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This review! of value at risk, or “VaR,” describes some of the basic issues involved
in measuring the market risk of a financial firm’s “book,” the list of positions in vari-
ous instruments that expose the firm to financial risk. While there are many sources
of financial risk, we concentrate here on market risk, meaning the risk of unexpected
changes in prices or rates. Credit risk should be viewed as one component of market
risk. We nevertheless focus narrowly here on the market risk associated with changes
in the prices or rates of underlying traded instruments over short time horizons. This
would include, for example, the risk of changes in the spreads of publicly traded corpo-

rate and sovereign bonds, but would not include the risk of default of a counterparty on

IDarrell Duffie and Jun Pan are at The Graduate School of Business, Stanford University, Stanford
CA 94305-5015, USA. Telephone: 415-723-1976. Our email addresses are duffie@baht.stanford.edu
and junpan@ecu.stanford.edu, respectively. Please do not copy without permission of the authors.
This review owes much in its design and contents to many conversations with Ken Froot of Harvard
Business School, Joe Langsam of Morgan Stanley, and Ken Singleton of Stanford University. They
should not be held responsible for errors, and our opinions do not necessarily coincide. We are also
grateful for the editorial guidance of Stephen Figlewski and financial support from the Financial Re-
search Initiative at the Graduate School of Business, Stanford University. We are grateful for research
assistance by Yaroslaw Bazaily, Qiang Dai, Eugene Demler, Mark Ferguson, and Tom Varner, and
for conversations with Mark Williams and Wei Shi of Bank of America; Jim Cogill, David Dougherty,
Anurag Saksena, Dieter Dorp, and Fred Shin of The Royal Bank of Canada; Vince Kaminsky and
Matthew Verghese of Enron Capital and Trade Resources; Robert Litterman of Goldman Sachs; Andy
Morton and Dexter Senft of Lehman Brothers; Steve Benardete, Robin Brenner, Steve Brauer, Adam
Duff, Craig Gustaffson, Joe Langsam, and Patrick De Saint-Aignan of Morgan Stanley and Company;
Matt Page of Susquehanna Investment Group; Dan Mudge of Banker’s Trust; Arturo Estrella of The
Federal Reserve Bank of New York; and Peter Glynn of Stanford University.



a long-term swap contract. The measurement and management of counterparty default
risk involves a range of different modeling issues, and deserves its own treatment.?

Other forms of financial risk include liquidity risk (the risk of unexpectedly large and
stressful negative cash flow over a short period) and operational risk, which includes
the risk of fraud, trading errors, legal and regulatory risk, and so on. These forms of
risk are considered only briefly.

This article is designed to give a fairly broad and accessible overview of VaR. We
make no claims of novel research results, and we do not include a comprehensive survey
of the available literature on value at risk, which is large and growing quickly.®> While
we discuss some of the econometric modeling required to estimate VaR, there is no

systematic attempt here to survey the associated empirical evidence.

1 Background

In managing market risk, there are related objectives:
1. Measure the extent of exposure by trade, profit center, and in various aggregates.
2. Charge each position a cost of capital appropriate to its market value and risk.

3. Allocate capital, risk limits, and other scarce resources such as accounting capital

to profit centers. (This is almost the same as 2.)

4. Provide information on the firm’s financial integrity and risk-management tech-
nology to contractual counterparties, regulators, auditors, rating agencies, the
financial press, and others whose knowledge might improve the firm’s terms of

trade, or regulatory treatment and compliance.

5. Evaluate and improve the performance of profit centers, in light of the risks taken

to achieve profits.

6. Protect the firm from financial distress costs.

2An example of an approach that measures market risk, including credit risk, is described in

Jamshidian and Zhu [1997].
30ther surveys of the topic include Jackson, Maude, and Perraudin [1995], Linsmeier and Pearson

[1996], Mori, Ohsawa, and Shimizu [1996], Littlejohn and Fry [1996] and Phelan [1995]. For empirical
reviews of VaR models, see Hendricks [1995], Beder [1995], and Marshall and Siegel [1996].



These objectives serve the welfare of stakeholders in the firm, including equity owners,
employees, pension-holders, and others.

We envision a financial firm operating as a collection of profit centers, each running
its own book of positions in a defined market. These profit centers could be classi-
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fied, for example, as “equity,” “commodity,” “fixed income,” “foreign exchange,” and
so on, and perhaps further broken down within each of these groups. Of course, a
single position can expose the firm to risks associated with several of these markets
simultaneously. Correlations among risks argue for a unified perspective. On the other
hand, the needs to assign narrow trading responsibilities and to measure performance
and profitability by area of responsibility suggest some form of classification and risk
analysis for each position. We will be reviewing methods to accomplish these tasks.*
Recent proposals for the disclosure of financial risk call for firm-wide measures of
risk. A standard benchmark is the value at risk (“VaR”). For a given time horizon t
and confidence level p, the value at risk is the loss in market value over the time horizon
t that is exceeded with probability 1 — p. For example, the Derivatives Policy Group®
has proposed a standard for over-the-counter derivatives broker-dealer reports to the
Securities and Exchange Commission that would set a time horizon ¢ of two weeks and
a confidence level p of 99 percent, as illustrated in Figure 1. Statistically speaking,
this value-at-risk measure is the “0.01 critical value” of the probability distribution of
changes in market value. The Bank for International Settlements (BIS) has set p to
99 percent and ¢ to 10 days for purposes of measuring the adequacy® of bank capital,

although” BIS would allow limited use of the benefits of statistical diversification across

4Models of risk-management decision making for financial firms can be found in Froot and Stein
[1995] and Merton and Perold [1993]. The Global Derivatives Study Group, G30 [1993] reviews
practices and procedures, and provides a follow up survey of industry practice in Group of Thirty
[1994].

®See Derivatives Policy Group [1995].

6For more on capital adequacy and VaR, see Dimson [1995], Jackson, Maude, and Perraudin [1995],

and Kupiec and O’Brien [1995].
"See the December 12, 1996 communiqué of the Bank for International Settlements, “announcing

an amendment to the Basle Committee on Banking Supervision,” from BIS Review, Number 209,
December 12, 1995, Basle, Switzerland. See also the draft ISDA response to the Basle market risk
proposal made in April, 1995, in a memo from Susan Hinko of ISDA to the Basle Market Risk Task
Force, July 14, 1995. The ISDA response proposes to allow more flexibility in terms of measurement,
but require that firms disclose a comparison between the value-at-risk estimated at the beginning
of each period, and the ultimately realized marks to market. This would presumably lead to some
discipline regarding choice of methodology. Incidentally, VaR. is not the difference between the expected



different positions, and factors up the estimated 0.01 critical value by a multiple of 3.
Many firms use an overnight value-at-risk measure for internal purposes, as opposed to
the two-week standard that is commonly requested for disclosure to regulators, and the
99-percent confidence level is far from uniformly adopted. For example, J.P. Morgan
discloses its daily VaR at the 95-percent level. Bankers Trust discloses its daily VaR
at the 99-percent level.

One expects, in a stationary environment for risk, that a 99-percent 2-week value-at-
risk is a 2-week loss that will be exceeded roughly once every four years. Clearly, then,
given the over-riding goal of protecting the franchise value of the firm, one should not
treat one’s measure of value-at-risk, even if accurate, as the level of capital necessary
to sustain the firm’s risk. Value at risk is merely a benchmark for relative judgements,
such as the risk of one desk relative to another, the risk of one portfolio relative to
another, the relative impact on risk of a given trade, the modeled risk relative to the
historical experience of marks to market, the risk of one volatility environment relative
to another, and so on. Even if accurate, comparisons such as these are specific to the
time horizon and the confidence level associated with the value-at-risk standard chosen.

Whether the VaR of a firm’s portfolio of positions is a relevant measure of the
risk of financial distress over a short time period depends in part on the liquidity of
the portfolio of positions, and the risk of adverse extreme net cash outflows, or of
severe disruptions in market liquidity. In such adverse scenarios, the firm may suffer
costs that include margins on unanticipated short-term financing, opportunity costs
of forgone “profitable” trades, forced balance-sheet reductions, and the market-impact
costs of initiating trades at highly unfavorable spreads. Whether the net effect actually
threatens the ability of the firm to continue to operate profitably depends in part on
the firm’s net capital. Value at risk, coupled with some measure of cash-flow at risk,® is
relevant in this setting because it measures the extent of potential forced reductions of
the firm’s capital over short time periods, at some confidence level. Clearly, however,
VaR captures only one aspect of market risk, and is too narrowly defined to be used
on its own as a sufficient measure of capital adequacy.

In order to measure VaR, one relies on

value and the 0.01-critical value, but rather the difference between the current portfolio value and the
0.01 critical value at the specified time horizon. To the error tolerance of current modeling techniques,

and for short time horizons, there is not much difference in practice.
8By “cash-flow at risk” we mean a “worst-case”, say 0.99 critical value, of net “cash” outflow over

the relevant time horizon.



Change in Market VValue
Over 2 Weeks

Likelihood

Value at
Risk —>

0

Figure 1: Value at Risk (DPG Standard)

1. a model of random changes in the prices of the underlying instruments (equity

indices, interest rates, foreign exchange rates, and so on).

2. amodel for computing the sensitivity of the prices of derivatives to the underlying

prices.

In principle, key elements of these two basic sets of models are typically already
in place for the purposes of pricing and hedging derivatives. One approach to market
risk measurement is to integrate these models across the trading desks, and add the
additional elements necessary for measuring risks of various kinds. Given the difficulty
of integrating systems from diverse trading environments, however, a more common
approach is a unified and independent risk-management system. In any case, the chal-
lenges are many, and include data, theoretical and empirical models, and computational
methods.

The next section presents models for price risk in the underlying markets. The

measurement, of market risk for derivatives and derivative portfolios are then treated



in Sections 3 through 5.
As motivation of the remainder, the reader should think in terms of the following

broadly defined recipe for estimating VaR:

1. Build a model for simulating changes in prices across all underlying markets,
and perhaps changes in volatilities as well, over the VaR time horizon. The
model could be a parameterized statistical model, for example a jump-diffusion
model based on given parameters for volatilities, correlations, and tail-fatness
parameters such as kurtosis. Alternatively, the model could be a “bootstrap” of

historical returns, perhaps “refreshed” by recent volatility estimates.

2. Build a data-base of portfolio positions, including the contractual definitions of
each derivative. Estimate the size of the “current” position in each instrument
(and perhaps a model for changes in position size over the VaR, time horizon, as

considered in Section 2).

3. Develop a model for the revaluation of each derivative for given changes in the un-
derlying market prices (and volatilities). On a derivative-by-derivative basis, the
revaluation model could be an explicit pricing formula, a delta-based (first-order
linear) approximation, a second-order (delta-and-gamma based) approximation,
or an analytical approximation of a pricing formula that is “splined” for VaR

purposes from several numerically-computed prices.

4. Simulate the change in market value of the portfolio, for each scenario of the un-
derlying market returns. Independently generate a sufficient number of scenarios
to estimate the desired critical values of the profit-and-loss distribution with the

desired level of accuracy.

We will also consider, in Section 4, the accuracy of shortcut VaR approximation meth-
ods based on multiplication of an analytically estimated portfolio standard deviation
by some scaling factor (such as 2.33 for the 0.01 critical value under an assumption of

normality).

2 Price Risk

This section reviews basic models of underlying price risk. Key issues are “fat tails”

and the behavior and estimation of volatilities and correlations.



2.1 The Basic Model of Return Risk

We begin by modeling the daily returns Ry, Rs, ... on some underlying asset, say on a

continuously-compounding basis. We can always write

Rt+1 = WU + Op€41, (21)
where

it is the expectation of the return R;,, conditional on the information available at
day ¢. (In some cases, we measure instead the “excess” expected return, that is,

the extent to which the expected return exceeds the overnight borrowing rate.)

oy is the standard deviation of R;.;, conditional on the information available at

time t.

€11 18 a “shock” with a conditional mean of zero and a conditional standard deviation

of one.

The wvolatility of the asset is the annualized standard deviation of return. The volatility
at day t is therefore y/no;, where n is the number of trading days per year. (In
general, the annualized volatility over a period of T' days is \/Tﬁ times the standard
deviation of the total return Ry + --- + Ry over the T-day period.) “Stochastic
volatility” simply means randomly changing volatility. Models for stochastic volatility
are considered below.

One sometimes assumes that the shocks €, €9, ... are statistically independent and
have the same probability distribution, denoted “iid”, but both of these assumptions
are questionable for most major markets.

A plain-vanilla model of returns is one in which x4 and o are constant parameters,
and in which the shocks are “white noise,” that is, itd and normally distributed. This

is the standard benchmark model from which we will consider deviations.

2.2 Risk-Neutral Versus Actual Value at Risk

Derivative pricing models are based on the idea that there is a way to simulate returns
so that the price of a security is the expected discounted cash flow paid by the security.
This distorted price behavior is called “risk-neutral.” The fact that this risk-neutral



pricing approach is consistent with efficient capital markets? does not mean that in-
vestors are risk-neutral. Indeed the actual risk represented by a position typically
differs from that represented in risk-neutral models.

For purposes of measuring value-at-risk at short time horizons such as a few days
or weeks, however, the distinction between risk-neutral and actual price behavior turns
out to be negligible for most markets. (The exceptions are markets with extremely
volatile returns or severe price jumps.) This means that one can draw a significant
amount of information for risk-measurement purposes from one’s derivative pricing
models, provided they are correct. Because this proviso is such a significant one, many
firms do not in fact draw much risk-measurement information about the price behavior
of underlying markets from their risk-neutral derivative pricing models. Rather, it is
not unusual to rely on historical price data, perhaps filtered by some sort of statistical
procedure. Option-implied volatilities are sometimes used to replace historical volatili-
ties, but the goal of standard risk-measurement procedures that are independent of the
influence (benign or otherwise) of the current thinking of option traders has sometimes
ruled out heavy reliance on derivative-implied parameters. We shall have more to say
about option-implied volatility later in this section.

The distinction between risk-neutral and actual price behavior becomes increasingly
important over longer and longer time horizons. This can be important for measuring
the credit exposure to default by a counterparty. One is interested in the actual,
not risk-neutral, probability distribution of the market value of the position with the
counterparty. For that reason alone, if not also for measuring the exposure of the firm
to long-term proprietary investments, it may be valuable to have models of price risk

that are not derived solely from the risk-neutral pricing of derivatives.

2.3 Fat Tails

Figure 2 shows the probability densities of two alternative shocks. The “thinner tailed”
of the two is that of a normally distributed random variable. Even though the fatter
tailed shock is calibrated to the same standard deviation, it implies a larger overnight
VaR at high confidence levels. A standard measure of tail-fatness is kurtosis, which is
E(S}), the expected fourth power of the shock. That means that kurtosis estimates

are highly sensitive to extremely large returns! For example, while the kurtosis of

9See Harrison and Kreps [1979].
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a normally distributed shock is 3, S&P 500 daily returns for 1986 to 1996 have an
extremely high sample kurtosis of 111, in large measure due to the exceptional returns
associated with the market “crash” of October, 1987. The “Black-Monday” return
of this crash represents a move of roughly 20 to 25 standard deviations, relative to
conventional measures of volatility just prior to the crash!

If one is concerned exclusively with measuring the VaR of direct exposures to the
underlying market (as opposed to certain non-linear option exposures), then a more
pertinent measure of tail fatness is the number of standard deviations represented by
the associated critical values of the return distribution. For example, the 0.01 critical
value of the standard normal is approximately 2.33 standard deviations from the mean.
By this measure, S-and-P 500 returns are not particularly fat-tailed at the 0.01 level.
The 0.01 critical value for S-and-P 500 historical returns for 1986-96 is approximately
2.49 standard deviations from the mean. The 0.99 “right-tail” critical value, which
is the relevant statistic for the value at risk of short positions, is only 2.25 standard
deviations from the mean. As shown in Figure 3, the 0.05 and 0.95 critical values
of S&P 500 returns are in fact closer to their means than would be suggested by
the normal distribution. One can also can see that S&P 500 returns have negative
skewness, meaning roughly that large negative returns are more common than large
positive returns.!?

Appendix F provides, for comparison, sample statistics such as kurtosis and tail
critical values for returns in a selection of equity, foreign exchanges, and commodity
markets. For many markets, return shocks have fatter than normal tails, measured
either by kurtosis or tail critical values at typical confidence levels. Figures 4 and
5 show that many typical underlying returns have fat tails, both right and left, at
both daily and monthly time horizons. For the markets included!! in Figures 4 and 5,
left tails are typically fatter at the 99% confidence level, showing a predominance of
negative skewness (especially for equities).

Fat tails can arise through different kinds of models, many of which can be explained

10Gkewness is the expected third power of shocks.
" The markets shown are those for equities, foreign currencies, and commodities shown in the table

of sample return statistics in Appenidx F, as well as a selection of interest rates made up of: US
3-month LIBOR, US 2-year Treasury, US 30-year Treasury, UK 3-month Bank Bills, UK overnight
discount, German Mark 3-month rate, German Mark 5-year rate, French Franc 1-month rate, Swedish
discount rate, Yen 1-month rate, and Yen 1l-year rate. Changes in log rates are used as a proxy for

returns, which is not unreasonable for short time periods provided there are not jumps.

10



Frequency

S&P 500
Start Date: 1/1/86
End Date: 711/96

Std. Dev: 15.91%

Skewness (N = 0): -4.81

Kurtosis (N = 3): 110.7

1% (N = -2.33): -2.49

5% (N =-1.65): -1.4

95% (N = 1.65): 1.33

99% (N = 2.33): 2.25

Standard Deviations from Mean

Source: Datastream
Daily Excess Returns, 10-Year Basis

Plotted are the standard normal density (dashed line) and a fre-
quency plot (as smoothed by the default spline supplied with Ex-
cel 3.0) of S&P 500 daily returns divided by the sample standard
deviation of daily returns, for 1986-96.

Figure 3: Historical Distribution of S-and-P 500 Return Shocks
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with the notion of “mixtures of normals.” The idea is that if one draws at random
the variance that will be used to generate normal returns, then the overall result is fat
tails.!'? For example, the fat-tailed density plotted in Figure 2 is that of a t-distribution,
which is a mixture of normals in which the standard deviation of the normal is drawn
at random from the inverted gamma-2 distribution.

While there are many possible theoretical sources of fat tails, we will be emphasizing
two in particular: “jumps,” meaning significant unexpected discontinuous changes in
prices, and “stochastic volatility,” meaning volatility that changes at random over time,

usually with some persistence.

2.4 Jump-Diffusions

A recipe for drawing fat-tailed returns by mixing two normals is given in Appendix A.
This recipe is consistent (for short time periods) with the so-called jump-diffusion
model, whose impact on value-at-risk measurement is illustrated in Figure 6, which
shows plots of the left tails of density functions for the price in two weeks of $100 in
current market value of the underlying asset, for two alternative models of price risk.
Both models have iid shocks, a constant mean return, and a constant volatility o of
15%. One of the models is plain vanilla (normal shocks). The price of the underlying
asset therefore has a log-normal density, whose left tail is plotted in Figure 6. The
other model is a jump-diffusion, which differs from the plain-vanilla model only in the
distribution of shocks. For the jump-diffusion model, with an expected frequency of
once per year, the daily return shock is “jumped” by adding an independent normal
random variable with a standard deviation of ¥ = 10%. The jump arrivals process is a
classical “Poisson,” independent of past shocks. The jump standard deviation of 10%
is equivalent in risk to that of a plain-vanilla daily return with an annual volatility
of 158%. Because the plain-vanilla and jump-diffusion models are calibrated to have
the same annual volatility, and because of the relatively low expected frequency of
jumps, the two models are associated with roughly the same 2-week 99% value-at-risk
measures. The jump-diffusion VaR is slightly larger, at $6.61, than the plain-vanilla
VaR of $6.45. The major implication of the jump-diffusion model for extreme loss shows
up much farther out in the tail. For the jump-diffusion setting illustrated in Figure 6,

one can calculate that with an expected frequency A of roughly once every 140 years, one

12For early models of this, see Clark [1973].

14



will lose overnight at least one quarter of the value of one’s position. In the comparison
plain-vanilla model, one would expect to wait far longer than the age of the universe

t.'3 Appendix F

to lose as much as one quarter of the value of one’s position overnigh
shows that there have been numerous daily returns during 1986-1996, across many
markets, of at least 5 standard deviations in size. Under the plain-vanilla model, a
b-standard-deviation return is expected less than once per million days. FEven 10-
standard-deviation moves have occurred in several markets during this 10-year period,

but are expected in the plain-vanilla-model less than once every 10?3 days!

o=15%
| |- - Plain-Vanilla v =10% 4
— Jump-Diffusion A = 1peryear

Z
g L |
o)
[
Z y
=1 /
= T VaR = § 6.45 (Plain-Vanilla) / 1
%3 = $ 6.61 (Jump-Diffusion) !
i
A L i

-1 -10 -9 -8 -7 —6 -5 —4 -3 -2 -1
Change in Value ($) for a $100 Position

Figure 6: 2-Week 99%-VaR for Underlying Asset

Figure 7 compares the same plain-vanilla model to a jump-diffusion with 2 jumps
per year, with each jump having a standard deviation of 5 percent. Again, the plain
vanilla and jump-diffusion models are calibrated to the same volatility. While the 99%
2-week VaR for the underlying asset is about the same in the plain-vanilla and jump-

diffusion models, the difference is somewhat larger than that shown in Figure 6. The

13The expected frequency of an overnight loss of this magnitude in the plain-vanilla model was

verbally related to us by Mark Rubinstein.
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—— Jump-Diffusion A=2

.45 (Plain-Vanilla)

i VaR = § 6.4
$ 6.82 (Jump-Diffusion)
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Change in Value ($) for a $100 Position

Figure 7: 2-Week 99%-VaR for Underlying Asset
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implications of the jump-diffusion model for the value at risk of option positions can

be more dramatic, as we shall see in Section 3.

2.5 Stochastic Volatility

The second major source of fat tails is stochastic volatility, meaning that the volatility
level o, changes over time at random, with persistence. By persistence, we mean that
relatively high recent volatility implies a relatively high forecast of volatility in the near
future. Likewise, with persistence, recent low volatility is associated with a prediction
of lower volatility in the near future. One can think of the jump-diffusion model
described above as approximated in a discrete-time setting by an extreme version of a
stochastic volatility model in which the volatility is random, but with no persistence;
that is, each day’s volatility is drawn at random independently of the last, as in the
example described in Appendix A.

Even if returns are actually drawn each day with thin tails, say normally distributed,
given knowledge of that day’s volatility, we would expect to see fat tails in a frequency
plot of un-normalized daily returns, because returns for different days are generated
with different volatilities, the usual “mixing-of-normals” story. If this were indeed the
cause of the fat tails that we see in Figures 4 and 5, we would expect to see the tail
fatness in those plots to be reduced if we normalized each day’s return by an estimate
of the level of the volatility o; for that day.

The effect of stochastic volatility on left tail fatness and negative skewness could be
magnified over time by negative correlation between returns and changes in volatility,
which is apparent, for example, in certain'* equity markets.

We will devote some attention to stochastic volatility models, not only because of
the issue of fat tails, but also in order to address the estimation of current volatility, a
key input to VaR models.

While one can envision a model for stochastic volatility in which the current level
of volatility depends in a non-trivial way on the entire path that volatility has taken
in the past, we will illustrate only Markovian stochastic volatility models, those of the

form:
Oy = F(O'tfl, Zt,t), (22)

4For the empirical evidence in equity markets of stochastic volatility and correlation of volatility
and returns, see for example Bekaert and Wu [1997].
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where F' is some function in three variables and zi, 25, ... is white noise. The term
“Markovian” means that the probability distribution of the next period’s level of volatil-
ity depends only on the current level of volatility, and not otherwise on the path taken
by volatility. This form of volatility also rules out, for reasons of simplification, depen-
dence of the distribution of changes in volatility on other possible state variables, such
as volatility in related markets and macro-economic factors, which one might actually
wish to include in practice.

In principle, we would allow correlation between the volatility shock z; and the
return shock €; of (2.1), and this has important implications for risk management. For
example, negative correlation implies negative skewness in the distribution of returns.
So that the VaR of a long position could be more than the VaR of a short position of
equal size.

There are several basic classes of the Markovian stochastic volatility model (2.2).
Each of these classes has its own advantages, in terms of both empirical reasonability
and tractability in an option-pricing framework. The latter is particularly important,
since option valuation models may, under certain conditions, provide volatility esti-
mates implicitly, as in the Black-Scholes setting. We will next consider some relatively

simple examples.

2.5.1 Regime-Switching Volatility

A “regime-switching” model is one in which volatility behaves according to a finite-state
Markov chain. For example, if one takes two possible levels, v, and vy, for volatility in

a given period, we can take the transition probabilities of o; between v, and v, to be

( Haa Hab )
II = .
Iy, 1Ly

For example, if o, = v,, then the conditional probability'® that o,.; = vy is Tlg.

given by a matrix

An example, with parameters estimated'® from oil prices, is illustrated in Figure 8.

One may want to allow for more than 2 states in practice. The diagonal probabilities

15This fits into our general Markovian template (2.2) by taking F'(v,, z,t) = v, for all z < z*, where
z¥ is chosen so that the probability that z; < 2 is I, by taking F'(v,,z,t) = v, whenever z > z¥,
and likewise for F'(vy, 2, t).

16This and the other energy volatility estimates reported below are from Duffie and Gray [1995].

For more extensive treatment of regime-switching models of volatility, see Gray [1993] and Hamilton
[1990].
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Figure 8: Regime-Switching Volatility Estimates for Light Crude Oil

IT,, and Il of the regime-switching model can be treated as measures of volatility

persistence.

2.5.2 Auto-Regressive Volatility

A standard Markovian model of stochastic volatility is given by the log-auto-regressive
model:

logo? = a+vylogo? | + Kz, (2.3)
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where «, 7y, and & are constants.'” Volatility persistence is captured by the coefficient
v. A value of 7 near zero implies low persistence, while a value near 1 implies high
persistence. We always assume that —1 < v < 1, for otherwise volatility is “explosive.”

The term structure of volatility is the schedule of annualized volatility of return,
by the time-horizon over which the return is calculated. For the stochastic volatility
model (2.2), in the case of independent shocks to returns and volatility,'® the term

structure of conditional volatility is

\/Vart(Rt+1 + -+ RT)

T = T—1t
62 T—t—-1 ok _a/yk: HQ,-YQk
_ 7 _ 2.4
T—t,goat TP\T— T201-93)) (24)

where

2 a +1 K2
g = e€eX -
P\1—5 T21 -

is the steady-state'® mean of o7.

For the case of non-zero correlation between volatility and shocks, one can obtain
explicit calculations for the term structure of volatility in the case of normally dis-
tributed shocks, but the calculation is more complicated.?’ Allowing this correlation

is empirically quite important.

"From (2.1), with constant mean returns, we may write log(R; — u)? = logo?_; + log S?. Harvey,
Ruiz, and Shepard [1992] and Harvey and Shepard [1993] have shown that one can estimate the
log auto-regressive model coefficients by quasi-maximum likelihood, which is indeed consistent under
certain technical restrictions. Taking log S? to be normally distributed, this would be a standard
setup for Kalman filtering of volatility. In such a setting, we would have access to standard methods
for estimating volatility given the coefficients «, 7, and x, and for estimating these coefficients by
maximum likelihood. See, for example, Brockwell and Davis [1991] for the consistency of the estimators
in this setting.

18This calculation is repeated here from Heynen and Kat [1993].

YThat is, 7> = lim; E(0?).

20Kalman filtering can be applied in full generality here to get the joint distribution of return shocks
conditional on the path of volatility. With joint normality, all second moments of the conditional dis-
tribution of return shocks are deterministic. At this point, one applies the law of iterated expectations
to get the term volatility as a linear combination of the second moments of the log-normal stochastic
volatilities, which is also explicit. The same calculation leads to an analytic solution for option prices
in this setting, extending the Hull-White model to the case of volatility that is not independent of
shock returns. See Willard [1996].
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2.5.3 Garch

Many modelers have turned to ARCH (autoregressive conditional heteroscedasticity)
models of volatility proposed by Engle [1982], and the related GARCH and EGARCH
formulations, because they capture volatility persistence in simple and flexible ways.
For example, the GARCH?' model of stochastic volatility proposed by Bollerslev [1986]
assumes that

o7 = o+ B(Ry — p)’ + 074,

where?? o, 3, and v are positive constants. Here, 7 is the key persistence parameter: A
high v implies a high carryover effect of past to future volatility, while a low v implies
a heavily damped dependence on past volatility.

One can estimate the parameters o, (3, and v from returns data. For example,
estimated GARCH parameters associated with crude oil have maximum likelihood
estimates (with ¢ statistics in parentheses) from recent data®® given by

02 = 0.155 + 0.292 (R, — p)* + 0.724 o2 ,.
" (3.95) (9.31) (Be = b (30.1)

The estimated persistence parameter for daily volatility is 0.724.

Under the “non-explosivity” condition § = 3 + v < 1, the steady-state volatility?*
is 7 = y/a/(1 — J). One can show that the term structure of volatility associated with
the GARCH model is

1—o7—t

Ty = \/(T —t)o% + (07,1 — 62)ﬁ
A potential disadvantage of the GARCH model, noting that the impact of the
current return R, on o7, is quadratic, is that a day of exceptionally large absolute
returns can cause instability in parameter estimation, and from this “overshooting” in
forecasted volatility. For example, with any reasonable degree of persistence, a market
crash or “jump” could imply an inappropriately sustained major impact on forecasted

volatility.2®

21 This is known more precisely as the “GARCH(1,1)” model. For specifics and generalizations, as

well as a review of the ARCH literature in finance, see Bollerslev, Chou, and Kroner [1992].

22The GARCH model is in the class (2.2) of Markov models since we can write o; = F(0¢_1,2;) =
[+ Bo? 2 + vo? |]'/?, where z; = ¢ is white noise.

23See Duffie and Gray (1995).

24This is limr_, E(07). The non-explosivity condition fails for the parameter estimates given for

crude oil.
25Sakata and White [1996] have therefore suggested “high-breakdown point” estimators in this sort
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2.5.4 Egarch

A potentially more flexible model of persistence is the exponential Garch, or “EGARCH”
model proposed by Nelson [1991], which takes the form?®

R, — R, — 2
1ogo?=a+vloga?1+ﬁl<t “>+62<‘ : “‘— —>.

Ot—1 Ot—1 ™

The term structure of volatility implied by the EGARCH model is

T—t—1 .
_ 2y
VT = Z Ckat )
k=0

where C}, is a relatively complicated constant given, for example, by Heynen and Kat
[1993]. Nelson [1990] has shown that the EGARCH model and the log-auto-regressive
model (2.2) converge with decreasing period length, and appropriate normalization of
coefficients, to the same model.

2.5.5 Cross-Market Garch

One can often infer volatility-related information for one market from changes in the
volatility of returns in another. A simple model that accounts for cross-market inference
is the multivariate GARCH model. For example, a simple 2-market version of this

model takes

2 2 2
Ua,t Ra,t Ua,t—l
Oapg | =+ 0| RoRosr | +7 | Oav—1 |
2 2 2
Opt Ry, Opt—1

where
e R, is the return in market a at time ¢
e IRy, is the return in market b at time ¢
® 0,1 is the conditional volatility of R,
e 0,1 is the conditional volatility of I,

® 04+ 1 is the conditional covariance between R, and I,

of environment, and give example estimates for S&P 500 returns.
26The term /2/ is equal to Ei[(|(Rt — p)/ot—1]]-
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e « is a vector with 3 elements

e (is a 3 x 3 matrix

e v is a3 X 3 matrix.

With # and ~ assumed to be diagonal for simplicity, a maximum-likelihood estimate

for the bivariate GARCH model for heating oil (a) and crude oil (b) is given by

o2, ] [ 23963 | [ .15663 0 0 R,
(1.9830) (4.8101)
Gane | _ | 11408 0 1.3227 0 Ra, iRy
| (1.6360) (2.5760)
iy 083939 0 0 13509 RZ,
(1.5507) (2.0763)
[ 81675 0 o [,
(19.076)
L0 84643 0 Cap, o1
(17.969) )
0 0 86455 | | of 1,
(18.609)

with ¢-statistics shown in parentheses.
One notes the differences between the univariate and multivariate GARCH param-
eters for crude oil (alone). In principle, cross-market information can only improve the

quality of the model if the multivariate model is appropriate.

2.6 Term Structures of Tail-Fatness and Volatility

Like volatility, tail-fatness, as measured for example by kurtosis, has a term structure
according to the time horizon over which the total return is calculated. In the plain-
vanilla model, the term structures of both volatility and tail-fatness are flat. In general,
the term structures of tail-fatness and volatility have shapes that depend markedly on

the source of tail-fatness. Here are several cases to consider.
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1. Jumps Consider the case of constant mean and volatility, and #id shocks with
fat tails. (This could be, for example, a jump-diffusion setting.) In this case,
the term structure of volatility is flat. As illustrated in Figure 9, the central
limit theorem tells us that averaging iid variables leads to a normally distributed
variable.?” We therefore expect that the term structure of tail fatness for the
jump-diffusion model underlying Figure 6 to be declining, when measured by
kurtosis. This is borne out in Figure 10. For example, while the 1986-96 sample
daily return kurtosis for the S&P 500 index is 111, at the monthly level, the
sample kurtosis for this period is 16.5 (estimated on an overlapping basis). If we
were to measure tail fatness by the number of standard deviations to a particular
critical value, such as the 0.01 critical value, however, the term structure of tail
fatness would first increase and then eventually decline to the normal level of
2.326, as illustrated in Figure 11. At the 0.01 critical level, for typical market
parameters such as those shown in Figures 6 and 7, the likelihood of a jump on
a given day is smaller than 0.01, so the impact of jumps on critical values of the
distribution shows up much farther out in the tail than at the 0.01 critical value.
At an expected frequency of 2 jumps per year, we would expect the 0.01-critical

value to be more seriously affected by jumps at a time horizon of a few weeks.

2. Stochastic Volatility Suppose we have constant mean returns and #d normal
shocks, with stochastic volatility that is independent of the shocks. The term
structure of volatility can have essentially any shape, depending on the time-
series properties of o;,0;41,.... For example, under an autoregressive model
(2.2) of stochastic volatility, the term structure of volatility (2.4) approaches an
asymptote from above or from below, as illustrated in Figure 12, depending on
whether the initial volatility o; is above or below the stationary level. This plot is
based on a theoretical stochastic volatility model (2.2), using as the parameters
the maximume-likelihood estimates @ = —5.4, v = 0.38, and x = 1.82 for this
model fitted to the Hang Seng Index by Heynen and Kat [1993]. The three initial
levels shown are the steady-state mean volatility implied by the model (B), one

standard deviation of the steady-state distribution above the mean (A), and one

2TThe theory of large deviations, outlined in Appendix B for a different application, can be used
to address the speed of convergence to normal tails. For special cases, such as our simple jump-
diffusions, the calculations are easy. Figure 9 plots the densities of ¢-distributed variables with the

b2

indicated degrees of freedom. The case of “t = o0” is standard normal.
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Figure 9: Tail-Thinning Effect of the Central Limit Theorem
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Figure 10: Term Structure of Kurtosis for the Jump-Diffusion Model
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standard deviation of the steady-state distribution below the mean (C). Starting
from the steady-state mean level of volatility, the term structure of kurtosis is
increasing and then eventually decreasing back to normal, as illustrated?® for
case “B” in Figure 13. This “hump-shaped” term structure of tail fatness arises
from the effect of taking mixtures of normals with different variances drawn from
the stochastic volatility model, which initially increases the term structure of
tail fatness. The tail fatness ultimately must decline to standard normal, as
indicated in Figure 13 by virtue of the central limit theorem.?® For typical VaR
time horizons, however, the term structure of kurtosis is increasing from the
standard normal level of 3, as shown in Figure 14. This plot is based on three
different theoretical stochastic volatilitys models, using as the parameters the
maximum-likelihood estimates for the British Pound (A), which has extremely
high mean reversion of volatility and extremely high volatility of volatility, the
Hang-Seng Index (B), which has more moderate mean reversion and volatility of
volatility, and the S&P 500 Index (C), which is yet more moderate.?® Uncertainty
about the initial level of volatility would cause some variation from this story,
and effectively increase the initial level of kurtosis, as illustrated for the case “A”
of random initial volatility, shown in Figure 13, for which the initial volatility is
drawn from the steady-state distribution implied by the estimated parameters.
A caution is in order: We can guess that the presence of jumps would result is a
relatively severe mis-specification bias for estimators of the stochastic volatility
model (2.2). For example, a jump would appear in the estimates in the form
of a high volatility of volatility and a high mean-reversion of volatility. The
presence of both jumps and stochastic volatility is anticipated for these three
markets. Evidence for both jumps and stochastic volatility (modeled in the form
of a GARCH) is presented by Jorion [1989].

28 This plot is based on a theoretical stochastic volatility model (2.2), using as the parameters the
maximum-likelihood estimates o = —8.8, v = 0.18, and & = 3.5 for this model fitted to the dollar

price of the British Pound by Heynen and Kat [1993].
2We are grateful to Ken Froot for pointing this out. We can rely on the fact that, over time

intervals of “large” length, the volatilities at the begining and end of the intervals are “essentially”

independent, in the sense of the central limit theorem for recurrent Markov processes.
30These parameter estimates are given above for the Hang-Seng Idex and the Pound, and for the

S&P 500 are a = —0.51, v = 0.94, and x = 0.055 fitted by Heynen and Kat [1993].
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3. Mean Reversion Suppose we have constant daily volatility and #id normal
shocks, but we have mean reversion. For example, let u; = a(R* — R; 1), where
a > 0 is a coefficient that “dampens” cumulative total return B, = Ry + -+ R,
to a long-run mean R*. This model, which introduces negative autocorrelation in
returns, would be consistent, roughly, with the behavior explained by Froot [1993]
and O’Connell [1996] of foreign exchange rates over very long time horizons. For
this model, the term structure of volatility is declining to an asymptote, while

the term structure of tail fatness is flat.

2.7 Estimating Current Volatility

A key to measuring VaR is obtaining an estimate of the current volatility o; for each
underlying market. Various methods could be considered. The previous sub-section
offers a sample of stochastic volatility models that can, in principle, be estimated from
historical data. Along with parameter estimates, one obtains at each time period an
estimate of the current underlying volatility. See Hamilton [1994]. Other conventional

estimators for current volatility are described below.

2.7.1 Historical Volatility

The historical volatility o, implied by returns Ry, Riy; ..., Ry is the usual naive
volatility estimate
1 T
~92 ~ 2
Oy = —— R, — ,
t,T T_ts:XtJ:d( s :“t,T)

where ;7 = (Rip1 + -+ Ryr)/(T — t). In a plain-vanilla setting, this (maximum-
likelihood) estimator of the constant volatility parameter o is optimal, in the usual
statistical sense. If the plain-vanilla model of returns applies at arbitrarily fine data
frequency (with suitable adjustment of ;1 and o for period length), then one can learn
the volatility parameter within an arbitrarily short time interval®' from the historical
volatility estimator. Empirically, however, returns at exceptionally high frequency

have statistical properties that are heavily dependent on institutional properties of the

31Literally, limr_, o 6+ 7 = o almost surely, and since an arbitrary number of observations of returns
is assumed to be possible within an arbitrarily small time interval, this limit can be achieved in an

arbitrarily small amount of calendar time.
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market that are of less importance over longer time periods.?

For essentially every major market, historical volatility data strongly indicate that
the constant-volatility model does not apply. For example, the rolling 180-day historical
volatility estimates shown in Figure 15, for a major Taiwan equity index, appear to
indicate that volatility is changing in some persistent manner over time.?* Incidentally,
in the presence of jumps we would expect to see large upward “jumps” in the 180-day
rolling historical volatility, at the time of a jump in the return, coupled with a downward
jump in the rolling volatility precisely 180 days later, which suggests caution in the use
of rolling volatility as an estimator for actual volatility.

Exponential weighting of data can be incorporated in order to place more emphasis
on more recent history in estimating volatility. This amounts to a restrictive case of
the GARCH model, and is the standard adopted by J.P. Morgan for its RiskMetrics
volatility estimates. (See Phelan [1995]).

2.7.2 Black-Scholes Implied Volatility

In the plain-vanilla setting, it is well known that the price of an option at time ¢,
say a European call, is given explicitly by the famous Black and Scholes [1973] formula
C, = CB5(P, 0,7, K,r), given the underlying price P, the strike price K, the time 7 to
expiration, the continuously compounding constant interest rate r, and the volatility
o. It is also well known that this formula is strictly increasing in o, as shown in

Figure 16, so that, from the option price Cy, one may theoretically infer without error

32When estimating o, in certain markets one can also take special advantage of additional financial
price data, such as the high and low prices for the period, as shown by Garman and Klass [1980],

Parkinson [1980], and Rogers and Satchell [1991].
330f course, even in the constant-volatility setting, one expects the historical volatility estimate to

vary over time, sometimes dramatically, merely from random variation in prices. (This is sometimes
called “sampling error.”) One can perform various tests to ascertain whether changes in historical
volatility are “so large” as to cause one to reject the constant volatility hypothesis at a given confidence
level. For example, under the constant volatility hypothesis, the ratio F,; = a-t2(a),T(a) / &tQ(b),T(b) of
squared historical volatilities over non-overlapping time intervals has the F' distribution (with degrees
of freedom given by the respective lengths of the two time intervals). From standard tables of the F'
distribution one can then test the constant-volatility hypothesis, rejecting it at, say, the 95-percent
confidence level, if F, j is larger than the associated critical F' statistic. (One should take care not
to select the time intervals in question in light of one’s impression, based on observing prices, that
volatility apparently differs between the two periods. This would introduce selection bias that makes

such classical tests unreliable.)
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the volatility parameter o = o2%(Cy, P, 7, K,r). The function o2%(-) is known®* as

the Black-Scholes implied volatility. While no explicit formula for 0% is available, one

can compute implied volatilities readily with simple numerical routines.3
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Figure 16: Black-Scholes “Price of Volatility”

In many (but not all) markets, option-implied volatility is a more reliable method
of forecasting future volatility than any of the standard statistical methods that have
been based only on historical return data. (For the empirical evidence, see Canina
and Figlewski [1993], Campa and Chang [1995], Day and C.Lewis [1992], Jorion [1995],
Lamoureux and Lastrapes [1993], and Scott [1992].) Of course, some markets have no
reliable options data!

Because we believe that volatility is changing over time, one should account for this
in one’s option-pricing model before estimating the volatility implied by option prices.
For example, Rubinstein [1994], Dupire [1992], Dupire [1994], and Derman and Kani

[1994] have explored variations of the volatility model

o, = F(P,1), (2.5)

31This idea goes back at least to Beckers [1981].
35For these and many other details on the Black-Scholes model and extensions, one may refer to

Cox and Rubinstein [1985], Stoll and Whaley [1993], and Hull [1993], among many other sources.
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where P, is the price at time ¢ of the underlying asset, for some continuous function F'
that is chosen so as to match the modeled prices of traded options with the prices for
these options that one observes in the market. This is sometimes called the implied-tree

approach.3

2.7.3 Option-Implied Stochastic Volatility

One can also build option valuation models that are based on stochastic volatility,
and obtain a further generalization of the notion of implied volatility. For instance, a
common special case of the stochastic volatility models of Hull and White [1987], Scott
[1987], and Wiggins [1987] assumes that, after switching to risk-neutral probabilities,
we have independent shocks to returns and volatility. With this (in the usual limiting
sense of the Black-Scholes model for “small” time periods) one obtains the stochastic-

volatility option-pricing formula
Cy=CV(P,0,t, T, K,7r) = E* [CP5 (P, v, T — 1, K,1)] | (2.6)

where

=\t 4+ b 1)
is the root-mean-squared term volatility, C®°(-) is the Black-Scholes formula, and
E* denotes risk-neutral expectation at time ¢. This calculation follows from the
fact that, if volatility is time-varying but deterministic, then one can substitute v;
in place of the usual constant volatility coefficient to get the correct option price
CB5(P,vyr,T —t,K,r) from the Black-Scholes model.*” With the above indepen-
dence assumption, one can simply average this modified Black-Scholes formula over all
possible (probability-weighted) realizations of v, to get the result (2.6).

For at-the-money options (specifically, options struck at the forward price of the
underlying market), the Black-Scholes option pricing formula is, for practical purposes,
essentially linear in the volatility parameter, as illustrated in Figure 16. In the “Hull-
White” setting of independent stochastic volatility, the naive Black-Scholes implied
volatility for at-the-money options is therefore an effective (albeit risk-neutralized) fore-

cast of the root-mean-squared term volatility v, 7 associated with the expiration date of

36See Jackwerth and Rubinstein [1996] for generalizations and some empirical evidence.
37TThis was noted by Johnson and Shanno [1987].
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the option. On top of any risk-premium?®

associated with stochastic volatility, correla-
tion between volatility shocks and return shocks causes a bias in Black-Scholes implied
volatility as an estimator of the expectation of the root-mean-squared volatility v; 7.
(This bias can be corrected; see for example Willard [1996].) The root-mean-squared
volatility v, r is itself larger than annualized average volatility (o, +- - -+or_1)/+/(T — 1)
over the period before expiration, because of convexity effect of squaring in (2.7) and
Jensen’s Inequality.

The impact on Black-Scholes implied volatilities of randomness in volatility is more
severe for away-from-the-money options than for at-the-money options. A precise
mathematical statement of this is rather complicated. One can see the effect, however,
through the plots in Figure 16 of the Black-Scholes formula with respect to volatility
against the exercise price. For near-the-money options, the plot is roughly linear. For
well-out-of-the-money options, the plot is convex. A “smile” in plots of implied volatil-
ities against exercise price thus follows from (2.6), Jensen’s inequality, and random
variation in v, 7. We can learn something about the degree of randomness in volatility
from the degree of convexity of the implied-vol schedule.

It may be useful to model volatility that is both stochastic, as well as dependent on
the price of the underlying asset. For example, we may wish to replace the univariate
Markovian stochastic-volatility model with

O = F(Ut—la Pta Ztat)a

so that one combines the stochastic-volatility approach with the “implied tree” ap-
proach of Rubinstein, Dupire, and Derman-Kani. To our knowledge, this combined

model has not yet been explored in any systematic way.

2.7.4 Day-of-the-week and other seasonal volatility effects

Among other determinants of volatility are “seasonality” effects. For example, there
are day-of-the-week effects in volatility that reflect institutional market features, in-

cluding the desire of market makers to close out their positions over weekends. One can

38See, for example, Heston [1993] for an equilibrium model of the risk premium in stochastic volatil-
ity.

39We can also learn about correlation between returns and changes in volatility from the degree of
“tilt” in the smile curve. See, for example, Willard [1996]. For econometric models that exploit option
prices to estimate the stochastic behavior of volatility, see Pastrorello, Renault, and Touzi [1993] and
Renault and Touzi [1992].

37



“correct” for this sort of “seasonality,” for example by estimating volatility separately
for each day of the week.

For another example, the seasons of the year play an important role in the volatilities
of energy products. For instance, the demand for heating oil depends on winter weather
patterns, which are determined in the winter. The demand for gasoline is greater, and
shows greater variability, in the summer, and gasoline prices therefore tend to show

greater variability during the summer months.

2.8 Skewness

Skewness is a measure of the degree to which positive deviations from mean are larger
than negative deviations from mean, as measured by the expected third power of these
deviations. For example, equity returns are typically negatively skewed, as show in in
Appendix F. If one holds long positions, then negative skewness is a source of concern
for value at risk, as it implies that large negative returns are more likely, in the sense
of skewness, than large positive returns.

If skewness in returns is caused by skewness in shocks alone, and if one’s model of
returns is otherwise plain vanilla, we would expect the skewness to become “diversified
away”’ over time, through the effect of the central limit theorem, as illustrated in
Figure 17 for positively skewed shocks.’® In this case, that is, the term structure of
skewness would show a reversion to zero skewness over longer and longer time horizons.
If, on the other hand, skewness is caused, or exacerbated, by correlation between shocks
and changes in volatility (negative correlation for negative skewness), then we would

not see the effect of the central limit theorem shown in Figure 17.

2.9 Correlations

A complete model of price risk requires not only models for mean returns, volatilities,
and the distribution of shocks for each underlying market, but also models for the
relationships across markets among these variables. For example, a primary cross-
market piece of information is the conditional correlation at time ¢ between the shocks

in markets i and j. Campa and Chang [1995] address the relative ability to forecast

“0Plotted in Figure 17 are the densities of V(n)/n for various n, where V(n) is the sum of n
independent squared normals. That is V' ~ x2. By the central limit theorem, the density of \/nV (n)

converges to that of a normal.
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Figure 17: Skewness Correcting Effect of Diversification

correlation of various approaches, including the use of the implied volatilities of cross-

market options.
In order to measure value-at-risk over longer time horizons, in addition to the
conditional return correlations one would also depend critically on one’s assumptions

about correlations across markets between changes in volatilities.
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