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2 Interest Rate & Credit Models

1 Dynamics of the forward curve

The forward curve continuously evolves. Ultimately, the goals of interest rate mod-
eling are to

(a) capture the dynamics of the curve in order to price and risk manage portfolios
of fixed income securities,

(b) identify trading opportunities in the fixed income markets.

We have already taken the first step in this direction, namely learned how to con-
struct the current snapshot of the curve. This current snapshot serves as the starting
point for the stochastic process describing the curve dynamics. The next step is to
construct the volatility cube, which is used to model the uncertainties in the future
evolution of the rates. The volatility cube is built out of implied volatilities of a
number of liquidly trading options.

2 Options on LIBOR based instruments

Eurodollar options are standardized contracts traded at the Chicago Mercantile
Exchange. These are short dated (8 quarterly and two serial contracts) American
style calls and puts on Eurodollar futures. Their maturities coincide with the matu-
rity dates of the underlying Eurodollar contracts1. The exchange sets the strikes for
the options spaced every 25 basis points (or 12.5 bp for the front contracts). The
options are cash settled.
Caps and floors are baskets of European calls (called caplets) and puts (called
floorlets) on LIBOR forward rates. They trade over the counter.

Let us consider for example, a 10 year spot starting cap struck at 5.50%. It
consists of 39 caplets each of which expires on the 3 month anniversary of today’s
date. It pays max (current LIBOR fixing− 5.50%, 0)×act/360 day count fraction.
The payment is made at the end of the 3 month period covered by the LIBOR
contract and follows the modified business day convention. Notice that the very
first period is excluded from the cap: this is because the current LIBOR fixing is
already known and no optionality is left in that period.

In addition to spot starting caps and floors, forward starting instruments trade.
For example, a 1 year × 5 year (in the market lingo: “1 by 5”) cap struck at
5.50% consists of 16 caplets struck at 5.50% the first of which matures one year
from today. The final maturity of the contract is 5 years, meaning that the last

1In addition to the quarterly and serial contracts, a number of midcurve options trade which, for
our purposes, are exotic instruments and do not enter the volatility cube construction.
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caplets matures 4 years and 9 months from today (with appropriate business dates
adjustments). Unlike in the case of spot starting caps, the first period is included
into the structure, as the first LIBOR fixing is of course unknown. Note that the
total maturity of the m× n cap is n years.

The definitions of floors are similar with the understanding that a floorlet pays
max (strike− current LIBOR fixing%, 0) × act/360 day count fraction at the end
of the corresponding period.
Swaptions are European calls and puts (in the market lingo: payers and receivers,
respectively) on forward swap rates. They trade over the counter.

For example, a 5.50% 1Y→ 5Y (“1 into 5”) receiver swaption gives the holder
the right to receive 5.50% on a 5 year swap starting in 1 year. More precisely, the
option holder has the right to exercise the option on the 1 year anniversary of today
(with the usual business day convention adjustments) in which case they enter into
a receiver swap starting two business days thereafter. Similarly, a 5.50% 5Y →
10Y (“5 into 10”) payer swaption gives the holder the right to pay 5.50% on a 10
year swap starting in 5 year. Note that the total maturity of the m → n swaption is
m + n years.

Since a swap can be viewed as a particular basket of underlying LIBOR for-
wards, a swaption is an option on a basket of forwards. This observation leads
to the popular relative value trade of, say, a 2 → 3 swaption straddle versus a
2× 5 cap / floor straddle. Such a trade my reflect the trader’s view on the correla-
tions between the LIBOR forwards or a misalignment of swaption and cap / floor
volatilities.

2.1 Black’s model

The standard way of quoting prices on caps / floors and swaptions is in terms of
Black’s model which is a version of the Black-Scholes model adapted to deal with
forward underlying assets. In order to fix the notation we briefly discuss this model
now, deferring a more indebt discussion of interest rate modeling to later parts of
these lectures.

We assume that a forward rate F (t), such as a LIBOR forward or a forward
swap rate, follows a driftless lognormal process reminiscent of the basic Black-
Scholes model,

dF (t) = σF (t) dW (t) . (1)

Here W (t) is a Wiener process, and σ is the lognormal volatility. It is understood
here, that we have chosen a numeraire N with the property that, in the units of that
numeraire, F (t) is a tradable asset. The process F (t) is thus a martingale, and we
let Q denote the probability distribution.
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The solution to this stochastic differential equation reads:

F (t) = F0 exp
(

σW (t)− 1
2

σ2t

)
. (2)

Therefore, today’s value of a European call struck at K and expiring in T years is
given by:

PVcall struck at K = N (0) EQ [max (F (T )−K, 0)]

= N (0)
1√
2πT

∫ ∞

−∞
max

(
F0e

σW− 1
2

σ2T −K, 0
)

e−
W2

2T dW,
(3)

where EQ denotes expected value with respect to Q. The last integral can easily be
carried out, and we find that

PVcall struck at K = N (0)
[
F0N (d+)−KN (d−)

]

≡ N (0) Bcall (T, K, F0, σ) .
(4)

Here, N (x) is the cumulative normal distribution, and

d± =
log

F0

K
± 1

2
σ2T

σ
√

T
. (5)

The price of a European put is given by:

PVput struck at K = N (0)
[− F0N (−d+) + KN (−d−)

]

≡ N (0) Bput (T,K, F0, σ) .
(6)

2.2 Valuation of caps and floors

A cap is a basket of options on LIBOR forward rates. Recall that a forward rate
F (t, T ) for the settlement t and maturity T can be expressed in terms of discount
factors:

F (t, T ) =
1
δ

(
1

P (t, T )
− 1

)

=
1
δ

P (0, t)− P (0, T )
P (0, T )

.

(7)

The interpretation of this identity is that F (t, T ) is a tradable asset if we use the
zero coupon bond maturing in T years as numeraire. Indeed, the trade is as follows:

(a) Buy 1/δ face value of the zero coupon bond for maturity t.



Lecture 2 5

(b) Sell 1/δ face value of the zero coupon bond for maturity T .

A LIBOR forward rate can thus be modeled as a martingale! Choosing, for now,
the process to be (1), we conclude that the price of a call on F (t, T ) (or caplet) is
given by

PVcaplet = δBcall (t,K, F0, σ) P (0, T ) , (8)

where F0 denotes here today’s value of F (t, T ).
Since a cap is a basket of caplets, its value is the sum of the values of the

constituent caplets:

PVcap =
n∑

j=1

δjBcall (Tj−1,K, Fj , σj) P (0, Tj) , (9)

where δj is the day count fraction applying to the accrual period starting at Tj−1

and ending at Tj , and Fj is the LIBOR forward rate for that period. Notice that,
in the formula above, the date Tj−1 has to be adjusted to accurately reflect the
expiration date of the option (2 business days before the start of the accrual period).
Similarly, the value of a floor is

PVcap =
n∑

j=1

δjBfloor (Tj−1,K, Fj , σj) P (0, Tj) . (10)

What is the at the money (ATM) cap? Characteristic of an ATM option is
that the call and put struck ATM have the same value. We shall first derive a
put / call parity relation for caps and floors. Let EQj denote expected value for
the probability distribution corresponding to the zero coupon bond maturing at Tj .
Then,

PVfloor − PVcap

=
n∑

j=1

δj

(
EQj [max (K − Fj , 0)]− EQj [max (Fj −K, 0)]

)
P (0, Tj)

=
n∑

j=1

δjE
Qj [K − Fj ] P (0, Tj) .

Now, the expected value EQj [Fj ] is the current value of the forward which, by an
excusable abuse of notation, we shall also denote by Fj . Hence we have arrived at
the following put / call parity relation:

PVcap − PVfloor = K
n∑

j=1

δjP (0, Tj)−
n∑

j=1

δjFjP (0, Tj)

= PVswap paying K, q, act/360.

(11)
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This is an important relation. It implies that:

(a) It is natural to think about a floor as a call option, and a cap as a put option.
The underlying asset is the forward starting swap on which both legs pay
quarterly and interest accrues on the act/360 basis. The coupon dates on the
swap coincide with the payment dates on the cap / floor.

(a) The ATM rate is the break-even rate on this swap. This rate is close to but
not identical to the break-even rate on the standard semi-annual swap.

2.3 Valuation of swaptions

Let S (t, Tstart, Tmat) denote the forward swap rate observed at time t < Tstart (in
particular, S (Tstart, Tmat) = S (0, Tstart, Tmat)). We know from Lecture Notes 1 that
the forward swap rate is given by

S (t, Tstart, Tmat) =
P (t, Tstart)− P (t, Tmat)

L (t, Tstart, Tmat)
, (12)

where L (t, Tstart, Tmat) is the forward level function:

L (t, Tstart, Tmat) =
nfixed∑

j=1

αjP (t, Tj) . (13)

The forward level function is the time t PV of an annuity paying $1 on the dates
T1, T2, . . . , Tn. As in the case of a simple LIBOR forward, the interpretation of
(12) is that S (t, Tstart, Tmat) is a tradable asset if we use the annuity as numeraire.
Indeed, the trade is as follows:

(a) Buy $1 face value of the zero coupon bond for maturity Tstart.

(b) Sell $1 face value of the zero coupon bond for maturity Tmat.

A forward swap rate can thus be modeled as a martingale! Choosing, again, the
lognormal process (1), we conclude that the value of a receiver swaption is thus
given by

PVrec = LBput (T,K, S0, σ) , (14)

and the value of a payer swaption is

PVpay = LBcall (T,K, S0, σ) , (15)

where S0 is today’s value of the forward swap rate S (Tstart, Tmat).
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The put / call parity relation for swaptions is easy to establish:

PVrec − PVpay = PVswap paying K, s, 30/360. (16)

Therefore,

(a) It is natural to think about a receiver as a call option, and a payer as a put
option.

(a) The ATM rate is the break-even rate on the underlying forward starting swap.

3 Beyond Black’s model

The basic premise of Black’s model, that σ is independent of K and F0, is not
supported by the interest volatility markets. In particular, for a given maturity,
option implied volatilities exhibit a pronounced dependence on their strikes. This
phenomenon is called the skew or the volatility smile. It became apparent especially
over the past ten years or so, that in order to accurately value and risk manage
options portfolios refinements to Black’s model are necessary.

An improvement over Black’s model is a class of models called local volatil-
ity models. The idea is that even though the exact nature of volatility (it could be
stochastic) is unknown, one can, in principle, use the market prices of options in or-
der to recover the risk neutral probability distribution of the underlying asset. This,
in turn, will allow us to find an effective (“local”) specification of the underlying
process so that the implied volatilities match the market implied volatilities.

Local volatility models are usually specified in the form

dF (t) = C (F (t) , t) dW (t) , (17)

where C (F, t) is a certain effective volatility coefficient. Popular local volatility
models which admit analytic solutions are:

(a) The normal model.

(b) The shifted lognormal model.

(c) The CEV model.

We now briefly discuss the basic features of these models.
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3.1 Normal model

The dynamics for the forward rate F (t) in the normal model reads

dF (t) = σdW (t) , (18)

under the suitable choice of numeraire. The parameter σ is appropriately called the
normal volatility. This is easy to solve:

F (t) = F0 + σW (t) . (19)

This solution exhibits one of the main drawbacks of the normal model: with non-
zero probability, F (t) may become negative in finite time. Under typical circum-
stances, this is, however, a relatively unlikely event.

Prices of European calls and puts are now given by:

PVcall = N (0)Bn
call (T, K, F0, σ) ,

PVput = N (0)Bn
put (T, K, F0, σ) .

(20)

The functions Bn
call (T,K, F0, σ) and Bn

put (T,K, F0, σ) are given by:

Bn
call (T,K, F0, σ) = σ

√
T

(
d+N (d+) + N ′ (d+)

)
,

Bn
put (T,K, F0, σ) = σ

√
T

(
d−N (d−) + N ′ (d−)

)
,

(21)

where
d± = ± F0 −K

σ
√

T
. (22)

The normal model is (in addition to the lognormal model) an important bench-
mark in terms of which implied volatilities are quoted. In fact, many traders are in
the habit of thinking in terms of normal implied volatilities, as the normal model of-
ten seems to capture the rates dynamics better than the lognormal (Black’s) model.

3.2 Shifted lognormal model

The dynamics of the shifted lognormal model reads:

dF (t) = (σ1F (t) + σ0) dW (t) .

Volatility structure is given by the values of the parameters σ1 and σ0.
Prices of calls and puts are given by the following valuation formulas:

PVcall = N (0) Bsln
call (T, K, F0, σ0, σ1) ,

PVput = N (0) Bsln
put (T,K, F0, σ0, σ1) .

(23)
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The functions Bsln
call (T,K, F0, σ0, σ1) and Bsln

put (T, K, F0, σ0, σ1) are generaliza-
tions of the corresponding functions for the lognormal and normal models:

Bsln
call (T, K, F0, σ0, σ1) =

(
F0 +

σ0

σ1

)
N (d+)−

(
K +

σ0

σ1

)
N (d−) , (24)

where

d± =
log

σ1F0 + σ0

σ1K + σ0
± 1

2
σ2

1T

σ1

√
T

, (25)

and

Bsln
put (T, K, F0, σ0, σ1) = −

(
F0 +

σ0

σ1

)
N (−d+) +

(
K +

σ0

σ1

)
N (−d−) .

(26)
The shifted lognormal model is used by some market practitioners as a con-

venient compromise between the normal and lognormal models. It captures some
aspects of the volatility smile.

3.3 The CEV model

The dynamics in the CEV model is given by

dF (t) = σF (t)β dW (t) ,

where 0 < β < 1. In order for the dynamics to make sense, we have to prevent
F (t) from becoming negative (otherwise F (t)β would turn imaginary!). To this
end, we specify a boundary condition at F = 0. It can be

(a) Dirichlet (absorbing): F |0 = 0. Solution exists for all values of β, or

(b) Neumann (reflecting): F ′|0 = 0. Solution exists for 1
2 ≤ β < 1.

Pricing formulas for the CEV model are of the usual (albeit a bit more complicated)
form. For example, in the Dirichlet case the prices of calls and puts are:

PVcall = N (0) BCEV
call (T,K, F0, σ) ,

PVput = N (0) BCEV
put (T,K, F0, σ) .

(27)

The functions BCEV
call (T,K, F0, σ) and BCEV

put (T,K, F0, σ) are expressed in
terms of the cumulative function of the non-central χ2 distribution:

χ2 (x; r, λ) =
∫ x

0
p (y; r, λ) dy, (28)
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whose density is given by a Bessel function:

p (x; r, λ) =
1
2

(x

λ

)(r−2)/4
exp

(
−x + λ

2

)
I(r−2)/2

(√
λx

)
. (29)

We also need the quantity:

ν =
1

2 (1− β)
, i.e. ν ≥ 1

2
. (30)

Then

BCEV
call (T,K, F0, σ) = F0

(
1− χ2

(
4ν2K1/ν

σ2T
; 2ν + 2,

4ν2F
1/ν
0

σ2T

))

−Kχ2

(
4ν2F

1/ν
0

σ2T
; 2ν,

4ν2K1/ν

σ2T

)
,

(31)

and

BCEV
put (T, K, F0, σ) = F0χ

2

(
4ν2K1/ν

σ2T
; 2ν + 2,

4ν2F
1/ν
0

σ2T

)

−K

(
1− χ2

(
4ν2F

1/ν
0

σ2T
; 2ν,

4ν2K1/ν

σ2T

))
.

(32)

4 Stochastic volatility and the SABR model

The volatility skew models that we have discussed so far improve on Black’s mod-
els but still fail to reflect the market dynamics. One issue is, for example, the “wing
effect” exhibited by the implied volatilities of some maturities (especially shorter
dated) and tenors which is not captured by these models: the implied volatilities
tend to rise for high strikes forming the familiar “smile” shape. Among the at-
tempts to move beyond the locality framework are:

(a) Stochastic volatility models. In this approach, we add a new stochastic factor
to the dynamics by assuming that a suitable volatility parameter itself follows
a stochastic process.

(b) Jump diffusion models. These models use a broader class of stochastic pro-
cesses (for example, Levy processes) to drive the dynamics of the underlying
asset. These more general processes allow for discontinuities (“jumps”) in
the asset dynamics.

For lack of time we shall discuss an example of approach (a), namely the SABR
model.
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4.1 Implied volatility

The SABR model is an extension of the CEV model in which the volatility param-
eter σ is assumed to follow a stochastic process. Its dynamics is given by:

dF (t) = σ (t) C (F (t)) dW (t) ,

dσ (t) = ασ (t) dZ (t) .
(33)

Here F (t) is the forward rate process, and W (t) and Z (t) are Wiener processes
with

E [dW (t) dZ (t)] = ρdt,

where the correlation ρ is assumed constant. The diffusion coefficient C (F ) is
assumed to be of the CEV type:

C (F ) = F β. (34)

Note that we assume that a suitable numeraire has been chosen so that F (t) is a
martingale. The process σ (t) is the stochastic component of the volatility of Ft,
and α is the volatility of σ (t) (the volvol) which is also assumed to be constant. As
usual, we supplement the dynamics with the initial condition

F (0) = F0,

σ (0) = σ0,
(35)

where F0 is the current value of the forward, and σ0 is the current value of the
volatility parameter.

Except for the special case of β = 0, no explicit solution to this model is
known. The general case can be solved approximately by means of a perturbation
expansion in the parameter ε = Tα2, where T is the maturity of the option. As it
happens, this parameter is typically small and the approximate solution is actually
quite accurate. Also significantly, this solution is very easy to implement in com-
puter code, and lends itself well to risk management of large portfolios of options
in real time.

An analysis of the model dynamics shows that the implied normal volatility is
approximately given by:

σn (T, K, F0, σ0, α, β, ρ) = α
F0 −K

δ (K, F0, σ0, α, β)
×

{
1 +

[
2γ2 − γ2

1

24

(
σ0C (Fmid)

α

)2

+
ργ1

4
σ0C (Fmid)

α
+

2− 3ρ2

24

]
ε

+ . . .
}

,

(36)
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where Fmid denotes a conveniently chosen midpoint between F0 and K (such as√
F0K or (F0 + K) /2), and

γ1 =
C ′ (Fmid)
C (Fmid)

,

γ2 =
C ′′ (Fmid)
C (Fmid)

.

The “distance function” entering the formula above is given by:

δ (K, F0, σ0, α, β) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
,

where

ζ =
α

σ0

∫ F0

K

dx

C (x)

=
α

σ0 (1− β)

(
F 1−β

0 −K1−β
)

.

(37)

A similar asymptotic formula exists for the implied lognormal volatility σln.

4.2 Calibration of SABR

For each option maturity and underlying we have to specify 4 model parameters:
σ0, α, β, ρ. In order to do it we need, of course, market implied volatilities for
several different strikes. Given this, the calibration poses no problem: one can use,
for example, Excel’s Solver utility.

It turns out that there is a bit of redundancy between the parameters β and ρ.
As a result, one usually calibrates the model by fixing one of these parameters:

(a) Fix β, say β = 0.5, and calibrate σ0, α, ρ.

(b) Fix ρ = 0, and calibrate σ0, α, β.

Calibration results show interesting term structure of the model parameters as
functions of the maturity and underlying. Typical is the shape of the parameter
α which start out high for short dated options and then declines monotonically as
the option maturity increases. This indicates presumably that modeling short dated
options should include a jump diffusion component.
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5 Building the vol cube

Market implied volatilities are usually organized by:

(a) Option maturity.

(b) Tenor of the underlying instrument.

(c) Strike on the option.

This three dimensional object is called the volatility cube. The markets provide in-
formation for certain benchmark maturities (1 month, 3 months, 6 months, 1 year,
...), underlyings (1 year, 2 years, ...), and strikes (ATM, ±50 bp, ...) only, and
the process of volatility cube construction requires performing intelligent interpo-
lations.

5.1 ATM swaption volatilities

The market quotes swaption volatilities for certain standard maturities and under-
lyings. Matrix of at the money volatilities may look like this:

mat�tenor 0.25 1 2 3 4 5 7 10 15 20
0.25 6.7 13.3 15.5 15.7 15.6 15.5 15.0 14.2 13.5 13.1
0.5 11.9 14.8 16.2 16.2 16.1 15.9 15.3 14.5 13.8 13.3
1 16.7 17.1 17.2 17.0 16.8 16.6 16.0 15.2 14.4 13.9
2 18.5 18.2 17.90 17.7 17.4 17.2 16.7 15.9 15.0 14.5
3 18.9 18.4 18.2 18.0 17.7 17.5 17.0 16.3 15.3 14.8
4 18.9 18.3 18.1 17.9 17.6 17.5 16.9 16.2 15.2 14.7
5 18.8 18.1 17.9 17.6 17.4 17.3 16.7 16.0 15.0 14.5
7 18.0 17.4 17.1 16.8 16.6 16.4 15.9 15.3 14.2 13.8
10 16.2 16.1 15.8 15.6 15.4 15.2 14.8 14.2 13.0 12.6

5.2 Stripping cap volatility

A cap is a basket of options of different maturities and different moneynesses. For
simplicity, the market quotes cap / floor prices in terms of a single number, the flat
volatility. This is the single volatility which, when substituted into the valuation
formula (for all caplets / floorlets!), reproduces the correct price of the instrument.
Clearly, flat volatility is a dubious concept: since a single caplet may be part of
different caps it gets assigned different flat volatilities. The process of constructing
actual implied caplet volatility from market quotes is called stripping cap volatility.
The result of stripping is a sequence of ATM caplet volatilities for maturities all
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maturities ranging from one day to, say, 30 years. Convenient benchmarks are 3
months, 6 months, 9 months, ... . The market data usually include Eurodollar
options and OTC caps and floors.

There are various methods of stripping cap volatility. Among them we list:

• Bootstrap. One starts at the short end and moves further trying to match the
prices of Eurodollar options and spot starting caps / floors.

• Optimization. Use a two step approach: in the first step fit the caplet volatil-
ities to the hump function:

H (t) = (α + βt) e−λt + µ. (38)

Generally, the hump function gives a qualitatively correct shape of the cap
volatility. Quantitatively, the fit is insufficient for accurate pricing and we
should refine it. An good approach is to use smoothing B-splines. Once
α, β, λ, and µ have been calibrated, we use cubic B-splines in a way similar
to the method explained in Lecture 1 in order to nail down the details of the
caplet volatility curve.

5.3 Adding the third dimension

It is convenient to specify the strike dependence of volatility in terms of the set
of parameters of a smile model (such as a local volatility model or a stochastic
volatility model). This way, (a) we can calculate on the fly the implied volatility
for any strike, (b) the dependence of the volatility on the strike is smooth.

6 Sensitivities and hedging of options

6.1 The greeks

Traditional risk measures of options are the greeks: delta, gamma, vega, theta,
etc.2, see [2]. Recall, for example, that the delta of an option is the derivative of the
premium with respect the underlying. This poses a bit of a problem in the world of
interest rate derivatives, as the interest rates play a dual role in the option valuation
formulas: (a) as the underlyings, and (b) as the discounting rates. One has thus to
differentiate both the underlying and the discount factor when calculating the delta
of a swaption!

In risk managing a portfolio of interest rate options, we use the concepts (ex-
plained in Lecture 1) of partial sensitivities to particular curve segments. They

2Rho, vanna, volga,... .



Lecture 2 15

can be calculated either by perturbing selected inputs to the curve construction or
by perturbing a segment of the forward curve, and calculating the impact of this
perturbation on the value of the portfolio.

Vega risk is the sensitivity of the portfolio to volatility and is traditionally mea-
sured as the derivative of the option price with respect to the implied volatility.
Choice of volatility model impacts not only the prices of (out of the money) op-
tions but also, at least equally significantly, their risk sensitivities. One has to think
about the following issues:

(a) What is vega: sensitivity to lognormal volatility, normal volatility, another
volatility parameter?

(b) What is delta: which volatility parameter should be kept constant?

6.2 Risk measures under SABR

Let us have a closer look at these issues in case of the SABR model. The delta
risk is calculated by shifting the current value of the underlying while keeping the
current value of implied volatility σ fixed:

F0 → F0 + ∆F0,

σ → σ,
(39)

where ∆F0 is, say, −1 bp. This scenario leads to the option delta:

∆ =
∂V

∂F0
+

∂V

∂σ

∂σ

∂F0
. (40)

The first term on the right hand side in the formula above is the original Black
delta, and the second arises from the systematic change in the implied volatility as
the underlying changes. This formula shows that, in stochastic volatility models,
there is an interaction between classic Black-Scholes style greeks! In the case at
hand, the classic delta and vega contribute both to the smile adjusted delta.

Similarly, the vega risk is calculated from

F0 → F0,

σ0 → σ0 + ∆σ,
(41)

to be
Λ =

∂V

∂σ

∂σ

∂σ0
. (42)

These formulas are the classic SABR greeks.
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Modified SABR greeks below attempt to make a better use of the model dy-
namics. Since σ and F are correlated, whenever F changes, on average σ changes
as well. A realistic scenario is thus

F0 → F0 + ∆F0,

σ0 → σ0 + δfσ0.
(43)

Here δF σ0 is the average change in σ0 caused by the change in the underlying
forward. The new delta risk is given by

∆ =
∂V

∂F0
+

∂V

∂σ

(
∂σ

∂F0
+

∂σ

∂σ0

ρα

F β
0

)
. (44)

This risk incorporates the average change in volatility caused by changes in the
underlying.

Similarly, the vega risk should be calculated from the scenario:

F0 → F0 + δαF0,

σ0 → σ0 + ∆σ0,
(45)

where δσF0 is the average change in F0 caused by the change in SABR vol. This
leads to the modified vega risk

Λ =
∂V

∂σ

(
∂σ

∂σ0
+

∂σ

∂F0

ρF β
0

α

)
. (46)
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