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From Implied Volatility Surface to 
Quantitative Options Relative Value Trading

Abstract
The only thing one can say about financial markets is that parsimonious  information 
on option prices is available in time and space, and that we can only use the 
No-Dominance law (or stronger version of No-Arbitrage) to account for it. Thus, 
one requires a consistent model to assess relative value between them. We describe 
a single parametric model for the entire volatility surface with interpolation and 
extrapolation technique generating a smooth and robust implied volatility sur-
face without arbitrage in space and time. Prices can now be generated such that 
the No-Dominance principle is preserved, and one can safely assess relative value 
between them. In order to perform statistical analysis of the relationships between 
points on the implied volatility surface (IVS), we are left with finding a way of mod-
eling dynamically the agents rational anticipations. We assume that the volatility 
surface is dynamically modified according to the stock price realisations. Having 
related the stock price level to the implied volatility surface, we use their respective 
historic evolution to characterise the transition probabilities, that is, the conditional 
densities. A statistical technique is used to regress the observed implied smile against 
the realised stock level. Therefore, the current stock evolution directly influences its 
future increment which means that, given the stock price at a future time, the condi-
tional density is known.

Keywords
implied volatility surface, calibration, options relative value, quantitative strategies, 
statistical dynamics of the smile 

1 Intr oduction
The Black–Scholes model [1973] for pricing European options assumes a 
 continuous-time economy where trading can take place continuously with no dif-
ferences between lending and borrowing rates, no taxes and short-sale constraints. 
Investors require no compensation for taking risk, and can construct a self-financing 
riskless hedge which must be continuously adjusted as the asset price changes over 
time. In that model, the volatility is a parameter quantifying the risk associated to the 
returns of the underlying asset, and it is the only unknown variable. However, since 
the market crash of October 1987, options with different strikes and expirations 
exhibit different Black–Scholes implied volatilities (IV). Hence, the Black–Scholes 
formula can be used as a mapping device from the space of option prices to a single 
real number called the implied volatilities. The out-of-the-money (OTM) put prices 
have been viewed as an insurance product against substantial downward movements 
of the stock price and have been overpriced relative to OTM calls that will pay off 

only if the market rises substantially. As a result, the implicit distribution inferred 
from option prices is substantially negatively skewed compared to the lognormal 
distribution inferred from the Black–Scholes model. That is, given the Black–Scholes 
assumptions of lognormally distributed returns, the market assumes a higher return 
than the risk-free rate in the tails of the distributions.

In principle, one should use the future volatility in the Black–Scholes formula, 
but its value is not known and needs to be estimated. As a result, practitioners use 
the implied volatility when managing their books, assuming that the IV bears valu-
able information on the asset price process and its dynamics. Hence, acknowledg-
ing the limitations of the Black–Scholes model, traders keep having to change the 
volatility assumption in order to match market prices. Therefore, as explained by 
Fengler [2005], the information content of the IV and its capability of being a predic-
tor for future asset price volatility is of particular importance on trading markets. 
It is assumed that the IV bears valuable information on the asset price process and 
its dynamics which can be exploited in models for the pricing and hedging of other 
complex derivatives. One of the reason being the existence of highly liquid option 
and futures markets dated back from the early nineteen-nineties. In an efficient mar-
ket, options instantaneously adjust to new information such that the IV predictions 
do not depend on the historical price or volatility series. The overall consensus of the 
literature is that IV based predictors do contain a substantial amount of information 
on future volatility and are better than only time series based methods. Nonetheless 
most authors conclude that IV is a biased predictor.

As opposed to traditional fields of Applied Mathematics where fundamental laws 
exist, financial markets only obey the No-Dominance principle (monotonicity rule), 
so that modeling is based upon comparison between assets (information driven). 
For instance the Black–Scholes model derives the price of an option by comparison 
to the underlying asset price. Hence, we need to incorporate the relevant informa-
tion in the model (objective driven). Information being different from one market 
to another, the relevant criterion depends on the objective for which the model is 
built, such as prediction, hedging, risk management etc. Therefore, the nature of 
the model depends on the corresponding market and its final objective. In the same 
spirit as Blyth [2004], we want to establish a consistent framework for relative-value 
volatility trading that enables identification of value within the universe of equity, 
FX, or commodity liquid option products. The logicist approach is concerned with 
reasoning and more specifically with what we can say about the derivatives markets 
(see Dempster [1998]). It requires choices, necessarily subjective, driven by the 
judgement of the investigator, about which objective features to include or omit 
in the modeling formulation. Careful assessment is required. This is to oppose to 
the pragmatic approach which is usually adopted whereby the simplest model that 
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gives a price for the relevant instrument is used for pricing and risk management. 
Following the logicist approach, the only thing we can say about financial markets is 
that parsimonious information on option prices is available in time and space, and 
that we can only use the No-Dominance law (or stronger version of No-Arbitrage) 
to account for it. Further, options on a single stock with different strikes and maturi-
ties are functions of the same IV surface and depend in non-trivial ways on the same 
underlying dynamics. As a result, when analysing volatility surfaces, it makes little 
sense to consider an option with maturity T and strike K as an independent instru-
ment with its own volatility. Thus, one requires a consistent model to assess relative 
value between them.

To perfectly know the future expected dynamics of the underlying stock price 
requires the knowledge of call prices for all strikes and maturities, but since in prac-
tise we can only observe a few market prices from standard strikes and maturities, 
the market is therefore incomplete and there are more than one acceptable price 
(volatility) surfaces satisfying the no-arbitrage conditions. As a result, proper option 
portfolio management requires suitably chosen interpolation and extrapolation 
techniques of the IV surface, forcing practitioners to use a fully specified model. 
The standard approach is to interpolate and extrapolate market prices or volatili-
ties to complete the market. Practitioners use the Black–Scholes implied volatility 
and smooth the prices in a parabolic way to generate the missing prices. Due to the 
difficulty of defining a single parametric function for the entire volatility surface, a 
typical solution is to estimate each smile independently with some nonlinear func-
tion. Then, the IV surface is reconstructed by interpolating total variances along the 
forward moneyness. One way forward is to interpolate the smile within the region of 
observed prices with a polynomial as was done by Malz [1997] and to cut the volatil-
ity outside that region. Similarly, Daglish, Hull and Suo [2006] performed a Taylor 
expansion up to the second order of the implied volatility surface around the money 
forward level. Alternatively, one can fit with little control a parametric form for the 
implied volatility derived from a model which is usually the result of an asymptotic 
expansion of a stochastic volatility model, see for examples Hagan et al. [2002] or 
Gatheral [2006]. However, direct interpolation and extrapolation of implied vola-
tility surfaces does not guarantee a resulting smooth risk-neutral density, hence a 
proper local volatility surface.

In a market with a limited number of prices, a model of interpolation and extrap-
olation of the volatility surface should have few parameters with the ability of map-
ping a large family of surfaces. Among the different techniques proposed for obtain-
ing a smooth volatility surface from market prices, Rebonato et al. [2004] argued 
that modeling directly the density was the most desirable approach. They extended 
the mixture of normals approach proposed by Alexander [2001], obtaining a density 
with non-zero skew and satisfying the risk-neutral forward condition while retaining 
an unconstrained numerical search. However, in markets with long maturity prod-
ucts and discrete dividends such as the Japanese market, it is important for model 
pricing to obtain a reliable volatility surface satisfying the no-arbitrage constraint not 
only in space but also in time. So, we intend to generate a surface without arbitrage in 
time and in space as closely as possible from the market data.

Interpolation techniques to recover a globally arbitrage-free call price func-
tion have been proposed by Kahalé [2004] where he considered a piecewise convex 
polynomials, and by Wang et al. [2004] who suggested the use of a cubic B-spline 
interpolation. Later, Fengler [2009] considered smoothing call prices with a natural 
cubic splines by choosing to minimise a penalised sum of squares resulting in an 
iterative quadratic minimisation problem under constraints. Similarly, we propose 
in Section (5.2) to impose smoothness and value constraints directly on the market 
prices and their resulting implied volatility surface. We impose the market prices to 
satisfy the no-arbitrage conditions and we smooth the implied volatility surface by 

fitting a  special functional form to the observed market prices. We consider in Section 
(5) a parametric representation of the market call prices under constraints in order 
to smooth the data and get nice probability distribution function (pdf). We use the 
Differential Evolution algorithm described by Bloch et al. [2011] to calibrate the mod-
el’s parameters to a finite set of option prices. Using the properties of our parametric 
model, in Section (5.4) we compute analytically the Greeks of the model. Similarly to 
Ingersoll [1998], we let the Digital Bond be the value at time t of receiving one dollar 
at the maturity T if and only if a probabilist event occurs, while the Digital Share is the 
value at time t of receiving one share of the stock at the maturity T if and only if a prob-
abilist event occurs. In Section (5.5), we obtain analytical solution to the Digital Bond 
and the Digital Share in the special case where the instantaneous volatility of the stock 
price is a deterministic function of time and the stock price. In Section (5.6), using 
closed-form solutions for European options and Digital options, we infer analytically 
the skew and curvature of the parametric model for all strikes and maturities.

Defining in Section (2) option relative value, its principle which consists in tak-
ing advantage of price differences between related financial instruments by simul-
taneously buying and selling the different instruments, can be seen as a directional 
bet on the expected future dynamics of the underlying stock price. Hence, one need 
to provide traders with tools capable of properly quantifying market arbitrages to 
option prices, together with tools modeling dynamically the agents rational anticipa-
tions. Since parsimonious information is available in time and space, and since we 
can only use the No-Dominance law to account for it, our parametric model reaches 
its objectives by fitting globally the market prices such that the no-arbitrage in time 
and space is satisfied. We are left with finding a way of modeling dynamically the 
agents belief of future evolution of the stock price returns. Bloch et al. [2002] showed 
that there exists a link between the implied volatility surface and the spot level over 
time. In Section (6) we take the spot level as driving factor, and assume that the vola-
tility surface is dynamically modified according to the realisation of stock prices. 
Having related the stock price level to the volatility surface, we use the historic evolu-
tion of the implied volatility surface to characterise the transition probabilities, that 
is, the conditional densities. Then from the implied marginal distributions observed 
on the market, we infer the joint distributions which are consistent with the relation-
ship between implied volatility and stock price level over time and satisfy the absence 
of arbitrage (AOA) constraint. This hypothesis implies that European call prices are 
not time-dependent, that is, do not depend on current time but are stock dependent. 
Therefore, the current stock evolution directly influences its future increment which 
means that, given the stock price at a future time, the conditional density is known.

2 Defining  option relative value
Relative value is the attractiveness of one instrument relative to another measured 
in terms of risk, liquidity, and return. Given that options are a derivative instrument, 
meaning they derive their value from an underlying security, options themselves 
have value relative to other options. Hence, when comparing two options, one 
option’s value can be deduced from or defined relative to another option’s value. In 
practise, even though options are quoted on the basis of price, option traders assess 
relative value on the basis of volatility. That is, knowing the price of the option, one 
can solve for the IV of the underlying stock by inverting the Black–Scholes formula.

2.1 From pai r trading to skew trading
2.1.1 Pair tradi ng
One of the simplest relative-value arbitrage called pair trading is an investment 
strategy that seeks to take advantage of price differences between related financial 



07/10/2013 09:33 AM36-56_Bloch_TP_May_2013_Final.indd 38

38  WILMOTT magazine

instruments by simultaneously buying and selling the different instruments, thereby 
allowing investors to potentially profit from the relative value of the two products. 
The simultaneous purchase and sale of two similar products whose prices are not 
in synchrony with what the trader believes to be “true value” is called an arbitrage 
in the hedge funds world. For example, acting on the assumption that option prices 
will revert to their true value over time, traders will sell short the overpriced security 
and buy the underpriced one. Once prices revert to their true value, the trade can be 
liquidated at a profit. It is clear from this example that what hedge funds call an arbi-
trage is simply the fact that their views about the future performance of the underly-
ing asset differ from the market’s view. It is a purely directional bet on the expected 
future dynamics of the underlying stock price. However, in the classical option pric-
ing theory, arbitrages are quite different (see Shreve [2004]). One can reconcile the 
two approaches by providing the traders with tools capable of properly quantifying 
market arbitrages to option prices, together with tools modeling dynamically the 
agents rational anticipations.

2.1.2 Skew tradi ng
The IV being a biased predictor of the future volatility, it bears valuable information 
on the asset price process and its dynamics. That is, the options market provides 
a remarkable outlook on future expectations of the value or performance of an 
underlying asset, allowing traders to compare various strike prices over different 
maturities. Since supply and demand ultimately drive prices, traders can learn which 
options are cheap or expensive relative to others, as measured by the implied volatil-
ity of each option. This relative value is defined as options skewness, or skew, and 
can be used to identify trading opportunities. Trading “with” the skew is defined as 
buying higher valuation options and selling lower valuation options, while trading 
“against” the skew is defined as buying lower valuation options and selling higher 
valuation options. Traders can then use quantitative tools and decide to either trade 
“with” or “against” the skew or smile. Even though there are different explanations 
for the skew, one of the most straightforward is leverage. Skew is priced to reflect the 
market’s assessment of future risk, which takes into account an asset’s current price, 
pricing trends, and the potential for a sudden price jump in either direction. The 
basis of skew is that even though options are founded on a risk-neutral concept, mar-
ket participants have risk profiles that affect the supply-demand relationship of the 
options market. For example, many equity option traders tend to sell upside calls and 
purchase downside puts (termed options collar) to reduce their overall risk exposure. 
Given that many participants have predetermined preferences, options with lower 
strikes tend to have higher implied volatilities relative to options with higher strikes. 
Consequently, if you believe that the skew is wrongly priced, then the market is either 
underestimating or overestimating the probability of a large upside or downside 
move in the underlying instrument. Hence, one can look at the volatility skews of an 
index or a single stock over different maturities and compare their relative predicting 
power for the movement of the underlying index or stock. For example, in the case 
where the short term months have very low implied volatilities relative to intermedi-
ate term options, it is usually the case that the options market is expecting news likely 
to move the index or stock in a dramatic way in a few months’ time, but not in the 
shorter term. The trading strategies should be based on the trader’s prediction for 
market movements, or lack thereof, relative to market expectations (in the time peri-
od selected). However, one must recognise the conditions where a strategy might fail.

2.1.3 Taking a  view on the Skew
When trading “with” the skew, the market is willing to overpay for a certain strike 
price or time frame. A trader can purchase the higher implied volatility and sell a 

different strike price or month at a lower implied volatility. He chooses to purchase 
higher-valued options and sell lower-valued options because his market forecast 
could mirror the options market (more demand relative to supply creates the skew) 
where he gives away theoretical edge. Alternatively, he can trade “against” the skew, 
assuming he forecasted a symmetric event and wanted to gain theoretical edge by 
selling higher-valued options and buying lower-valued options. Trading against 
the skew is a “reversion to the mean” strategy, meaning that we are implementing 
an options strategy that benefits from a more normalised trading scenario (think of 
symmetrical rather than asymmetric underlying moves). Recall, “cheap” or “expen-
sive” attributions are based on a symmetric mathematical options model, such as the 
Black–Scholes formula. For example, if the trader believes the market will remain 
calm in the near-term but that, in the coming months, it’s going to become more 
volatile, he can implement a long calendar position. This is considered trading “with” 
the skew if the shorter-dated options are priced much cheaper than the longer-dated 
options. There are many variations of trading “with” the skew. The only requirement 
is that the option you sold has a lower implied volatility than the option you pur-
chased. To conclude, since the IV is an indicator of potential outcomes for an under-
lying asset, with insight into market expectations, traders can choose to trade “with” 
the skew (smile) or “against” it.

2.2 Accounting  for the dynamics of the IV surface
The main idea behind relative value is that the goodness of the model is not so 
important as long as it is applied consistently across all option prices. That is, one 
focus on the price of options relative to each other. In general, many traders believe 
that to take advantage of skew opportunities they should plan to buy undervalued 
options and sell overvalued options. That is, whether the individual options in a spe-
cific market are out of line relative to each other, and not whether the market is out 
of line with the model. But, what does it mean to say that an option is undervalued or 
overvalued? The valuation of most assets is normally approached on a relative basis. 
In practise, most hedge funds assume stock prices are lognormally distributed, but 
the actual price distributions in all markets tend to have fatter tails than suggested by 
the lognormal distribution. As a result, in the real world extreme price movements 
occur far more frequently than implied by the standard Black–Scholes assump-
tions. Hence, in reality it makes more sense to be a buyer of deep OTM options than 
might be suggested by the model. Consequently, if you blindly believe the lognormal 
assumption, you would be selling more OTM options than you should, leading to 
potential big losses. Hence, traders should be wary of making blind assumptions 
about options being undervalued or overvalued.

2.3 Relating l ong-dated options to short-dated options
2.3.1 A mean-rever ting volatility process
Central to trading options is some understanding of the fundamental forces that 
affect market volatility. Volatility in financial markets tends to be a mean reverting 
process. One of the reason for volatility to be mean-reverting is that it can not be 
explosive, and implied volatilities can not deviate too far from their central tendency. 
As a result, the further away volatility gets from its long term average or normal level, 
the greater the likelihood that it will move back towards its mean. This property 
violates the constant volatility assumption of some major options valuation models, 
such as the BS model. Thus, an understanding of the mean reverting nature of the 
volatility process enables someone taking an option’s position to recover the market’s 
implicit beliefs about the dynamics of volatility as the option moves through time. 
If volatility is a mean-reverting process, then clearly buying or selling it at extreme 
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levels should be a profitable trading strategy. However, an options position has both 
a spot directional and a volatility component, making the strategy less trivial than 
expected. While volatility drops, as it should in a mean reverting process, the move in 
the spot price may rendered the position unprofitable. In addition, implied volatili-
ties have to drop faster than the forward volatility curve anticipates for the position 
to make money.

2.3.2 Modeli ng the term-structure of volatility
Options at different dates or tenors Ti for i = 1,…, n reveal a term structure of 
implied volatilities that is a useful tool in relative value analysis. Long dated options 
are priced relative to the value of short dated options. The effect is similar to that 
observed in fixed income yield curves. In general, long dated implied volatilities do 
not fully respond to transitory movements in short-dated implied volatility because 
of the mean reverting nature of the series. That is, a shock to short-dated volatility 
is likely to dissipate over a longer time interval as the market reverts to its normal or 
average level. Finally, greater volatility of short-dated volatility reduces the value of 
short dated volatility as a benchmark for valuing long dated volatility. As a result, it 
tends to lower long-dated implied volatilities. Using this intuition, practitioners (see 
Simpson [2003]) have devised statistical models where the term-structure of the IV 
is a function of two factors, the short-dated volatility and the volatility of short-dated 
volatility

 σl(t) = α + β1σs(t) + β2σ
2
s (t) + ε  

where σ1(t) is the volatility of the long-dated options and σs (t) is that of the short-
dated option. The parameters of the model are α and βi for i = 1, 2 and ε is a white 
noise. Deviations from the expected values from this econometric model suggest a 
useful approach to determining whether implied volatilities in a specific portion of 
the yield curve are expensive or cheap.

2.4 Some trading strate gies
We saw in the Section (2.1) that having insight into market expectations of the future 
dynamics of the underlying price returns enables traders to define trading strate-
gies. It requires skills originating from risk management and leveraged to systematic 
speculation, such as single surface risk management as well as delta and gamma 
trading. Other examples include vega trading, dispersion and correlation trading. As 
explained by Hutchinson [2011], there exists a large number of option value strate-
gies among which the most famous one are

 1. Volatility Surface Relative Value. It optimises a portfolio of long and short 
option positions, on the same underlying security, to harvest gains from 
changes in the shape of the volatility surface. 

 2. Implied Correlation / Dispersion. It trades the relative value relationship 
between the implied volatility of an Index option and the implied volatilities 
of the Component Stocks that comprise the Index. 

 3. Capital Structure Arbitrage. It trades the relative value relationship between 
options on various segments of the capital structure of an individual com-
pany, or the options embedded in the same. 

 4. Generic Volatility Long/Short. It trades the relative value relationship 
between options on a full array of securities, and is not limited to one under-
lying security or issuer of securities. 

 5. Directional Volatility. It creates an option portfolio that exhibits a continuous 
short or long exposure to changes in implied volatility. 

Options on single stocks or indices with different strikes and maturities being 
functions of the same IV surface and depending in non-trivial ways on the same 

underlying dynamics, one requires a consistent model to assess relative value 
between them. Since parsimonious information is available in time and space, and 
since we can only use the No-Dominance law to account for it, our model must fit 
globally the market prices such that the no-arbitrage in time and space is satisfied. 
We are left with finding a way of modeling dynamically the agents rational anticipa-
tions in order to infer relative value between option prices and take advantage of 
their differences over time.

2.5 Some fundamental an alysis
2.5.1 Volatility surface re lative value
As discussed previously in Section (2.4) many relative value strategies exist, and we 
are going to concentrate on volatility surface relative value. Note, as the IV surface is 
a three-dimensional array obtained by plotting the inverted option prices along two 
axes, the time to maturity and the strike prices, one must rely on tools quantifying 
the relative value of option prices not only on space but also on time. Since the IV 
surface changes shape as investors change their expectation of risk to come, and thus 
the price they are willing to pay for options on the surface, one can evaluates the IV 
surface and optimises a portfolio of long and short option positions. For example, 
point pairs on the surface may be initiated when the pair relationship is at statistical 
extreme, or it reflects misplaced expectations. In that setting the investment strategy 
relies on some fundamental analysis consisting of

• examination of the IVS 
• analysis of option market values relative to model values 
• statistical analysis of relationships between points on the IVS 
• objective consideration of factors affecting expectations of risk (IVS 

 dynamics) 

Then the trades are implemented and executed based on some targeted oppor-
tunities. Notes, trades can also be identified for risk management purposes by off-
setting aggregated portfolio sensitivities (Greeks). In general the market volatility 
surface is analysed relative to a model volatility surface and an electronic eye is used 
to identify and display trade opportunities. Using quantitative tools, traders should 
be able to assess opportunities, identify hedges and execute orders. Therefore, one 
can identify potential opportunities by profiling a smile of IV generated by propri-
etary modeling against the IV of options actually observed in the market place. For 
instance, one can consider cheap IV versus model as well as the expensive one against 
model. For that relation to exist the model must be arbitrage-free, not just in space 
but also in time. In addition, the market surface can also be described statistically 
by looking at the relationship between each point. For example, one can look at the 
ratios and spreads of 10% OTM puts for various maturities, placed in one-year his-
torical context via a percentile calculation. A pair with a Vol Ratio Percentile of less 
than 15% would be coloured blue or green, while high ratios would be coloured red.

2.5.2 Dispersion relative val ue
Assuming that we know the IV of a portfolio (or index) together with the weights and 
IV of the individual stocks in the portfolio, we can solve for the expected correlation 
also called the implied correlation (IC). The IC is traded via positions in single stock 
options offset by index option positions. As the relationship between index volatili-
ties and their component stock volatilities change quite a lot over time, so does the 
implied correlation. The IC is usually viewed by practitioners as one of the option 
market’s expectation of systematic risk. In principle it is increasing when investors 
sell stocks, and decrease as more benign expectations filter in.
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The growth of the variance swap (VS) market and the success of the VIX raised 
the profile of volatility trading as an asset being negatively correlated to the underly-
ing equity market. Rather than solving the difficult questions of knowing which vola-
tility to own, and how to mitigate the expense of decay, the VS is a liquid, non-strike 
dependent hedge. One strategy consists in owning a basket of single stock volatility, 
assuming that volatilities would increase when the underlying shares sell off, and 
then take advantage of the elevated implied correlation. Rather than selling the 
basket of single volatility, the relatively more elevated index volatility is sold against 
the basket of single stock volatilities. Based on empirical studies, it is assumed that a 
basket of higher beta single stock volatilities may have a larger absolute move up than 
index volatility during a sell-off. However, single stock volatility having wider bid/
offer spreads, exhibit a greater expected cost over the course of a year, and potentially 
unmanageable bid/offer spreads. In addition, the relationship between single stock 
volatilities and index volatility may not perform as historically expected, leading to 
basis risk. Nonetheless, some opportunities each year to sell elevated index volatility 
present the possibility of significantly mitigating the expense.

3 Understanding the  mechanisms behind option 
relative value
Given the definition of option relative value in Section (2), one must be able to 
evaluate risk, liquidity, and returns from the financial instruments to infer their 
 attractiveness.

3.1 The inconsistencies o f the BS model
The Black–Scholes model [1973] for pricing European options assumes a continu-
ous-time economy where trading can take place continuously with no differences 
between lending and borrowing rates, no taxes and short-sale constraints. Investors 
require no compensation for taking risk, and can construct a self-financing riskless 
hedge which must be continuously adjusted as the asset price changes over time. To 
the extent that the world deviates from the BS assumptions of constant volatility and 
a lognormal distribution to price changes, the BS model will be biased in certain, 
often predictable ways (see Hull and White [1987]). In reality, since the volatility is 
not constant it has a major impact on the values of certain options, especially those 
options that are away from the money, because the dynamics of the volatility proc-
ess rapidly change the probability that a given out-of-the-money (OTM) option can 
reach the exercise price. Hence, the BS model consistently underestimates the value 
of an option to the extent that volatility is stochastic rather than constant as assumed. 
It is well known in the literature that both the crash fears and the volatility evolution 
are explanatory factors for the negatively skewed implicit distribution and that each 
of them implies a different relationship between the option maturity and the implicit 
skewness. Stochastic diffusion models imply a direct relationship between the option 
maturity and the magnitude of the implicit skew while that relationship is inversed in 
a finite variation jump model. This is because jump components address moneyness 
biases while having stochastic latent variables allows distributions to evolve stochas-
tically over time. A second major assumption of the BS model is that the underlying 
returns are normally distributed with a variance proportional to the length of time 
over which the asset trades. However, a number of academic studies show that the 
underlying price movements are neither normally nor lognormally distributed. 
Many financial assets exhibit more skewness and kurtosis than it is consistent with 
the Geometric Brownian Motion model of Black–Scholes. According to Bakshi et al. 
[1997] only a combination of jump and stochastic volatility models is capable of cap-
turing the IVS. Similarly, Bates [2000] studied empirically the impact of each explan-
atory factors on the shifted distribution and concluded that one need a  combination 

of both to recover a good fit to the market distribution. Again, the problem with the 
distributional assumption of the BS model means that it generally underestimates 
equity or FX option values because the likelihood of having an extreme price move-
ment is greater than the model expects.

3.2 Accounting for th e market price of risk
When in incomplete market, we can not perfectly hedge an equity derivative, but 
we can divide the asset into two pieces, one which is hedgeable and the other being 
totally unhedgeable where the hedgeable portion can be priced using arbitrage-free 
arguments. However, market practise consists in using the Black–Scholes formula as 
a tool for representing market risk via the implied volatility surface and then devise 
hedging strategies based on the first component of the option value. Even though 
most if not all the assumptions in the Black–Scholes model do not correspond to 
market realities, it gives a robust representation of market’s behaviour and should be 
used to guide us toward the correct market value (see El Karoui et al. [1998]). In that 
model, volatility is the only unknown variable when pricing options and as such it 
is the only parameter quantifying the risk associated to the returns of the underly-
ing asset. In the Black–Scholes formula, the option price is equivalent to the cost of 
continuously hedging the option, but in practise dynamic hedging is not a risk-free 
proposition. Moreover, additional risks must be taken into consideration such as 
changes in volatility, changes in interest rates, changes in dividends, trading costs 
and liquidity. As a results, all these risks are incorporated into the implied volatil-
ity in such a way that the skew can be seen as the view from the market that options 
with different strikes and different expiries have different risks and should be valued 
accordingly. That is, one expect a normal behaviour of the stock prices near ATM 
options which can be reasonably hedged, but when the stock prices exhibit large 
downward movements, the fear of non-headgeable jumps dominate. For example, in 
the case of short maturity options where OTM put prices should have a zero market 
value, they actually exhibit positive values representing exclusively a market risk 
premium. As discussed by Figlewski [1989] the IV is a free parameter containing 
expected volatility and everything else that affects option demand and supply but it is 
not the model, making it very difficult to disentangle the different factors. Once the 
market price of risk has been implicitly entered into the pricing equation, the trad-
ers are left to define their hedging strategies. For example, when delta hedging, the 
traders make the derivative of the portfolio with respect to the stock price zero at a 
point, but the portfolio still change in value if the asset moves a short distance from 
that point. However, if the distance is small, the change in value will be proportional 
to its square, whereas for a non delta hedged portfolio the change will be linear in the 
distance (see Fengler [2005]). Fortunately, one simplification to the trader’s position 
arises from the fact that he will have bought and sold many different options on the 
same underlying. Each of these options has a delta and since in a complete market the 
model is linear, the traders can hedge them all by simply adding their deltas together. 
As the deltas of long and short positions have opposite signs, and if the portfolio is a 
mixture of such positions, the deltas will at least partially cancel each other.

3.3 Modeling the asse t returns
Alternative explanations, from jump-diffusion process for the dynamics of the 
underlying stock, for the divergence between the risk-neutral distributions and-
vobserved returns include peso problems, risk premia (see Lettau et al. [2003] and 
Novales et al. [2003]) and option mispricing but no consensus has yet been reached. 
The notion that equity returns exhibit stochastic volatility is well documented in 
the literature, and evidence indicates the existence of a negative volatility risk pre-
mium in the options market (see Bakshi et al. [2003]). CAPM suggests that the only 
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 common risk factor relevant to the pricing of any asset is its covariance with the 
market portfolio, making beta the right measure of risk. However, excess returns on 
the traded index options and on the market portfolio explain this variation, implying 
that options are non-redundant securities. As a result, Detemple et al. [1991] argued 
that there is a general interaction between the returns of risky assets and the returns 
of options, implying that option returns should help explain stock returns. That 
is, option returns should appear as factors in explaining the cross section of asset 
returns. For example, Bekaert et al. [2000] investigated the leverage effect and the 
time-varying risk premium explanations of the asymmetric volatility phenomenon 
at both the market and firm level. They found covariance asymmetry to be the main 
mechanism behind the asymmetry for the high and medium leverage portfolios. 
Negative shocks increase conditional covariances substantially, whereas positive 
shocks have a mixed impact on conditional covariances. While the above evidence 
indicates that volatility risk is priced in options market, Arisoy et al. [2006] used 
straddle returns (volatility trade) on the S & P 500 index and showed that it is also 
priced in securities markets. As a result, one can assume the existence of arbitrage 
over short maturity option prices by assuming a non-null market risk premium. 
Similarly to the commodity markets where the holder of the spot is compensated for 
holding one unit of inventory in case of shortage, we can compensate the holder of 
the spot in the equity market for the risk of a large downward jumps.

4 The equity setup
We consider the probability space (Ω, F, P) where Ft is a right continuous filtration 
including all P negligible sets in F. For simplicity, we let the market be complete and 
assume that there exists an equivalent martingale measure Q as defined in a mixed 
diffusion model by Bellamy and Jeanblanc [2000]. We let the underlying process 
(St)t ≥ 0 be a one-dimensional Ito process valued in the open subset D with dynamics 
under the risk-neutral measure Q being

 

dSt
St

= μ(t, St)dt + σ (t, St)dWS(t)  (1)

where the drift μ : D ! R as well as the diffusion σ : D ! R are regular enough to 
have a unique strong solution valued in D. There are various ways of modeling dis-
crete dividends, all resulting in different prices for path dependent options (see Bos 
et al. [2003]). We are going to introduce some notations on discrete dividends, and 
introduce the pure stock process with its corresponding pure implied volatility.

4.1 Discrete dividends
We are no w introducing discrete dividends to the stock price and describe our 
framework. Given t0 = 0 and μt = (r(t)) – q(t)) where r(t) and q(t) are deterministic 
functions of time representing respectively the spot rate and the repo rate, we let 
C(t0, t) = Re(t0, t)

P(t0, t)
= e

∫ t
t0

μsds be the capitalisation factor from time zero until time t 

where P(t0, t) is the zero-coupon bond and Re(t0, t) is the repo factor. We let Dt be the 
dividends paid till time t given by

Dt =
∞∑
i=0

H(t − tdi )diC(tdi , t)

with dynamics given by
dDt = μtDtdt + D

′
tdt

where D′
t =

∞∑
i=0

δ(t − tdi )diC(tdi , t). Similarly, the dividends paid from time t till 

time T and capitalised at maturity T are given by

D(t,T) = DT − C(t,T)Dt

Discounting these dividends to time t, we get the present value DPV(t; t, T) of the divi-
dends paid between t and T

DPV (t; t,T) = D(t,T)
C(t,T)

= DT

C(t,T)
− Dt

Having made an assumtion on discrete dividends, for simplicity of exposition, we are 
going to consider the dynamics of the stock price in the Spot model.

4.2 The Spot model
We can always rewrite the spot pric e with discrete dividends in terms of a pure proc-
ess Z with no discrete dividends and no rates with the transformation

 St = a(t)Zt + b(t) (2)

where a(t) and b(t) are deterministic function of time (see Overhaus et al. [2002]). 
We assume that the dynamics of the stock price (St)0·t·T in the Spot model and under 
the risk-neutral measure are given by

St = Zt − Dt

dZt

Zt
= μ(t)dt + σZ(t,Z)dWZ(t)

Zt0 = St0

In that setting the price of a European call option with strike K and maturity T is

CS(t0;K,T) = P(t0,T)Et0 [(ZT − K
′
)+]

where K =K + DT. This model is popular mainly due to the fact that when adding 
the already paid dividends to the strike and considering the special case where the 
volatility σZ is a consant, one can use the Black-Scoles formula to compute the call 
option price.

4.3 Pricing simple products : Digital contracts
Similarly to Ingers oll [1998], we let DB (S, t, T; ξ) be the value at time t of receiving $1 
at the maturity T if and only if the event ξ occurs. Such a contract is called a binary 
option or a cash-or-nothing option and we will call it a Digital Bond. We also let 
DS (S, t, T; ξ) be the value at time t of receiving one share of the stock at the maturity 
T (excluding any intervening dividends) if and only if the event ξ occurs. Such a con-
tract is called a all-or-nothing share and we will call it a Digital Stock. Given the proc-
ess (St)t¸0 and the appropriate measure, the price of a call option can be expressed in 
terms of those quantities as

C(t, St ,T,K) = P(t,T)Et[(ST − K)+]

= P(t,T)Et[(ST − K)IST>K]

= P(t,T)
(
Et[STIST>K] − KEt[IST>K]

)
and

P(t,T)Et[STIST>K] = C(t, St ,T,K) + KP(t,T)Et[IST>K]

Now from the definition of a digital option we have Et[IST>K] = –  1 ______ P(t, T)   ∂
K

 C(t, St, T, 

K) which is approximated with call-spread option, and the Digital Stock becomes



07/10/2013 09:33 AM36-56_Bloch_TP_May_2013_Final.indd 42

42  WILMOTT magazine

DS(S, t,T; ST > K) = P(t,T)Et[STIST>K]

= C(t, St ,T,K) − K∂KC(t, St ,T,K)

and can be statically replicated with a call option and a call-spread. Therefore, the 
pricing of other European derivatives with piecewise linear and path-independent 
payoffs only requires valuing Digital Bond and Share with event ξ = {L < ST < H} for 
some constants L and H. For example, the call option price is

 C(t,T,K) = DS(S, t,T; ST > K) − KDB(S, t,T; ST > K) (3)

while the put option price is

 P(t,T,K) = KDB(S, t,T; ST < K) − DS(S, t,T; ST < K)  

In the special case where the rate, repo and volatility are constants, Cox and Ross 
[1976] showed that the Digital Bond and Digital Share with event ξ = {ST > K} where 
K is the strike price could be valued under the risk-neutral measure with the Black–
Scholes formula, that is

 

DB(S, t,T; ξ ) = EQ[e−
∫ T
t rsdsIST>K |Ft]

= e−r(T−t)N(d2(T − t, Ste(r−q)(T−t),K))  

DS(S, t,T; ξ ) = EQ[e−
∫ T
t rsdsSTIST>K |Ft]

= Ste−q(T−t)N(d1(T − t, Ste(r−q)(T−t),K))

where

d2(t, x, y) = 1
σ
√
t
log

x
y

− 1
2
σ
√
t and

 d1(t, x, y)= d2(t, x, y) + σ
√
t  

However, when the volatility of the stock price is stochastic, and more generally 
when the instantaneous volatility of the stock price, the spot rate and repo rate are 
stochastic, one can no-longer use the Black-Sholes formula. Under general Markov 
processes for the model parameters, the conditional probabilities of the Digital Bond 
and Digital Share are difficult to solve analytically under any probability measure, 
and numerical tools must be used. We are going to show that in the special case 
where the instantaneous volatility of the stock price is a deterministic function of 
time and the stock price, one can obtain analytical solution to the Digital Bond and 
the Digital Share.

5 The choice of a volatility model
Since in practise we can only observe a few market pric es from standard strikes and 
maturities with wide or narrow spreads depending on the liquidity on the market 
and the volume traded, the market is incomplete and there are more than one accept-
able price (volatility) surface satisfying the no-arbitrage conditions. Hence, multiple 
risk-neutral distributions can fit the option prices so that one needs some additional 
criteria to generate a unique probability distribution function (pdf). To do so, one 
can either impose a functional form to the probability distribution and estimate its 
parameters using option data, or one can choose non-parametric methods obtaining 
perfect fit to market data. However, non-parametric methods are less adapted to the 
extrapolation problem than the parametric ones, and they tolerate less control over 
the generated volatility surface. We are therefore going to concentrate on parametric 
methods.

5.1 The standard approach
The standard approach is to interpolate and extrapolate market pri ces or volatilities 
to complete the market. Practitioners use the Black–Scholes implied volatility and 
smooth the prices in a parabolic way to generate the missing prices. However, direct 
interpolation and extrapolation of implied volatility surfaces does not guarantee 
a resulting smooth risk-neutral density, hence a proper local volatility surface. As 
described by Daglish et al. [2006], a natural choice would be to perform a Taylor 
expansion up to the second order of the implied volatility surface around the money 
forward level. In general, the implied volatility is modeled with a functional form of 
the smile around the money forward as

 
(t, St;K,T − t) = f
(
t,T − t, XT−t

t ,YT−t
t ,ZT−t

t ;K)
 

where the processes  X t  
T–t ,  Y t  

T–t  and  Z t  
T–t  represent respectively the at-the-money 

volatility, the skew and the curvature of the smile at time t for call options with 
maturity T i.e. time to maturity T – t. Using historical data, some authors studied 
the dynamics of these process. For instance, assuming an Ornstein-Uhlenbeck 
dynamic for the processes Cont et al. [2002] explained the deformation of the vola-
tility surface. Alternatively, Bloch et al. [2002] assumed the parameters to be led 
by the spot process holding the whole market risk. When it comes to generating a 
volatility surface, the evaluation time t is fixed and practitioners estimate one set 
of parameters X, Y and Z per trading maturities. Then they rely on some interpola-
tion and extrapolation of parameters in time with no guarantee of satisfying the 
calendar spread. In the presence of discrete dividends, it is not an easy task to sat-
isfy the time constraint given by the calendar spread. For example, we consider the 
functional form

 
f (t,T − t,X,Y ,Z;K) = X − Y ln

(
KP(t,T)

St

)
 
+ Z

(
ln

(
KP(t,T)

St

))2

 (4)

with P(t, T) = e–r(T–t) and X = Σ(t, KP(t, T); KP(t, T), T – t), Y =     
∂Σ(t, St; K, T–t) 

  ______________  ∂K    and 

Z  =     
∂2Σ(t, St; K, T–t) 

  ______________  ∂K2  . Note, whatever the shape we take, the smile needs to be caped 
and floored in the lowest and highest strikes in order to avoid any arbitrage opportu-
nity. If the slope of the smile is to high the implicit pdf can be negative. Quantitatively 
speaking, the implied risk-neutral probability density is given by

 

φ(ST ,T, St , t) = 1
ST


√
2π(T − t)

e−
1
2 d

2
1

((
1 + STd1

√
T − t

∂


∂K

)2

+S2T(T − t)


(
∂2


∂K2 − d1
(

∂


∂K

)2 √
T − t

))
 

with d1 = ln(St/ST) + (r + 1
2


2)(T − t)



√
T − t

. Therefore, if the quantity

 

∂2


∂K2 − d1
(

∂


∂K

)2 √
T − t

 

is too negative, which happens when the slope of the smile    ∂Σ ___ ∂K    is to high, the pdf 
can be negative. This means that the European call prices are not the result of the 
expectancy under the risk-neutral measure of future pay-off and therefore allow for 
arbitrage opportunities1.

5.2 The parametric model
We are going to use a parametric representation of the market call prices in order 
to s mooth the data and get nice probability distribution function (pdf). In order to 
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get a model with a varying number of parameters to control the level of accuracy, 
we consider a weighted sum of interpolation functions taken in a parametric family. 
We want each function to satisfy the no-free lunch constraints in such way that they 
are preserved in the weighted sum. Several families can satisfy the No-Free-Lunch 
constraints, for instance a sum of lognormal distribution, but in order to match a 
wide variety of volatility surfaces the model has to produce prices that lead to risk-
neutral pdf of the asset prices with a pronounced skew. Since we can always convert 
a density into call prices, we can then convert a mixture of normal densities into 
a linear combination of Black–Scholes formula, see Brigo et al. [2000]. Therefore, 
to obtain a pronounced skew we consider a sum of shifted log-normal distribu-
tions, that is, using the Black–Scholes formula with shifted strike (modified by the 
parameters μi(t)) as an interpolation function. In our parametric model, the mar-
ket option price CM(K,t) of strike K and maturity t is estimated at time t0 = 0 by the 
weighted sum

 
CM(t0, S0, Pt ,Rt ,Dt;K, t) =

n∑
i=1

ai(t)CallBS (t0, S0,Rt , Pt ,K(K, t), t,
i(t))  (5)

where ai(t) for i = 1,.., n are the weights, and —K(K, t) = K'(K, t)(1 + μi (t)) with K'(K, 
t) = K + Dt. In that setting Rt = Re(0, t) is the repo factor in the range [0, t], Pt = P(0, 
t) = e–rt is the zero-coupon bond price, Ct = C(0, t) =   Rt __ Pt

    is the cost of carry and Dt 
= D(0, t) is the compounded sum of discrete dividends between [0, t] defined in 
Section (4.1). The no-arbitrage theory imposes time and space constraints on market 
prices. Introducing the time dependent parameters ai(t) and μi (t), the simplest way 
of ensuring these constraints is to take the same time dependency for each μ, that is, 
μi (t) = μi  f (t, βi). As the pdf of the equity price should tend toward a single Dirac 
when t ! 0, to get control on μi (t) we choose to let the function f(t, x) tend to 1 when 
t ! +1, getting

f (t, x) = 1 − 2
1 + (1 + t

x )
2

with f '(t, x) = [1 – f(t, x)]2   1 __ x   (1 +   t __ x  ). Moreover, to keep manageable the no-free lunch 

constraints, we make the weight ai(t) proportional to   
 a i  

0 
 ______ f(t, βi)

   for some constant  a i  
0  > 0 

getting the representation

μi(t) = μ0
i f (t,βi) and ai(t) = a0i

f (t,βi) × norm

where norm =
n∑

i=1

a0i
f (t,βi)

. As a result, with seperable functions of time, the no-free 

lunch constraints simplify to

 

a0i ≥ 0
n∑

i=1

a0i μ
0
i = 0

μ0
i ≥ −1

 (6)

At last, the no-arbitrage condition with respect to time holds if and only if the total 
variance v(K, t) =  Σ imp  

2
   (K, t)t is an increasing function of time t. Since we chose to 

model directly the square-root of the average variance, to guarantee the positivity of 
the local volatility we must verify


2
i (t) + 2
i(t)t∂t
i(t) ≥ 0

In the special case where the user has no information on the term-structure of the 
implied volatility surface, we set Σi(t) = di where di > 0. On all the other cases, the user 
can choose among different term-structures based on his information of the implied 
volatility surface. To get a general volatility function capable of generating both an 
upward hump or a downward one, we consider the function


i(t) = (
ai + bi ln (1 + eit)

)
e−cit + di

where ci > 0, di > 0 and ai ∈ R, bi ∈ R and ei ∈] –   1 __ t  , ̀ [. The derivative of the function 
with respect to time t is



′
i (t) = ( − aici + bi

ei
1 + eit

− bici ln (1 + eit)
)
e−cit

and the no-arbitrage constraint must satisfy

e−cit
[
(1 − 2tci)

(
ai + bi ln (1 + eit)

) + 2tbi
ei

1 + eit
] + di ≥ 0

Since ai ∈ R, at time t = 0 the left hand side of the inequality can becomes negative. 
Consequently, we must impose the constraint

ai + di > 0

to get the constraint satisfied at t = 0. Further, when t >   1 __ ci
   then for ci sufficiently large 

the constant di will dominates (ai + bi In(1 + eit)) ensuring positivity of the left hand 
side. Hence, at time t =   1 __ ci

   we must impose

di ≥ (
ai − 2

bi
ci

ei
1 + ei

ci

+ bi ln (1 + ei
ci
)
)
e−1

5.3 Some calibration results
In order to illustrate the properties of our model, we compare it with the Stochastic 
Volatility Inspired (SVI) model introduced by Gatheral [ 2004]. It is smooth in the 
strike direction, and it has five parameters at each maturity with intuitive interpreta-
tions in terms of implied volatility changes. However, even though the SVI model 
is consistent with Lee’s moment formula (Lee [2004]) for extreme strikes, it is well-
known that the SVI smiles may be arbitrageable (see Roper [2010]). We consider 
option prices on the Nikkei 225 with evaluation date on the 12th of December 2012, 
spot price 9579.477, and maturities given in Table 1. After calibrating the paramet-
ric model in Equation (9) to the entire set of market prices we obtain the optimum 
parameters in Table 2. In order to get an element of comparison, we plot in Figures 
1 through 9 the volatility surface given by our model together with the smiles pro-
duced by the SVI on independent maturities. The first maturity, on the 14th of 
December 2012, illustrates the fact that a polinomial function calibrated to inde-
pendent maturity has not enough information to complete the market in presence of 
a small number of option prices. On the 13th of December 2013, even though the put 
price with strike 9000 seems to satisfy the increasing sequence and convex proper-
ties of put prices with respect to strikes, the slope of the curve is too steep, leading to 
an over valued option price. Both models capture this anomaly by infering a lower 
market price.

5.4 Computing the Greeks analytically for European options
Market risk management of an option portfolio requires simultaneous real-time 
transparency of the several differen t elements that can influence an option price. 
Option prices have sensitivities or Greeks to movements in market data such as the 
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underlying security, the expected volatility of the underlying security, dividends, the 
passage of time, and interest rates. Assuming that the dynamics of the spot price with 
discrete dividends follow the Spot model described in Section (4.2) with a(t, T) = 1 
and b(t, T) = – D (t, T), then our parametric model in Equation (9) corresponds to 
a weighted sum of Black–Scholes formulas in the Z-space. In that setting, we can 
 compute analytically the Greeks of the parametric model. The derivative of a call 
option price with respect to the spot is

 

∂

∂S0
CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1

norm

n∑
i=1

ai(t)

× ∂

∂S0
CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

 

where ~K(K, t) = P(t0, t)
—K(K, t) and —K(K, t) = K'(K, t)(1 + μi(t)) and —ai(t) =   

  a i  
0 
 ______ f(t, βi)

  . 
Differentiating one more time the call price with respect to the spot, we get

 

∂2

∂S20
CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1

norm

n∑
i=1

ai(t)

× ∂2

∂S20
CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

 
Differentiating the call price with respect to the strike, we get

 

∂

∂K
CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1

norm

n∑
i=1

ai(t)

× ∂

∂K̃
CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

∂K̃
∂K

 (7)

where   ∂
~K ___ 

∂K   = P(t0, t)(1 + μi (t)). Given the derivative of the Black–Scholes formula with 
respect to the strike K, that derivative simplifies to

 

∂

∂K
CM(t0, S0, Pt ,Rt ,Dt;K, t) = − 1

norm

n∑
i=1

ai(t)

× P(t0, t)(1 + μi(t))N(di2(t − t0, x, K̃(K, t)))  
Differentiating one more time the call price with respect to the strike, we get

 

∂2

∂K2CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1
norm

n∑
i=1

ai(t)

× ∂2

∂(K̃)2
CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))(

∂K̃
∂K

)2  (8)

which we can write in terms of the vega Black–Scholes as

 

∂2

∂K2CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1
norm

n∑
i=1

ai(t)
[
P(t0, t)(1 + μi(t))

]2

× 1
K̃2(K, t)
i(t)(t − t0)

Vega(K̃(K, t), t; 
i(t))
 

Differentiating the call price with respect to time t0, we get

 

∂

∂t0
CM(t0, S0, Pt ,Rt ,Dt;K, t) = d

dt0

( 1
norm

)
CM(t0, S0, Pt ,Rt ,Dt;K, t)norm

 

 
+ 1

norm

( n∑
i=1

d
dt0

ai(t)CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))
 

 
+

n∑
i=1

ai(t)
d
dt0

K̃(K, t)
∂CallBS

∂K̃
(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

 

 
+

n∑
i=1

ai(t)
d
dt0


i(t)
∂CallBS

∂
i
(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

 

 
+

n∑
i=1

ai(t)
∂CallBS

∂t0
(t0, S0,Rt , 1, K̃(K, t), t,
i(t))

)
 

where

 

d
dt0

K̃(K, t) = d
dt0

D(t0, t)P(t0, t)(1 + μi(t)) + rt0 K̃(K, t)

+ P(t0, t)(K + D(t0, t))
d
dt0

(1 + μi(t))
 

Figure 1: Smile and prices on 14/12/12.
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Figure 2: Smile and prices on 11/01/13.

Figure 3: Smile and prices on 08/02/13.

with   d ___ dt0
  μi(t) =  μ i  

0    d ___ dt0
   f(t, βi). Note, when there is no dividends between t0 and t0 + 

ε then the cumulative dividends term D(t0, t) = Dt does not depend on t0 and the 
derivative becomes   d ___ dt0 

  —K (K, t) = rt0
 ~K (K, t) + P(t0, t)(K + D (t0, t))  d ___ dt0

  (1 + μi(t)). Note, 

replacing the Greeks of our model in Dupire’s forward Equation (see Dupire [1994]), 
we obtain a smooth and robust deterministic local volatility.

5.5 Digital contracts in the parametric model
Given our discrete dividends assumption on the dynamics of the underlying stock 
in Section (4.1), we should always consider the modified strike K'(K, t) = K + Dt 
with eve nt ξ = {Zt > K'} when pricing a Digital contracts. We are now going to obtain 

 analytical solution to the Digital Bond and the Digital Share in the special case where 
the instantaneous volatility of the stock price is a deterministic function of time and 
the stock price. Setting the interest rate to zero and multiplying the strike with the 
discount factor, the parametric model for a call option price of maturity t becomes

 

CM(t0, S0, Pt ,Rt ,Dt;K, t) = 1
norm

n∑
i=1

× ai(t)CallBS(t0, S0,Rt , 1, K̃(K, t), t,
i(t))  (9)

where ~K(K, t) = P(t0, t) —K (K, t) and —K (K, t) = K'(K, t) (1 + μi(t)) and —ai(t) =   
  a i  

0 
 ______ f(t, βi)

   for 
i = 1,…, n. As a result, to each modified Black–Scholes formula (see Annexe (8.2)) 
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corresponds the event ξi = {Zt > —K}. Given the definition of the Black–Scholes for-
mula, we can always rewrite the model call price as

 

CM(t0, S0, Pt ,Rt ,Dt;K, t) = xRe(t0, t)
1

norm

×
n∑

i=1

ai(t)N(di1(t − t0, x, K̃(K, t))

− K
′
(K, t)

1
norm

n∑
i=1

aiP(t0, t)

(1 + μi(t))N(di2(t − t0, x, K̃(K, t)))  

Given the derivative of the parametric model with respect to the strike estimated in 
Equation (7), and combining terms together, the parametric model for a call option 
becomes

 
CM(t0, S0, Pt ,Rt ,Dt;K, t) = xRe(t0, t)

1
norm  

 
×

n∑
i=1

ai(t)N(di1(t − t0, x, K̃(K, t))
 

 
+ K

′
(K, t)

∂

∂K
CM(t0, S0, Pt ,Rt ,Dt;K, t) 

Since the Digital Bond can be expressed in terms of a digital option as DB(S, t0, t; ξ) = 
–∂K C(t0, St0

, t, K), its value in the parametric model is

Figure 4: Smile and prices on 08/03/13.

Figure 5: Smile and prices on 12/04/13.
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DM
B (S, t0, t; ξ ) = 1

norm

n∑
i=1

ai(t)P(t0, t)
 

 (1 + μi(t))N(di2(t − t0, x, K̃(K, t))) (10)

which we can write as a shifted weighted sum of digital options on a shifted strike

 
DM
B (S, t0, t; ξ ) = 1

norm

n∑
i=1

ai(t)(1 + μi(t))DB(S, t0, t; ξi)
 

Similarly, by analogy to the call price in Equation (3), the Digital Share is

DM
S (S, t0, t; ξ ) = xRe(t0, t)

1
norm

 
×

n∑
i=1

ai(t)N(di1(t − t0, x, K̃(K, t))
 

so that the call option becomes

 CM(t0, S0, Pt ,Rt ,Dt;K, t) = DM
S (S, t0, t;Zt > K

′
)

 − K
′
(K, t)DM

B (S, t0, t;Zt > K
′
) 

Given 
∂

∂d2
N(d2) = xRe(t0, t)

KP(t0, t)
∂

∂d1
N(d1)  and dd2

dx
= 1

xσ
√
t − t0

 the delta of a Digital 

option is

Figure 6: Smile and prices on 14/06/13.

Figure 7: Smile and prices on 13/09/13.
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∂

∂KS
CM(t0, S0, Pt ,Rt ,Dt;K, t) = − 1

norm

n∑
i=1

ai(t)P(t0, t)

(1 + μi(t))n(di2(t − t0, x, K̃(K, t)))
1

x
i(t)
√
t − t0  

5.6 Computing the Skew and Curvature an alytically
For every model that one can define, we need to estimate the vector Ψ of model 
parameters from either the market prices or their implied volatility quotes. When 
the parametric model is calibrated to the market quotes and the optimum vector 
Ψʹ is obtained, the model call and put prices must equate the market ones. Since 

our model can retrieve analytically European prices as well as Digital price we show 
how to infer analytically the skew and curvature of the IV surface for all strikes and 
 maturities.

5.6.1 Computing the Skew
When the parametr ic model is calibrated to the market quotes and the optimum vec-
tor Ψ is obtained, the model Digital Bond in Equation (10) must equate the market 
digital price in Equation (16). As a result, we can infer analytically the skew of the 
parametric model for the strike K and the maturity t

 
Skew(K, t) = 1

Vega(K, t; 
BS(K, t))
[− ∂

∂K
CBS(K, t; 
BS) − DM

B (S, t0, t; ξ )
]

 

Figure 8: Smile and prices on 13/12/13.

Figure 9: Smile and prices on 12/06/15.
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Given the definition of the Black–Scholes digital option, we get

 
Skew(K, t) = 1

Vega(K, t; 
BS(K, t))
[
DBS(S, t0, t; ξ ) − DM

B (S, t0, t; ξ )
]

 

which gives

 

Skew(K, t) = 1
Vega(K, t;
BS(K, t))

[
DBS(S, t0, t; ξ )

− 1
norm

n∑
i=1

ai(t)(1 + μi(t))DB(S, t0, t; ξi;
i))
]

 

When the shift terms are set to zero, μi(t) = 0 for i = 1,…, n, the Digital Bond 
 simplifies to

 
DM
B (S, t0, t; ξ ) = 1

norm

n∑
i=1

ai(t)DB(S, t0, t; ξ ; 
i)
 

which is a weighted sum of digital option on a GBM. Note, it still has a skew but 
much less prononced.

5.6.2 Computing the Curvature
When the parametric m odel is calibrated to the market quotes, the parametric den-
sity in Equation (8) must equate the market density in Equation (17). From the for-
mula of the convexity of the smile expressed in prices in Equation (15), we can infer 
analytically the curvature of the parametric model for the strike K and the maturity t

 

∂KK
(K, t) = ∂KKCM(t0, S0;K, t)
Vega(K, t;
BS(K, t))

− 1
K2
(K, t)(t − t0)[

1 + 2Kd1
√
t − t0Skew(K, t) + K2d1d2(t − t0)(Skew(K, t))2

]
 

Given the optimum vector Ψ of model parameters, we can compute analytically 
the European call and put prices for all maturity t and strike K. Inverting the Black–
Scholes formula, we recover the implied volatility surface Σ(K, t). We can then use 
that surface to compute exactly the skew and curvature of the parametric IV surface. 
Alternatively, one can approximate the skew and curvature of the IV surface around 

the money by considering the ATM volatility σ̂ = �̂(t) = 1
norm

∑n

i=1
ai(t)�i(t) . As 

a result, given a volatility function Σ(K, t) obtained with a parametric function such 
as a SVI or SABR, one can directly fit our parametric model to volatilities without 
inverting the Black-Scoles formula.

6 Modeling statistically the IV surface
Even though the  implied volatility surface (IVS) characterises agents belief of future 
evolution of the stock price returns, it is evident that today’s market prices do not 
provide us with the right future anticipations of the stock price process. This is 
because the implied volatility surface is neither stationary nor Markovian but sto-
chastic. We saw earlier that changes of the implied volatility surface have a significant 
influence on the value of the option position. For instance, an incorrect estimate of 
the IV surface and its expected shifts could lead to a significant miss pricing of the 
options. Further, model based quantitative forecasts can provide financial institu-
tions with a valuable estimate of a future market trend. Hence, in order to perform 
statistical analysis of the relationships between points on the IVS, we are left with 
finding a way of modeling dynamically the agents rational anticipations.

6.1 Existing models of the IVS and their dynamics
We brief ly present the work done by Ladokhin [2009] who described a number 
of representations of the IV surface and performed a comparison analysis of their 
dynamics. He discussed and compared several models of the approximation of the 
surfaces, as well as several approaches to the dynamics of these surfaces including 
different types of polynomial fitting as well as a stochastic volatility model. Among 
the polynomial models describing the whole volatility surface with one equation are 
the Cubic model and the Spline model. In the former the IV is a cubic function of 

moneyness X = In   K __ S  (or the time adjusted moneyness X = 1√
τ
ln

K
S

) and a quadratic 
function of time to expiry τ

 �(K,T) = a0 + a1X + a2X2 + a3X3 + a4τ + a5τ 2
 

where ai for i = 0,…,5 are parameters to be estimated. Similarly, one can build a 
Spline model of the volatility surface as

 

�(K,T) = a0 + a1X + a2X2 + a3τ + a4τ 2

+ D
(
a5 + a6X + a7X2 + a8τ + a9τ 2)

 

with

 
D =

{
0 if X < 0
1 if X ≥ 0  

together with the constraints

 a5 + a6.0 + a7.02 + a8τ + a9τ 2 = 0 , Da6 = 0  

for the volatility function to be continuous and differentiable. Contrary to the poly-
nomial models, stochastic volatility models such as the SABR model (see Hagan 
et al. [2002]) or the SVI model (see Gatheral [2006]), assume some behaviour of the 
underlying asset and connections with the values of the implied volatility. In those 
models the shape of the volatility skew is derived analytically from these assump-
tions. In the case of the SABR model, it can either be used as a model for a whole vol-
atility surface or for the skew. Under the first approach, the parameters α, β, ρ and ν 
are calibrated for all given times to expiration τi for i = 1, 2, ‥. In the second approach, 
one fit a SABR skew for each observed time to expiration, and then interpolate 
the values of implied volatility for any arbitrary τ. The piecewise SABR (PSABR) 
 parameters αi, βi, ρi and νi are calculated separately for each time to expiration τi, and 
the IV surface is built as a linear approximation of separate skews.

While a model with a large number of parameters may calibrate well the volatil-
ity surface on a given day, the same model parameters may give poor results on the 
next day. On the other hand, any risk management system tries to estimate the future 
(short term forecast) behaviour of the volatility surface. As a result, one need a model 
that accurately fit market prices with stable and robust parameters. Ladokhin [2009] 
focused on two different approaches to model the dynamics of the IV surfaces, one 
applicable to the Cubic and the Spline model and the other used for SABR models. In 
the first approach, the dynamics of the surface is treated as dynamics of these param-
eters. To reduce the dimensionality of the problem, he applied Principal Component 
Analysis (PCA) to the values of the parameters ai for i = 1, 2, ‥.,n. This is to switch 
to another space of the no-correlated factors, that fully describe the dynamic of the 
implied volatility surface. Since the first few principal components explain most of 
the variance of the calibrated parameters, the dynamics of the volatility surface over 
time is explained by the dynamics of the first two principal components modeled 
with an Autoregressive moving average model (ARMA). In the second approach, the 
SABR model already assumes certain dynamics of the volatility and the underlying 



07/10/2013 09:33 AM36-56_Bloch_TP_May_2013_Final.indd 50

50  WILMOTT magazine

asset expressed by a system of stochastic differential equations. Consequently, given 
the calibrated parameters, the spot price can be simulated with the Monte Carlo 
method, and for each path, the IV surface generated. The forecast of the implied 
volatility surface is an average surface over the simulated paths.

Strong of these dynamics, Ladokhin [2009] used the rolling horizon technique to 
build a 1 and 5 day forecasts of the volatility skews. Setting N = 100, he used observa-
tions from days t – N till t – 1 to calibrate the dynamic models in order to build a fore-
cast of the skew for day t. Then, at time t + 1 the horizon is rolled so that days t – N + 1 
till t are used for calibration. An equivalent technique is used for the five days ahead 
forecast. He then tested how the models can hold the volatility skew pattern by per-
forming a static test. Calibrating the models to observed IV surface at date t – 1 or t 
– 5 he calculated the weighted mean square error (WMSE) between the model results 
and the IV surface on day t. Cubic and Spline models approximate the implied vola-
tility surface with the function of a certain form. The Spline model is perhaps, the 
most effective to minimise the fitting error. Good performance of the dynamic ver-
sion of the Spline model is an empirical evidence of the dependence of the dynam-
ics of the surface of two principal components. Both of these models use much less 
parameters, than the PSABR model. Even though the SABR and the PSABR assume 
a certain model for the joint dynamics of the volatility and the underlying asset, their 
fitting results have a higher error than the polynomial models. Nonetheless, the 
PSABR tends to model the skew rather effectively in case of insufficient or bad data. 
Because these models assume some shape of the IV surface, they are predisposed to 
give a more theoretical shape of the skew resulting in lower relative forecasting error. 
As a result, models relating prices in time and space perform better on an incom-
plete market or with missing data. To conclude, no single method exhibits superior 
accuracy in the analysis of every data set. Some methods perform better for certain 
underlying assets, while other methods are more suitable for the other.

6.2 Evolving the IV surface
Having defined in Section (5.2) a consistent model with a global  fit to prices under 
constraints, prices can now be generated such that the No-Dominance principle 
is preserved, and one can safely assess relative value between them. Bloch [2010] 
showed that the dynamics implied by the single parametric model for the entire 
volatility surface in Equation (9) were those of a mixture diffusion process associated 
to an uncertain-volatility model. That is, similarly to the SABR models, our model 
already assumes some dynamics of the volatility and the underlying asset expressed 
by a system of stochastic differential equations. In that model, the instantaneous 
volatility being a deterministic function of the spot price and time, we can simulate 
the underlying process with a local volatility model. However, the implied volatility 
surface being neither stationary nor Markovian but stochastic, we are going to com-
bine the two different approaches to model the dynamics of the IV surfaces described 
in Section (6.1) by providing memory to the parameters of our model. Hence, we 
now consider the implied volatility surface to be a stochastic process driving the 
option prices and choose to model its dynamics in its full term and strike structure. 
Option prices deriving their values from an underlying security, it is natural to use 
mathematical tools to infer their dynamics from that of the underlying stock process. 
One approach is to model the implied volatility with dynamics based on a statistical 
analysis of its behaviour through time. It naturally leads us to model the stock price 
process discreetly with Markov chains. We impose that future smile surfaces should 
be compatible with today’s prices of calls and puts. Formalising the Kolmogorov-
Compatibility condition, we impose that the future density is actually a conditional 
density. Knowing that when the number of fixing dates in a model is finite there is 
an infinity of conditional densities, we choose to satisfy this infinity of solution by 
giving the forward smile a shape consistent with its historical evolution. Following 

Bloch et al. [2003], we assume that the volatility surface is dynamically modified 
according to the stock price realisations. Having related the stock price level to the 
implied volatility surface, we use their respective historic evolution to characterise 
the transition probabilities, that is, the conditional densities. A statistical technique is 
used to regress the observed implied smile against the realised stock level. Then from 
the implied marginal distributions observed on the market, we infer the joint dis-
tributions which are consistent with the relationship between implied volatility and 
stock price level over time and satisfy the AOA constraint. It implies that European 
call prices are not time-dependent, that is, do not depend on current time but are 
stock dependent. Therefore, the current stock evolution directly influences its future 
increment which means that, given the stock price St1

 at time t1, the conditional den-
sity φ(., T, St1

, t1) is known.

6.3 The forward IV surface
In order to satisfy the Kolmogorov probability, that is, assure tha t the forward 
smile implies a compatible conditional pdf, the model must fit European call prices 
observed at evaluation time t0. In continuous time models with volatility a deter-
ministic function of time and stock price such as the Dupire model, the volatility 
surface is assumed Markovian and stationary, giving a unique solution to the forward 
volatility. However the prices of forward start call options given by Dupire’s model 
are lower than the ones observed in the market. In view of getting higher forward 
smile, practitioners either add a stochastic process into the local volatility or combine 
the local volatility with a jump process. It means that there is a risk attached to such 
products which is not taken into account in today’s information. Bloch et al. [2003] 
showed that this risk translated into a forward volatility being higher than the spot 
volatility. Consequently, in order to price correctly a forward start option, a model 
must be calibrated to some kind of evolution of the implied volatility surface in such 
a way that the forward volatility that we get is higher than today’s volatility. Knowing 
that when the number of fixing dates in a model is finite there is an infinity of con-
ditional densities, we choose to satisfy this infinity of solution by giving the forward 
smile a shape consistent with its historical evolution. That is, the past evolution of the 
implied smile regressed against its stock price level would help explaining its future 
dynamics. Therefore, we are going to define a shape for the volatility surface together 
with its dynamics by using a statistical method, such that we can price vanilla options 
and then deduce a proper forward smile for the pricing of forward start options.

6.4 Statistical Dynamics
6.4.1 Computing the smile parameters
In this section, we are going  to model the implied volatilit y 
 with dynamics based 
on a statistical analysis of its behaviour through time. We first need to infer a shape of 
the volatility surface in accordance with market observable data. For the sake of clar-
ity we will deal with the polynomial defined in Equation (4) which is a special case of 
the Spline model presented in Section (6.1). Obviously the factor  X t  

T – t  is set equal to 
the observed at-the-money volatility i.e.

 XT−t
t = �(t, St; St ,T − t)  

Then, there exists several methods to fit the skew factor  Y t  
T – t  and the curvature factor  

Z t  
T – t . The simplest method, based on finite differences, leads to computing  Y t  

T – t  and  
Z t  

T – t  such that

 
YT−t
t = −�(t, St;K+,T − t) − �(t, St;K−,T − t)

K+ − K−  
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ZT−t
t =

�(t, St;K+,T − t) + �(t, St;K−,T − t)
−2�(t, St; St ,T − t)(

K+ − K−

2

)2

 

for some strikes K– and K+ close enough to the money and such that K– < St < K+. One 
possible setting would be to take K– = 0.8 St and K+= 1.2 St. A much better approach, 
satisfying the no-arbitrage principle, consists in considering the properties of our 
parametric model, and directly use the analytical skew and curvature defined in 
Section (5.6). That is, we project the complexity of the single parametric model in 
Equation (9) into a simplified version of the Spline model.

6.4.2 Providing some dynamics
We are now going to provide these parameters with some dynamics. The fundamen-
tal  idea ( c.f. Bloch et al. [2002]) is to assume that these three parameters are driven 
by the spot process St, for the spot process holds the whole market risk. That is, the 
parameters of our model have memory given by the realised trajectory of the spot 
price. As such, they are now factors expressed as

 

XT−t
t ≡ XT−t

t (St)
YT−t
t ≡ YT−t

t (St)
ZT−t
t ≡ ZT−t

t (St)  

and we need to infer a shape for the spot functions  X t  
T – t (St),  Y t  

T – t (St) and  Z t  
T – t (St). 

Assuming a continuum of maturities, we consider that the maturity effect, as traders 
are used to specify it, is proportional to   1 ______ (T – t)θ

   for some parameter θ. Plotting  X t  
T – t ,  

Y t  
T – t  and  Z t  

T – t  against St on a window of historical data, we consider the following 
shape

 
XT−t
t = exp(ax + bxSt + εxt )

(T − t)θx
,
 

 
YT−t
t = exp(ay + bySt + ε

y
t )

(T − t)θy
,
 

 
ZT−t
t = exp(az + bzSt + εzt )

(T − t)θz
.
 

which we rewrite as

 

log(XT−t
t ) = ax + bxSt − θx log(T − t) + εxt ,

log(YT−t
t ) = ay + bySt − θy log(T − t) + ε

y
t ,

log(ZT−t
t ) = az + bzSt − θz log(T − t) + εzt .  

At this point we need to estimate the model parameters. A first and common method 
would consist in computing the ordinary least squares (OLS) i.e. minimising the 
L2(R) norm of residuals. Note, when using the OLS method it implicitly means that 
we suppose that the processes  ε t  

x ,  ε t  
y  and  ε t  

z  are white noises and then that an hexogen 
perturbation of the stock has no consequence on the future option values. One need 
to perform the generalized Durbin-Watson tests on the data to see if the hypothesis 
for white noise is accepted or reject. In the case where it is rejected, it is not desir-
able to use ordinary regression analysis for the data we are dealing with since the 
assumptions on which the classical linear regression model is based will be obviously 
violated.

Violation of the independent errors assumption has three important conse-
quences for ordinary regression. First, statistical tests of the significance of the 

parameters and the confidence limits for the predicted values are not correct. 
Second, the estimates of the regression coefficients are not as efficient as they would 
be if the autocorrelation were taken into account. Third, since the ordinary regres-
sion residuals are not independent, they contain information that can be used to 
improve the prediction of future values. One way forward is to introduce some 
dynamics on the errors in order to capture this effect.

We now have a consistent and relevant model to explain the dynamics of the vol-
atility surface over time. Tests need to be performed to measure the capability of the 
model to forecast the volatility ATM, the skew and the curve of the volatility smile. 
To do so, we can reproduce the tests presented in Section (6.1). For instance, one can 
perform a daily forecast moving test also called rolling horizon technique. Starting 
from an initial historical table of 300 observations (out of 368), we use the model 
calibrated to these 300 observations to forecast the volatility parameters (ATM, skew, 
curve) over the next five days. We then compare these forecasted values to the market 
data by computing the mean over the five days of the relative errors2 expressed in 
percentage. Then we add one day to the historical data and start again. We repeat the 
operation ten times (till we have an historical basis with 309 observations) and give 
the results for the ten iterations. We can also show how the model forecast the volatil-
ity ATM on a window of time given that it was calibrated to market data on a previ-
ous window of time. If the model is stable over time it will not need to be recalibrated 
too often.

One application of our statistical deterministic implied volatility model is to run 
a computer program generating theoretical value to option prices within a range of 
stock prices. Any time an option pair is out of line with the theoretical model, one 
can buy or sell it to realise a profit.

7 Conclusion
Our goal was to devise a c onsistent volatility model to assess relative value 
between option prices, and to provide the implied volatility surface with general 
dynamics. We described a single parametric model for the entire volatility surface 
with  interpolation and extrapolation technique generating a smooth and robust 
implied volatility surface without arbitrage in space and time. Marking option 
prices on indices and single stocks, one can safely use the model to devise relative 
value trading strategies. Greeks and stress scenarios are calculated analytically in 
the parametric model without recalibration of the model parameters. Further, get-
ting analytical solutions to Digital options we can use them to recover analytically 
the Skew and Curvature of the IV surface for all strikes and maturities. To perform 
statistical analysis of the relationships between points on the IV surface we mod-
eled dynamically the agents belief of future evolution of the stock price returns. 
Using the Skew and Curvature inferred from our model, we introduced a possible 
shape for the volatility surface by linking its future evolution to an observable 
stochastic process and by adding noises. Based on empirical results showing the 
existence of a strong link between the implied volatility surface and the spot level 
over time, we took the spot level as driving factor. It implied that the volatility sur-
face was dynamically modified according to the realisation of stock prices which 
is a way of modeling dynamically the agents rational anticipations. Having related 
the stock price level to the volatility surface, we used the historic evolution of the 
implied volatility surface to characterise the transition probabilities, that is, the 
conditional densities. This hypothesis implies that European call prices are not 
time-dependent, that is, do not depend on current time but are stock dependent. 
Therefore, the current stock evolution directly influences its future increment 
which means that, given the stock price at a future time, the conditional density is 
known.
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Appendix
Annexes
8 The Black–Scholes formula
8.1 So me G reeks
We describe a few Greeks  in the Black–Scholes formula that will be used later on to 
devise our parametric model. The option in the Black–Scholes model is hedged with 
a portfolio containing

 


(t, St) = ∂xCBS(t, St ,K,T)

= e−q(T−t)N(d1(T − t, Ste(r−q)(T−t),K))  (11)

stocks. Similarly, the price of a put option is given by

 

PBS(t, x,K,T) = −xe−q(T−t)N(−d1(T − t, xe(r−q)(T−t),K))

+ Ke−r(T−t)N(−d2(T − t, xe(r−q)(T−t),K))

= Ke−r(T−t)N(d1(T − t,K, xe(r−q)(T−t)))

− xe−q(T−t)N(d2(T − t,K, xe(r−q)(T−t)))  

with delta

 


(t, St) = ∂xPBS(t, St ,K,T)

= −e−q(T−t)N(−d1(T − t, Ste(r−q)(T−t),K))

= −e−q(T−t)N(d2(T − t,K, Ste(r−q)(T−t)))  

since

 d2(t, x, y, σ 2) = −d2(t, y, x, σ 2)  

The vega in the Black–Scholes model is

 Vega = StRe(t,T)
√
T − tn(d1)  

where n(x) =   ∂ __ 
∂x   N(x) and Nʹʹ(x) = –xn(x). Also, we have the limit cases lim(T–t)!0 

Vega = 0 and lim(T–t)!`
 Vega = 0. Differentiating one more time the Vega with respect 

to volatility which is called the Volga, and using the relations   
dd1 ___ dσ

   = –   1 __ σ   d2 or   
dd2 ___ dσ

   = 
–   1 __ σ   d1, we get

 

∂

∂σ
Vega = Volga = StRe(t,T)

√
T − t

1
σ
d1d2n(d1)

= 1
σ
d1d2Vega

 (12)

Again, differentiating the Volga with respect to volatility, we get

 

∂

∂σ
Volga = (−d1d2 − d22 − d21 + d21d

2
2
) 1
σ 2Vega  

Now we differentiate the Vega with respect to the strike K, getting

 

∂

∂K
Vega = d1

Kσ
√
T − t

Vega
 

which we differentiate one more time with respect to the strike, getting

 

∂2

∂K2Vega = d1d2
K2σ 2(T − t)

Vega − 1
K2σ 2(T − t)

Vega

 
= (d1d2 − 1)

K2σ 2(T − t)
Vega

 

To conclude, we need to differentiate the Vega with respect to maturity T, getting

 

∂

∂T
Vega = −q(T)Vega + 1

2(T − t)
Vega

+ d1
( 1
2(T − t)

d2 − (r(T) − q(T))
σ
√
T − t

)
Vega

 

We now differentiate the call price with respect to the stike

 
∂

∂K
CBS(t, x,K,T) = −P(t,T)N(d2(T − t, xe(r−q)(T−t),K))

 

Differentiating the call price twice with respect to the strike we get

 

∂2

∂K2CBS(t, x,K,T) = P(t,T)
Kσ

√
T − t

n(d2(T − t, xe(r−q)(T−t),K))
 

which we rewrite as

 

∂2

∂K2CBS(t, x,K,T) = xRe(t,T)
K2σ

√
T − t

n(d1(T − t, xe(r−q)(T−t),K))

= 1
K2σ (T − t)

Vega(K,T; σ )
 

Setting x = St, we differentiate the call price with respect to maturity T getting

 

∂

∂T
CBS(t, St ,K,T) = σ

2(T − t)
Vega

+ rTKP(t,T)N(d2) − qTxRe(t,T)N(d1)  

We define XBS (t, St, K, T) as

 
XBS(t, St ,K,T) = σ

2(T − t)
Vega + rTKP(t,T)N(d2)

 

which is always positive, and rewrite the above derivative as

 

∂

∂T
CBS(t, St ,K,T) = XBS(t, St ,K,T)

− qTStRe(t,T)N(d1)  

Similarly, the derivative of the put price with respect to maturity T is

 

∂

∂T
PBS(t, St ,K,T) = − σ

2(T − t)
Vega

+ rTKP(t,T)N(d1) − qTStRe(t,T)N(d2)  

Since   dτ ___ dt   = –1 where τ = T – t, the derivative of the price with respect to time t is given 

by    
∂CBS(t, St, K, T)

  _____________ 
∂τ

     dτ ___ dt  . From the relation

 rtSt
(t, St) − rtCBS(t, St ,K,T) = rtKP(t,T)N(d2)  



07/10/2013 09:33 AM36-56_Bloch_TP_May_2013_Final.indd 53

^

TECHNICAL PAPER

WILMOTT magazine 53

the Theta becomes

 

∂

∂t
CBS(t, St ,K,T) = − σ

2(T − t)
Vega

− rtSt
(t, St) + rtCBS(t, St ,K,T)

+ qtStRe(t,T)N(d1)  

8.2 Pricing the modified Black–Scholes call option
Given the stock price (St)t∈[0, T], th e price of the modified Black–Scholes call option 
with strike K, maturity T and shift μT under the risk-neutral probability measure Q is

 

Ct0 = EQ[e−
∫ T
t0
rsds(ST − K(1 + μT))+|Ft0 ]

= EQ[e−
∫ T
t0
rsdsSTI{ST>K}|Ft0 ]

− KEQ[e−
∫ T
t0
rsdsI{ST>K}|Ft0 ]  (13)

where —K = K(1 + μT). Assuming a deterministic convenience yield, we let Xt = St 
Re(t, T) be the present value of the stock price ST seen at time t, where Re(t, T) =   γ(t)

 ____ 
γ(T)

   
and such that when t = T we get XT = ST. Hence, in the first expectation of the call 
price, we can take the process Xt as Numeraire with the density Zx(t, T) =   XTβ(t)

 
____ 
β(T)Xt

  , and 
since XT = ST we can re-express the first expectation term as

 

EQ[
β(t0)
β(T)

XTI{XT>K}|Ft0 ]

= Xt0E
Q[ZX(T)I{XT>K}|Ft0 ]  

while in the second expectation we take the bond as Numeraire with density ZP(t) 
=   P(t, T)

 _______ 
β(t)P(t0, T)  . Hence, we can re-write the call price as

 

Ct0 (K,T) = X0EQ[ZX(T)Iξ |Ft0 ]

− KP(t0,T)EQ[ZP(T)Iξ |Ft0 ]

= X0PX(XT > K) − KP(t0,T)PT(XT > K)  

where

 ξ = {XT > K} 

Since XT = F(T, T) where F(t, T) =   Xt ____ P(t, T)   and since F(t, T) is a martingale under PT 
and   1 ____ F(t, T)   is a martingale under Px, the call price becomes

 

C(t0;K,T) = Xt0P
X(F(T,T) > K)

− KP(t0,T)PT(F(T,T) > K)

= Xt0P
X(

1
F(T,T)

<
1
K
)

− KP(t0,T)PT(F(T,T) > K)  

 Expanding the solution of the forward price, we get

 

C(t0;K,T) = Xt0P
X(−1

2
σ 2
F (T − t0)

+ σF
√
(T − t0)y < log

F(t0,T)
K

)
 

− KP(t0,T)PT(−1
2
σ 2
F (T − t0)

+ σF
√
(T − t0)y > log

K
F(t0,T)

)

= St0Re(t0,T)N(d1) − KP(t0,T)N(d2)

where

 

d1 = 1
σF

√
(T − t0)

log
F(t0,T)

K
+ 1

2
σF

√
(T − t0)

and d2 = d1 − σF
√
(T − t0)  

from symmetry of the Brownian motion. Similarly to the displaced diffusion model, 
the present model is capable of generating asymmetric distribution to recover the 
market implied skew by using the standard Black–Scholes formula with appropriate 
input parameters.

Assumption 8.1 We assume that we can approximate the modified Black–Scholes 
price by

 Y = Y(0) + Z + H  (14)

where Y(0) = CBS (t, x, K, T; σ) with σ = I0(t, T), and such that Z and H account respec-
tively for the skew and the curvature. 

To do, so we must express the modified Black–Scholes price in term of the Black–
Scholes price plus some extra terms

 

C(t0;K,T) = St0Re(t0,T)N(d1) − KP(t0,T)N(d2)

− KμTP(t0,T)N(d2)  

Expanding the —d1 term, we get

 
d1 = d1 − 1

σF
√
(T − t0)

log (1 + μT)
 

so that the modified Black–Scholes price becomes

 

C(t0;K,T) = St0Re(t0,T)N
(
d1 − 1

σF
√
(T − t0)

log (1 + μT)
)

− KP(t0,T)N
(
d2 − 1

σF
√
(T − t0)

log (1 + μT)
)

− KμTP(t0,T)N(d2)  

9 Expressing the convexity of the smile in prices
The implied volatility being a function of the strike K and the maturi ty T, we use 
the chain rule to express the derivatives of the market prices in terms of the Black–
Scholes Greeks

 

∂TC(t, St ,K,T) = ∂TCBS(t, St ,K,T) + ∂�CBS(t, St ,K,T)∂T�(T,K)

∂KC(t, St ,K,T) = ∂KCBS(t, St ,K,T) + ∂�CBS(t, St ,K,T)∂K�(T,K)  

 ∂KKC(t, St ,K,T) = ∂KKCBS(t, St ,K,T) + 2∂�KCBS(t, St ,K,T)∂K�(T,K)

 

+ ∂�CBS(t, St ,K,T)∂KK�(T,K)

+ ∂��CBS(t, St ,K,T)(∂K�(T,K))2 
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Concentrating on the density, we get

 

∂KKC(t, St ,T,K) = 1
K2�(T,K)(T − t)

Vega(K,T)

+ 2∂�KCBS(t, St ,K,T)∂K�(T,K) + ∂�CBS(t, St ,K,T)∂KK�(T,K)

+ ∂��CBS(t, St ,K,T)(∂K�(T,K))2  

where Vega(K, T) is the BS vega with volatility 
(K, T). Using the Black–Scholes 
Greeks, the density becomes

 

∂KKC(t, St ,T,K) = 1
K2�(T,K)(T − t)

Vega(K,T)

+ 2d1
K�(T,K)

√
T − t

Vega(K,T)∂K�(T,K)

+ ∂�CBS(t, St ,K,T)∂KK�(T,K)

+ 1
�(T,K)

d1d2Vega(K,T)(∂K�(T,K))2
 

We multiply by   K2
 __ 2   and factorise, getting

 

K2

2
∂KKC(t, St ,T,K) = Vega(K,T)

2

( 1
�(T,K)(T − t)

+ K
2d1

�(T,K)
√
T − t

∂K�(T,K) + K2∂KK�(T,K)

+ K2 d1d2
�(T,K)

(∂K�(T,K))2
)

 

which we can write as

 

Vega(K,T)
2�(T,K)(T − t)

[
1 + �(T,K)(T − t)K2

(
2d1

K�(T,K)
√
T − t

∂K�(T,K)

+∂KK�(T,K) + d1d2
�(T,K)

(∂K�(T,K))2
)]

 

or

 

K2

2
∂KKC(t, St ,T,K) = Vega(K,T)

2�(T,K)(T − t)[
1 + 2Kd1

√
T − t∂K�(K,T) + K2d1d2(T − t)(∂K�(K,T))2

+K2�(K,T)(T − t)∂KK�(K,T)
]

 

Rearranging, we get the convexity of the smile expressed in prices as

 

∂KK�(K,T) = ∂KKC(t, St ,T,K)
Vega(K,T)

− 1
K2�(T,K)(T − t)

[
1 + 2Kd1

√
T − t∂K�(K,T)

+K2d1d2(T − t)(∂K�(K,T))2
]

 (15)

10 Pricing exotic options
10.1 The density
For all positive or bounded function h we have

 
E[h(Sxt )] =

∫
h(y)φ(t, x, y)dy

 

where φ(t, x, y) is the density function of St. In the  special case where St follow a G BM 
we get

 

φμ,σ 2 (t, x, y) = 1
σy

√
2π t

e−
1
2 d2(t,xe

μt ,y)2

d2(t, x, y) = 1
σ
√
t
log

x
y

− 1
2
σ
√
t

 

where v2t = σ2t is the total variance.

10.2 The digital option
Given the stock price (St)t¸0, a Digital option D(K, T) for strike K and maturity T pays 
$1 when the stock price ST is greater than the strik e K, and zero otherwise. The price 
of the Digital option is

 

D(K,T) = lim

K→0

C(K,T) − C(K + 
K,T)

K

= − ∂

∂K
C(K,T)

 

Given C(K, T) = CBS (K, T; 
BS (K, T)) where 
BS (K, T) is the BS implied volatility for 
strike K and maturity T, and using the chain rule, the Digital option becomes

 

D(K,T) = − ∂

∂K
CBS(K,T; �BS(K,T)) = − ∂

∂K
CBS(K,T; �BS)

− ∂

∂�
CBS(K,T; �(K,T))

∂

∂K
�(K,T)

 

We can express the Digital option in terms of the Vega and the Skew as

 

D(K,T) = − ∂

∂K
CBS(K,T; �BS)

− Vega(K,T)Skew(K,T)  (16)

where Vega (K, T; 
BS (K, T)) is the Black–Scholes vega for the strike K and maturity 
T, and ∂KCBS (K, T; 
BS) is the BS digital price for the volatility 
BS (K, T). In the spe-
cial case where r = q = 0, T = 1 and for S0 = 100 and K = 100, given a skew of 2.5% per 
10% change in the strike and an ATM volatility 
ATM = 2.5% we get

 

D(100, 1) = N[−�ATM

2
] − S0n[

�ATM

2
]
−0.025
0.1S0

≈ 0.45 + 0.25 × 4 = 0.55  

Ignoring the skew, the price is 45% of notional which is significantly lower than 55% 
of notional when the skew is included.

10.3 The Butterfly option
Assuming that the volatility surface has been constructed from European option 
prices, we consider a butterfly strategy centered at K where we are long a c all option 
with strike K – �K, long a call option with strike K + �K, and short two call options 
with strike K. The value of the butterfly for strike K and maturity T is

 

B(t0,K,T) = C(K − 
K,T) − 2C(K,T) + C(K + 
K,T)

≈ P(t0,T)φ(t0;K,T)(
K)2  
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where φ(t0; K, T) is the probability density function (PDF) of ST evaluated at strike K. 
As a result, we have

 
φ(t0;K,T) ≈ 1

P(t0,T)
C(K − 
K,T) − 2C(K,T) + C(K + 
K,T)

(
K)2  

and letting �K ! 0, the density becomes

 
φ(t0;T,K) = 1

P(t0,T)
∂2

∂K2C(K,T)  (17)

Hence, for any time T one can recover the marginal risk-neutral distribution of the 
stock price from the volatility surface. However, it tells us nothing about the joint 
distribution of the stock price at multiple times T1,…,Tn. This is because the volatility 
surface is constructed from European options prices which only depend on the mar-
ginal distribution of ST.

11 Calibration results

ENDNOTES
1. In reality the slope of the smile can be higher than the one calculated using the risk-
neutral measure as the market is incomplete. However we restrict ourselves to the 
complete market assumption.
2. 100 *   forecasted value – realised value   _________________________   realised value  
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