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Definition
Let S(t) denotes the market value of some portfolio. TheValue at

Risk(VaR) of that portfolio at a given time horizont and confidence
level p is the loss in market value over the time horizont that is ex-
ceeded with probability1− p, i.e.

P{S(t) − S(0) < −VAR} = 1− p.

The Derivative Policy Group has proposed a standard that would set
a time horizont of two weeks and a confidence levelp = 0.99.

Statistically speaking, this value at risk measure is the “0.01critical
value” of the probability distribution of changes in market value.
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Figure 1: Value at Risk (DPG Standard)
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Figure 2: Simple VaR-calculator
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Different approaches
☞ Traditional . Identifying events and causes and linking them sta-

tistically using actuarial-based methods.
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Different approaches
☞ Traditional . Identifying events and causes and linking them sta-

tistically using actuarial-based methods.

☞ Algorithmics . To model losses caused by rare events and unex-
pected failures in systems, people and environmental factors.
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A recipe for estimating of VaR
1. Build a model for simulating changes in prices across all underly-

ing markets over the VaR time horizon.
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ing markets over the VaR time horizon.

2. Build a data base of portfolio positions. Estimate the size of the
“current” position in each instrument.
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3. Develop a model for the revaluation of each derivative for given
changes in the underlying market prices and volatilities.
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A recipe for estimating of VaR
1. Build a model for simulating changes in prices across all underly-

ing markets over the VaR time horizon.

2. Build a data base of portfolio positions. Estimate the size of the
“current” position in each instrument.

3. Develop a model for the revaluation of each derivative for given
changes in the underlying market prices and volatilities.

4. Simulate the change in market value of the portfolio, for each sce-
nario of the underlying market returns. Generate a sufficient num-
ber of scenarios to estimate VaR with the desired level of accuracy.
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Example
There are418underlying assets covered by RiskMetrics on July29,

1996. A portfolio of plain-vanillaoptions on these assets is simulated
by Monte Carlo:

☞ Independently, any option is a European call with probability0.5
and European put with the same probability.

☞ Independently, the time to expiration is1 month with probability
0.4, 3 months with probability0.3, 6 months with probability0.2
and1 year with probability0.1.

☞ Independently, the ratio of exercise price to forward price is log-
normally distributed with mean1. Its logarithm has standard de-
viation0.1.
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Methods for estimating the VaR
1. Actual. Monte Carlo simulation of all underlying asset prices and

computation of each option price for each scenario by an exact
formula.

2. Delta. Monte Carlo simulation of all underlying asset prices and
approximation of each option price for each scenario by adelta-
approximationof its change in value.

3. Gamma. Monte Carlo simulation of all underlying asset prices
and approximation of each option price for each scenario by the
delta-gamma approximationY(∆, Γ) of its change in value.

4. Analytical-Gamma. The approximationc(p)
√

Var(Y(∆, Γ)), where
c(p) is thep-critical value of the standard normal density.
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Figure 3: Value at Risk of long option portfolio — plain-vanilla model
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Figure 4: Value at Risk of long option portfolio — plain-vanilla model
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Correlated jumps

Consider the so called jump-diffusion model3, in that half of the
variance of the annual return of each asset is associated with a
jump, with an expected arrival rate of1 jump per year. We have a
more dramatic comparison of different methods.
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Figure 5: Value at Risk for short option portfolio — jump-diffusion model
3
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Figure 6:Value at Risk for short option portfolio — jump-diffusion model
3
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The basic model of return risk
Let Rt denotes the return of some underlying asset at dayt. Then

Rt+1 = µt + σtεt+1,

where
µt = E{Rt+1/Ft},

σ2
t = Var{Rt+1/Ft},

E{εt+1/Ft} = 0,

Var{εt+1/Ft} = 1.

A model is calledplain-vanilla if µ and σ are constant parame-
ters, andεt are independent standard normal random variables (white
noise). Experience shows that in practice distribution of tails is heavy.
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Jump-diffusion model

Rt = R0 exp{αt + Xt),

Xt = βWt +

N(t)∑
k=0

νZk,

whereWt is a standard Wiener process andN(t) is the number of
jumps that occur by timet. This is Poisson process with intensityλ.
All jumps νZk are independent and normally distributed with mean
zero and standard deviationν.
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Figure 7: 2-Week 99%-VAR for underlying asset, one jump per year
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Figure 8: 2-Week 99%-VAR for underlying asset, two jumps per year
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Stochastic volatility
We will consider only Markovian models of the form

σt = F(σt−1, zt, t),

wherezt is white noise.
In the model ofregime-switching volatility, volatility behaves ac-

cording to a finite-state Markov chain. A model on Fig. 9 illustrates
persistence, i.e., relatively high (low) recent volatility implies a rela-
tively high (low) forecast of volatility in the near future.

The model oflog-auto-regressive volatilityis given by

logσ2
t = α + γ logσ2

t−1
+ κzt,

whereα, γ andκ are constants. A value ofγ near0 implies low
persistence, while a value near1 implies high persistence.
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Figure 9: Regime-switching volatility estimates for light crude oil
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The GARCH (GeneralAutoRegressiveConditionalHeteroscedasticity)
model assumes that

σ2
t = α + β(Rt − µ)2 + γσ2

t−1
.

For example, estimated GARCH parameters associated with crude oil
have maximum likelihood estimates given by

α = 0.155, β = 0.292, γ = 0.724.

The cross-market inference can be accounted by the multivariate
GARCH model, for example

σ2
a,t

σ2
ab,t

σ2
b,t

 = α + β


R2
a,t

Ra,tRb,t

R2
b,t

 + γ

σ2

a,t−1

σ2
ab,t−1

σ2
b,t−1

 .



21/38

�

�

�

�

�

�

	
Figure 10: Term structure of kurtosis for the jump-diffusion model
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Figure 11: Term structure of0.99critical value of the jump-diffusion model
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Figure 12: Term structure of volatility (Hang Seng Index — estimated)
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Figure 13: Long-run kurtosis of stochastic volatility model
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Figure 14: Estimated term structure of kurtosis for stochastic volatility



26/38

�

�

�

�

�

�

	

Estimating current volatility
The historical volatility for returnsRt, r t+1, . . . , RT is the usual

estimate

σ̂2
t,T
=

1
T − t

T∑
s=t+1

(Rs − µ̂t,T),

where

µ̂t,T =
Rt+1 + · · · + RT

T − t
.

The constant volatility model can not be applied to essentially every
major market, as shown on Fig. 15.

TheBlack–Scholes implied volatilityσ = σBS(Ct, Pt, τ, K, r) is cal-
culated numerically.
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Figure 15:Rolling volatility for Taiwan equity index.
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VaR calculations for derivatives
The delta approximation:

f (y+ x) = f (y) + f ′(y)x + o(x).

The delta-gamma approximation:

f (y+ x) = f (y) + f ′(y)x +
1

2
f ′′(y)x2 + o(x2).
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Figure 16: The delta (first-order) approximation
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Figure 17: Delta-gamma hedging, second order approximation
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Figure 18: 2-Week loss on20% out-of-money put (plain-vanilla returns)
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Figure 19: 2-Week loss on short20% out-of-money put (plain-vanilla re-
turns)
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Figure 20:2-Week loss on short20% out-of-money put (jump-diffusion)
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Portfolio VaR
Let Xi denotes the difference between thei-th risk factor and its

expected value. The total change in value for the entire book has the
delta-gamma approximation:

Y(∆, Γ) =
n∑

j=1

∆ j X j +
1

2

n∑
j=1

n∑
k=1

Γ jk X j Xk.

The portfolio variance is equal to

Var(Y(∆, Γ)) =
∑
j,k

∆ j∆k Cov(X j, Xk) +
∑
i, j,k

∆ jΓ jk Cov(Xi, X j Xk)

+
1

4

∑
i, j,k,l

Γi jΓkl Cov(XiX j, XkXl).

Back to methods
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Simulating fat tailed distributions
Suppose one wants to simulate a random variableX of zero mean

and unit variance with a given kurtosis. Letη be the Bernoully random
variable:

P{η = 1} = p, P{η = 0} = 1− p.

Let Z be the standard normal random variable independent onη. De-
fine X as

X =

αZ, η = 1,

βZ, η = 0.

Then we haveVar(X) = pα2+ (1− p)β2, E(X4) = 3(pα4+ (1− p)β4).
Now we can chooseα, β andp.
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How many scenarios is enough?
Let ξ1, ξ2, . . . , be an independently and identically distributed se-

quence of random variables withE(ξi) = µ. Let

µ̂(k) =
ξ1 + · · · + ξk

k
.

Let g(θ) denotes the moment-generating function ofξi, that is

g(θ) = E[exp(θξi)].

According to thelarge deviations theorem, under mild regularity con-
ditions

P{µ̂(k) ≥ δ} ≤ e−kγ(θ),

whereγ(θ) = δθ − log[g(θ)].
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In our application we let

ξi =

1, Xi > −VAR ,

0, Xi ≤ −VAR .

Let

p̂(k) =
ξ1 + · · · + ξk

k
be the estimate ofp. Maximisingγ(θ) with respect toθ, we have

P{ p̂(k) ≥ δ} ≤ exp(−kΓ),

where

Γ = δ logδ + (1− δ) log(1− δ) − δ log p− (1− δ) log(1− p).

For example, letp = 0.95 andδ = 0.975. ThenΓ = 0.008. For a
confidence ofc = 0.99we see that

k = −
1
Γ

log(c) = 576.
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Bootstrapped simulation from historical data
In a stationary statistical environment — no problems.
In the case of significant non-stationarity, we update the historical

asset distribution. For example,

R̂i = Ri
V̂

V
,

whereV is the historical volatility and̂V is a recent volatility estimate,
or

R̂t = Ĉ1/2C−1/2Rt,

whereRt denotes the vector of historical returns,C denotes the his-
torical covariance matrix for returns across a group of assets under
consideration,̂C denotes the updated estimate.
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