Mälardalen University

http://www.mdh.se

Value at Risk and its estimation

Anatoliy A. Malyarenko

Department of Mathematics & Physics Mälardalen University SE-72 123 Västerås, Sweden email: amo@mdh.se

Definition

Let S(t) denotes the market value of some portfolio. The *Value at Risk* (VaR) of that portfolio at a given time horizon t and confidence level p is the loss in market value over the time horizon t that is exceeded with probability 1 - p, i.e.

$$P{S(t) - S(0) < - VAR} = 1 - p.$$

The Derivative Policy Group has proposed a standard that would set a time horizon t of two weeks and a confidence level p = 0.99.

Statistically speaking, this value at risk measure is the "0.01 critical value" of the probability distribution of changes in market value.

1

3/38

Figure 2: Simple VaR-calculator

Different approaches

Traditional. Identifying events and causes and linking them statistically using actuarial-based methods.

Different approaches

- Traditional. Identifying events and causes and linking them statistically using actuarial-based methods.
- Algorithmics. To model losses caused by rare events and unexpected failures in systems, people and environmental factors.

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.
- 3. Develop a model for the revaluation of each derivative for given changes in the underlying market prices and volatilities.

A recipe for estimating of VaR

- 1. Build a model for simulating changes in prices across all underlying markets over the VaR time horizon.
- 2. Build a data base of portfolio positions. Estimate the size of the "current" position in each instrument.
- 3. Develop a model for the revaluation of each derivative for given changes in the underlying market prices and volatilities.
- 4. Simulate the change in market value of the portfolio, for each scenario of the underlying market returns. Generate a sufficient number of scenarios to estimate VaR with the desired level of accuracy.

Example

There are **418** underlying assets covered by RiskMetrics on July **29**, **1996**. A portfolio of *plain-vanilla* options on these assets is simulated by Monte Carlo:

- Independently, any option is a European call with probability **0.5** and European put with the same probability.
- Independently, the time to expiration is 1 month with probability 0.4, 3 months with probability 0.3, 6 months with probability 0.2 and 1 year with probability 0.1.
- Independently, the ratio of exercise price to forward price is lognormally distributed with mean 1. Its logarithm has standard deviation 0.1.

Methods for estimating the VaR

- 1. **Actual**. Monte Carlo simulation of all underlying asset prices and computation of each option price for each scenario by an exact formula.
- 2. **Delta**. Monte Carlo simulation of all underlying asset prices and approximation of each option price for each scenario by a *delta-approximation* of its change in value.
- 3. **Gamma**. Monte Carlo simulation of all underlying asset prices and approximation of each option price for each scenario by the delta-gamma approximation $Y(\Delta, \Gamma)$ of its change in value.
- 4. Analytical-Gamma. The approximation c(p) $\sqrt{\text{Var}(Y(\Delta, \Gamma))}$, where c(p) is the p-critical value of the standard normal density.

9/38

Figure 3: Value at Risk of long option portfolio — plain-vanilla model

Figure 4: Value at Risk of long option portfolio — plain-vanilla model

4

H

4

П

Correlated jumps

Consider the so called jump-diffusion model 3, in that half of the variance of the annual return of each asset is associated with a jump, with an expected arrival rate of 1 jump per year. We have a more dramatic comparison of different methods.

Figure 5: Value at Risk for short option portfolio — jump-diffusion model

Figure 6: Value at Risk for short option portfolio — jump-diffusion model

Let R_t denotes the return of some underlying asset at day t. Then

$$R_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1},$$

where

$$\mu_t = \mathsf{E}\{R_{t+1}/\mathfrak{F}_t\},$$
 $\sigma_t^2 = \mathsf{Var}\{R_{t+1}/\mathfrak{F}_t\},$
 $\mathsf{E}\{\epsilon_{t+1}/\mathfrak{F}_t\} = 0,$
 $\mathsf{Var}\{\epsilon_{t+1}/\mathfrak{F}_t\} = 1.$

A model is called *plain-vanilla* if μ and σ are constant parameters, and ε_t are independent standard normal random variables (white noise). Experience shows that in practice distribution of tails is heavy.

Jump-diffusion model

$$R_t = R_0 \exp{\{\alpha t + X_t\}},$$

$$X_t = \beta W_t + \sum_{k=0}^{N(t)} v Z_k,$$

where W_t is a standard Wiener process and N(t) is the number of jumps that occur by time t. This is Poisson process with intensity λ . All jumps vZ_k are independent and normally distributed with mean zero and standard deviation v.

Figure 7: 2-Week 99%-VAR for underlying asset, one jump per year

Figure 8: 2-Week 99%-VAR for underlying asset, two jumps per year

Stochastic volatility

We will consider only Markovian models of the form

$$\sigma_t = F(\sigma_{t-1}, z_t, t),$$

where z_t is white noise.

In the model of *regime-switching volatility*, volatility behaves according to a finite-state Markov chain. A model on Fig. 9 illustrates *persistence*, i.e., relatively high (low) recent volatility implies a relatively high (low) forecast of volatility in the near future.

The model of log-auto-regressive volatility is given by

$$\log \sigma_t^2 = \alpha + \gamma \log \sigma_{t-1}^2 + \kappa z_t,$$

where α , γ and κ are constants. A value of γ near 0 implies low persistence, while a value near 1 implies high persistence.

Figure 9: Regime-switching volatility estimates for light crude oil

The GARCH (General AutoRegressive Conditional Heteroscedasticity model assumes that

$$\sigma_t^2 = \alpha + \beta (R_t - \mu)^2 + \gamma \sigma_{t-1}^2.$$

For example, estimated GARCH parameters associated with crude oil have maximum likelihood estimates given by

$$\alpha = 0.155, \quad \beta = 0.292, \quad \gamma = 0.724.$$

The cross-market inference can be accounted by the multivariate GARCH model, for example

$$\begin{pmatrix} \sigma_{a,t}^2 \\ \sigma_{ab,t}^2 \\ \sigma_{b,t}^2 \end{pmatrix} = \alpha + \beta \begin{pmatrix} R_{a,t}^2 \\ R_{a,t}R_{b,t} \\ R_{b,t}^2 \end{pmatrix} + \gamma \begin{pmatrix} \sigma_{a,t-1}^2 \\ \sigma_{ab,t-1}^2 \\ \sigma_{b,t-1}^2 \end{pmatrix}.$$

20/38

Kurtosis of return is shown for the following cases:

(a)
$$\sigma = 15\%$$
, $\lambda = 1.0$, $\nu = 10\%$; (b) $\sigma = 15\%$, $\lambda = 2.0$, $\nu = 5\%$

(c)
$$\sigma = 15\%$$
, $\lambda = 3.0$, $\nu = 3.33\%$; (d) plain-vanilla with $\sigma = 15\%$.

Figure 10: Term structure of kurtosis for the jump-diffusion model

99% critical value is shown for the following cases:

(a)
$$\sigma = 15\%$$
, $\lambda = 1.0$, $\nu = 10\%$; (b) $\sigma = 15\%$, $\lambda = 2.0$, $\nu = 5\%$

(c)
$$\sigma = 15\%$$
, $\lambda = 3.0$, $\nu = 3.33\%$; (d) plain-vanilla with $\sigma = 15\%$.

Figure 11: Term structure of **0.99** critical value of the jump-diffusion model

Figure 12: Term structure of volatility (Hang Seng Index — estimated)

Figure 13: Long-run kurtosis of stochastic volatility model

H

4

>

П

Figure 14: Estimated term structure of kurtosis for stochastic volatility

The historical volatility for returns R_t , r_{t+1} , ..., R_T is the usual estimate

$$\hat{\mathbf{\sigma}}_{t,T}^2 = \frac{1}{T-t} \sum_{s=t+1}^{T} (R_s - \hat{\mathbf{\mu}}_{t,T}),$$

where

$$\hat{\mu}_{t,T} = \frac{R_{t+1} + \cdots + R_T}{T - t}.$$

The constant volatility model can not be applied to essentially every major market, as shown on Fig. 15.

The Black-Scholes implied volatility $\sigma = \sigma^{BS}(C_t, P_t, \tau, K, r)$ is calculated numerically.

Figure 15: Rolling volatility for Taiwan equity index.

VaR calculations for derivatives

The delta approximation:

$$f(y + x) = f(y) + f'(y)x + o(x)$$
.

The delta-gamma approximation:

$$f(y + x) = f(y) + f'(y)x + \frac{1}{2}f''(y)x^2 + o(x^2).$$

Figure 16: The delta (first-order) approximation

Figure 17: Delta-gamma hedging, second order approximation

Figure 18: 2-Week loss on 20% out-of-money put (plain-vanilla returns)

t = 1 year to expiration

 $\sigma = 15\%$ r = 5.5%

Actual

Delta

Delta-Gamma

Figure 19: 2-Week loss on short **20**% out-of-money put (plain-vanilla returns)

Figure 20: 2-Week loss on short 20% out-of-money put (jump-diffusion)

Portfolio VaR

Let X_i denotes the difference between the i-th risk factor and its expected value. The total change in value for the entire book has the delta-gamma approximation:

$$Y(\Delta,\Gamma) = \sum_{j=1}^n \Delta_j X_j + \frac{1}{2} \sum_{j=1}^n \sum_{k=1}^n \Gamma_{jk} X_j X_k.$$

The portfolio variance is equal to

$$\begin{aligned} \mathsf{Var}(Y(\Delta,\Gamma)) &= \sum_{j,k} \Delta_j \Delta_k \, \mathsf{Cov}(X_j,X_k) + \sum_{i,j,k} \Delta_j \Gamma_{jk} \, \mathsf{Cov}(X_i,X_jX_k) \\ &+ \frac{1}{4} \sum_{i,j,k,l} \Gamma_{ij} \Gamma_{kl} \, \mathsf{Cov}(X_iX_j,X_kX_l). \end{aligned}$$

Back to methods

K

■

Simulating fat tailed distributions

Suppose one wants to simulate a random variable X of zero mean and unit variance with a given kurtosis. Let η be the Bernoully random variable:

$$P{\eta = 1} = p,$$
 $P{\eta = 0} = 1 - p.$

Let Z be the standard normal random variable independent on η . Define X as

$$X = \begin{cases} \alpha Z, & \eta = 1, \\ \beta Z, & \eta = 0. \end{cases}$$

Then we have $Var(X) = p\alpha^2 + (1-p)\beta^2$, $E(X^4) = 3(p\alpha^4 + (1-p)\beta^4)$. Now we can choose α , β and p.

How many scenarios is enough?

Let ξ_1, ξ_2, \ldots , be an independently and identically distributed sequence of random variables with $E(\xi_i) = \mu$. Let

$$\hat{\mu}(k) = \frac{\xi_1 + \cdots + \xi_k}{k}.$$

Let $g(\theta)$ denotes the moment-generating function of ξ_i , that is

$$g(\theta) = \mathsf{E}[\exp(\theta \xi_i)].$$

According to the *large deviations theorem*, under mild regularity conditions

$$P\{\hat{\mu}(k) \geq \delta\} \leq e^{-k\gamma(\theta)},$$

where $\gamma(\theta) = \delta\theta - \log[g(\theta)]$.

In our application we let

$$\xi_i = \begin{cases}
1, & X_i > -\text{VAR}, \\
0, & X_i \leq -\text{VAR}.
\end{cases}$$

Let

$$\hat{p}(k) = \frac{\xi_1 + \dots + \xi_k}{k}$$

be the estimate of p. Maximising $\gamma(\theta)$ with respect to θ , we have

$$\mathsf{P}\{\hat{p}(k) \geq \delta\} \leq \exp(-k\Gamma),$$

where

$$\Gamma = \delta \log \delta + (1 - \delta) \log(1 - \delta) - \delta \log p - (1 - \delta) \log(1 - p).$$

For example, let p=0.95 and $\delta=0.975$. Then $\Gamma=0.008$. For a confidence of c=0.99 we see that

$$k = -\frac{1}{\Gamma}\log(c) = 576.$$

Bootstrapped simulation from historical data

In a stationary statistical environment — no problems.

In the case of significant non-stationarity, we update the historical asset distribution. For example,

$$\hat{R}_i = R_i \frac{\hat{V}}{V},$$

where V is the historical volatility and \hat{V} is a recent volatility estimate, or

$$\hat{R}_t = \hat{C}^{1/2} C^{-1/2} R_t,$$

where R_t denotes the vector of historical returns, C denotes the historical covariance matrix for returns across a group of assets under consideration, \hat{C} denotes the updated estimate.

