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Abstract 
We combine the classical ideas of separable volatility structures in the HJM 
framework with the latest techniques for calibration of stochastic volatility models 
and create an efficient multi-factor term structure model with stochastic volatility.  
 

Introduction 
In the early 1990s, Cheyette (1992) and others introduce a separable volatility 
specification of the general Heath, Jarrow, and Morton (1992) model. Contrary to 
general HJM and Libor market models, this specification allows for Markov 
representation of the full yield curve in a low number of state variables. In this paper 
we present a class of separable volatility structure yield curve models that incorporate 
stochastic volatility to match the volatility smile as observed in the vanilla interest 
rate options markets. We combine this with recent ideas for approximation of 
stochastic volatility model with time-dependent parameters by Piterbarg (2005) to 
yield fast and efficient calibration of the model. 
 
The first sections of the paper consider the notion of so-called "true" stochastic 
volatility, separable volatility structures in HJM models, and stochastic volatility 
models for vanilla swaptions and caps. We then introduce our model specification and 
describe how cap and swaption prices can be approximated in the model. Calibration 
techniques and numerical examples are considered. The final sections of the paper 
consider pricing in our model by Monte-Carlo simulations and finite difference 
solution. 
 

True Stochastic Volatility 
So-called true stochastic volatility yield curve models are models that have the 
property that they prescribe moves in the volatility of rates that can not directly be 
inferred from the shape or the level of the yield curve. I.e. if  is the time t  
price of a zero-coupon bond maturing at time , and we assume that all zero-coupon 
bond prices evolve according to  
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where  is a vector Brownian motion under the risk-neutral measure, r  is the 
continuously compounded short rate, and a  some family of vector processes, then a 
true stochastic volatility model has the property that there exists some factor  and at 
least one maturity U , so that  
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Traditional short rate models are very difficult to formulate as true stochastic 
volatility models. Consider, for example, the model by Fong and Vasicek (1991): 
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where  are constants, and  and  Brownian motions under the risk-
neutral measure. In this model we have 
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So the bond price becomes a function of two stochastic variables. Hence, we can 
invert the system and infer the level of both the short rate and the short rate volatility 
from any two points on the yield curve. Thus, the model is not a true stochastic 
volatility model. This is also the case for the Longstaff and Schwartz (1992) model 
and other early attempts to produce stochastic volatility yield curve model. 
 
In fact, without going into the complicated technical details, this is also the case for 
any attempt to formulate a stochastic volatility yield curve model in the context of the 
Markov functional approach by Hunt, Kennedy, and Pellser (1998). 
 
So, as observed by Andreasen, Dufresne and Shi (1994), the most straightforward 
way of formulating a stochastic volatility yield curve model is to use the HJM 
approach, or equivalently the Libor market model approach, and directly specify the 
stochastic nature of the bond or forward rate volatility structure. 
 
Let the time  continuously compounded forward rate for deposit over the interval 

 be given by 
t

[ , ]T T dT+
 

 ln ( , )( , ) P t Tf t T
T

∂
= −

∂
 

 
Heath, Jarrow, and Morton (1992) show that any arbitrage-free term structure model 
with continuous evolution of the yield curve has to satisfy 
 

    (3) ( , ) ( , ) '( ( , ) ) ( , ) ' ( )
T

t
df t T t T t s ds dt t T dW tσ σ σ= +∫

  
where  is a vector Brownian motion under the risk-neutral measure and W
{ ( , )}t Tt Tσ ≤  is a family of vector processes. The relation between the bond price 
volatility and the forward rate volatility is  
 

 3



  ( , ) ( , )
T

t
a t T t s dsσ= −∫

 
In this model approach we see that it is easy to specify a volatility structure satisfying 
(2). We could for example set ( , ) ( )t T c z tσ = ⋅  for some constant c  and some 
stochastic factor . z
 

Separable Volatility 
The HJM approach prescribes a very straightforward way of specifying an arbitrage 
free term structure model that automatically fits the initial term structure: all one 
needs to do is to specify the forward rate volatility structure { ( , )}t Tt Tσ ≤ . 
 
However, the problem with this modeling approach is that the resulting model is not 
generally Markov in a limited number of state variables. In general, the HJM model 
approach requires us to use the full forward curve as a state variable to close (3) as a 
Markov system. This is independent of the dimension of the driving Brownian motion 
and it is even the case if the forward rate volatility structure is deterministic. So when 
we simulate the model (3) we generally need to carry forward all points on the 
forward curve. Hence, the computational effort of simulation of the model (3) grows 
at a quadratic rate in the time horizon. Similarly, if we attempt to approximate the 
process (3) with a discrete process, the resulting tree will be non-recombining and 
thus have a number of nodes that grow at an exponential rate in the number of time 
steps, or the time horizon. 
 
However, Cheyette (1992), Babbs (1992), Jamshidian (1991), and Ritchken and 
Sankarasubramaniam (1993) independently find that if we restrict ourselves to a 
volatility structure for the forward rates that are separable in the sense that there exist 
a deterministic vector function  on  and a matrix process  on , so that g k\ h k k×\
 
 ( , ) ' ( ) ' ( )t T g T h tσ =         (4) 
 
then a Markov representation of the dynamics of the yield curve, involving (a 
minimum of)  state variables, emerges.  ( 1) /k k k+ ⋅ + 2
 
Without loss of generality the model can in this case we formulated as 
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(5) 
 
In the context of the separable formulation (4) we have 
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The first  state variables, the elements of k X , can be interpreted as yield curve 
factors that pertubate the forward curve and are directly associated with the driving 
Brownian motions, whereas the remaining ( 1) / 2k k⋅ +  state variables, the elements of 
the symmetric matrix , can be seen as "convexity" terms that have to be carried 
along to keep the model arbitrage free. 

Y

 
For  and 1k = η  deterministic, Y  becomes deterministic and we obtain the general 
Gaussian model, i.e. a Vasicek (1977) model with time-dependent parameters. This 
lead Jamshidian (1991) and Babbs (1992) to denoting the separable volatility 
specification as respectively "quasi" and "pseudo" Gaussian models. 
 
The potential computational saving in using this type of model rather than the general 
HJM approach is considerable. If we for example consider the case of pricing a 30 
year structure with quarterly fixings and payments by simulation, the general HJM or 
LMM approach will require the evolution of at least 120 points on the yield curve, 
whereas a 4 factor version of the separable model requires the evolution of maximum 
14 state variables. 
 
For the one-dimensional case, 1k = , finite difference solution is viable and it is most 
often a more efficient numerical solution method than Monte-Carlo simulation. We 
will discuss this later in the paper. Finite difference solution of simpler versions of the 
model are also considered in Andreasen (2000) and Andersen and Andreasen (2002). 
 
It is worth noting that if we let  be constants, then 1, , kκ … κ
 

 
1

( , ) ' ( ) ( )i

k

i
i

t t e t e t dκ τ κτ
κσ τ η η− −

=

+ = →∑ ∫ κ   

 
for  and an appropriately chosen sequence k →∞ 1 2, ,κ κ … . So the model (5) can be 
seen as a representation of the forward rate volatility structure on a (discrete) basis of 
exponential functions. The function ( )tκκ η6  can thus be viewed as the inverse 
Laplace transform of the forward rate volatility structure in the tenor dimension: 

( , )t tτ σ τ+6 . 
 

Stochastic Volatility Processes 
The most popular stochastic volatility model for caps and swaptions appears to be the 
SABR model by Hagan et al (2002) where the volatility is specified as a geometric 
Brownian motion that has some correlation with the underlying forward swap rate. 
This model is quite difficult to work with in the context of full yield curve models, for 
a number of reasons. Firstly, the SABR model does not incorporate mean-reversion in 
volatility which means that when the model is fitted to observed cap and swaption 
prices the implied volatility of volatility parameter most often turn out to be 
decreasing with expiry of the underlying option. This in turn implies that a full 
dynamic version of the SABR model would have to exhibit even steeper decreasing 
forward volatility of volatility. Secondly, in many implementations of the SABR 
model the correlation between volatility and underlying rate are quite different for 
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different expiries and tenors. Non-zero correlation is technically quite difficult to 
handle in a full yield curve model and potentially time-varying correlation is of course 
even more complicated. Thirdly, as the SABR model has no closed-form for 
European option prices, it is typically implemented for European option pricing by 
expansion techniques whose accuracy deteriorates for longer expiries. This may have 
limited practical importance if the SABR model is only used for European option 
pricing, but our scope is to price general path dependent instruments so we need our 
European option pricing to be consistent with the actual specified dynamics. 
 
Instead we follow Andersen and Andreasen (2002) and use the following model as 
our basis for developing a full yield curve model with stochastic volatility 
 

2

2

1 2

( ) ( )[ ( ) (1 ) (0)] ( )
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0

A

A

A A

dS t z t mS t m S dW t
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dW dW

λ

β ε
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= − +

⋅ =

     (6) 

 
where  is a Brownian motion under annuity measure, i.e. the martingale measure 

with the annuity 

AW

1
( ) ( , )

n

i i
i

A t P tδ
=

= ∑ t , 1i i it tδ −= −  is the day count fraction, 

 is the forward par swap rate under consideration, and 
all the parameters 

0( ) ( ( , ) ( , )) / ( )nS t P t t P t t A t= −
, , ,mλ ε β  are constants. We note that the swap rate is a martingale 

under the annuity measure. 
 
In terms of the implied Black-Scholes volatility smile, the level is controlled by λ . 
As correlation between the swap rate and the volatility is assumed to be zero, the 
slope of the smile is fully controlled by the  parameter. The smile becomes 
increasingly negatively sloped as  is decreased. Sub-normal skews, corresponding 
to , are possible with the note of caution that  is restricted from above by 

m
m

0m < S
1 (0)m S

m
−  when  is negative. Increasing the volatility of local variance, m ε , 

increases the curvature of the smile. Increasing the speed of mean-reversion, β , 
increases the rate at which the curvature of the smile decays with expiry. 
 
The model is essentially a "shifted" Heston (1991) model, so it allows an analytic 
solution based on numerical inversion of Fourier transform:  
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This representation can also be found in Lipton (2002) and Lewis (2001) and avoids 
the numerical instability of the representation in the original Heston (1991) paper. 
 
This model gives a good fit to observed cap and swaption prices with reasonably 
stable parameters across expiries and tenors. An example of the fitted ,m ε  
parameters is given in Table 1. 
 
In our experience, the implied skew and smile parameters  and m ε   are quite stable 
over time, so in practice only the volatility level parameter λ  needs to be updated on 
a regular basis, say daily or weekly. To illustrate this, Figure 1 shows the deviations in 
terms of implied Black volatility from end-of-month Totem consensus quotes for 
EUR swaptions for strikes ranging from 5% to 95% delta, for two different models 
(6). The first model had its m  and ε  grids fitted the month before whereas the second 
was fitted on the particular date. In both cases we set the λ  so that the model fit the 
at-the-money Totem levels. Expiries range from 6m to 20y and tenors from 1y to 30y. 
In total 912 swaptions were priced. We see that both models for the most part agree 
with the Totem consensus quotes within +/-0.25% in Black-Scholes implied volatility 
for all strikes. 
 

Model Specification 
Andersen and Andreasen (2002) suggest a Libor market model with stochastic 
volatility which is extended by Piterbarg (2003) to allow for a time and tenor 
dependent local volatility skew parameter. The motivation for this is that if we 
consider implied parameters of the model (6) as in Table 1, we typically see that the 
skew parameter  is fairly constant across expiry but it tends to decrease with tenor. 
On the other hand, the implied 

m
ε  parameter appears to be fairly constant across both 

expiry as well as tenor, at least for expiries over 1 year. 
 
If we use continuously compounded rates rather than discrete rates as model 
primitives, the Piterbarg model can be formulated as  
 

( , ) ( )[ ( , ) ( , ) (1 ( , )) (0, )] ( , ) ( , ) ' ( ) ( )

( ) (1 ( )) ( ) ( ) ( )

( , ) , ( , ) , ( , ) 1
( ) , ( ) ( ) 0

k

df t T z t m t T f t T m t T f T t T t T dW t O dt

dz t z t dt z t t dZ t

t T t T t T
Z t dZ t dW t

λ ρ

β ε

λ ρ ρ

= + −

= − +

∈ ∈ =

∈ ⋅ =

\ \
\

+

  
(8) 
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where ,m λ   and ρ  are deterministic functions of time and maturity, ε  is a 
deterministic function of time and β  is a constant. We note that 0m =  corresponds to 
a normal model whereas  corresponds to a log-normal model. 1m =
 
Fix k  tenors 1, , kτ τ… . For the corresponding forward rates we have 
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Here 'RR  is the instantaneous correlation matrix for the k  forward rates. 
 
Under the separable volatility specification in (5) we have 
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Equating diffusion terms of (9) and (10) yields 
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with 
 
 ( ) (1 ( )) ( ) ( ) ( ) , 0dz t z t dt t z t dZ t dZ dWβ ε= − + ⋅ =   (11b)  
 
The volatility specification (11) in combination with (5) defines our model. 
  
In most cases we choose constant 1, , kκ κ…  as well as a constant correlation structure 

'RR . The latter is typically estimated from historical time series data of the yield 
curve. In this case, the model primitives that need to be set by calibration to swaption 
and cap prices are the following parameters:  
 
a. The forward rate volatility structure, i.e.λ  for all times  and the tenors t 1, , kτ τ… . 
 
b. The forward rate skew structure, i.e. m  for all times  and the tenors t 1, , kτ τ… . 
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c. The forward volatility of volatility, i.e.ε  for all times . t
 
In terms of the implied Black-Scholes volatility smiles for swaptions and caplets, the 
first parameter controls the absolute level, the second the slope (skew), and the third 
the curvature (smile). 
 
We see that the model, at least in principle, has the ability to exactly fit the volatility 
level and slope for all expiries along  tenors, whereas the curvature can only be 
fitted exactly for one tenor. In practice, though, our calibration will most often be on a 
best fit basis.  

k

 
For the one-factor case, , we do, however, often choose to go for an exact fit to a 
specific strip of swaptions or caplets. In this case we often specify the model a bit 
differently, namely 

1k =

 
 ( ) ( )[ ( ) ( ) (1 ( )) (0)] ( )t z t m t S t m t S tη λ= + −     (13) 
 
where , mλ  are now scalar functions of time and  is a par swap rate referring to 
different swap periods over the time horizon. If we for example choose to fit the 
model to the strip of 1x29, 2x28, … , 29x1 swaption smiles, we let  be the 1x29 par 
swap rate for times between year 0 and 1, 2x28 par swap rate for times between year 1 
and 2, … , 29x1 par swap rate for times between year 28 and 29. 

S

S

 
Swaption Pricing 

For efficient calibration of the model closed-form pricing of caps and swaptions is 
essential. In this section we describe an accurate (near) closed-form approximation. 
  
Using Ito's lemma and the fact that the swap rate  is a martingale under the annuity 
measure we get  

S

 
       (14) ( ) ( ) ' ( ) ( )A

XdS t S t t dW tη=
 
where we let subscripts denote partial derivatives, i.e. 1( / , , / )X kS S X S X '= ∂ ∂ ∂ ∂… . 
Given fixed mean reversion coefficients 1, , kκ κ…  this derivative can be computed in 
closed-form by combining (14) with the bond price formula in (5). 
 
Our approximation goes in two steps: 
 
A. Approximate the SDE (14) by the model 
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where all parameters are time-dependent. 
 
B. Approximate the SDE (15) by the time homogeneous model 
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where all parameters are constant. 
 
Approximation A essentially involves finding time dependent parameters ,mλ  so that 
the diffusion in (14) is approximated by the diffusion in (15), i.e.  
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for . Due to the form of 1, ,i = … k η , the right hand side of (19) is independent of 

, so (19) forms  linear equations in ( )z t k m . We solve these by regression: 
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All quantities in (18) and (20) can be computed in closed-form using the zero coupon 
bond price formula in (5). 
 
It be should be noted that this approximation can be slightly refined by evaluating 
(18) and (20) along levels of ,X Y  corresponding to approximate expected levels of 

,X Y  under the annuity measure of the swaption under consideration. 
 
Approximation B involves finding constant parameters so that the model (16) 
produces option prices that are close to those of (15) with parameters given by (18) 
and (20). We use the methodology suggested by Piterbarg (2005). The exact details 
are quite complicated and are omitted here for space considerations, but the main 
point is that the technique is both very quick and accurate. Computationally, the 
method only relies on numerical solution of one Ricatti ODE per swaption pricing -- 
all remaining calculations are done in closed-form. Relative to direct solution of (15) 
by numerical inversion of Fourier transform as suggested in Andersen and Andreasen 
(2002), this techniques is much faster and only marginally less accurate. 
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Calibration 
We start by fixing 1, , kκ κ… , the correlation structure for the forward rates 'RR , and a 
set of tenors 1, , kτ τ…  of the model. We further fix a time grid  of 
expiries and a set of tenors {  corresponding to the swaption smiles that we wish to 

calibrate the model to. We assume that we have fitted parameters 

0 10 t t= < <…
}jΤ

, ,hj hj hjmλ ε� ��  of the 
model (6) for these expiries (  and tenors  of the calibration swaptions, as in 
Table 1.  

)h ( )j

 
We let the model (5) and (11) be parameterised by 
 
 ( , ) , ( , ) , ( )i hi i hit t m t t m t hλ τ λ τ ε ε+ = + = =  
 
for . We use approximation A and B to give us constant parameters 1ht t− < ≤ ht
ˆ ˆˆ, ,hj hj hjmλ ε  for each swaption. We now calibrate the model by bootstrapping, i.e. we 

solve the optimisation problems    
 
 

1, ,

2 2

{ , , }
ˆ ˆˆmin ( ) ( ) ( )

hi hi h i k
hj hj m hj hj hj hjm j j j

m mλ ελ ε

2γ λ λ γ γ ε ε
=

− + − + −∑ ∑ ∑
…

� ��  

 
sequentially for 1, 2,h = … . Here , ,mλ εγ γ γ  are weights for balancing the different 
objectives against each other. Most often we calibrate the model in a sequence where 
only one of the weights , ,mλ εγ γ γ  is non-zero at the time.  
 
As an example of this consider simultaneous calibration of a 4-factor model of the 
type specified in (5) and (11) to all the EUR cap and swaption implied volatility 
smiles of 19 expiries ranging from 6m to 20y and 8 tenors ranging from 6m to 30y. 
The implied volatility smiles are parameterised by the parameters in Table 1. We set  
 

1 2 3 4( , , , ) (0.015,0.15,0.30,1.20)κ κ κ κ =   

1 2 3 4( , , , )τ τ τ τ = (6m,2y,10y,30y)  
 
and use a correlation matrix estimated for historical time series data of forward rate 
curves.  
 
The resulting model parameters are shown in Table 2. We see that the forward skew 
parameters, , are decreasing more sharply in tenor than the corresponding "term" 
skew parameters shown in Table 1. This is consistent with the findings in Piterbarg 
(2003). There does not appear to be a clear trend over time in any of the calibrated 
parameters. However, there is more noise in the calibrated forward skew parameters 
than in the Piterbarg (2003) case. This is probably due to the fact that we make no 
attempts to smooth our calibrated parameters in the time dimension. The calibration 
takes about 5 seconds of CPU time. 

im

 
The error of such a calibration can be split in two, first there is the error from the fact 
that a 4-factor model will not be able to exactly match the smiles of 8 tenors. We 
show this error by pricing swaptions and caps for all the calibration expiries and 
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tenors by use of the approximation A and B, and comparing the resulting prices to 
those of the target model. The strikes chosen correspond to 5% to 95% Delta in 
Black-Scholes terms. All in all we price 1024 caplets and swaptions. We call this 
error "pure calibration error" and it is shown in Figure 2. We see that the pure 
calibration error is within +/-0.25% in Black-Scholes volatility terms in most of the 
range. 
 
What actually counts, however, is of course what the error is when the model is 
simulated. We call this "total calibration error" and the result of pricing up all the 
calibration swaptions by simulation is shown in Figure 3. We see that the total 
calibration error is within +/-0.40% in Black-Scholes volatility terms in most of the 
range.  
 
In summary: a 4-factor version of the model can simultaneously fit market prices of 
caps and swaptions for all strikes (5%-95% Delta), expiries (6m-20y), and tenors (6m-
30y), within a tolerance of 0.40% in implied Black volatility terms. Moreover, the 
calibration only takes about 5 seconds of CPU time.  
 

Monte-Carlo Simulation 
Strictly speaking, SDEs of the type defined by (5) and (11) can be explosive. To avoid 
this problem we follow Heath, Jarrow, and Morton (1992) and simply replace 

( , )if t t τ+  in (11) with 
 

( , ) max( (0, ) ,min( ( , ), (0, ) ))i i i if t t f t c f t t f t cτ τ τ+ = + − + + +� τ

}

 (19) 
 
where c  is some constant. 
 
Due to the fact that the natural domain for the stochastic volatility factor  is { 0 , 
straightforward Euler discretization of the SDE for  is going to exhibit very poor 
convergence as we decrease the time-steps 

z z ≥
z

0t∆ → . Instead, we prefer to use the 
following (local) log-normal discretization 
 

 
21 (0,1)

2( )
v v N

z t t ze
− + ⋅

+ ∆ =        
 
where we choose ,z v  so that the log-normal approximation matches the two first 
conditional moments of  given , i.e.  1( hz t + ) ( )hz t
 

 2 2
2 2 2

1 ( ( ) 1)

ln[1 { (1 ) ( ( ) 1)( )}]
2

t

t t

z e z t

v z e z t e e

β

β βε ε
β β

− ∆

− − ∆ − ∆ −

= + −

= + − + − − tβ∆
  

 
We combine this with standard Euler discretisation of ,X Y . With typical parameter 
values, accurate pricing can be obtained with monthly or quarterly time stepping. 
 
The strength of the separable volatility structure relative to the general HJM or LMM 
specification is the speed in simulation of the model. To illustrate this we perform 
simulation of vanilla swaps with monthly rate reset in two models: a LMM with 4 
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factors and our separable model also with 4 factors. The resulting CPU times are 
reported in Table 3. We see that in the LMM the computational time increases 
roughly with the square of the simulation horizon whereas it is linear for the separable 
model. Table 3 as well as our experience indicate that one can obtain computational 
savings of up to a factor 10 for longer dated structures with the separable model 
relative to the LMM. 
 

Finite Difference Solution 
For the one-factor model, , finite difference solution is an efficient alternative to 
Monte-Carlo simulation. The associated pricing PDE can be written as 

1k =

 

2
2

2

2

2
2

2

0 [ ]

1( )
3 2

( 2 )
3

1(1 )
3 2

x y z

x

y

z

V D D D V
t

rD x y
x x

rD y
y

rD z
z z

κ η

η κ

β ε

∂
= + + +
∂

∂ ∂
= − + − + +

∂ ∂
∂

= − + −
∂

∂ ∂
= − + − +

∂ ∂
z

 

 
We use an alternating direction implicit (ADI) scheme, see Mitchell and Griffiths 
(1980), that splits the solution over each time step into three steps 
 

1 1 2 1 1[ ] ( ) [ ] (
2 3 2

1 1 1 1 2 1[ ] ( ) ( ) (
2 3 3 2

1 1 1 1 1[ ] ( ) ( ) ( )
2 3 2

x x y

y y

z z

D V t t D D D V t t
t t

D V t t V t t D V t t
t t

D V t V t t D V t t
t t

− + ∆ = + + + +
∆ ∆

− + ∆ = + ∆ − +
∆ ∆

− = + ∆ − + ∆
∆ ∆

)

)

z ∆

∆   (20) 

 
where  is to be interpreted as 3-dimensional tensors of values at time t . ( )V t
 
We use the standard 3-point discretization for  and , but for  we use a 5-
point discretization for the first derivative. This gives higher accuracy in the 

xD zD yD
y  

dimension, , and enables us to get away with relatively few 4(O y∆ ) y -steps, say 10. 
The disadvantage of the 5-point discretization is that the workload increases at a rate 
higher than the  of a 3-point scheme but we find that is worth it in this 
particular case.  

1(O y−∆ )

 
Square root processes like (11b) with high volatility and low mean reversion and 
therefore high probability of hitting 0z =  can be tricky to solve numerically. Linear 
discretization of the  axis according to the standard deviation of  at maturity leads 
to very few points in the interval [0  relative to the number of points between 1 and 
the upper bound of . Attempting to solve this problem by transforming the state 
variable introduces infinite drift for the transformed variable at  and this is 
therefore not a recommendable route. Instead we choose to discretize  according to 

z z
,1]

z
0z =

z
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2( )jz O j= . This means that we get lower asymptotic accuracy than  but this 
does not seem to be a problem in practice.  

2(O z∆ )

, 2
, 1

 
In summary, we have a scheme with the following properties: 
 

- Uniform von Neuman stability. 
- Accuracy of  2 2 4( )pO t x y z p∆ + ∆ + ∆ + ∆ <
- Workload of . 1 1 1( )qO t x y z q− − − −∆ ⋅∆ ⋅∆ ⋅∆ >

 
In practice a 30 year Bermuda swaption is accurately priced on a grid of dimensions 

 ( ) steps and this takes about 3 seconds of CPU time. 50 100 10 15× × × t x y z× × ×
 

Conclusion 
We have presented a class of stochastic volatility yield curve models with quick and 
accurate calibration and significantly quicker Monte-Carlo simulation than general 
HJM or Libor market models. A one-factor version of the model can be implemented 
with finite difference solution and can thus be used as an alternative to the standard 
one-factor models for day-to-day management of large portfolios of interest rate 
exotics. 
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Table 1: Skew and Smile Parameters fitted to EUR Cap and Swaption Prices 
m  6m 1y 2y 5y 10y 15y 20y 30y
6m 0.75 0.75 0.62 0.50 0.44 0.38 0.34 0.29
1y 0.75 0.65 0.55 0.46 0.38 0.32 0.30 0.27
3y 0.68 0.58 0.49 0.37 0.31 0.26 0.25 0.22
5y 0.65 0.52 0.43 0.32 0.27 0.23 0.21 0.17

10y 0.58 0.45 0.38 0.27 0.23 0.21 0.17 0.14
15y 0.48 0.36 0.31 0.26 0.20 0.18 0.15 0.13
ε  6m 1y 2y 5y 10y 15y 20y 30y

6m 1.15 1.13 1.13 1.18 1.29 1.29 1.30 1.27
1y 1.15 1.01 1.05 1.06 1.11 1.14 1.13 1.12
3y 1.05 0.93 0.91 0.93 0.94 0.93 0.94 0.93
5y 0.95 0.88 0.88 0.86 0.85 0.86 0.86 0.85

10y 0.86 0.89 0.89 0.87 0.84 0.84 0.84 0.83
15y 1.03 1.00 0.97 0.94 0.91 0.90 0.91 0.89

Table 1 reports best fit m  and ε  parameters to observed cap and swaption prices for 0.05β = . 
Expiries in the rows and tenors in the columns. The currency is EUR and the parameters were 
estimated from Totem consensus prices end of a particular month in 2004. 
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Table 2: Parameters of a Calibrated 4-Factor Model 

t  
1( )tλ  2 ( )tλ  3 ( )tλ  4 ( )tλ  1( )m t

 
2 ( )m t

 
3 ( )m t
 

4 ( )m t
 

( )tε  

0.5 0.2120 0.2452 0.1063 0.0907 0.74 0.47 -0.28 -0.44 1.22 
1 0.2242 0.2198 0.1262 0.1017 0.82 0.32 -0.05 -0.56 0.97 
2 0.2266 0.2038 0.1325 0.0992 0.92 0.33 -0.01 -0.74 0.95 
3 0.2464 0.1869 0.1336 0.0873 0.89 0.30 0.01 -1.01 0.80 
4 0.2602 0.1906 0.1276 0.1021 0.89 0.26 0.01 -0.84 0.82 
5 0.2693 0.1664 0.1278 0.0784 0.89 0.22 0.05 -1.65 0.75 
6 0.2954 0.1678 0.1246 0.0872 0.83 0.24 0.06 -1.10 0.86 
7 0.2798 0.1490 0.1268 0.0805 0.87 0.26 0.08 -1.07 0.85 
8 0.3064 0.1496 0.1185 0.0635 0.80 0.22 0.10 -1.48 0.85 
9 0.3078 0.1335 0.1207 0.0482 0.80 0.25 0.11 -1.84 0.84 

10 0.3040 0.1183 0.1172 0.0410 0.81 0.25 0.13 -1.88 0.84 
11 0.2934 0.1162 0.1278 0.0416 0.82 0.26 0.13 -2.01 0.97 
12 0.2719 0.1148 0.1219 0.0602 0.87 0.26 0.16 -0.99 0.99 
13 0.2541 0.0917 0.1276 0.0519 0.90 0.35 0.16 -1.01 1.02 
14 0.1891 0.0798 0.1236 0.0658 1.40 0.37 0.20 -0.50 1.04 
15 0.1574 0.0529 0.1254 0.0707 1.83 0.70 0.20 -0.36 1.06 
16 0.1671 0.1009 0.1410 0.0695 1.73 0.19 0.20 -1.42 0.94 
17 0.1705 0.1013 0.1413 0.0734 1.77 0.35 0.14 -0.89 0.94 
18 0.1690 0.0893 0.1492 0.0623 1.97 0.45 0.12 -1.01 0.94 
20 0.1147 0.0768 0.1554 0.0631 2.03 1.70 -0.11 0.39 0.94 

Table 2 reports the resulting parameters when calibrating a 4-factor model to the EUR swaption and 
cap data of Table 1. 
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Table 3: CPU Times for Simulation in LMM and in Separable HJM 
maturity lmm hjm 

5y 02.12 01.14
10y 07.20 02.22
15y 15.19 03.33
20y 26.21 04.46
25y 40.27 05.53
30y 55.13 06.56

CPU times in seconds for simulation of 5y, …, 30y vanilla interest rate swaps with monthly reset in a 4 
factor Libor Market Model and our 4-factor separable volatility structure HJM model. 
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Figure 1: This and Last Month's Models against Totem Quotes 
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Figure 1 shows the deviations from Totem consensus quotes for EUR swaption in terms of implied 
Black volatility for two models. One that had its ,m ε  parameters fitted the month before the other had 
its parameters fitted this month. Expiries range from 6m to 20y and tenors range from 1y to 30y -- all in 
all 912 swaptions. All data is as of a particular end of month in 2004. 
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Figure 2: Pure Calibration Error 
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Figure 2 shows the pure calibration error in terms of implied Black-Scholes volatility  when calibrating 
a 4-factor model to the full EUR cap and swaption market. We depict the difference between the yield 
curve model and the target when we price caps and swaptions under our approximations A and B. 
Expiries range from 6m to 20y, tenors from 6m to 30y, and strikes from 5% to 95% in terms of Black-
Scholes delta -- all in all 1024 caplets and swaptions.  
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Figure 3: Total Calibration Error 
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Figure 3 shows the total calibration error in terms of implied Black-Scholes volatility when calibrating 
a 4-factor model to the full EUR market. We depict the difference between the yield curve model and 
the target when we price caps and swaptions by simulation. 131,072 simulations were used making the 
simulation error roughly of the order of 0.10% in terms of implied Black-Scholes volatility. Expiries 
range from 6m to 20y, tenors range from 6m to 30y, and strikes range from 5% to 95% Black-Scholes 
delta -- all in all 1024 caplets and swaptions. 
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