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Abstract

In this master thesis we investigate empirical logreturns from the
DAX and Olsen DM/Dollar data. We also investigate models which
have the ambition to behave as empirical data. We show that the
Generalized Hyperbolic model suits the data well and that there exists
models which can model the dependence structure of empirical data.
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1 Introduction

In the begining of the 20th century the field of Mathematical fi-
nance was born. Louis Bachelier defended his thesis “Théorie de la
Spéculation” in march 1900, which was the first work concerning stock
and option markets. He described price fluctuations with Brownian
motion, which was discovered by the botanist Robert Brown in 1828
and commonly claimed to be first theoretically analyzed by Einstein
in 1905!. The first mathematically rigourous construction of Brown-
ian motion was made by Wiener in 1923. Observe that Bachelier was
earlier then Einstein to use the Brownian motion mathematicly.

More precisely, Bachelier tried to analyze the market of so called
"rentes” traded at the Bourse de Paris. Rentes was a compensation for
lost property of the aristocrats in the French revolution and could be
viewed as a perpetual bond? paying a yearly interest rate. Bachelier
argued that the price of a rentes moved as a stochastic process with
normal distributed and independent increments, a Brownian motion.
However, this also implies a positive probability for negative prices on
a rentes. Bachelier regarded that as completely negligible due to the
values of the standard deviation which he called coefficient of nervous-
ness of a security. Sadly, the work by Bachelier was forgotten and he
was not honored until many years after his death. Further information
about Bachelier thesis and life can be found at the Bachelier Society?.

In the 1960th Bachelier was rediscovered and in 1965 Samuelson
proposed a geometric Brownian motion as a model for a security, the
so-called Samuelson model. This to forbid negative values for the stock
model. Although it has its flaws it is the most widely used model for a
security. During the 1970th the field of mathematical finance virtually
exploded. This mostly due to the work by Fischer Black and Myron
Scholes in 1973 where they presented a consistent mathematical treat-
ment of options and thereby allowed full-scale trading. However, by
the use of the Samuelson model certain problems arises in risk control
and option pricing as the model do not satisfy characteristic behavior
of finance data. Our work in this master thesis will concern empir-
ical investigation of models which better fits the empirical observed
distribution of securities.

The organization of the thesis is as follows. In Section 2 we describe

'Robert Brown observed irregular movement of pollen in water. Einstein ex-
plained that the motion was caused by the interaction between the pollen and the
water molecules

2A bond with no maturity date. Perpetual bonds are not redeemable and pay
a steady stream of interest forever.

3http://www.bachelierfinance.com



the Samuelson model. Section 3 will investigate if the Samuelson
model is a well describing model for empirical financial data. Section 4
and 5 present alternative models. In Section 6 we test the alternative
models and Section 7 gives a brief summary of our conclusions.



2 Samuelson Model

The Samuelson model from 1965 of a stock S(t) in continuous time
is also known as the Black-Scholes model. The stock is assumed to
follow a so called geometric Brownian motion, i.e.

S(t) = S(0)ert+7BU > (1)

where 1 > 0, 0 > 0 and B(t) is a standard Brownian motion. The
constant p is called the drift of the stock’s logprice and o is called
the volatility, i.e what Bachelier called coefficient of nervousness of a
security.

Definition 1 (Standard Brownian Motion) Recall that a stochas-
tic process B = B(t),t > 0, is a standard Brownian Motion in law if

the following holds

1. B has independent increments, i.e. for 0 <ty <t; <...<t,
we have that B(t,) — B(to), ..., B(ty) — B(t,_1) are independent
stochastic variables.

2. B has stationary increments, i.e. B(t+h)—B(h) < *B(t)—B(0)
for h > 0.

3. For 0 < s <t, B(t)— B(s) ~ N(0,t — s), i.e. B(t)— B(s) is
normally distributed with mean 0 and variance t — s.

4. B(0) =0.

The Equation 1 is equivalent, through It6’s® formula, to the as-
sumption that the stock value develop as

dS(t) = S(t)(p*dt + odB(t)),t > 0

where p* = u+%2. However, the Brownian motion has more properties
than indicated by the definition. For example, the sample path of a
Brownian motion B can be choosen to be continuous. This is very
important.

As a consequence we have

S(t)

dX(t) = log(m

)=pu+o(B(t)— B(t—1))~ u+odB(t)

4X £V if X and Y has the same distribution
*Tranformation rule from stochastic calculus. See for instance [14]



where B(t) — B(t — 1) ~ dB(t) ~ N(0,1) due to the independent
increments of the standard Brownian Motion. This implies that the
so called logreturns, dX(t), are i.i.d and dX(t) ~ N(u,0?). Notice
that via Taylor expansion we have

S(t) | _S{t)—-S(t-1)
S(t— 1)) T S(t—1)

dX (t) = log(

In this thesis we study the daytime logreturns dX (¢) of the so called
performance index DAXS from 1992 to 1999, 1876 data points. The
reasons for this and not studying stocks is that the behavior of financial
data is more traceable for performance indexes and we do not need
to consider dividends, as a performance index is dividend modified.
We will also study a high frequency dataset, but more about that
later. We have manipulated the data sets where we have dX (t) = 0
by simple replacing this value with £min(abs(dX(t)) # 0)/2,t > 0
where 4 is a random sign independent of everything else’. Another
important assumption we make is that one day is a fine grid. Indeed,
the Samuelson model is a continuous time model but we only have a
discrete dataset, which we assume is sampled sufficiently often in order
not to loose too much information. This also implies that instead of
writing dX (¢) we should use the notation AX(t) = X (t) — X (¢t — 1)

Figure 1 depicts typical pattern for a stock or a performance in-
dex. Notice the edginess of X (¢). Figure 2 depicts the corrsponding
logreturns AX (¢).
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Figure 1: Figure describes % for  Figure 2: Figure describes AX(t)
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3 Testing the Samuelson Model

To be able to test the validness of the Samuelson model we will use
standard statistical tools. For more information we recommend the
textbooks [8] and [21].

As recollection of the last chapter we have assumed AX(t) ~
N(u,0?) and i.i.d for logreturns. We will test two assumptions that
are consequences of our model for the logreturns of financial data.

1. Consequtive logreturns AX(¢) are independent.
2. Logreturns AX (¢) are N(u,o?) distributed.

The result of this investigation are already known facts. However,
to stress the importance of the results we feel it necessary to show the
tests to the reader of this paper.

3.1 Dependence structure

There exist numerous techniques for detection of dependence within
a stochastic process. To study the ACF (autocorrelation function) is
one of them. When plotting the ACF of AX(t), in Figure 3, we get
a result which support the independence theory as we cannot detect
any significant dependences at a 95% confidence interval. This also
gives an explanation to the difficulties of forecasting the stockmarket.

Sample Autocorrelation Function (ACF) Sample Autocorrelation Function (ACF)
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Figure 3: Autocorrelation function  Figure 4: Autocorrelation function

for AX(t) from DAX for AX(t)2 from DAX
data data

However, if we instead study AX(¢)?, in Figure 4, we have a long-
range dependence. This conradicts the independence assumption and
therefore we have to relax this assumption. Notice that if ACF really
measured independence other than linear, as it indeed would if AX (¢)



where Gaussian, then AX (¢)2 would also have been independent. This
contradicts our findings.

3.2 Normal Distribution

Our second issue to investigate is whether AX (¢) ~ N(u,0?) or not.

To that end we compare a histogram of the logreturns with a normal

distribution with parameters = 23" z; and 6% = L= 3" (z; —
2
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Figure 5: Empirical histogram from
the DAX data and es-
timated normal distribu-

Figure 6: Empirical histogram from
normal data and esti-
mated normal distribu-

tion tion

In view of the fact that we have 1876 datapoints, the fit in Figure 5
is not good and should have looked like Figure 6 if AX (t) ~ N(u,0?).
However, to find more information we present a quantile-quantile plot
(QQ plot) with normal distribution assumption in Figure 7. In the
QQ plot we can clearly see that the tails of AX (¢)’s distribution are
much heavier then a normal distribution, so called semiheavy tails [15].
This is very important if focused primarily is on extreme events, as
they only depend on the tails. Events as the Black Monday® 1987
would not be possible, or at least exceptionally unlikely, if the tails
were following a normal distribution.

See Figures 8 and 9 for a comparison of logreturns of our DAX data
with a simulated i.i.d process Y (t) ~ N(fi,5?). Notice that extreme
values for the simulated data are less extreme then for the actual DAX
data.

80n October 19, 1987 the Dow Jones Industrial Avarage lost 22.6% of its
value. You can compare this with the one day loss of 12.9% which began the
famous stockmarket crash of 1929.
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Figure 8: Figure describes AX(t) Figure 9: Simulated 1i.i.d normal
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3.3 Conclusion

We have shown that the Samuelson model does not seem supported
by empirical data. The logreturns are neither independent or nor-
mal distributed. To be able to make a better model we will have to
present more theory. However, the stationary assumption will still be
assumed due to dramatically enhanced complexity of theory if it is
relaxed. Other investigations have, in addition to failure of the inde-
pendence and distribution assumptions, reported clustring of extremal
events [11] e.g. a large absolute value is often followed by a another
large absolute value.



4 Generalized Hyperbolic model

In the previous chapter we came to the conclusion that there are flaws
in the Samuelson model. To be able to relax the assumption of a
geometric Brownian Motion we will consider a more general class of
processes.

Definition 2 (Lévy Process) Recall that a stochastic process L =
L(t),t > 0, is a Lévy Process in law if the following holds

1. L has independent increments.

2. L has stationary increments.
3. L(0) =0.

Observe that the Brownian Motion is a Lévy Process. Brownian
Motion is also the only continuous Lévy Process (not trivial to show)
which makes it easier to use in practice as well as in theory. However,
as we have shown that empirical logreturns are not normal distributed
and are in fact semiheavy tailed, we cannot use the geometric Brow-
nian Motion as a model for financial data. If we replace that model
with another Lévy process based model, it follows that the stock pro-
cess is not continuous and thus have discontinuities. We present the
following model

~

S(t) = S(0)er o = 5(0)e"® ¢ > 0 (2)
where L(t) and L(t) are Lévy Processes. With this model we can
capture the semiheavy tails if we choose the infinitely divisible dis-
tribution [10] of increments of L(t) in a suitable way. A family of
very flexible distributions which has turned out to fit empirical data
extremely well is the generalized hyperbolic distributions which was
introduced by Barndorff-Nielsen in 1977 [2] and first applied to finance
by Eberlein and Keller in 1995 [12]. If we assume that the stationary
increment distribution of the Lévy process L(t) belongs to the gener-
alized hyperbolic distribution family we get the so called Generalized
Hyperbolic model. This will, due to properties of the Generalized Hy-
berbolic distribution, result in a pure jump process [4]. However, as
we only study the process at a discrete grid, this will not really be
seen in our applications.

10



4.1 Generalized Hyperbolic Distribution

Ole E. Barndorff-Nielsen introduced the generalized hyperbolic dis-
tribution in 1977 to model grain size distributions of wind blowned
sand [2]. We will here present the univariate generalized hyperbolic
distribution and a few useful theorems. The theorems have been cited
from the Ph. D. thesis by Karsten Prause [17].

Definition 3 (Univariate GH distribution) A univariate GH dis-
tribution is defined by the following Lebesque density
(=%

gh(x; A a, 3,0, ,U) = a()\, a, (3, 5)(52 4 (SC _ M)Z) 5
Ky_1(ay/8 + (z — p)?)en)

A
2

K, is a modified Bessel

B (a®—p2)
where a(\, o, 3,0) = QWOCA*%O;AKA((S\/M),

function of third kind and x € R. The range of the parameters is
pE€R 06>08 <aifA>00>0]0 <aif =0 and
d> 0,8 >aif N\ <O.

A useful theorem, from [5] Theorem I, is the linearity of the GH
distribution.

Theroem 4 (Linearity of GH) For a linear transformation Y =
aX + b, we have Y ~ GH if X ~ GH. We also have that Ay = \x,
ay = %, By = %, oy = dxla| and py = pxlal +b

The parameter 4 is a location parameter, ¢ is a scale parameter, (3
is a skewness parameter and « affects the size of the kurtosis. Another
important aspect of GH is that a vast amount of distributions such as
normal distribution and student-t are special cases or limiting distri-
butions of GH. We also notice, which is a more or less general feature
of infinitely divisibly distributions [10], that the GH distribution can
be represented as a mixture of a normal distriution”. This mixture

takes the following form
ohlas N .6,) = [ N+ o w)giglws A o a? - 57
0

where N is a normal density function and gig(z; A, x, ) denotes
the density function of the general inverse gaussian distribution.

9See [10] chapter 6.4 on mixing

11



Definition 5 (GIG distribution) A univariate GIG distribution is
defined by the following Lebesgue density

o>~

: () _q —xeltur
glg(x;)HXa lb) = QK;IE\/W)'I)\ 16 2 » > 0

where A € R and ¢, x € Ry

For those not familiar with the mixing concept we present the
following clarification. If 02 ~ GIG distributed and € ~ N(0,1) then
we have r = p+ fo? + oe GH distributed [2].

As stated above, the expression for the GH density includes a mod-
ified Bessel function with index A. If we fix special values of A and use
calculation rules for the modified Bessel function [1] we can reduce the
GH distribution to particular more well-known distributions.

Definition 6 (Hyperbolic distribution) A univariate HYP distri-
bution, i.e. a GH distribution with A = 1, is defined by the following
Lebesgue density

hyp(@; @, B, 6, p) = — Y2 o-ay/E+p)? +B-n)

€
20aK1(6y/ a2—32)

where T, u € R, § > 0 and |f] < «

Definition 7 (Normal Inverse Gaussian distribution) A univari-
ate NIG distribution, i.e a GH distribution with A\ = —%, is defined by
the following Lebesque density

nig(z; 0, 3,8, ) = eIV =45 K1<\C} 626;:%;5)2)

where z, 1 € R, § >0 and 0 < |B] < «

Theorem 4 and Equation 2 allow us to do the following calculation
in the generalized hyperbolic model

~

AX(t) = log(%) = p+o(L(t) — L(tw— 1)) = pto Ag(t): AL(t)

where AX(t) = AL(t) ~ GH. We are now sufficiently prepared to
model a semiheavy tailed distribution for our logreturns.

12



4.2 Maximum Likelihood Estimator

To estimate the distribution of logreturns under Samuelson’s Model
we simply use the unbiased estimators i = %Z?Zl x; and 02 =
—= 3" (z; — p)®. However, the GH distribution are more complex
and we do not have closed formulas for unbiased estimators of GH
parameters. Therefore we need a different approach. The method of
maximum likelihood is a common method for parameter estimation
and curve fitting in statistics.

Given observed i.i.d data x1,29,...,x, we define the likelihood
function of parameter 0 as

lik(0) = f(x1,m0,...,2,]0)

where f is the frequency function. Note that if the distribution is
discrete the likelihood function gives the probability of observing the
given data as a function of the parameter #. With maximum likelihood
estimator (MLE) we maximize the probability. Since z1, xs, ..., z, are
assumed i.i.d and the natural logarithm is a monotonic function we
may instead maximize the log likelihood function

= log[f(x;]0)]

The MLE also have good theoretical properties such as asymptotical
efficiency according to Cramer-Rao Inequality. Of course, we can also
use this approach to estimate the parameters for a normal distribution.
In fact, then we end up with the unbaised estimators i and 62.

For the GH distribution we have the following log likelihood func-
tion to maximize

( ) :A ( { a? /87 67 /’L) =
nlog(a(A, o, B,6) + (5 - 1)21 1109(52 ( —u)2)+
Yor[log(K,_ 1 /0% + (x; — p)? + Bx; — p))]
In Figure 10 below, we can see a fitted GH distribution and Normal
distribution for the logreturns of the DAX data. We have also, in

Figure 11, zoomed the left tail to be able to visualize that we have
captured the semiheavy tailness of logreturns.

13
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Figure 10: Fitted GH distribution  Figure 11: Zoomed in left tail from

(-) and normal distribtu- Figure 10.
ion (...) for empirical
data.

The computer time consumed for MLE calculation of GH is quite
high. This is mostly due to the apperance of the Bessel function K
in the model. This can be circumverted by fixing \. We will of course
loose one degree of freedom and hence receive a less good fit. There
is also a problem with the flatness of the log likelihood function. This
may be somewhat improved by good initial values. However, due to
the same flatness, one may expect the fitted GH model to be quite
robust for small deviations of the parameters. As we have a closed
formula for the log likelihood function we can enhance the computation
speed by using derivatives in closed formulas.

The Generalized Hyperbolic Model seems to model the logreturns
distribution very well but we still have to investigate independence.
In Section 3 we learned that the assumption about independent logre-
turns can not be justified. To be able to deal with a “memory” among
the logreturns we now turn to a discussion of stochastic volatility.

14



5 Stochastic Volatility

The volatility was described as the coefficient of nervousness by Bache-
lier and it can also be regarded as the “temperature” of the stockmar-
ket. As we have shown above the logreturns are not independent and
their squares or absolute values are visibly correlated. To model this
we can use a stochastic volatility process with dependent increments.
Intuitively we can think of this as if it was warm weather yesterday
it seems reasonable that the temperature is high today too. However,
this process will have to move quite slowly compared to the fluctua-
tions of the logreturns and can therefore not model extremal events,
i.e., it should vary very little between consecutive integer time points.
We use the following model [11]

S(t) = S(0)e”WE® >0 (3)

where o(t) > 0 is a stochastic stationary process independent of the
Lévy process L(t). Moreover, if we study the logreturns and use the
assumption that o(t) is a “slow” process we land on the following
logreturn model.

S(t)

AX(t) = log(m) =

o(H)L(t)—o(t—1)L(t—1) = o(t)AL(t) (4)

Notice that the idea is to capture the dependence in o(¢) and the
extrem events in AL(t). To motivate the need for a stochastic rather
than constant volatility we simply run a window with size n over the
DAX data and calculate the variance in each window. This is depiced
in Figure 12. Observe that the size n of the window is affecting the
variance of that variance and if n is small the variance will be large.
We have also plotted the 95 % confidence interval as point lines.

For a second motivation we can take the logarithm of the squared
logreturns which leads to the following equation

log(AX (1)*) = log(o(t)*) + log(AL(t)*) (5)

This can be interpreted, from an engineering point of view, as a signal
disturbed by noise. Just for visualisation of the stochastic volatility
we take, in Figure 13, a running-mean smoothing backward window
of the dataset, i.e.

e
|
—

log(AX (t —i)?) (6)

™ =

log(6(t)*) =

@
Il
o
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Figure 12: Volatility(-) with window size n = 30 for DAX data. The
confidence interval is represented by (...).

In Figure 13 we can clearly see how the volatility, which is white,
varies with time.
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Figure 13: Volatility (white) backwindow with n = 20 on log(AX?(t), for
DAX data (-)

If we succeed in getting the devolatilized logreturns, A;((t()t), inde-

pendent we assume we can model them with a Lévy process. How-
ever, to accquire the devolatilized logreturns we have to estimate the
stochastic volatility. This is done within a parametric framework.

5.1 Recursive models

To be able to estimate the stochastic volatility o(¢), and hence the
dependence structure, we assume that we can calculate the future

16



volatility values based on the values of the past. This results in a
recursive model for the stochastic volatility.

Numerous models have been assumed over the years, but most of
them are based on then underlying noise process being a Brownian
motion. This is mainly due to the existence of extensive theory in
parameter estimations with Gaussian noise. However, as we want to
model semiheavy tails, we have to be a bit more daredevilish. We will
present three different recursive volatility models.

5.1.1 Heteroscedastic models

A widely used approach are the so called conditional heteroscedastic
models which have the for us convenient property that a large squared
volatility value is likely to be followed by another large value. This
fits with the empirical dependence structure of the logreturns!®.

Definition 8 (GARCH Model) Consider X(t) = o(t)L(t). Gen-
eralized Autoregressive Conditional Hetroscedastic is defined as

p q
GARCH(p,q) : o(t) =+ _NX(t—j)*+ Y dpo(t — k)
j=1 k=1

where B, \;, 6 > 0,Y4,Vk. Condition for second order stationarity™ :
?:1 )\j + ZZ:I 0 < 1.
For ¢ =0 we write GARCH(p,0)=ARCH(p)

It turns out that o(¢) in Definition 8 moves rapidly and therefore
it is common to slow it down by autoregression.

Definition 9 (AR Process) Given p > 0, a process X (t) is a Au-
toregressive process of order p if X (t) is stationary and ¥t € Z

AR(p) : X(t) = > oy X (t — k) = L(t)

where L(t) is noise.

A good and simple model is the combined AR(1) and GARCH(1,1)
model

0Especially the clustring phenomena [11], that could result from a fast moving
stochastic volatility

T Also known as weak stationarity, covariance stationarity, stationarity in the
wide sense or just stationarity.

17



pu(t) =aX(t—1)

o(t)? = B+ A(X(t —1) — p(t — 1))% + 6o(t — 1)?

with #,\,d > 0 and |a| < 0. Observe that X (¢) is stationary. How-
ever, in this model we have not yet assumed a distribution for L(¢).
It is standard practice to assume L(t) ~ N(0,1) and then use MLE
to estimate parameters. This is not convenient for us due to the semi-
heavy tails, but if we run an MLE estimator under normal assumption
and then study the residuals e(t) = X (t) — X () we can try to learn
about the true distribution of L(¢). This is called pseudo-MLE.

In more detail, we assume that u(t) = E[AX (¢)|AX (¢t — 1),0(t —
1)], o()* = var(AX(¢)|AX(t — 1),0(t — 1)) and AX(¢)|F(t —1) ~
N(u(t),o(t)). Here §(t — 1) are the parameters in the GARCH(1,1)-
AR(1) model and F(t — 1) is the information known at time ¢ — 1.
With u(t) and o(t) we can form the pseudo-MLE function

1(0) = U(m(t),v(t)) = —% > log(a(t)Q)—glog(Qﬁ)_% 3 (AX(?(t—)zﬂ(t))Z

t=1

and investigate the residuals.

5.1.2 Nonparametric models

If we remember the engineering approach in Equation 5 and try to ex-
tract the hidden volatility signal log(co(t)?) from the noise log(AL(t)?)
it is natural to apply a smoothing function as a backward'? window
of the data. Eberlein, Kallsen and Kristen [11] have done this with
the same running-mean smoother as in Equation 6. The model can
be classified as nonparametric. These authors choose the smoothing
parameter k by crossvalidation, i.e minimizing

T

CV () = = S (log(AX (1)) ~ log(6(t) )’

t=1

where T is the length of the dataset and log(6(¢) " = ¢ S log(AX (t—
i)?.

12We do not know the future

18



To make this model more flexible we can insert a weight function
in the smoothing function

k—1

log(5(1)’) = 1 > wilog(AX (¢t ~ i)

and try to minimize the BDS'? statistic of AL = A;((t()t). However, we

should be very careful when minimizing over a statistic and therefore
we also test the model under crossvalidation.

5.1.3 Variance window

The variance window is a simple and transparent model but quite
crude. We assume that the volatility o(¢) is the variance of the last
n days of the dataset. When we choose n small we will get a faster
moving volatility but the confidence interval of o(t) will be large. In
the variance window case we will also minimize over the BDS statistic.

13gee section 6.2
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5.2 Process model

Instead of calculating the variance based on a recursive model we can
assume o(t) to be a stochastic process driven by noise independent of
L(t). When chosing a suitable process for o(t) we let us be inspired by
Barndorff-Nilesen and Shepard who suggested a process of Ornstein-
Uhlenbeck type. This is mainly due to the particular simple Markov
dependence structure of a Ornstein-Uhlenbeck processes.

5.2.1 Ornstein-Uhlenbeck Processes

Definition 9.1 (Ornstein-Uhlenbeck Processes) A stochastic pro-
cess T(t), t € RT is a Ornstein-Uhlenbeck process if it satisfies the
stochastic differential equation

dr(t) = —ar(t)dt + dZ(t) (7)

where a > 0 and Z(t), t > 0 is a Lévy Process, which we refer to as
the Background Driving Lévy Process (BDLP).

If we take a cadlag version'? of the Lévy Process L(t) and o > 0
we can solve Equation 7 with

7(t) = e “7(0) + /Ot e 947 (s)

where the BDLP and 7(0) are independent. If 7(¢) is stationary and
square integrable and E[7(0)] = E[L(1)] = 0 we will have an autocor-
relation function of the form acf (t) = e~ for 7(¢),t > 0 [17]. To moti-
vate this we recall the autocorrelation for the squared logreturns X (¢)?,
assume that o(#)? is an OU process and try to fit the dependence
structure of the OU process to the squared logreturn autocorrelation
function. However, to be more flexible we follow Barndorff-Nielsen
and also fit a superposition of two'® independent and stationary OU
processes. For 1 > m > 0 this leads to the following autocorrelation
structure

acf(t) = me™ " + (1 — m)e™*! (8)

Observe the excellent fit in Figure 14. Notice that it would be
practical to have the marginal distribution for the OU process closed
under convolution because of the addition of such random subjects
involved.

"4 Continue a droite, limite a gauche. See [14]
15 Actually, we can fit as many as we like
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Figure 14: One (...) and two (-) OU processes fitted to correlation struc-
ture of squared logreturns (o), DAX data

However, to be able to estimate a stochastic volatility process we
will face the problem to separate the processes o(t) and AL(¢) in
Equation 4. This is unfortunately not trivial. However, if we assume
the Generalized Hyperbolic model and use the mixing relationship of
the GH distribution we can attach the mixing distribution, the GIG
distribution, with an OU dependence structure and try to find the
BDLP which makes the marginals of the OU process GIG distributed.

This would lead to a model with logreturns of type

dX (t) = o(t)dB(t) + (u+ Bo(t)?)dt (9)
do(t)? = —ao(t)?dt + dZ(t) (10)

The processes o(t)? and B(t) are assumed to be independent.
o(t)? ~ GIG distributed and a > 0.

To be able to use the flexibility of more than one OU process we
can restrict us to a fixed . For \ = —% we have a NIG distribution
instead of GH distribution and this results in a mixing distribution

which is closed under convolution, the Inverse Gaussian distribution.
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Definition 10 (The IG distribution) A univariate IG distribution
s defined by the following Lebesgue density

2
ig(8,7) = gig(z; =5, X, ) = F=eMaTre 3 ETN, 15
where §,y € RT16
Theorem 11 (IG convolution) Assume~y > 0 ando; fori=1,...,n.

The IG distribution is closed under convolution, i.e.
IG(325, 0i,7) = % 1G(6:,7)

If we model a superposition of two independent and stationary
OU proceses which are IG distributed and with parameters (41, , o)
and (02,7, ap) respectively, we will have the following autocorrelation
function

01 02
acf(t) = —e Mt 4 Ze 2!
where 6 = §; + d9. It follows from Equation 8 that we can, after esti-
mation of ay, as and m, construct two independent OU processes I1G
distributed and parameters (dm,y, a;) and (6(1 — m),~y, as) respec-
tively.

Theorem 12 (BDLP distribution of IG OU process) The BDLP
Z(t) of the IG distributed OU processes is of the form Z(t) = Q(t) +
P(t) where Q(t) is IG(%,~) distributed and independent of P(t) which
is of the form P(t) = v 2ND 2. N(t) is a Poisson process with

rate (%’)*1 and u; s standard normal distributed and independent of

N(t) [4].

To be able to have a OU process o%(t) with IG(d,~) distribution
whatever the value of a [4], we can change the time scale and the
BDLP process according to

do?(t) = —ao(t)dt + dZ(t) = —aoc(t)dt + dZ(at) (11)

16y =62 and o) = 2
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5.2.2 Quadratic Variation

Another approach is to study the so called quadratic variation. This
is a very important path property of stochastic processes in stochastic
calculus.

Definition 13 (Quadratic variation) Choose a partitionIT = {0 =
to <ty <...<ty,=1}. The quadratic variation of {X(t),0 <t <1}
over 11 1s defined as

Q) =35 (X (1) = X (t-1))?

If the limit of Q(II) exists as maxi<j<n |tk —tk—1| — 0 we call the limit
the quadratic variation of X on [0, 1]

If we instead of [0, 1] had taken [0,¢], ¢ > 0 the quadratic variation
of X over [0,¢] would be a function of t and hence a stochastic process
which is called the quadratic variation process, [X](t).

The solution of the stochastical differential equation of dX(¢) in
Equation 9 is

X(t) = /Ot o(u)dB(t) + pt + Bo(t)*

where the notation o(t)** = [, o(u)’du is the so called integrated
volatility. If we take ;= 0 and 8 = 0 or assume that o(¢)* behaves
nicely!” we will have!® [X](¢) = o(t)%.

A more general model to receive [X](t) = o(¢)** would be

X(t) = /0 o(u)dB() + a(?)

where «(t) is a process of bounded variation with continous paths.

This implies that we could approximate the volatility process if we
study the quadratic variation of the logreturns. This would indeed be
practical as we can be more flexible with the choice of BDLPY. How-
ever, to be able to calculate an estimator of the stochastic volatility
our day to day data is not fine enough. We will have to use intraday
data, so call tic data. Thuse we follow Barndorff-Nielsen and Shep-
hard and replace the volatility by an estimator called realised variance
or realised volatility defined as

Te.g. o(t)®* is a process of bounded variation with continuous paths [14]

18This due to the nice properties of the Brownian motion, i.e it has continuous
paths

19We can also choose another process than QU
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(X)) = i AX;(t)”

where M is the number of intraday measurements and

AX;(t)=X((t—1)A+ %) - X(t-1)A+ #)

is the j-th intra-A return. The quadratic variation implication is that
as M — oo we have

X (B2 — 62(1) B 20

The ticdata is fairly expensive?! but Prof. Neil Shepard was very
kind to give me the realised variance dataset for the Olsen Dollar/DM
data??, from 1 December 1985 and 2447 tradingdays ahead, for M = 8
and M = 144. Below, in Figure 15 and Figure 16, we show the realised
variance.

7
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Figure 15: 02(t) from quadratic — Figure 16: o2(t) from quadratic
variation M = 144 variation M =8

To get a feeling for the assumed volatility we also present a his-
togram of the increments in Figure 17 and Figure 18.

Alternatively we can assume a more complex model then Equa-
tion 9-10 with A = —1, as that in Equation 3. Here dL(¢) is a general
Lévy Process and if we calculate the quadratic volatility process we

20X, BYif P|X,-Y|<e — 1Lforalle>0

21 Mainly due to Olsen bankrupcy

22Qriginally released in conjunction with the hosting by the Olsen Group of the
High Frequency Data in Finance conferences HFDF-I and HFDF-II.
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Figure 17: Histogram of o02(t) in-  Figure 18: Histogram of o%(t) in-
crements from quadratic crements from quadratic
variation M = 144 variation M =8

only have o(t)** = f(fa(t)2du if L(t) is a Brownian motion. Other-
wise we would have to take the discontinuous part?® of the process
into consideration and have a more complex formula for the quadratic
variation.

23The jumps
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6 Model test

In this section we will evaluate the models previously mentioned. To
control how well the models fit empirical data we will test two things.
Firstly, if the devolatilized residuals are independent. Secondly, if the
estimated distribution is similar to the empirical distribution. More-
over, we will model the noise AL(t) both with increments of Normal
distribution and increments of Generalized Hyperbolic distribution.
This is to stress the difference between semiheavy tails and non-heavy
tails. To be able to evaluate the quadratic variation approach we will
model both the DAX data and the Olsen Dollar/DM data. The dif-
ferent models are named after the volatility structure and labeled as
follows.

1. Constant volatility

2. Nonparametric

3. Cross volatility

4. Variance window

5. GARCH(1,1)-AR(1)
6. Quadratic variation

The model test follows Eberlein, Keller and Kristen [11] but they
used the Hyperbolic distribution as noise increments and a non sta-
tionary approach. We will use the Generalized Hyperbolic distribution
as a noise increments. The nonparametric model with weight function,
the variance window model and the Quadratic variation model have
never, by the author of this thesis, been seen statistical tested. We
have also used a greater search span in the cross volatility model.

6.1 Modeling

1. With constant volatility we have either the Samulson model, see
Section 2, or the Hyperbolic model, see Section 4.1. This, of course,
depends on the distribution of AL(t).

2. The estimation of the Nonparametric model is straight forward,
see Section 5.1.2. However, it will be computationally demanding due
to the “brute force” approach. To be able to have a faster approach
we use our assumption about the stochastic volatility and search for
a solution in the range n = 5,...,15 which is on a one to two weeks
of data base. We also have w = 0.1,...,1 with 0.1 intervalls.
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Our results are n = 5 and w = 0.7 for the DAX data and n = 6
and w = 0.6 for the Olsen Dollar/DM data.

3. Cross volatility is the nonparametric model with n chosen by
crossvalidation, see Section 5.1.2. The crossvalidation was minimized
by n = 22 for the DAX data and n = 58 for the Olsen Dollar/DM
data. We notise the high value of n for the Olsen Dollar/DM data but,
accept it.

4. Variance window from Section 5.1.3 is, as the nonparametric
model, also straight forward. We stress the fact about the confidence
interval also mentioned in Section 5.1.3.

Our results, for the window size, are n = 9 for the DAX data and
n = 15 for the Olsen Dollar/DM data.

5. The GARCH(1,1)-AR(1) approach, see Section 5.1.1, is modeled
by the pseudo-MLE approach. With the residuals we try to fit a GH
distributed AL(t) in the hyperbolic case or a Normal distribution in
the Samuelson case.

Our results are o = 0.0334, 8 = 0.000003, A = 0.0978 and § =
0.8855 for the DAX data respective a = —0.0466, § = 0.0088, A\ =
0.0539 and 6 = 0.9296 for the Olsen Dollar/DM data.

6. For the Quadratic variation approach, see Section 5.2.2, we
use parameters M = 8 and M = 144. It is devolatilized under normal
assumption and as in the mixing model we will also here be inspired by
pseudo MLE. However, for simplicity, the adapted process of bounded
variation is asumed «(t) = 0.

6.2 Independence

As mentioned above the autocorrelation is not a good measure of in-
dependence if we are outside the Guassian world. We will use the
BDS-test [7], an independence test which reacts sensitively to accu-
mulations of similar values in time series. The matlab code we use has
been made by Dr. Ludwig Kansler?*. To present the test we will use
a mathematical description of BDS from [11]. The BDS statistic for
fixed parameters m € N and € > 0 is defined as

Wn(€) = \/ﬁom’"(i; :%m(e»m

where n is the number of observation. For n,, = n — m + 1 and
Le(s,t) = 11_¢qg(max;co,.. m—1 | X(t +1i) — X (s +i)|) we have

Con() = Y 1d(s, -

1<t<s<nm m (1 — 1)

24http:/ /www.cs.man.ac.uk/ dbree/Stathis/code.htm
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O (€) = 4(K(€) + 2 327" Kn(€)™ I C1a(€)¥+

(m —1)2C} . ()*™ — m* K, (€)Cy (€)*™2)

2(1c(t, $)1e(s, 1) + 1c(t, ) 1e(ry s) + 1e(s,t) 1e(t, 7))
N (N, — 1) (N, — 2)

1<t<s<r<nm

Under the null hypothesis of independence we have W, ,,(¢) asymp-
totically standard normal distributed. The parameters m and e are
chosen after a rule of thumb according to which m = 4 and € = 1.54/s%

where 52 is the empirical variance of AL [6].

Vol model, DAX BDS Statistic | p-value | iid hypothesis
Constant Volatility 15.222 0 rejected
Nonpara Volatility 0.3483 0.7276 pass
Cross Volatility 4.3455 0 rejected
Variance Window -0.3342 0.7382 pass
GARCH-AR -0.2471 0.8048 pass

Table 1: BDS test for devolatilized DAX residuals

Vol model, Olsen BDS Statistic | p-value | iid hypothesis
Constant Volatility 6.1062 0 rejected
Nonpara Volatility -0.0035 0.9972 pass
Cross Volatility 3.9274 0.0001 rejected
Variance Window 0.0918 0.9268 pass
GARCH-AR -0.9126 0.3615 pass
QVariation M =8 -2.2798 0.0226 rejected
QVariation M = 144 -4.1167 0 rejected

Table 2: BDS test for devolatilized Olsen residuals

From the tables above we can see the results from the BDS test at
a 5% significance level. It is clear that constant volatility model and
cross volatility model fails for both the DAX and the Olsen Dollar/DM
data. We also notice that the quadratic variation model fails and for
M = 144 we have a poorer result than for M = 8 although it should
be better, if the model was correct, due to tighter sampling. The other
models, nonparametric, variance window and GARCH-AR, passed the
test.

We also, for illustrative reasons, present a plot on the autocorre-
lation of the squared devolatilized residuals of the Olsen Dollar/DM
data. The quadratic volatility model is represented by M = 144.
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ACF for the squared devolatilized returns
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Figure 19: ACF for squared estimated residuals, Olsen Dollar/DM data

6.3 Distribution

In the previous section we studied if the residuals, AL, from our mod-
els had independent increments. However, we need to estimate a dis-
tribution to the residuals and statisticly test the estimated distribution
to determine if the models are good.

If we consider U = F(AL), where F is the estimated distribution
from a residual. U should, under null hypothesis, be an i.i.d time
serie uniformly distributed on [0,1]. The most common test is the
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Kolmogorov-Smirnov test which analyzes if the empirical distribution
of U, denatod Fy, significantly differs from a uniform distribution.
However, we will instead use a Kuiper test as it is more sensitive to
the tails.

The Kuiper statistic K is defined as [18]

K = max (Fy(z) — ) + max (z — Fy(z))

z€(0,1] z€[0,1]

and the p-value for the Kuiper statistic is asymptotically
o0
_ 2A2
p= 2 Z 4k2)\2 2k
k=1

where A = K (y/n + 0.155 + %22).

To calculate U = F(AL) under GH distribution asumption on the
devolatilized logreturns we use a numerical method based on Simp-
son’s rule [22]. To be able to speed up the calculation we sorted the
AL in size and used 500 intervals between each sorted AL. Fy was
calculated by dividing [0, 1] in 1000 intervals.
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6.3.1 Samuelson model

We start our Kuiper test with assuming our devolatilized logreturns
to be normal distributed. The distribution parameters are estimated
according to 1=+ 3" x; and 6% = 5 S0 (2 — p)”.

Vol model a'DAX /lDAX a'Olsen ﬂOlsen
Constant Volatility 0.0121 | 0.0006 | 0.7113 | -0.0078
Nonpara Volatility 0.4424 | 0.0276 | 1.3740 | -0.0251

Cross Volatility 2.0285 | 0.1102 | 2.0387 | -0.0334
Variance Window 1.1578 | 0.0649 | 1.1158 | -0.017
GARCH-AR 1.0234 | 0.0594 | 0.9687 | -0.0159
QVariation M =8 - - 1.0214 | -0.0025
QVariation M = 144 - - 0.9544 | -0.0092

Table 3: Estimated normal distribution for devolatilized returns

As we used a QQ plot in section 2 to motivate a different model
from the Samuelson model, we present QQ plots for the Olsen data to
visualize the Kuiper test. The quadratic variation model is represented
by M = 144.

QQplots for devolatilized returns of Olsen Dollar/DM data
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Figure 20: QQ plots under normal assumption,Olsen Dollar/DM data

We notice that no model seems to be well modeled with normal
assumption as each QQ plot shows deviation from the straight line.
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Vol model KDAX Pbpax KOlsen Poisen
Constant Volatility | 0.1059 0 0.0692 0

Nonpara Volatility 0.0807 0 0.0823 0
Cross Volatility 0.0791 0 0.0682 0
Variance Window 0.0592 0 0.0688 0
GARCH-AR 0.0515 | 0.0017 | 0.0612 0
QVariation M =8 - - 0.1021 0
QVariation M = 144 - - 0.0440 | 0.0026

Table 4: Kuiper test for devolatilized residuals under GH distribution as-
sumtion

The Kuiper test summaries the QQ-plots in statistical numbers.
No model passed the test. However, one of our assumptions in the
Kuiper test is that U has i.i.d increments. We follow [11] and test this
assumption.

Vol model BDSDAX Ppax BDSOlsen PoOlsen
Constant Volatility 13.7633 0 5.5306 0

Nonpara Volatility -2.3314 | 0.0197 | -2.9608 | 0.0031
Cross Volatility 1.5238 | 0.1276 | 2.3894 | 0.0169
Variance Window -0.4341 | 0.6642 | 0.5791 | 0.5625
GARCH-AR -1.0664 | 0.2863 | -1.5831 | 0.1134
QVariation M =8 - - -1.7407 | 0.0817
QVariation M = 144 - - -3.1453 | 0.0017

Table 5: BDS test for Kuiper data under Normal distribution assumtion

Under normal assumption of the devolatilized logreturns we can
conclude that no model passed both the statistical tests. Only the
variance window model and the GARCH-AR model passed the BDS
test for each data set.
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6.3.2 Generalized Hyperbolic model

We now assume the devolatilized logreturns to be GH distributed and
estimate the distribution parameters for each volatility model and data
set. We use the MLE method described in section 4.

Vol model

A

Q Iv) ) 0
Constant Volatility | -2.1189 | 0.9469 | 0.5932 | 0.0183 | 0.0005
Nonpara Volatility | -1.8559 | 1.3798 | -0.2279 | 0.6839 | 0.0720
Cross Volatility -2.9827 | 0.1711 | -0.1135 | 4.0158 | 0.5542
Variance Window | -2.1383 | 0.8956 | -0.2321 | 2.1896 | 0.3637
GARCH-AR -2.0201 | 1.4157 | -0.38 | 2.1174 | 0.4362

Table 6: Estimated GH parameters for devolatilized DAX residuals

Vol model

A

a Iv) ) 1
Constant Volatility | -2.7281 | 0.3195 | -0.0106 | 1.3416 | -0.0027
Nonpara Volatility -1.7655 | 0.4652 | -0.0194 | 2.0939 | 0.0090
Cross Volatility -1.9820 | 0.3679 | -0.0205 | 3.4822 | 0.0489
Variance Window -2.5088 | 0.3920 | -0.0315 | 2.0458 | 0.0225
GARCH-AR -2.7068 | 0.6065 | -0.0377 | 1.9288 | 0.0197
QVariation M = 8 0.3984 | 14.2684 | -0.2027 | 14.8379 | 0.2079
QVariation M = 144 | -1.0491 | 11.7552 | -0.1656 | 10.7518 | 0.1410

Table 7: Estimated GH parameters for devolatilized Olsen residuals

We also present the MLE values.

Vol model MLEDAX MLEOlsen
Constant Volatility 5733.1 -2555.5
Nonpara Volatility -1047.7 -4141.6
Cross Volatility -3868.6 -5016.5
Variance Window -2874.1 -3637.7
GARCH-AR -2667.8 -3335.9
QVariation M =8 - -3523.5
QVariation M = 144 - -3357.3

Table 8: MLE for GH assumtion

In table 9 we can clearly see that the assumption with GH dis-

~

tributed A(L) outperforms the normal assumtion. However, the Quadratic
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Vol model KDAX Pbpax KOlsen Poisen
Constant Volatility 0.0385 | 0.0748 | 0.0201 | 0.8277

Nonpara Volatility 0.0216 | 0.8918 | 0.0233 | 0.6023

Cross Volatility 0.0308 | 0.3510 | 0.0226 | 0.6711
Variance Window 0.0195 | 0.9593 | 0.0171 | 0.9576
GARCH-AR 0.026 | 0.6427 | 0.0206 | 0.7939
QVariation M =8 - - 0.0995 0

QVariation M = 144 - - 0.0418 | 0.0418

Table 9: Kuiper test for devolatilized returns under GH distribution as-
sumtion

Variation model, both M = 8 and M = 144, do not perform sig-
nificantly better. This is explained by a study of the histogram of
Af/, where it seems as the center of the empirical distribution is
camelshaped. This severely affects the Kuiper test.

0.05 1 005

Figure 21: Histogram  for  de- Figure 22: Histogram  for  de-

volatilized  logreturns volatilized  logreturns
under Quadratic Varia- under Quadratic Varia-
tion model, M = 8 tion model, M = 144

However, if we only measure the tails e.g.

max
£€[0,0.2:0.8,1]

the Quadratic volatility model with m = 144 passes the test with
p — value = 0.0994 on a 95% confidence interval. The reason for the
camelshape is not known to the author of this thesis.

In contrast of the normal assumption, for the devolatilized logre-
turns under the assumption of GH distributions, the variance win-
dow, the cross and the GARCH(1,1)-AR(1) volatility models passed
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Vol model BDSDAX PpAx BDSOlsen Poisen
Constant Volatility 10.9112 0 5.4175 0.0006
Nonpara Volatility -3.1383 | 0.0017 | -3.5124 | 0.0004
Cross Volatility 0.8384 | 0.4018 1.8228 0.8322
Variance Window -0.6899 | 0.4902 0.5778 0.5634
GARCH-AR -1.4263 | 0.1538 | -1.5317 | 0.1256
QVariation M =8 - - -1.7492 | 0.0803
QVariation M = 144 - - -3.1284 | 0.0018

Table 10: BDS test for Kuiper data under GH distribution assumtion

all statistical test at a 95% confidence interval. However, we should
remember that the cross volatility model failed the BDS test for the
devolatilized residuals. Despite its nice mathematical properties the

Quadratic volatility model did not perform well.
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6.4 Mixing Model

The mixing model, with two noise processes, is a bit different than
the other models. We refresh the reader of the model and the mixing
concept. If 02 ~ GIG distributed and ¢ ~ N(0,1) then we have
r = p+ Bo?+oe GH distributed [2]. However, to get the flexibility of
two OU processes we instead assume 02 ~ IG and as a consequence we
have x ~ NIG. It is easy to simulate such a process because we can
simulate an IG distributed random number with an algorithm from
Michael, Haas and Schucany [16]. The author of this thesis has never
seen simulated results of the validity of distribution and dependence
assumption of OU processes.

The estimated NIG parameters can be found in table 11. We got
MLE = 5730.7 for the DAX data and M LE = —2558.2 for the Olsen
Dollar/DM data.

Data A Q Iv) o 1
DAX -0.5 | 83.334 | 0.6437 | 0.0120 | 0.0005
Olsen Dollar/DM | -0.5 | 1.8130 | -0.0131 | 0.9071 | -0.0017

Table 11: Estimated NIG distribution parameters for DAX and Olsen
data

This implies that the parameters from the IG distribution should
be

Data drc = Onic | Vic = \/a?wc - 512le
DAX 0.012 83.3315
Olsen Dollar/DM 0.9071 1.8130

Table 12: Estimated IG distribution parameters for DAX and Olsen data

We plot the IG distribution for the Olsen Dollar/DM data and
compare it with the histogram from the realized volatility in figure 23
and figure 24.
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Figure 23: Estimated IG distribu- Figure 24: Estimated IG distribu-
tion and realized volatil- tion and realized volatil-
ity for M =8 ity for M =144

Notice how well the realized volatility with M = 144 fits the IG
distribution.

However, we want to use stochastic volatility to model dependence
and therefore we will have to attach an artificial dependence structur
in 0%(t) of AX?(t) type. We recall from section 5 that Ornstein-
Uhlenbeck processes had nice theoretical properties for the correlation
structure which fits empirical data well. Following Equation 8 we
estimat the parameters and use Equation 9 and Equation 10 to model
our data.

Data m o oy
DAX 0.1309 | 0.0072 | 1.5744
Olsen Dollar/DM | 0.0572 | 0.0244 | 3.5552

Table 13: Estimated OU parameters for DAX and Olsen data

Sample Autocorrelation Function (ACF)
T T T T T

p N w———_ LS S— —— —
—

Figure 25: Estimated IG Figure 26: Dependence
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If we follow Theorem 12 we can simulate IG distributed OU pro-
cesses independent of a via Equation 11. We choose timesteps of
dt = 0.1 and as 0?(0) we use the mean of the IG distribution. In
Figure 25 we have simulated an IG distributed OU process with pa-
rameters 6 = 0.9071, v = 1.813 and o = 0.5 in 6000 timesteps and
plotted the histogram with the true distribution. In Figure 26 we
have plotted the ACF for the simulated OU process as well as the
theoretical values.

We now simulate the superposition of two IG distributed OU pro-
cesses with parameters estimated from the DAX and Olsen data. We
choose to neglect the first 1000 values of superpositioned OU processes
to avoid dependence of the initial value. In Figure 27 and Figure 28 we
have plotted the histograms for 9000 simulated values with the true
distributions from Table 12.
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Figure 27: DAX distribution Figure 28: Olsen distribution

The dependence structures, for 9000 simulated values, via ACF
can be seen in Figure 29 and Figure 30. The circles are the ACF and
the lines are the theoretical values from Equation 8

Figure 29: DAX Figure 30: Olsen
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Unfortunately, if we choose the size of the simulated data to 2000,
which is in the same range as our DAX and Olsen data, the ACF seems
to overestimate the dependence for the DAX data and underestimate
the Olsen data. This can be seen in Figure 31 and Figure 32.
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Figure 31: DAX Figure 32: Olsen

However, we have found that the o2, modeled by a superposition
of two OU processes, in the mixing model captures the dependence
structure of the empirical data if we use a large amount of simulated
datapoints.
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7 Conclusion

We have shown that the most common model for a security, the
Samuelson model, deviates significantly from real financial data, by
means of empirical facts presented in the thesis. We have also shown
that it is necessary to use stochastic volatility to model dependence
in the time. We tested an alternative noise process distribution to
the traditional Gaussian, the generalized hyperbolic distribution. The
GH distribution combined with stochastic volatility made it possible to
model logreturn data from the DAX and Olsen Dollar/DM very well.
For instance, the AR-GARCH stochastic volatility model combined
with the GH distribution passed all statistical tests. We also notice
that the variance window model passed all statistical tests. However,
due to the high variance of the variance in this model we take this
result lightly.

Although this thesis is a study in finance, it illustrates an impor-
tant aspect of general stochastic theory, independence. We have shown
that the BDS test could reject independence under one transfromation
of a dataset and pass the same dataset under another transformation.
This is not preferable.

We have also shown that the mixing model with volatility mod-
eled by a superposition of two OU processes has promising statistical
features.

40



References

1]

2]

7]

[10]

[11]

[12]

[13]

M. Abramovitz, I. A. Stegun Handbook of Mathematical Func-
tions, Dover Publications, New York, 1968.

O. E. Barndorft-Nielsen, Ezponentially decreasing distributions
for the logarithm of particle size, Proceedings of the Royal Society
London, 353, 401-419, 1977.

O. E. Barndorff-Nielsen, E. Nicolato, N. Shepard Some recent de-
velopments in stochastic volatility modelling, To appear in Quan-
titative Finance 2002, Nuffield, 2001.

O. E. Barndorff-Nielsen, T. Mikosch, S. I. Resnick, Lévy Pro-
cesses: Theory and Applications, Birkhduser, Boston, 2001.

P. Blaesild, B. The two-dimensional hyperbolic distribution and re-
lated distributions, with an application to Johannsen’s bean data,
Biometrica 68, 251-263, 1981.

W. Brock, W. Dechert, J. Scheinkman, Nonlinear Dynamics,
Choas and Instability: Statistical theory and Economic Evidende,
Campebridge, 1991.

W. Brock, W. Dechert, J. Scheinkman, A Test for Independence
Based on the Correlation Dimension, Econometric Reviews 15(3),
Campebridge, 1996.

P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods,
Springer, Berlin, 1996.

J-M. Courtault et al Louis Bachelier s life and work, Mathemat-
ical Finance, Vol 10 nr 3, 2000.

R. Durett, Probability: Theory and Eramples, Duxbury Press,
Belmont, 1995.

E. Eberlein, J. Kallsen, J. Kristen Risk Management Based on
Stochstic Volatility, FDM Preprint 72, University of Freiburg,
2001.

E. Eberlein, U. Keller Hyperbolic distribution in finance,
Bernoulli, 1, 281-299, 1995.

H. Geman, D. Madan, S.R. Pliska, T. Vorst Bachelier and his
times: A conversation with Bernard Bru, Mathematical Finance
- Bachelier Congress 2000, Springer, 2001.

41



[14]

[15]

[16]

[17]

[20]

[21]

22]

I. Karatzas, S. E. Shreve Brownian Motion and stochastic Calu-
lus, Springer, New York, 2000.

B. B. Mandelbrot, The wvariation of certain speculative prices,
Journal of Business 36, 519-530, 1963.

J. R. Michael, R. W. Haas W. R. Schucany Generating Random
Variates Using Transformations with Multiple Roots, The Amer-
ican Statistician 30 , 88-90, 1976.

K. Prause, The Generalized Hyperbolic Model: FEstimation, Fi-
nancial Derivatives, and Risk Measures, Ph. D. thesis, University
of Freiburg, 1999.

W. Press, S. Teukolsky, W. Vetterling, B. FLannery Numerical
Recipes in C, Cambridge University Press, Cambridge, 1992.

S. Raible, Lévy Processes in Finance: Theory, Numerics, and
Empirical Facts, Ph. D. thesis, University of Friburg, 2000.

S. I. Resnick, Adventures in Stochastic Processes, Birkhauser,
Boston, 1994.

J. A. Rice, Mathematical Statistic and Data Analysis, Duxbury
Press, Belmont, 1995.

L. Rade, B. Westergren, Mathematics Handbook for Science and
Engineering BETA, Studentlitteratur, LUND, 1995.

42



