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Let S(t) denotes the market value of some portfolio. Madue at
Risk(VaR) of that portfolio at a given time horizanand confidence
level p is the loss in market value over the time horizothat is ex-
ceeded with probabilityt — p, i.e.

P{S(t) - S(0) < -VAR} =1-p

The Derivative Policy Group has proposed a standard that would
a time horizont of two weeks and a confidence leyek 0.99.

Statistically speaking, this value at risk measure is th@X'critical
value” of the probability distribution of changes in market value.
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Change in Market Value
Over 2 Weeks

Likelihood

Figure 1. Value at Risk (DPG Standard)
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Figure 2: Simple VaR-calculator
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[1 Traditional . Identifying events and causes and linking them st
tistically using actuarial-based methods.
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[1 Traditional . Identifying events and causes and linking them st
tistically using actuarial-based methods.

[1 Algorithmics. To model losses caused by rare events and un
pected failures in systems, people and environmental factors.
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1. Build a model for simulating changes in prices across all under
ing markets over the VaR time horizon.
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1. Build a model for simulating changes in prices across all under
ing markets over the VaR time horizon.

2. Build a data base of portfolio positions. Estimate the size of t
“current” position in each instrument.
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1. Build a model for simulating changes in prices across all under
ing markets over the VaR time horizon.

2. Build a data base of portfolio positions. Estimate the size of t
“current” position in each instrument.

3. Develop a model for the revaluation of each derivative for give
changes in the underlying market prices and volatilities.
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. Build a model for simulating changes in prices across all under
ing markets over the VaR time horizon.

. Build a data base of portfolio positions. Estimate the size of t
“current” position in each instrument.

. Develop a model for the revaluation of each derivative for give
changes in the underlying market prices and volatilities.

. Simulate the change in market value of the portfolio, for each st
nario of the underlying market returns. GeneratefA@ant num-
ber of scenarios to estimate VaR with the desired level of accurg
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There aret18underlying assets covered by RiskMetrics on Ry
1996 A portfolio of options on these assets is simulate

by Monte Carlo:

[1 Independently, any option is a European call with probab@isy
and European put with the same probability.

[ Independently, the time to expirationismonth with probability
0.4, 3 months with probabilityd.3, 6 months with probabilityd.2
and1l year with probability0.1.

I Independently, the ratio of exercise price to forward price is lo
normally distributed with meaf. Its logarithm has standard de
viation 0.1.
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. Actual. Monte Carlo simulation of all underlying asset prices a
computation of each option price for each scenario by an ex
formula.

. Delta. Monte Carlo simulation of all underlying asset prices a
approximation of each option price for each scenario by a
of its change in value.

. Gamma. Monte Carlo simulation of all underlying asset price
and approximation of each option price for each scenario by
Y(A,T) of its change in value.

. Analytical-Gamma. The approximatior(p) yVar(Y(A,T)), wherg
c(p) is the p-critical value of the standard normal density.
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Figure 3: Value at Risk of long option portfolio — plain-vanilla model

9/38

=[] [a] (][] [] [=]



)

— (1) Simulation-Actual
- = (3) Simulation-Gamma _ .
(4) Analytical-Gamma [ 10/38

Loss > ValR
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Figure 4. Value at Risk of long option portfolio — plain-vanilla model
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Consider the so called jumpfilision modeB, in that half of the
variance of the annual return of each asset is associated wi
jump, with an expected arrival rate bjump per year. We have a
more dramatic comparison offterent methods.
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6% 55% 5% 4.5% 4% 3.5% 3% 25% 2% 15% 1%
1-Day Value at Risk

Figure 5: Value at Risk for short option portfolio — jumpfidision model
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Loss > Valk
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Figure 6:
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Let R; denotes the return of some underlying asset attddjen

Rit1 = Wt + 0t€41,
where
wt = E{Ru+1/84},
07 = Var{Ru1/§,
Efets1/8t} = 0,
Var{e1/8} = 1.

A model is calledplain-vanilla if w and ¢ are constant parame-
ters, anck; are independent standard normal random variables (w
noise). Experience shows that in practice distribution of tails is hea
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R: = Roexpf{at + X;),
N(t)
Xi = BWi + ) vZy,
k=0
whereW, is a standard Wiener process aNdt) is the number of
jumps that occur by timé. This is Poisson process with intensity
All jumps vZy are independent and normally distributed with med
zero and standard deviation
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= 15%
Plain-Vanilla 10%
Jump-Diffusion 1 per year
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VaRl, = $ 6.45 (Plain-Vanilla)
$ 6.61 (Jump-Diffusion)
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Figure 7. 2-Week 99%/AR for underlying asset, one jump per year




— — Plain-Vanilla
— Jump-Diffusion
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Vall, = § 6.45 (Plain-Vanilla)
= § 6.82 (Jump-Diffusion)
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Figure 8: 2-Week 99%/AR for underlying asset, two jumps per year
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We will consider only Markovian models of the form
O = F(O't—ly Zt, t)9

wherez is white noise.

In the model ofregime-switching volatility volatility behaves ac-
cording to a finite-state Markov chain. A model on Fig. 9 illustrate
persistencei.e., relatively high (low) recent volatility implies a rela
tively high (low) forecast of volatility in the near future.

The model ofog-auto-regressive volatilitis given by

log Gf =a+vylog Gf_l + KZ,

wherea, y andk are constants. A value of nearO implies low
persistence, while a value nekaimplies high persistence.

=[] [a] (][] [] [=]



Volatility of il
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Figure 9: Regime-switching volatility estimates for light crude oil
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The GARCH GeneralAutoRegressiveonditionalHeteroscedastic
model assumes that

(rf =a+ PR — w)? + yof_l.

For example, estimated GARCH parameters associated with crudg
have maximum likelihood estimates given by

a=0155 pf=0292 vy=0.724

The cross-market inference can be accounted by the multivar
GARCH model, for example

2 2 2
o o
Za’t Ra,t 2a,t—l
(Fazb,t =o+f Ral-:\:ZRb,t + v Gazb,t_l !
b, t b,t Gb,t—l
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Kurtosis of return is shown for the following cases:
(a) o= 15%, A = 1.0, » = 10%; b)) o =15%, A =2.0, »r = 5%
fe) o =15%, A = 3.0, » = 3.33%; (d) plain-vanilla with o = 153%.

Figure 10: Term structure of kurtosis for the jumgkdsion model
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99% critical value is shown for the following cases:
(a) o =15%, A=10,» =10%; (b)) o =15%, A=2.0, v = 5%
(c) o =15%, A= 3.0, v = 3.33%; (d) plain-vanilla with o = 15%.

Figure 11: Term structure @99 critical value of the jump-dfusion model
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Volatility (Annualized)

1 G 8
Time Horizon (vears)
A: High Imitial Deterministic Volatility

B: Steady-5State Average Initial Deterministic Volatility
C: Low Initial Deterministic Volatility.

Figure 12: Term structure of volatility (Hang Seng Index — estimated
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Normalized Kurtosis

110

Time Horizon (vears)

A: Steadv-State Random Initial Volatility
B: Deterministic Initial Volatility
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Figure 13: Long-run kurtosis of stochastic volatility model




Normalized Kurtosis

10 100 1000

Time Horizon (log scale — days)

A — British Pound, B — Hang Seng Index, 0 — S&P 500 Index

Figure 14: Estimated term structure of kurtosis for stochastic volatility

25/38

=[] [a] (][] [] [=]



26/38

]
Kl
[>]
]
(4]
3
(]

The historical volatility for returnsRy, r;1, ..., Ry is the usual
estimate

.
1

AT -

e g Z (Rs — mi,7),

s=t+1

where
Rer hEllet Ry

T-1

The constant volatility model can not be applied to essentially evq
major market, as shown on Fig. 15.

TheBlack—Scholes implied volatility = 625(C;, Py, 1, K, 1) is cal-
culated numerically.

T =



Taiwan Weig hted [TW): 180-Day Historical Volatility

27138

Volstity (Annualized,
. oy Rellig Basis

Figure 15:
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The delta approximation:

f(y+x) = f(y) + £(y)x + o(x).

The delta-gamma approximation:

Y+ = 1) + FOX 0 + 00
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Figure 16: The delta (first-order) approximation
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Option Price f(y)

fu)z + 5F"(y)x*

Figure 17: Delta-gamma hedging, second order approximation
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- - Delta
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99% VAR = % 6968 (Actual)
~ & 58.25 (Delta~-Gamma)
~ & 105.53 (Delta)
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Figure 18: 2-Week loss 020% out-of-money put (plain-vanilla returns)
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— Actual

- — Delta-Gamma f = 1 year to expiration
Delta o = 15%

r=5.5%
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= § 138.67 (Actual)
$ 126.03 (Delta~Gamma)
$ 84.07 (Delta)
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Figure 19: 2-Week loss on shdt©% out-of-money put (plain-vanilla re-
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99% VAR = § T0.88 (Actual)
~ & 57.13 (Delta~-Gamma)
~ § 109.93 (Delta)
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Figure 20:




Let X; denotes the dlierence between thieth risk factor and its
expected value. The total change in value for the entire book has
delta-gamma approximation:

Y(A, F)_ZA X ZZr,kx X

jlkl

The portfolio variance is equal to

Var(Y(A, F)) = Z AJ‘Ak COV(XJ', Xk) - g Z Ajl“jk COV(X], ijk)
j,k iy joK

o Z [T CoV(XiX;, X X))
,J,kl
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Suppose one wants to simulate a random varixbtd zero mean
and unit variance with a given kurtosis. hgbe the Bernoully random
variable:

Pm=1}=p Pm=0=1-p
Let Z be the standard normal random variable independenqt @e-

fine X as
Z: —
r o, n=1,
BZ, n=0.

Then we hav&v/ar(X) = pa? +(1— p)p?, E(X*) = 3(pa? + (1 - p)p?).
Now we can choose, f§ andp.
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Let &4, &, ..., be an independently and identically distributed s
guence of random variables wiH{g;) = u. Let

(k) = g“"l'('*gk.

Let g(0) denotes the moment-generating functiogothat is

g(0) = E[exp(0g;)].

According to thdarge deviations theorepunder mild regularity con-
ditions
P{ii(k) > 8} < e,

wherey(0) = 60 — log[g(0)].
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In our application we let

%--{1’ X; > — VAR,
Sl = = VAR
Let

FA)(k)=3§1+°l°<°+?§,k

be the estimate gb. Maximising+y(0) with respect td, we have

P{p(k) > 0} < exp(—kI'),

where
I'=0logd+(1-09)log(l—90)—-0dlogp-(1-90)log(l- p).

For example, lep = 0.95ando = 0.975 ThenI' = 0.008 For a
confidence ot = 0.99 we see that

1%
K = ——| =G
— log(c)
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In a stationary statistical environment — no problems.
In the case of significant non-stationarity, we update the histori
asset distribution. For example,

V
j —- Ri_9
\V

whereV is the historical volatility and/ is a recent volatility estimate,
or

~

R = EUECIR,

whereR; denotes the vector of historical returrid denotes the his-
torical covariance matrix for returns across a group of assets u
considerationC denotes the updated estimate.
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