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Abstract. Here we present a methodology for obtaining quick decent prices for callable swaps and Bermudan “exercise
into” swaps using the LGM model.
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1. Introduction. This is part of three related papers: Evaluating and hedging exotic swap instruments
via LGM explains the theory and usage of the LGM model in detail. This paper, Methodology for Callable
Swaps and Bermudan “Exercise Into” swaptions, details the methodology, including all steps of the pricing
procedure. Finally, Procedure for pricing Bermudans and callable swaps, breaks down the method into a
procedure and set of algorithms.

This paper has three appendices. The first appendix discusses handling Bermudan options on amortizing
swaps (as opposed to bullet swaps). Amortizers require a slightly more sophisticated deal characterization
step, which results in selecting a different set of vanilla instruments for calibration. Once the deals are
selected, the calibration and evaluation steps are identical to those of the bullet Bermudans. The second
appendix discusses American swaptions. With the appropriate pre-processing step, American swaptions can
be priced by by using the Bermudan pricing engine. The third appendix is used to point out the modifications
that are needed if the two legs are in different currencies.

1.1. Notation. In our notation today is always t = 0, and

(1.1a) D(T ) = today’s discount factor for maturity T.

For any date t in the future, let Z(t;T ) be the value of $1 to be delivered at a later date T ,

(1.1b) Z(t;T ) = zero coupon bond, maturity T , as seen at t.

These discount factors and zero coupon bonds are the ones obtained from the currency’s swap curve. Clearly
D(T ) = Z(0;T ). We use distinct notation for discount factors and zero coupon bonds to remind ourselves
that discount factors D(T ) are not random; we can always obtain the current discount factors from the
stripper. Zero coupon bonds Z(t;T ) are random, at least until time catches up to date t.

Also, we use N(z) and G(z) to be the standard (cumulative) normal distribution and Gaussian density,
respectively:

(1.2) N (z) =

Z z

−∞
G(z0)dz0, G(z) =

1√
2π

e−z
2/2

2. Deal definition and representation. Bermudans arise mainly from two sources. The first is a
direct Bermudan swaption, also called an “exercise into” Bermudan. The other (more common) source is
a cancellable swap, which is invariably priced as a swap plus a Bermudan swaption to enter the opposite
swap. Bermudans from both sources (and virtually any other Bermudan that arises) fit into following deal
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structure. After defining this deal structure, we will show how to fit the most common types of Bermudans
into the structure.

Our Bermudan structure contains the following information:
Payment information:

t[0, 1, 2, ..., n] = paydates(2.1a)

C[∗, 1, 2, ..., n] = full payments for each interval(2.1b)

N [∗, 1, 2, ..., n] = notionals for each interval(2.1c)

Exercise information:

PorR = payer or receiver flag(2.1d)

tex[∗1, 2, ..., J ] = exercise (notification) dates(2.1e)

tset[∗, 1, 2, ..., J ] = settlement date if exercised at τexj(2.1f)

ifirst[∗, 1, 2, ..., J ] = first coupon payment received if exercised at τexj(2.1g)

fee[∗, 1, 2, ..., J ] = exercise fee (paid on tsetj )(2.1h)

rfp[∗, 1, 2, ..., J ] = reduction in first coupon payment received if exer at τ exj(2.1i)

(In my notation, ∗ means this element of the array is not used. In my opinion, the indexing is simpler and
less confusing if we waste the first entry in all the vectors except t, but this is only a personal preference.)

The Bermudan can be exercised on any of the notification dates texj for j = 1, 2, ..., J . Suppose first the
PorR flag is set to “receiver.” Then, if the Bermudan is exercised at date texj , the owner receives all the

payments starting with payment i = ifirstj . However, the first payment received is reduced by rfpj (which
may be zero):

Ci − rfpj received at ti for i = ifirstj ,(2.2a)

Ci received at ti for i = ifirstj + 1, ..., n.(2.2b)

In return, the owner pays the notional plus the exercise fee at the settlement date

(2.2c) Nifirstj
+ feej paid at tsetj .

The full payments Ci include the fixed leg’s interest, notional payments and prepayments, as well as adjust-
ments for basis spreads and any margins. The floating leg is mainly accounted for by paying the notional
Nj on settlement.

Suppose now the PorR flag is set to “payer.” If the Bermudan is exercised at date texj , one receives the
payment

(2.3a) Nifirstj
− feej received at tsetj .

and makes the payments

Ci − rfpj paid at ti for i = ifirstj ,(2.3b)

Ci paid at ti for i = ifirstj + 1, ..., n.(2.3c)

In the next section we show how real deals, both the “exercise into” and callable swap Bermudans, can
be put into the above deal structure. From then on we work exclusively with deal structure.
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2.1. Swap. Let us first define the swap, and then define the exercise features of the two types of
Bermudan. We assume that the swap exchanges a fixed leg against a standard floating leg plus a margin;
we also assume that the legs are in the same currency. (This latter assumption is dropped in Appendix C).

2.1.1. Fixed leg. Let

tth0 < tth1 < tth2 · · · < tthn−1 < tthn(2.4a)

t0 < t1 < t2 · · · < tn−1 < tn(2.4b)

be the fixed leg’s theoretical and actual dates. In our notation,

(2.5) ti−1 < t ≤ ti

is period i, and

Ni = notional for period i,(2.6a)

Rfix
i = fixed rate for period i,(2.6b)

ai = cvg(ti−1, ti, βfix) = day count fraction for period i.(2.6c)

The fixed leg payments are

(2.6d) NiαiR
fix
i paid at ti, for i = 1, 2, ..., n

2.1.2. Funding (floating) leg. Let the floating leg’s theoretical and actual dates be

τ th0 < τ th1 < τ th2 · · · < τ thn−1 < τ thm(2.7a)

τ0 < τ1 < τ2 · · · < τn−1 < τm(2.7b)

where the beginning and end dates of the two legs must agree:

tth0 = τ th0 , tthn = τ thm ,(2.7c)

t0 = τ0, tn = τm.(2.7d)

Let the jth floating period be τ j−1 < t < τ j , and let

Nflt
j = notional for the jth period,(2.8a)

mj = margin for the jth period(2.8b)

bsj = floating rate’s basis spread for jth period(2.8c)

α̃j = cvg(τ j−1, τ j , βflt) = day count fraction for period j(2.8d)

The floating leg pays the floating rate plus a margin,

(2.9) Nflt
j α̃j [r

flt
j +morig

j ] paid at τ j , j = 1, 2, ...,m.

Prior to fixing, the jth floating leg payment is worth the same as the payments

Nflt
j = paid at τ j−1,(2.10a)

{−1 + α̃j [bsj +mj ]}Nflt
j paid at τ j ,(2.10b)

for j = 1, 2, ...,m. This is just the definition of the (forward) basis spread bs.
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2.1.3. Bond model of a swap. Floating leg dates often occur with a different frequency (usually more
frequent) than the fixed leg dates. We are going to replace the floating leg payments with the equivalent
payments based on the fixed rate schedule. Unless the basis spreads and margins are identically zero, this
will result in an invisibly small approximation.

Suppose first that the floating leg intervals are equal to or shorter than the fixed leg intervals. Based on
the theoretical dates, we can assign every floating leg interval j to a fixed leg interval

(2.11a) j ∈ Ii if and only if tthi−1 < τ thj ≤ tthi .

It makes no sense for the floating leg notional to change when the fixed rate notional does not change. We
restrict ourselves to deals whose floating rate notional Nflt

j is constant and equal to the fixed rate notional
Ni within each fixed rate interval :

(2.11b) Nflt
j = Ni for all j ∈ Ii.

The net swap payments (fixed minus floating) for interval i are:

−Ni paid at ti−1,(2.12a)

NiαiR
fix
i +Ni paid at ti,(2.12b)

Niα̃j [bsj +m
orig
j ] paid at τ j for all j ∈ Ii(2.12c)

We move the basis spread and margin to the fixed leg, approximating the swap payments for interval i as

−Ni paid at ti−1,(2.13a)

NiαiR
eff
i +Ni paid at ti,(2.13b)

for i = 1, 2, ..., n. Here the effective fixed rate for interval i is:

(2.13c) Reff
i = Rfix

i −
P

j∈Ii α̃j [bsj +mj ]D(τ j)

αiD(ti)
.

Suppose now that the floating leg intervals occur less frequently than the fixed leg intervals. Based
on the theoretical dates, we again assume that we can assign every fixed leg interval i to a floating leg leg
interval

(2.14a) i ∈ Ij if and only if τ thj−1 < tthi ≤ τ thj .

We again assume that the fixed rate notionals Ni are constant and equal to the floating rate notional N
flt
j

within each floating rate interval :

(2.14b) Ni = Nflt
j for all i ∈ Ij .

We move the basis spread and margin to the fixed leg. This once again leads to approximating the swap
payments for interval i as

−Ni paid at ti−1,(2.15a)

NiαiR
eff
i +Ni paid at ti,(2.15b)

for i = 1, 2, ..., n. Here the effective fixed rate for interval i is:

(2.15c) Reff
i = Rfix

i − α̃j [bsj +mj ]D(τ j)P
i∈Ij αiD(ti)

.
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2.1.4. Optionality: “Exercise into” Bermudan swaptions. Let us first consider an “exercise into”
Bermudan option.. It is not uncommon for a Bermudan to be exercisable more frequently than once a period,
as in a semi-pay, monthly call deal. So we need to allow for intra-period exercises. The optionality can be
defined by
(i) a payer/receiver flag

(2.16a) PorR,

(ii) a set of notification dates,

(2.16b) tex1 , tex2 , ..., texJ

(iii) a set of theoretical and actual settlement (start)-upon-exercise dates,

tth,set1 , tth,set2 , ..., tth,setJ(2.16c)

tset1 , tset2 , ..., tsetJ(2.16d)

(iv) a set of exercise fees

(2.16e) fee1, fee2, ..., feeJ .

Suppose the payer/receiver flag is “receive.” Then if the deal is exercised on the notification date τexj ,

the owner receives the swap starting from the settlement date tsetj . Specifically, define ifirstj as the i with

(2.17a) tthi−1 ≤ tth,setj < tthi .

For the first payment, the owner receives the interest that accrues from the settlement date tsetj to the first

coupon date ti at i
first
j . This is less that the full coupon if the settlement date tsetj is after the interval starts

at ti−1. So if the deal is exercised at tjex, then the owner of the option gets

Niα
first
j Reff

i +Ni −Ni−1 at ti for i = ifirstj(2.17b)

NiαiR
eff
i +Ni −Ni+1 at ti for i = ifirstj + 1, ..., n− 1(2.17c)

NnαnR
eff
n +Nn at tn for i = n(2.17d)

where

(2.17e) αfirstj = cvg(tsetj , ti) with i = ifirstj .

In return, the owner pays

(2.17f) Ni + feej at tsetj with i = ifirstj .

If the payer/receiver flag is “payer.” Then if the deal is exercised at texj , the owner recieves

(2.18a) Ni − feej at tsetj with i = ifirstj ,

and pays

Niα
first
j Reff

i +Ni −Ni−1 at ti for i = ifirstj(2.18b)

NiαiR
eff
i +Ni −Ni+1 at ti for i = ifirstj + 1, ..., n− 1(2.18c)

NnαnR
eff
n +Nn at tn for i = n(2.18d)
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We can fit this deal into the above Bermudan structure by defining the full payments

Ci = NiαiR
eff
i +Ni −Ni+1 for i = 1, ..., n− 1,(2.19a)

Cn = NnαnR
eff
n +Nn,(2.19b)

and defining the ifirstj as the index i for which

(2.19c) tthi−1 ≤ tth,setj < tthi for j = 1, ..., J

and defining the reduction in the first payment as

(2.19d) rfpj = (αi − αfirstj )NiR
eff
i = NiR

eff
i

©
cvg(ti−1, ti)− cvg(tsetj , ti)

ª
for j = 1, ..., J

with i = ifirstj .The notionals Ni, pay/rec flag PorR, exercise fees feej , and exercise and settlement dates,
τexj and τsetj , are copied into the structure unchanged.

Aside. Best practices is for a deal’s confirm to specify
i) the theoretical settlement-upon-exercise dates tth,setj ;
ii) the business day rules and holiday calendars needed to obtain the actual settlement dates from the
theoretical dates (these should be identical to the rules for the fixed leg), and
iii) that the notification date must occur at least N business days (or calendar days) before the actual
settlement date.
Then regardless of whether holidays are added or subtracted after the deal is struck, the settlement dates
always relate to the payment dates in the same way without one day gaps opening up.

Confusingly, the settlement (start)-upon-exercise dates are often called the “exercise” dates and the
exercise (notification) dates are simply known as notification dates..

2.1.5. Optionality: callable swaps. Let us now a callable swap. Again, Bermudans may be callable
more frequently than once a period. If a swap is called mid-period, the fixed and floating leg’s accrued
interest must be paid, as well as any exercise fee, on the settlement date. Then no further payments are
received. This is equivalent to a non-callable swap, plus a Bermudan swpation to enter the opposite swap.

Consider a callable swap. Let it be a payer or receiver, according to

(2.20a) PorR.

The callability is defined by
(i) a set of notification dates,

(2.20b) tex1 , tex2 , ..., texJ

(iii) a set of theoretical and actual settlement-upon-exercise dates,

tth,set1 , tth,set2 , ..., tth,setJ(2.20c)

tset1 , tset2 , ..., tsetJ(2.20d)

(iii) a set of exercise fees

(2.20e) fee1, fee2, ..., feeJ .

The value of the cancellable swap is the value of the full (non-cancellable) swap plus the value of the
cancelation feature. We assume that the non-cancellable swap is priced elsewhere. Here we only price the
canacellation feature.
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Suppose the payer/receiver flag is “payer,” and suppose the cancellation feature is exercised on the
notification date τexj . Define i

first
j as the first coupon after the settlement-upon-exercise date:

(2.21a) tthi−1 ≤ tth,setj < tthi .

Cancelling the payer swap is equivalent to recieving all the fixed rate payments, and making all the floating
leg payments, starting with payment i− ifirxtj . So the owner receives the fixed leg payments

NiαiR
eff
i +Ni −Ni+1 at ti for i = ifirstj , ..., n− 1(2.21b)

NnαnR
eff
n +Nn at tn for i = n,(2.21c)

and makes the floating leg payments, which are equivalent to

(2.21d) Ni at ti−1.

At the settlement date, the owner also pays the accrued fixed leg interest, receives the accrued floating
rate interest, and pays any exercise fee. So the owner must also pay

(2.22a) feej +Niα
set
j

³
Reff
i − rtruei

´
at tsetj

with

(2.22b) αsetj = cvg(ti−1, tsetj ) with i = ifirstj .

Here we use the true rate

(2.22c) rtruei =
Z(t, ti−1)− Z(t, ti)

αiZ(t, ti)

for interval i, instead of the forward floating rate, because the basis spread is already incorpoarted into Reff
i .

The floating rate payment at ti−1 along with the settlement payments are now equivalent to

(2.23a) Ni + feej +Niα
set
j

n
Reff
i −∆rfltj

o
at tsetj

where

(2.23b) ∆rfltj =
Z(t, ti−1)− Z(t, ti)

αiZ(t, ti)
− Z(t, ti−1)− Z(t, tsetj )

αsetj Z(t, tsetj )

is the difference between the rates for the full and partial intervals. Virtually every desk neglect this
correction. We can do better by estimating this difference from today’s curve:

(2.24) ∆rfltj =
D(ti−1)−D(ti)

αiD(ti)
− D(ti−1)−D(tsetj )

αsetj D(tsetj )
.

In summary, if the owner of a payer swap cancels (by providing notification at texj ), the cancellation is
equivalent to receiving the payments

NiαiR
eff
i +Ni −Ni+1 at ti for i = ifirstj , ..., n− 1(2.25a)

NnαnR
eff
n +Nn at tn for i = n,(2.25b)
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and making the payment

(2.25c) Ni + feej +Niα
set
j

n
Reff
i −∆rfltj

o
at tsetj ,

where

(2.25d) ∆rfltj =
D(ti−1)−D(ti)

αiD(ti)
− D(ti−1)−D(tsetj )

αsetj D(, tsetj )
.

Similarly, suppose the owner of a receiver swap cancels (by providing notification at texj ). Cancellation
is equivalent to making receving the payment

(2.26a) Ni − feej +Niα
set
j

n
Reff
i −∆rfltj

o
at tsetj ,

and the payments

NiαiR
eff
i +Ni −Ni+1 at ti for i = ifirstj , ..., n− 1(2.26b)

NnαnR
eff
n +Nn at tn for i = n,(2.26c)

As before,

(2.26d) ∆rfltj =
D(ti−1)−D(ti)

αiD(ti)
− D(ti−1)−D(tsetj )

αsetj D(tsetj )
.

As previously stated, we assume that the value of the non-cancellable swap is calculated elsewhere, and
here only price the cancellation feature. We can fit this cancellation feature into our Bermudan structure by
defining the full payments to be

NiαiR
eff
i +Ni −Ni+1 at ti for i = 1, ..., n− 1(2.27a)

NnαnR
eff
n +Nn at tn for i = n.(2.27b)

by defining the payer/receiver flag to be receiver if a payer swap is cancellable, and to be payer if a receiver
swap is cancellable, by defining ifirstj so that

(2.27c) tthi−1 ≤ tth,setj < tthi ,

by defining the exercise fee to be

(2.27d) feej = feej ±Niα
set
j

(
Reff
i − D(ti−1)−D(ti)

αiD(ti)
+

D(ti−1)−D(tsetj )

αsetj D(tsetj )

)
for j = 1, ..., J.

Here the “ +  sign is to be taken for callable payer swaps, and the “ −  sign for callable receivers. For
callable swaps, the reduction in the first payment to be zero

(2.27e) rfpj = 0 for j = 1, ..., J

and the notionals Ni, the fixed leg pay dates ti, the execise and settlement dates texj and tsetj are to be copied

into the structure without change.with i = ifirstj .The notionals Ni, pay/rec flag PorR, exercise fees feej ,
and exercise and settlement dates, τexj and τsetj , are copied to the structure unchanged.
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Aside. Best practices is for a deal’s confirm to specify
i) the theoretical settlement-upon-exercise dates (call dates) tth,setj ;
ii) the business day rules and holiday calendars needed to obtain the actual call dates from the theoretical
dates, and
iii) that the notification date must occur at least N business days (or calendar days) before the actual
settlement date.

The settlement-upon-call dates are often called the “call” dates and the exercise (notification) dates are
simply known as notification dates.

3. The LGM (Linear Gauss Markov) model.

3.1. Basic LGM. We value these deals using calibrated LGM models. This model is chosen because it
is very reliable as well as being very easy to work with. As explained fully in Evaluating and hedging exotic
swap instruments via LGM, the one factor LGM model has a single state variable x, and uses the numeraire

(3.1a) N(t, x) =
1

D(t)
e+H(t)x+

1
2H

2(t)ζ(t)

Let V full(t, x) be the actual value of any deal. Throughout we one use only the reduced value

(3.1b) V (t, x) =
V full(t, x)

N(t, x)
.

At t = 0, x = 0, the numeraire is 1, so today’s full values and reduced values are identical. As we shall see,
the full values at other dates are not relevent.

The LGM model can be summarized in two relations: First, the (reduced) value V (t, x) of any deal can
be determined from its value at any later date T via the expected value

(3.2a) V (t, x) =
1√
2π∆ζ

Z ∞
−∞

e−(X−x)
2/2∆ζV (T,X)dX,

where

(3.2b) ∆ζ = ζ(T )− ζ(t).

Second, the (reduced) value of a zero coupon bond with maturity ti is

(3.2c) Z(t, x; ti) = D(ti)e
−H(ti)x− 1

2H
2(ti)ζ(t),

as can be determined by substituting V (T,X) = 1/N(T,X) in the expected value. Here the functions H(T )
and ζ(t) are found by the calibration step. They are equivalent to the mean reversion parameters κ(t) and
the local vol σ(t) in the Hull-White model.

3.2. Invariances. Recall from Evaluating and hedging exotic swap instruments via LGM that all deal
prices remain the same if we replace

H(T ) −→ H(T ) + C, ζ(t) −→ ζ(t)(3.3a)

H(T ) −→ KH(T ), ζ(t) −→ ζ(t)/K2(3.3b)

for any constants C and K. These invariances need to be recognized (and exploited!) in the calibration step.
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3.3. Swaption value. Calibration is a procedure for choosing the functions H(T ) and ζ(t) so that the
LGM prices match the actual market prices for a selected set of swaptions, caplets, and floorlets. Here we
obtain a closed form expression for the LGM price of these instruments.

Consider a (receiver) swap with start date t0, fixed leg pay dates t1, t2, . . . , tn, and fixed rate Rfix. The
fixed leg makes the payments

αiR
fix paid at ti for i = 1, 2, . . . , n− 1,(3.4a)

1 + αnR
fix paid at tn,(3.4b)

where αi = cvg(ti−1, ti, β) is the coverage for period i according to the fixed leg’s day count basis β. On any
given day t, the fixed leg’s value is

(3.5a) Vfix(t, x) = Rfix
nX
i=1

αiZ(t, x; ti) + Z(t, x; tn)

As discussed in, Evaluating and hedging exotic swap instruments via LGM, the value of the floating leg is

(3.5b) Vflt(t, x) = Z(t, x; t0) +
nX
i=1

αiSiZ(t, x; ti),

where Si is the floating rate’s basis spread, adjusted to the fixed legs day count basis and frequency. The
value of the receiver swap is

(3.5c) Vrec(t, x) =
nX
i=1

αi
¡
Rfix − Si

¢
Z(t, x; ti) + Z(t, x; tn)− Z(t, x; t0).

where the strike Rfix and effective spread Si are known constants.
Consider a European option on this swap (a swaption), and let τex be the exercise date. Under the one

factor LGM model, today’s value for the swaption is

(3.6) V opt
rec (0, 0) =

1p
2πζex

Z ∞
−∞

e−X
2/2ζex

½
Vrec(τex,X) if positive

0 if negative

¾
dX,

where ζex = ζ(τex) Integrating yields the exact pricing formulas

V opt
rec (0, 0) =

nX
i=1

αi
¡
Rfix − Si

¢
DiN

Ã
y∗ + [Hi −H0] ζexp

ζex

!
(3.7a)

+DnN

Ã
y∗ + [Hn −H0] ζexp

ζex

!
−D0N

Ã
y∗p
ζex

!

where y∗ is obtained by solving

(3.7b)
nX
i=1

αi
¡
Rfix − Si

¢
Die

−(Hi−H0)y
∗− 1

2 (Hi−H0)
2ζex +Dne

−(Hn−H0)y
∗− 1

2 (Hn−H0)
2ζex = D0.

Observe that the swaption value depends on ζ(t) only through ζex = ζ(τ ex), and on H(T ) only through

(3.8) ∆Hi = Hi −H0 = H(Ti)−H(T0).
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at the pay dates. Using Newton’s method in the calibration procedure requires the derivatives of the prices
with respect to the model parameters. We observe that

∂

∂
p
ζex

V̂ opt
rec (0, 0) =

nX
i=1

[Hi −H0]αi
¡
Rfix − Si

¢
DiG

Ã
y∗ + [Hi −H0] ζexp

ζex

!
(3.9a)

+ [Hn −H0]DnG

Ã
y∗ + [Hn −H0] ζexp

ζex

!
∂

∂H0
V̂ opt
rec (0, 0) = −

p
ζex

nX
i=1

αi
¡
Rfix − Si

¢
DiG

Ã
y∗ + [Hi −H0] ζexp

ζex

!
(3.9b)

−
p
ζexDnG

Ã
y∗ + [Hn −H0] ζexp

ζex

!
∂

∂Hi
V̂ opt
rec (0, 0) =

p
ζexαi

¡
Rfix − Si

¢
DiG

Ã
y∗ + [Hi −H0] ζexp

ζex

!
(3.9c)

∂

∂Hn
V̂ opt
rec (0, 0) =

p
ζex

£
1 + αn

¡
Rfix − Sn

¢¤
DnG

Ã
y∗ + [Hn −H0] ζexp

ζex

!
(3.9d)

3.4. Bermudan payoff. Recall the Bermudan structure has the payment information

t[0, 1, 2, ..., n] = paydates,(3.10a)

C[∗, 1, 2, ..., n] = full payments for each interval,(3.10b)

N [∗, 1, 2, ..., n] = notionals for each interval,(3.10c)

and the exercise information:

PorR = payer or receiver flag(3.10d)

tex[∗1, 2, ..., J ] = exercise (notification) dates(3.10e)

tset[∗, 1, 2, ..., J ] = settlement date if exercised at τexj(3.10f)

ifirst[∗, 1, 2, ..., J ] = first coupon payment received if exercised at τexj(3.10g)

fee[∗, 1, 2, ..., J ] = exercise fee (paid on tsetj )(3.10h)

rfp[∗, 1, 2, ..., J ] = reduction in first coupon payment received if exer at τ exj(3.10i)

If the PorR flag is set to “receiver.”, then the payoff on the jth exercise date is

(3.11a) Pj(t
ex
j , x) = (Ci0 − rfpj)Z(t

ex
j , x; ti0) +

nX
i0+1

CiZ(t
ex
j , x; ti)− (Ni0 + feej)Z(t

ex
j , x; tsetj )

where i0 = ifirstj for simplicity. Similarly, if the PorR flag is set to “payer.” then the jth payoff is

(3.11b) Pj(t
ex
j , x) = − (Ci0 − rfpj)Z(t

ex
j , x; ti0)−

nX
i0+1

CiZ(t
ex
j , x; ti) + (Ni0 − feej)Z(t

ex
j , x; tsetj )

Since we know the value of the (reduced) zero coupon bond,

(3.11c) Z(t, x;T ) = D(T )e−H(T )x−
1
2H

2(T )ζ(t),

11



we can write these payoffs explicitly. For receivers,
(3.12a)

Pj(t
ex
j , x) = (Ci0 − rfpj)Di0e

−Hi0x− 1
2H

2
i0
ζj +

nX
i0j+1

CiDie
−Hix− 1

2H
2
i ζj −

³
Ni0j

+ feej

´
Ds
je
−Hs

j x− 1
2(H

s
j )

2
ζj ,

and for payers,
(3.12b)

Pj(t
ex
j , x) = − (Ci0 − rfpj)Di0e

−Hi0x− 1
2H

2
i0
ζj −

nX
i0j+1

CiDie
−Hix− 1

2H
2
i ζj +

³
Ni0j
− feej

´
Ds
je
−Hs

j x− 1
2(H

s
j )

2
ζj .

Here

Di = D(ti), Ds
j = D(tsetj )(3.12c)

ζj = ζ(texj ), Hi = H(ti), Hs
j = H(tsetj )(3.12d)

4. Evaluating the deal.

4.1. Rollback. Let us assume that the calibration procedure has given us ζ(t) and H(T ). We now
show how to evaluate the Bermudan.

For each exercise j we break x into a grid of points,

(4.1a) x
(j)
k = hj(k −mx) for k = 0, 1, ..., 2mx.

(Below, we show how to choose the spacing hj and width ±hjmx of the grid). We define

(4.1b) Pj,k = P (texj , x
(j)
k )

as the payoff if the deal is exercised at texj . If PorR is “receiver,” eqs. 3.12a - 3.12d allow us to calculate the
payoff as
(4.2a)

Pj,k = (Ci0 − rfpj)Di0e
−Hi0x

(j)
k − 1

2H
2
i0
ζj +

nX
i0j+1

CiDie
−Hix

(j)
k − 1

2H
2
i ζj −

³
Ni0j

+ feej

´
Ds
je
−Hs

j x
(j)
k − 1

2 (H
s
j )

2
ζj

at each k = 0, 1, ..., 2mx. Similarly, if PorR is “payer,” we calculate
(4.2b)

Pj,k = − (Ci0 − rfpj)Di0e
−Hi0x− 1

2H
2
i0
ζj −

nX
i0j+1

CiDie
−Hix− 1

2H
2
i ζj +

³
Ni0j
− feej

´
Ds
je
−Hs

j x
(j)
k − 1

2(H
s
j )

2
ζj .

at each k = 0, 1, ..., 2mx.
Rollback is a backwards induction scheme. We first use 4.2a - 4.2bto obtain the payoff PJ,k at the last

exercise date. Then

(4.3) VJ,k = V (τ exJ , xk) = max {PJ,k, 0} at each k = 0, 1, ..., 2mx,

is the value of the deal on the last exercise at texJ , assuming that it has not been exercised at an earlier
exercise date.

12



Now suppose that we know the value of the deal at some exercise date texj , assuming that it was not
exercised on any of the exercise dates before texj . That is, we know

(4.4) Vj,k = V (texj , x
(j)
k ), where x(j)k = hj(k −mx) for k = 0, 1, ..., 2mx.

We now go to j − 1. We first break x into a grid of points (see below)

(4.5) x
(j−1)
k = hj−1(k −mx) for k = 0, 1, ..., 2mx.

We use the Gaussian convolution formula to find the value of the deal at each node x(j−1)k at texj−1:

(4.6) V +(texj−1, x
(j−1)
k ) =

1√
2π

Z ∞
−∞

e−y
2/2Vj(t

ex
j , x

(j−1)
k + y

q
ζj − ζj−1)dy.

This is the deal’s value at node x(j−1)k on texj−1 assuming it has not been exercised at t
ex
j−1 or at any earlier

exercise. We calculate this integral as the weighted sum,

(4.7a) V +(texj−1, x
(j−1)
k ) = V +

j−1,k =
2myX
i=0

wiVj,k0(i)

with

(4.7b) k0(i) =
hj−1 (k −mx) + yi

p
ζj − ζj−1

hj
+mx,

where the weights wi and yi will be specified shortly. Since k0 will not be an integer, one should use piecewise
linear interpolation (with flat extrapolation) on Vj,k to get the Vj,k0 . Note that this sum over i has to be
done for each node k, for k = 0, 1, ..., 2mx.

Now V +
j−1,k = V +(texj−1, x

(j−1)
k ) is the value of the deal at texj−1 assuming that the deal has not been

exercised at texj−1 or earlier. We now include the value of the exercise at t
ex
j−1. If the deal is exercised at t

ex
j−1,

one gets the payoff Pj−1,k given by 4.2a - 4.2b with j −→ j − 1. Taking the maximum at each x,

(4.7c) Vj−1,k = max
n
Pj−1,k, V +

j−1,k
o

for k = 0, 1, ..., 2mx

now provides the the deal’s value at texj−1, including the exercise at t
ex
j−1.

By looping over the rollback step, one obtains the value of the deal on the first exercise date, V1,k =
V1(t

ex
1 , xk). A final integration gives today’s value of the deal:

(4.8a) V (0, 0) =

2myX
i=0

wiV1,k0(i)

with

(4.8b) k0(i) =
yi
p
ζ1

h1
+mx

13



4.2. European options. Traditionally, Bermudan pricers also output the values of the European
options that make up the Bermudan. This helps traders understand which exercise dates are the most
valuable, and how much extra they are paying for the Bermudan over the most expensive European. Since
we typically calibrate to these swaptions, the value of the European option should be the same as the market
value. So for our case it is just a useful double check.

The payoff of the European option is

(4.9a) V eur
j,k = max {Pj(τ j , xk), 0} ,

and a single integration gives today’s value of the jth European option of the range note

(4.9b) V eur
j (0, 0) =

2myX
i=0

wiV
eur
j,k0(i)

with

(4.9c) k0(i) =
yi
p
ζj

hj
+m.

4.3. Discretization and weights. One usually sets the x grid to be set number of points per standard
deviation, with the width of the grid being a set multiple of the standard deviation. Recall that at texj the
variable x has mean 0 and variance ζj = ζ(texj ). Setting the discretization as λx points per standard
deviation, and extending the grid to ±Nx standard deviations, we have

(4.10a) x
(j)
k = hj(k −mx) for k = 0, 1, ..., 2mx

with

(4.10b) hj =
q
ζj/λx, mx = wxλx.

Although some experimentation may be needed, typically Nx = 4 to 5.5 and λx = 18 to 32 work well.
To discretize the Gaussian and find the weights wi, one again chooses the number of standard deviations

and the number of points per standard deviation:

yi = hy(i−my) for i = 0, 1, ..., 2my,(4.11a)

hy = 1/λy, my = Nyλy,(4.11b)

Typically Ny = 4 to 5.5 and λy = 10 to 16 work well.
One then generates a preliminary set of weights from

wi =

Z yi+hy

yi−hy

µ
1− |yi − y|

hy

¶
e−y

2/2

√
2π

dy(4.12a)

=

µ
1 +

yi
hy

¶
N (yi + hy)− 2 yi

hy
N (yi) +

µ
1− yi

hy

¶
N (yi − hy)

+
1

hy
{G(yi + hy)− 2G(yi) +G(yi − hy)}

for i = 1, 2, ..., 2my−1. Here N (y) is the standard cumulative normal distribution, and G(y) is the Gaussian
density,

(4.12b) G(y) =
e−y

2/2

√
2π

, N (y) =
Z y

−∞
G(y)dy.
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For i = 0 and i = 2my, we have special weights,

w2my = w0 =

Z y0+hy

y0

µ
1− |y0 − y|

hy

¶
e−y

2/2

√
2π

dy +

Z y0

−∞

e−y
2/2

√
2π

dy(4.12c)

=

µ
1 +

y0
hy

¶
N (y0 + hy)− y0

hy
N (y0) + 1

hy
{G(y0 + hy)−G(y0)} .

4.3.1. Normalization of the weights. Once these weights are generated, one usually normalizes the
weights,

(4.13a) wnew
i = (A+By2i )wi,

where the A and B are chosen so that

(4.13b)
2myX
i=0

wnew
i = 1,

2myX
i−0

y2iw
new
i = 1.

(By symmetry, all the odd moments are already zero.) If one calculates the moments with the original
weights,

(4.13c) M0 =

2myX
i=0

wi, M2 =

2myX
i=0

y4iwi, M2 =

2myX
i=0

y4iwi,

we see that

(4.13d) A =
M4 −M2

M0M4 −M2
2

, B = − M2 −M0

M0M4 −M2
2

.

4.3.2. Partial sums of the weights. We can speed up our integration routine if we have the weight
generation routine also return a vector of partial sums,

(4.14) Si =
iX

k=0

wk.

Recall that the integration step

(4.15a) V +
j−1,k =

2myX
i=0

wiVjk0(i)

with

(4.15b) k0(i) =
hj (k −mx) + yi

p
ζj+1 − ζj

hj+1
+mx

uses flat-linear-flat interpolation on the Vjk0(i). We can replace the sum over the i0s with k0(i) < 0 and with
k0(i) > 2mx:

(4.16a) V +
j−1,k =

i∗∗−1X
i=i∗+1

wiVjk0(i) + Vj,0Si∗ + Vj,2mx(1− Si∗∗)
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where i∗ is the largest i with

(4.16b) k0(i∗) < 0,

and i∗∗ is the smallest i with

(4.16c) k0(i∗∗) > 2mx.

4.4. Accounting for the kinks. The Vj(x) in the integrand has a discontinuous first derivative where
the max switches from V +

j (x) to Pj(τ
ex
j , x). This “kink” in the integrand is the dominant error, and by

eliminating this error, we can gain almost a full order of accuracy.
Recall that in each step we take the maximum at each xk

(4.17a) Vj,k = max
n
Pj,k, V

+
j,k

o
for k = 0, 1, ..., 2mx,

where V +
j,k should be set identically zero for the last exercise j = J . We then evaluate the integral

(4.17b) V +
j−1,k =

1√
2π

Z ∞
−∞

e−y
2/2Vj

Ã
hj−1 (k −mx) + y

p
ζj − ζj−1

hj
+mx

!
dy

as the weighted sum,

V +
j−1,k =

2myX
i=0

wiVjk0(i)(4.18a)

k0(i) =
hj (k −mx) + yi

p
ζj+1 − ζj

hj+1
+mx(4.18b)

where piecewise linear interpolation is used to obtain Vjk0(i) from the grid points.

Suppose that when we are taking the max, Vj,k = max
n
Pj,k, V

+
j,k

o
for all k, we record where the payoff

curve Pj,k and the curve V
+
j,k cross. Suppose that these curves cross in the interval K < k < K + 1. Then

Pj,K − V +
j,K and Pj,K+1 − V +

j,K+1 have opposite signs. Define

mK = min
n
Pj,K , V

+
j,K

o
, MK = max

n
Pj,K , V

+
j,K

o
,(4.19a)

mK+1 = min
n
Pj,K+1, V

+
j,K+1

o
, MK+1‘ = max

n
Pj,K+1, V

+
j,K+1

o
(4.19b)

Using a linear approximation (this is all we need to make the correction), these curves cross at the point

(4.19c) k∗ = K +
MK −mK

MK+1 −mK+1 +MK −mK
= K + 1− MK+1 −mK+1

MK+1 −mK+1 +MK −mK

in the interval. Our integration scheme is linear, so our base integration routine approximates the integrand
as

(4.20a) Vj,k =MK + (k −K) (MK+1 −MK) for K < k < K + 1.

If we approximate both Pj(τ j , xk) and V +
j,k as linear in k, then we would obtain

(4.20b) Vj,k =

½
MK + (k −K)(mK+1 −MK) for K < k < k∗

mK + (k −K)(MK+1 −mK) for k∗ < k < K + 1
.
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The error in the integrand is

(4.20c) E(k) =

½ −(k −K)(MK+1 −mK+1) for K < k < k∗

− (K + 1− k) (MK −mK) for K < k < k∗ .

We need to make the correction to V +
j−1,k of

(4.21a) C+j−1,k =
1√
2π

Z k(y)=K+1

k(y)=K

e−y
2/2E(k(y))dy,

where

(4.21b) k(y) =
hj−1 (k −mx) + y

p
ζj − ζj−1

hj
+mx.

The average value of the error over the interval is

(4.22a) Eavg = −12
(MK −mK) (MK+1 −MK)

MK+1 −mK+1 +MK −mK
.

If hj/
p
ζj − ζj−1isn’t too large, say, hj/

p
ζj − ζj−1 ≤ 1, we can correct the majority of the numerical error

arising from the “kink” by evaluating the Gaussian at the midpoint and using the average. Thus, we should
add the correction

(4.22b) C+j−1,k =
hjEavgp
ζj − ζj−1

G

Ã
hj(K + 1

2 −mx)− hj−1(k −mx)p
ζj − ζj−1

!
if hj ≤

q
ζj − ζj−1

to V +
j−1,k for each k. On rare occasions, hj/

p
ζj − ζj−1 may be too large to evaluate the Gaussian at the

midpoint. For these cases, one should add the correction

C+j−1,k = EavgN
Ã
hj(K + 1−mx)− hj−1(k −mx)p

ζj − ζj−1

!
−EavgN

Ã
hj(K −mx)− hj−1(k −mx)p

ζj − ζj−1

!
(4.22c)

if hj >
q
ζj − ζj−1.

Of course, the kinks should be corrected when evaluating the European options as well as the Bermudan
option.nstruments, and then calibrating the model so that it matches the model prices against the market
prices for these instruments.

4.5. Exotics evaluator. The evaluation step can be written in a way which is completely independent
of the deal and the LGM model. Suppose we provide the evaluation routine with the following as inputs:
(1) the number of exercises J and the values ζ1, ζ2, ..., ζJ ,
(2) a pointer to a function which calculates the payoff Pj,k = Pj(xk),
(3) the density of points 1/λx and width Nx of the x grid to be used
(4) the density of points 1/λy and width Ny of the y discretization to be used
The evaluation routine depends on no other input. This means that we can use the same evaluation function
for different deal types just by writing new payoff functions.
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4.6. Writing the payoff function. Recall that the payoff functions are
(4.23a)

Pj,k = (Ci0 − rfpj)Di0e
−Hi0x

(j)
k − 1

2H
2
i0
ζj +

nX
i0j+1

CiDie
−Hix

(j)
k − 1

2H
2
i ζj −

³
Ni0j

+ feej

´
Ds
je
−Hs

j x
(j)
k − 1

2 (H
s
j )

2
ζj

if PorR is “receiver,” and
(4.23b)

Pj,k = − (Ci0 − rfpj)Di0e
−Hi0x− 1

2H
2
i0
ζj −

nX
i0j+1

CiDie
−Hix− 1

2H
2
i ζj +

³
Ni0j
− feej

´
Ds
je
−Hs

j x
(j)
k − 1

2(H
s
j )

2
ζj .

if PorR is “payer.” Calculating these payoffs can be the most compute-intensive part of the calculation.
(Calculating discount factors is especially worrisome since it is beyond our control.

We can amelioriate this by ensuring that there are as few redundant calculations as possible. Before
reaching the evaluator, one usually creates a second structure out of the Bermudan structure. The second
structure contains the following vectors:
(i) the first payment upon each exercise,

(4.24a) iF irst[∗, 1, .., J ] : i0 = ifirstj for j = 1, ..., J

(ii) the discounted full payments,

(4.24b) DisPay[∗, 1, ..., n] : CiDi = CiD(ti) for i = 1, ..., n

(iii) the discounted amount exchanged for the fixed leg at each exercise,

(4.24c) DisExPrice[∗, 1, 2, ..., J ] :
³
Ni0j

± feej

´
Ds
j =

³
Ni0j

± feej

´
D(tsetj ) for j = 1, ..., J

(where the “ +  sign is for receivers, and the “−  sign is for payers),
(iv) the mean reversion function on each pay date and on each settlement date,

H[∗, 1, 2, ..., n] : Hi = H(ti) for i = 1, ..., n(4.24d)

Hset[∗, 1, 2, ..., J} : Hs
j = H(tsetj ) for j = 1, ..., J,(4.24e)

(v) finally the value ζ at the exercise dates:

(4.24f) ζ[∗, 1, 2, ..., J) : ζj = ζ(texj ) for j = 1, ..., J.

For completeness, the structure also contains
(vi) the number of exercises and number of paydates:

J = number of exercises(4.24g)

n = number of payments(4.24h)

The payoff functions can be calculated entirely from these pre-calculated vectors. Besides making the
code more efficient, this enhances the soundness of the code because neither the discount curve D(t) nor the
model parmeters ζ(t) and H(T ), nor the original Bermudan structure needs to be passed down any further
into the evaluator. The only thing inputs needed for the core evaluation routine are the new structure, a
pointer to the function which calculates the payoffs Pj,k from the new structure, the vector ζ[∗, 1, .., J ] of
variances, and the dicretization variables λx, Nx, λy, and Ny.
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(The ζ[∗, 1, .., J ] vector should be passed outside of the second structure because the evaluator should
just pass the structure to the payoff function without relying on what’s inside; the ζ[∗, 1, .., J ] vector should
also be passed inside the structure so that the payoff can be constructed solely from information stored
within the structure.)

One other comment about efficiency. Normally one calls the payoff function with the entire vector
x[0, 1, ..., 2mx] and it returns the vector Pj,k for k = 0, 1, 2, ..., 2mx. For many deal types, the payoff vector
can be caculated more efficiently than the individual payoffs.

5. Calibration. The calibration procedure consists of three steps. First is to characterize the deal by
extracting its essential features. Second is to select a set of vanilla calibration instruments based on the
characterization and an over-all calibration strategy. The last part is applying the algorithms that choose
ζ(t) and H(T ) to match the LGM and market prices of the calibration instruments.

Careful inspection will show that only the characterization step depends on the exotic being a Bermudan;
the remaining two steps depend only on the features extracted by the the characterization step. This means
that to handle the calibration step for other deal types (callable inverse floaters, callable capped floaters,
callable range notes, ...) we just need to re-write the deal characterization part of the routine.

5.1. Deal characterization. We characterize deals by three quantities for each exercise. The first is
the exercise (notification) date itself,

(5.1a) texj for j = 1, 2, ..., J.

The second quantity is the length of the swap obtained upon exercise,

(5.1b) cj = tn − tsetj for j = 1, 2, ..., J.

The last last piece of information determines how far the underlying is from being at-the-money for each
exercise. There are several different measures of this distance. The one I prefer is to determine the parallel
shift γj needed,

(5.2) D(ti) −→ D(ti)e
−γjti

so that today’s value of the jth payoff is at-the-money.
Suppose that if the deal is exercised at texj . The receiver gets

Ci0 − rfpj paid at ti0 ,(5.3a)

Ci paid at ti for i = i0 + 1, ..., n,(5.3b)

and in return pays

Ni0j
+ feej paid at tsetj if PorR is reciever,(5.3c)

Ni0j
− feej paid at tsetj if PorR is payer.(5.3d)

Here we are using the abbreviation i0 = ifirstj for the first paydate after settlement. Clearly this payoff is at
the money when

(5.4) (Ci0 − rfpj)D(ti0)e
−γj(ti0−tsetj ) +

nX
i=i0j+1

CiD(ti)e
−γj(ti−tsetj ) =

³
Ni0j

± feej

´
D(tsetj ).

The idea behind characterization is that the “most natural” set of vanilla instruments for representing
the Berumdan are the swaptions (one for each exercise date) which
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(a) have the same exercise date,
(b) have the same length of the underlying swap,
(c) are at-the-money for the same parallel shift of the yield curve.
Using these swaptions in calibration implies that our vega risks will be to these swaptions, and in the normal
course of events, our Bermudan would then be hedged by a linear combination of these swaptions.

This is eminently reasonable for Bermudan options on bullet swaps (and like-shaped underlyings). It is
less reasonable for Bermudan options on amortizing swaps, and perhaps for zero coupon swaps. Would a
10 year option on a 20 year amorting swap be better represented by an 10 into 20 bullet swaption, or a 10
into 10 bullet? In appendix A we develop a more robust method of characterizing the option based on the
duration and convexity of the payoff. This method should be used for options on amortizers or zero-coupon
swaps. Here we calibrate based on the above characterization. In Appendix A we point out the differences
needed for amortizers.

5.2. Calibration instruments.

5.2.1. Diagonal swaptions. Most decent calibration methods use the Bermudan’s diagonal swaptions,
which we construct here. For each of the exercise dates texj , let T

set
j be the currency’s standard spot date:

(5.5) T set
j = SpotDate(texj , ccy) for j = 1, 2, ..., J.

Let tthend and tactBerm be the theoretical and actual end dates of the Bermudan. The diagonal swaptions are
the swaptions with exercise date texj , start date T

set
j , and the end date Tn for j = 1, 2, ..., J . It remains to

choose the strike Rdiag
j of these swaptions and to construct the payments.

Let us create a standard fixed leg and floating leg schedules based on the theoretical end date tthend:

T0, T1, T2, ..., Tn = tactend.(5.6a)

T flt
0 , T flt

1 , T flt
2 , ..., T flt

m = tactend.(5.6b)

The longest diagonal swap is j = 1, which starts at T set
1 . The schedule should be carried back far enough so

that T0 and T flt
0 are on or before this start date:

(5.7) T0 ≤ T set
1 < T1, T flt

0 ≤ T set
1 < T flt

1

For each swaption j, let i1j be the index of the first pay date after T
set
j :

(5.8) Ti1j−1 ≤ T set
j < Ti1j .

Then the fixed leg payments for swaption j are:

α̃jR
diag
j at Ti for i = i1j(5.9a)

αiR
diag
j at Ti for i = i1j + 1, i

1
j + 2, ..., n− 1(5.9b)

1 + αnR
diag
j at Tn for i = n(5.9c)

Here,

(5.9d) αi = cvg(Ti−1, Ti,fix) for i = 1, 2, .., n

is the fixed leg day count fraction for the full periods, and

(5.9e) α̃j = cvg(T
set
j , Ti1j ,fix)
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is the day count fraction for the first period, which is may be a stub. (The argument “fix” means to used
the fixed leg’s day count basis).

We now constuct the floating leg, converting the basis spreads from the floating leg’s frequency and basis
to the fixed leg’s frequency and basis. Consider a floating leg that starts at, say, k0. This floating leg is
equivalent to

1 at T flt
k0

(5.10a)

βk bsk at T flt
k for k = k0 + 1, ...,m.(5.10b)

Here, bsk is the basis spread for the period beginning at T
flt
k−1 and ending at T

flt
k , and

(5.10c) βk = cvg(T
flt
k−1, T

flt
k ,flt) for k = 1, 2, ..,m

is the day count fraction for the full floating point period. We convert the basis spreads to the fixed leg’s
frequency and day count basis in the usual way.

If the floating leg frequency is the shorter than, or equal to, the fixed leg frequency, define

(5.11a) Si =

P
k∈Ii βk bskD(T

flt
k )

αiD(Ti)

where k ∈ Ii are the floating leg intervals that are part of the ith fixed leg interval:

(5.11b) k ∈ Ii if and only if T th
i−1 < T flt,th

k ≤ T th
i .

If the floating leg frequency is longer than the fixed leg frequency (this is rare), define

(5.12a) Si =
βk bskD(T

flt
k )P

i∈Ik αiD(Ti)

where i ∈ Ik are the fixed leg intervals that are part of the kth floating leg interval:

(5.12b) i ∈ Ik if and only if T flt,th
k−1 < T th

i ≤ T flt,th
k .

We the jth swaption, we approximate the floating leg payments as being equivalent to

1 at T set
j(5.13a)

α̃jSi at Ti for i = i1j(5.13b)

αiSi at Ti for i = i1j + 1, i
1
j + 2, ..., n(5.13c)

The net payments for the swaption are

−1 at T set
j(5.14a)

α̃j

³
Rdiag
j − Si

´
at Ti for i = i1j(5.14b)

αi

³
Rdiag
j − Si

´
at Ti for i = i1j + 1, i

1
j + 2, ..., n(5.14c)

1 + αn

³
Rdiag
j − Sn

´
at Tn for i = n(5.14d)
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We now choose the strikes of the diagonal swaptions. The strike swaption j is set so that the swaption
is in the money at the same shift as the Bermudan:

(5.15a) Rdiag
j =

Dset
j −Dne

−γj(Tn−T setj ) + α̃jSi1jDi1j
e
−γj(Ti1

j
−T setj )

+
Pn

i=i1j+1
αiSiDie

−γj(Ti−T setj )

α̃jDi1j
e
−γj(Ti1j−T

set
j )

+
Pn

i=i1j+1
αiDie

−γj(Ti−T setj )
,

where

(5.15b) Dset
j = D(T set

j ), Di = D(Ti), etc.

After constructing the diagonal swaptions, we obtain their market price via Black’s formula,

(5.16a) Mkt diagj =

½
α̃jDi1j

+
Xn

i=i1j+1
αiDi

¾n
Rdiag
j N (d1)−Rsw

j N (d2)
o
,

where Rsw
j is the (break even) swap rate for the jth diagonal swap,

(5.16b) Rsw
j =

Dset
j −Dn + α̃jSi1jDi1j

+
Pn

i=i1j+1
αiSiDi

α̃jDi1j
+
Pn

i=i1j+1
αiDi

,

and where

(5.16c) d1,2 =
logRdiag

j /Rsw
j ± 1

2σ
2texj

σ
p
texj

.

Here σ is the log normal volatility obtained from, for example, the GetVol function.

5.2.2. Row swaptions. Some calibration methods use the Bermudan’s “row” swaptions. Let tex1 be
the earliest exercise date of the Bermudan, and let T set

1 be the corresponding spot date. The jth row swaption
is the swaption with start date T set

1 and end date Tj . It’s equivalent payments are:

−1 at T set
1(5.17a)

α̃1
¡
Rrow
j − Si

¢
at Ti for i = i11(5.17b)

αi
¡
Rrow
j − Si

¢
at Ti for i = i11 + 1, i

1
1 + 2, ..., j − 1(5.17c)

1 + αj
¡
Rrow
j − Sj

¢
at Tj for i = j(5.17d)

Here the dates Ti, day count fractions α̃j , αi and equivalent basis spreads Si are the precisely the same
quantities calculated for the diagonal swaptions.

If the exercise date tex1 is too near today, say less than 3 months, then one should choose replace it with
the first exercise date texj which is, say, at least 3 months from today.

The diagonal swaptions are defined for j = imin, imin + 1, ..., n where Timin − T set
1 is the shortest inteval

which makes a decent swap (say 10 months).
We choose the strike :

(5.18) Rrow
j =

Dset
1 −Dje

−γ1(Tj−T set1 ) + α̃1Si11Di11
e
−γ1(Ti11−T

set
1 )

+
Pj

i=i11+1
αiSiDie

−γ1(Ti−T set1 )

α̃1Di11
e
−γ1(Ti11−T

set
1 )

+
Pj

i=i11+1
αiDie−γ1(Ti−T

set
1 )

,

These strikes are all at the money at the same parallel shift γ1 at the Bermudan’s first payoff for t
1
ex.
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The market value of these swaptions are

(5.19a) Mktrowj =

½
α̃1Di11

+
Xj

i=i11+1
αiDi

¾©
Rrow
j N (d1)−Rsw

j N (d2)
ª
,

where Rsw
j is the (break even) swap rate for the jth row swap,

(5.19b) Rsw
j =

Dset
1 −Dj + α̃1Si11Di11

+
Pj

i=i11+1
αiSiDi

α̃1Di11
+
Pj

i=i11+1
αiDi

,

and where

(5.19c) d1,2 =
logRrow

j /Rsw
j ± 1

2σ
2texj

σ
p
texj

.

Again the implied vol σ needs to be obtained from, e.g., GetVol.

5.2.3. Column swaptions. For the calibration strategies which use a column of swaptions, we choose
the swaptions which have exercise date texj , start date T

set
j , and end date Tiendj

where iendj is the first index

such that Tiendj
− T set

j makes a decent swap (is at least, say, 10 months long). For each j = 1, 2, ..., J, the
equivalent payments for swaptions j is:

−1 at T set
j(5.20a)

α̃j
¡
Rcol
j − Si

¢
at Ti for i = i1j(5.20b)

αi
¡
Rcol
j − Si

¢
at Ti for i = i11 + 1, ..., i

end
j − 1(5.20c)

1 + αi
¡
Rcol
j − Si

¢
at Ti for i = iendj(5.20d)

Here the dates Ti, day count fractions α̃j , αi and equivalent basis spreads Si are the precisely the same
quantities calculated for the diagonal swaptions. We choose the strike Rcol

j so that each swaption is at the
money for the same parallel shift as the Bermudan,

(5.20e) Rcol
j =

Dset
j −Diendj

e
−γj(Tiend

j
−T setj )

+ α̃jSi1jDi1j
e
−γj(Ti1

j
−T setj )

+
Piendj

i=i1j+1
αiSiDie

−γj(Ti−T setj )

α̃jDi1j
e
−γj(Ti1

j
−T setj )

+
Piendj

i=i1j+1
αiDie

−γj(Ti−T setj )
,

After constructing the column swaptions, we obtain their market price via Black’s formula,

(5.21a) Mktcolj =

½
α̃jDi1j

+
Xiendj

i=i1j+1
αiDi

¾©
Rcol
j N (d1)−Rsw

j N (d2)
ª
,

where Rsw
j is the (break even) swap rate for the jth column swap,

(5.21b) Rsw
j =

Dset
j −Diendj

+ α̃jSi1jDi1j
+
Piendj

i=i1j+1
αiSiDi

α̃jDi1j
+
Piendj

i=i1j+1
αiDi

,

and where

(5.21c) d1,2 =
logRcol

j /Rsw
j ± 1

2σ
2tex1

σ
p
tex1

.

Here σ is the log normal volatility obtained from, for example, the GetVol function.
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5.2.4. Caplets. For the calibration strategies which use caplets (floorlets), we choose the swaptions
which have exercise date texj , start, start date T

set
j , and end date T end

j , where the end date is either 3 months
or 6 months from the start date, depending on the currency. For each j = 1, 2, ..., J , the equivalent payments
for caplet j is:

−1 at T set
j(5.22a)

1 + βj
¡
Rcap
j − bsj

¢
at T end

j(5.22b)

where

(5.22c) βj = cvg(T
set
j , T end

j ,flt) for j = 1, 2, .., J

is the appropriate day count fraction. Here bsj is the basis spread for the floating rate set for start date
T set
j . We choose the strike Rcap

j so that each swaption is at the money for the same parallel shift as the
Bermudan,

(5.22d) Rcap
j =

Dset
j +

¡
1− βj bsj

¢
Dend
j e−γj(T

end
j −T setj )

βjD
end
j e−γj(T

end
j −T setj )

,

After constructing the column swaptions, we obtain their market price via Black’s formula,

(5.23a) Mktcapj =
©
βjD

end
j

ª©
Rcap
j N (d1)−RFRA

j N (d2)
ª
,

where RFRA
j is the (break even) rate for the jth diagonal swap is

(5.23b) RFRA
j =

Dset
j −

¡
1− βj bsj

¢
Dend
j

βjD
end
j

,

and where

(5.23c) d1,2 =
logRcap

j /RFRA
j ± 1

2σ
2texj

σ
p
texj

.

Here σ is the log normal caplet volatility obtained from, for example, the GetVol function.

5.3. Calibration to the diagonal swaptions. Having constructed the universe of possible calibration
instruments, we now go through the calibration strategies and algorithms one by one. Pricing Bermudans
accurately requires calibrating the model to the diagonal swaptions. For if our model doesn’t correctly
price the European swaptions that make up the Bermudan, how could we believe the price obtained for
the Bermudan? In this section we present the strategies for calibrating on diagonal swaptions. These are:
calibration to the diagonal with a constant mean revesion κ; calibration to the diagonal with a known
function H(T ); calibration to the diagonal with a linear ζ(t), and calibration to the diagonal with a known
ζ(T ).

For instruments other than Bermudans, it may be appropriate to calibrate to other series of vanilla
instruments. So following are sections devoted to calibating on a series of caplets, to calibrating on a column
of swaptions, and to calibrating to a row of swaptions

Since the LGMmodel has two model “parameters,” ζ(t) andH(T ), we can calibrate jointly to two distinct
series of vanilla instrumetns. In the final section we present calibration strategies which calibrate jointly to
the diagonal swaptions plus another series of instruments. These are: calibration to the diagonal swaptions
and a row swaptions, calibration to the diagonal swaptions and a column swaptions, and calibrating to the
diagonal swaptions and to caplets. For completeness, we also calibrate on a row and column of swaptions,
on a row of swaptions and to caplets.
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5.3.1. Calibration to the diagonal swaptions with constant κ. For this calibration strategy,
the mean reversion coefficient κ is a user-supplied constant (Where to obtain good wake-up values for κ is
discussed below. Empirically κ is usually between −1% and +5%..

Recall that H”(T )/H(T ) = −κ, so that H(T ) = Ae−κT +B for some constants A and B. At this point
we use the model invariants H(T ) −→ CH(T ) and H(T ) −→ H(T ) +K to set

(5.24) H(T ) =
1− e−κT

κ
,

without loss of generality, where T is measured in years. With H(T ) known, we compute

Hs
j = H(T set

j ) =
1− e−κT

set
j

κ
for j = 1, 2, ..., J(5.25a)

Hi = H(Ti) =
1− e−κTi

κ
for i = 1, 2, ..., n.(5.25b)

We now determine ζj = ζ(texj ) for each j by calibrating to diagonal j.
Recall that if the jth diagonal swaption is exercised at its notification date texj , the payments are

−1 at T set
j(5.26a)

α̃j

³
Rdiag
j − Si

´
at Ti for i = i1j(5.26b)

αi

³
Rdiag
j − Si

´
at Ti for i = i1j + 1, i

1
j + 2, ..., n(5.26c)

1 + αn

³
Rdiag
j − Sn

´
at Tn for i = n,(5.26d)

Under the LGM model, the value of this swaption is thus

V diag
j (0, 0) = α̃j

³
Rdiag
j − Si1j

´
Di1j

N

Ã
y∗ +∆Hi1j

ζjp
ζj

!
(5.27a)

+
nX

i=i1j+1

αi

³
Rdiag
j − Si

´
DiN

Ã
y∗ +∆Hiζjp

ζj

!

+DnN

Ã
y∗ +∆Hnζjp

ζj

!
−Dset

j N

Ã
y∗p
ζj

!

where y∗ is obtained by solving

α̃j

³
Rdiag
j − Si1j

´
Di1j

e
−∆Hi1

j
y∗− 1

2∆H
2
i1
j
ζj
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
Die

−∆Hiy
∗− 1

2∆H
2
i ζj(5.27b)

+Dne
−∆Hny

∗− 1
2∆H

2
nζj = Dset

j ,

and where we have used

(5.27c) ∆Hi = Hi −Hset
j = H(Ti)−H(T set

j )
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We also have a formula for the derivative

∂

∂
p
ζj
V diag
j (0, 0) = ∆Hi1j

α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
y∗ +∆Hi1j

ζjp
ζj

!
(5.28)

+
nX

i=i1j+1

∆Hiαi

³
Rdiag
j − Si

´
DiG

Ã
y∗ +∆Hiζjp

ζj

!

+∆HnDnG

Ã
y∗ +∆Hnζjp

ζj

!
.

We can use a global Newton’s scheme to compute the value of
p
ζj which sets the theoretical price to the

market price:

(5.29) V diag
j (0, 0) = Mktdiagj

Repeating for all j gives us ζ(0) = 0 and ζ(texj ) for j = 1, 2, ..., J . We use piecewise linear interpolation to
get values of ζ(t) at other values of t. It should be noted that evaluating the Bermudan does not require
ζ(t) at any other dates.

Re-scaling H(T ) and ζ(t). At this point we have both H(T ) and ζ(t). Many firms find it convenient to
use a standard scaling for H(T ) and ζ(t), to aid intuition if for no other reason. One can use the invariances

H(T ) −→ H(T ) + C, ζ(t) −→ ζ(t)(5.30a)

H(T ) −→ KH(T ), ζ(t) −→ ζ(t)/K2(5.30b)

to re-scale these quantities, if desired. For example, many people choose to set H(0) = 0 and H(tend) = tend,
where tend is the final pay date of the deal in years.

Aside: Initial guess. An accurate initial guess for
p
ζj can be found from the equivelent vol formula.

This yields s
ζj

σtexj Rsw
j Rdiag

j

(5.31)

≈
α̃jDi1j

+
Pn

i=i1j+1
αiDi

α̃j

³
Rdiag
j − Si1j

´
Di1j
∆Hi1j

+
Pn

i=i1j+1
αi

³
Rdiag
j − Si

´
Di∆Hi +Dn∆Hn

where σ is the swaptions implied vol from the marketplace.
Aside: Global Newton’s method for one parameter fits. Suppose one is trying to solve

(5.32a) f(z) = target

for z. Normally one starts from an intial guess z0, and expands f(zn+1) = f(zn + δz) ≈ f(zn) + f 0(zn)δz to
obtain a Newton’s method:

(5.32b) δz = zn+1 − zn =
target− f(zn)

f 0(zn)
.

Provided this algorithm converges, it converges very rapidly. Unfortunately, this algorithm sometimes di-
verges.

The global Newton method differs in only one respect: after calculating the Newton step δz, one checks
to see if taking the step decreases the error. If it does, one accepts the step. If it does not, then one cuts
the step in half, and then again checks to see if the error decreases. Eventually the error will decrease, and
the step is accepted. The next Newton step is then calculated.
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Aside: Infeasible market prices. Since

(5.33) ζ(t) =

Z t

0

α2(t0)dt0,

clearly ζ(t) must be an increasing function of t :

(5.34) 0 = ζ(0) ≤ ζ1 ≤ ζ2 ≤ · · · ≤ ζJ .

Since each ζj is calibrated seperately, it may happen that ζj < ζj−1. (In practice this happens very, very
rarely, but it does happen). One should test to see that the condition ζj ≥ ζj−1is true after each ζj is found,
and when this condition is violated, one should replace ζj by ζj−1, its minimum feasible value:

(5.35) ζj −→ ζj−1 if ζj < ζj−1.

This means that the jth swaption will be priced at the closest possible price to the market price attainable
within the calibrated LGM model, but it will not match the price exactly.

Aside: Where do the κ0s come from?. Suppose we set κ, calibrate the model to the diagonal, and then
price the Bermudan. The resulting Bermudan price is a slightly increasing function of κ. Selecting the right
κ ensures that we match the market price for the Bermudan. Desks often use a matrix to keep track of the
κ needed to price a “y NC x” Bermudan correctly. That is, they fill in the κ’s for the liquid Bermudans, and
use “continuity” obtain the other entries in the matrix. Empirically, the κ change very, very slowly. market
makers keep track of the mean reversion κ.

We should plan to have a matrix of “wake-up” values, perhaps by currency, for this strategy. I can
obtain the current κ matrix.

5.3.2. Calibration to the diagonal swaptions with H(T ) specified. Suppose that H(T ) is speci-
fied a priori. (A possible source of such curves H(T ) is indicated below). Typically H(T ) is given at discrete
points H(T1),H(T2), . . . ,H(TN ), and piecewise linear interpolation is used between nodes. Piecewise linear
interpolation is equivalent to assuming that all shifts of the forward rate curve are by piecewise constant
curves.

With H(T ) set, we can use the preceding procedure and formulas to calibrate on the diagonal swaptions.
This determines the value of ζ(t) at tex1 , tex2 , . . . , texJ . As above, one adds the point ζ(0) = 0, one ensures that
the ζj = ζ(texj ) are increasing, and one re-scales ζ(t),H(T ) to taste. If one needs ζ(t) for other values of t,
one uses piecewise linear interpolation.

Origin of the H(T ). Suppose one had the set of 30 NC 20, 30 NC 15, 30 NC 10, 30 NC 5 and 30 NC 1
Bermudan swaptions. Wouldn’t it be nice if the same curve H(T ) were used for each of these Bermudans?
The 30 NC 10 Bermudan includes the 30 NC 15 and the 30 NC 20 Bermudans. It would be satisfying if our
valuation procedure for the 30 NC 15 and 30 NC 20 assigned the same price to these Bermudans regardless
of whether they were individual deals or part of a larger Bermudan.

One could arrange this by first using a constant κ, let’s call it κ4, to calibrate and price the 30 NC 20
Bermudan. Without loss of generality, we could select

(5.36a)
H 0(T ) = eκ4(T30−T )

H(T ) = − eκ4(T30−T )−1
κ4

for T20 ≤ T ≤ T30.

We would calibrate on the diagonal to find ζ(t) at expiry dates τm, τm+1, . . . beyond 20 years, and then price
the 30 NC 20 Bermudan. Selecting the right value of κ4 would match the Bermudan price to its market
value. Neither the swaption prices nor the Bermudan prices depend on H(T ) or ζ(t) for dates before the 20
year point.
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To price the 30 NC 15, one could use the H(T ) obtained from κ4 for years 20 to 30, and choose a different
kappa, say κ3, for years 15 to 20:

(5.36b)
H 0(T ) = eκ3(T20−T )eκ4(T30−T20)

H(T ) = −e
κ3(T20−T ) − 1

κ3
eκ4(T30−T20) − eκ4(T30−T20) − 1

κ4

for T15 ≤ T ≤ T20.

Calibrating would produce the same ζ(t) values for years 20 to 30 as before. In addition, for each κ3 it would
determine ζ(t) for years 15 to 20. By selecting the right κ3, one could match the 30 NC 15 Bermudan’s
market price.

Continuing in this way, one produces the values of ζ(t) and H(T ) for years 10 to 15, for years 5 to 10,
and finally for years 1 to 5. This ζ(t) and H(T ) would then yield a model which matches all the diagonal
swaptions and happens to correctly price all the liquid, 30y co-terminal Bermudans. These κ(t)’s turn out to
be extremely stable, only varying very rarely, and then by small amounts. Typically a desk would remember
the κ(t)’s as a function of the co-terminal points, relying on the same κ(t)’s for years. I will obtain the
current κt)’s to use for the wakeup value for this strategy.

In general, if Tn is the co-terminal point and T0, T1, . . . , Tn−1 are the “no call” points, then H(T ) is:

H(T ) = −e
κj(Tj−T ) − 1

κj

nY
i=j+1

eκi(Ti−Ti−1) −
nX

k=j+1

eκk(Tk−Tk−1) − 1
κk

nY
i=k+1

eκi(Ti−Ti−1)(5.37)

for Tj−1 ≤ T ≤Tj

5.3.3. Calibration to the diagonal swaptions with linear ζ(t). This is an idea pioneered by
Solomon brothers. Let us use a constant local volatility. Then

(5.38a) ζ(t) =

Z t

0

α2dt0 = α20t

is linear. By using the invariance ζ(t) −→ ζ(t)/K2,H(T ) −→ KH(T ) we can choose α0 to be any arbitrary
constant without affecting any prices. So we choose

(5.38b) ζ(t) = α20t,

where t is measured in years, and the dimensionless constant α0 is, say,

(5.38c) α0 = 10
−2.

We use the second invariance to set Hn = H(Tn) = 0. We shall calibrate the diagonal swaptions to determine
the values of H(T ) on the settlement dates, Hset

j = H(T set
j ). For other values of T, we assume that H(T )

is piecewise linear:

H(T ) = Hset
1 +

T − T set
1

T set
2 − T set

1

¡
Hset
2 −Hset

1

¢
for T ≤ T set

j ,(5.39a)

H(T ) = Hset
j−1 +

T − T set
j−1

T set
j − T set

j−1

¡
Hset
j −Hset

j−1
¢

for T set
j−1 ≤ T ≤ T set

j(5.39b)

H(T ) = Hset
J +

T − T set
J

Tn − T set
J

¡
Hn −Hset

J

¢
for T set

J ≤ T(5.39c)
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The value of the jth diagonal swaption can be written as

V diag
j (0, 0) = α̃j

³
Rdiag
j − Si1j

´
Di1j

N

Ã
q + hij1 ζjp

ζj

!
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
DiN

Ã
q + hiζjp

ζj

!
(5.40a)

+DnN

Ã
qp
ζj

!
−Dset

j N

Ã
q + hsetj ζjp

ζj

!

where

hi = H(Ti)−H(Tn) for i = 1, 2, ..., n(5.40b)

hsetj = H(T set
j )−H(Tn) for j = 1, 2, ..., J(5.40c)

and where q is determined implicitly by

α̃j

³
Rdiag
j − Si1j

´
Di1j

e
−h

i1
j
q− 1

2h
2
i1
j
ζj
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
Die

−hiq− 1
2h

2
i ζj(5.40d)

+Dn = Dset
j e−h

set
j q− 1

2h
2
i ζj .

The last swaption J only depends on hsetJ and on hi for the paydates after T set
J . Since Hn = 0, these

values are given in terms of hsetJ

(5.41a) hi = hsetJ

Tn − T

Tn − T set
J

for i ≥ i1J .

There is a unique value of hsetJ which matches the LGM price to the market price for the last swaption. This
can be easily found by a global Newton’s scheme, since we have the derivative

1p
ζJ

∂V diag
J

∂hsetJ

= α̃J

³
Rdiag
J − Si1J

´ Tn − Ti1J
Tn − T set

J

Di1J
G

Ã
q + hi1J ζJp

ζJ

!
(5.41b)

+
n−1X

i=i1J+1

αi

³
Rdiag
J − Si

´ Tn − Ti
Tn − T set

J

DiG

Ã
q + hiζJp

ζJ

!

−Dset
J G

Ã
q + hsetj ζJp

ζJ

!

analytically.
Now suppose that we have calibrated all the swaptions after j to obtain hsetj+1, h

set
j+2, ..., h

set
J . Since we are

using piecewise interpolation, this determines H(T ) for all T ≥ T set
j+1. We now calibrate on swaption j to

obtain hsetj . The value of this swaption depends on hsetj and any paydates between T set
j and T set

j+1:

(5.42a) hi =
T set
j+1 − T

T set
j+1 − T set

j

hsetj +
T − T set

j

T set
j+1 − T set

j

hsetj+1 for i1j ≤ i ≤ i1j+1

Since hi for i ≥ i1j+1 are known from previous steps in the calibration, the only unknown parameter is h
set
j . A

global Newton’s scheme can be used to efficiently determin thunique value of this parameter which matches
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the jth swaption’s LGM price to its market price. Note that the derivative of the value with respect to hj is

1p
ζj

∂V diag
j

∂hsetj

= α̃j

³
Rdiag
j − Si1J

´ T set
j+1 − Ti1j

T set
j+1 − T set

j

Di1J
G

Ã
q + hi1J ζjp

ζj

!
(5.42b)

+

i1j+1−1X
i=i1j+1

αi

³
Rdiag
j − Si

´ T set
j+1 − Ti

T set
j+1 − T set

j

DiG

Ã
q + hiζjp

ζj

!

−Dset
j G

Ã
q + hsetj ζjp

ζj

!
Continuing, we can calibrate on the swaptions one at a time (backwards) to obtain

(5.43) Hset
1 ,Hset

2 , ...,Hset
J ,Hn

on the dates tset1 , ..., tsetJ , tn. One uses linear interpolation/extrapolation to get H(t) at other values of t. Of
course, after finding the ζ(t),H(T ), one can use the invariances to scale them to taste.

Infeasible values. In deriving the swaption formulas, we assumed that H(T ) was an increasing function
of T . Since we are calibrating the Hset

j ’s seperately, it may happen that Hset
j may exceed Hset

j+1. (In practice,
this has never happened to my knowledge. Still one must be prepared.) After each Hset

j is found, one should
check to see that

(5.44) Hset
j ≤ Hset

j+1.

If this condition is violated, one should reset Hj−1 = Hj . This means the jth swaption would not match its
market price exactly. Instead it would be the closest feasible price.

Initial guess. The equivalent vol techniques yieldsvuutσtexj Rsw
j Rdiag

j

ζj
(5.45)

≈
α̃j

³
Rdiag
j − Si1j

´
Di1j

hi1j +
Pn

i=i1j+1
αi

³
Rdiag
j − Si

´
Dihi −Dset

j hsetj

α̃jDi1j
+
Pn

i=i1j+1
αiDi

where Rsw
j is the swap rate and σ is the swaption’s implied vol from the marketplace. Since this is linear in

the h’s, one can solve to get a decent initial guess for hsetj .

5.3.4. Calibration to diagonal swaptions with prescribed ζ(t). The preceding calibration pro-
cedure did not depend on ζ(t) being linear; it just depended on ζ(t) being known. So suppose that ζ(t)
is a known function which is increasing and has ζ(0) = 0. We could carry out the preceding calibration
procedure to determine H(T ) from the diagonal swaptions.

5.4. Calibration to caplets. There are many exotic structures which are more naturally priced and
hedged in terms of caplets. Autocaps and revolvers, for example. Even though these calibration methods
shouldn’t be used for pricing Bermudans, we present them here for completeness. We will also make use of
these calibration methods later for joint calibrations to the diagonal swaptions and caplets.

For each j = 1, 2, ..., J , the equivalent payments for caplet j are:

−1 at T set
j(5.46a)

1 + βj
¡
Rcap
j − bsj

¢
at T end

j .(5.46b)
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Here

(5.46c) βj = cvg(T
set
j , T end

j ,flt) for j = 1, 2, .., J

is the appropriate day count fraction and bsj is the basis spread for the floating rate set for start date T set
j .

Caplet and floorlets are one period swaptions. If we specialize the swaption formulas 3.7a, 3.7b to one
period, we find that the LGM price for the caplet is

(5.47a) V cap
j (0, 0) = Dend

j

£
1 + βj

¡
Rcap
j − bsj

¢¤N (dlgm1 )−Dend
j

£
1 + βj

¡
RFRA
j − bsj

¢¤N ³
dlgm2

´
where RFRA

j is the break-even caplet rate

(5.47b) RFRA
j =

Dset
j −

¡
1− βj bsj

¢
Dend
j

βjD
end
j

,

and where dlgm1 and dlgm2 are given by

(5.47c) dlgm1,2 =

log
1 + βj

¡
Rcap
j − bsj

¢
1 + βj

¡
RFRA
j − bsj

¢ ± 1
2

¡
Hend
j −Hset

j

¢2
ζj¡

Hend
j −Hset

j

¢p
ζj

.

Here,

(5.47d) Hset
j = H(T set

j ), Hend
j = H(T end

j ), ζj = ζ(texj ).

We observe this is Black’s formula for a European option on an asset with forward price,

(5.48a) F = 1 + βj
¡
Rcap
j − bsj

¢
,

with strike

(5.48b) K = 1 + βj
¡
RFRA
j − bsj

¢
= Dset

j /Dend
j ,

and with settlement date T end
j . Suppose we use an implied volatility routine to find the implied (price) vol

σcap,pricej which matches this caplet to its market value. Then

(5.48c)
¡
Hend
j −Hset

j

¢q
ζj = σcap,pricej

√
tex.

5.4.1. Calibration to caplets with constant mean reversion κ. For this calibration strategy,
the mean reversion coefficient κ is a user-supplied constant. Recall that H”(T )/H(T ) = −κ, so that
H(T ) = Ae−κT +B for some constants A and B. At this point we use the model invariants to set

(5.49a) H(T ) =
1− e−κT

κ
,

without loss of generality, where T is measured in years. With H(T ) known, matching the caplets to their
market price requires

(5.49b)
q
ζj =

σcap,pricej

√
tex

Hend
j −Hset

j

for j = 1, 2, .., J
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This determines ζ(t) at the exercise dates tex1 , tex2 , ..., texJ . Again, it may happen that ζj < ζj−1 for some j,
in which case we need to make the replacement

(5.50) ζj −→ ζj−1 if ζj < ζj−1.

As usual, we append ζ(0) = 0 and use piecewise linear interpolation to obtain ζ(t) at other dates. Having
found ζ(t) and H(T ), one can use the invariances to normalize them according to test.

5.4.2. Calibration to caplets with H(T ) specified. The above calibration procedure does not
depend on κ being constant. It depends only on H(T ) being known. If H(T ) is an externally supplied
function, then we can carry out the same calibration to obtain ζ(t).

5.4.3. Calibration to caplets with linear ζ(t). For this calibration procedure, we assume the local
volatility α is constant

(5.51a) ζ(t) =

Z t

0

α2dt0 = α20t.

is linear. By using the multiplicative invariance ζ(t) −→ ζ(t)/K2,H(T ) −→ KH(T ) we can choose

(5.51b) ζ(t) = α20t,

where t is measured in years and α0 is, say,

(5.51c) α0 = 10
−2.

Matching the caplets to their market prices requires

(5.52) Hend
j −Hset

j =
σcap,pricej

α0
for j = 1, 2, .., J.

We now use the additive invariance to set H(Tn) = 0 and take H(T ) to be piecewise linear

H(T ) = Hset
1 +

T − T set
1

T set
2 − T set

1

¡
Hset
2 −Hset

1

¢
for T ≤ T set

j ,(5.53a)

H(T ) = Hset
j−1 +

T − T set
j−1

T set
j − T set

j−1

¡
Hset
j −Hset

j−1
¢

for T set
j−1 ≤ T ≤ T set

j(5.53b)

H(T ) = Hset
J +

T − T set
J

Tn − T set
J

¡
Hn −Hset

J

¢
for T set

J ≤ T(5.53c)

Starting at the last caplet j = J, we see that we must choose

(5.54a) Hset
J = −σ

cap,price
J

α0

Tn − T set
J

T end
J − T set

J

since H(Tn) = 0. Suppose our calibration procedure has produced Hset
j+1,H

set
j+2, ...,H

set
J , and Hn. We now

find Hset
j . First, if T end

j ≤ T set
j+1, then

(5.54b) Hset
j = Hset

j+1 −
σcap,pricej

α0

T set
j+1 − T set

j

T end
j − T set

j

if T end
j ≤ T set

j+1.
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On the other hand, if T end
j > T set

j+1, then H(T end
j ) is in the already-calibrated region of the curve, and can

be found by piecewise linear interpolation on Hset
j+1,H

set
j+2, ...,Hn. In this case, we use

(5.54c) Hset
j = Hend

j − σcap,pricej

α0
if T end

j > T set
j+1.

to set Hset
j . Continuting backwards in this way, we obtain Hset

j at all the settlement dates j. Having ζ(t)
and H(T ), we can now normalize them to taste.

5.4.4. Calibration to caplets with prescribed ζ(t). The above procedure for determining H(T )
did not depend on ζ(t) be linear in t; it only relied on ζ(t) being a known function. Suppose that ζ(t) is
an externally supplied function. Then we can use the above procedure to find H(T ) provided we make the
replacement

(5.55)
σcap,pricej

α0
−→ σcap,pricej

p
texjq

ζ(texj )

5.5. Calibration to a column of swaptions. Recall that tthe equivalent payments for the jth column
swaptions j are

−1 at T set
j(5.56a)

α̃j
¡
Rcol
j − Si

¢
at Ti for i = i1j(5.56b)

αi
¡
Rcol
j − Si

¢
at Ti for i = i11 + 1, ..., i

end
j − 1(5.56c)

1 + αi
¡
Rcol
j − Si

¢
at Ti for i = iendj(5.56d)

Under the LGM model, the value of this swaption is thus

V col
j (0, 0) = α̃j

³
Rcol
j − Si1j

´
Di1j

N

Ã
y∗ +∆Hi1j

ζjp
ζj

!
(5.57a)

+

iendjX
i=i1j+1

αi
¡
Rcol
j − Si

¢
DiN

Ã
y∗ +∆Hiζjp

ζj

!

+Diendj
N

Ã
y∗ +∆Hiendj

ζjp
ζj

!
−Dset

j N

Ã
y∗p
ζj

!
where y∗ is obtained by solving

α̃j

³
Rcoil
j − Si1j

´
Di1j

e
−∆Hi1

j
y∗− 1

2∆H
2
i1j
ζj
+

iendjX
i=i1j+1

αi
¡
Rcol
j − Si

¢
Die

−∆Hiy
∗− 1

2∆H
2
i ζj(5.57b)

+Diendj
e
−∆H

iend
j

y∗− 1
2∆H

2

iend
j

ζj
= Dset

j ,

and where we have used

(5.57c) ∆Hi = Hi −Hset
j = H(Ti)−H(T set

j )

33



These formulas are identical to the formulas for the diagonal swaptions, provided one replaces Rdiag
j with

Rrow
j and replaces n with iendj for each swaption j. With a little tinkering, one can use the same software

to calibrate each column swaption as used for the corresponding diagonal swaption. This gives us the methods

• Calibration to a column of swaptions with constant mean reversion
• Calibration to a column of swaptions with H(T ) specified
• Calibration to a column of swaptions with linear ζ(t)
• Calibration to a column of swaptions with prescribed ζ(t).

Written properly, these routines should work with an arbitrary iendj , so one does not have to limit oneself
to a column of swaptions. Instead one can use any sequence of swaptions which has an increasing set of
exercise dates texj and settlement dates T set

j .

5.6. Calibration to a row of swaptions. Recall that the jth row swaption is the swaption with start
date T set

1 and end date Tj . It’s equivalent payments are:

−1 at T set(5.58a)

α̃1
¡
Rrow
j − Si

¢
at Ti for i = i1(5.58b)

αi
¡
Rrow
j − Si

¢
at Ti for i = i1 + 1, i1 + 2, ..., j − 1(5.58c)

1 + αj
¡
Rrow
j − Sj

¢
at Tj for i = j.(5.58d)

Here the dates Ti, day count fractions α̃j , αi and equivalent basis spreads Si are the precisely the same
quantities calculated for the diagonal swaptions. We also abbreviate i1 = i11 for the index of the first paydate
after T set

1 . Under the LGM model, the value of the jth row swaption is

V row
j (0, 0) = α̃j

¡
Rrow
j − Si1

¢
Di1N

Ã
y∗ +∆Hi1ζexp

ζex

!
(5.59a)

+

jX
i=i1+1

αi
¡
Rrow
j − Si

¢
DiN

Ã
y∗ +∆Hiζexp

ζex

!

+DjN

Ã
y∗ +∆Hjζexp

ζex

!
−DsetN

Ã
y∗p
ζex

!
where y∗ is obtained by solving

α̃j
¡
Rrow
j − Si1

¢
Di1e

−∆Hi1y
∗− 1

2∆H
2
i1
ζex +

jX
i=i1+1

αi
¡
Rrow
j − Si

¢
Die

−∆Hiy
∗− 1

2∆H
2
i ζex(5.59b)

+Dje
−∆Hjy

∗− 1
2∆H

2
j ζex = Dset,

and where we have used

(5.59c) Dset = D(T set
1 ), ζex = ζ(tex1 ), ∆Hi = Hi −Hset = H(Ti)−H(T set

1 ),

Since all these swaptions have the same exercise date, they depend only on a single value of ζ(t), namely
ζex. It makes no sense to calibrate ζ(t) from these swaptions. This leaves two natural methods for calibrating
a row of swaptions:

• Calibration to a row of swaptions with linear ζ(t)
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• Calibration to a row of swaptions with prescribed ζ(t).
In the first case, we can use the multiplicative invariance to set

(5.60a) ζex = α20t
ex
1

without loss of generality, where α0 = 10−2. This puts us in the second case where ζex is prescribed as an
input.

Since ζex is known, we only need to find H(T ) via calibration. We use the second invariance to set
Hset = 0, and prescribe H(T ) to be piecewise linear with nodes at the end dates Ti1 , Ti1+1, ..., Tn:

H(T ) =
T − T set

1

Ti1 − T set
1

Hi1 for T ≤ Ti1 ,(5.60b)

H(T ) = Hi−1 +
T − Ti−1
Ti − Ti−1

(Hi −Hi−1) for Ti−1 ≤ T ≤ Ti, i = i1 + 1, .., n− 1(5.60c)

H(T ) = Hn−1 +
T − Tn−1
Tn − Tn−1

(Hn −Hn−1) for T set
n−1 ≤ T(5.60d)

We note that the first swaption j = i1 depends only on H(T ) that are determined by Hi1 . A global Newton
scheme suffices to find Hi1 by matching this swaption against its market value. The next swaption depends
on the same H(T ) values as before, along with one new value, Hj = H(Tj) with j = i11 + 1. Again Hj can
be found by calibrating the jth row swaption. Iterating, we can determine H at all the nodes by calibrating
to successive swaptions. Again, it’s concievable that one of these Hj is not increasing. In that case we have
to replace it to ensure that H(T ) is non-decreasing:

(5.61) Hj −→ Hj−1 if Hj < Hj−1.

5.7. Calibraton to two series of vanilla instruments. Since the LGM model has two model “pa-
rameters,” ζ(t) and H(T ), we can calibrate to two series of vanilla instruments. Following are the most
popular strategies

5.7.1. Calibration to diagonal swaptions and a row of swaptions. Recall that a row of swaptions
is a set of swaptions, all with the same exercise date tex1 and same start date T set

1 , but with varying end
dates. We use the multiplicative invariance to set

(5.62) ζex = α20t
ex
1

without loss of generality, where α0 = 10−2. Since this is the only value of ζ(t) used by the row swaptions,
we can now use the “calibration to a row of swaptions with prescribed ζ(t)” routine described above to find
H(T ). Knowing H(T ), we can use the “calibration to the diagonal swaptions with H(T ) specified” described
above to find ζ(t). At this point we can normalize ζ(t),H(T ) to taste.

After calibrating to a row of swaptions to determine H(T ), one does not have to use the diagonal
swaptions to find ζ(t). Instead one could calibrate on the caplets or a column of swaptions. This gives us
the methods

5.7.2. Calibration to caplets and a row of swaptions. After calibrating to the row of swaptions
to determine H(T ), one can use the “calibration to caplets with H(T ) specified” routine described above to
find ζ(t).

5.7.3. Calibration to a column and row of swaptions. After calibrating to the row of swaptions
to determine H(T ), one can use the “calibration to a column of swaptions with H(T ) specified ” routine
described above to find ζ(t).
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5.7.4. Calibration to diagonal swaptions and a column of swaptions. This calibration method
simultaneously calibrating the jth diagonal and the jth column swaption to determine both ζj = ζ(texj ) and
H(T set

j ). One starts at the last pair, j = J , and works backward.
Recall that the jth diagonal and jth column swaption share identical exercise dates texj and settlement

dates T set
j . They differ only in the end date: the diagonal swaption goes all the way to Tn , while the column

swaption stops at Tiendj
.

For the last pair of swaption, j = J , we usually have iendJ = n, and the two swaptions are identical. Even
if they are not identical, we should exclude the last column swap as being too similar to the diagonal swap.

The value of the jth diagonal swaption can be written as

V diag
j (0, 0) = α̃j

³
Rdiag
j − Si1j

´
Di1j

N

Ã
q + hij1 ζjp

ζj

!
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
DiN

Ã
q + hiζjp

ζj

!
(5.63a)

+DnN

Ã
qp
ζj

!
−Dset

j N

Ã
q + hsetj ζjp

ζj

!

where

α̃j

³
Rdiag
j − Si1j

´
Di1j

e
−h

i1
j
q− 1

2h
2
i1
j
ζj
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
Die

−hiq− 1
2h

2
i ζj(5.63b)

+Dn = Dset
j e−h

set
j q− 1

2h
2
i ζj .

Similarly, the value of the jth column swaption is

V col
j (0, 0) = α̃j

³
Rcol
j − Si1j

´
Di1j

N

Ã
u+ hi1j ζjp

ζj

!
(5.63c)

+

iendjX
i=i1j+1

αi
¡
Rcol
j − Si

¢
DiN

Ã
u+ hiζjp

ζj

!

+Diendj
N

Ã
u+ hiendj

ζjp
ζj

!
−Dset

j N

Ã
u+ hsetj ζjp

ζj

!

where

α̃j

³
Rcol
j − Si1j

´
Di1j

e
−hi1j u−

1
2h

2
i1
j
ζj
+

iendjX
i=i1j+1

αi
¡
Rcol
j − Si

¢
Die

−hiu− 1
2h

2
i ζj(5.63d)

+Diendj
e
−h

iend
j

u− 1
2h

2

iend
j

ζj
= Dset

j e−h
set
j u− 1

2h
2
i ζj .

Here we are using

hi = H(Ti)−H(Tn) for i = 1, 2, ..., n(5.63e)

hsetj = H(T set
j )−H(Tn) for j = 1, 2, ..., J(5.63f)
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We use piecewise linear interpolation for H(T ), with nodes at the start dates T set
j and the final end date

Tn:

H(T ) =
T set
2 − T

T set
2 − T set

1

Hset
1 +

T − T set
1

T set
2 − T set

1

Hset
2 for T ≤ T set

j ,(5.64a)

H(T ) =
T set
j − T

T set
j − T set

j−1
Hset
j−1 +

T − T set
j−1

T set
j − T set

j−1
Hset
j for T set

j−1 ≤ T ≤ T set
j(5.64b)

H(T ) =
Tn − T

Tn − T set
J

Hset
J +

T − T set
J

Tn − T set
J

Hn for T set
J ≤ T(5.64c)

Without loss of generality, we choose H(T ) to be 0 at the final pay date. This means that H(T ) and
h(T ) are identical in the above formulas. We use the second invariance to set the slope of H(T ) to be 1 in
the final interval:

(5.65) Hset
J = H(T set

J ) = T set
J − Tn Hn = H(Tn) = 0

This determines all the values of H(T ) for T ≥ T set
J , so the last swaption depends only on one unknown

parameter, ζJ = ζ(texJ ). We use our standard global Newton scheme to determine ζJ .
Suppose that we have already found H(T ) for T ≥ T set

j+1 for some j. We now find Hj = H(Tj) and ζj
by matching the jth diagonal and jth column swaption. These swaptions depend on ζj = ζ(texj ) (which is
unknown), H(T ) for T ≥ T set

j+1 (which is known), and on

(5.66) H(T ) =
T set
j+1 − T

T set
j+1 − T set

j

Hset
j +

T − T set
j

T set
j+1 − T set

j

Hset
j+1 for T set

j ≤ T ≤ T set
j ,

(which is determined by Hset
j , which is unknown). So there are two parameters to fit, Hset

j and ζj and two
swaption values to set to their market prices. We will use a global multi-factor Newton’s method to find
these parameters. This requires differentiating the swaption values:

∂V diag
j

∂
p
ζj

= hij1 α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.67a)

+
nX

i=i1j+1

hiαi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!
− hsetj Dset

j G

Ã
q + hsetj ζjp

ζj

!

∂V col
j

∂
p
ζj
= hi1j α̃j

³
Rcol
j − Si1j

´
Di1j

G

Ã
u+ hi1j ζjp

ζj

!
(5.67b)

+

iendjX
i=i1j+1

hiαi
¡
Rcol
j − Si

¢
DiG

Ã
u+ hiζjp

ζj

!

+hiendj
Diendj

G

Ã
u+ hiendj

ζjp
ζj

!
− hsetj Dset

j G

Ã
u+ hsetj ζjp

ζj

!
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and

1p
ζj

∂V diag
j

∂Hset
j

=
T set
j+1 − Ti1j

T set
j+1 − T set

j

α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.67c)

+

Ti≤T setj+1X
i=i1j+1

T set
j+1 − Ti

T set
j+1 − T set

j

αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!

−Dset
j G

Ã
q + hsetj ζjp

ζj

!

1p
ζj

∂V col
j

∂Hset
j

=
T set
j+1 − Tij1

T set
j+1 − T set

j

α̃j

³
Rcol
j − Si1j

´
Di1j

G

Ã
u+ hi1j ζjp

ζj

!
(5.67d)

+

iendjX
i=i1j+1

max

(
T set
j+1 − Ti

T set
j+1 − T set

j

, 0

)
αi
¡
Rcol
j − Si

¢
DiG

Ã
u+ hiζjp

ζj

!

+max

(
T set
j+1 − Tiendj

T set
j+1 − T set

j

, 0

)
Diendj

G

Ã
u+ hiendj

ζjp
ζj

!
−Dset

j G

Ã
u+ hsetj ζjp

ζj

!

From 5.63b, 5.63d, we deduce that

α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!
(5.68a)

+DnG

Ã
q + hnζjp

ζj

!
= Dset

j G

Ã
q + hsetj ζjp

ζj

!
,

α̃j

³
Rcol
j − Si1j

´
Di1j

G

Ã
u+ hij1 ζjp

ζj

!
+

iendjX
i=i1j+1

αi
¡
Rcol
j − Si

¢
DiG

Ã
u+ hiζjp

ζj

!
(5.68b)

+Diendj
G

Ã
u+ hiendj

ζjp
ζj

!
= Dset

j G

Ã
u+ hsetj ζjp

ζj

!
,

This shows that the four derivatives can be wriiten as:

∂V diag
j

∂
p
ζj

=
³
Hij1

−Hset
j

´
α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.69a)

+
nX

i=i1j+1

¡
Hi −Hset

j

¢
αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!

+
¡
Hn −Hset

j

¢
DnG

Ã
q + hnζjp

ζj

!
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∂V col
j

∂
p
ζj
=
³
Hij1

−Hset
j

´
α̃j

³
Rcol
j − Si1j

´
Di1j

G

Ã
u+ hi1j ζjp

ζj

!
(5.69b)

+

iendjX
i=i1j+1

¡
Hi −Hset

j

¢
αi
¡
Rcol
j − Si

¢
DiG

Ã
u+ hiζjp

ζj

!

+
³
Hiendj

−Hset
j

´
Diendj

G

Ã
u+ hiendj

ζjp
ζj

!
and

1p
ζj

∂V diag
j

∂Hset
j

= −min
(

Ti1j − T set
j

T set
j+1 − T set

j

, 1

)
α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.69c)

−
nX

i=i1j+1

min

(
Ti − T set

j

T set
j+1 − T set

j

, 1

)
αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!

−DnG

Ã
q + hnζjp

ζj

!

1p
ζj

∂V col
j

∂Hset
j

= −min
(

Tij1 − T set
j

T set
j+1 − T set

j

, 1

)
α̃j

³
Rcol
j − Si1j

´
Di1j

G

Ã
u+ hi1j ζjp

ζj

!
(5.69d)

−
iendjX

i=i1j+1

min

(
Ti − T set

j

T set
j+1 − T set

j

, 1

)
αi
¡
Rcol
j − Si

¢
DiG

Ã
u+ hiζjp

ζj

!

−min
(
Tiendj

− T set
j

T set
j+1 − T set

j

, 1

)
Diendj

G

Ã
u+ hiendj

ζjp
ζj

!
Since H(T ) is increasing, the value of the diagonal and column swaption both go up with

p
ζj , with the

value of the diagonal swaption going up faster than the column swaption by roughly the ratio
Hiendj

−Hset
j

Hn −Hset
j

.

The value of the diagonal and column swaption both increase at roughtly the same rate as Hset
j decreases.

With the derivatives in hand, we can use a global Newton scheme to find ζj and Hset
j . We require that

(5.70) ζj < ζj+1, Hset
j < Hset

j+1.

Suppose we start our search at the corner ζj = ζj+1,H
set
j = Hset

j+1. If V
diag
j > Mktdiagj , then we decrease ζj ,

keeping Hset
j at Hset

j+1, until we match V diag
j = Mktdiagj . If V diag

j < Mktdiagj , then we decrease Hj , keeping

ζj = ζj+1 until V
diag
j = Mktdiagj . Let us now imagine decreasing both ζj and Hj on a trajectory such that

V diag
j remains equal to Mktdiagj . On this trajectory V col

j increases. So if we start with V col
j ≤ Mktcolj , then a

unique solution exists. We use a global Newton scheme to find it. Alternatively, if V col
j >Mktcolj , we can do

no better than keeping the current ζj and Hj . (These are the parameters which fit the diagonal swaptions
exactly, and come as close as possible to fitting the column swaptions).

Once we’ve found both ζj ,H
set
j we step back to j − 1, etc. until we’ve found ζj ,H

set
j for j = 1, 2, ..., J .

In the usual way, we use piecewise linear interpolation between the known values of ζ(t) and H(T ), and use
the invariances to rescale ζ,H to taste.
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5.7.5. Calibration to two columns of swaptions. The above calibration techniques does not depend
on one set of swaptions being the diagonal swaptions. It just relies on there being J swaption pairs, with
both members of each pair sharing the same exercise date texj and start date T set

j , and having distinctly
different end dates. For some exotics, like MBS traunches, it makes more sense to calibrate on two columns
of swaptions, say the 1y and 10y tenors. With only trivial modifications, the algorithm described above will
calibrate these more general sets of swaption pairs..

5.7.6. Calibration to diagonal swaptions and caplets. This calibration method simultaneously
calibrates the jth diagonal swaption and the jth caplet to determine both ζj = ζ(texj ) and H(T set

j ). As in
the preceding case, one starts at the last pair, j = J , and works backward. For parameter stability, we do
not calibrate to the final caplet, since in our view it may not be sufficiently “different” from the last diagonal
swaption.

Recall that the jth diagonal swaption and jth caplet share identical exercise (fixing) dates texj and
settlement dates T set

j . They differ only in the end date: the diagonal swaption goes all the way to Tn , while
the caplet stops at T end

j . As above, the value of the jth diagonal swaption can be written as

V diag
j (0, 0) = α̃j

³
Rdiag
j − Si1j

´
Di1j

N

Ã
q + hij1 ζjp

ζj

!
(5.71a)

+
nX

i=i1j+1

αi

³
Rdiag
j − Si

´
DiN

Ã
q + hiζjp

ζj

!

+DnN

Ã
qp
ζj

!
−Dset

j N

Ã
q + hsetj ζjp

ζj

!

where

α̃j

³
Rdiag
j − Si1j

´
Di1j

e
−hi1

j
q− 1

2h
2
i1
j
ζj
+

nX
i=i1j+1

αi

³
Rdiag
j − Si

´
Die

−hiq− 1
2h

2
i ζj(5.71b)

+Dn = Dset
j e−h

set
j q− 1

2h
2
i ζj .

Recall that the value of the jth caplet matches its market value when

(5.71c)
q
ζj =

σcap,pricej

√
tex

hendj − hsetj

where σcap,pricej is the implied price vol defined earlier. Here we are using

hi = H(Ti)−H(Tn) for i = 1, 2, ..., n(5.72a)

hsetj = H(T set
j )−H(Tn) for j = 1, 2, ..., J(5.72b)

hendj = H(T end
j )−H(Tn) for j = 1, 2, ..., J(5.72c)

We use piecewise linear interpolation for H(T ), with nodes at the start dates T set
j and the final end date
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Tn:

H(T ) =
T set
2 − T

T set
2 − T set

1

Hset
1 +

T − T set
1

T set
2 − T set

1

Hset
2 for T ≤ T set

j ,(5.73a)

H(T ) =
T set
j − T

T set
j − T set

j−1
Hset
j−1 +

T − T set
j−1

T set
j − T set

j−1
Hset
j for T set

j−1 ≤ T ≤ T set
j(5.73b)

H(T ) =
Tn − T

Tn − T set
J

Hset
J +

T − T set
J

Tn − T set
J

Hn for T set
J ≤ T(5.73c)

Without loss of generality, we choose H(T ) to be 0 at the final pay date. Then H(T ) and h(T ) are equal
in the above formulas. We use the second invariance to set the slope of H(T ) to be 1 in the final interval:

(5.74) Hset
J = H(T set

J ) = T set
J − Tn Hn = H(Tn) = 0

This determines all the values of H(T ) for T ≥ T set
J , so the last swaption depends only on one unknown

parameter, ζJ = ζ(texJ ). We use our standard global Newton scheme to determine ζJ .
Suppose that we have already found H(T ) for T ≥ T set

j+1 for some j. Consider the j
th diagonal swaption.

It depends on ζj = ζ(texj ) and H(T ) for T ≥ T set
j+1 and on

(5.75) H(T ) =
T set
j+1 − T

T set
j+1 − T set

j

Hset
j +

T − T set
j

T set
j+1 − T set

j

Hset
j+1 for T set

j ≤ T ≤ T set
j .

As before, the differentiating the diagonal swaption value eventually yields

∂V diag
j

∂
p
ζj

=
³
Hij1

−Hset
j

´
α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.76a)

+
nX

i=i1j+1

¡
Hi −Hset

j

¢
αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!

+
¡
Hn −Hset

j

¢
DnG

Ã
q + hnζjp

ζj

!

1p
ζj

∂V diag
j

∂Hset
j

= −min
(

Ti1j − T set
j

T set
j+1 − T set

j

, 1

)
α̃j

³
Rdiag
j − Si1j

´
Di1j

G

Ã
q + hij1 ζjp

ζj

!
(5.76b)

−
nX

i=i1j+1

min

(
Ti − T set

j

T set
j+1 − T set

j

, 1

)
αi

³
Rdiag
j − Si

´
DiG

Ã
q + hiζjp

ζj

!

−DnG

Ã
q + hnζjp

ζj

!

The value of the swaption increases as
p
ζj increases and increases as Hj decreases.

Fitting the caplet requires

(5.77a) Hend
j −Hset

j =
σcap,pricej

p
texjp

ζj
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If T end
j ≤ T set

j+1, then Hend
j is known in terms of Hset

j ,

(5.77b) Hend
j = Hset

j +
¡
Hset
j+1 −Hset

j

¢ T end
j − T set

j

T set
j+1 − T set

j

if T end
j ≤ T set

j+1.

If T end
j > T set

j+1, then Hend
j is known from preceding calibraton step. Fitting to the caplet thus requires

(5.78a) Hset
j (

q
ζj) = Hset

j+1 −
σcap,pricej

p
texjp

ζj

T set
j+1 − T set

j

T end
j − T set

j

if T end
j ≤ T set

j+1,

(5.78b) Hset
j (

q
ζj) = Hend

j − σcap,pricej

p
texjp

ζj
if T end

j > T set
j+1.

These formulas describe the trajectory
p
ζj ,H

set
j (

p
ζj) on which the caplet matches it’s market value. With

Hset
j = Hset

j (
p
ζj), we use a 1 parameter global Newton method (starting at ζj = ζj+1) to choose ζj to

match V diag
j = Mktdiagj . Note that along this trajectory,

dV diag
j

d
p
ζj

=
∂V diag

j

∂
p
ζj

+
¡
Hset
j+1 −Hset

j

¢ 1p
ζj

∂V diag
j

∂Hset
j

if T end
j ≤ T set

j+1(5.79a)

dV diag
j

d
p
ζj

=
∂V diag

j

∂
p
ζj

+
¡
Hend
j −Hset

j

¢ 1p
ζj

∂V diag
j

∂Hset
j

if T end
j > T set

j+1(5.79b)

Once we’ve found both ζj ,H
set
j we step back to j − 1, etc. until we’ve found ζj ,H

set
j for j = 1, 2, ..., J .

In the usual way, we use piecewise linear interpolation between the known values of ζ(t) and H(T ), and use
the invariances to rescale ζ,H to taste.

Appendix A. Bermudans on amortizing swaps.
The notional of an amortizing swap steadily declines over the life of the swap. Given a calibrated LGM

model, one can evaluate a Bermudan amortizer in exactly the same way as a Bermudan bullet swap. Since
the final price of a deal is determined largely by which instruments are used in calibration, the question is
which instruments should be used to get the most adroit pricing and hedging? If we have an 5 year option
on a 20 year amortizing swap, surely it will behave more like the 5 into 10 or a 5 into 12 vanilla swaption
instead of a 5 into 20 swaption.

There are two main approaches to calibrating the model for amortizing Bermudans:
(A) For each exercise date, select the vanilla swaption whose behavior matches the behaviour of the Bermudan
payoff as closely as possible. These swaptions then replace the “diagonal” swaptions.
(B) For each exercise date, calibrate the model to European options on the amortizing swap. To obtain the
European option’s price, we construct a construct a basket of swaps that exactly reproduces the Bermudan’s
payoff; we then use LGM itself to value European option on the basket.

A.1. Calibrating to the “equivalent vanilla swaption”. We need to select the vanilla swaption
whose behaviour most nearly matches the Bermudan’s payoff for each exercise. Consider the exercise at texj .
The Bermudan’s fixed leg recieves

Ci − rfpj at ti for i = ifirstj ,(A.1a)

Ci at ti for i = ifirstj + 1, ..., n,(A.1b)
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The Bermudan’s floating leg receives payments equivalent to

(A.1c) Nifirstj
± feej at tsetj ,

where the “ +  sign is used if the fixed leg (receiver) has the exercise privilege, and the “−  sign is used if
the payer has the option. Let us abbreviate

(A.2) Mj = Nifirstj
± feej .

At any date t, the value of these legs is

V fix
j (t) =

³
Cifirstj

− rfpj

´
Z(t, tifirstj

) +
nX

i=ifirstj +1

CiZ(t, ti),(A.3a)

V flt
j (t) =MjZ(t, t

set
j ).(A.3b)

A.1.1. Ratio matching. There are two main ideas for picking the “most similar” swaption, ratio
matching and payoff matching. Consider the ratio

(A.4) Ratio =
V fix
j (texj )

V flt
j (texj )

=
Cifirstj

− rfpj

Mj

Z(texj , tifirstj
)

Z(texj , tsetj )
+

nX
i=ifirstj +1

Ci

Mj

Z(texj , ti)

Z(texj , tsetj )
.

This ratio represents the dollars received per dollar spent upon exercising the option. Suppose we model the
yield curve as being today’s yield curve plus parallel shifts and tilts. Then,

Z(t, T )

Z(t, tsetj )
−→ D(T )

D(tsetj )
e−γ(T−tjset )−δ(T−t

set
j )2+···(A.5)

=
D(T )

D(tsetj )

©
1− γ(T − tjset)−

¡
δ − 1

2γ
2
¢
(T − tsetj )2 + · · ·ª ,

where γ and δ are the amount of the parallel shift and tilt, respectively. Under these movements, the ratio
becomes

(A.6a) Ratio = Moneyness−γ Sensitivity−(δ − 1
2γ

2)Convexity+ · · · ,
where

Moneyness =
³
Cifirstj

− rfpj

´ D(tifirstj
)

D(tsetj )
+

nX
i=ifirstj +1

Ci
D(ti)

D(tsetj )
(A.6b)

Sensitivity =
³
tifirstj

− tstj

´³
Cifirstj

− rfpj

´ D(tifirstj
)

D(tsetj )
+

nX
i=ifirstj +1

¡
ti − tstj

¢
Ci

D(ti)

D(tsetj )
(A.6c)

Convexity =
³
tifirstj

− tstj

´2 ³
Cifirstj

− rfpj

´ D(tifirstj
)

D(tsetj )
+

nX
i=ifirstj +1

¡
ti − tstj

¢2
Ci

D(ti)

D(tsetj )
(A.6d)

Consider a standard bullet swap with exercise date texj and with a start date T
ref st
j which is spot-of-texj .

Let the T ref end
j be the theoretical end date, and let the strike be Rref

j . Assume that the swap hasK periods,

43



the first of which is generally a stub, and let the fixed rate dates be s0, s1, . . . , sK . Clearly s0 = T ref st
j .

Then the ratio of the swap’s fixed leg to the floating leg is

(A.7) Ratiorefj =
KX
k=1

cvg(sk−1, sk)
³
Rref
j − Sk

´ Z(texj , sk)

Z(texj , s0)
+

Z(texj , sK)

Z(texj , s0)
,

where Sk is the floating leg’s basis spread adjusted to the fixed leg’s frequency and day count basis. Under
the same set of yield curve movements as before, this ratio becomes

(A.8a) Ratiorefj = Moneynessrefj −γ Sensitivityrefj −(δ − 1
2γ

2)Convexityrefj + · · · ,
where

Moneynessrefj =
KX
k=1

cvg(sk−1, sk)
³
Rref
j − Sk

´ D(sk)

D(s0)
+

D(sK)

D(s0)
(A.8b)

Sensitivityrefj =
KX
k=1

(sk − s0) cvg(sk−1, sk)
³
Rref
j − Sk

´ D(sk)

D(s0)
+ (sK − s0)

D(sK)

D(s0)
(A.8c)

Convexityrefj =
KX
k=1

(sk − s0)
2 cvg(sk−1, sk)

³
Rref
j − Sk

´ D(sk)

D(s0)
+ (sK − s0)

2D(sK)

D(s0)
(A.8d)

If the ratio of the reference swap matched the ratio of the amortizing swap reference under all possible
movements of the yield curve, then clearly the value of the European option on the amortizer would equal
the value of the vanilla swaption, With two free variables Rref

j and T ref end
j , however, we can only choose

the swaption which matches the moneyness and the sensitivity of the Bermudan’s payoff. The two fixed legs
match only for parallel shifts, so although we still argue that the values should be nearly the same, we incur
some risk in doing so. From a trader’s perspective, if we went long (short) the amortizing swaption and
short (long) the bullet, we would be neutral for parallel shifts, but exposed to tilts. If the prices on the two
were significantly different, it would tempt enough traders to take the tilt risk, eliminating the mis-balance.

A.1.2. Payoff matching. In ratio matching, we essentially matched the floating leg exactly and
matched the fixed leg as well as possible. To get the option’s value right, however, all we have to do is
mimic the forward value of the net payoff (fixed minus floating correctly). This allows us one more variable:
the notional. A $2 swap with a 3y tenor may have the same sensitivity as a $1 swap with a 7y tenor.By
varying the notional, we can match both the sensitivity and the convexity. Let

(A.9) s0 = T ref st
j

be the standard spot date for texj . Consider the forward value of the payoff for date s0 as seen at date t
ex
j :

(A.10) Payoff(texj ) =
³
Cifirstj

− rfpj

´ Z(texj , tifirstj
)

Z(texj , s0)
+

nX
i=ifirstj +1

Ci

Z(texj , ti)

Z(texj , s0)
−Mj

Z(texj , tsetj )

Z(texj , s0)
.

Once again we suppose that the yield curve undergoes parallel shifts and tilts:

Z(tjex, T )

Z(tjex, t0)
=

D(T )

D(s0)
e−γ(T−s0)−δ(T−s0)

2

(A.11)

=
D(T )

D(s0)

©
1− γ(T − s0)− (δ − 1

2γ
2)(T − s0)

2 + · · ·ª .
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Then the forward value of the payoff becomes

(A.12a) Payoff(texj ) = FwdVal−γ(T − t0) Sensitivity−(δ − 1
2γ

2)Convexity+ · · ·
where

(A.12b) FwdVal =
³
Cifirstj

− rfpj

´ D(tifirstj
)

D(s0)
+

nX
i=ifirstj +1

Ci
D(ti)

D(s0)
−Mj

D(tsetj )

D(s0)
,

Sensitivity =
³
tifirstj

− s0

´³
Cifirstj

− rfpj

´ D(tifirstj
)

D(s0)
(A.12c)

+
nX

i=ifirstj +1

(ti − s0)Ci
D(ti)

D(s0)
− ¡tsetj − s0

¢
Mj

D(tsetj )

D(s0)
,

Convexity =
³
tifirstj

− s0

´2 ³
Cifirstj

− rfpj

´ D(tifirstj
)

D(s0)
(A.12d)

+
nX

i=ifirstj +1

(ti − s0)
2Ci

D(ti)

D(s0)
− ¡tsetj − s0

¢2
Mj

D(tsetj )

D(s0)
.

Now consider a standard bullet swap with notional Mref
j , start date s0 = T ref st

j , theoretical end date

T ref end
j , and strike Rref

j . Assume that the swap has K periods, the first of which is generally a stub, and
let the fixed rate dates be s0, s1, . . . , sK . Clearly s0 = t0. With three free variables (M,Rref , and tthend), we
can match the forward value, the sensitivity, and the convexity of the amortizing swap:

(A.13a) FwdValrefj =Mref
j

(
KX
k=1

cvg(sk−1, sk)
¡
Rref − Sk

¢ D(sk)
D(s0)

+
D(sK)

D(s0)
− 1
)
,

(A.13b) Sensitivityrefj =Mref
j

(
KX
k=1

(sk − s0) cvg(sk−1, sk)
¡
Rref − Sk

¢ D(sk)
D(s0)

+ (sK − s0)
D(sK)

D(s0)

)
,

(A.13c) Convexityrefj =Mref
j

(
KX
k=1

(sk − s0)
2 cvg(sk−1, sk)

¡
Rref − Sk

¢ D(sk)
D(s0)

+ (sK − s0)
2 D(sK)

D(s0)

)
,

The forward value of the amortizing swap and the reference swap are now the same under reasonably large
parallel shifts of the yield curve, and under not-too-large tilts of the yield curve. If we went long (short) the
amortizing swaption and short (long) the bullet swaption, we would be delta and gamma neutral for parallel
shifts. We also be delta neutral for tilts. We assume that this combination should be priced at zero, since
even a small difference would tempt traders to take on the residual yield curve risk. If we were agressive, we
would claim that the value of the this reference swaption is the same as the value of the European option
on the amortizing swap. Here we are less aggressive, and simply insist that we calibrate the LGM model to
these reference swaptions in lieu of the diagonal swaptions.
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A.2. Matching by baskets. Recall that if the Bermudan is exercised at texj , the payoff’s fixed leg is

Ci − rfpj at ti for i = ifirstj ,(A.14a)

Ci at ti for i = ifirstj + 1, ..., n,(A.14b)

and the payoff’s floating leg is equivalent to the payment Mj at tsetj . We approximate the floating leg
payment as a payment of

(A.14c) Mj

D(tsetj )

D(T set
j )

at T set
j ,

where T set
j is the standard spot-of-texj for the currency.

Suppose we knew the market price of the European option on this amortizing swap. Then we would use
our favorite calibration strategy (constant κ + diagonals, caplets+diagonals, . . . ), and calibrate the model
to the European option on the amortizing swap in lieu of the “diagonal” swaptions. Unfortunately, there
are no liquid quotes for the prices of European options on amortizers. Instead we are going to reconstruct
the amortizing swap as a linear combination of standard bullet swaps; i.e., express the amortizing swap as
a basket of ordinary swaps. We then use the LGM model itself to find the value of a European option on
the basket in terms of the market values of each swaptions. This European value is then to be fed into our
calibration scheme.

A.2.1. Constructing the basket. Define swap k to be the bullet swap which starts on date T set
j , and

ends on the kth paydate tk of the Bermudan’s payoff. We assume (or approximate) the bullet swap’s pay
dates as being the same as the Bermudan pay dates. So we assume that swap k has fixed leg pay dates

(A.15) ti for i = ifirstj , ifirstj + 1, . . . , k

and start date T set
j . Let Mref

k and Rref
k be the notional and strike of the kth swap. Then its fixed leg

payments are

Mref
k βi

³
Rref
k − Si

´
at ti for i = ifirstj , 2, . . . , k − 1(A.16a)

Mref
k

n
1 + βk

³
Rref
k − Si

´o
at tk(A.16b)

and it floating leg payments are equivalent to

(A.16c) Mref
k at T set

j .

Here Si is the basis spread for the ith interval, adjusted to the fixed leg’s frequency and day count basis is
the usual way, and

βi = cvg(T
set
j , ti) for i = ifirstj ,(A.16d)

βi = cvg(ti−1, ti) for i = ifirstj + 1, 2, . . . , k − 1.(A.16e)

We wish to choose the notionals Mref
k and strikes Rref

k so that the sum of all the payments of these
reference swaps equals the payments in the Bermudan’s payoff. Equating the ith payment of all the swaps
in the basket to the ith payment of the amortzing swap yields

nX
k=i

Mref
k βi

³
Rref
k − Si

´
+Mref

i = Ci − rfpj for i = ifirstj(A.17a)

nX
k=i

Mref
k βi

³
Rref
k − Si

´
+Mref

i = Ci for i = ifirstj + 1, 2, . . . , n(A.17b)
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Equating the floating legs yields

(A.17c)
nX

k=ifirstj

Mref
k =Mj

D(tsetj )

D(T set
j )

.

Now, if all the strikes Rref
k were specified, then we could work backwards. We would first determine the

notional Mref
k as k = n needed to match the last payment, then the notional for k = n− 1 needed to match

the next to last payment, etc. Proceeding in this way, we would match all the fixed leg payments, but the
sum of these notionals Mref

k would not (unless we were very lucky) match MjD(t
set
j )/D(T set

j ). We use our
freedom to choose the strikes to get one more degree of freedom in choosing the notionals.

Strike choice A. There are two obvious methods for choosing the reference strikes. The first is setting
each swap’s strike equally far from the money, so that the same parallel shift is needed to bring each to the
money:

(A.18a) Rref
k = Rsw

k + λ for k = ifirstj , ifirstj + 1, . . . , n

where Rsw
k is the forward (break-even) fixed rate for swap k. Solving

βi

nX
k=i

Mref
k (Rsw

k − Si) + λβi

nX
k=i

Mref
k +Mref

i = Ci − rfpj for i = ifirstj(A.18b)

βi

nX
k=i

Mref
k (Rsw

k − Si) + λβi

nX
k=i

Mref
k +Mref

i = Ci for i = ifirstj + 1, 2, . . . , n(A.18c)

determines the notionals Mref
k (λ) in terms of λ. We then need to find which λ enables the floating leg to be

matched:

(A.18d)
nX

k=ifirstj

Mref
k (λ) =Mj

D(tsetj )

D(T set
j )

.

This can be done by a quick global Newton’s scheme, starting from λ = 0.
Strike choice B. The second method is a variant of this scheme. It sets the strikes of the reference swaps

to be the same number of standard deviations from the money:

(A.19a) Rref
k = Rsw

k + λσatmk for k = ifirstj , ifirstj + 1, . . . , n.

Here Rsw
k is again the swap rate, and now σatmk is the at-the-money swaption volatility for the swaption with

exercise date texj , start date T
set
j , and end date tk. Solving

βi

nX
k=i

Mref
k (Rsw

k − Si) + λβi

nX
k=i

Mref
k σatmk +Mref

i = Ci − rfpj for i = ifirstj(A.19b)

βi

nX
k=i

Mref
k (Rsw

k − Si) + λβi

nX
k=i

Mref
k σatmk +Mref

i = Ci for i = ifirstj + 1, 2, . . . , n(A.19c)

determines the notionals Mref
k (λ) in terms of λ. We can then use a quick global Newton’s scheme to find

which λ enables the floating leg to be matched:

(A.20)
nX

k=ifirstj

Mref
k (λ) =Mj

D(tsetj )

D(T set
j )

.
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Which strike method to use. We don’t have enough market experience to know whether the second
method of choosing strikes offeres significantly better pricing/hedging. If it does not, then we should use
the simpler method, method A. Note that these can be programmed together, since it is just a matter of
inserting the weights σatmk into the problem.

A.2.2. Pricing the European option on the basket. Now that we have replicated the amortizing
swap as a basket of bullet swaps, we price the European option on the basket. We first calibrate LGM model
to reproduce the market price of each swaption in the basket, and then use the calibrated LGM model to
price the European option on the basket. Once we obtain the price of the European option on the basket, we
throw this calibration away. This calibration has no role in pricing our original Bermudan except to obtain
the value of the European option on the amortizing swap.

Recall that the kth swap has the fixed leg payments,

Mref
k βi

³
Rref
k − Si

´
at ti for i = ifirstj , 2, . . . , k − 1(A.20a)

Mref
k

n
1 + βk

³
Rref
k − Si

´o
at tk(A.20b)

and it floating leg payments are equivalent to

(A.20c) Mref
k at T set

j .

The LGM value of receiver swaption k is

(A.21a) V LGM
basket =

kX
i=ifirstj

βi

³
Rref
k − Si

´
DiN

yk +∆Hiζ
ex
jq

ζexj

+DKN
yk +∆Hiζ

ex
jq

ζexj

−D0N
 ykq

ζexj


whose yk is determined implicitly by solving,

(A.21b)
kX

i=ifirstj

βi

³
Rref
k − Si

´
Die

−∆Hiyk− 1
2∆H

2
i ζ

ex
j +Dke

−∆Hkyk− 1
2∆H

2
kζ

ex
j = Dset

j ,

and where we have used

(A.21c) ∆Hi = Hi −Hset
j = H(ti)−H(T set

j ).

We calibrate these swaptions by using the “calibration of a row of swaptions” technique described above.
(More to the point, we can use the same routines). We first set

ζetj = ζ(texj ) = 10
−4 ∗ texj ,(A.22a)

H(T set
j ) = 0(A.22b)

without loss of generality. We then assume thatH(T ) is piecewise linear with nodes at ti for i = ifirstj , ifirstj +

1, . . . , n. We first calibrate on the swaption k = ifirstj , which determines H(ti) for i = ifirstj . We then

calibrate on swaption k = ifirstj + 1, which determines the next H(ti). Continuing gives us all the values of
H(ti). Once we have calibrate H(t), then the value of the European option on the basket is
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V LGM =
³
Cifirstj

− rfpj

´
Difirstj

N
y +∆Hiζ

ex
jq

ζexj

+ nX
i=ifirstj +1

CiDiN
yk +∆Hiζ

ex
jq

ζexj

(A.23a)

−MjD(t
set
j )N

 ykq
ζexj


where y is the unique solution of:
(A.23b)³
Cifirstj

− rfpj

´
Difirstj

exp{−∆Hifirstj
yk − 1

2∆H
2
ifirstj

ζexj }+
nX

i=ifirstj +1

CiDie
−∆Hiyk− 1

2∆H
2
i ζ

ex
j =MjD(t

set
j ).

Once we have the value V LGM
basket of the European option on the amortizing swap, we can use this as the market

price of the amortizing swap in our calibration.

Appendix B. American swaptions.

Appendix C. Cross-currency swaptions.
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