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Abstract

Markovian Projection is an optimal approximation of a complex underlying process with a simpler
one, keeping essential properties of the initial process. The Heston process, as the Markovian Projection
target, is an example [4]. In this article, we generalize the results of Markovian Projection onto a Heston
model to a wider class of approximating models, a Heston model with displaced volatility. As an important
application, we derive an effective approximation for FX/EQ options for the Heston model, coupled with
correlated Gaussian interest rates. The main technical result is an option evaluation for correlated Hes-
ton/Lognormal processes. Unlike the case of exactly solvable (affine) zero correlation or its uncorrelated
displacement generalization, considered by Andreasen [2], non-trivial correlations destroy affine structure
and exact solvability. Using the powerful technique of Markovian Projection onto a Heston model with
displaced volatility, we produce an effective approximation and present its numerical confirmation.

1 Introduction

The growing sophistication and interpenetration of financial markets requires complex hybrid models
dealing with numerous underlyings. Equity baskets in possibly different currencies, and in the presence of
non-trivial interest rates, appear more and more frequently in financial institutions. Stochastic volatility
models having observable dynamics, and handling implied volatility skew and smile, are standard partic-
ipants of such hybrids. An FX-rate or equity following a Heston model, with Gaussian interest rates, is
one such example. Modern computational facilities permit hybrid pricing using Monte Carlo methods,
but the model calibration still requires effective analytical approximations.

Recently, a powerful method of Markovian Projection (MP) was introduced in the financial mathe-
matics by Piterbarg [9]. Different challenging calibration problems, such as Cross-Currency Gaussian and
LIBOR Market Model equipped with a CEV exchange rate [9] and [3], Heston Basket Index options [4],
and others, were solved with the help of this method. In this article, we generalize the technique of MP
to a Heston model, and illustrate the theory with an important example of the calibration of FX-options
for a cross-currency Heston model, correlated with Gaussian interest rates.

The MP theory is based on the Gyöngy result [6]. Its early applications in financial mathematics
were proposed by Dupire [5]. For European option pricing, it is often possible to come up with a single
underlying process, S, usually complex and non-Markovian, but with an explicitly known SDE. The option
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price with a strike K can be expressed in a standard manner, E[(S(t) − K)+]. Suppose the underlying
process, in its martingale measure, satisfies the following general SDE,

dS(t) = λ(t)·dW (t),

for some fixed initial value. Here and below, W (t) is an F -component vector of independent Brownian
motions, λ(t) is an F -component stochastic volatility process, and the dot denotes a scalar product.
According to Gyöngy, under some technical assumptions, there exists a local-volatility model,

dS∗(t) = λ∗(t, S∗(t)) ·dW (t), S∗(0) = S(0),

such that all one-dimensional marginal distributions of S(t) and S∗(t) coincide. To ensure this match,
the effective local volatility should satisfy a condition,

|λ∗(t, S∗)|2 = E[|λ(t)|2|S(t) = S∗].

Non-trivial calculus of the above conditional expectation can be avoided by postulating a simpler form of
the local volatility. In [9] and [3], the authors considered a linear dependence on the underlying, leading
to a Displaced-Diffusion model,

λ∗(t, S∗) = (1 + b(t)∆S∗(t)) s(t),

where a difference between current underlying value and its initial value was denoted as ∆S∗(t) = S∗(t)−
S∗(0). Thus, reducing the local volatility function space to a linear one, it is possible to calculate an
optimal shift b(t) and volatility s(t). The mimicking displaced-diffusion model S∗ gives explicit formulas
for European options.

Unlike the full-space local volatility model, an effective displaced diffusion cannot reproduce one-
dimensional marginals of the original process exactly. Furthermore, while a displaced diffusion is sufficient
to recover the skewness of implied volatilities, it is obviously inappropriate if the initial model also has a
smile.

In order to incorporate a smile to the mimicking model S∗, one can enlarge a space of basis functions
from linear to U-shaped ones, or choose a stochastic volatility model. In [4], the authors proposed
the second way whereby the underlying is mimicked with a shifted Heston process with time-dependent
coefficients,

dS∗(t) = (1 + β(t)∆S∗(t))
√

z(t)σH(t)·dW (t),

dz(t) = α(t) (1 − z(t)) dt +
√

z(t)σz(t)·dW (t), z(0) = 1,

where β(t) is a shift parameter controlling the model skew, σH(t) is a vector volatility, and z(t) is a
stochastic volatility or, more precisely, a stochastic multiplier with initial unit value. The process z(t)
is defined by its mean-reversion α(t) and volatility vector σz(t). This Heston model form, proposed by
[1] in the context of interest rates, is equivalent to that initially introduced by Heston [7]. We prefer to
work with the Andersen-Andreasen setup above, and give a map to the initial Heston form in Appendix
A, which also contains option pricing details.

Markovian Projection to Heston models can approximate both skew and smile properties of implied
volatilities. An important application to Heston basket index options was considered in [4].

Copyright c©2006–2008 NumeriX LLC All rights reserved. Page 2



In this paper, we enlarge the mimicking model space to affine bridges between the Heston model and
the displaced diffusion. Having more degrees of freedom, the bridge model can deliver a more accurate
approximation. The new MP target has the following SDE,

dS∗(t) = (1 + β(t)∆S∗(t))
(

√

z(t)σH(t) + σD(t)
)

·dW (t),

dz(t) = α(t) (1 − z(t)) dt +
√

z(t)σz(t)·dW (t), z(0) = 1.

A new vector parameter σD(t), volatility displacement, should be perpendicular to both vector σH(t) and
vector σz(t), which guarantees affine properties and exact solvability. Below, we will refer to the bridge
model as a displaced volatility Heston model (Heston DV).

The model first appeared in [2] in the context of an FX-rate with stochastic Gaussian interest rates.
A correlation between interest rates and FX was organized via the volatility displacement. The Heston
driving factors were uncorrelated with the interest rates to preserve affine properties and FX-option
solvability.

As an important application of MP to the Heston DV model, we consider FX-option pricing of the
Heston model, coupled with correlated Gaussian interest rates. Unlike Andreasen [2], we consider a
standard Heston model for the FX-rate, arbitrarily correlated with the interest rates. The exact FX-
option pricing is impossible in this case, but the MP can be elaborated to attain excellent accuracy.

This paper is organized as follows. In Section 2, we recall the MP key formulas in the case of a target
Heston model. We present new results in MP to Heston models with displaced volatility in Section 3.
Section 4 is devoted to FX-option pricing approximations for Gaussian interest rates, with numerical
results in Section 5.

2 Projection to the Heston model

In this section, we recall key facts of Markovian Projection to the Heston model. An effective approxi-
mation of a general non-Markovian process with skew and smile,

dS(t) = λ(t)·dW (t), (1)

was derived in [4]. The mimicking process was a Heston model,

dS∗(t) = (1 + β(t)∆S∗(t))
√

z(t)σH(t)·dW (t), S∗(0) = S(0),

dz(t) = θ(t) (1 − z(t)) dt +
√

z(t)σz(t)·dW (t), z(0) = 1, (2)

with coefficients calculated by Markovian projection. Here and below, we denote ∆S∗(t) = S∗(t)−S∗(0).
Function β(t) is a shift parameter controlling the model skew, σH(t) is the underlying vector volatility,
and z(t) is a stochastic volatility factor with initial unit value. The process z(t) is defined by its mean-
reversion α(t) and volatility vector σz(t). Below, we always suppose that S∗(0) = S(0) and z(0) = 1, and
omit these expressions from the formulas for better legibility. In Appendix A, one can find option pricing
details for model (2).

The MP to the Heston model is often done in two steps. First, we estimate the shift parameter β(t).
Several recommendations on its calculation are proposed in [4], although, in certain cases, one can simply
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set the shift according to a form of the SDE (1). Having shift parameter β(t) fixed, we calculate the
effective Heston parameters. Define a (displaced-diffusion) volatility Λ(t) and variance V (t) as

Λ(t) =
λ(t)

1 + β(t)∆S(t)
(3)

and

V (t) = |Λ(t)|2 =
|λ(t)|2

(1 + β(t)∆S(t))2
. (4)

Suppose that an SDE for the process V (t) is known,

dS(t) = (1 + ∆S(t)β(t)) Λ(t)·dW (t), (5)

dV (t) = µV (t) dt + σV (t)·dW (t), (6)

for some stochastic drift µV (t) and volatility σV (t). Then, the effective Heston parameters can be ex-
pressed as averages of underlying processes,

|σH(t)|2 = E[V (t)], (7)

θ(t) = (ln E[V (t)])
′ − 1

2
(ln Var[V (t)])

′
+

E[|σV (t)|2]
2 Var[V (t)]

, (8)

|σz(t)|2 =
E[V (t)|σV (t)|2]
E[V 2(t)]E[V (t)]

, (9)

ρ(t) =
E[V (t)Λ(t)·σV (t)]

√

E[V 2(t)]E[V (t)|σV (t)|2]
. (10)

Although the expectations in the above formulas look complicated, in practice, one can come up with
their suitable approximations, which often require less precision than standard moment calculations. On
the other hand, it is important to preserve general properties like skews, smiles, underlying supports, etc.
For example, if the variance process V (t) can have an appreciable positive floor, its MP to the Heston
model would likely give a poor quality, as far as the effective variance process z(t) |σH(t)|2 spans from
zero to infinity. In the next section, we will elaborate on the target process having a positive floor for
stochastic variance.

3 Markovian projection to a Heston model with displaced vo-
latility

Sometimes the approximation quality given by MP to the Heston model is not sufficient due to a floor on
the stochastic variance V (t). In such cases, we take a wider model, still conserving its affine properties,
a Shifted Heston model with displaced volatility (Heston DV),

dS∗(t) = (1 + β(t)∆S∗(t))(
√

z(t)σH(t) + σD(t))·dW (t),

dz(t) = θ(t) (1 − z(t)) dt +
√

z(t)σz(t)·dW (t), (11)
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where the volatility displacement vector σD(t) is perpendicular to both rate volatility vector σH(t) and
volatility of volatility vector σz(t). The Heston DV calibration procedure is similar to that of the Heston
model, its analytical option pricing details can be found in Appendix B.

As in cases of a Heston model as the projection target, we use the 2D version of Gyöngy’s lemma
stating that the initial process pair {S(t), V (t)},

dS(t) = (1 + β(t)∆S(t)) Λ(t) · dW (t),

dV (t) = µV (t) dt + σV (t) · dW (t),

can be mimicked by a Markovian pair {S∗(t), V ∗(t)},

dS∗(t) = (1 + β(t)∆S∗(t)) σ∗
S(t; S∗(t), V ∗(t)) · dW (t),

dV ∗(t) = µ∗
V (t; S∗(t), V ∗(t)) dt + σ∗

V (t; S∗(t), V ∗(t)) · dW (t),

provided that the effective drift, µ∗
V , and volatilities, σ∗

S and σ∗
V , are calculated using the initial process

conditional expectations,

µ∗
V (t; s, v) = E[µV (t) |S(t) = s, V (t) = v], (12)

|σ∗
S(t; s, v)|2 = E[|Λ(t)|2 |S(t) = s, V (t) = v] = v, (13)

|σ∗
V (t; s, v)|2 = E[|σV (t)|2 |S(t) = s, V (t) = v], (14)

σ∗
S(t; s, v)·σ∗

V (t; s, v) = E[Λ(t)·σV (t) |S(t) = s, V (t) = v]. (15)

We look for a mimicking pair {S∗(t), V ∗(t)} related to the Heston DV model (11), after identifying
variance

V ∗(t) = z(t) |σH(t)|2 + VD(t),

where we have denoted the displaced variance as VD(t) = |σD(t)|2. This leads to the following SDEs for
the pair {S∗(t), V ∗(t)},

dS∗(t) = (1 + β(t)∆S∗(t))

(

√

V ∗(t) − VD(t)

|σH(t)| σH(t) + σD(t)

)

·dW (t),

dV ∗(t) =
(

(V ∗(t) − VD(t))
(

(

ln |σH(t)|2
)′ − θ(t)

)

+ V ′
D(t) + θ(t) |σH(t)|2

)

dt

+ |σH(t)|
√

V ∗(t) − VD(t) σz(t)·dW (t),

where ∆S∗(t) = S∗(t) − S∗(0), and prime ′ denotes the derivative of a deterministic function of time.
Thus, the Heston DV model specifies an ansatz for the conditional expectations (12)–(15) given by1

µ∗
V (t; s, v) = (v − VD(t))

(

(

ln |σH(t)|2
)′ − θ(t)

)

+ V ′
D(t) + θ(t) |σH(t)|2,

|σ∗
V (t; s, v)|2 = (v − VD(t)) |σH(t)|2 |σz(t)|2,

σ∗
S(t; s, v)·σ∗

V (t; s, v) = (v − VD(t)) σz(t)·σH(t).

1Eq. (13) is trivially satisfied by the choice of the volatility process and need not be considered.
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Due to the L2-measure minimizing property of the conditional expectation, our task reduces to a joint
minimization of the following criteria for all times t,

χ2
1(t) = E

[

(

µV (t) −
(

(V (t) − VD(t))
(

(

ln |σH(t)|2
)′ − θ(t)

)

+ V ′
D(t) + θ(t) |σH(t)|2

))2
]

, (16)

χ2
2(t) = E

[

(

|σV (t)|2 − |σH(t)|2 |σz(t)|2 (V (t) − VD(t))
)2
]

, (17)

χ2
3(t) = E

[

(Λ(t)·σV (t) − σz(t)·σH(t)(V (t) − VD(t)))
2
]

. (18)

For any fixed variance displacement VD(t), we have the following solution for the unknown functions
|σH(t)|, |σz(t)|, θ(t), and ρ(t),

|σH(t)|2 = E[V (t)] − VD(t), (19)

θ(t) =
(

ln |σH(t)|2
)′ − 1

2
(ln Var[V (t)])

′
+

E[|σV (t)|2]
2 Var[V (t)]

, (20)

|σz(t)|2 =
E[(V (t) − VD(t))|σV (t)|2]

E[(V (t) − VD(t))2]E[V (t) − VD(t)]
, (21)

ρ(t) =
E[(V (t) − VD(t))Λ(t)·σV (t)]

√

E[(V (t) − VD(t))2]E[(V (t) − VD(t))|σV (t)|2]
, (22)

where ρ(t) is the effective Heston correlation, ρ(t) = σH (t)·σz(t)
|σH(t)| |σz(t)| .

As shown in Appendix C, the first χ2
1 criterion minimization gives the optimal volatility module |σH(t)|

(19) and the mean-reversion θ(t) (20) as a function of underlying averages and a displacement VD(t). The
other optimal parameters are calculated to minimize the criteria χ2

2 and χ2
3. More precisely, a product

of squares of volatilities, M1(t) = |σH(t)|2 |σz(t)|2, and their dot-product, M2(t) = σz(t)·σH(t), can be
obtained by minimizing χ2

2 and χ2
3, for fixed variance displacement VD(t). Namely, setting a derivative

∂χ2
2

∂M1
to zero, one has

M1(t) = |σH(t)|2 |σz(t)|2 =
E[(V (t) − VD(t))|σV (t)|2]

E[(V (t) − VD(t))2]
. (23)

Similarly, optimal condition
∂χ2

3

∂M2
= 0 leads to

M2(t) = σz(t)·σH(t) =
E[(V (t) − VD(t))Λ(t)·σV (t)]

E[(V (t) − VD(t))2]
. (24)

Then, optimal volatility of volatility module |σz(t)| (21) and correlation ρ(t) (22) can be restored from
the already-calculated volatility |σH(t)| (19), the product of squares of volatilities |σH(t)|2 |σz(t)|2, and
volatilities dot-product σz(t)·σH(t) = |σH(t)| |σz(t)| ρ(t).

Now, let us evaluate the optimal variance displacement which was, up to now, a fixed parameter.
Substituting the optimal multipliers M1 and M2 into criteria χ2

2 and χ2
3, respectively, we derive the
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optimization defects as functions of the displacement,

D2(t) = E
[

|σV (t)|4
]

−
(

E[(V (t) − VD(t))|σV (t)|2]
)2

E[(V (t) − VD(t))2]
, (25)

D3(t) = E

[

(Λ(t)·σV (t))2
]

− (E[(V (t) − VD(t))Λ(t)·σV (t)])
2

E[(V (t) − VD(t))2]
. (26)

Minimizing the defects leads, in general, to different values of the displacement VD(t). In other words,
optimal displacement for D2(t) is not necessarily optimal for D3(t), and vice-versa. Thus, we should
reconcile both defects’ optimizations. This can be done in practical geometrical terms. Namely, we are
looking for the displacement VD(t) such that a “vector” V (t) − VD(t) remains as “parallel” as possible
to two “vectors” |σV (t)|2 and Λ(t)·σV (t). Unknown coefficients |σH(t)|2 |σz(t)|2 and σz(t)·σH(t) can be
considered as optimum scaling of V (t) − VD(t), minimizing distance with the “vector” |σV (t)|2 and the
“vector” Λ(t)·σV (t), respectively.

In order to optimize the variance displacement, we should find a “main direction,” a special linear
combination of target “vectors” |σV (t)|2 and Λ(t)·σV (t). Namely, we construct their “dot product” matrix

(

E[|σV (t)|4] E[|σV (t)|2 Λ(t)·σV (t)]
E[|σV (t)|2 Λ(t)·σV (t)] E[(Λ(t)·σV )2]

)

and compute eigenvector {e1(t), e2(t)} corresponding to the biggest eigenvalue. The main direction vector

XD(t) = e1(t) |σV (t)|2 + e2(t) Λ(t)·σV (t)

will form a new criterion for optimal volatility displacement,

χ2
D(t) = E

[

(XD(t) − M(t)(V (t) − VD(t)))
2
]

,

for a multiplier M(t). Minimization of χ2
D(t) over the multiplier M(t) and VD(t) leads to the optimal

volatility displacement,

VD(t) = E[V (t)] − E[XD(t)]Var[V (t)]

E[XD(t)V (t)] − E[XD(t)]E[V (t)]
. (27)

4 FX/EQ options in the presence of Gaussian correlated rates

In this section, we consider an important example of hybrid FX/EQ models following the Heston process,
coupled with Gaussian interest rates. For non-zero correlations between the Heston evolution and the
interest rates, a standard approach to FX-option analytical pricing fails. Indeed, the zero correlations
preserve the affine model structure and make possible analytical calculation of the characteristic function.
Thus, for non-zero correlation cases when the standard affine technique does not work, one should provide
an approximation. Below, we will apply the elaborated MP formalism to the Heston DV model.

Consider the Hull-White model for domestic and foreign interest rates. Take, for simplicity, the one-
factor case2 for domestic and foreign short rates (denoted r1(t) and r2(t)). In the respective risk-neutral
measures, the Hull-White SDEs look like

dri(t) = (ζi(t) − ri(t) ai(t)) dt + σi(t) · dWi(t), (28)

2Multi-factor cases can be treated in the same manner.
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where subscript index i = 1, 2 corresponds to a market number (domestic/foreign) and parameters ai

and σi are time-dependent mean-reversion and volatility. Parameter ζi is the usual yield curve adaptor,
and W1 (respectively W2) is a risk-neutral domestic (respectively, risk-neutral foreign) vector Brownian
motion, mutually uncorrelated as usual. For further applications, we introduce a zero bond Pi(t, T )
maturing at T that satisfies standard log-normal evolution

dPi(t, T )

Pi(t, T )
= ri(t) dt − Σi(t, T ) · dWi(t),

where zero bond volatilities Σi(t, T ) are expressed as

Σi(t, T ) = σi(t)

∫ T

t

dτe−
R

τ

t
ai(s) ds.

Let X(t) be the FX-rate between domestic and foreign markets following a Heston process. Then, the
hybrid model under the domestic Brownian motion W ∗ = W1 will have SDEs

dr1(t) = (ζ1(t) − r1(t) a1(t)) dt + σ1(t) · dW ∗(t), (29)

dr2(t) = (ζ2(t) − r2(t) a2(t) −
√

z(t)λ(t) · σ2(t)) dt + σ2(t) · dW ∗(t), (30)

dX(t) = X(t)(r1(t) − r2(t)) dt + X(t)
√

z(t)λ(t) · dW ∗(t), (31)

dz(t) = α(t) (1 − z(t)) dt +
√

z(t) γ(t) · dW ∗(t), z(0) = 1. (32)

Correlations in the model are introduced via vector volatilities.
Before proceeding with the MP approximation, we briefly recall Andreasen [2] affine modifications of

the setup (29-32). His approach results in a transfer of correlations between the interest rates and the
Heston driving factors into a volatility displacement. Namely, Andreasen replaces the standard Heston
evolution (31) by its displaced version,

dX(t) = X(t)(r1(t) − r2(t)) dt + X(t)
(

√

z(t)λ(t) + ν(t)
)

· dW ∗(t),

where the displacement vector ν(t) is the only rate component correlated with the interest rates; the
other Heston driving factors, i.e., vectors λ(t) and γ(t), are uncorrelated with the displacement vector
and the interest rates. This correlation transfer makes the model affine and exactly solvable. In spite of
the Andreasen model calibration’s simplicity, we prefer the initial model setup (29-32) as being standard
with the familiar parameter meanings. Finally, we give two other minor advantages in favor of the
standard setup. The Andreasen scheme cannot correlate interest rates with the stochastic volatility.
Also, a presence of the IR correlated displacement ν(t) in the FX-rate diffusion term can eventually lead
to extreme parameters (volatility of volatility and Heston correlation) for big values of |ν(t)|, or to tiny
effective correlations between the FX and the interest rates for small values of |ν(t)|.

A European option price with strike K and maturity T under risk neutral-measure reads

E

[

(X(T ) − K)+

N1(T )

]

,

where the domestic savings account is N1(t) = exp
(

∫ t

0
ds r1(s)

)

. As usual, we can represent it in a more

convenient domestic T -forward measure associated with domestic zero bond P1(t, T ) maturing at T,

E

[

(X(T ) − K)+

N1(T )

]

= P1(0, T ) ET

[

(X(T ) − K)+
]

.
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Introducing the forward FX-rate S(t), a martingale process under the domestic T -forward measure,

S(t) =
X(t)P2(t, T )

P1(t, T )
,

we can further simplify the options price

E

[

(X(T )− K)+

N1(T )

]

= P (0, T ) ET

[

(S(T ) − K)+
]

.

Given domestic and foreign zero bond volatilities Σi(t, T ), one can easily calculate the SDE for the forward
FX-rate,

dS(t) = S(t)
(

√

zT (t)λ(t) + Σ1(t, T ) − Σ2(t, T )
)

· dWT ,

where WT is T -forward Brownian motion, related to risk-neutral motion as dWT (t) = dW ∗(t)+Σ1(t, T ) dt,
and zT is the stochastic variance in the T -forward measure satisfying SDE

dzT (t) =
(

α(t) (1 − zT (t)) − Σ1(t, T ) · γ(t)
√

zT (t)
)

dt +
√

zT (t) γ(t) · dWT (t), zT (0) = 1. (33)

Denoting a vector volatility displacement η(t) ≡ Σ1(t, T )−Σ2(t, T ) and a multiplier ε(t) ≡ −Σ1(t, T ) ·
γ(t), we approach evaluation of average E [(S(T ) − K)+] for the forward process3

dS(t) = S(t)
(

√

zT (t) λ(t) + η(t)
)

· dW (34)

with
dzT (t) =

(

α(t) (1 − zT (t)) + ε(t)
√

zT (t)
)

dt +
√

zT (t) γ(t) · dW (t), zT (0) = 1. (35)

If the displacement volatility vector η(t) were not correlated with λ(t) and γ(t), leading, in addition, to
ε(t) = 0, the option could be easily evaluated by its affine properties [2]. For non-trivial correlation, an
exact solution does not exist, thus, some approximation should be done. We apply the elaborated above
technique of the MP to the Heston DV model. For this, we fix the shift parameter β equal to 1, in order
to reproduce the initial process (34) log-normality. The process Λ from (3) can be identified with

Λ =
√

zT (t)λ(t) + η(t), (36)

which gives the model stochastic variance,

V (t) = |Λ(t)|2 = zT (t)|λ(t)|2 + 2
√

zT (t)λ(t) · η(t) + |η(t)|2. (37)

Finally, the volatility term σV of the stochastic variance, dV = · · ·+ σV · dW , can be obtained using Ito’s
formula,

σV (t) = Λ(t) · λ(t) γ(t). (38)

Substituting the above Λ(t), V (t), and σV (t) into (19-22) and (27), one can derive the optimal Hes-

ton DV parameters via the shifted CIR process moments, E[zT (t)], E[
√

zT (t)], E[z
3
2

T (t)], and E[z2
T (t)].

Computational details can be found in Appendix D.

3We omit subscript T from average operator and Brownian motion.
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5 Numerical results

As an important example, we consider a hybrid equity-interest rate setup with correlated driving factors.
It is a special case of the general exchange rate hybrid (29-32) when the foreign currency rates become
deterministic, σ2 = 0, and have a dividend yield sense. In the numerical experiments, we use the following
Heston (31-32) time-independent parameters4,

Heston info
spot, X(0) 100 %

vol of rate, |λ| 25 %
correlation, ρ -40 %

SV mean-reversion, α 25 %
vol-of-vol, |γ| 250 %

where the Heston correlation is that of two volatility vectors, ρ = λ·γ
|λ| |γ| .

The domestic interest rates (29) are set as follows:

domestic HW info
yield 5 %

vol, |σ1| 1 %
mean-reversion, a1 5 %

The foreign interest rates are deterministic with 2% yield, or, in equity terms, the continuous dividend
yield is 2%.

The structure in the factor space is characterized by the following values of the correlations between the
Brownian motions that drive the underlying short rate, FX- or equity-rate, and the stochastic volatility,

Corr between IR and FX-rate → λ · σ1

|λ| |σ1|
= 30%,

Corr between IR and SV → γ · σ1

|γ| |σ1|
= 15%,

which results in the following correlation matrix between the three underlying processes, Heston FX-rate
X(t), stochastic volatility multiplier z(t), and HW domestic short rate r1(t):

FX SV IR
FX 1 -0.4 0.3
SV -0.4 1 0.15
IR 0.3 0.15 1

Below, we present the results table, where we compare Black implied volatilities of European option
prices for a large set of maturities and strikes. The strikes are presented in percentage of forward values,
100% strike corresponds to ATM options. Target volatility values (“Sim vol”) are calculated using 50,000
low-discrepancy Monte Carlo paths, their standard deviation (“std.dev.”) is estimated for 50 independent
runs. We present two different approximation techniques. The first one (“Heston DV”) is the MP to
the displaced volatility generalization of the Heston model with optimal coefficients (19-22) and optimal

4Recall that the MP optimal formulas are valid for general time-dependent setups.

Copyright c©2006–2008 NumeriX LLC All rights reserved. Page 10



variance displacement (27), the second one (“Heston”) is the standard Heston MP (7-10), corresponding
to zero volatility displacement.

Maturity (year) Strike Sim vol (std.dev.)
MP analytic vol MP analytic vol error

Heston DV Heston Heston DV Heston
1 86.07 24.45 (0.06) 24.49 24.50 0.04 0.04
1 92.77 22.25 (0.05) 22.27 22.26 0.02 0.02
1 100.00 20.36 (0.05) 20.32 20.30 -0.04 -0.06
1 107.79 19.42 (0.05) 19.34 19.32 -0.08 -0.10
1 116.18 19.67 (0.06) 19.64 19.63 -0.03 -0.04
3 77.12 22.61 (0.08) 22.65 22.65 0.03 0.04
3 87.82 20.05 (0.08) 20.05 20.03 0.01 -0.02
3 100.00 17.95 (0.09) 17.91 17.80 -0.04 -0.15
3 113.87 17.23 (0.13) 17.14 17.02 -0.09 -0.21
3 129.67 18.02 (0.18) 17.92 17.88 -0.09 -0.14
5 71.50 21.89 (0.06) 21.94 21.95 0.06 0.06
5 84.56 19.43 (0.05) 19.45 19.37 0.02 -0.06
5 100.00 17.49 (0.06) 17.44 17.21 -0.05 -0.28
5 118.26 16.83 (0.08) 16.72 16.46 -0.11 -0.37
5 139.85 17.55 (0.12) 17.42 17.30 -0.13 -0.25

10 62.23 21.55 (0.07) 21.61 21.57 0.06 0.02
10 78.89 19.52 (0.07) 19.51 19.26 0.00 -0.26
10 100.00 18.01 (0.08) 17.91 17.33 -0.10 -0.69
10 126.77 17.41 (0.11) 17.22 16.53 -0.19 -0.88
10 160.70 17.75 (0.16) 17.51 17.08 -0.24 -0.67
20 51.13 22.28 (0.06) 22.32 22.08 0.03 -0.20
20 71.50 20.91 (0.06) 20.86 20.19 -0.05 -0.73
20 100.00 19.94 (0.06) 19.77 18.61 -0.17 -1.33
20 139.85 19.44 (0.09) 19.16 17.77 -0.27 -1.67
20 195.58 19.40 (0.13) 19.05 17.86 -0.35 -1.54
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The results show an excellent approximation quality for the MP to the displaced Heston for all matu-
rities. On the other hand, the MP to the standard Heston does not match well the simulation values for

large time-horizons. The reason is that the variance process V (t) =
∣

∣

∣

√

zT (t) λ(t) + η(t)
∣

∣

∣

2

of the under-

lying forward rate (34) has a positive floor which cannot be taken into account by the standard Heston
MP, but can be successfully handled by its displaced generalization.

For visualization, we present graphs for a selected 10-year maturity, including Black volatility values
and corresponding errors, compared with the Monte Carlo standard deviation.
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Figure 2: Heston/HW option implied volatility errors for 10Y maturity
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6 Conclusion

In this article, we generalized the Markovian Projection technique to the displaced volatility Heston model.
As an important application, we derived the effective approximation for FX/EQ options for the Heston
model, coupled with correlated Gaussian interest rates. The presented numerical experiments show the
excellent approximation quality. Once again, we demonstrated the efficiency of the Markovian Projection
technique in solving challenging approximation problems.

The authors are indebted to Serguei Mechkov for discussions and numerical implementation help as
well as to their colleagues at NumeriX, especially, to Gregory Whitten for supporting this work and Patti
Harris for the excellent editing. AA is grateful to Vladimir Piterbarg, Jesper Andreasen, and Dominique
Bang for stimulating discussions.

A Different forms of the Heston model and its option pricing

In his famous paper [7], Heston proposed an exactly solvable stochastic volatility model5,

dSt = St

√
vtdU, (39)

dvt = κ(θ − vt)dt + ξ
√

vtdV, (40)

〈dUdV 〉 = ρdt. (41)

Andersen and Andreasen [1] defined a version of the Heston model suitable for time-dependent coef-
ficients6,

dSt = St

√
ztλt dU, (42)

dzt = at(1 − zt)dt +
√

ztγt dV, for z0 = 1, (43)

〈dUdV 〉 = ρtdt. (44)

A map between the initial version (39) and the Andersen-Andreasen version (42), vt = λ2
t zt, is achieved

if

at =
κθ

(v0 − θ) e−κ t + θ
, (45)

λt =
√

(v0 − θ) e−κ t + θ, (46)

γt =
ξ

√

(v0 − θ) e−κ t + θ
. (47)

Intuitive derivation of this result is based on the observation that E[zt] = 1, which gives

λ2
t = E[vt] ≡ mt,

and at = κθ/mt and γt = ξ/
√

mt. Here, the variance vt average satisfies m′
t = κ(θ − vt), resulting in

mt = (v0 − θ) e−κ t + θ.

5Here, we omit a drift depending on rates as far as it can be easily eliminated by scaling.
6To preserve similarities with the Heston version, we adopt here correlations via Brownian motions, equivalent to our initial

volatility vector correlations (2). Also, we denote time-dependence as a subscript.
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The advantage of the Heston model with time-dependent parameters is its higher number of degrees
of freedom, resulting in the possibility of calibration to multiple options per exercise. To fit our vector
volatility form (2) with a shift parameter, it is sufficient to identify |σH(t)| = λt, |σz(t)| = γt, σH(t)·σz(t) =
ρt λt γt, and β(t) = 1. The inverse map handles volatilities accordingly, but can require supplementary
work for time-dependent shifts β(t). Indeed, to transform (2) into a log-normal shape, one should apply
the shift averaging technique [8], β(t) → β̄, and consider 1+ β̄ ∆S(t) as a new log-normal variable. Below,
we recall a technique of analytical calculation of option prices for the log-normal case, having in mind
its generalization to a skewed case. We use the Laplace transform, instead of the equivalent Fourier one
initially introduced by Heston [7].

Our goal is to calculate an option price

E[(St − K)+]

via Laplace transform of the characteristic function, which is known analytically. Introduce a process yt,

yt = ln

(

St

S0

)

,

satisfying

dy = −1

2
ztλ

2
t dt +

√
ztλt dU. (48)

Then, due to affine properties of the model, one can write the ODE for the process yt characteristic
function,

φH(T, ξ) = E
[

eξyT

]

, (49)

which can be used for the price calculation via Laplace transform. Indeed,

(S0 eyt − K)+ =
K

2πi

∫

C+

dξ

ξ(ξ − 1)
exp

(

ξ yt − ξ ln

(

K

S0

))

, (50)

where contour C+ is parallel to the imaginary axis and passes to the right of the integrand poles (0
and 1). Then, the option price can be represented in terms of a moment generating function (MGF)
K(ξ) ≡ lnφ(T, ξ), i.e.,

E
[

(S0 eyt − K)+
]

=
K

2πi

∫

C+

dξ

ξ(ξ − 1)
exp

(

K(ξ) − ξ ln

(

K

S0

))

. (51)

The standard approach is to compute this integral numerically. As we will see below, it is possible for
certain cases to reduce a complex integration to a real one. We take the integral along the line ξ = 1

2 + iω
with real ω, taking into account the contribution of the pole at ξ = 1,

E
[

(S0 eyt − K)+
]

= S0 −
K

2π

∫ ∞

−∞

dω

ω2 + 1
4

exp

(

K
(

1

2
+ iω

)

− (iω +
1

2
) ln

(

K

S0

))

. (52)

If the values of K
(

1
2 + iω

)

are real, one can replace

exp

(

−(iω +
1

2
) ln

(

K

S0

))

→
(

K

S0

)− 1
2

cos

(

ω ln

(

K

S0

))

.

Copyright c©2006–2008 NumeriX LLC All rights reserved. Page 15



In order to calculate the characteristic function φ(T, ξ), we consider a conditional expectation

u(t; z, y) = E
[

eξyT | zt = z, yt = y
]

,

which satisfies PDE (zero drift condition)

ut − 1
2λ2

t z uy + 1
2λ2

t z uyy + at(1 − z)uz + 1
2γ2

t z uzz + λtγtρt z uyz = 0. (53)

Looking for the solution in affine form,

u(t; z, y) = eAt+Bt z+Ct y,

and imposing final conditions A(T ) = B(T ) = 0 and C(T ) = ξ, we have

Ct = ξ,

B′
t = −1

2
γ2

t B2
t + (at − λtγtρtξ)Bt − λ2

t

ξ2 − ξ

2
,

A′
t = −at Bt. (54)

These ODEs can be resolved numerically or, for step-constant parameters, iteratively using a Riccati
solution.

Coming back to the above remark about the possibility of real instead of complex integration, we
should mention that, for zero correlation, the MGF K

(

1
2 + iω

)

is real, and we can do a real integration;
although, for the non-zero correlation case, a complex integration is necessary.

Finally, to calculate the European option price, one performs numerical integration (52), finding
K
(

1
2 + iω

)

for each value of ω solving the ODEs (54).

B European option pricing of the Heston DV model

In this Appendix, we generalize the above results of European option pricing of the standard Heston
model to the Heston model with the orthogonal displaced volatility. In reality, it is sufficient to make a
few modifications of the above formulas. Indeed, one can rewrite the vector Heston DV definition (11)
using in a form similar to (42),

dSt = St (
√

ztλt dU + αt dZ) , (55)

dzt = at(1 − zt)dt +
√

ztγt dV, (56)

〈dUdV 〉 = ρtdt, 〈dUdZ〉 = 〈dV dZ〉 = 0. (57)

As in the previous Appendix, we apply a shift averaging procedure and eliminate the shift parameter.
Again, introducing logarithm process

ỹt = ln

(

St

S0

)

satisfying

dỹt = −1

2
ztλ

2
t dt +

√
ztλt dW − 1

2
α2

t dt + αt dZ, (58)
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one notices that it differs from the standard Heston one (48) by the two last terms, which are uncorrelated
with the rest. Thus, the Heston DV characteristic function

φHDV (T, ξ) = E
[

eξỹT

]

(59)

can be obtained from the standard Heston one (49) by a simple multiplication7,

φHDV (T, ξ) = φH(T, ξ) e
1
2 v

(α)
T

ξ (ξ−1), (60)

where v
(α)
T =

∫ T

0 dt α2
t is a realized variance of the Gaussian component. Having calculated the Heston

DV characteristic function, one can calculate the option price using a numerical integration from (52) and
the MGF KHDV (ξ) ≡ lnφHDV (T, ξ).

C Details of the MP onto the Heston DV model

In this Appendix, we give details on minimization of the criterion (16)

χ2
1 = E

[

(

µV −
(

(ln |σH |2)′ − θ
)

(V − VD) − V ′
D − |σH |2θ

)2
]

.

Here, for better legibility, we omit the time argument t, supposing time-dependence implicitly with prime
sign ′ denoting the derivative of a deterministic function of time.

As in Section 3, we fix the displacement variance VD before proceeding to the minimization. Denoting
A = (ln |σH |2)′ − θ and B = V ′

D + |σH |2θ, one can rewrite

χ2
1 = E

[

(µV − A(V − VD) − B)2
]

.

Solving the first optimal equation
∂χ2

1

∂B
= 0, we get

E[µV ] − A (E[V ] − VD) − B = 0. (61)

Substituting E[µV ] = E[V ]′ and expressions for A and B into (61) gives

E[V (t)]′ − V ′
D −

(

(ln |σH |2)′ − θ
)

(E[V ] − VD) − |σH |2θ = 0.

It is easy to check that solution |σH |2 = E[V ] − VD satisfies the condition. This proves the first optimal
condition for the effective volatility (19).

Proceed now to the second optimal equation,
∂χ2

1

∂A
= 0, resulting in

E [(V − VD) (µV − A(V − VD) − B)] = 0.

Subtracting from it the first condition (61) multiplied by average E[V − VD], we have

A =
E[(V − VD)µV ] − E[(V − VD)] E[µV ]

E[(V − VD)2] − (E[(V − VD)])2
=

E[V µV ] − E[V ] E[µV ]

Var[V ]
. (62)

7See also [2].
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Averages in the last numerator, E[V µV ] − E[V ] E[µV ], can be simplified using Ito’s lemma applied to a
square of the process V , satisfying the SDE dV = µV dt + σV · dW , see (5),

dV 2 = (2 V µV + |σV |2) dt + 2 V σV · dW (t).

Applying the expectation operator to the above SDE and reusing the average E[µV ] = E[V ]′, one can
obtain a practical form of the numerator,

E[V µV ] − E[V ] E[µV ] =
1

2
(Var[V ])′ − 1

2
E[|σV |2].

Substituting it into the condition (62) for A = (ln |σH |2)′ − θ, we restore the optimal expression for the
mean-reversion (20),

θ = (ln |σH |2)′ − 1

2
(ln Var[V ])′ +

1

2

E[|σV |2]
Var[V ]

.

D FX/EQ options in the presence of Gaussian correlated rates:
computational details

To reduce formulas, we introduce the two processes,

Yλ(t) = Λ(t) · λ(t) and Yγ(t) = Λ(t) · γ(t).

Then, the processes V (t) and σV (t) transform to

V (t) =
Y 2

λ (t)

|λ(t)|2 + |η(t)|2 D(t), (63)

σV (t) = Yλ(t) γ(t), (64)

where decorrelation parameter D(t) ≡ 1 − (λ(t)·η(t))2

|λ(t)|2 |η(t)|2 .

All the averages underlying efficient Heston DV coefficients (19-22) and (27) can be expressed via
averages of Yλ(t) and Yγ(t). After elementary algebra, we have8

E[V ] =
E[Y 2

λ ]

|λ|2 + |η|2 D, (65)

V ar[V ] =
E[Y 4

λ ] − (E[Y 2
λ ])2

|λ|4 , (66)

E[|σV |2] = |γ|2 E[Y 2
λ ], (67)

E[V |σV |2] = |γ|2
(

E[Y 4
λ ]

|λ|2 + |η|2 D E[Y 2
λ ]

)

, (68)

E[Λ · σV ] = E[Yλ Yγ ], (69)

E[V Λ · σV ] =
E[Y 3

λ Yγ ]

|λ|2 + |η|2 D E[Yλ Yγ ]. (70)

Averages E[Y 2
λ ], E[Y 4

λ ], E[YλYγ ], and E[Y 3
λ Yγ ] can be expressed via the CIR process moments, E[zT (t)],

E[
√

zT (t)], E[z
3
2

T (t)], and E[z2
T (t)].

8For better legibility, we omit time dependence.
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E Calculations of the shifted CIR moments

The shifted CIR process zT ,

dzT (t) =
(

α(t) (1 − zT (t)) + ε
√

zT (t)
)

dt +
√

zT (t) γ(t) · dW (t), zT (0) = 1, (71)

is not affine anymore. Thus, one should make an approximation in order to calculate its moments. This
can be done using Markovian Projection. Indeed, we will look for the affine approximating process

dz̃T (t) = (A(t) − B(t)z̃T (t)) dt +
√

z̃T (t) γ(t) · dW (t), z̃T (0) = 1, (72)

keeping the same diffusion term and linearizing the drift. To calculate unknown functions A(t) and B(t),
one should minimize χ2(t) criterion

χ2(t) = E

[

(

α(t) (1 − zT (t)) + ε
√

zT (t) − A(t) + B(t)zT (t)
)2
]

,

for any time t. Denoting corrections A1(t) = A(t) − α(t) and B1(t) = B(t) − α(t), we have

χ2(t) = E

[

(

ε
√

zT (t) − A1(t) + B1(t)zT (t)
)2
]

.

Setting χ2(t) derivatives over A1(t) and B1(t) to zero for each t, one can obtain the optimal corrections,

A1(t) = ε(t) E[
√

zT (t)] + B1(t) E[zT (t)], (73)

B1(t) = −ε(t)
E[z

3
2

T (t)] − E[
√

zT (t)] E[zT (t)]]

Var[zT (t)]
. (74)

In general, the shift ε magnitude is quite small, 10-20%. The corrections A1(t) and B1(t) have the
same order in magnitude. In order to calculate their values in a leading order, it is sufficient to evaluate
averages in the r.h.s. of (73-74) in zero-th order in ε or, in other words, set ε to zero in (71), transforming
it to the standard CIR model, zT → z.

The first and second moments are available analytically for the standard CIR model. To calculate its
non-entire moments, one can use the explicitly available PDF function corresponding the non-centered
χ2 distribution9. The density is available as a series expansion. Thus, to calculate the average E[

√

z(t)]

or E[z
3
2 (t)], it is sufficient to integrate terms of the density series with

√
z or z

3
2 , respectively, and make

summations. Each term in the resulting sum is expressed using Gamma-functions, which can be efficiently
computed using standard algorithms. And, due to fast convergence of the obtained series, the proposed
way of calculation should be numerically efficient.

Note at the end that the affine model (72) can be transformed to a product of the classical CIR process
and a deterministic function,

z̃T (t) = M(t) z̃(t),

9Strictly speaking, this is valid for the CIR model with time-independent coefficients. For our time-dependent case, one can
use the averaging technique [8] to transform the initial model to approximate a time-independent one.
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with the multiplier

M(t) = 1 + e−
R

t

0
dsB(s)

∫ t

0

dτ (A(τ) − B(τ)) e
R

τ

0
dsB(s),

and the CIR process

dz̃(t) =
A(t)

M(t)
(1 − z̃(t)) dt +

√

z̃(t)
γ(t)
√

M(t)
· dW (t), z̃(0) = 1.

References

[1] L. Andersen and J. Andreasen (2002) “Volatile volatilities”, Risk, Dec, 163–168.

[2] J. Andreasen (2006) “Closed Form Pricing of FX Options under Stochastic Rates and Volatility”,
Global Derivatives Conference, ICBI.

[3] A. Antonov and T. Misirpashaev (2006) “Markovian Projection onto a Displaced Diffusion: Generic
Formulas with Applications,” available at SSRN: http://ssrn.com/abstract=937860.

[4] A. Antonov, T. Misirpashaev and V. Piterbarg (2007) “Markovian Projection Onto a Heston Model,”
available at SSRN: http://ssrn.com/abstract=997001.

[5] B. Dupire (1997) “A Unified Theory of Volatility,” Banque Paribas working paper, reprinted in
“Derivatives Pricing: the Classic Collection,” edited by P. Carr, Risk Books, London, 2004.
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