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Abstract

The purpose of this article is to analyze and compare two standard port-
folio insurance methods: OBPI and CPPI. Various criteria are used such as
comparison of payo¤s at maturity, stochastic or ”quantile” dominance of their
returns...Dynamic hedging properties are also examined, in particular classical
delta hedging.

1 Introduction

Portfolio insurance is designed to give the investor the ability to limit downside risk
while allowing some participation in upside markets. Such methods allow investors
to recover, at maturity, a given percentage of their initial capital, in particular in
falling markets. There exist various portfolio insurance models, among them the
Option Based Portfolio Insurance (OBPI) and the Constant Proportion Portfolio
Insurance (CPPI).

The OBPI, introduced by Leland and Rubinstein (1976), consists of a portfolio
invested in a risky asset S (usually a …nancial index such as the S&P) covered by a
listed put written on it. Whatever the value of S at the terminal date T, the portfolio
value will be always greater than the strike K of the put. At …rst glance, the goal
of the OBPI method is to guarantee a …xed amount only at the terminal date. In
fact, as recalled and analyzed in this paper, the OBPI method allows one to get a
portfolio insurance at any time. Nevertheless, the European put with suitable strike
and maturity may be not available on the market. Hence it must be synthesized by
a dynamic replicating portfolio invested in a riskfree asset (for instance, T-bills) and
in the risky asset.

The CPPI was introduced by Perold (1986) (see also Perold and Sharpe (1988))
for …xed-income instruments and Black and Jones (1987) for equity instruments.
This method uses a simpli…ed strategy to allocate assets dynamically over time.
The investor starts by setting a ‡oor equal to the lowest acceptable value of the

¤We would like to thank participants at the AFFI 2001 international conference in Namur, EIR
2001 international conference in Paris, GREQAM seminar February 2002 and DRI HSBC-CCF
seminar March 2002 for their helpful comments. The usual disclaimer applies.
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portfolio. Then, she computes the cushion as the excess of the portfolio value over
the ‡oor and determines the amount allocated to the risky asset by multiplying the
cushion by a predetermined multiple. Both the ‡oor and the multiple are functions
of the investor’s risk tolerance and are exogenous to the model. The total amount
allocated to the risky asset is known as the exposure. The remaining funds are
invested in the reserve asset, usually T-bills.

The higher the multiple, the more the investor will participate in a sustained
increase in stock prices. Nevertheless, the higher the multiple, the faster the portfolio
will approach the ‡oor when there is a sustained decrease in stock prices. As the
cushion approaches zero, exposure approaches zero too. In continuous time, this
keeps portfolio value from falling below the ‡oor. Portfolio value will fall below the
‡oor only when there is a very sharp drop in the market before the investor has a
chance to trade.

Bookstaber and Langsam (2000) analyze properties of both these portfolio insur-
ance models. They focus on path dependence, showing that only option-replicating
strategies provide path independence. They deal also with the problem of the time
horizon and in particular time-invariant or perpetual strategies (further studied in
Black and Perold (1992)).

Black and Rouhani (1989) compare CPPI with OBPI when the put option has
to be synthesized. They compare the two payo¤s and examine the role of both
expected and actual volatilities. They show that “OBPI performs better if the
market increases moderately. CPPI does better if the market drops or increases by
a small or large amount”.

The present paper extends their analysis to various criteria, introducing system-
atically the probability distributions of the two portfolio values. It is also focussed
on the dynamics of both methods. In the …rst section, basic properties are recalled.
Payo¤s at maturity are compared by means of stochastic dominance, …rst four mo-
ments and some of their quantiles. In particular, the role of the insured amount is
emphasized. In the second section, it is proved that the OBPI method is a gener-
alized CPPI where the multiple is allowed to vary. The properties of this varying
multiple are spelled out. It also focuses on the dynamics of both methods. Hedging
properties involved by these two strategies are studied, when the option has to be
synthesized. The “greeks” of the OBPI and the CPPI are derived. Their features
show the di¤erent nature of the dynamic properties of the two strategies1.

2 Comparison between standard OBPI and CPPI at
maturity

To compare these two strategies, the natural …rst step is to examine their perfor-
mances at maturity. The analysis of payo¤ functions gives a …rst insight. However,
this comparison must take account of probabilities of for example bullish or bearish
markets. This leads us to develop methods based on the …rst four moments. Meth-
ods based on quantiles can also be introduced and are developed in what follows.

1 All the proofs are gathered in the Appendix.
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2.1 De…nition of the two strategies

The portfolio manager is assumed to invest in two basic assets : a money market
account, denoted by B, and a portfolio of traded assets such as a composite index,
denoted by S. The period of time considered is [0; T]. The strategies are self-
…nancing.

The value of the riskless asset B evolves according to : dBt = Btrdt, where r is
the deterministic interest rate.

The dynamics of the market value of the risky asset S are given by the classic
di¤usion process :

dSt = St [¹dt +¾dWt]

where Wt is a standard Brownian motion.
The OBPI method consists basically of purchasing q shares of the asset S and

q shares of European put options on S with maturity T and exercise price K. To
simplify the presentation, we shall assume that q is normalized and set equal to one2.

Thus, the portfolio value V OBPI is given at the terminal date by :

V OBPI
T = ST +(K ¡ST )+

which is also : V OBPI
T = K +(ST ¡K)+, due to the Put/Call parity. This relation

shows that the insured amount at maturity is the exercise price, K.

The value V OBPI
t of this portfolio at any time t in the period [0;T ] is :

V OBPI
t = St + P(t;St; K) = K:e¡r(T¡t) + C(t; St; K)

where P(t; St; K) and C(t; St;K) are the Black-Scholes values of the European put
and call.

Note that, for all dates t before T, the portfolio value is always above the deter-
ministic level Ke¡r(T¡t).

The amount insured at the …nal date is often expressed as a percentage p of
the initial investment V0 (with p � erT ). Since, here, this amount is equal to the
strike K itself, it is required that K is an increasing function of the percentage p,
determined from the relation 3 :

pV0(K) = p(K:e¡rT + C(0;S0;K)) = K:

The CPPI method consists of managing a dynamic portfolio so that its value is
above a ‡oor F at any time t. The value of the ‡oor gives the dynamical insured
amount. It is assumed to evolve according to :

dFt = Ftrdt

Obviously, the initial ‡oor F0 is less than the initial portfolio value VCPPI0 . The
di¤erence V CPPI

0 ¡F0 is called the cushion, denoted by C0. Its value Ct at any time
t in [0; T] is given by :

Ct = VCPPIt ¡ Ft

2 Note that, if the initial investment value V0 is …xed, then the number of shares q is a decreasing
function of the strike K. Nevertheless, by the homogeneity property of portfolio values with respect
to q, we can normalize q to 1 without loss of generality.

3 This relation can also take account of the smile e¤ect.
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Denote by et the exposure, which is the total amount invested in the risky asset.
The standard CPPI method consists of letting et = mCt where m is a constant
called the multiple. The interesting case is when m > 1, that is, when the payo¤
function is convex.

The value of this portfolio V CPPI
t at any time t in the period [0; T] is4 :

V CPPI
t (m; St) = F0:ert +®t:Smt

where ®t =
³
C0
Sm0

´
exp [¯t] and ¯ =

³
r ¡ m

³
r ¡ 1

2¾
2
´

¡m2 ¾2

2

´

Thus, the CPPI method is parametrized by F0 and m. The OBPI has just
one parameter, the strike K of the put. In order to compare the two methods,
…rst the initial amounts V OBPI

0 and VCPPI0 are assumed to be equal, secondly the
two strategies are supposed to provide the same guarantee K at maturity. Hence,
FT = K and then F0 = Ke¡rT . Moreover, the initial value C0 of the cushion is
equal to the call price C(0;S0;K). Note that these two conditions do not impose
any constraint on the multiple, m. In what follows, this leads us to consider CPPI
strategies for various values of the multiple m.5

2.2 Comparison of the payo¤ functions

Is it possible that the payo¤ function of one of these two strategies lies above the
other for all ST values ? Since V OBPI

0 = V CPPI
0 , the absence of arbitrage implies

the following result.

Proposition 1 Neither of the two payo¤s is greater than the other for all terminal
values of the risky asset. The two payo¤ functions intersect one another.

Figure 1 below illustrates what happens for a numerical example with typical
values for the …nancial markets (parameters : ¹, ¾, r) : S0 = 100, ¹ = 10%,
¾ = 20%, T = 1, K = S0 = 100, r = 5%. Note that as m increases, the payo¤
function of the CPPI becomes more convex.
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CPPI , m=8

CPPI , m=6

CPPI , m=4

CPPI , m=2

OBPI

Figure 1 : CPPI and OBPI Payo¤s as functions of S

4 Details about this formula are provided in the Appendix.

5 Note that the multiple must not be too high as shown for example in Prigent (2001) or in
Bertrand and Prigent (2002).
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We can check in this example that the two curves intersect one another for the
di¤erent values of m considered (m = 2; m = 4; m = 6 and m = 8).

CPPI performs better for large ‡uctuations of the market while OBPI performs
better in moderate bullish markets.

2.3 Comparison with the stochastic dominance criterion

To take account of the risky dimension of the terminal payo¤ functions for the two
methods, …rst-order stochastic dominance is introduced.

Recall that a random variable X stochastically dominates a random variable Y
at the …rst order (X Â Y ) if and only if the cumulative distribution function of X,
denoted by FX , is always below the cumulative distribution function FY of Y:

Proposition 2 Neither of the two strategies stochastically dominates the other at
…rst order.

2.4 Comparison of the expectation, variance, skewness and kurtosis

When dealing with options, the mean-variance approach is not always justi…ed since
payo¤s are not linear. Thus, we examine simultaneously the …rst four moments and
the semi-variance of the rates of portfolio returns ROBPIT and RCPPIT .

Proposition 3 For any parametrization of the …nancial markets, there exists at
least one value for m such that the OBPI strategy dominates (is dominated), in a
mean-variance (mean-semivariance) sense, (by) the CPPI one.

The following example gives an illustration with the previous values of the pa-
rameters. The multiple m, solution of E[ROBPIT ] = E[RCPPI

T ], is equal to 5:77647.
Table 1 contains the …rst four moments and the semi-volatility for the OBPI with
an at-the-money call and for the corresponding CPPI with this particular value of
the multiple6.

Table 1
comparison of the …rst four moments

OBPI CPPI
expectation 8:61176 % 8:61176 %
volatility 16:8625 % 23:2395 %
semi volatility 9:1676% 7:7666%
relative skewness 1:49114 9:70126
relative kurtosis 5:4576 357:73

The OBPI dominates the CPPI in a mean-variance sense but is dominated by the
CPPI if semi volatility is considered (as con…rmed below by the relative skewness).
Nevertheless, the CPPI has a higher positive relative skewness than the OBPI. Hence
with respect to this criterion, CPPI should be preferred to OBPI. However, CPPI
relative kurtosis is much higher than OBPI one. This feature is explained by the
dominance of the CPPI payo¤ for small and high values of the risky asset S, as
shown in …gure 1. Note that, here, owing to the insurance feature, kurtosis arises
mainly in the right tail of the distribution.

6 The same qualitative result holds for calls in- and out-of-the-money.
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2.5 Comparison of “quantiles”

In the present situation, where the distributions to be compared are strongly asym-
metric, the study of the moments is not su¢cient. The whole distribution has to be
considered.

Figure 1 has showed comparison of payo¤ functions. The preceding analysis has
to be extended by weighting each payo¤ by its probability of occurrence. Figure 2
below loosely illustrates the situation, where both payo¤ functions and risky asset
density are depicted.
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Figure 2 : CPPI and OBPI payo¤s and probability of S.

The study of the distribution of the quotient of the CPPI value to the OBPI one
allows a closer inspection of the e¤ect of probabilities.

The plot of the cumulative distribution function of V
OBPI
T
V CPPIT

for di¤erent values7

of K is :
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K=100 , m=5

K=90, m=5

Figure 3 : Cumulative distribution of V
OBP I
T

V CPP IT
.

This …gure shows in particular that:
7 Note that smile e¤ect can also be taken into account, if a ”Black-Scholes world” is no longer

assumed.
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² For the at-the-money call (K = 100), the probability that the CPPI portfolio
value is higher than the OBPI one is approximately 0:5, meaning that neither
of the strategies “dominates” the other.

² This is no longer true for K = 90 where the probability that the CPPI portfolio
value is above the OBPI one is about 0:4. For K = 110; this probability
takes the value 0:7. This arises because the probability of exercising the call
decreases with the strike. Recall that the strike K is an increasing function of
the insured percentage p of the initial investment. Thus, as p rises, the CPPI
method seems to be more desirable than the OBPI method8.

Notice that, for in- and out-of-the-money calls, extreme values of the quotient
are more likely to appear : on the one hand, the CPPI portfolio value can
be at least equal to 106% of the OBPI portfolio value with probability 5%
(respectively 0%) when K = 90 (respectively K = 110). On the other hand,
the CPPI portfolio value can be at most equal to 94% of the OBPI portfolio
value with probability 0% (respectively 18%) when K = 90 (respectively K =
110).

The same qualitative results are obtained for other usual values of the multiple
(m between 2 and 8).

3 The dynamic behavior of OBPI and CPPI

In many situations, the use of traded options is not possible9. For example, the port-
folio to be insured may be a diversi…ed fund for which no single option is available.
The insurance period may also not coincide with the maturity of a listed option.
Thus, for all these reasons, the OBPI put has often to be synthesized.

In this framework, both CPPI and OBPI induce dynamic management of the in-
sured portfolio. As proved in what follows, the OBPI method is a generalized CPPI.
Portfolio rebalancing implies hedging risk and transaction costs. Hence, hedging
properties of both methods are to be analyzed, in particular the behavior of the
quantity to invest on the risky asset at any time during the management period (the
“delta” of the option).

3.1 OBPI as a generalized CPPI

For the CPPI method, the multiple is the key parameter that …xes the amount
invested in the risky asset at any time. It also plays the role of a weight between
performance and risk. Knowing the importance of the multiple, does there exist
such an “implicit” parameter for the OBPI ?

Proposition 4 The OBPI method is equivalent to the CPPI method in which the
multiple is allowed to vary and is given by mOBPI (t; St) =

StN (d1(t;St))
C(t;St ;K)

.

8 For K = 90, p = 87; 97%, for K = 100, p = 94;72% and for K = 110, p = 99; 39%
9 As for OTC options, they have several drawbacks since they introduce a default risk, they are

not liquid and their prices are often less competitive.
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Thus, the OBPI multiple is a function of the risky asset value10 S. It is equal
to the amount invested on the risky asset to replicate the call option divided by the
OBPI cushion which is the call value. It is a decreasing function of the risky asset
value S as illustrated by the following …gure.

80 90 100 110 120 130
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17.5

20

Figure 4 : OBPI multiple as a function of S at t = 0:5.

The OBPI multiple takes higher values than the standard CPPI multiple, except
when the associated call is in-the-money. In particular, in a rising market, the OBPI
method prevents the portfolio being over-invested in the risky asset, as the multiple
is low.
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Figure 5 : OBPI multiple cumulative distribution.

Figure 5 shows the evolution of the OBPI multiple cumulative distribution with
time11. As time increases, the probability of obtaining high values of the multiple
increases. This essentially comes from the rise in the variance with time.

We now study the dynamic properties of the two strategies and in particular
their “greeks”.

10 Such more general multiples have been introduced and studied in Prigent (2001).
11 Near the maturity of the call, the multiple is undetermined when the call is not exercisable

since the cushion and the exposure are nil. Otherwise, the multiple converges to ST
ST ¡K .
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3.2 The Delta

The delta of the OBPI is obviously the delta of the call. For the CPPI, it is given
by :

¢CPPI =
@V CPPI

t

@St
= ®mSm¡1t :

The following …gure shows the evolution of the delta as a function of the risky
asset value St.
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0.5
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1.5
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2.5

Delta OBPI

Delta CPPI, m=8

Delta CPPI, m=6

Delta CPPI, m=4

Figure 6 : CPPI and OBPI delta as functions of S.

It can be observed in the previous …gure that the behavior of the delta of the
two strategies are di¤erent. For the CPPI, not surprisingly, the delta becomes more
convex with m and the delta can be greater than one.

For a large range of the values of the risky asset, the delta of the OBPI is greater
than that of the CPPI. Moreover, this happens for the most likely values of the
underlying asset (i.e. around the money). In order to be more precise, the probability
that the delta of the OBPI is greater than that of the CPPI has to be calculated
for various market parametrizations. It can be observed that, in probability, CPPI
is signi…cantly less sensitive to the risky asset than OBPI as shown in the following
tables. Notice that this …nding has important practical implications.

Table 2
Probability P [¢OBPI > ¢CPPI] for di¤erent m and t

m t = 0:1 t = 0:3 t = 0:5 t = 0:7 t = 0:9
3 1 0; 974 0; 91 0; 834 0;745

4 1 0; 966 0; 888 0; 798 0;699
5 0;98 0; 903 0; 816 0; 724 0;622
6 0;703 0; 753 0; 73 0; 667 0;57
7 0;371 0; 619 0; 675 0; 645 0;553
8 0;231 0; 545 0; 654 0; 652 0;56
9 0;185 0; 514 0; 652 0; 673 0;583
10 0;172 0; 508 0; 658 0; 7 0;614
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Table 3
Probability P [¢OBPI > ¢CPPI] for di¤erent m and ¾

m ¾ = 5% ¾ = 10% ¾ = 15% ¾ = 20% ¾ = 25%

3 1;000 0; 991 0;970 0;945 0;921
4 1;000 0; 987 0;961 0;930 0;876
5 1;000 0; 983 0;946 0;860 0;759
6 0;999 0; 978 0;884 0;748 0;672
7 0;999 0; 949 0;782 0;661 0;636
8 0;999 0; 881 0;685 0;616 0;630
9 0;992 0; 788 0;616 0;599 0;640
10 0;96 0; 69 0;58 0;60 0;66

Table 4
Probability P [¢OBPI > ¢CPPI ] for di¤erent m and ¹

m ¹ = 5% ¹ = 10% ¹ = 15% ¹ = 20% ¹ = 25%
3 0;925 0; 945 0;960 0;972 0; 981

4 0;910 0; 930 0;943 0;951 0; 953
5 0;861 0; 860 0;850 0;830 0; 801
6 0;774 0; 748 0;712 0;667 0; 616
7 0;706 0; 661 0;610 0;554 0; 495
8 0;670 0; 616 0;558 0;497 0; 436
9 0;657 0; 599 0;537 0;475 0; 413
10 0;657 0; 598 0;536 0;473 0; 411

The previous features are made clearer by examining the distribution of the ratio
¢OBP I

¢CPP I
. Figure 7 shows that the probability that the CPPI delta is smaller than the

OBPI one is a decreasing function of the strike K (or equivalently, of the insured
amount). Note that, for small values of K, the range of possible values of the ratio
¢OBP I
t

¢CPP It
spreads out.
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Figure 7 : Cumulative distribution of ¢
OBPI
t

¢CPP It
at t = 0:5.

Figure 8 below shows the evolution of the delta with time. Whatever the level of
S compared to the level of the insured level at maturity, K, the delta of the CPPI

10



is decreasing with time. For the OBPI, the evolution of the delta depends obviously
on the moneyness of the option.
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Delta CPPI, m=5 et St=90

Delta CPPI, m=5 et St=100

Delta CPPI, m=5 et St=110

Figure 8 : CPPI and OBPI delta as functions of time.

More surprisingly, it can be shown that the delta of the CPPI is decreasing with
the actual volatility (since m > 1). The same feature arises when examining the
vega of the CPPI since they depend on the same way on this actual volatility (see
later). For the OBPI, the result depends on the moneyness of the option.

3.3 The Gamma

The gamma of the CPPI is equal to :

¡CPPI =
@¢CPPI

t

@St
= ®m(m ¡ 1)Sm¡2t :
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Figure 9 : CPPI and OBPI gamma as functions of S at t = 0:5 and for K = 100.
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Figure 10 : CPPI and OBPI gamma as functions of S at t = 0:5 and for K = 110.

For the CPPI, it is always for high values of S that the gamma is important.
Nevertheless, for usual values of m, the CPPI gamma is smaller than the OBPI one
for a large range of values of S. This is particularly true for K = 110. This fact is
important as the magnitude of transaction costs are directly linked to the gamma.
Again, the CPPI method seems to be better suited when the insured percentage, p,
of the initial investment is high.

Moreover, the gamma of the CPPI is monotonically decreasing with time, al-
though it does not reach zero at maturity. Recall that, for a call, the gamma will go
to zero as the expiration date approaches if the call is in-the-money or out-of-the-
money, but will become very large if it is exactly at-the-money.

3.4 The Vega

The vega of the CPPI is de…ned as12 :

vegaCPPI =
@V CPP It
@¾

= C(0;S0;K)
³
St
S0

´m ¡
(m ¡m2)¾t

¢
exp[¯t]

=
¡
(m ¡ m2)¾t

¢
V CPPI
t

Thus, the sensitivity of the CPPI value with respect to the actual volatility is
negative as m > 1.

12 In the following calculation, we do not take into account the e¤ect of the volatility onC(0;S0 ;K)
because the call enters in the CPPI formula only to insure the compatibility, at time 0, with the
OBPI. Furthermore, C(0;S0; K) depends only on the expected volatility and not on the actual one.
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Figure 11 : CPPI and OBPI Vega as functions of S at t = 0:5.

As noted in Black and Rouhani (1989), as actual volatility increases, CPPI pay-
o¤s decline. Furthermore, the higher the multiple, the more they decrease.

4 Conclusion

We have examined the two main portfolio insurance methods : OBPI and CPPI. In
the …rst part, we have shown that comparison with usual criteria such as …rst order
stochastic dominance and various moments of their rates of return does not allow
one to discriminate clearly between the two strategies. This comes from the non
linearity of their payo¤ functions. Nevertheless, the study of the whole distribution
of their returns has allowed us to shed light on the e¤ect of the insured amount at
maturity. As it increases, the CPPI strategy seems more relevant than the OBPI
one. This arises mainly because the OBPI call has less chance to be exercised.

We then analyzed the dynamic properties of these two methods, showing in
particular how the OBPI method can be considered as a generalized CPPI method.
The di¤erence in their sensitivity to the risky asset ‡uctuations has been put forward,
in particular when examining their gamma according to the insured percentage of
the initial investment.

5 Appendix

5.1 Calculation of the CPPI value

The value at t of the CPPI portfolio is given by dVt = (Vt ¡ et)
dBt
Bt

+ et
dSt
St

Recall that Vt = Ct + Ft, et = mCt and dFt = rdt. Thus, the cushion value C
must satisfy :

dCt = d(Vt ¡ Ft)

= (Vt ¡ et)
dBt
Bt

+(et)
dSt
St

¡dFt
= (Ct +Ft ¡mCt)

dBt
Bt

+(mCt)
dSt
St

¡ dFt
= (Ct ¡mCt)

dBt
Bt

+ (mCt)
dSt
St

= Ct[(m(¹ ¡ r) + r)dt +m¾dWt]

Thus : Ct = C0exp[((m(¹ ¡ r)+ r ¡ m2¾2

2 )t + m¾Wt)]
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By using the relation : St = S0 exp
h
¾Wt +

³
¹ ¡ 1

2¾
2
´

t
i
, it can be deduced that

:
Wt =

1

¾

�
ln

µ
St
S0

¶
¡

µ
¹ ¡ 1

2
¾2

¶
t

¸

Substituting this expression for Wt into the expression for Ct leads to :

Ct (m;St) = C0
³
St
S0

´m
exp

h³
r ¡m

³
r ¡ 1

2¾
2
´

¡ m2¾2

2

´
t
i

= ®t:S
m
t

where ®t =
³
C0
Sm0

´
exp [¯t] and ¯ =

³
r ¡ m

³
r ¡ 1

2¾
2
´

¡m2 ¾2

2

´

The portfolio value is then obtained :

V CPPI
t (m; St) = F0:ert +®t:Smt

5.2 First order stochastic dominance

Lemma 5 Consider two functions f : A ! B and g : A ! B, where f or g is
increasing and the inverse of f and g exists. Then :

f¡1 � g¡1 () g � f:

Proof : the following equivalent relations are deduced:

f¡1 � g¡1 () 8x 2 A; f¡1 [f (x)] � g¡1 [f (x)]
8x 2 A; x � g¡1 [f (x)]
8x 2 A; g (x) � f (x) (g increasing)

Proof of Proposition 2 : We proceed by contradiction. Consider …rst the
following functions

f : [S¤;+1[ ! [S¤¡ K; +1[ such that f (x) = ®:xm;
g : [S¤;+1[ ! [S¤¡ K; +1[ such that g (x) = x ¡K;

where f and g are the two payo¤ functions restricted to a particular domain.

S¤ is the smallest solution of the equation x¡K = ®:xm (the other solution will
be noted as S¤¤, see the …gure of the payo¤ functions).

² Suppose now that : VCPPIT Â V OBPI
T . Then :

8z ¸ 0;P
£
(ST ¡ K)+ � z

¤ ¸ P [®:SmT � z] ;

so in particular, 8z ¸ S¤¡ K.

But, for z ¸ S¤ ¡K , we get :(
P [(ST ¡ K)+ � z] = P [ST � S¤] +P [S¤ � ST � z + K] ;
P [®:SmT � z] = P [ST � S¤] + P [ST � S¤ and ®:SmT � z] :

Thus, for z ¸ S¤ ¡K , the relation V CPPI
T Â VOBPIT can be stated as :

P [S¤ � ST and g (ST ) � z] ¸ P [S¤ � ST and f (ST ) � z]
() P

£
S¤ � ST � g¡1 (z)

¤ ¸ P
£
S¤ � ST � f¡1 (z)

¤
:
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Hence, 8z ¸ S¤ ¡K , g¡1 (z) ¸ f¡1 (z).
By the previous lemma, it can be shown that : 8x ¸ S¤, g (x) � f (x).
This result yields a contradiction with the de…nition of the two payo¤ functions

: for any x 2 ]S¤;S¤¤[, g (x) > f (x). Thus, the CPPI can never stochastically
dominate the OBPI strategy at …rst order.

² The converse can also be proved in the following way :

V OBPI
T Â V CPPI

T () 8z > 0; P
h
ST � ¡ z

®

¢ 1
m

i
¸ P [ST � z +K ]

() 8z > 0;
¡
z
®

¢ 1
m ¸ z +K:

For any …nite values of the parameters (K; ®; m), the previous inequality is
never satis…ed at z = 0. Hence, the OBPI can never stochastically dominate at the
…rst-order the CPPI strategy.

5.3 OBPI as a generalized CPPI

Proof : Recall that :

V OBPI
T = ST +(K ¡ ST )+ = K +(ST ¡K)+ :

Thus :
V OBPI
t = Ke¡r(T¡t) + C(t; St; K);

where Ke¡r(T¡t) = Ft is the time t value of the ‡oor and C(t; St; K) is the cushion
at time t. By de…nition, the cushion is de…ned as et

mt
. Here, the cushion is simply

the call and the exposure is the total amount invested in the risky asset, equal to
StN (d1 (t; St)). Finally, the desired result for the multiple is obtained :

mOBPI
t = StN(d1(t;St))

C(t;St ;K)

15



References

[1] Bertrand, P., & Prigent, J-L. (2002). Portfolio insurance: the extreme value
approach to the CPPI method. To appear in Finance.

[2] Black, F. & Jones, R. (1987). Simplifying portfolio insurance. The Journal of
Portfolio Management, 48-51.

[3] Black, F., & Rouhani, R. (1989). Constant proportion portfolio insurance and the
synthetic put option: a comparison, in Institutional Investor focus on Investment
Management, edited by Frank J. Fabozzi. Cambridge, Mass. : Ballinger, pp 695-
708.

[4] Black, F. & Perold, A.R. (1992). Theory of constant proportion portfolio insur-
ance. The Journal of Economics, Dynamics and Control, 16, 403-426.

[5] Bookstaber, R. & Langsam, J.A. (2000). Portfolio insurance trading rules. The
Journal of Futures Markets, 8, 15-31.

[6] Leland, H.E. & Rubinstein, M.(1976). The evolution of portfolio insurance, in:
D.L. Luskin, ed., Portfolio insurance: a guide to dynamic hedging, Wiley.

[7] Perold, A. (1986). Constant portfolio insurance. Harvard Business School. Un-
published manuscript.

[8] Perold, A. & Sharpe, W. (1988). Dynamic strategies for asset allocation. Finan-
cial Analyst Journal, January-February, 16-27.

[9] Prigent, J-L. (2001). Assurance du portefeuille: analyse et extension de la méth-
ode du coussin. Banque et Marchés, 51: 33-39.

16


