

Mälardalen University

http://www.mdh.se

Value at Risk and its estimation

Anatoliy A. Malyarenko

Department of Mathematics & Physics Mälardalen University SE-72 123 Västerås, Sweden email: amo@mdh.se

Definition

Let *S***(***t***)** denotes the market value of some portfolio. The *Value at Risk* (VaR) of that portfolio at a given time horizon *t* and confidence level *p* is the loss in market value over the time horizon *t* that is exceeded with probability $1 - p$, i.e.

 $P{S(t) - S(0) < -\text{VAR}} = 1 - p.$

The Derivative Policy Group has proposed a standard that would set a time horizon *t* of two weeks and a confidence level $p = 0.99$. Statistically speaking, this value at risk measure is the "**0**.**⁰¹** critical value" of the probability distribution of changes in market value.

Figure 1: Value at Risk (DPG Standard)

 $\overline{\blacklozenge}$ \blacktriangleright π

Figure 2: Simple VaR-calculator

 $\boxed{\bf K}$ - $\boxed{\text{M}}$ \blacktriangleright \blacksquare

4/38

美国西

Diff**erent approaches**

☞ **Traditional**. Identifying events and causes and linking them statistically using actuarial-based methods.

Different approaches

- ☞ **Traditional**. Identifying events and causes and linking them statistically using actuarial-based methods.
- ☞ **Algorithmics**. To model losses caused by rare events and unexpected failures in systems, people and environmental factors.

A recipe for estimating of VaR

1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.
- 3. Develop a model for the revaluation of each derivative for given changes in the underlying market prices and volatilities.

 $\overline{\mathbf{K}}$ $\overline{\blacktriangleleft}$

-

Ń

 \blacklozenge

 \blacktriangleright

Π

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.
- 3. Develop a model for the revaluation of each derivative for given changes in the underlying market prices and volatilities.
- 4. Simulate the change in market value of the portfolio, for each scenario of the underlying market returns. Generate a sufficient number of scenarios to estimate VaR with the desired level of accuracy.

Example

There are **418** underlying assets covered by RiskMetrics on July **29**, **1996**. A portfolio of *[plain-vanilla](#page-17-0)* options on these assets is simulated by Monte Carlo:

7/38

K

 $\overline{\blacktriangleleft}$

-

Ń

 \blacklozenge

 \blacktriangleright

Π

- ☞ Independently, any option is a European call with probability **⁰**.**⁵** and European put with the same probability.
- ☞ Independently, the time to expiration is **1** month with probability **⁰**.**4**, **³** months with probability **⁰**.**3**, **⁶** months with probability **⁰**.**²** and **¹** year with probability **⁰**.**1**.

 \mathcal{F} Independently, the ratio of exercise price to forward price is \log_{τ} normally distributed with mean **1**. Its logarithm has standard deviation **⁰**.**1**.

Methods for estimating the VaR

- 1. **Actual**. Monte Carlo simulation of all underlying asset prices and computation of each option price for each scenario by an exact formula.
- 2. **Delta**. Monte Carlo simulation of all underlying asset prices and approximation of each option price for each scenario by a *[delta](#page-31-0)[approximation](#page-31-0)* of its change in value.
- 3. **Gamma**. Monte Carlo simulation of all underlying asset prices and approximation of each option price for each scenario by the *[delta-gamma approximation](#page-37-0) ^Y***(**∆, ^Γ**)** of its change in value.
- 4. **Analytical-Gamma**. The approximation $c(p) \sqrt{\text{Var}(Y(\Delta, \Gamma))}$, where $c(n)$ is the *n* critical value of the standard normal density. *c***(***p***)** is the *p*-critical value of the standard normal density.

Figure 3: Value at Risk of long option portfolio — plain-vanilla model

 \blacktriangleleft - \blacktriangleright \blacklozenge \blacktriangleright π

Figure 4: Value at Risk of long option portfolio — plain-vanilla model

 $\overline{\blacktriangleleft}$ - \blacktriangleright \blacklozenge \blacktriangleright π

Correlated jumps

Consider the so called jump-diffusion model **3**, in that half of the variance of the annual return of each asset is associated with a jump, with an expected arrival rate of **1** jump per year. We have a more dramatic comparison of different methods.

Figure 5: Value at Risk for short option portfolio — jump-diffusion model

3

K \blacktriangleleft -N \blacklozenge \blacktriangleright π

Figure 6: [Value at Risk for short option portfolio — jump-di](#page-38-0)ffusion model

[3](#page-38-0)

 \blacksquare $\overline{\blacktriangleleft}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright T

The basic model of return risk

Let R_t denotes the return of some underlying asset at day t . Then

 $R_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$

where

 $\mu_t = E\{R_{t+1}/\mathfrak{F}_t\},\$ σ_{\star}^2 $t_t^2 = \text{Var}\{R_{t+1}/\mathfrak{F}_t\},$ $\mathbf{E}\{\varepsilon_{t+1}/\mathfrak{F}_{t}\} = 0,$ $Var{\{\epsilon_{t+1}/\delta_t\}} = 1.$

A model is called *plain-vanilla* if µ and σ are constant parameters, and ε*^t* are independent standard normal random variables (white noise). Experience shows that in practice distribution of tails is heavy.

Jump-diff**usion model**

 $R_t = R_0 \exp\{at + X_t\},\$ $X_t = \beta W_t + \sum$ *N***(***t***)** $\sum_{k=0}$ $\sqrt{Z_k}$,

15/38

K

 $\overline{\blacktriangleleft}$

-

Ń

 \blacklozenge

 \blacktriangleright

Π

where W_t is a standard Wiener process and $N(t)$ is the number of jumps that occur by time *t*. This is Poisson process with intensity λ. All jumps vZ_k are independent and normally distributed with mean zero and standard deviation **v**.

Figure 7: 2-Week 99%-**VAR** for underlying asset, one jump per year

 $\overline{\mathbf{K}}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright π

Figure 8: 2-Week 99%-**VAR** for underlying asset, two jumps per year

 $\overline{\mathbf{K}}$ $\overline{\blacktriangleleft}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright π

Stochastic volatility

We will consider only Markovian models of the form

 $\sigma_t = F(\sigma_{t-1}, z_t, t),$

where z_t is white noise.

In the model of *regime-switching volatility*, volatility behaves according to a finite-state Markov chain. A model on Fig. 9 illustrates *persistence*, i.e., relatively high (low) recent volatility implies a relatively high (low) forecast of volatility in the near future. The model of *log-auto-regressive volatility* is given by

$$
\log \sigma_t^2 = \alpha + \gamma \log \sigma_{t-1}^2 + \kappa z_t,
$$

where α , γ and κ are constants. A value of γ near 0 implies low persistence, while a value near **1** implies high persistence.

K

 \blacktriangleleft

-

Ń

 \blacklozenge

 \blacktriangleright

Π

Figure 9: Regime-switching volatility estimates for light crude oil

 $\boxed{\mathbf{K}}$ - \blacksquare \blacktriangleright Ш

The GARCH (**G**eneral **A**uto**R**egressive **C**onditional **H**eteroscedasticity) model assumes that

$$
\sigma_t^2 = \alpha + \beta (R_t - \mu)^2 + \gamma \sigma_{t-1}^2
$$

For example, estimated GARCH parameters associated with crude oil have maximum likelihood estimates given by

 $\alpha = 0.15\overline{5}$, $\beta = 0.292$, $\gamma = 0.724$.

The cross-market inference can be accounted by the multivariate GARCH model, for example

$$
\begin{pmatrix}\n\sigma_{a,t}^2 \\
\sigma_{ab,t}^2 \\
\sigma_{b,t}^2\n\end{pmatrix} = \alpha + \beta \begin{pmatrix}\nR_{a,t}^2 \\
R_{a,t}R_{b,t} \\
R_{b,t}^2\n\end{pmatrix} + \gamma \begin{pmatrix}\n\sigma_{a,t-1}^2 \\
\sigma_{ab,t-1}^2 \\
\sigma_{b,t-1}^2\n\end{pmatrix}.
$$

21/38

Figure 10: Term structure of kurtosis for the jump-diffusion model

(c) $\sigma = 15\%, \lambda = 3.0, \nu = 3.33\%;$ (d) plain-vanilla with $\sigma = 15\%.$

(c) $\sigma = 15\%, \lambda = 3.0, \nu = 3.33\%;$ (d) plain-vanilla with $\sigma = 15\%.$

Figure 11: Term structure of **⁰**.**⁹⁹** critical value of the jump-diffusion model

Figure 12: Term structure of volatility (Hang Seng Index — estimated)

K $\overline{\blacktriangleleft}$ - $\overline{\mathsf{M}}$ \blacklozenge \blacktriangleright Π

Figure 13: Long-run kurtosis of stochastic volatility model

 $\overline{\mathbf{K}}$ $\overline{\blacktriangleleft}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright π

A - British Pound, B - Hang Seng Index, C - S&P 500 Index

Figure 14: Estimated term structure of kurtosis for stochastic volatility

K \blacktriangleleft -Ń \blacklozenge \blacktriangleright Π

Estimating current volatility

The *historical volatility* for returns R_t , r_{t+1} , ..., R_T is the usual estimate

$$
\hat{\sigma}_{t,T}^2 = \frac{1}{T-t} \sum_{s=t+1}^T (R_s - \hat{\mu}_{t,T}),
$$

where

$$
\hat{\mu}_{t,T} = \frac{R_{t+1} + \cdots + R_T}{T - t^2}.
$$

The constant volatility model can not be applied to essentially every major market, as shown on Fig. 15. The *Black–Scholes implied volatility* $\sigma = \sigma^{BS}(C_t, P_t, \tau, K, r)$ is cal-
lated numerically culated numerically.

Taiwan Weighted (TW): 180-Day Historical Volatility

Source: Datastream Daily Excess Returns

Figure 15: [Rolling volatility for Taiwan equity index.](#page-10-0)

 $\overline{\mathbf{K}}$ $\overline{\blacktriangleleft}$ - \blacktriangleright \blacklozenge \blacktriangleright π

VaR calculations for derivatives

The delta approximation:

 $f(y + x) = f(y) + f'(y)x + o(x)$.

The delta-gamma approximation:

$$
f(y + x) = f(y) + f'(y)x + \frac{1}{2}f''(y)x^{2} + o(x^{2}).
$$

Figure 16: The delta (first-order) approximation

 $\overline{\mathbf{M}}$ $\overline{\blacklozenge}$ \blacktriangleright П

Figure 17: Delta-gamma hedging, second order approximation

 $\overline{\mathbf{K}}$ - $\overline{\mathbf{M}}$ $\overline{\blacktriangleleft}$ \blacktriangleright T

ARTISTS

Figure 18: 2-Week loss on **20**% out-of-money put (plain-vanilla returns)

 $\overline{\mathbf{K}}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright H

Figure 19: 2-Week loss on short **20**% out-of-money put (plain-vanilla returns)

 - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright T

Figure 20: 2-Week loss on short **20**[% out-of-money put \(jump-di](#page-11-0)ffusion)

 $\overline{\mathbf{K}}$ - $\overline{\mathbf{M}}$ \blacklozenge \blacktriangleright T

Portfolio VaR

Let X_i denotes the difference between the *i*-th risk factor and its expected value. The total change in value for the entire book has the delta-gamma approximation:

$$
Y(\Delta, \Gamma) = \sum_{j=1}^n \Delta_j X_j + \frac{1}{2} \sum_{j=1}^n \sum_{k=1}^n \Gamma_{jk} X_j X_k.
$$

The portfolio variance is equal to

 $Var(Y(\Delta, \Gamma)) = \sum_{i,k}$ *j*,*k* $\Delta_j \Delta_k \text{Cov}(X_j, X_k) + \sum_{i \in I_k}$ *i*, *j*,*k* $\Delta_j \Gamma_{jk}$ $\text{Cov}(X_i, X_j X_k)$ + **1 4** $\overline{\nabla}$ *ⁱ*, *^j*,*k*,*^l* $\Gamma_{ij}\Gamma_{kl}$ $\text{Cov}(X_iX_j,X_kX_l)$.

Simulating fat tailed distributions

Suppose one wants to simulate a random variable *X* of zero mean and unit variance with a given kurtosis. Let η be the Bernoully random variable:

 $P{\eta = 1} = p, \qquad P{\eta = 0} = 1 - p.$

Let *Z* be the standard normal random variable independent on η. Define *X* as

 $X =$ \mathcal{L} ⇃ ^α*Z*, ^η ⁼ **¹**, ^β*Z*, ^η ⁼ **⁰**.

Then we have $Var(X) = p\alpha^2 + (1-p)\beta^2$, $E(X^4) = 3(p\alpha^4 + (1-p)\beta^4)$. Now we can choose α , β and β .

How many scenarios is enough?

Let ξ_1 , ξ_2 , \ldots , be an independently and identically distributed sequence of random variables with $E(\xi_i) = \mu$. Let

> $\hat{\mu}(k) =$ ξ**¹** + · · · + ξ*^k k* .

Let $g(\theta)$ denotes the moment-generating function of ξ_i , that is $g(\theta) = \mathbb{E}[\exp(\theta \xi_i)].$

According to the *large deviations theorem*, under mild regularity conditions

 $P\{\hat{\mu}(k) \geq \delta\} \leq e^{-k\gamma(\theta)}$ $\frac{2}{\pi}$

where $\gamma(\theta) = \delta\theta - \log[g(\theta)].$

K

 $\overline{\blacktriangleleft}$

-

Ń

 \blacklozenge

 \blacktriangleright

Π

In our application we let

ξ*ⁱ* = $\sqrt{ }$ $\left\{ \right.$ \mathbf{L} 1, $X_i > -\text{VAR},$ **⁰**, *^Xⁱ* ≤ − **VAR** .

ξ**¹** + · · · + ξ*^k*

Let

k be the estimate of **p**. Maximising $\gamma(\theta)$ with respect to θ , we have $P{\hat{p}(k) \ge \delta} \le \exp(-k\Gamma),$

 $\hat{p}(\mathbf{k}) =$

where

 $\Gamma = \delta \log \delta + (1 - \delta) \log(1 - \delta) - \delta \log p - (1 - \delta) \log(1 - p).$

For example, let $p = 0.95$ and $\delta = 0.975$. Then $\Gamma = 0.008$. For a confidence of $c = 0.99$ we see that

$$
k=-\frac{1}{\Gamma}\log(c)=576.
$$

Bootstrapped simulation from historical data

In a stationary statistical environment — no problems. In the case of significant non-stationarity, we update the historical asset distribution. For example,

$$
\hat{R}_i = R_i \frac{\hat{V}}{V},
$$

where *V* is the historical volatility and \hat{V} is a recent volatility estimate, or

$$
\hat{R}_t=\hat{C}^{1/2}C^{-1/2}R_t,
$$

where \mathbf{R}_t denotes the vector of historical returns, C denotes the historical covariance matrix for returns across a group of assets under consideration, \hat{C} denotes the updated estimate.