , @�=@K , and

@2�=@K2 are well behaved. One interpolation approach suggested in the literature

(Shimko 1993, Barle and Cakici 1995) involves a parabolic regression on the data in

�K ;T� table. If exact reproduction of all table entries is desired, various spline-based

schemes can be applied (Press et al. 1992: Chap. 3; Dierckx 1995: Chap. 2).

In the pricing of long-term options, capturing the statistically signi®cant S-space in a

®nite-di�erence mesh would involve setting the S-boundary conditions much further

apart than the 85±140% strike range covered by Table 1. The necessary extrapolation

of the data in Table 1 to span the entire ®nite-di�erence mesh can be done in a

multitude of ways dependent on what view is held about future stock price behavior.

Shimko (1993) performs this extrapolation by grafting log-normal tails to the Arrow±

Debreu pro®les12 constructed from (33a, d); Rubinstein (1994), on the other hand, uses

a nonlinear optimization technique to minimize the deviation of the total Arrow±

Debreu pro®le from that of a perfectly log-normal distribution. Further approaches are

suggested in Jackwerth and Rubinstein (1996), and Andreasen (1996). We do not

endorse any particular approach, but do caution that simply ¯attening out the volatility

curve outside the upper and lower strikes in Table 1 will introduce large spikes in both

@�=@K and @2�=@K2 that can adversely a�ect the quality of the volatility smile ®t.

Let us now consider pricing 2-year European call options in the presence of the

volatility smile in Table 1. We will use the market data

Sini � $590; r � 6%;  � 2:62%

together with the mesh parameters13

� � 0:5 (CrankNNicholson) ; T � 2; N � 65; M � 25;

S0 � $195:65 ) x0 � 5:276; S66 � $1906:22 ) x66 � 7:553:

The mesh lines up with the initial stock price, S32 � Sini � $590 (that is, � � 32).

To interpolate in Table 1, we here apply the simple bicubic splines suggested in Press

et al. (1992: Chap. 2). In this approach, cubic splines are ®t to all T columns of the

�K ;T�-table whereafter a second cubic spline is ®t along the K direction. While

adequate for our example, we notice that the bicubic scheme su�ers from the drawback

that smoothness is only guaranteed in the K direction. More sophisticated spline

interpolation schemes that are smooth in both T and K directions are discussed in

Dierckx (1995). Application of bicubic spline interpolation combined with a smooth,

gradual ¯attening of the volatility curve outside the limits of Table 1 yield implied

volatilities in the mesh as depicted in Figure 2.

Applying the Black±Scholes pricing equation (9) and using the result (33a, d), we get

the following time-0 Arrow±Debreu prices in the mesh (Figure 3).

Given the Arrow±Debreu pro®les, we can now use Lemke's method on (48) to

construct the local volatilities in the mesh. We constrain the magnitude of the local
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FIGURE 2. Implied volatilities in 2-year finite-difference mesh:
Sini �$590, r � 6%,  � 2:62%, N � 65, M � 25.

FIGURE 3. Arrow±Debreu prices in 2-year finite-difference mesh:
Sini �$590, r � 6%,  � 2:62%, N � 65, M � 25.



volatilities to the interval (0.04, 0.4), i.e.

v̂max �

0:16

0:16

..

.

0:16

266664
377775; v̂min �

0:0016

0:0016

..

.

0:0016

266664
377775:

To speed up this calculation, we have limited the optimization to part of the mesh that

has a signi®cant contribution to (48); volatilities outside of this area have been

(arbitrarily) set to 0.20.

Notice that the local volatility surface is considerably less smooth than the implied

volatilities in Figure 2. This is not surprising as local volatilities are, in e�ect, generated

from time- and strike-derivatives of the implied volatility surface (see (16)). Many of the

spikes in the surface above can be attributed to the lack of control over the T-

derivative in our bicubic interpolation scheme. As mentioned earlier, the smoothness of

the volatility surface can be improved by using either a more sophisticated spline

scheme (perhaps allowing for some bid±o�er slack in the quoted prices) or, at a loss of

accuracy, a regression approach14 (as in Shimko 1993). We do point out, however, that

localized spikes in the local volatility surface typically will have very limited impact on

option prices. Also, the quadratic optimization approach (48) with its built-in

constraints on local volatility will act as a smoothing device and will ensure that any

spikes do not get too large.

Having now determined the local volatility function, we are ready to apply the ®nite-

di�erence scheme (22) (combined with (26) and (30)) to contingent claims pricing. For

call options, the appropriate boundary conditions in the ®nite-di�erence mesh are

H0; j � $0; j � 0; . . . ; 26;

H66; j � S66 exp�ÿ�T ÿ tj�� ÿ K exp�ÿr�T ÿ tj��; j � 0; . . . ; 26;

Hi;26 � max�Si ÿ K ; 0� � max�exi ÿ K ; 0�; i � 1; 2; . . . ; 65:

Using these conditions to set the vectors Bj and H26 in (22), we solve backwards

through the mesh to ®nd H0; the current value of the option can be picked out as the

32nd row of H0. The results are summarized in Table 2.

With a maximum pricing error of around 5 cents (or, in terms of implied volatility,

around 0.0003) and an average error of less than 2 cents, the Crank±Nicholson method

excellently reproduces actual call option prices across the full range of strikes. The time

needed to compute Table 2 was 4.7 seconds on a DEC Alpha 8400 5/300 mini-

computer15 (4.3 seconds to compute the local volatilities and 0.4 seconds to price the

options). We have repeated the above calculations for all option maturities and strikes

in Table 1 using grid sizes varying from M � 10 and N � 50 (T � 0:175) to M � 40

and N � 100 (T � 10); the maximum absolute price error amounted to 7.3 cents and

occurred for T � 0.940 and K � 85% (the total value of this option is $106.782).

Leif B. G. Andersen and Rupert Brotherton-Ratcliffe

Volume 1/Number 2

26



Having veri®ed that our algorithm accurately reproduces the volatility smile, we now

turn to the pricing of knock-out options. Due to their path-dependency, these contracts

require a complete intertemporal description of the volatility smile throughout the life

of the option and are consequently a good test of the full potential of our
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FIGURE 4. Local instantaneous volatilities in 2-year finite-difference mesh:
Sini �$590, r � 6%,  � 2:62%, N � 65, M � 25.

TABLE 2. Two-year call option prices by Crank±Nicholson finite-difference algorithm
(Sini �$590, r � 6%,  � 2:62%, N � 65, M � 25).

Black±Scholes Finite- Finite- Price

Strike Implied theoretical di�erence di�erence error Volatility

(% spot) volatility price price implied vol. (cents) error

85 0.169 $125.7022 $125.7490 0.16927 ¢4.68 0.000 27

90 0.161 $103.9506 $103.9617 0.16105 ¢1.11 0.000 05

95 0.153 $83.5822 $83.6181 0.15314 ¢3.59 0.000 14

100 0.145 $64.8986 $64.9016 0.14501 ¢0.30 0.000 01

105 0.137 $48.2225 $48.2453 0.13707 ¢2.28 0.000 07

110 0.130 $34.1869 $34.1981 0.13004 ¢1.12 0.000 04

115 0.126 $23.6128 $23.6186 0.12602 ¢0.58 0.000 02

120 0.119 $14.6757 $14.6852 0.11904 ¢0.95 0.000 04

130 0.115 $5.6466 $5.6507 0.11502 ¢0.41 0.000 02

140 0.111 $1.7779 $1.7821 0.11105 ¢0.42 0.000 05



®nite-di�erence approach.16 Using the market data above, we will ®rst consider a 2-

year at-the-money down-and-out call on the S&P 500 with a knock-out level of

H � $530. As discussed in Section 1, to ensure rapid convergence we must make sure

that the x grid is always aligned perfectly with the barrier, i.e. x' � ln�530� for some

integer ' 2 �0;M � 1�. The boundary conditions of the down-and-out knock-out are

then as follows

Hi; j � $0; i � 0; . . . ; '; j � 0; . . . ;M � 1;

HN�1; j � SN�1 exp�ÿ�T ÿ tj�� ÿ K exp�ÿr�T ÿ tj��; j � 0; . . . ;M � 1;

Hi;M�1 � max�Si ÿ K; 0� � max�exi ÿ K; 0�; i � 1; 2; . . . ;N:

Using various values of N and M (and thus various values of �t and �x) in a Crank±

Nicholson ®nite-di�erence scheme yields the option prices shown in Table 3.

Unlike methods based on binomial lattices (see Boyle and Lau 1994)), the

convergence of the ®nite-di�erence method is perfectly smooth in both �t and �x.

Moreover, the convergence of option prices is quite fast in both �t and �x; in fact, all

numbers in the table are within 0.32% (or 17 cents) of the $52.286 value obtained at the

highest mesh resolution of N � 150 and M � 45.

In addition to the option price, Table 3 also contains an implied volatility; this

number is de®ned as a (constant) volatility that equates the standard Rubinstein±Reiner

knock-out pricing formula (see Rubinstein and Reiner 1991) with the pricing result
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TABLE 3. Two-year knock-out prices and implied volatilities by Crank±Nicholson
(Sini � K � $590;H � $530; r � 6%;  � 2:62%).

N � 40 N � 60 N � 80 N � 100 N � 120 N � 150

M Dx � 0:054 Dx � 0:036 Dx � 0:027 Dx � 0:021 Dx � 0:018 Dx � 0:015

5 $52.204 65 $52.297 15 $52.323 25 $52.335 29 $52.337 62 $52.338 02

0.123 411 0.124 351 0.124 619 0.124 743 0.124 771 0.124 771

10 $52.135 20 $52.235 28 $52.267 31 $52.283 85 $52.290 79 $52.289 43

0.122 715 0.123 721 0.124 046 0.124 215 0.124174 0.124257

15 $52.124 09 $52.227 79 $52.263 89 $52.279 85 $52.287 96 $52.28639

0.122 604 0.123 645 0.124 012 0.124 174 0.124 257 0.124 241

20 $52.122 80 $52.226 43 $52.263 19 $52.279 41 $52.287 02 $52.286 50

0.122 592 0.123 631 0.124 004 0.124 170 0.124 248 0.124 242

25 $52.122 41 $52.225 43 $52.261 76 $52.279 22 $52.286 68 $52.285 59

0.122 588 0.123 621 0.123 99 0.124 168 0.124 244 0.124 233

30 $52.121 70 $52.226 09 $52.262 49 $52.278 54 $52.286 80 $52.286 77

0.122 581 0.123 628 0.123 997 0.124 161 0.124 245 0.124 245

35 $52.120 88 $52.226 19 $52.262 01 $52.278 08 $52.286 21 $52.286 88

0.122 572 0.123 629 0.123 992 0.124 156 0.124 239 0.124 246

45 $52.120 08 $52.225 94 $52.261 04 $52.277 38 $52.285 96 $52.286 37

0.122 565 0.123 626 0.123 983 0.124 149 0.124 237 0.124 241



generated by the ®nite-di�erence mesh. In our example, the implied volatility is around

0.124 which is signi®cantly lower than both the at-the-money implied call volatility

(0.145) and the implied volatility of a call option with a strike equal to the $530 knock-

out barrier (around 0.161).

To further investigate the implied volatility of knock-out options, consider now again

a 2-year at-the-money knock-out option. We set N � 100 and M � 30 and leave market

data unchanged from the previous examples. Dependent on the knock-out level H,

option prices and implied volatilities are as shown in Table 4.

Interestingly, for knock-out levels in the region around $540±$555 the calculated

option prices are consistent with two implied volatilities. This phenomenon is caused by

the fact that knock-out option prices, unlike prices of regular calls and puts, can be

bounded, nonmonotonic functions of implied volatility (see Figure 6). It is not
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FIGURE 5. Convergence profiles for 2-year down-and-out knock-out option:
Sini � K �$590, H �$530, r � 6%,  � 2:62%.

TABLE 4. Two-year knock-out prices and implied volatilities by
Crank±Nicholson finite-difference method

(Sini � K � $590; r � 6%;  � 2:62%;N � 100;M � 30).

Barrier H Price Implied volatility

$500 $59.5867 0.133 49

$510 $57.7751 0.130 95

$520 $55.3933 0.127 93

$530 $52.2785 0.124 16

$540 $48.2554 0.119 02 or 1.609 91

$550 $43.0306 0.098 87 or 0.157 30

$555 $39.8444 0.059 63 or 0.127 47

$560 $36.2468 0.120 04

$570 $27.4257 0.112 79



inconceivable that certain volatility smiles can give rise to knock-out option prices that

are not consistent with any implied volatility in the Black±Scholes environment. The

concept of implied volatility of knock-out options should, in general, be approached

with care.

5. CONCLUSIONS AND EXTENSIONS

In this paper we have developed and tested an algorithm to incorporate volatility smiles

in the construction of implicit and semi-implicit (Crank±Nicholson) ®nite-di�erence

lattices. Based on the technique of forward induction, the algorithm is fast, accurate

and extremely ¯exible. Although more complicated to implement than the standard

implied binomial tree, the signi®cant improvements in convergence properties and local

branching behavior easily compensate for the additional implementation e�orts.

In the paper, we have illustrated how our algorithm can be applied to price regular

and knock-out calls, but many other applications are possible. As discussed in

Dewynne and Wilmott (1993), the ®nite-di�erence method is capable of pricing a

large number of exotic options, including American (or Bermudan) options, digital

options, lookback options, Asian options, etc. To price options that are too

complicated for the regular ®nite-di�erence method (e.g. certain classes of strongly

path-dependent options), we can use a simulation approach where paths are randomly

drawn through the lattice in accordance with the pseudo-probabilities given by equation

(38). Alternatively, and more simply, we can use the computed instantaneous volatility

surface directly in a regular Monte Carlo scheme.

Finally, we point out that our general approach of incorporating forward induction

in the Crank±Nicholson and implicit ®nite-di�erence methods should prove useful in

many applications other than ®tting of volatility smiles. One such application is the
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FIGURE 6. Down-and-out knock-out option prices as a function of implied volatility:
Sini � K �$590, r � 6%,  � 2:62%.



calibration of short-rate interest rate models to market data which is normally

performed either by binomial trees (Jamshidian 1991) or by modi®ed explicit ®nite-

di�erence schemes (Hull and White 1994).
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APPENDICES

Appendix A. Sufficient conditions for invertibility of (22)

In (22), consider the tridiagonal matrix

�1� r̂j�t�I ÿ �1ÿ��M j :

It is well-known that a su�cient condition for a tridiagonal matrix to be invertible is

that it is diagonally dominant, i.e. the absolute value of the diagonal element in each
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row is strictly larger than the sum of the absolute values of the non-diagonal elements.

For the matrix above, this translates into the condition (for i � 1; . . . ;N, j � 0; . . . ;M�

j1� r̂j�t � �1ÿ���v̂i; j j > 1
2 �1ÿ��ÿj��v̂i; j ��xb̂i; j�j � j��v̂i; j ÿ�xb̂i; j�j

�
: �A:1�

Using equation (30), we can write the right-hand-side (RHS) of the above inequality as

RHS � 1
2 �1ÿ�� A� Bj j � C ÿ Bj j� �;

where

A � �v̂i; j�1ÿ tanh 1
2 �x�; B � �r̂j ÿ ̂j��t

sinh �x�1��̂j�t� ; C � �v̂i; j�1� tanh 1
2 �x�;

and 1� ̂j�t � ÿj=ÿj�1.
As we require that r̂j 5 0, ̂j 5 0 and v̂i; j 5 0, both A and C are strictly positive (as

�x > 0). B is positive or negative depending on the magnitude of r̂j relative to ̂j .

Hence
r̂j 5 ̂j : RHS � 1

2 �1ÿ��max�A� C; 2Bÿ C � A�;
r̂j < ̂j : RHS � 1

2 �1ÿ��max�A� C; 2jBj � C ÿ A�:

Now, �1ÿ���A� C�=2 � �1ÿ���v̂i; j , which is always less than the left-hand-side of

(A.1). As C ÿ A > 0 > Aÿ C, a su�cient condition for inequality (A.1) to hold,

irrespective of the sign of r̂j ÿ ̂j , is thus (for i � 1; . . . ;N, j � 0; . . . ;M)

1� r̂j�t � �1ÿ���v̂i; j > �1ÿ�� �v̂i; j tanh12 �x � jr̂j ÿ ̂j j�t

sinh �x�1��̂j�t�
� �

;

or

1� r̂j�t � �1ÿ���v̂i; j�1ÿ tanh 1
2 �x� > �1ÿ��jr̂j ÿ ̂j j�t

sinh �x�1��̂j�t� : �A:2�

If we wish (A.2) to hold for all v̂i; j 5 0 (unconditional invertibility), we must require

that

1� r̂j�t >
�1ÿ��jr̂j ÿ ̂j j�t

sinh �x�1��̂j�t� ; j � 0; . . . ;M: �A:3�

To simplify, we note that a su�cient condition for (A.3) to hold is obviously

1� r̂j�t >
�1ÿ��jr̂j ÿ ̂j j�t

�x

; j � 0; . . . ;M: (A:4�

To turn (A.4) into a relation between number of time-steps (M � 1) and number of x

steps (N � 1), we assume, as in Endnote 5, that the limits of the x grid have been set so

that

�x � 2Qx�x
����
T
p

N � 1
;

where Qx is a con®dence multiplier (around 4) and �x some representative volatility of
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the stock. Now (A.4) can be written

M � 1 > �N � 1� �1ÿ��jr̂j ÿ ̂j j
����
T
p

2Qx�x
ÿ r̂jT ; j � 0; . . . ;M: �A:5�

As, in most cases, the multiplier on N � 1 is less than 0.05
����
T
p

, the constraint in (A.5) is

not likely to interfere with the design of the ®nite di�erence mesh. We also point out,

that (A.5) is only a su�cient condition; even if (A.5) is violated, the system (22) might

be solvable. Indeed, in practice it appears to be very di�cult to construct realistic

examples where (22) cannot be solved.

Appendix B. Stability of the finite-difference scheme (21) or (22)

To simplify matters, let us assume that the interest rate in (21) is zero. A nonzero

interest rate introduces some extra dampening of errors through discounting e�ects and

will, if anything, lead to better stability properties than the case of zero interest rates.

Now, equation (21) becomes

Hkÿ1; j
ÿÿ 1

2��1ÿ���v̂k; j ÿ�xb̂k; j�
�

�Hk; j 1� ��1ÿ��v̂k; j
ÿ ��Hk�1; j

ÿÿ 1
2��1ÿ���v̂k; j ��xb̂k; j�

�
� Hkÿ1; j�1

ÿ
1
2���v̂k; j ÿ�xb̂k; j�

��Hk; j�1�1ÿ ��v̂k; j� �Hk�1; j�1
ÿ
1
2���v̂k; j ��xb̂k; j��

�B:1�
where 04�4 1 and v̂i; j 5 0. We have used the su�x k instead of i as we will reserve i

for the imaginary unit, i � �������ÿ1p
. To investigate the stability properties of the ®nite

di�erence scheme, we consider a harmonic eigensolution of the form

Hk; j � �M�1ÿjeik!�x ; �B:2�

where � is the ampli®cation factor (a complex number) and ! is the wave number (a

real number). According to the Von Neumann criterion, stability of (21) requires that

the modulus of the ampli®cation factor is less or equal to one, independent of the wave

number:
8! : j�j4 1: �B:3�

Inserting the eigensolution (B.2) into (B.1) and rearranging, we get

� � 1ÿ��v̂k; j�1ÿ cos !�x� � i���xb̂k; j sin !�x

1� �1ÿ���v̂k; j�1ÿ cos !�x� ÿ i�1ÿ����xb̂k; j sin !�x

;

and hence

j�j2 � 1ÿ��v̂k; j�1ÿ cos !�x�
ÿ �2�����xb̂k; j sin !�x�2

1� �1ÿ���v̂k; j�1ÿ cos !�x�
ÿ �2�ÿ�1ÿ����xb̂k; j sin !�x

�2 � U

D
: �B:4�

Both U and D in (B.4) are positive. To satisfy the stability criterion (B.3), we must
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require that DÿU5 0, or, after some manipulations,

8! : 2�v̂k; j � �1ÿ 2���2 v̂2k; j � b̂2k; j�
2
x � cos !�x b̂2k; j�

2
x ÿ v̂2k; j

� �h i
5 0:

It follows that the ®nite-di�erence scheme (21) is stable if

04�4 1
2 1�

2

�
v̂k; j

v̂2k; j � b̂2k; j�
2
x � b̂2k; j�

2
x ÿ v̂2k; j

��� ���
0B@

1CA; k � 1; . . . ;N; j � 0; . . . ;M:

�B:5�
From (B.5) we conclude that the ®nite di�erence scheme is unconditionally stable (that

is, stable for all v̂i; j 5 0) if 04�4 1
2. Both the fully implicit (� � 0) and the Crank±

Nicholson (� � 1
2) ®nite di�erence schemes are thus unconditionally stable. For the

explicit scheme (� � 1), however, stability is only guaranteed if, for all k � 1; . . . ;N,

j � 0; . . . ;M,
2

�
v̂k; j 5 v̂2k; j � b̂2k; j�

2
x � b̂2k; j�

2
x ÿ v̂2k; j

��� ���;
which is satis®ed if

b̂2k; j�t 4 v̂k; j 4
�2

x

�t

: �B:6�

In practice, the main problem is the upper bound, which puts a constraint on the

spacing of the time grid

�t 4
�2

x

v̂max

;

where v̂max is the largest local volatility in the mesh. As the required time spacing is a

quadratic function of the x-spacing, the number of time-steps necessary to ensure

stability will frequently be impractically high.

ENDNOTES

1 The standard notation for volatility, �, is reserved for instantaneous volatility; see equation (1).
2 As we shall see in Section 4, there are probably circumstances where no choice of K and T will

give the correct value. Some practitioners appear to overcome this problem by using two constant

volatilities for knock-out options: one volatility determines the probability of breaching the barrier,

and one volatility is used to price the terminal call option. Needless to say, such an approach does

not make any theoretical sense.
3 The approach taken by Rubinstein (1994) does not su�er from this problem. However,

Rubinstein's method ignores the intertemporal nature of the volatility smile and only ®ts the

terminal time-slice of the tree to the volatility smile. As such, the method is not suited for options

where the payout is a function of the path of the stock price process (as is the case for American
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and most exotic options). Recently, Jackwerth (1996) and Brown and Toft (1996) have developed

methods to extend the Rubinstein approach to multiple option maturities. Both approaches are

quite di�erent from the one taken in this paper, though.
4 This equation was independently derived by Andreasen (1996).
5 For example, one could set

xN�1 � xini �
�T
0

�r�u� ÿ �u�� duÿ 1
2 �

2
xT �Qx�x

����
T
p

;

x0 � xini �
�T
0

�r�u� ÿ �u�� duÿ 1
2 �

2
xT ÿQx�x

����
T
p

;

where Qx is a positive constant, xini is de®ned in (19), and �x is some representative constant

volatility. If �x is properly chosen, setting Qx to a value of, say, 4 will assure that the (risk-neutral)

probability of the terminal stock price ST falling outside the borders of the mesh is less than

0.01%.
6 This assumption is not critical but simpli®es the exposition. If the original stock price lies

between nodes, various interpolation techniques can be applied.
7 The 2nd-order convergence of the Crank±Nicholson scheme in Dt is due to the fact that its

estimator of the time-derivative is central (as it is evaluated in the middle of tj and tj�1).
8 The value of this contract does not equal the stock price Stj as the holder of the contract is not

entitled to any dividends paid over the interval �tj ; tj�1�.
9 As a side-e�ect of the ®nite size of the ®nite-di�erence mesh, these prescribed values will not

exactly equal the observable market prices. As a consequence, (32b, c) will sometimes lead to small

spikes in the prices of Arrow±Debreu securities that pay out in the extreme upper and lower x

boundaries of the mesh. This is no cause of concern as the absolute magnitude of these prices are

typically � 10ÿ6 and hence have practically no in¯uence on realistic option prices. At the price of a

slight loss of accuracy, the spikes can be removed by abandoning (32b, c) and using the observable

prices instead.
10 The matrix Fj determines the scale of the quadratic program and only a�ects volatilities if the

constraints are binding. In most cases, it is su�cient to set Fj equal to the identity matrix. For

improved accuracy, particularly for long-term deals (T > 5 years), it is sometimes better to pick the

call option payout matrix, f'r;cg � max�Sc ÿ Srÿ1; 0� � max�exc ÿ exrÿ1 ; 0�, r; c � 1; . . . ;N. With

this transformation, the quadratic program will optimize on option prices rather than Arrow±

Debreu prices.
11 Alternatively, one could interpolate directly on call option prices. Unless one is quite careful, this

will tend to result in irregular implied volatilities, particularly for high and low strikes (where the

sensitivity of option prices to implied volatility is low). Moreover, as noted in Andreasen (1996), it

is easier to extrapolate and smooth on surfaces that are relatively ¯at (which presumably is the case

for implied volatilities). Notice, however, that if stock forwards are themselves not smooth, as

would for example be the case if dividends are modeled as discrete-time lump sum payments, it

would not be appropriate to model implied volatilities (or call prices, for that matter) as smooth

functions of T and K. Such cases can be handled by normalizing strikes with time-0 forward values
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�F�, i.e. we would write � � ��K=FT ;T� and interpolate this function smoothly. Similarly, we would

set � � ��St=Ft; t� and modify the forward equation accordingly.
12 While always yielding smooth Arrow±Debreu pro®les, Shimko's method has a tendency to

produce irregular local volatilities, particularly in the lower tail. Our experiments also show that the

(nonlinear) search for tail distributions can be quite cumbersome.
13 Here, we use the same mesh to price options with di�erent strikes. The results can be improved

slightly by adjusting the grid to ensure that each option strike coincides exactly with an x slice in the

®nite-di�erence mesh.
14 The trade-o� between smoothness and accuracy is similar to that of ®tting yield curves to

observed bond prices. If the objective is to generate a smooth forward curve, one must often rely on

an approximate ®t to bond prices (such as a regression spline).
15 The Alpha 8400 5/300 is around 2 times faster than a 166MHz Pentium II PC.
16 While we use the Crank±Nicholson scheme in our example, we point out that this method can

introduce spurious oscillations if the spot price is very close to the barrier. As Zvan et al. (1997)

demonstrate, such oscillations can be eliminated by simply using the fully implicit method (Y � 0).
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