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PREFACE

The International School on Mathematical and Statistical Applications
in Economics was organised in the frame of the Tempus Tacis Joint Euro-
pean Project Statistical Aspects of Economics under auspices of Mälardalen
University (Sweden), Ume̊a University (Sweden), Stockholm University
(Sweden), University of Helsinki (Finland) and Kyiv Taras Shevchenko Uni-
versity (Ukraine) involved in the project.

The programme covered the following topics: financial and actuarial
mathematics; survey sampling in economics; mathematical models in micro-
and macro-economics; computer based modelling in economics; educational
programmes and teaching in mathematical economics.

The participants of the school, 95 in total, were professors, lecturers and
postgraduate students as well practitioners in business and industry from
Estonia, Finland, Germany, Latvia, Poland, Sweden, Russia and Ukraine.

There were given 17 invited lectures and 23 communications at the
school. Invited lecturers at the School were Tomas Björk (Stockholm),
Kimmo Eriksson (Väster̊as), Jan Grandell (Stockholm), Mats Gyllenberg
(Turku), Bengt Janson, Erik Ricknell and Jan Röman (OM Technology AB,
Stockholm), Sune Karlsson (Stockholm), Anders Klevmarken (Uppsala),
Gunnar Kulldorff (Ume̊a), Mathias Lanner and Jens Roslin (SPSS Sweden
AB, Stockholm, Sweden), Anders Martin-Löf (Stockholm), Harri Nyrhi-
nen (Helsinki), Lars-Erik Öller (Stockholm), Bengt Rosén (Stockholm),
Dmitrii Silvestrov (Väster̊as) and Alexander Kukush (Kyiv), Bengt Swens-
son (Örebro), Imbi Traat (Tartu), Mikhail Yadrenko (Kyiv) and Nadiya
Zinchenko (Kyiv).

The Proceedings of the School includes 32 papers based on invited lec-
tures, communications and posters presented at the School. The Proceed-
ings are published as a double issue of the journal Theory of Stochastic
Processes. All papers have been reviewed, and we are grateful to the jour-
nal’s Editorial Board for inviting to publish the Proceedings in the journal
and arranging the refereeing of the papers.

The Proceedings of the School will be distributed to the Ukrainian and
Scandinavian universities, financial and insurance institutions, and libraries
that will contribute to the dissemination programme realising within the
EU Tempus Tacis project Statistical Aspects of Economics as well as to the
development of international co-operation in the area of higher education
and science.

The editors
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• Mälardalen University

• Department of Mathematics and Physics (Mälardalen Uni-
versity)

The Organising Committee and the Scientific Programme Com-
mittee are very grateful to these institutions for their support of
the school.

COMMITTEES

Organising Committee: Dmitrii Silvestrov (Chairman, V̊a-
steräs), Clas Nordin (V̊asteräs), Evelina Silvestrova (Secretary,
Ume̊a/V̊asteräs), Ingrid Westerberg-Eriksson (Ume̊a), Nadiya
Zinchenko (Kyiv).

Scientific Programme Committee: Dmitrii Silvestrov (Co-
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Gunnar Kulldorff (Ume̊a), Evelina Silvestrova (Secretary, Ume̊a/
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International School

on Mathematical and Statistical

Applications in Economics

January 15-19, 2001, Väster̊as, Sweden

Programme

SUNDAY, January 14

18.00 - 19.00. Opening ceremony [Omega hall, the main building of the
university]
19.00 - 21.00. Welcome reception [cafe Origo, the main building of the
university]

MONDAY, January 15

Invited lectures [Pi hall, the main building of the university]

9.00 - 9.15. Openning session
9.15 - 10.05. Anders Martin-Löf (Stockholm): ”On the application of control
theory in insurance”
10.05 - 10.25.] Refreshments
10.25 - 11.15. Gunnar Kulldorff (Ume̊a): ”Should we repeat the sampling
design in repeated surveys?”
11.20 - 12.10. Lars-Erik Öller (Stockholm): ”The accuracy of European
growth and inflation forecasts”
12.10 - 13.30. Lunch [cafe Origo]

Communications [Pi hall]

13.30 - 13.55. Maciej Klimek (Uppsala), Gustaf Strandell (Uppsala) and
Johan Tysk (Uppsala): ”Testing limitations of the random walk hypothesis”
14.00 - 14.25. Erik Dotzauer (Väster̊as), Henrik Jönsson (Väster̊as) and
Hans F. Ravn (Balleru): ”Optimal unit commitment by branch-and-bound
exploiting dual optimality conditions”
14.30 - 14.55. Andrzej Malawski (Cracow): ”Dynamic Arrow-Debreu model
- construction, some properties and applications”
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15.00 - 15.25. Oleksandr Chernyak (Kyiv) and Andriy Stavytskyy (Kyiv):
”Forecasting of the balance of payments of Ukraine”
15.25 - 15.40. Refreshments
15.45 - 16.10. Dmytro Gusak (Kyiv): ”The distribution of extreme for risk
processes on finite Markov chain”
16.15 - 16.40. Isabella Huber (Karlsruhe): ”New approach to portfolio
choice theory”

16.45 - 17.10. Johan Tysk (Uppsala): ”Absence of arbitrage in markets
with infinitely many assets”
17.15 - 17.40. Yurii V. Chernikov (Kyiv): ”Goodness-of-fit test in Nev-
zorov’s record model”

TUESDAY, January 16

Invited lectures [Pi hall]

9.15 - 10.05. Bengt Rosén (Stockholm): ”Pareto sampling - a method for
drawing samples with inclusion probabilities proportional to given sizes”
10.05 - 10.25. Refreshments
10.25 - 11.15. Imbi Traat (Tartu): ”Distribution-based inference in survey
sampling”

11.20 - 12.10. Kimmo Eriksson (Väster̊as): ”Two-sided matching markets”
12.10 - 13.30. Lunch [cafe Origo]

Communications [Pi hall]

13.30 - 13.55. Torgöt Berling (Väster̊as) and Dmitrii Silvestrov (Väster̊as):
”New master programme in analytical finance”
14.00 - 14.25. Richard Bonner (Väster̊as) and Violetta Galant (Wroclaw):
”Allocation of computational resource in economic search”
14.30 - 14.55. Christer Nilsson (Väster̊as): ”Energy use in Swedish house-
holds”
15.00 - 15.25. Alexander V. Mertens (Kyiv): ”Stochastic quasi-gradient
techniques in Var-based ALM models”
15.25 - 15.40. Refreshments
15.45 - 16.10. Andriy Kaminsky (Kyiv): ”Statistical approach to portfolio
optimisation on Ukrainian secondary stock market”
16.15 - 16.40. Kenneth Holmström (Väster̊as): ”Global optimization of
costly nonconvex functions, with financial applications”
16.45 - 17.10. Jörgen Hansson (Linkoping): ”The use of optimization in
finance”
17.15 - 18.00. Poster session

WEDNESDAY, January 17

Invited lectures [Pi hall]
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9.15 - 10.05. Tomas Björk (Stockholm): ”On the term structure of futures
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Stockholm): ”Clearing and exchanges as a business”
15.15 - 15.40. Refreshments
15.40 - 16.30. Mathias Lanner and Jens Roslin (SPSS Sweden AB, Stock-
holm): ”Demonstration of SPSS products”

Communications [Pi hall]

16.35 - 17.30. Poster session
19.00 Conference dinner [Student restaurant, K̊arhuset, Gustavs-
borgsgatan 6]

THURSDAY, January 18

Invited lectures [Pi hall]

10.05 - 10.25. Refreshments
10.25 - 11.15. Anders Klevmarken (Uppsala): ”Microsimulation - a tool for
economic analysis”
11.20 - 12.10. Harri Nyrhinen (Helsinki): ”On the ruin probabilities in an
economic environment”
12.10 - 13.30. Lunch [cafe Origo]
14.00 - 16.00. A walking tour in the centre of Väster̊as [from the entrance
to the main building of the university]
17.00. An information meeting followed by a dinner in the City
Hall [City Hall]
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RICHARD F. BONNER AND ANNA FEDYSZAK-KOSZELA

WHEN TO STOP LEARNING? BOUNDING THE
STOPPING TIME IN THE PAC MODEL

The idea to include the cost of economic decision in an economic
decision model is classical. It is the theme of the economics of in-
formation, economic search, decision theory, etc., and it is symbolic
for Simon’s concept of bounded rationality. The theme has also a
computational counterpart coming from computational games. One
of the broad standing problems in the border area of economics and
artificial intelligence, is to adapt computational models of learning,
such as Valiant’s PAC model, to the context of economic games. To
this category of problems belongs the question of stopping time for
a learning process, a notion extending that of sample complexity. In
the present note, we use the PAC convergence rates to bound the
optimal stopping time in passive supervised eager learning.

2000 Mathematics Subject Classifications. 91B44, 91B70.

Key words and phrases. Stopping time, PAC learning.

1. Introduction

Learning theory is today a vast and diverse subject with a rapidly grow-
ing field of application. To set the scene, let us very briefly scan the land-
scape of its theoretical foundations. Roughly, two (nondisjoint) approaches
to learning are current, statistical and computational, say, both of interest
for economic theory. The statistical learning models start with Bush and
Mosteller (1955) and Norman (1968) and extend to Vapnik’s recent work
(1995,1998). A computational perspective was added to these in the 80’s
by Valiant and others, mainly through a notion of Probably Approximately
Correct (PAC) convergence, see Kearns and Vazirani (1994). The statis-
tical learning models have strong pragmatic roots, see Valiant (1984), and
hence place well in Economics. However, as visible from a review paper by
Sobel (2000), only the early models have found a place in economic the-
ory, leaving the application of the more recent computational versions, to
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exemplify, Mitchell (1997), Nakhaeizadeh and Taylor (1997), Anthony and
Barlett (1999), Poznyak and Najim (1997), or Scholkopf et al (1999), yet to
be explored.

The strictly computational view on learning began with Gold’s concept
of identification in the limit, see the monograph of Jain et al (1999). Al-
though theoretically basic, its practical application seems so far limited.
The same can be said about the fundamental Minimum Description Length
(MDL) principle of learning, derived from the notion Kolmogorov complex-
ity, see Li and Vitanyi (1997), the applications of which are only recent,
Gao et al (2000).

Pragmatic motivations of learning theories come forth in the framework
of economic games as reinforcement learning, see Fudenberg and Levine
(1998), and Sutton and Barto (1999). Note however, that the focus here
is on the learning of the game by agents, and learning theory enters more
as a tool than as an object of study. Furthermore, it is normally assumed
that earning is active: the agent interactively chooses the information to
acquire. An important example of active learning is economic search, Kohn
and Shavell (1974), perhaps best known in Weitzman’s (1979) phrasing as
Pandora’s Problem.

The question we take up presently is formally akin to the optimal stop-
ping problem of economic search. We ask about the optimal stopping time
in the framework of PAC learning, so as to balance of the cost of learn-
ing against an imposed pragmatic purpose. Unlike economic search, the
learning we consider is passive in the usual sense that during learning the
samples arrive randomly. Furthermore, roughly speaking - and this is the
main point of the PAC theory as explained in Valiant (1984) - the knowl-
edge of the probability measure generating the samples is not required to
bound the learning rate, provided the size of the object to be learned is not
excessive in a well-defined technical sense.

We note several previous papers linking the PAC learning model to
a decision-theoretic context, for example, Haussler (1992), Haussler et al
(1991, 1994), Devroye and Lugosi (1995), Freund and Schapire (1997).
These, and especially, the paper of Haussler (1992), could be useful, should
a more systematic study of the stopping problem for the PAC model be
undertaken. It goes without saying that the problem may equally well be
posed for learning models other than the PAC model.

2. Stopping time

Consider a learning process in discrete time t = 0, 1, 2, ..., with infor-
mation arriving at unit cost. Assume that at a certain moment t = s the
learning stops and the resulting knowledge is from then on recalled indefi-
nitely, each time returning an expected reward r(s).
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The behaviour of the sequence r(s), s = 0, 1, . . . , will obviously depend
on the specifics of the learning model, but we assume throughout that r(s)
is eventually positive, bounded and non-decreasing with limit r∞. We write

r(s) = r∞ − q(s), r∞ > 0, q(s) ↘ 0. (1)

Assuming a fixed discounting factor 0 < λ < 1, the expected value of
the combined learning and recalling process is then

−
∑

0≤j<s
λj + r(s)

∑
s≤j

λj =
1

1− λ
[(r(s) + 1)λs − 1] (2)

s = 0, 1, . . . . We refer to the integer s as the stopping time, and say that
the stopping time is optimal if it maximizes (2). Clearly, by the made
assumptions, a finite optimal stopping time exists. If it is not unique, we
settle for the least of its values.

Note that the maximizing set of (2) is the same as that of the sequence

(1− q̃(s)) λs, s = 0, 1, . . . (3)

with q̃(s) = q(s)
r∞+1

. Note further, that for a sequence q̃ with a smooth exten-

tion Q̃ to the positive reals such that (1 − Q̃(t)) λt has a single stationary
point t0 there, the maximizing set (3) consists of no more than two integers
closest to t0. Note finally that if q̄(s) can be given bounds

q̄1(s) ≤ q̄(s) ≤ q̄2(s), s = 0, 1, . . . (4)

with extensions Q̃1 and Q̃2 as above, then, up to the closest integer, the
optimal stopping time is bounded by the two solutions to the equation

(1− Q̃1(t)) λt = max
{

(1− Q̃2(t)) λt, t ≥ 0
}

. (5)

3. The PAC model

We briefly recall the PAC learning model in its most basic, the so-called
restricted form. See, for example, Anthony and Barlett (1999) for details
and extensions.

The learner is to determine a function f : X → Y given that f belongs to
a class F = F (X, Y ). The information arrives sequentially during learning
in the form of function values f(xt), t = 0, 1, 2, ..., the points xt ∈ X
appearing randomly and independently according to a probability measure
µ on X, unknown to the learner. The general (forecast) question is then:
how well can the learner guess the forthcoming value f(xs) given the past
values f(xt), t < s, and the prior f ∈ F?

Assume henceforth Y = {0, 1} , so functions in F (X, Y ) may also be
viewed as subsets of X. At time s the learner forms a hypothesis hx0,...,xs−1 ∈
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F consistent with f on the past data hx0,...,xs−1(xt) = f(xt), t < s. The prob-
ability of a wrong guess hx0,...,xs−1

(xs) �= f(xs) at that moment is clearly

equal to the L1(X, µ)-distance between hx0,...,xs−1
and f, also equal to the

measure µ(hx1,...,xs∆f) of the symmetric difference of hx1,...,xs and f consid-
ered as sets. This distance is random. It is less than a confidence parameter
ε > 0 with some probability

ps(ε) = µs

{
x0, . . . , xs−1 :

∫
X

∣∣∣hx0,...,xs−1
(x)− f(x)

∣∣∣ dµ(x) < ε

}
, (6)

intuitively expected to be large for large s, ps(ε) > 1 − δ if 1 > δ > 0,
s ≥ s(ε, δ). If this estimate holds uniformly in µ, f and h, one says that
the class F is learnable and we then assume that s(ε, δ) denotes the least
such integer. The starting point of the PAC learning theory is the following
result; see, for example, Theorem 5.6 in Anthony and Barlett (1999).

Theorem 3.1. The class F is learnable if and only if its Vapnik-Chervo-
nenkis dimension d is finite. Furthermore, there exist constants c1, c2 > 0
such that

c1

ε
(d + log

1

δ
) ≤ s(ε, δ) ≤ c2

ε
(d log

1

ε
+ log

1

δ
), 0 < ε, δ < 1. (7)

The Vapnik-Chervonenkis dimension d = d(F ) is a number defined in
terms of the separation properties of points in X by the functions in F .
Specifically, d(F ) is the largest cardinality of a finite set S ⊂ X such that
the map F → 2S of restriction to S is surjective.

For example, any non-trivial class F of binary functions on which the or-
der induced from {0, 1} is linear has Vapnik-Chervonenkis dimension equal
to one, see Wenocur and Dudley (1981). This is in particular the case if F
is the class of all non-decreasing binary functions on the unit interval [0, 1].

4. Bounding the stopping time

Suppose a correct guess hx0,...,xs−1
(xs) = f(xs) at time s is rewarded

while a wrong one hx0,...,xs−1
(xs) �= f(xs) is penalised with a and b monetary

units, respectively. The expectation of a wrong guess at time s is then given
by

eh,f,µ(s) =

∫
X

∣∣∣hx0,...,xs−1
(xs)− f(xs)

∣∣∣ dµ(xs) dµ(x0) . . . dµ(xs−1). (8)

Hence the expected reward rh,f,µ(s) from recall at time s is

rh,f,µ(s) = a(1− eh,f,µ(s))− beh,f,µ(s) = a− (a + b) eh,f,µ(s). (9)
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This is of form (1), so there will clearly be an optimal stopping time
sopt = sopt(h, f, µ). We would like to bound this number on the basis of
the prior f ∈ F only. Obviously, only the trivial lower bound sopt ≥ 0 is
possible unless the possibilty of immediate lucky guess hx0 = f has been
excluded. Leaving out the interesting but involved intermediate cases, let
us place ourselves at the other end of the scale, assuming the learner is
consistently making the ‘least lucky’ guesses hx0,...,xs−1

of f over all choices
of f ∈ F and over all probability measures µ.

For this ‘least lucky’ learner ȟ learning the least favorable function f̌ in
the least favorable state of the world µ̌, the expectation of a wrong guess at
time s will be e(s) = eȟ,f̌ ,µ̌(s) = suph,f,µ eh,f,µ(s). It follows by Theorem 3.1
that, in the case F is of finite Vapnik-Chervonenkis dimension, the sequence
e(s) is bounded

B1

s
≤ e(s) ≤ B2(ε)

sε
(10)

uniformly in µ, h and f ∈ F ; here B1is a positive constant depending on the
set F only, and so is B2 = B2(ε) with any fix ε > 0. The factor log 1

ε
in the

upper estimate in Theorem 3.1 cannot apparently be skipped, see Haussler
et al (1994), hence we cannot in general have (10) with ε = 0.

To link with our previous notation, r∞ = a, q(s) = (a + b)e(s), q̃(s) =
a+b
a+1

e(s), and Ci = a+b
a+1

Bi, i = 1, 2. Equation (5) with q̄1(s) = C1s
−1 and

q̄1(s) = C2(ε)s
−(1+ε) now gives bounds for the optimal stopping time. For

real numbers x ≤ y, we write �x, y	 for the shortest interval with integer
end-points containing x and y.

Theorem 4.1 For any ε > 0, the optimal stopping time for the least fa-
vorable case of the restricted binary PAC learning model of finite Vapnik-
Chervonenkis dimension, is contained in the interval �α, β	 where α ≤ β
are the two solutions of the equation

(1− C1

t
) λt = max

{
(1− C2(ε)

t1+ε
) λt, t ≥ 0

}
, (11)

with C1 = a+b
a+1

B1 and C2(ε) = a+b
a+1

B2(ε), and constants B1 and B2(ε) from
(10) depending on the learned concept class F only.

We note that for the extended PAC model, which, roughly speaking,
does not learn functions but instead fits functions to stochastic data, there
is a similar to (10) but tighter bound

B′
1√
s
≤ e(s) ≤ B′

2√
s

(12)

for the expectation e(s) of a wrong guess at time s in the least favorable
case, cf Theorem 5.5 in Anthony and Barlett (1999). Hence, we also have a
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corresponding result.

Theorem 4.2 The optimal stopping time for the least favorable case of the
extended binary PAC learning model of finite Vapnik-Chervonenkis dimen-
sion, is contained in the interval �α, β	 where α ≤ β are the two solutions
of the equation

(1− C1√
t
) λt = max

{
(1− C2√

t
) λt, t ≥ 0

}
, (13)

with Ci = a+b
a+1

B′
i, i = 1, 2, and constants B′

i from (12) depending on the
admitted concept class only.

To establish the Theorems, we only need to verify that functions of the
form (1 − Ct−p) λt with C, p > 0, are unimodal, i.e. increase up to some
point and then fall off to zero, and that equations (11) and (13) indeed have
solutions. Checking the first claim is elementary. A stationary point of the
function (1−Ct−p) λt, t > 0, is a maximum and satisfies tp+1−Ct− pC

log 1
λ

= 0,

and it is immediate that for any C, p > 0 and 1 > λ > 0 there is exactly
one such point. For p = 1, moreover, this point is easily identified as

C
2

(
1 +
√

1 + 4
C log 1

λ

)
. The existence of solutions to (11) and (13) is then

immediate by (4) and (5). Unfortunately, we cannot solve (11) or (13)
explicitly, but we expect numerical methods to be effective for fix values of
parameters.

5. In conclusion

Not to complicate matters, we have looked only at the simplest of ques-
tions for the simplest of PAC learning models, and used the simplest of
tools in the estimations. More general questions could allow varying learn-
ing cost, finite time horison, variable discounting rates, etc. More general
PAC models, as in Anthony and Barlett (1999), would admit real-valued
functions, complexity bounds, active learning, etc. Non-elementary estimat-
ing procedures may then be needed, for example, Kiefer’s (1953) algorithms
for optimizing unimodal functions. Note finally, questions other than the
stopping time have been considered by Haussler (1992) for PAC models in
a decision-theoretic context. Further work on these should be of interest to
both the learning theory and its economic applications.

Bibliography

1. R. Ahlswede and I. Wegener, Search Problems, Wiley, (1987).



WHEN TO STOP LEARNING? 11

2. M. Anthony and P. L. Barlett, Neural Network Learning: Theoretical Foun-
dations, Cambridge University Press, (1999).

3. R. R. Bush and F. Mosteller, Stochastic models for learning, Wiley, (1955).

4. L. Devroye and G. Lugosi, Lower bounds in pattern recognition and learn-
ing, Pattern Recognition, 28(7), (1995), 1011-1018.

5. Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, Journal of Computer and System
Sciences, 55(1), (1997), 119-139.

6. D. Fudenberg and D. K. Levine, The Theory of Learning in Games, MIT
Press, (1998).

7. Q. Gao, M. Li and P. Vitanyi, Applying MDL to learn best model granu-
larity, Artificial Intelligence, 121, (2000), 1-29.

8. D. Haussler, Decision theoretic generalizations of the PAC model for neural
nets and other learning applications, Information and Computation, 100,
(1992), 78-150.

9. D. Haussler, M. J. Kearns, N. Littlestone and M. K. Warmuth, Equivalence
of models for polynomial learnability, Information and Computation, 95(2),
(1991), 129-161.

10. D. Haussler, N. Littlestone and M. K. Warmuth, Predicting {0, 1} functions
on randomly drawn points, Information and Computation, 115(2), (1994),
284-293.

11. S. Jain, D. Osherson, J. S. Royer and A. Sharma, Systems that learn,
Second edition, MIT Press, (1999).

12. M. J. Kearns and U. V. Vazirani, An introduction to computational learning
theory, MIT Press, (1994).

13. J. Kiefer, Sequential minimax search for a maximum, Proc. American
Mathematical Society, 4(2), (1953), 502-506.

14. M. Kohn and S. Shavell, The theory of search, Journal of Economic Theory,
4(2), (1974), 593-123.

15. M. Li and P. M. B. Vitanyi, An introduction to Kolmogorov complexity and
its applications, 2nd edition, Springer, (1997).

16. T. M. Mitchell, Machine learning, McGraw-Hill, (1997).

17. G. Nakhaeizadeh and C. C. Taylor, Machine learning and statistics: the
interface, Wiley, (1997).



12 RICHARD F. BONNER AND ANNA FEDYSZAK-KOSZELA

18. M. F. Norman, Some convergence theorems for stochastic learning models
with distance diminishing operators, Journal of Mathematical Psychology,
5, (1968), 61-101.

19. A. S. Poznyak and K. Najim, Learning automata and stochastic optimiza-
tion, Springer, (1997).

20. B. Scholkopf, C. J. C. Burges and A. J. Smola, Advances in kernel methods:
support vector learning, MIT Press, (1999).

21. J. Sobel, Economists’ Models of Learning, Journal of Economic Theory, 94,
(2000), 241-261.

22. R. Sutton and A. Barto, Reinforcement Learning, MIT Press, (1999).

23. L. G. Valiant, A theory of the learnable, Comm. ACM, 27(11), (1984),
1134-114.

24. V. N. Vapnik, The nature of statistical learning theory, Springer, (1995).

25. V. N. Vapnik, Statistical learning theory, Wiley Interscience, (1998).

26. M. Weitzman, Optimal Search for the Best Alternative, Econometrica,
47(3), (1979), 641-654.

27. R. S. Wenocur and R. M. Dudley, Some special Vapnik-Chervonenkis clas-
ses, Discrete Mathematics, 33, (1981), 313-318.

Department of Mathematics and Physics, Mälardalen University,
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ALLOCATION OF COMPUTATIONAL
RESOURCE IN ECONOMIC SEARCH

We discuss the general economic search problem from the perspective
of expended computational resource. We start with a brief survey
of the field, including Weitzman’s solution to the Pandora problem.
The search problem is then put into geometric form with complexity
measured by the linear dimension of the spaces of sampled variables.
Falling back on some recent work on incremental approximation in
Hilbert spaces, we ascertain the convergence of incremental search
schemes. This corresponds, roughly, to search situations which admit
iteratively computable strategies with a fixed memory bound, so that
the successively computed strategies do not invalidate the previous
ones but rather extend them by adding on detail. Allocation of
computational resource for the search is then not essential as little
computation is ever wasted. Finally, we give some simple examples
when strict incrementality of search strategies fails to hold.

2000 Mathematics Subject Classifications. 91B34, 91B44, 91B06.

Key words and phrases. Economic search, incremental approxi-
mation.

1. Introduction

It is hard to dispute that a poorly informed decision is unlikely to be as
good as a well-informed one. A process of improving the information base
for a decision, in so far it consumes non-negligible economic resources, is
called economic search. The cost of search may then be weighed against
the increase in reward expected from a better-researched decision.

That search problems are of interest in Economics was, according to
Varian (1999), apparently first observed by Stigler (1961), in effect starting
a new branch of decision theory, see Kohn and Shavell (1974). This added
to an already vast theory of search of information-theoretic origins, as pre-
sented in Ahlswede and Wegener. The key idea of economic search - that

13
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investment may be delayed while waiting for information - is the point of
departure of the option approach of financial theory, refining the classical
net present value criteria. See Dixit and Pindyck (1994), for example. All
this fits nicely in the big picture of Simon’s (1982-1997) ‘bounded ratio-
nality’ and of ‘information economics’, Laffont (1989), in which search for
information and its processing is part and parcel of economic activity.

Thus, in principle, the economic aspects of search are today well under-
stood. Understanding also its computational aspects, however, is another
matter. We note that only the simplest computational models of agents
have been thoroughly treated in economic theory, to mention Ulam’s cellu-
lar automata, see Simon (2000) for a bird’s view. By contrast, the recent
developments in computational games, as apparent in Fraenkel (2000), Sut-
ton and Barto (1999), or Nebel (1996), put the agent’s computational nature
at the fore; see Ambroszkiewicz and Komar (1999) for agent models. This
provides an unlimited reservoir of computational economic search problems.
But no convincing framework to handle these is in place, notwithstanding
recent technical work such as Bernardo et al (2000), Zadrozny and Elkan
(2001), Tesauro and Kephart (1998), Kang (1999), or Saito (1999).

A similar view appears through the looking glass of learning theory. In-
deed, although economic search is but a learning process within an economic
game, see Fudenberg and Levine (1998), if to judge from a recent review
by Sobel 200), learning theories seem to live in a subuniverse of Economics
apparently quite disjoint from that of economic search problems. Further-
more, the early statistical models of Bush and Mosteller (1955) and Norman
(1968) dominate, leaving the more recent computational theories virtually
untapped. Of these, we only mention Gold’s identification in the limit, see
the monograph of Jain et al (1999), the statistical models of Vapnik (1998),
the PAC models, see Kearns and Vazirani (1994), and the approaches based
on Kolmogorov complexity, see Li and Vitanyi (1997). The latter, we note,
are recently finding interesting application, see Gao et al (2000) or Smith
(2000). Also, feed-back from economics to models of learning should not
be unexpected. To the extent that an anchoring in economic theory is a
formal expression of the pragmatic roots of a learning formalism, as appar-
ent in Valiant (1984), economic search problems speak for a theory of more
goal-oriented learning models.

Clearly, the task of merging the computational and the economic ap-
proaches to search is in many respects basic, and part of the quest to bet-
ter understand the computational nature of economic decision. With this
panorama as background, we presently put forward a question raised earlier
in a related context in Bonner and Galant (2000). To explain, the problem
of building optimal search trees was shown to be NP-complete by Hyafil
and Rivest (1976), but there do exist incremental ‘tree growing’ algorithms
of Quinlan (1986) and others that work well in practice, and sometimes
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do yield optimal trees. We want to understand when is incremental search
optimal, and when it is nearly so. Questions of optimality of (or approxi-
mation by) myopic search strategies in the applied context are of course not
new, see Arkin (1964), for example, but apparently have not been settled
in general.

We approach the question as follows. First, in Section 2, the economic
search problem is recalled, exemplified, and put into geometric form. The
notions of resource bounds and incrementality of strategies get form in Sec-
tion 3, where we also link with the work of Barron (1993), Jones (1992) and
Kurkova (1997), on incremental approximation. In this case the allocation
problem trivialises in the sense that an optimal search strategy at any given
resource level may be obtained - or approximated - by ‘uppgrading’ a strat-
egy from a lower resource level. Section 4 provides some simple examples
on strict incrementality or the lack of it in linearly ordered sets. The final
Section 5 hints that the economic search problem be viewed as part of a
larger Markov decision process. Finally, some of the many directions for
further work are suggested in the Conclusions.

2. Economic search

2.1. The basic set-up. As a generic concept, economic search is nothing
but active learning with inference and costs, and hence its orthodox place is
in economic game theory. See Grenander (1981), Dixit and Pindyck (1994),
Fudenberg and Tirole (1991), and Fudenberg and Levine (1998) for the
fundamentals.

We begin, however, with a more open set-up. By an abstract economic
search scheme we will mean the following structure.

• (i) a probability space (Ω,M, µ), representing the agent’s prior knowl-
edge about state of the world, where M is a sigma algebra on which
µ is a probability measure, writing µ ∈ P,

• (ii) a family G of real random variables g on Ω, representing the re-
wards from the actions available to the agent,

• (iii) a family F of real random variables f on Ω, representing the
observables available to the agent,

• (iv) for each f ∈ F a set Mf of random probability measures ν such
that δω << ν(ω) << µ, representing more accurately than µ the state
ω of the world,

• (v) a discrete time scale t = 1, 2, . . .,
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• (vi) two random non-negative functions c and τ on F ×P prescribing
the cost cf,ν and the length of time τf,ν required to evaluate an integral∫

f dν,

• (vii) a discounting factor 0 ≤ λ ≤ 1 assumed constant.

The search consists of a sequence of decisions: either

• (a) choose f ∈ F and ν ∈ Mf , pay a price cf,ν and wait τf,ν units of
time to learn the expected value

∫
f dν, or,

• (b) choose g ∈ G, collect the reward g(ω), and end the search.

The economic search problem consists in finding a search strategy, in the
sense of dynamic programming, see Puterman (1994), yielding the highest
expected present value of the collected reward minus the search costs.

We are presently not overly concerned with extra technical assumptions
required for solvability of the search problem, the absolute continuity of
point evaluations, or working with random measures, see Kallenberg (1986).
Some such conditions will be imposed below when passing to a geometric
formulation.

2.2. Some examples. We recall some better known instances - applied or
abstract - of the general search problem to remind of its universal nature;
some known search problems though, for example, the apartment problem
in Ciesielski and Zabczyk (1979), do not easily fall in the present frame-
work. In each instance, the problem of bounding the complexity of search
strategy opens a reservoir of specific questions. Everything starts of course
with Claude Shannon (1949).

Example 2.1. Search for a point (Shannon’s noiseless coding). [See e.g.
Ch 2 in Ahlswede and Wegener (1987).] The problem is to find the shortest
on the average encoding of points in a set as sequences of values of selected
attributes at that point.

To see this as economic search, take Ω finite, put F = M = 2Ω, and
let G consist of all random variables bounded by some sufficiently large
number. Assume the cost and time resource functions, and the discounting
factor all identically equal to one. Finally, put Mf = {δω, ω ∈ Ω} . Shan-
non’s ‘noiseless coding theorem’ then gives lower bounds on the expected
value of search in terms of the entropy of the measure µ on M.

Example 2.2. Search for an object. [See e.g. Ch. 11 & 12 in Ahlswede and
Wegener (1987).] The problem is to locate a physical object, for example,
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a lost ship in the ocean divided into n search sectors, or a misplaced pair
of glasses in a house with n rooms. It may be required to search through a
sector or room more than once.

Indeed, if for each of the rooms f ∈ F , a single inspection f(ω) deter-
mines if the object searched for is there, this is Pandora’s problem with only
one of the boxes holding a reward.

Example 2.3. Search for an alternative (Pandora’s Boxes). [See Weitzman
(1979).] The problem is to choose one among a number of independent
investments with known probability distributions, given the option to buy
information, that is, to remove the uncertainty of an investment at a cost.

This is economic search proper in the sense of Kohn and Shavell (1974).
Here G = F is a finite set of independent random variables and Mf =
{δω, ω ∈ Ω} . Further, the agent’s choice in (b) is limited to f already sam-
pled. Weitzman (1979) showed that the optimal search strategy is deter-
mined by a function z on F called reservation price, given for each f ∈ F
by the equation

cf = e−λτf

∫
(f − zf)+ dµ−

(
1− e−λτf

)
zf , (1)

in the following way. If the maximum sampled reward exceeds the maxi-
mum unsampled reservartion price, collect the maximum sampled reward
and stop; otherwise, sample the variable with the highest reservation price.
(Notation: x+ in (1) stands for the positive part of a real number x.)

Following Weitzman (1979), let us briefly interpret his rule in the case
the rewards are binary and there is no discounting. Assume that each f ∈ F
takes on a single non-zero value rf with probability pf and that the expected
net gain ∆f = rfpf−cf is positive. Equation (1) gives in this case the reser-

vation price zf =
∆f

pf
which, with the expected net gain kept constant, is

decreasing as function of the probability of success (but increasing if the
rewards rf and prices cf are kept constant).

Example 2.4. Search for a set (PAC restricted binary model, see An-
thony and Barlett (1999)). Roughly, one seaks a function h in a given class
H ⊂ 2X by sampling h(xt), t = 0, 1, 2, ..., xt ∈ X.

Technical points aside, put Ω = 2X , let a prior probability µ express the
‘learning bias’ h ∈ H , and let G = F consist of point evaluation functionals
δx, x ∈ X. In an ‘active’ learning mode, the learner sequentially chooses the
variables δx to sample h with. By contrast, in a ‘passive’ learning mode, the
functionals δxt , t = 0, 1, 2, ..., arrive as independent identically distributed
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variables, with unknown probability distribution P . The PAC theory then
gives lower bounds on learning time uniformly in the distribution P.

See Bonner and Koszela (2001) for a brief economic view on the PAC
learning model. For details and various extentions of the PAC model, see
Anthony and Barlett (1999). There are clearly possibilities to extend along
present lines the PAC model to abstract inference schemes, but we do not
elaborate.

Example 2.5. Search for an approximant. [See e. g. Shapiro (1971).] Let
(X, d) be a metric space, S ⊂ X, x ∈ X. The problem is to find a minimiz-
ing sequence xk, k = 1, 2, . . . , for the distance d(S, x) = infy∈S d(y, x).

A probability space structure on X converts this problem in an ob-
vious way into a search problem, with the reward variables of the form
g(x) = G(d(S, x)) for some suitable decreasing function G. See Benveniste
et al (1990) for interesting concretisations.

2.3. Geometric formulation. Putting the search problem into a Hilbert
space follows standard procedures in stochastic theory. We do this to link
with incremental approximation theory in Hilbert spaces. Two points, how-
ever, may need a comment.

First, concerning the inference. During search, the agent’s evolving
knowledge may be represented by an evolving probability measure µn, the
knowledge at the outset being µ0 = µ. The situation can be handled on the
level of sigma algebras if at time n the new knowledge arrives in the form of
a probability measure νn on a subalgebra Mn ⊂M and νn << µ̌n = µn|Mn

(this is the case, for example, if G = F and Mf = {δω, ω ∈ Ω}). One
may then update µn putting µn+1(E) =

∫
E

dνn

dµ̌n
dµn, E ∈ M, which is the

unique extention of νn maximizing the entropy −
∫ dµn+1

dµn
log dµn+1

dµn
dµn rela-

tive to µn, see e.g. Gudder and Marchand (1972). Let us write for brevity
µn+1 = µn ∨ νn.

Now, recall, by lifting the analysis to L2(Ω, µ) the inference operation
lifts to a simple gluing procedure on orthogonal subspaces. Suppose α and
β are positive linear functionals, defined on H and on a closed subspace V of
H , respectively. Let α∨β be the normalised linear functional simultaneously
extending α from V and β from V ’s orthogonal complement V ⊥. Thus

〈α ∨ β, f〉 =
〈α, PV f〉+ 〈β, PV ⊥f〉
〈α, PV 1〉+ 〈β, PV ⊥1〉 , f ∈ H, (2)

with PW denoting the orthogonal projection operator onto W ⊂ H. Note
that this view of inference extends the previous one and, once measures have
been lifted to L2(Ω, µ), allows to directly infer from knowledge in form of
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an expected value
∫

f dνn with an otherwise unknown but consistent with
µn measure νn.

The second point concerns the lifting of probability measures to fuc-
tionals in L2(Ω, µ), which, by the Riesz thoerem, are then also elements
of L2(Ω, µ). To avoid standard technicalities, assume that all data of the
search problem can be contained within a suitably small Hilbert subspace
H ⊂ L2(Ω, µ), so that the information in the search arrives as positive lin-
ear functionals ν on H of norm one, < ν, 1 >=

∫
ν1 dµ = 1, and make no

distinction between a functional and its Riesz representative. Note that if
this assumption is to hold for the point masses δω, ω ∈ Ω, the subspace H
must have an Aronszajn-Bergman reproducing kernel. This opens up some
interesting technical possibilities, see Ch. 6 in Shapiro (1971) and Scholkopf
et al (1999), but we leave it at that.

3. Search with bounds

3.1. Resource bounds. We wish to bound the ‘amount of information’
which the agent may acquire during search, and study the beviour of optimal
search strategies subject to bounds as the bounds increase. The ‘amount of
information’ may be measured in various ways, for example, by the num-
ber of inspections (queries, samples, etc), the size of an underlying sigma
algebra, the dimension of an associated linear space, etc. The situation is
similar in most approximation schemes, from classical theory of degree of
approximation, cf Ch. 8 in Shapiro (1971), to recent applied work in neural
network approximation, Karny et al (1998), problems of model granularity,
Gao et al (2000), Bayesian modelling, Berger (1985), etc.

All these schemes balance the accuracy of approximation against vari-
ous bounds on the size of the approximating structure. We have found the
following language helpful in dealing with the general situation.

Definition 3.1. A selection scheme with bounds is a tuple (X,≤; φ :
A → A; E), where (i) (X,≤) is a partially ordered set, (ii) A is a family of
subsets of X closed under the operation E∩F ↑, with F ↑ = ∪x∈F {y : y ≥ x}
denoting the upper set of F, (iii) the map φ : A → A is idempotent, φ(E) ⊂
E for E ∈ A, and φ(E) �= ∅ unless E = ∅, (iv) E is a nested sequence of
sets En ∈ A, n = 1, 2, . . . ,

∅ �= E1 ⊂ . . . ⊂ En ⊂ . . . ⊂ E∞ = ∪nEn ⊂ X (3)

consistent with the partial order En+1 ⊂ E↑
n. For n = 1, 2, . . . , k ≤ n, define

maps Un : A → A by Un(E) = φ(En ∩ E↑) and Ŭn,k = Un ◦ Un−1 ◦ . . . ◦ Uk;
refer to these as maps of global- and incremental uppgrade, respectively.
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For intuition, think of points in X as mathematical structures, such as
sets, planar graphs, sigma-algebras, linear spaces, etc., saying if x ≤ y that
x is a substructure of y and y is a superstructure of x. The map φ represents
a selection procedure, typically the computation of the optimizing subsets
in an optimization scheme. The choice of the family A is in practice adapted
to the selection procedure. The sequence (3) symbolises a graded resource
bound, the elements of En being the structures available for selection at
resource level n. Finally, think of Un as extending structures directly to re-
source level n, to contrast with the incremental uppgrade Ŭn which extends
structures successively through all the resource levels k = 1, . . . , n.

Definition 3.1. Further to previous definition, call a scheme stable if
Ŭn,1(X) ∩ Un(X) �= ∅ and strongly stable if Ŭn,1(X) ⊂ Un(X) for n =

1, 2, . . .. If, furthermore, A has a (pseudo-) metric d and d(Ŭn,1(X) ∩
Un(X)) → 0 as n →∞, let us say that the scheme converges in this (pseudo-
) metric.

These are working definitions, yet to be put on topological grounds, cf
Michael (1951) and Gierz et al (1980), but we pass as only two instances
of schemes are presently of interest. Moreover, there would be no harm to
assume in either case that the set X of admissible structures is finite.

In the first instance, X will be the lattice of σ- sub-algebras of a given
σ-algebra M of subsets of a set Ω. We use this case for the examples in
Section 4 and we may assume for simplicity that Ω and hence X is finite;
we skip the prefix ‘σ-’ then. We let the family A consist of all finite sets of
algebras in X. The resource bound (3) is defined with respect to a given set
F of M-measurable functions: for n = 1, 2, . . . let En = En(F) consist of
the algebras generated using sequential queries (search strategies) of length
at most n from F . The selection map φ will then be the map of picking
minimizing subsets for the relative entropy function or some Lp- distance.

In the second case, X will be the lattice of the closed linear subspaces
in a given Hilbert space (H, ‖‖). We identify subspaces x ∈ X with the
corresponding orthogonal projection operators Px and endow X with the
topology of weak operator convergence. Let S be a compact subset of H and
let En = En(S) consist of all the subspaces of X each of which is generated
by at most n elements of S. Fix a point h ∈ H let φh(E) be the minimizing
set for the norm ‖(1− Px)(h)‖ as x ∈ E. One gets a varation on the theme
by taking convex hulls as En(S) instead, with obvious modifications.

3.2. Incremental approximation. It is immediate but instructive to
observe that the second scheme is stable if the set S consists of pairwise
orthogonal vectors. Indeed, assume S normalised and extend it to an or-
thonormal basis B ⊂ H. Then H ∼= l2(B) and the elements of En(S) corre-
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spond to functions on B with support in S and not containing more than n
points. An element of φh(En(S)) corresponds then to the space of functions
vanishing outside a set of n points s ∈ S where |< h, s >|2 takes on its n
largest values.

Moreover, the second scheme converges for any bounded S in the fol-
lowing sense. Consider the convex case. It was first shown by Maurey and
Pisier (1980-81) that any h in the closed convex hull of S may be approx-
imated in norm by convex combinations hn of no more than n points in S
with accuracy O(n− 1

2 ). Subsequently, motivated by applications in neural
computation, Barron (1993) and Jones (1992) extended this result to incre-
mental approximants hn; explicitely, the combination hn+1 is formed from
a superset of points which generate hn. See also Kurkova (1997) and Ch 12
in Karny et al (1998).

We apply this result to the search problem as follows. For simplicity,
restrict attention to the case F = G with only point masses δω, ω ∈ Ω,
admitted in the search. Let H be the least closed linear subspace of L2(Ω, µ)
containing the set G. Define the following function on the lattice X of its
closed subspaces

ρ(x) =
∫

sup
g∈G

〈
(µ ∨ δω|x), g

〉〈
(µ ∨ δω|x), 1

〉 dµ(ω) =
∫

sup
g∈G

Pxg(ω) +
∫

Px⊥g dµ

Px1(ω) +
∫

Px⊥1 dµ
dµ(ω); (4)

it is the expected least upper bound of the reward when variables generating
x have been sampled. Note that ρ is monotone on X,

sup
g∈G

∫
g dµ = ρ(0) ≤ ρ(x) ≤ ρ(y) ≤ ρ(H) =

∫
sup
g∈G

g dµ, x ≤ y ∈ X. (5)

One may now formally define a selection scheme on X by an appropriate
choice of a family A so that φ(E) is the maximizing set for ρ on E ∈ A. For
n = 1, 2, . . . let En = En(G) be the collection of subspaces generated by at
most n elements of G. Denote by Rn and R̆n the maximum of ρ on En and
the incremental maximum of ρ on En, respectively (so Rn = ρ(Un(X)) and
R̆n = ρ(Ŭn,1(X)) in the notation of Definition 3.1). It is clear that both

sequences are monotone, and that R̆n ≤ Rn. One can show that the function
ρ is Lipschitz in the Hausdorff distance on X, |ρ(x)− ρ(H)| ≤ Cdh(x, H),

the infimum of which over x ∈ En is of the order O(n− 1
2 ) by the Barron-

Jones estimates. We have thus sketched the proof of the following result.

Theorem 3.1. Assume in the search problem that (i) the reward variables
and the search variables are the same, F = G, with bounded second mo-
ments, (ii) the cost function is identically equal to one, (iii) the discounting
factor is identically equal to one (no discounting). Then the expected net
reward R̆n from incremental search with bound n on the number of samples,
and the expected net reward Rn from optimal nonsequential search with the
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same bound, are for large n of the same order, Rn = R̆n + O(n− 1
2 ).

4. Example: querying the interval

All material in this section concerns the classical Shannon search prob-
lem of Example 2.1. As discussed in Bonner and Galant (2000), the com-
puted information does not in general increase in an additive fashion with
the computational resource. We illustrate this now in the case of a finite
totally ordered probability space, modelled by a finite partition of the unit
interval [0, 1] with the Lebesgue measure. The fact that the Borel σ-algebra
of the unit interval has infinite entropy is not a problem, as one may always
pass to a sufficiently large finite subalgebra.

Take S ⊂ [0, 1] and let F = F(S) be the family of all indicator functions
fx of the interval [x, 1] with x ∈ S. Every finite query strategy in F ,
sequential or not, will then output an algebra B given by a partition of
[0, 1] by an increasing sequence of points xk ∈ S

0 = x0 < x1 < . . . < xn < xn+1 = 1. (6)

The set An of all such algebras B is thus parametrised by a ‘prism’ ∆n(S) ⊂
Rn, and a subset φ(An) ⊂ An of ‘optimal’ algebras can be thought of as
a subset φ(∆n(S)) of ∆n(S). Stability and strong stability conditions are
now expressed in terms of standard projections πmn : Rm → Rn, m > n, in
the respective form

πmn(φ(∆m(S)) ∩ φ(∆n(S)) �= ∅ (7)

and
πmn(φ(∆m(S)) ⊂ φ(∆n(S)). (8)

4.1. Stability in entropy. Assume, for simplicity, G = F([0, 1]). To
maximize relative entropy, we minimize the function

h(x1, . . . , xn) =
∑

0≤k≤n

(xk+1 − xk) log(xk+1 − xk) (9)

over ∆n(S). By straightforward analysis, the minimum occurs when each
of the points xk lies closest to the midpoint of the interval [xk−1, xk+1]. For
S = [0, 1] the points xk are then uniformly spaced, to remind that entropy
is maximised by the uniform distribution.

Let now mn be an increasing sequence of positive integers, n ≥ 1, and
let An in the grading (3) be the set of algebras given by partitions of the
form (6) with n replaced by mn. It then follows immediately that
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Proposition 4.1. In the case S = [0, 1], a non-sequential entropy maxi-
mizing query strategy is stable if and only if the number mn+1 is an integer
multiple of mn for n ≥ 1, and, consequently, every sequential entropy max-
imizing query strategy is then (strongly) stable.

The situation may be quite different when S �= [0, 1].

Example 4.1. Let 0 ≤ δ < 1
4

and put S =
{

1
4

+ δ, 1
2
, 1

2
+ δ, 3

4
+ δ
}

. While
the partition given by the point 1

2
is obviously entropy maximizing among

all strategies of length one, it is easily verified that the optimal partition
amomg all strategies of length two corresponds to the three remaining points
in S.

Hence, in this case, the optimal question with only one question allowed
is not the first of the two optimal questions with two questions allowed.
The problem: for which S ⊂ [0, 1] is every sequential entropy maximazing
strategy stable? seems to be open. We note in passing an elementary exam-
ple in the other direction. For S consisting of five evenly spaced points, the
suboptimal questions corresponding to points 1

3
and 2

3
can each be extended

to an optimal strategy of two questions.

4.2. Stability in Euclidean metric. Let g be a square-integrable func-
tion on [0, 1] and let B ∈ An, parametrised by ∆n(S) as above. The square
of the L2 distance of g to the linear space of all B-measurable functions is
then given by the function

ρg(x1, . . . , xn) =
∑

0≤k≤n

∫ xk+1

xk

(g(t)− E[xk,xk+1]
(g))2 dt (10)

where E[xk,xk+1]
(g) = 1

xk+1−xk

∫ xk+1

xk
g(t) dt is the mean of g over the interval

[xk, xk+1]. The points (x1, . . . , xn) ∈ ∆n(S) which minimize (10) determine
the optimal algebras B ∈ An, and the best approximation f to g is then
f(x) = E[xk,xk+1]

(g) for x ∈ [xk, xk+1].
In the case S = [0, 1], if g is assumed continuous, the function ρg is

continously differentiable in the open set ∆n(S), and, by a straightforward
computation, its stationary points are the solutions to the system

E[xj−1,xj ](g) = E[xj ,xj+1](g), g(xj) =
1

2

(
E[xj−1,xj]

(g) + E[xj ,xj+1]
(g)
)

(11)

for 1 ≤ j ≤ n. For the identity function g(x) = x, for example, this system
gives a uniform spacing of the points xj ; hence the observations made for
relative entropy in Proposition 1 also apply to the present case (with the
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same notation).

Proposition 4.2. Let g(x) = x and S = [0, 1]. A non-sequential query
strategy in F(S) minimizing the Euclidean distance (10) is stable if and
only if the number mn+1 is an integer multiple of mn for n ≥ 1, and, conse-
quently, every sequential query strategy minimizing the Euclidean distance
is (strongly) stable.

Observe that Example 1 holds also here for g(x) = x; there is also a
corresponding question: for which g ∈ L2[0, 1] and S ⊂ [0, 1] is every se-
quential strategy in F(S) minimizing the Euclidean distance (10) stable?

4.3. Stability in probability. Approximation in probability is the ap-
proximation in L1 metric for binary functions (since for indicator functions,
the distance ‖χE1 − χE2‖L1(µ) equals the measure µ(E1∆E2) of the symmet-
ric difference of their sets). For convenience, pass from F(S) as above to a
family H(S) consisting of function of the form fy − fx with x < y, x, y ∈ S.
For technical reasons, we assume here that each fx is the indicator func-
tion of an open subinterval of [0, 1]. Informally, every question in H(S)
corresponds to two questions in F(S).

Let K ⊂ [0, 1] be the standard ternary Cantor set, as in Kuratowski
(1977), i.e. the set of all points in [0, 1] having ternary expansions involving
the digits 0 and 2 only. Let Kn ⊃ K be the closed set approximating K
from outside in the standard Cantor construction, n ≥ 0. Thus K0 = [0, 1],
K1 = [0, 1

3
]∪ [2

3
, 1], etc. Finally, let Bn be the algebra generated by all the

intervals building up Kn. Note that the algebras Bn are nested, Bn ⊂ Bn+1,
n ≥ 0.

The Cantor construction is a sequencial query strategy of the following
kind. We ask for the value of a function fy − fx, 0 < x < y < 1, in H(S) :
(i) if the value is one, we terminate the query and output zero, (ii) if the
value is zero, we ask for the value of two functions fy1 − fx1 and fy2 − fx2

with y1 < x and y < x2. At every node, the search tree thus branches out
into a final leaf and two new nodes.

Proposition 4.3. The Cantor ternary construction is stable in probability.
Specifically, among all query strategies of length n in H([0, 1]) which seek
the indicator function of KN , N >> 1, the sequential strategy outputting
Bn is optimal in probability, hence stable.

There are trivial examples of non-stability in probability of non-sequen-
tial query strategies in general spaces; essentially, it suffices to limit the a
priori family of questions to (the indicator functions of) three sets, such
that measure of the first set is greater than the measure of the intersection
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of the remaining two.

Example 4.2. (Non-stable non-sequential strategy.) Let 0 < a < b < c <
1
2
. Let g be the indicator function χ[c,1−c], and let H consist of the indicator

functions of the intervals [0, 1− b], [a, 1− a], and [b, 1]. The question in H
closest in probability to g is clearly χ[a,1−a], while χ[0,1−b] and χ[b,1] are the
pair that generates the best approximant χ[b,1−b].

4. Decision processes with search

For future reference, consider the following - promising we think - com-
promise between the one-pass ‘learn and act’ model considered above, and
the all-encompassing ‘learn by action’ reinforcement models as in Sutton
and Barto (1999).

Recall the standard model of economic decision - the discrete-time Mar-
kov decision process (MDP), see Puterman (1994). Assume the process
stationary. It is defined by a tuple (X, A, P, R), with X representing a
set of states, A a finite set of actions, P a transition probability, and R
a real-valued reward function. The set X here is normally assumed finite,
but no such assumption is required at the level of general discussion. At
any time t = 0, 1, 2, ..., an agent registers a state x = x(t), picks an action
a = a(t) whch results in a transition probability Pa,x to a new state y =
x(t+1), and receives an immediate reward Rt = R(x, a, y). Thus, the agent’s
immediate reward depends randomly on the chosen action a; if in state x(t)
the expected value of the reward is ERt =

∫
R(x(t), a, y) dPa,x(t)(y), and the

agent’s goal is to choose the actions a = a(t), t = 0, 1, 2, ..., so as to maximize
the total expected reward

∑
t≥0 γ−tERt with respect to a discounting factor

γ.
Consider the transition probability Pa,x as the agent’s prior knowledge

about the response of the environment to an action a taken in a state x.
Suppose a more accurate such knowledge Qa,x << Pa,x is available to the
agent at a price in the following sense. There is a set F of random variables
(queries) f on X which the agent may test against Qa,x in a sequential man-
ner, so that a query f returns its expected value

∫
f(y) dQa,x(y) at a price

c(f) and takes some time τ(f) to perform. The time τ(f) is measured by an
external clock to be synchronised with the MDP time. In this way, the agent
may at any time t insert a process of economic search into the MDP. The
extended decision process falls within a framework of generalised Markov
decision processes, cf Bertsekas (1995), Szepesvari and Littman (1996,1999).

5. In conclusion

We have put forward a problem and some arguments in justification of
its further study. A number of directions come to mind.
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In terms of theoretical fundamentals, it is clear that ‘incremental’ is a
qualifier of complexity. How then does it relate to other such qualifiers, say,
recursiv, iterative, ergodic, Markov, etc? Behind this question, there lurks
a language problem: is it possible to talk of computation, complexity, infor-
mation, semanitcs, economic systems, rational agents, etc, without multiple
foirmalisms and linguistic frames? Perhaps the ‘back to the (physics) ba-
sics’ approach in the information sciences, in the spirit of empirical logic in
Marlow (1978) may give guidance?

A better understanding of incrementality of search strategies - and al-
gorithms in general - could come to immediate use at the level of technical
theory, where notions of incremental algorithms are well-established but
not necessarily well-understood or even well-defined. The Barron-Jones-
Kurkova theory on incremental construction of a neural network may serve
as inspiration. In pragmatic perspective, incrementality fits well in a picture
of interplay of computational resource bounds of agents and their economic
performance. We see the work of Szepesvari and Littman (1999) on Markov
games especially promising, but as advocated, it would be interesting to in-
clude an information processing (search) model within their decision model.
These largely structural aspects of search must of course be supported by
hard statistical theory, as in Berger (1985) and Leadbetter et al (1983).

Finally, on the practitioner’s side, it is common knowledge that the long-
standing mental congestion in applied informatics is much due to difficul-
ties with the notion of the value of information, see Kauffman and Riggins
(1998). Perhaps the search perspective (= option approach) may help here.
For example, following Varian’s (1999) suggestions, we are now looking in
this way at the problem of information retrieval Bonner et al (2001).
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1. Introduction

The investigation of limit behaviour of integral functionals of solution
of stochastic differential equation is stimulated, in particular, by interest
to behaviour of long-term return (1/t)

∫ t

0
r(u) du, as t → ∞, where short

interest rate r(u) satisfies the stochastic differential equation of diffusion
type [1], [2].

In this paper we study the behaviour, as ε → 0, of functional ηε(t) =

(εk/t)
t/εk∫
0

d(s, ξ(s))ds, where ξ(t) is the solution of stochastic differential

equation

dξ(t) = εk1f(t, ξ(t))dt+εk2g(t, ξ(t))dw(t)+εk3

∫
Rd

q(t, ξ(t), y)ν̃(dt, dy), (1)

ξ(0) = ξ0;

ε > 0 is the small parameter; k > 0, ki > 0, i = 1, 2, 3; d(t, x) is non-random
function; f(t, x) = {fi(t, x), i = 1, d}, q(t, x, y) = {qi(t, x, y), i = 1, d} are
non-random vector-valued functions; g(t, x) = {gij(t, x), i, j = 1, d} is non-
random matrix-valued function; t ∈ [0, T ], x, y ∈ Rd; w(t) is d-dimensional

30
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Wiener process; ν̃(dt, dy) = ν(dt, dy) − Π(dy)dt, ν(dt, dy) is the Poisson
measure independent on w(t), Eν(dt, dy) = Π(dy)dt; Π(·) is a finite measure
on Borel sets in Rd; ξ0 is the random vector independent on w(t) and ν̃(t, ·).

2. Auxiliary result

We need the following result.

Lemma. Let for each x ∈ Rd there exists lim
T→∞

(1/T )
∫ T+A

A
b(t, x) dt = b̄(x)

uniformly with respect to A, the function b̄(x) is bounded and continuous,
function b(t, x) is bounded and continuous in x uniformly with respect to
(t, x) in any region t ∈ [0,∞), |x| ≤ C, and stochastic process ξ(t) is stochas-
tically continuous, then

P− lim
ε→0

∫ t

0

b(s/ε, ξ(s)) ds =

∫ t

0

b̄(ξ(s)) ds

for all arbitrary t ∈ [0, T ].

Proof. Since the process ξ(t) is stochastically continuous then for any δ1 > 0
there exists such constant C > 0 that

sup
t∈[0,T ]

P{|ξ(t)| > C} ≤ δ1 (2)

and for arbitrary δ1 > 0 and δ2 > 0 there exists such δ3 > 0 that

P{|ξ(t1)− ξ(t2)| > δ2} ≤ δ1 (3)

for all |t1− t2| < δ3, t1, t2 ∈ [0, T ]. We choose δ2 such that |b̄(x)− b̄(y)| < δ1

and |b(t, x)−b(t, y)| < δ1 for all t ∈ [0, T ], as |x−y| ≤ δ2, |x| ≤ C, |y| ≤ C.
Let us consider partition 0 = t0 < t1 < . . . < tn = t, t ∈ [0, T ] such that

max
0≤k≤n−1

|tk+1 − tk| < δ3. We have for any δ > 0

P

{
|
∫ t

0

b(s/ε, ξ(s)) ds−
∫ t

0

b̄(ξ(s)) ds| > δ

}
=

= P

{
|

n∑
k=1

∫ tk

tk−1

[b(s/ε, ξ(s))− b(s/ε, ξ(tk−1))] ds| > δ/3

}
+

+P

{
|

n∑
k=1

∫ tk

tk−1

[b(s/ε, ξ(tk−1))− b̄(ξ(tk−1))] ds| > δ/3

}
+

+P

{
|

n∑
k=1

∫ tk

tk−1

[̄b(ξ(s))− b̄(ξ(tk−1))] ds| > δ/3

}
= P1 + P2 + P3.

For estimation of P1 and P3 we use the Chebyshev inequality, the prop-
erties of chosen partition, inequalities (2), (3) and boundedness of functions
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b(t, x), b̄(x). Therefore we obtain Pi ≤ Ctδ1δ
−1, i = 1, 3, where we use

notation C for any constant independent on ε.
For each k = 1, n from conditions of lemma we have

lim
ε→0

∫ tk

tk−1

[b(s/ε, ξ(tk−1))− b̄(ξ(tk−1))] ds = 0 a.s.

Therefore lim
ε→0

P2 = 0, and for arbitrary δ1 > 0, δ > 0

lim
ε→0

P

{
|
∫ t

0

b(s/ε, ξ(s)) ds−
∫ t

0

b̄(ξ(s)) ds| > δ

}
≤ Ctδ1δ

−1.

The proof of lemma is completed.

Remark. Let q(t, x, y) is bounded and uniformly continuous in x with
respect to t ∈ [0,∞) and y ∈ Rd in every compact set |x| ≤ C. Let Π(·) be
a finite measure on the σ-algebra of Borel sets in Rd and let

lim
T→∞

1

T

∫ T+A

A

q(t, x, y) dt = q̄(x, y),

uniformly with respect to A for each x ∈ Rd, y ∈ Rd, where q̄(x, y) is
bounded, uniformly continuous in x with respect to y ∈ Rd in every compact
set |x| ≤ C. Then for any stochastically continuous process ξ(t) we have

P− lim
ε→0

∫ t

0

∫
Rd

q(s/ε, ξ(s), y) Π(dy)ds =

∫ t

0

∫
Rd

q̄(ξ(s), y) Π(dy)ds.

The proof of this statement is similar to proof of lemma.

3. Main result

Let us consider the functional ηε(t) = (εk/t)
t/εk∫
0

d(s, ξ(s))ds, where ξ(t)

is the solution of equation (1). We suppose that coefficients of equation (1)
satisfy the following conditions:

1) |f(t, x)|2 + ‖q(t, x)‖2 + |q(t, x, y)|2 ≤ C, where |f |2 =
∑d

i=1 f 2
i ,

‖g‖2 =
∑d

i,j=1 g2
ij;

2) For any N > 0 there exists LN > 0 such that

|f(t, x1)− f(t, x2)|2 + ‖g(t, x1)− g(t, x2)‖2+

+

∫
Rd

|q(t, x1, y)− q(t, x2, y)|2 Π(dy) ≤ LN |x1 − x2|2,

for all xi ∈ Rd, i = 1, 2 such that |xi| ≤ N, i = 1, 2.
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3) Functions f(t, x), g(t, x), q(t, x, y) are continuous in x uniformly with
respect to t ∈ [0,∞), y ∈ Rd and x in every set |x| ≤ C. Uniformly
with respect to A for each x ∈ Rd, y ∈ Rd there exists the following
limits

lim
T→∞

1

T

∫ T+A

A

f(t, x) dt = f̄(x), lim
T→∞

1

T

∫ T+A

A

g(t, x)g∗(t, x) dt = Ḡ(x)

lim
T→∞

1

T

∫ T+A

A

q(t, x, y)q∗(t, x, y) dt = Q̄(x, y).

Here g∗ is the matrix (vector) transpose to g, therefore for vector-
valued function q(t, x, y) the product q(t, x, y)q∗(t, x, y) is the d × d-
matrix-valued function.

4) The functions f̄(x), Ḡ(x) are bounded, continuous in x, function
Q̄(x, y) is bounded, continuous in x uniformly with respect to y ∈ Rd.
Matrix B̄(x) = Ḡ(x) +

∫
Rd Q̄(x, y) Π(dy) is uniformly parabolic.

Theorem.Let conditions 1)-4) be fulfilled, k = min(k1, 2k2, 2k3) and func-
tion d(t, x) is bounded, continuous in x uniformly with respect to (t, x) in

any region t ∈ [0,∞), |x| ≤ C, there exists lim
T→∞

(1/T )
∫ T+A

A
d(t, x) dt = d̄(x)

uniformly with respect to A, the function d̄(x) is bounded and continuous.
1. If k1 = 2k2 = 2k3, then stochastic process ηε(t) converges in law, as
ε → 0, to stochastic process η̄(t) = (1/t)

∫ t

0
d̄(ξ̄(s)) ds, where process ξ̄(t) is

the solution of stochastic differential equation

dξ̄(t) = f̄(ξ̄(t))dt + σ̄(ξ̄(t))dw̄(t), ξ̄(0) = ξ0, (4)

σ̄(x) = B̄1/2(x); w̄(t) is some d-dimensional Wiener process.
2. If k < k1, then in equation(4) the drift coefficient f̄(x) is absent; if
k < 2k2, then in equation (4) the diffusion matrix B̄(x) does not depend on
Ḡ(x); and if k < 2k3, then B̄(x) does not contain the term

∫
Rd Q̄(x, y) Π(dy).

Proof. We can rewrite ηε(t) in the form ηε(t) = (1/t)
∫ t

0
d(s/εk, ξ(s/εk)) ds.

Let us denote ξε(t) = ξ(t/εk), wε(t) = εk/2w(t/εk), ν̃ε(t, ·) = ν(t/εk, ·) −
(t/εk)Π(·). It worth to note that for any ε > 0 wε(t) is the Wiener process
and ν̃ε(t, ·) is the centered Poisson measure. From equation (1) we obtain
the following stochastic differential equation for ξε(t)

ξε(t) = ξ0 + εk1−k

∫ t

0

f(s/εk, ξε(s)) ds + εk2−k/2

∫ t

0

g(s/εk, ξε(s)) dwε(s)+

+εk3

∫ t

0

∫
Rd

q(s/εk, ξε(s), y) ν̃ε(ds, dy). (5)

It follows from conditions 1), 2) that the solution of equation (5) exists and
unique for each ε > 0.

Let us check that following conditions are fulfilled:
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a) lim
h↓0

lim
ε→0

sup
|t−s|<h

P{|ξε(t)− ξε(s)| > δ} = 0 for any δ > 0, t, s ∈ [0, T ];

b) lim
N→∞

lim
ε→0

sup
t∈[0,T ]

P{|ξε(t)| > N} = 0.

Using the boundedness of coefficients of equation (1) and properties of
stochastic integrals, we can obtain the estimates

E|ξε(t)|2 ≤ C[E|ξ0|2 + (ε2(k1−k)T + ε2k2−k + ε2k3−k)t], (6)

E|ξε(t)− ξε(s)|2 ≤ C[ε2(k1−k)|t− s|+ ε2k2−k + ε2k3−k]|t− s|.

From the Chebyshev inequality and obtained estimates we have fulfillment
of conditions a) and b). Similarly we can check conditions a) and b) for
stochastic process

ζε(t) = εk2−k/2

∫ t

0

g(s/εk, ξε(s)) dwε(s)+εk3

∫ t

0

∫
Rd

q(s/εk, ξε(s), y) ν̃ε(ds, dy).

Therefore [3], for any sequence εn → 0, n = 1, 2, . . . there exists a sub-
sequence εm = εnm → 0, m = 1, 2, . . ., probability space, stochastic pro-
cesses ξ̃εm(t), ζ̃εm(t), ξ̄(t), ζ̄(t) defined on this space, such that ξ̃εm(t) →
ξ̄(t), ζ̃εm(t) → ζ̄(t) in probability, as εm → 0, and finite-dimensional distri-
butions of ξ̃εm(t), ζ̃εm(t) are coincide with finite-dimensional distributions of
ξεm(t), ζεm(t). Since we interesting in limit behaviour of distributions, we
can consider processes ξεm(t), and ζεm(t) instead of ξ̃εm(t), ζ̃εm(t). From (5)
we obtain equation

ξεm(t) = ξ0 + εk1−k
m

∫ t

0

f(s/εk
m, ξεm(s)) ds + ζεm(t). (7)

From this point we will omit the sub-index m in εm for simplicity of notation.
It worth to note that processes ξε(t) and ζε(t) are stochastically continuous
without discontinuity of second kind. For processes ξε(t) and ζε(t) we have
estimates

E|ξε(t)− ξε(s)|4 ≤ C[ε4(k1−k)|t− s|4 + E|ζε(t)− ζε(s)|4], (8)

E|ζε(t)− ζε(s)|4 ≤ C[(ε4k2−2k + ε4k3−2k)|t− s|2+

+ε4k3−3k/2|t− s|3/2 + ε4k3−k|t− s|], (9)

E|ξε(t)− ξε(s)|8 ≤ C, E|ζε(t)− ζε(s)|8 ≤ C. (10)

Since ξε(t) → ξ̄(t), ζε(t) → ζ̄(t) in probability, as ε → 0, then, using (10),
from (8) and (9) we obtain estimates

E|ξ̄(t)− ξ̄(s)|4 ≤ C(|t− s|4 + |t− s|2), E|ζ̄(t)− ζ̄(s)|4 ≤ C|t− s|2.
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Therefore processes ξ̄(t) and ζ̄(t) satisfy the Kolmogorov’s continuity con-
dition [4]. It should be noted that process ζε(t) is the vector-valued square
integrable martingale with matrix characteristic

〈ζε, ζε〉(t) = ε2k2−k

∫ t

0

g(s/εk, ξε(s))g
∗(s/εk, ξε(s)) ds+

+ε2k3−k

∫ t

0

∫
Rd

q(s/εk, ξε(s), y)q∗(s/εk, ξε(s), y) Π(dy)ds. (11)

For any δ > 0

P

{∣∣∣∣∫ t

0

d(s/εk, ξε(s)) ds−
∫ t

0

d̄(ξ̄(s)) ds

∣∣∣∣ > δ

}
≤

≤ 2

δ
E

∣∣∣∣∫ t

0

[d(s/εk, ξε(s))− d(s/εk, ξ̄(s))] ds

∣∣∣∣+
+P

{
|
∫ t

0

d(s/εk, ξ̄(s)) ds−
∫ t

0

d̄(ξ̄(s)) ds| > δ/2

}
=

2

δ
I1 + I2.

Since the function d(t, x) is continuous in x uniformly with respect to (t, x)
in any region t ∈ [0,∞), |x| ≤ N , then for any δ1 > 0 there exists δ2 > 0
such, that supt≥0 |d(t, x) − d(t, y)| ≤ δ1 as |x − y| ≤ δ2, |x| ≤ N, |y| ≤ N .
Therefore from (6) and boundedness of d(t, x) we have

I1 ≤ E

∫ t

0

|d(s/εk, ξε(s))− d(s/εk, ξ̄(s))|χ{|ξε(s)− ξ̄(s)| ≤ δ2}×

×χ{|ξε(s)| ≤ N, |ξ̄(s)| ≤ N} ds + C

(∫ t

0

P{|ξε(s)− ξ̄(s)| > δ2} ds +

+

∫ t

0

P{|ξε(s)| > N} ds +

∫ t

0

P{|ξ̄(s)| > N} ds

)
≤

≤ δ1 +
C

N2
+ C

∫ t

0

P{|ξε(s)− ξ̄(s)| > δ2} ds.

Since P− lim
ε→0

ξε(s) = ξ̄(s), δ1 > 0 and N > 0 are arbitrary, then lim
ε→0

I1 = 0.

The process ξ̄(s) is continuous and function d(t, x) satisfies the condi-
tions of lemma. Therefore lim

ε→0
I2 = 0 and

lim
ε→0

∫ t

0

d(s/εk, ξε(s)) ds =

∫ t

0

d̄(ξ̄(s)) ds (12)

in law (because the distributions of ξεm(t), ζεm(t) coincide with distribu-
tions of stochastic processes ξ̃εm(t), ζ̃εm(t) and in fact we have proved that
P− limεm→0

∫ t

0
d(s/εk

m, ξεm(s)) ds =
∫ t

0
d̄(ξ̄(s)) ds).
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Let us consider the case k1 = 2k2 = 2k3. From (7) we obtain

ξε(t) = ξ0 +

∫ t

0

f(s/εk, ξε(s)) ds + ζε(t),

where martingale ζε(t) has a matrix characteristic

〈ζε, ζε〉(t) =

∫ t

0

g(s/εk, ξε(s))g
∗(s/εk, ξε(s)) ds+

+

∫ t

0

∫
Rd

q(s/εk, ξε(s), y)q∗(s/εk, ξε(s), y) Π(dy)ds.

Using the lemma it is easy to show that P− limε→0

∫ t

0
f(s/εk, ξε(s)) ds =∫ t

0
f̄(ξ̄(s)) ds, and P− limε→0〈ζε, ζε〉(t) =

∫ t

0
B̄(ξ̄(s)) ds. Hence ζ̄(t) is a

vector-valued continuous square integrable martingale with matrix char-
acteristic 〈ζ̄ , ζ̄〉(t) =

∫ t

0
B̄(ξ̄(s)) ds. It follows from [5] that there exist a d-

dimensional Wiener process w̄(t) such that ζ̄(t) =
∫ t

0
σ̄(ξ̄(s)) dw̄(s), where

σ̄(x)σ̄∗(x) = B̄(x). Therefore the process ξ̄(t) is the solution of stochastic
differential equation

ξ̄(t) = ξ0 +

∫ t

0

f̄(ξ̄(s)) ds +

∫ t

0

σ̄(ξ̄(s)) dw̄(s). (13)

From condition 4) and [6] it follows that the equation (13) has unique weak
solution. Hence for any sequence εm → 0 the stochastic process ξεm(t)
converges in probability to the solution ξ̄(t) of equation (13). From this
and (12) we have proof of statement 1) of theorem.

When k < k1 the boundedness of f(t, x) implies that

E
∣∣∣∫ t

0
f(s/εk, ξε(s)) ds

∣∣∣ ≤ C, therefore the second term in the right side

of (5) converges to 0 in probability, as ε → 0, and we obtain the first state-
ment in 2). From boundedness of g(t, x) and q(t, x, y) we obtain that either
first or second term in the right side of (11) converges to 0 in probability
(respectively to the cases k < 2k2 or k < 2k3) as ε → 0. Then we can com-
plete the proof of the statement 2) of the theorem as the proof of statement
1). Theorem is proved.
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ABOUT INFLUENCE OF DYNAMICS OF
MANUFACTURE ON STRUCTURE OF
EMPLOYMENT OF THE POPULATION

Now we are the witnesses of structural modifications of the forms of
employment in world scales.

The factor of labor plays very important role, as it determines a
relation and dynamics of the forms of employment.

The labor function can be presented as: L = f(E,Se, U,D), where
E - paid employment, Se - self-employment, U - unemployment, D
- employment in personal home facilities- its factors. The degree
index under each factor determines a measure of the given form of
employment, and function a relation of the forms of employment:
L = Al ·Eβ1 · Seβ2 · Uβ3 ·Dβ4, β1 + β2 + β3 + β4 = 1.

The passage of production function (PF) of factor of elasticity un-
der the factor the capital through the critical value α = 0, 5 both
employers, and the hired workers, lose economic interest to the fur-
ther development of manufacture; the process of development of self-
employment on a basis and in an orb of creation both application
of new and information technology, transition of business in virtual
area is very fast.

2000 Mathematics Subject Classifications. 91B40.

Key words and phrases. Factor of labor, dynamics of the forms
of employment, labor function, production function.

1. Introduction

The forms of employment include a paid employment, self-employment,
employment in personal home facilities and unemployment. The degree of
optimization of a relation of the enumerated forms of employment deter-
mines a level of a production efficiency of the public boons and rendered
services as in frameworks separately of taken state, and all global commu-
nity as a whole. Now we can be the witnesses of structural modifications
of the forms of employment in world scales. To the extremity of 20 century

37
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the business in the developed countries began all more brightly to exhibit
itself as the dominating factor of manufacture, in others by those continues
to remain the capital, in the third land : [2].

The additional motives and reasons for an amplification of the tendency
to prevalence of business are connected to development of the global market
calling origin of the states occupied mainly by the businessmen, and, as a
corollary it, - states - paid workers, states - unemployed and countries, which
do not discover to themselves places in the international division of labor
or leave from global community (Iraq, Cuba). All this is a corollary of non-
simultaneity of passage in the different countries of dominant properties
from one factor of manufacture to another.

The factor labor plays the very important role, as it determines a rela-
tion and dynamics of the forms of employment. One forms of employment
are concentrated in one countries, for example, modern self-employment
on the basis of new and information technology in USA, Europe, and paid
employment, personal part-time farm - in other countries.

Marked above optimization of structure of the factor labor in frameworks
separately of taken state allows to raise effectiveness of use and remaining
of the factors of manufacture - business, capital, land, that, in turn, reduces
in economic growth.

The singularity of Russia consists in origin of variety of the forms of
the market. It was by a corollary that in different territories of Russia as
dominant the various factors of manufacture appear. On Northern Cauca-
sus - labor, in capitals (Moscow, St.-Petersburg) - capital, places new and
information technology or introduced, here and there land and everywhere
is spread intermediary business. For this reason in different territories of
Russia the relation of the every possible forms of employment has striking
differences far from optimum for the given region of a level.

The labor function can be presented as: L = f(E, Se, U, D), where E -
paid employment, Se - self-employment, U - unemployment, D - employ-
ment in personal home facilities- its factors. The degree index under each
factor determines a measure of the given form of employment, and func-
tion a relation of the forms of employment: L = Al · Eβ1 · Seβ2 · Uβ3 ·Dβ4,
β1 + β2 + β3 + β4 = 1.

The structural modifications of a relation of the forms of employment in-
fluence process of manufacture and consumption of the public boons. Thus
the structure of employment influences effectiveness of use of the factors
of manufacture, that in turn testifies to necessity of regulating of streams
of the forms of employment and optimization of their relation, which is
possible on the basis of the analysis of labor function on each of the factors.

At passage of dominant properties from one factor of manufacture to
another the labor function varies also, i.e. the relation of the forms of
employment and unemployment in the market of a transactions varies.
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Here we shall be limited to detailed reviewing of correlation only of two
of four factors of manufacture (capital and labor) - forms, appropriate to
them, of employment (paid employment and employer).

Let at the moment t volume of the capital is equal K, and amount
of the paid workers necessary for reduction them in an operation equal L.
Then the production function F (K, L) shows volume of output F depending
on the factors K and L for any phase of time (for example for one year):
F = F (K, L).

Let parameter 0 < s < 1 characterizes, what part again of created yield
goes on the investment in manufacture, and parameter 0 < µ < 1, what
part of a fixed capital (i.e. capital) constantly leaves in view of amortization.
Then for ∆t the modification of the capital is equal:

∆K = (sF (K, L)− µK)∆t. (1)

If ∆t aspires to zero, we come to known classical model of economic
growth Ramsey-Solow [1]:

dK

dt
= s1F (K, L)− µK. (2)

Is proved, that if t → +∞ accumulation of the capital at a constant
process engineering can not exceed some marginal level: K(t) → K(∞) at
t → +∞. Then on the outflow of the large time interval dK/dt → 0, and we
come to a limiting relation sF = µK. If for simplicity to accept production
function (PF) as Cobb-Douglas (basic outcomes of work remain fair for
arbitrary of neoclassical function, homogeneous degree 1), it is equivalent
to equality

sAKαLβ = µK, (α + β = 1) ∼ K = L

(
sA

µ

)1/β

. (3)

In 1961 Phelps investigated optimum structure of manufacture, proceed-
ing from a condition of a maxim of consumption (see [2]). As the consump-
tion is determined by a part of the produced product which has stayed
after deductions on the investment in manufacture, this magnitude is equal
F − sF = (1− s)F . The condition of a maximization of this magnitude in
a case PF of Cobb-Douglas, at constant number of the paid workers, is

max
[
(1− s)AKαLβ

]
∼ max

[
(1− s)sα/(1−α)

]
. (4)

Here we have taken advantage of expression (3) for magnitude K. Obviously,
the maxima of function (4) is reached in a point s∗, in which the expression
in square brackets is equal to zero, that would give s∗ = α. But then it
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turns out, that the income from the factor of the capital equal as is known,
KdF/dK (see [1]), is

K
dK

dt
= αF = s∗F (5)

and, hence, coincides with volume of the investments in manufacture. Thus,
” the gold rule ” accumulation established by Phelps, states, that for a
maximization of accumulation, the income from the factor of the capital is
necessary for putting in the investment.

We shall estimate social consequences ”of a gold rule” for this pur-
pose we shall remark, that the found optimum consumption in a society
(1− s∗)F = (1− α)F = βF = L(dF/dL) coincides with the income of the
paid workers. What then is consumption of the employers, which appears
equal to zero? Unfortunately, in works neoclassics we do not discover a
solution of the given paradox.

2. New sight on ”a gold rule” accumulation

The correct approach to structural distribution of an industrial yield F
is, that is necessary in an explicit aspect to allocate 3 account components:

a) Investment in manufacture;

b) Consumption of the employers;

c) Consumption of the paid workers:

F = s1F + s2F + (1− s1 − s2)F. (6)

Where in the ratio (6) s1 designates a share of issue, which is invested
back in a fixed capital, and s2 - the share of the produced yield, which is
consumed by the employers. Thus the consumption of the paid workers,
obviously, is determined in parameter (1− s1 − s2).

It is obvious, the employer aspires to maximize the consumption:

max(s2F ). (7)

Thus dynamics of growth of the capital

dK

dt
= s1F − µK (8)

determines its limiting magnitude at the large times from the following
equality

s1F = µK ∼ K = L

(
s1A

µ

)1/(1−α)

. (9)
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At last, we shall take into account, that the consumption of the paid
workers is determined by equality known of the microeconomic theory of
firm

(1− s1 − s2)F = L
dF

dL
∼ 1− s1 − s2 = 1− α ∼ s1 + s2 = α (10)

which is deduced from rushing the employer to maximize profit of firm [3].
The solution of a task of optimization (7) under conditions (9) and (10)

is under construction as follows (PF - function of Cobb-Douglas)

max(s2K) ∼ max(s2s
α/(1−α)
1 ) ∼ max

[
(α− s1)s

α/(1−α)
1

]
∼ s∗1 = α2,

s∗2 = α− α2. (11)

Now it becomes clear, that the optimum size of the investments is deter-
mined in parameter s∗1 = α2, thus the consumption of the employers would
be determine in factor sK = s∗2 = α − α2 , and consumption of the paid
workers - factor sL = 1− s∗1 − s∗2 = 1− α.

3. Social consequences, defined dynamics of manufacture

First of all we shall remark, that always sK < sL, as 0 < α < 1. Thus,
maximizing the profit, the employer is forced to support the ∂F/∂L rate
of the real salary of the paid workers at such level, that their summarized
income L(∂F/∂L) = sLF exceeds the income of the businessman (employer)
sKF .

Fig.1
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The further conclusions will be based on statistical given about factors
of elasticity αK - under the factor of manufacture the capital and αL -
under the factor of manufacture a labor (for PF of Cobb- Douglas αK = α,
αL = β). As is known Cobb and Douglas in 1928 for the American economy
of the extremity 19 - the beginnings 20 of century have established a value
αK = α = 0.25. However later statistical data testify that with growth of
the technology of manufactory factor αK monotonically will increase and,
for example, for phase 1960-1995 its average value has reached a level αK =
0.404 (see [4]). Apparently, the growth αK proceeds and now. Let’s trace
(see Fig.1) dynamics of magnitudes s1 = s∗1 = α2 (share of issue going on
the investment), sK and sL, as functions of parameter αK = α.

It is interesting to note, that in an initial phase of capitalism, where
parameter would be still very small the summarized income of the capital-
ist was much less summarized income of the paid workers (probably it is
explained to that employer was a little, and it is a lot of workers). With de-
velopment of technology (i.e. with growth of parameter α ) the share of the
income of the capitalist becomes increasing in comparison with the income
of the workers, however it required the increasing level of the investments.
Let’s remark also, that the growth rate of the income capitalist (dsK/dL)
was highest in an initial phase.

In process of growth of parameter α critical the value α = 0, 5. At pas-
sage through this value the relative share of the income of the employers
begins to decrease. Developing a technology and manufacture as a whole
capitalist, creates that not realizing, for itself objectively unprofitable social
conditions increasing percent of the profit he is forced to put in the invest-
ment and lesser - on the consumption. It also marks an approximation of
the extremity of effective capitalist manufacture. Thus, ”grave-digger” of
capitalism is not the working class, as supposed K. Marks, and itself capi-
talist. Developing capitalist manufacture, capitalist objectively leads up it
to a level at which his relative income begins to fall, that predetermines
crash of the basic motivation of his activity, as organizer of manufacture.

We shall add here such obvious observation that the relative income of
the paid workers generally all time decreases, were monotonically decreasing
function of parameter α on all interval of its modification α ∈ (0, 1).

4. Influence on structure of employment and development

of new forms of production

From the previous paragraph follows, that the lass interest of the paid
workers can not be driving stimulus of manufacture based on a hired trans-
actions, as the relative long of their income constantly decreases. The basic
driving force of the given form of manufacture, certainly, is the economic
interest of the employers aspiring to a maximization of the profit. However
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at reaching a critical value α = 0, 5 and at the employers the economic
interest to development of this form of manufacture is lost, as his share of
the national income begins to decrease.

Apparently, the value α = 0, 5 in the developed countries was reached
in middle XX of century. It has reduced that the factor of manufacture
the capital began to lose of dominant property, that became the beginning
of crash of an industrial society. On change there came new information
technology based on new dominant factor - business.

We shall remark, that according to the statistical data, the average
value for the Soviet economy for phase with 1960 for 1994 was α = 0, 539
(see[4]). It means, that in USSR the critical value α = 0, 5 was reached in 80
years. According to a Fig.1 the further growth of the investments in a heavy
industry has ceased to increase the income of manufacture. As was not found
of other forms of the industrial rationes alternative to the rationes, based
on development of a traditional heavy industry, it has reduced in crash of
the Soviet system of manufacture. USSR even has overtaken USA on park
of machine tools, however it could not prevent crash of a system.

One more interesting conclusion can be made of established dynamics,
if to look at it from a position of the forms of employment of the able-
bodied population. Passage at the present stage of factor of elasticity under
the factor the capital through the critical value α = 0, 5 reduces that both
participants of process of a hired work - both employers, and the hired
workers, - lose economic interest to the further development of manufac-
ture. Thus, from the basic forms of employment - 1) employer, 2) paid
employment, 3) self-employment, 4) employment in a personal home facili-
ties and unemployment first two forms of employment gradually remove on
the second plan. Increasing percent of the able-bodied population transi-
tion from 1, 2 in 3 and 4; especially fast there is a process of development
of self- employment on a basis and in an orb of creation both application
of new and information technology, transition of business in virtual area.
This conclusion confirm carried out in the summer of 1998 at support ” of
the European Organization of a raise of a standard of living and conditions
of work ” researches in 16 the European countries, where the level of self-
employment makes on the average 13% from common number of the eco-
nomically - active population. However, by results of the given researches
was found out what to become self-occupied 26% from common number
of the economically - active population, that is twice above existing level
would like. Investigating preferences of the people, which will enter on the
market of a transactions during next of five years (till 2003) only 62% would
prefer to work as the hired workers, 21% has chosen self-employment, and
stayed 17% have not stated any preference concerning their future work. It
means, that the self-employment is the attractive form of work for a great
many of the people. Also interesting that fact is, that to development and
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distribution of new and information process engineerings there is a transi-
tion of workplaces in home conditions, in which 31% of the self-occupied
workers work completely, and 28% fulfill a part of work of a house. [5]
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We shall estimate the mean (µ) and the total capital (τ) of commercial
banks of Ukraine by state on 1.01.2000. There are N = 163 commercial
banks in Ukraine. All information we will take in journal “Financial Risks”,
2000, N1 (21). The simple random sampling with sample size n=10 gave
such results (for ordinal numbers):

65 – AB ”ELITA” – 20, 73 mln. UAH – y1,
07 – AB ”CITYBANK UKRAINA” – 97,96 mln. UAH – y2,
26 – AB ”ZUKB” – 58, 07 mln. UAH – y3,
119 – AB ”ROSTOK BANK” – 10,72 mln. UAH – y4,
67 – AB ”INTEGRAL” – 19, 25 mln. UAH – y5,
60 – AB ”TRANSBANK” – 23,33 mln. UAH – y6,
10 – AB ”SOSETE ZHENERAL UKRAINA” – 41,02 mln. UAH – y7,
78 – AB ”UNEX” – 17,22 mln. UAH – y8,
12 – AB ”INGBANK UKRAINA” – 32,83 mln. UAH – y9,
35 – AKB ”KYIV” – 34,52 mln. UAH – y10.
10∑
i=1

yi = 355,65 mln. UAH, y = 355, 65/10 = 35,565 mln. UAH,

�
τ = N · y = 163 · 35, 565 = 5797,095 mln. UAH.
True value µ= 35,686 mln. UAH, τ=5816,93 mln. UAH. We are got

prettily exact estimations.

45
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Now will use stratified random sampling for estimation a mean and total
capital of commercial banks of Ukraine in 2000. We divided the population
into 3 strata in accordance with rating and capital. First stratum is the
banks with capital more 100 mln. UAH (ratings: 1-9); second stratum is
the banks with capital from 25 mln. UAH to 100 mln. UAH (ratings: 10-
52). Third stratum is the banks with capital less 25 mln. UAH (ratings:
53-163). We use the following notation:

L - number of strata,
Nk - stratum size, k = 1, ..., L,
Wk = Nk

N
- stratum weight.

N = 163, L = 3; N1 = 9, N2 = 43; N3 = 111.
Let
n = 10, n1 = 1, n2 = 3, n3 = 6,
W1 = 0, 055, W2 = 0, 264, W3 = 0, 681.
From first stratum
56 – KAB “SLOVYANSKYY” – 232,16 mln. UAH.
From second stratum
11 – AB “BROKBIZNESBANK” – 94,93 mln. UAH,
45 – AKB “PIVDENKOMBANK” – 27,62 mln. UAH,
37 – AKB“PROMAYSLOVO-FINANSOVYY BANK” – 30,30 mln. UAH.
From third stratum
64 – AB “ENERGOBANK” – 22,87 mln. UAH,
119 – AB “ROSTOK-BANK” – 10,72 mln. UAH,
67 – AKB “INTERBANK” – 20,58 mln. UAH,
78 – AKB “PRYCHORNOMORYA” – 17,96 mln. UAH,
157 – AKB “ODESSA-BANK” – 5,70 mln. UAH,
153 – AKB “SLOBOZHANSCHINA” – 6,56 mln. UAH.
We use such estimators

yst =

L∑
k=1

Wkyk,
�
τ st = Nyst =

L∑
k=1

Nkyk.

y1 = 232, 16, y2 = 50, 95, y3 = 14, 06,

yst = 0, 055 · 232, 16 +0, 264 · 50, 95+0, 681 · 14, 06 = 35, 792 mln. UAH,
�
τ = N · yst = 5834, 09 mln. UAH.
So, stratified sampling gave few better estimate, than the mean of simple

random sampling.

|yst − µ| = 0, 106 mln. UAH, |y − µ| = 0, 121 mln. UAH,

∣∣�τ st − τ
∣∣ = 17, 16 mln. UAH,

∣∣�τ − τ
∣∣ = 19, 88 mln. UAH.



THE SAMPLING STRATEGY 47

Now we use the ratio estimates and give information about Ukraine
banks capital by state on 1.01.1999 year. So be it given for 2000 y. is Yi

and for 1999 - Xi. τx = 4278, 71, µx = 26, 25.
Ratio estimators are following

�
µR =

�

R · µx =
y

x
· µx,

�
τ R = N · �

µx =
�

R · τx =
y

x
· τx.

Let n = 10.We use the same sample that in simple random sampling.

x1 = 14, 90; x2 = 75, 76; x3 = 10, 38; x4 = 10, 14; x5 = 10, 63;

x6 = 18, 31; x7 = 49, 40; x8 = 9, 24; x9 = 29, 40; x10 = 23, 73;

x = 25, 189; y = 35, 565;
�

R = 1, 40;

�
τ R = 1, 40 · 4278, 71 = 5990, 19 mln. UAH,

�
µR = 1, 40 · 26, 25 = 36, 750 mln. UAH,

∣∣�µR − µy

∣∣ = 1, 064 mln. UAH,
∣∣�τ R − τy

∣∣ = 173, 26 mln. UAH.

In given example ratio estimation gave a worse result, than the mean
simple random sampling and the mean of stratified random sampling. This
is accounted for by not high correlation dependence of all population Y and
population X.

Interestingly to spy, as changed ratings of select banks:
1.01.2000 y. - 66,10, 19, 119, 69, 61, 27, 84, 34, 31.
1.01.1999 y. - 53, 10, 70, 73, 66, 43, 12, 83, 28, 35.
Now we use separate and combined ratio estimators.
Combined estimators:

yst =

L∑
k=1

Wkyk, xst =

L∑
k=1

Wkxk,
�
µRc

=
yst

xst
· µx,

with

µx =
L∑

k=1

Wkµxk
,

�
τ Rc =

yst

xst

· τx = N · �
µRc

, τx =
L∑

k=1

τxk
.

We have

L = 3; N1 = 9, N2 = 43, N3 = 111;
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n = 10, n1 = 1, n2 = 3, n3 = 6,

W1 = 0, 055, W2 = 0, 264, W3 = 0, 681.

y1 = 232, 16, y2 = 50, 95, y3 = 14, 06, yst = 35, 792.

x11 = 152, 47 ; x21 = 48, 19; x22 = 15, 78;
x23 = 15, 87; x31 = 18, 85; x32 = 10, 14;
x33 = 10, 97; x34 = 9, 87; x35 = 5, 61; x36 = 5, 01;
x1 = 152, 47; x2 = 26, 61; x3 = 10, 1.

xst = 0, 055 · 152, 47 + 0, 264 · 26, 61 + 0, 681 · 10, 1 = 21, 74;

µx = 26, 25, τx = 4278, 71.

�
µRc

=
yst

xst
· µx =

35, 792

21, 74
· 26, 25 = 42 mln. UAH,

�
τ Rc =

35, 792

21, 74
· 4278, 71 ≈ 6846 mln. UAH.

Separate estimators:

�
µRS

=

L∑
k=1

Wk ·
yk

xk
· µxk

,

where yk, xk - sample mean in k-th stratum, µxk
- true mean in k-th stratum,

µxk
=

1

Nk

Nk∑
i=1

Xki,
�
τ Rs =

L∑
k=1

yk

xk
· τxk

= N
�
µRs

,

with

τxk
= Nk · µxk

=

Nk∑
i=1

Xki.

τx1 = 2288, 11 , µx1 = 254, 23;
τx2 = 1202, 68 , µx2 = 27, 97;
τx3 = 787, 92 , µx3 = 7, 09.

Then
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�
µRs

= 0, 055 · 232, 16

152, 47
· 254, 23 + 0, 264 · 50, 95

26, 61
· 27, 97+

+0, 681 · 14, 06

10, 1
· 7, 09 = 41 mln. UAH,

�
τ Rs = N · �

µRs
= 41 · 163 = 6683 mln. UAH.

These estimators gave the considerably worse results, than the mean of
simple random sampling, the mean of stratified sampling and, even, simple
ratio estimation. The separate estimation was better, than combined.

Now we use the regression estimators.

�
µl = y +

�

B (µx − x) ,
�
τ l = N

�
µl,

�

B =

n∑
i=1

(yi − y) (xi − x)

n∑
i=1

(xi − x)2
.

We have

10∑
i=1

(xi − x)2 = 4228, 73,
10∑
i=1

(yi − y) (xi − x) = 4074, 96,

�

B =
4074, 96

4228, 73
= 0, 96,

�
µl = 35, 565 + 0, 96 (26, 25− 25, 189) = 36, 581 mln. UAH

�
τ l = 5962, 70 mln. UAH,

∣∣�µl − µy

∣∣ = 0, 895 mln. UAH,
∣∣�τ l − τy

∣∣ = 145, 77 mln. UAH.

So, the regression estimators gave a more exact result, than ratio estima-
tors, than separate and combined ratio estimators for stratified sampling,
but under this the mean of simple random sampling and the mean of strat-
ified sampling gave a more exact result.

Finally we use separate and combined regression estimators.
Separate estimators:

�
µls =

L∑
k=1

Wk
�
µlk

,

with
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�
µlk

= yk +
�

Bk (µxk
− xk) ,

�

Bk =

nk∑
i=1

(yki − yk) (xki − xk)

nk∑
i=1

(xki − xk)
2

,

�
τ ls = N

�
µls =

L∑
k=1

Nk
�
µlk

.

L = 3; n1 = 1, n2 = 3, n3 = 6,

W1 = 0, 055; W2 = 0, 264; W3 = 0, 681.

x1 = 152, 47; x2 = 26, 61; x3 = 10, 1.

µx1 = 254, 23; µx2 = 27, 97; µx3 = 7, 09.

y1 = 232, 16; y2 = 50, 95; y3 = 14, 06.

xst = 21, 74; yst = 35, 792; µx = 26, 25.

�

B1 = 0;
�

B2 = 2, 04;
�

B3 = 0, 44.

�
µl1 = 232, 16;

�
µl2 = 53, 72;

�
µl3 = 12, 74;

�
µls = 0, 055 · 232, 16 + 0, 264 · 53, 72 + 0, 681 · 12, 74 = 35, 527 mln. UAH.

�
τ ls = 5790, 90 mln. UAH.

Combined estimators:

�
µlc = yst +

�

Bc (µx − xst) ,
�

Bc =

L∑
k=1

W 2
k (1−fk)

nk(nk−1)

nk∑
k=1

(yki − y) (xki − x)

L∑
k=1

W 2
k (1−fk)

nk(nk−1)

nk∑
k=1

(xki − x)2

�
τ lc = N · �

µlc ,
�

Bc = 1, 53;
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�
µlc = 35, 792 + 1, 53 (26, 5− 21, 74) = 40, 541 mln. UAH,

�
τ lc = 6608, 18 mln. UAH,

∣∣�µls − µy

∣∣ = 0, 159 mln. UAH,

∣∣�τ ls − τy

∣∣ = 26, 03 mln. UAH,

∣∣�µlc − µy

∣∣ = 4, 855 mln. UAH,

∣∣�τ lc − τy

∣∣ = 791, 25 mln. UAH.

As visibly, separate estimators gave a considerably better result.
On completion, will write out all of estimators.

1. yst=35,792 mln.UAH, |yst − µy| = 0, 106 mln.UAH.
�
τ st = 5834,09 mln.UAH,

∣∣�τ st − τy

∣∣ = 17, 16 mln.UAH.

2. y=35,565 mln.UAH, |y − µy| = 0, 121 mln.UAH.
�
τ = 5797,095 mln.UAH,

∣∣�τ − τy

∣∣ = 19, 88 mln.UAH.

3.
�
µls=35,527 mln.UAH,

∣∣�µls − µy

∣∣ = 0, 159 mln.UAH.
�
τ ls = 5790,90 mln.UAH,

∣∣�τ st − τy

∣∣ = 26, 03 mln.UAH.

4.
�
µl=36,581 mln.UAH,

∣∣�µl − µy

∣∣ = 0, 895 mln.UAH.
�
τ l = 5962,70 mln.UAH,

∣∣�τ l − τy

∣∣ = 145, 77 mln.UAH.

5.
�
µR=36,750 mln.UAH,

∣∣�µR − µy

∣∣ = 1, 064 mln.UAH.
�
τ R = 5990,19 mln.UAH,

∣∣�τ R − τy

∣∣ = 173, 26 mln.UAH.

6.
�
µlc=40,541 mln.UAH,

∣∣�µlc − µy

∣∣ = 4, 855 mln.UAH.
�
τ lc = 6608,18 mln.UAH,

∣∣�τ lc − τy

∣∣ = 791, 25 mln.UAH.

7.
�
µRs

=41 mln.UAH,
∣∣�µRs

− µy

∣∣ = 5, 314 mln.UAH.
�
τ Rs = 6683 mln.UAH,

∣∣�τ Rs − τy

∣∣ = 856, 07 mln.UAH.

8.
�
µRc

=42 mln.UAH,
∣∣�µRc

− µy

∣∣ = 6, 314 mln.UAH.
�
τ Rc = 6846 mln.UAH,

∣∣�τ Rc − τy

∣∣ = 1029, 07 mln.UAH.
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So, in our examples by most exact estimation is yst with relative

precision |yst−µy |
µy

· 100% = 0, 29% (by analogy
�
τ st ). Will direct a table of

relative estimations precision.

Table 1. Comparison of estimations.

N Sampling method Method of estimation Relative
precision

Rating

1.
2.
3.
4.
5.
6.
7.
8.

Simple random
Simple random
Simple random
Stratified random
Stratified random
Stratified random
Stratified random
Stratified random

Mean (y)
Ratio (

�
µR)

Regression (
�
µl)

Mean (yst)
Separate ratio (

�
µRs

)

Combine ratio (
�
µRc

)

Separate regression (
�
µls)

Combine regression(
�
µlc)

0,34%
2,98%
2,50%
0,29%
14,89%
17,68%
0,44%
13,60%

2
5
4
1
7
8
3
6
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1. Time series: the main definitions

Researcher’s task can be formulated very simple: to produce the best
possible forecasts using any available information. But there are some prob-
lems in collecting information, creating the adequate model, which can de-
scribe economic processes correctly, and working with obtained information,
which can be neither exact nor correct. While producing forecasts three
main ways can be investigated: statistical, econometrical and judgmental.
Econometrists try to use only that information, which has some economic
sense and the usage of which can be explained by economic theory. Statis-
ticians use any information, which may not concern economy. Experts can
produce forecasts using their judgements and information that they intu-
itively decide to be important for forecasting. The main goal of all ways is
creating final model for forecasting.

Sometimes econometrics can’t explain and follow great structural chan-
ges in economy. For this reason most of econometric models are not capable
to produce rather useful forecasts with minor errors.

As far as statistical way is concerned it should be noted that time se-
ries analysis is one of its main parts. Nowadays it is popular direction for
forecasting. The fact is there are many economic variables, which are rep-
resented by time series. It can be mentioned that hundreds of researchers
developed new methods of analysing time series.

Judgmental methods are not developed sufficiently, but referring to ex-
perts is very often needed, especially in transition economies.

Time series are sequences of numbers that indicate values of some
process, which changes in every time period. As usual equal periods are

53



54 OLEKSANDR I.CHERNYAK AND ANDRIY V.STAVYTSKYY

considered (for example, months, quarters, years). The order of these values
is very important; that’s why every value has its own index depending on a
number of the period, when it is investigated. Time series are widely applied
in different branches of human activity. In economics one may use time
series for currency rates, stock rates, GDP and so on. In this report we’ll
try to demonstrate the application of methods, suggested below concerning
the Balance of Payments of Ukraine.

For defining economical politics of the state one needs to forecast some
articles of Balance of Payments for future periods. We’ve made such forecast
for the most important articles such as “Export of Goods and Services”,
“Import of Goods and Services”, “Export of Goods”, “Import of Goods”.
These articles are the most aggregate and they give a possibility to make
a conclusion about the real situation in economy. The forecasts of these
articles are used by government to define the main directions of currency
politics, tax politics (duties and excises) and so on.

In practice, we should make conclusions about our time series and make
a proper forecast, which will be sufficient for economic activity. We are to
select a statistical model, maximal error of forecast (that is sufficient for
us), then make forecast, and analyse results.

Certainly, the more values we have obtained the easier to us to predict
changes in time series. But sometimes there are only few observations avail-
able or the process has changed so much that no inheritance is present at
all. For example, the main economic parameters of East Europe countries
before changing their economies to market type and after are very differ-
ent. It means that our possessing information about their GDP for 1960,
for instance, cannot provide adequate knowledge of GDP for 2000. So in
such a situation we can operate only 5-10 last annual variables and 10-20
last quarter variables. Now we’ll discuss some methods that can give us
sufficient results for the lack of data.

The next methods require more detailed analysis of time series. Ac-
cording to modern statistics time series consists of two main components:
determinate and residual. So, the simplest model of time series is:

yt = dt + rt, t = 1, T .

Determinate components change according to some rules that can be
researched or obtained in empirical way. Usually, this component depends
on time (t) and some other parameters. So, it shows the influence of some
factors, which can be unknown, but their influence is steady for almost all
periods of investigations.

A random component can’t be predicted, no one can even state for sure
in what way it changes.

In economic application the determinate component usually consist of:
1. Trend component (tr)
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2. Seasonal component (s)
3. Cyclical component (c)
That’s why one may put down the model of the determinate component

in such a way:

dt = trt + st + ct, t = 1, T .

Now let’s consider every component in detail.
The analysis of time series starts with extracting trend component,

which is the biggest (as usual). If it is a trend then you can see it in
graphic representation. Usually it goes up or down. The trend can be
determined by the following factors: demographic changes, technological
changes, demand structure changes and so on. The action of these factors
is displayed gradually; therefore researchers prefer describing them with the
help of smooth curves, which are possible to set in an analytical form.

Seasonal component shows inherent in the world and human activity
recurrence of processes in time. It is frequently present at economic, mete-
orological and other time series. A seasonal component serves more often
as a main source of short-term fluctuations of a time series; therefore its al-
location considerably reduces the variation of other components. Seasonal
component consists of a sequence of almost repeated cycles.

A classical example of seasonal effect is the break in even sales level
of the goods in December before Christmas and New Year’s Eve. The
seasonal effects are inherent in many spheres of human activity: many kinds
of production have a seasonal nature of manufacture; consumption of the
goods has also brightly expressed seasonal prevalence.

The main idea of the analysis of the seasonal component consists of
transition from comparison of all values of a time series among themselves
to comparison of values through the certain period of time. For example,
data of December of one year we are to compare with data of the past
December, not with other months of the year.

Cyclical component occupies a somewhat intermediate place between
determinate and seasonal components of time series. Trend is a smooth
change, which is displayed during large time intervals. A seasonal com-
ponent is a periodic function of time, which can precisely be seen, when
its period is much less than a general number of investigations. A cyclical
component is usually considered to be smooth but can’t be included in a
seasonal component. At the same time it is impossible to attribute such
component to trend.

So, any time series can be presented in the form:

yt = trt + ct + st + rt, t = 1, T .

Sometimes one uses multiplicative model:
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yt = trt · ct · st · rt, t = 1, T .

On the basis of this model different statistical methods can be built.
While speaking of model one should define the measure of forecasting

accuracy of the method. In the practice the following criteria can be used:
MSE = 1

n

∑
t

(yt − ŷt)
2− mean squared error for n periods,

RMSE =
√

1
n

∑
t

(yt − ŷt)
2− root mean squared error for n periods,

MAD = 1
n

∑
t

|yt − ŷt|− mean absolute deviation for n periods,

RMSPE = 100

√
1
n

∑
t

(
yt−ŷt

yt

)2

− root mean squared percent error for n

periods,

MAPE = 100
n

∑
t

∣∣∣ yt−ŷt

yt

∣∣∣− mean absolute percentage error for n periods.

First three criteria are measured in absolute value and that’s why they
depend on the time series values. Two last criteria are relative and they are
common. For economic research the following characteristic of the accuracy
is acceptable:

RMSE, MAPE Forecasting accu-
racy

Less than 10% excellent
10% - 20% good
20% - 40% sufficient
40% - 50% bad
More than 50% awful

2. Exponential smoothing

For analysing time series there are many methods of data smoothing.
First of all, we should mention exponential smoothing. The idea of this
method is creating new time series on the basis of original time series with
the help of such expression:

St = αyt + (1− α) St−1.

The starting value can be the first item of time series or its mean:

S1 = y1 or St = ȳ = 1
T

T∑
t=1

yt.There are three ways to choose the smooth-

ing constant. First of all it can be α = 2
T+1

. The second way is to select
it from the interval (0; 1) by empirical way. The third way is to select
constant, which minimises one of the criteria of the forecasting accuracy.

The forecast is simply the last value of new time series:
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ŷT+1 = ŷT+2 = . . . = ST .

There are also double and triple Brown exponential smoothing. These
methods calculate new sequences twice and triple accordingly:

Double Triple

Formulas S
/
t = αyt + (1− α)S

/
t−1,

S
//
t = αS

/
t +(1− α)S

//
t−1∗.

S
/
t = αyt + (1− α) S

/
t−1,

S
//
t = αS

/
t + (1− α)S

//
t−1,

S
///
t = αS

//
t +(1− α) S

///
t−1.

Forecast ŷT+p = S
//
T , p = 1, 2, . . . . ŷT+p = S

///
T , p = 1, 2, . . . .

Suggested
interval for
constant

(0.03, 0.16) (0.03, 0.11)

We used a RMSE criterion to choose the optimal constant. The depen-
dence between constant α and number of observations is found. The fact is
the optimal value of the constant is repeated in some way. Let’s look the
tables E1-E3. They represent the optimal value of the constant depending
of the number of observation T and the length of forecasting horizon. It
can be mentioned that there is undoubted relation. The optimal constant
with some bias repeats in two periods, but for longer forecasting period.

This finding is similar for all three smoothing methods for all articles
of BP. So, now we can predict the optimal constant value beforehand and
that’s why to obtain the most accurate forecasts (table E4-E6).

Holt’s method is a developing of exponential smoothing. It also allows a
trend component extracting. By this method one should build 2 new series
by the following rules:

S
/
2 = y2, S

//
2 = y2 − y1,

S
/
t = αyt + (1− α)

(
S

/
t−1 + S

//
t−1

)
,

S
//
t = β

(
S

/
t − S

/
t−1

)
+ (1− β) S

//
t−1, t = 3, T .

The smoothing constants are suggested to select from the interval (0, 1).
The forecast by this model is:

ŷT+p = S
/
T + pS

//
T , p = 1, 2, . . . .

It should be noted that this model couldn’t be improved like exponential
smoothing.

The forecasts with the help of this method were made. Let’s see the
results of forecasting on the table H-1.
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3. Additive-seasonal model

This model tries to define trend and seasonal components of time series.
Let p is season’s cycle, st = st+p for any time period t. For example, for
quarter data p = 4. Our task is to estimate values st knowing time series
observations yt and p.

The trend component is estimated by averaging:

ˆtrt =

(yt−2+yt−1+yt+yt+1

4
+ yt−1+yt+yt+1+yt+2

4

)
2

=

=
yt−2 + 2yt−1 + 2yt + 2yt+1 + yt+2

8
, t = 3, T − 2.

Then the estimate of the seasonal component is

ŝt = yt − ˆtrt = yt −
yt−2 + 2yt−1 + 2yt + 2yt+1 + yt+2

8
=

=
6yt − (yt−2 + 2yt−1 + 2yt+1 + yt+2)

8
, t = 3, T − 2

Let’s define s̄t is an average of all ŝt for all periods t = pk+i, k = 0, 1, . . .,
i = 1, p. It should be mentioned that st+p = st for all t ≥ 5. Now let’s
define adjusted seasonal mean component

st∗ = st −
p∑

i=1
si

p
, so that

p∑
t=1

st∗ = 0.The last step is trend extracting:

trt = yt − s̄t∗.
Let’s suppose time series to have linear trend trt = a0 + a1t, then one

can obtain coefficients

â1 =

T
T∑

t=1

t · trt−
T∑

t=1

t ·
T∑

t=1

trt

T
T∑

t=1

t2−
(

T∑
t=1

t

)2 ; â0 =

T∑
t=1

trt

T
− â1

T

T∑
t=1

t.

So we can write our model

yt = a0 + a1t + s̄t∗, t = 1, T .

The forecasts for future periods are (table D1):

ŷt = a0 + a1t + s̄t∗, t = T + 1, T + 2, . . . .

4. Non-standard trend extraction
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Many of real economic variables are changing in time in such a way.
Many scientists have tried to define all components, but there is no uni-
versal method yet. Certainly, if there are a lot of observations, one can
built a regression model that is relatively reliable. But very often the re-
gression models are not good enough because they can’t provide adequate
insight or there are not certain factors for a regression to use. At last,
if a researcher has only few observations, especially in a case of seasonal
fluctuations, regression gives incorrect results and even can give a wrong
direction of variable moving. That’s why it is worth using another method
of researching the processes with restricted number of observations.

One of these methods is known as Hodrick and Prescott Filter (1980).
This method is built on the basis of real economic cycles. Let’s suppose
yt = f (t) + εt with yt real values of the variable for research, t time; εt

residuals; f (t) any function depends on some parameters including time.
The parameters of the function f are selected to minimise:

S =
T∑

t=1

(yt − f (t))2 + λ

T∑
t=1

(
(f (t + 1)− f (t))− (f (t)− f (t− 1))2

)
→ min

If only f is a linear function, then the second part of the expression is
0. We will consider only unlinear types of function f.

Using partial derivatives one can obtain necessary conditions for defining
minimum of S :

t = 1 : y1 = f (1) + λf (1)− 2λf (2) + λf (3) ;
t = 2 : y2 = f (2)− 2λf (1) + 5λf (2)− 4λf (3) + λf (4) ;
...
t = T : yT = f (T ) + λf (T − 2)− 2λf (T − 1) + λf (T ).
That’s why ȳ = Xf̄ , with

ȳ = (y1, y2, . . . , yT )T ,

f̄ = (f (1) , f (2) , . . . , f (T ))T ,

and matrix X is as follows:

X =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + λ −2λ λ 0 0 . . .
−2λ 1 + 5λ −4λ λ 0 0 . . .
λ −4λ 1 + 6λ −4λ λ 0 0 . . .

. . .
. . . 0 0 λ −4λ 1 + 6λ 4λ λ

. . . 0 0 λ −4λ 1 + 5λ −2λ
. . . 0 0 λ −2λ 1 + λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Because of X is a square and symmetric matrix
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XT X = XX ⇒ (XX)−1 = X−1X−1 ⇒

⇒
(
XT X

)−1
XT = (XX)−1 XT = X−1; ȳ = Xf̄,

f̄ = X−1y =
(
XT X

)−1
XT y.

Knowing X and ȳone can obtain the value of f for every t. After that we
can define function f or identify its parameters. The next step is to forecast
value f for future period and to make a conclusion about possible value of
yT+1.

For annual data one may use λ = 100 and λ = 1600 for quarter data.
But every macroeconomics time series needs a special value of to define. It
should be noted that it isn’t necessary to define function f completely, but
it’s possible to forecast its values with standard methods.

After extracting trend component we may extract seasonal component
with standard regression model:

st = a0 + a1q1 + a2q2 + a3q3 + εt, t = 1, T .

Variables q1, q2, q3 are called dummy. This means that, for instance,
q1 = 1, if we investigate first quarter of the year, and q1 = 0 otherwise.

The cyclical component can be researched only if we have a lot of ob-
servations. We have only 20, so we haven’t found it yet.

The last component of time series is a random component. It includes
everything that was not observed. The values of this component is usually
rather small, so you can neglect it or analyse it as AR(p)-, MA(q)- or
ARMA(p,q)-processes.

Now let’s have a look at forecasts made by this method (table P1).

5. Modeling of time series subject to changes in regime

Many variables undergo episodes in which the behaviour of the series
seems to change quite dramatically. Diagram A1 provides a striking ex-
ample, which demonstrates great decreasing of the trade volumes. Similar
dramatic breaks will be seen if one follows almost any macroeconomic or
financial time series for a sufficiently long period. Such apparent changes
in the time series process can be the result of different events such as wars,
financial panics or significant changes in government policies.

The main idea of the method is dividing all data into groups; each of
them represents one economic regime. There are some regimes possible. For
each regime its own model is built. The model is based on Markov chains.

Now let’s consider the model. Let it be N regimes, yt is (n× 1) vector of
observed endogenous variables, xt is (k × 1) vector of exogenous variables,
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�t =
(
y

/
t , y

/
t−1, . . . , y

/
t−m, x

/
t , x

/
t−1, . . . , x

/
t−m

)T

contains all observations ob-

tained through date t. If the process is governed by regime st = j at date
t, then the conditional density of yt is assumed to be given by

f(yt|st = j, xt,�t−1; α), (∗)

with α is a vector of parameters characterising the conditional density. We
will consider the AR (m)-process

yt = z
/
t βst + εt,

with εt ∼ N (0, σ2), zt is a vector of explanatory variables that could include
lagged values of y.

Let all conditional densities (*) for all regimes are collected in vector
ηt. And at last, we assume that conditional density depends only on the
current regime st and not on past regimes:

f (yt|xt,�t−1, st = j, α) =
= f (yt|xt,�t−1, st = j, st−1 = i, st−2 = k, . . . , α) ,

though this is not really restrictive, as it was shown by many researchers.
So we can assume that transition matrix is satisfied

P {st = j|st−1 = i, st−2 = k, . . . , s1 = z, xt,�t−1} =
= P {st = j|st−1 = i} = pij .

We collect all unknown parameters in vector θ = {α, P} and our task
is to estimate it on the basis of �T .

Let P {st = j|�t; θ} denote the analyst’s inference about the value of
st based on data obtained through date t and based on knowledge of the
population parameters θ. This inference takes the form of a conditional
probability that the analyst assigns to the possibility that the tth obser-
vation was generated by regime j. Collect these conditional probabilities
P {st = j|�t; θ}for j = 1, 2, . . . , N in a (N × 1) vector ξ̂t|t.

One could also imagine forming forecasts of how likely the process is to
be in regime j in period t + 1 given observations obtained through date t.
Collect these forecasts in a (N × 1) vector ξ̂t+1|t, which is a vector whose
jth element represents P {st+1 = j|�t; θ}.

The optimal inference and forecast for each date t in the sample can be
found by iterating on the following pair of equations:

ξ̂t|t =
(ξ̂t|t−1⊗ηt)

I/(ξ̂t|t−1⊗ηt)
,

ξ̂t+1|t = P · ξ̂t|t.
(∗∗)
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Here ηt represents the (N × 1) vector whose jth element is the condi-
tional density in (*), P represents the (N ×N) transition matrix, I repre-
sents a (N × 1) vector of 1s, and the symbol denotes element-by-element
multiplication. Given a starting value ξ̂1|0 = N−1I and an assumed value
for the population parameter vector θ, one can iterate on (**) for t =
1, 2, . . . , T to calculate the values of ξ̂t|t, ξ̂t+1|t for each date t in the sam-
ple.

The log likelihood function L (θ) for the observed data �T evaluated at
the value of θ that was used to perform the iterations can also be calculated
as a by-product of this algorithm from

L (θ) =
T∑

t=1

ln f (yt|xt,�t−1; θ) ,

with

f (yt|xt,�t−1; θ) = 1/
(
ξ̂t|t−1 ⊗ ηt

)
.

Hamilton (1994) has shown that if the transition probabilities are re-
stricted only by the conditions pij ≥ 0, (pi1 + pi2 + . . . + piN) = 1 for all i
and j, then the maximum likelihood estimates for the transition probabili-
ties satisfy

p̂ij =

T∑
t=2

P
{
st = j, st−1 = i|�T ; θ̂

}
T∑

t=2

P
{
st−1 = i|�T ; θ̂

} ,

σ̂2 =
1

T

T∑
t=1

N∑
j=1

(
yt − z

/
t β̂j

)2

P
{

st = j|�T ; θ̂
}
,

β̂j =

[
T∑

t=1

[zmt (j)] [zmt (j)]/
]−1 [ T∑

t=1

[zmt (j)] [ymt (j)]/
]

,

with

ymt (j) = yt

√
P
{
st = j|�T ; θ̂

}
,

zmt (j) = zt

√
P
{

st = j|�T ; θ̂
}
,

with θ̂ denotes the full vector of maximum likelihood estimates.
So, one should use iterative algorithm. Assuming starting θ(0) one can

evaluate θ(1), θ(2) and so on. See Hamilton (1994) for details.
We used such method for analysing balance of payments of Ukraine. For

choosing a number of regimes and lags following criteria was used:
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1) unchanging of the coefficients;
2) forecasting error;
3) most likely forecasting error.
For main articles of the balance of payments transition matrix and co-

efficients of the model were calculated (table C1). Also we obtained the
probabilities of each regime for each time period (table C2). Almost for
all articles the hypothesis about two regimes was correct. The best mod-
els requested one, two or three lagged variables. At last, average forecasts
(table C3), current regime (table C4) and most likely scenario for four pe-
riods (table C5) were estimated.

6. Conclusions

Table F-1 summarizes the accuracy of forecasts made by described above
methods. One can see that for each article of the Balance of Payments the
most appropriate method can be found.

Due to so completed analysis of forecasting methods the following prob-
lems are to be solved:

1. Suppose that in the period t the process was influenced by some
factors, which are not to become more in future. How it is possible to
exclude the shock value from time series to produce “cleaner” forecasts
using statistical models?

2. Suppose that in the period T the government changes laws in the
market. In what way can one predict the changes in time series using
knowledge about such changes? How can we predict the best and the worst
scenarios of time series development?

3. Suppose that we’d like to use experts to produce more accurate
forecasts. We can combine or correct statistical and judgmental forecasts.
What role should judgement play and if it possible to automate this work?

The solution of these problems may help a to researcher produce more
accurate forecasts.
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Table E1. Optimal constant for exponential smoothing
Export of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.040 0.414 -0.142 -0.075 -0.098 0.644 -0.061 1.195
2 -1.125 1.270 -0.086 0.983 -0.026 0.118 1.448 0.375
3 -0.114 1.020 -0.058 0.080 0.809 0.375 0.282 1.175
4 -0.064 1.770 0.216 0.375 0.465 0.408 0.400 2.000

Import of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.534 1.750 1.327 1.584 1.777 1.348 -0.485 -0.855
2 1.330 1.750 1.177 1.691 -0.485 -0.084 1.570 1.247
3 1.180 1.800 -0.485 1.771 1.133 -0.881 -0.710 -0.615
4 -0.485 1.860 -0.300 0.139 0.718 -0.563 0.389 2.000

Export of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.060 0.384 -0.139 0.706 -0.088 0.374 -0.035 1.111
2 -0.118 1.260 -0.074 0.967 0.021 1.584 1.336 0.333
3 -0.107 1.040 -0.031 0.168 0.887 0.333 0.228 1.294
4 -0.040 0.038 0.799 0.333 0.372 1.220 0.378 2.000

Import of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.718 1.770 1.233 1.434 1.189 1.367 0.577 0.254
2 1.230 1.670 1.189 1.625 0.577 1.610 1.032 1.331
3 1.190 1.720 0.577 1.731 1.161 1.292 0.380 0.099
4 0.577 1.820 1.160 1.440 0.380 0.197 2.000 2.000

Export of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 -0.150 0.674 -0.153 0.592 -0.134 1.003 -0.131 1.215
2 -0.150 1.390 1.149 1.010 -0.132 0.009 1.749 0.824
3 -0.140 0.989 -0.133 1.958 0.151 0.824 0.702 0.629
4 -0.130 -0.094 0.001 1.460 0.989 0.629 0.492 2.000
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Import of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.620 0.147 1.450 0.103 1.814 1.447 1.027 1.054
2 1.080 0.083 1.943 0.936 1.027 1.286 1.074 1.771
3 2.000 0.413 1.027 1.434 1.074 1.962 0.835 1.386
4 1.030 1.380 1.070 1.960 0.835 1.390 1.930 2.000

Table E2. Optimal constant for double exponential smoothing
Export of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.530 0.612 0.891 0.823 0.000 0.809 0.000 -0.186
2 0.891 1.140 0.000 0.991 0.000 -0.119 1.236 -0.225
3 0.000 1.010 0.000 -0.106 0.909 -0.240 0.446 1.089
4 0.000 0.000 0.332 -0.200 0.600 0.573 1.930 2.000

Import of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.701 1.430 -0.499 1.291 -0.555 1.164 -0.505 1.243
2 -0.509 1.410 -0.568 1.358 -0.530 -0.311 1.349 0.574
3 -0.582 1.460 -0.575 1.502 0.292 0.752 0.805 -1.978
4 -0.608 -0.557 -0.423 0.391 0.856 -1.960 0.624 2.000

Export of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.030 0.558 0.902 0.839 0.000 0.227 0.000 -0.183
2 0.902 1.130 0.000 0.985 -0.061 0.311 1.170 -0.222
3 0.000 1.020 0.000 0.302 0.934 -0.236 0.390 0.441
4 0.000 0.117 0.903 -0.203 0.518 0.507 0.615 2.000

Import of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.839 1.450 -0.203 1.213 -0.235 1.175 -0.251 0.449
2 -0.213 1.360 -0.240 1.316 -0.264 1.381 1.015 1.175
3 -0.250 1.390 -0.283 1.456 -0.284 1.154 -0.352 -0.298
4 -0.297 1.510 -0.319 1.230 -0.345 0.439 2.000 2.000
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Export of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.890 0.818 0.814 0.725 1.001 1.002 0.000 1.103
2 0.814 1.240 0.913 1.005 0.000 -0.045 1.473 -0.238
3 1.000 0.994 0.000 1.651 0.275 -0.256 0.843 -0.428
4 0.000 1.660 0.013 0.323 0.995 -0.453 0.701 2.000

Import of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 -0.101 -0.087 -0.079 0.215 1.511 1.234 -0.207 1.027
2 1.040 0.187 0.353 0.967 -0.211 1.137 -0.290 1.331
3 0.289 0.588 -0.207 1.209 -0.296 1.947 1.930 1.257
4 -0.197 1.180 -0.303 1.480 -0.476 -0.685 1.390 2.000

Table E3. Optimal constant for triple exponential smoothing
Export of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.620 0.710 -0.141 0.877 -0.139 0.129 -0.142 1.103
2 -0.132 1.070 -0.132 0.994 -0.108 0.326 1.159 0.620
3 -0.148 1.01 -0.140 0.271 0.940 0.620 0.547 0.604
4 -0.145 -0.037 0.414 0.62 0.677 0.667 0.737 2.000

Import of goods and services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.780 1.290 1.171 1.191 1.089 1.107 -0.093 -0.410
2 1.170 1.270 1.089 1.231 -0.093 1.341 -0.432 0.683
3 1.090 1.310 -0.093 1.376 0.422 1.037 0.869 -0.591
4 -0.093 1.410 -1.960 -0.295 -0.700 -0.591 0.730 2.000

Export of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 0.588 0.691 -0.141 -0.106 -0.135 0.767 -0.118 1.057
2 -0.130 -0.136 -0.126 0.990 0.148 0.400 1.113 0.594
3 -0.145 1.010 -0.114 0.390 0.963 0.594 0.496 0.556
4 -0.124 0.190 0.936 0.594 0.608 1.080 0.723 2.000
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Import of goods

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.480 1.310 1.120 1.139 1.096 1.114 0.781 0.569
2 1.120 1.240 1.096 1.205 0.781 1.279 1.010 1.119
3 1.100 1.250 0.781 1.333 1.086 1.105 0.686 0.455
4 0.781 1.370 1.090 1.160 0.686 0.576 1.650 2.000

Export of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 -0.119 0.875 -0.140 0.791 -0.154 1.001 -0.192 1.068
2 -0.138 1.170 0.938 1.003 -0.192 0.110 1.348 0.915
3 -0.157 0.996 -0.192 -0.161 1.112 0.915 0.895 0.815
4 -0.191 -0.183 0.043 0.429 0.996 0.815 0.789 2.000

Import of services

n (0) (-1) (-2) (-3) (-4) (-5) (-6) (-7)
1 1.400 0.289 0.223 0.303 0.619 1.157 1.013 1.018
2 0.263 0.274 0.456 0.978 1.013 1.090 1.924 1.215
3 0.389 0.682 1.013 1.137 1.927 1.258 1.675 1.125
4 1.010 1.120 1.930 1.300 1.690 1.190 1.250 2.000

Table E4. Forecast using exponential smoothing

Articles of the
BOP

Optimal
constant

1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

1.050 4503 4503 4503 4503 18012

Import of goods
and services

1.900 5414 5414 5414 5414 21656

Export of goods 1.050 3502 3502 3502 3502 14008
Import of goods 1.800 4664 4664 4664 4664 18656
Export of services 0.970 995 995 995 995 3980
Import of services 0.400 604 604 604 604 2416
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Table E5. Forecast using double exponential smoothing

Articles of the
BOP

Optimal
constant

1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

1.100 4565 4565 4565 4565 18260

Import of goods
and services

1.560 5246 5246 5246 5246 20984

Export of goods 1.050 3518 3518 3518 3518 14072
Import of goods 1.400 4679 4679 4679 4679 18716
Export of services 0.990 996 996 996 996 3984
Import of services 0.200 539 539 539 539 2156

Table E6. Forecast using triple exponential smoothing

Articles of the
BOP

Optimal
constant

1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

1.050 4544 4544 4544 4544 18176

Import of goods
and services

1.400 5322 5322 5322 5322 21288

Export of goods 1.050 3536 3536 3536 3536 14144
Import of goods 1.280 4796 4796 4796 4796 19184
Export of services 0.990 995 995 995 995 3980
Import of services 0.650 598 598 598 598 2392

Table H1. Forecast using Holt-Winters method

Articles of the
BOP

α β 1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

0,4 0,6 4156 4282 4408 4533 17379

Import of goods
and services

0,4 0,8 3835 4107 4379 4651 16972

Export of goods 0,5 0,5 3317 3424 3531 3638 13910
Import of goods 0,5 0,6 3374 3557 3740 3923 14594
Export of services 0,4 0,6 953 979 1005 1031 3968
Import of services 0,4 0,5 583 592 600 609 2384
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Table D1. Forecast using seasonal additive model

Articles of the
BOP

1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

4477 5034 4946 5166 19623

Import of goods
and services

4831 4748 4794 5021 19394

Export of goods 3298 3811 3727 3904 14740
Import of goods 4141 4004 4004 4353 16502
Export of services 1179 1222 1219 1262 4882
Import of services 690 744 790 768 2992

Table P1. Forecast using Hodrick-Prescott Filter

Articles of the
BOP

1-2000 2-2000 3-2000 4-2000 2000

Export of goods
and services

3575 4018 3838 3929 15360

Import of goods
and services

3512 3466 3337 3632 13947

Export of goods 2705 3173 3068 3177 12123
Import of goods 3079 2975 2766 3072 11892
Export of services 881 858 787 772 3298
Import of services 621 653 686 616 2576
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Diagram A1. Dynamics of the Balance of Payments of Ukraine

Table C1. Calculation results

Articles of
the BOP

Transition matrix P Coefficients βst

Export of
goods and
services

(
0.514 0.486
0.228 0.772

) (
0.036 0.783 0.171 0.763
−0.143 −0.971 1.57 0.763

)

Import of
goods and
services

0.613 0.130 0.257
0.489 0.159 0.352
0.420 0.366 0.214

 −0.0638 1.084 0.171
0.0762 −0.569 0.852
−0.0001 1.198 −0.626


Export of
goods

(
0.701 0.299
0.222 0.778

) (
−0.123 −0.091 1.12 0.118
0.058 0.630 0.359 −0.090

)
Import of
goods

(
0.703 0.297
0.705 0.295

) (
−0.019 0.859 0.565
−0.067 1.548 −1.150

)
Export of
services

(
0.795 0.205
0.250 0.750

) (
−0.116 −0.002 0.079
0.015 0.395 0.579

)
Import of
services

(
0.245 0.755
0.749 0.251

) (
0.061 0.401
0.213 0.401

)
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Table C2. Probability of the regime for each period

Table C3. Average forecast

Articles of the
BOP

2000-1 2000-2 2000-3 2000-4 2000

Export of goods
and services

4660 4660 4660 4660 18640

Import of goods
and services

4839 4839 4839 4839 19356

Export of goods 3570 3570 3570 3570 14280
Import of goods 4293 4293 4293 4293 17172
Export of services 1011 1013 1021 1016 4061
Import of services 623 602 597 587 2409
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Table C4. Current regime

Articles of the
BOP

Regime Probability

Export of goods
and services

Up 0.999

Import of goods
and services

Small up 0.660

Export of goods Up and down 0.999
Import of goods Small down 0.999
Export of services Crisis 0.568
Import of services Down 0.665

Table C5. The most likely scenario

Articles of the
BOP

2000-1 2000-2 2000-3 2000-4 2000

Export of goods
and services

4406 2852 4656 5215 0.157

Import of goods
and services

4558 4017 4177 3592 0.074

Export of goods 3463 3624 3716 3782 0.367
Import of goods 3891 2948 3464 2624 0.247
Export of services 951 950 956 953 0.227
Import of services 662 662 662 661 0.209

Table F1. Analyzing of forecasts for 1999

Articles of BOP 1 2 3 4 5 6 7 8
Export of goods
and services

16234 14976 19281 16994 16812 16679 17239 19441

Import of goods
and services

15237 13297 20637 17699 19064 13938 18059 20729

Export of goods 12463 11731 14313 13239 13615 13564 13412 14888
Import of goods 12945 11702 17664 14174 14148 12705 15057 18583
Export of services 3771 3046 4968 3758 4224 3960 3827 4553
Import of services 2292 2325 2972 1581 2209 2338 3002 2146

Export of goods
and services

7,75% 18,77% 4,68% 3,56% 2,74% 6,19% 19,75%

Import of goods
and services

12,73% 35,44% 16,16% 25,12% 8,53% 18,52% 36,04%

Export of goods 5,87% 14,84% 6,23% 9,24% 8,83% 7,61% 19,46%
Import of goods 9,60% 36,45% 9,49% 9,29% 1,85% 16,32% 43,55%
Export of services 19,23% 31,74% 0,34% 12,01% 5,01% 1,49% 20,74%
Import of services 1,44% 29,67% 31,02% 3,62% 2,01% 30,98% 6,37%

1 - Real value; 2 - Holt-Winters model; 3 - Additive-seasonal model; 4 -
Trend extraction; 5 - Changing regimes, average; 6 - Changing regimes, the
most likely; 7 - Linear trend; 8 - Seasonal fluctuations.
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OPTIMAL UNIT COMMITMENT BY
BRANCH-AND-BOUND EXPLOITING DUAL

OPTIMALITY CONDITIONS

Within the power industry, the unit commitment problem, in com-
bination with the economic dispatch problem, is a challenging mixed
integer nonlinear optimization problem. In this paper, a branch-
and-bound algorithm, solving a basic version of the problem, is pre-
sented. Applying Lagrangian relaxation will generate a convex but
non-smooth dual problem. Lower bounds on the optimal function
value are computed from the dual objective function, and branching
variables are chosen exploiting the optimality conditions of the dual
problem.
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1. Introduction

Since large operational costs are involved, efficient operation of the gen-
erating units in the power system is desirable. Finding the optimal pro-
duction of power for the near future is known as the ’short-term planning’
problem, the ’unit commitment and economic dispatch’ problem or the ’unit
commitment’ problem. Typically a time horizon of up to one week is con-
sidered. The problem may be characterized as a nonlinear mixed integer
optimization problem.

The computations may conceptually be divided into two subproblems;
the ’pure’ unit commitment problem is the problem to determine when a
unit should be producing or not, and the economic dispatch problem is to
find the optimal production levels given which units are producing in each
time interval. Obviously the two problems are interdependent, i.e. they
must be solved simultaneously.

74
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For the solution of the unit commitment and economic dispatch prob-
lem, a number of optimization techniques have been suggested and imple-
mented, including priority lists, dynamic programming, branch-and-bound,
Lagrangian relaxation and expert systems. Surveys are given in Sen and
Kothari (1998) and Sheble’ and Fahd (1994). In recent years, methods
based on Lagrangian relaxation have become the dominant ones.

In this paper, the branch-and-bound algorithm developed in Dotzauer
(2001), solving a basic version of the unit commitment problem, is presented.
Applying Lagrangian relaxation will generate a convex but non-smooth dual
problem. Lower bounds on the optimal function value are computed from
the dual objective function, and branching variables are chosen exploiting
the necessary and sufficient optimality conditions of the dual problem.

In Section 2 the problem to be considered is formulated, and in Section 3
an algorithm solving the dual problem is presented. The branch-and-bound
algorithm is presented in Section 4. Branching strategies are discussed in
Section 5. Section 6 gives some computational results, and finally in Section
7, some conclusions are given.

2. Primal and dual problem statements

Let K be the number of production units and I the number of one-
hour time intervals over which the problem is to be solved. Define pi,k as
the power production for unit k in time interval i. Moreover, let ui,k be a
binary variable indicating if unit k in time interval i is producing or not
producing power. If the unit is producing (on), then ui,k is equal to one,
and if the unit is not producing (off), then ui,k is zero.

The cost for producing power in a production unit is modeled using a
second-order polynomial,

ci,k = (α2
k(pi,k)

2 + α1
kpi,k + α0

k)ui,k, (1)

and the start-up cost is modeled as constant, cstart
i,k = (1 − ui−1,k)ui,kγk.

Initial states are given by u0,k, k = 1, ..., K. The parameters αj
k, j = 0, 1, 2,

and γk > 0 are estimated separately for each unit. Further, the expression
in equation (1) is assumed to be strictly convex, i.e. α2

k > 0.
There are restrictions on the production level described as the inequality

bounds
p

k
ui,k ≤ pi,k ≤ pkui,k. (2)

It is assumed that 0 < p
k
≤ pk.

The demand and reserve constraints that must be fulfilled in time inter-
val i are

K∑
k=1

pi,k = pi,D, (3)

and
K∑

k=1

pkui,k ≥ pi,R, (4)
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respectively. Here pi,D is the power demand and pi,R is the reserve require-
ment.

To summarize, define the unit commitment problem as the following
nonlinear mixed integer mathematical programming problem,

min
p,u

[
I∑

i=1

K∑
k=1

(α2
k(pi,k)

2 + α1
kpi,k + α0

k)ui,k +

I∑
i=1

K∑
k=1

(1− ui−1,k)ui,kγk

]

s.t.

K∑
k=1

pi,k = pi,D

K∑
k=1

pkui,k ≥ pi,R

p
k
ui,k ≤ pi,k ≤ pkui,k

ui,k ∈ {0, 1}.
(5)

Here pk = (p1,k, ..., pI,k), p = (p1, ..., pK), uk = (u1,k, ..., uI,k) and u =
(u1, ..., uK). Problem (5) might be partitioned into two subproblems; the
’pure’ unit commitment problem and the economic dispatch problem. To
determine the optimal unit commitment is to compute the optimal binary
variables ui,k. Given a unit commitment, the economic dispatch problem is
solved to yield the production for each individual unit. Observe that the
unit commitment problem and the economic dispatch problem are interde-
pendent, i.e. they must be solved simultaneously. The formulation (5) of
the unit commitment problem is the classical version, which is also the core
of any extension and refinement, see Sen and Kothari (1998) and Sheble’
and Fahd (1994).

Lagrangian relaxation is performed by introducing multipliers λ = (λ1,
..., λI) and µ = (µ1, ..., µI). Combining these with (3) and (4), respectively,
and adding to the objective in (5) gives the relaxed problem

Φ(λ, µ) = min
p,u

[
I∑

i=1

K∑
k=1

(α2
k(pi,k)

2 + α1
kpi,k + α0

k)ui,k+

+
I∑

i=1

K∑
k=1

(1− ui−1,k)ui,kγk +
I∑

i=1

λi(pi,D −
K∑

k=1

pi,k)+

+

I∑
i=1

µi(pi,R −
K∑

k=1

pkui,k)

]
s.t. p

k
ui,k ≤ pi,k ≤ pkui,k

ui,k ∈ {0, 1},

(6)

where Φ(λ, µ) is the dual objective function. The dual problem is defined
as

max
λ,µ

[Φ(λ, µ)]

s.t. µ ≥ 0.
(7)

Problem (5) is called the primal problem. By duality theory, the optimal
value of the dual objective is a lower bound on the objective function value
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of any feasible solution of the primal problem. When the primal problem
(5) is a mixed integer problem, as in our case, a zero duality gap is not
guaranteed, i.e. the optimal primal objective may be strictly larger than
the optimal dual objective. Further, the dual problem is in general non-
smooth, which normally makes the problem difficult to solve.

3. A solution algorithm for the dual problem

Solution strategies for the unit commitment problem (5) based on de-
composition and duality were initiated in Muckstadt and Koenig (1977)
and are well described in the literature, Sen and Kothari (1998), Sheble’
and Fahd (1994). The intention in most of these is to solve the dual prob-
lem (7) in order to obtain a near-optimal unit commitment of the primal
problem (5). In this section, a solution algorithm by Dotzauer and Ravn
(2001) for the dual problem is presented.

The calculations are performed by alternately solving the relaxed prob-
lem (6) and updating the dual variables λ and µ. First consider the solution
of the relaxed problem. Given a set of dual variables λ and µ, the relaxed
problem decomposes into K independent subproblems; one for each pro-
duction unit k,

min
pk,uk

[
I∑

i=1

(α2
k(pi,k)

2 + (α1
k − λi)pi,k + α0

k − µipk)ui,k+

+

I∑
i=1

(1− ui−1,k)ui,kγk

]
s.t. p

k
ui,k ≤ pi,k ≤ pkui,k

ui,k ∈ {0, 1}.

(8)

A complicating issue is the time-coupling between the binary variables ui,k

due to the start-up cost, but this difficulty can be mastered using network or
dynamic programming algorithms. Here we apply a dynamic programming
solution of (8) which may be described as follows. Let si,k denote the state
of unit k at the beginning of stage (time interval) i, then si,k may take two
values; si,k = 1 if the unit is on in time interval i − 1, and si,k = 0 if the
unit is off in time interval i−1. Furthermore, define the conditional reduced
cost of unit k in time interval i, ccrc

i,k (λi, µi), as

ccrc
i,k (λi, µi) = min

pi,k

[α2
k(pi,k)

2 + (α1
k − λi)pi,k + α0

k − µipk]

s.t. p
k
≤ pi,k ≤ pk,

(9)

where the optimal solution is found as

po
i,k =


p

k
, if p̃i,k < p

k

p̃i,k, if p
k
≤ p̃i,k ≤ pk

pk, if pk < p̃i,k,

(10)

where p̃i,k = (λi − α1
k)/(2α2

k), giving

ccrc
i,k (λi, µi) = α2

k(p
o
i,k)

2 + (α1
k − λi)p

o
i,k + α0

k − µipk. (11)
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Then, defining Vi,k(si,k) as the optimal cost-to-go function, the recursive
dynamic programming formula is

Vi,k(si,k) = min
ui,k

[
ccrc
i,k (λi, µi)ui,k + (1− si,k)ui,kγk + Vi+1,k(si+1,k)

]
s.t. ui,k ∈ {0, 1} .

(12)

The recursion (12) is initialized with VI+1,k(0) = VI+1,k(1) = 0. The optimal
solution at state si,k is denoted u∗

i,k(si,k). It is understood that si+1,k = 0 if
u∗

i,k = 0 and si+1,k = 1 if u∗
i,k = 1. It is also understood that u∗

i,k = 0 and
u∗

i,k = 1 if and only if pi,k = 0 and pi,k = po
i,k, respectively.

Now consider the updating of the dual variables. By the fact that the
dual problem (7) is non-smooth, methods for non-smooth optimization must
be used. An algorithm frequently used for the solution of such problems
is the subgradient method, which is a direct generalization of the steepest
descent algorithm for unconstrained smooth optimization. In each itera-
tion n of the algorithm, a new set of dual variables [λ, µ]n+1 is computed
from [λ, µ]n, such that we get an ’improving direction’ of the dual objective
Φ(λ, µ). The direction chosen is defined from the subgradient [gλ, gµ]n with
elements gλ

i and gµ
i given by equation (3) and (4), respectively, i.e.

gλ
i = pi,D −

K∑
k=1

pi,k (13)

and

gµ
i = pi,R −

K∑
k=1

pkui,k, (14)

where (pi,k, ui,k) ∈
{
(0, 0), (po

i,k, 1)
}

is given from (12). Given the step length
αn, each element i in the new set of dual variables [λ, µ]n+1 is computed by

[λi, µi]
n+1 = [λi, µi]

n + αn[gλ
i , gµ

i ]n. (15)

Normally, the subgradient is normed to stabilize the algorithm, see e.g. Shor
(1985).

Other commonly used methods for non-smooth optimization are cutting
plane methods and bundle methods, Shor (1985). Similar to the subgra-
dient method, also these methods compute a new update [λ, µ]n+1 in each
iteration, but with the difference that more than one subgradient is taken
into account.

The subgradient method, with the step in each iteration given by (15),
treats the dual problem (7) as any non-smooth problem, without any consid-
eration of the specific problem structure. The major point in the algorithm
by Dotzauer and Ravn (2001) is to improve the algorithm by exploiting the
necessary and sufficient optimality conditions of the dual problem. These
conditions are derived from the insight that the optimal solution of the re-
laxed problem (6) might be non-unique at the dual optimum. In fact, given
the optimal set of λ and µ, it will be the exception that the solution to (6)
is unique.
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Figure 1: The four possible types of simple bivalence.

This motivates the following definitions. If, for particular (λ, µ), the unit
commitment in the optimal solution of the relaxed problem in time interval i
is not unique for unit k, we say that the unit is bivalent in this time interval.
If it is not bivalent, we say that the unit is monovalent. A bivalent sequence,
denoted bk, is characterized by four parameters; the parameters f(bk) and
l(bk) denote the first and last time interval, respectively, of the bivalent
sequence, the parameter sf(bk) denotes the optimal state immediately before
the bivalent sequence, and the parameter sl+1(bk) denotes the optimal state
immediately after the bivalent sequence.

If and only if the bivalent sequence bk fulfills

l(bk)∑
i=f(bk)

ccrc
i,k (λi, µi) =


γk, if sf(bk) = 1 and sl+1(bk) = 1
−γk, if sf(bk) = 0 and sl+1(bk) = 0
0, otherwise,

(16)

the sequence is referred to as a simple bivalence, or to as a simple bivalent
sequence. Or equivalently, a sequence bk is a simple bivalence if for all time
intervals in [f(bk), . . . , l(bk)] the optimal unit commitments are identical,
i.e. either all of them are zero or all of them are one. The four possible
types of simple bivalence are illustrated in Figure 1.

Observe that simple bivalent sequences may follow immediately after
each other, see the three top illustrations in Figure 2. Such sequence of
simple bivalences is referred to as a linked bivalence, or to as a linked bivalent
sequence. However, situations like the one at the bottom illustration in
Figure 2 will not occur under the assumption that γk > 0.

Briefly, the algorithm from Dotzauer and Ravn (2001) solving the dual
problem (7) is performed as follows. Initially starting values for λ and µ
are chosen. In each iteration n, for given [λ, µ]n and during the solution
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Figure 2: Examples of linked bivalence. Situations like the one at the
bottom illustration will not occur under the assumption that γk > 0.

procedure of the relaxed problem (6), the algorithm tries to identify which
units are bivalent. Given the set of assumed bivalent units, we attempt
to fulfill the optimality conditions directly by solving a series of systems
of nonlinear equations. If a detected bivalence is valid, this will generate
the new update [λi, µi]

n+1 for the relevant time interval. In time intervals
without detected bivalence, λi and µi are updated using (15). The algorithm
converges when the optimality conditions are fulfilled.
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4. A branch-and-bound algorithm

The algorithm presented in Section 3 will solve the dual problem (7). To
provide an optimal solution of the original problem, i.e. the primal problem
(5), the algorithm can be embedded in a branch-and-bound framework, see
e.g. Wolsey (1998). This section presents the branch-and-bound algorithm
developed in Dotzauer (2001).

The methodology is to successively in each iteration of the algorithm
fix some of the binary variables ui,k during the solution procedure of the
relaxed problem (6). As the algorithm proceeds this will generate a tree
structure where each node corresponds to a specific set of ui,k being fixed.
Initially, in the root node, no variables are fixed. Moving further down in
the tree a new variable ui,k is fixed at each node, implying that the current
node will branch into two new nodes; one node with the new variable fixed
to one and one node with the new variable fixed to zero. The node from
which branching is performed at the current iteration is referred to as the
branching node, and the corresponding new variable fixed is referred to as
the branching variable. A node at the bottom of the tree is referred to as a
leaf node. As a consequence, three decisions must be made in an iteration
where branching is performed. First the choice of branching node, then
the choice of branching variable, and finally, the choice if the branching
variable shall be fixed to one or zero. Such decision strategies, or branching
strategies, are discussed in Section 5.

The bounding part of the algorithm considers the fact that the dual
objective Φ(λ, µ) defines a lower bound on the objective function value of
every feasible solution of the primal problem. The relation is exploited to
decide when further branching from a leaf node only will generate primal
solutions that are worse than the best found so far. This is possible since
Φ(λ, µ) is non-decreasing while moving down in the tree. When a dual value
greater than the best primal solution found so far is computed, the end of
the current branch in the branch-and-bound tree is reached. A leaf node
where further branching is meaningful is referred to as open, and a leaf node
where no further branching is meaningful is determined to be closed.

Branch-and-bound will by itself provide an optimal solution of the primal
problem (5). However, since the full branch-and-bound tree will normally
include an enormous number of nodes the convergence may be extremely
slow. To achieve good performance, efficient branching strategies must be
used. Also efficient heuristics that construct ’good’ primal feasible solutions
from the solution of the relaxed problem are desirable. Heuristics used for
this purpose are called Lagrangian heuristics and are developed for the
specific problem structure. Usually the unit commitment is first corrected
and fixed, then the remaining continuous problem is solved to yield the
economic dispatch.

The branch-and-bound algorithm for the solution of problem (5) is stated
as follows:

Step 0. Let n = 0 and let η be the root node. Choose [λ, µ]nη .
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Step 1. Choose a node η in the branch-and-bound tree.

Step 2. Given [λ, µ]nη , solve the relaxed problem with relevant ui,k being
fixed.

Step 3. Construct a primal feasible solution.

Step 4. If all leaf nodes are closed, then stop.

Step 5. Compute [λ, µ]n+1
η , let n = n + 1 and go to Step 1.

First, in Step 0 of the algorithm, the dual variables λ and µ are initial-
ized. In Step 1 the node to process in the branch-and-bound tree is chosen,
i.e. the variables ui,k that should be fixed are chosen. The choice may either
be to stay at the same node as in the previous iteration, to continue at an
open leaf node or to construct two new nodes by branching and then move
to one of them. In the latter alternative three decisions must be made,
viz. the choice of branching node, the choice of branching variable and the
choice if to move to the node corresponding to the branching variable fixed
to one or zero.

At the first iteration at a new node the dual variables [λ, µ]nη are chosen
equal to their values at the preceding (branching) node. As in the algorithm
of Section 3, the assumed bivalent units are identified during the solution
procedure of the relaxed problem (6) in Step 2. By using heuristics a feasible
solution to the primal problem (5) is constructed in Step 3. In this paper we
use a simple heuristic which combines the optimal solution of the relaxed
problem from Step 2 with the corresponding bivalent units, which are all
set on. Variants of the algorithm may omit Step 3 in some iterations. The
algorithm terminates in Step 4 when all leaf nodes are closed.

The dual variables λ and µ are updated in Step 5. As described in
Section 3, new updates of λi and µi corresponding to a time interval i
with detected bivalence are computed by exploiting the dual optimality
conditions. In time intervals without detected bivalence, λi and µi are in
this paper updated using a cutting plane method.

5. Branching strategies

The strategies to choose branching nodes and branching variables are
essential for the efficiency of a branch-and-bound algorithm. This section
will discuss such strategies, both more general ones and suited strategies
that exploit the special structure of the problem considered. Especially, for
the algorithm presented in Section 4, we suggest how to choose branching
variables by exploiting information from units identified as bivalent.

Common techniques for choosing branching nodes are depth-first strate-
gies and breadth-first strategies, Wolsey (1998). Using a depth-first strategy
the algorithm will stay in the same branch until the bottom of the branch-
and-bound tree is reached. This will hopefully more rapidly generate a good
primal feasible solution. However, the disadvantage is that when ’wrong’
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branch is chosen in an early stage, it may take long time before the al-
gorithm leaves the branch. This may be avoided by using a breadth-first
strategy, which will process all nodes at the same level of the tree before
the algorithm moves down to the next level. The disadvantage of using this
method is that it may take long time before a good primal solution is found.
As a consequence, the breadth-first strategy normally is used only when a
primal feasible solution is found in an early iteration of the algorithm. In
this case branch-and-bound is used to prove the optimality of this solution.

A third strategy is to branch on the open leaf node with the highest dual
objective value. Since the dual objective will not decrease while moving
down in the tree, this simple strategy will obviously generate high lower
bounds, and thereby close branches more rapidly. Consequently, there is
a corresponding strategy which chooses the open leaf node with the lowest
dual objective value. This strategy is motivated since it will increase the
lowest lower bound, which is a lower bound on the primal optimal value.

Given the branching node, the branching variable is chosen. Since nor-
mally the dual objective is non-smooth at optimum, and therefore bivalent
units for the optimal dual variables exist, it is obvious to choose branching
variables from the variables corresponding to such units. From a simple
bivalence bk, a branching variable is chosen due to (16), i.e. the branching
variable is chosen from the set {ui,k : i = f(bk), ..., l(bk)}. Here a natural
choice is uj,k, where j is the integer closest to (f(bk) + l(bk))/2.

By exploiting that some on-off combinations for units corresponding
to linked bivalences are irrelevant (see the bottom illustration in Figure
2), other branching strategies may be formulated. The optimality condi-
tions stated in Dotzauer and Ravn (2001) conclude that both (on, off) and
(off, on) can not occur in the same two time intervals within a linked bi-
valence. Here (uj,k, uj+1,k) denotes on-off combinations in two consecutive
time intervals j and j + 1, where j = l(bk) is the last time interval in a
bivalent sequence bk and j + 1 = f(b′k) is the first time interval in another
bivalent sequence b′k. A possible strategy may then be to avoid the irrelevant
combinations in the branching procedure.

Another suggestion is to choose a variable ui,k corresponding to the unit
with the highest production capacity pk. The motive is that when such
variable is fixed to zero it will have the highest possible influence on the
dual objective.

6. Performance analysis

This section examines the behavior of the algorithm presented in Section
4. The presented results are discussed briefly. For a more detailed exami-
nation, see Jönsson (2000). First, consider the data set defined in Virmani
et. al. (1989), which models a system with 20 units over a time horizon of
24 hours. The performance of the algorithm is illustrated in Figure 3. The
broken line shows the dual objective when the algorithm is not adopting
the branch-and-bound methodology. This variant of the algorithm, which
is the algorithm of Section 3, solves the dual problem (7) in 44 iterations.
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Figure 3: The dual objective in each iteration when the algorithm adopts
(dots) and not adopts (broken line) branch-and-bound. A dot with a circle
indicates the first iteration at a new node in the branch-and-bound tree. In
iteration 105, for the first time the optimal primal solution is successfully
constructed, marked with a triangle.

Applying branch-and-bound, the dual objective will increase. Here the
algorithm adopts the depth-first strategy, and the simple rule to chose
branching variables from detected bivalences and then move to the node
with the branching variable fixed to one. If no bivalence is found during
20 consecutive iterations, the algorithm chooses the new branching variable
corresponding to the unit which is ’closest to’ bivalent, i.e. the unit which
is closest to fulfill (16). The value of the dual objective is in each iteration
marked with a dot. A dot with a circle indicates the first iteration at a new
node in the branch-and-bound tree. In each iteration, the algorithm tries
to generate a primal feasible solution (Step 3). The first time the optimal
primal solution is successfully constructed is in iteration 105, marked with
a triangle in Figure 3.

During the first two-hundred iterations the dual objective at the current
node increases rapidly, and in iteration 223 for the first time the dual exceeds
the best primal feasible solution found. In the following iterations, the
algorithm starts to back-trace the tree to examine other branches, and this
continues until the calculations are interrupted after 1000 iterations.

Remarkable is that the algorithm constructs the optimal primal solution
in the first selected branch in the branch-and-bound tree. This may be a
good argument for using the strategy which chooses branching variables
from units identified as bivalent.

Now consider three algorithm variants, all using the depth-first strategy
to chose branching nodes, but using different rules to chose branching vari-
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Strategy Variables Fixed to 1 Variables Fixed to 0
Iteration Correct Incorrect Correct Incorrect

Biv → 0 100 3 0 6 30
200 4 0 12 47
300 5 0 24 58

Biv → 1 100 43 0 0 0
200 64 1 0 0
300 73 1 1 1

Rand → Rand 100 9 6 4 5
200 15 9 10 17
300 25 12 18 22

Table 1: Number of variables fixed correctly and incorrectly compared to
the optimal primal solution, after 100, 200 and 300 iterations, using three
different strategies. The results are the total number of fixed variables for
the three data sets considered.

ables. Three sets of data, defined in Bard (1988), Fardanesh and Villaseca
(1986), and Virmani et. al. (1989), are considered. The problems consider
a time horizon I of 24 hours, and the number of units K is 10, 20 and 20,
respectively. Table 1 shows the number of variables fixed to the correct and
to the wrong value after 100, 200 and 300 iterations. Here correct means
that the variable is fixed to its value appearing in the optimal primal solu-
tion. The results are the total number of variables fixed for the three data
sets considered.

In the first algorithm variant (Biv → 0), branching variables are chosen
corresponding to units detected as bivalent, and the new node to process
corresponds to the branching variable fixed to zero. After 100 iterations
totally 39 binary variables are fixed at the current node, three are fixed to
one and 36 are fixed to zero. The variables fixed to one are all correctly fixed
(row one). For the 36 variables fixed to zero, only six are fixed correctly and
30 are fixed incorrectly (row one). After 200 iterations 63 variables are fixed.
This time four variables are fixed to one (row two). Again, the variables
fixed to one are all correct. The variables fixed to zero are 59 in total.
Only 12 of these are fixed correctly and 47 are fixed incorrectly (row two).
After 300 iterations 87 variables are fixed; five fixed to one and 82 fixed to
zero. Again, the variables fixed to one are all correct (row three). For the
variables fixed to zero, 24 are fixed correctly and 58 are fixed incorrectly
(row three).

In the second variant (Biv → 1), branching variables are chosen corre-
sponding to units detected as bivalent, and the new node to process corre-
sponds to the branching variable fixed to one. The results are given at row
four to six.

In the last variant (Rand → Rand), branching variables are chosen by
random, and the new node to process is chosen randomly between the
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nodes corresponding to the branching variable fixed to zero and one. A
new branching variable is here chosen every tenth iteration. The approach
represents an algorithm which do not use any sophisticated branching strat-
egy. The results are given at row seven to nine in Table 1.

Comparing the three strategies, the second (Biv → 1) is superior. Here,
100%, 98.5% and 97.4% of the fixed variables are fixed correctly after 100,
200 and 300 iterations, respectively. In the first case (Biv → 0), the corre-
sponding results are 23%, 25% and 33%. The third case (Rand → Rand)
gives about fifty percent chance to fix a variable correct.

In conclusion, the strategy to choose the branching variable from the set
of variables corresponding to units identified as bivalent, and then branch
to the node corresponding to the branching variable fixed to one, seems to
be a promising strategy.

7. Conclusions

A basic version of the unit commitment problem, in combination with
the economic dispatch problem, was considered. The algorithm from Dotza-
uer and Ravn (2001), solving the dual problem, was embedded in a branch-
and-bound framework. The algorithm adopts a strategy choosing branching
variables corresponding to units identified as bivalent, that is units identi-
fied to have a non-unique unit commitment. The performance of the algo-
rithm was analyzed, and from the considered test cases, the methodology
to choose branching variables corresponding to bivalences seems to be a
promising strategy.
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Mälardalen University, Väster̊as, Sweden, (2000).



OPTIMAL UNIT COMMITMENT 87

6. Muckstadt, J.A., and Koenig, S.A., An Application of Lagrangian Relax-
ation to Scheduling in Power-Generation Systems, Operations Research
25, (1977), 387-403.

7. Sen, S., and Kothari, D.P., Optimal Thermal Generating Unit Commit-
ment: a Review, Electrical Power & Energy Systems 20, (1998), 443-451.

8. Sheble’, G.B., and Fahd, G.N., Unit Commitment Literature Synopsis,
IEEE Trans. on Power Systems 9, (1994), 128-135.

9. Shor, N.Z., Minimization Methods for Non-Differentiable Functions, Sprin-
ger-Verlag, (1985).

10. Virmani, S., Imhof, K., and Mukherjee, S., Implementation of a Lagrangian
Relaxation Based Unit Commitment Problem, IEEE Trans. on Power Sys-
tems 4, (1989), 1373-1379.

11. Wolsey, L.A., Integer Programming, John Wiley and Sons, (1998).

Department of Mathematics and Physics, Mälardalen University,
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The Stock Selection Guide developed in the USA is described. Two
improvements to the model are presented. The first is a determina-
tion of what future yearly growth of earnings is required to make a
stock worth buying. The other is an adaptation of this formula so
that the market interest rate is taken into account.
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1. Introduction

The Stock Selection Guide was developed in the USA during the 1950s
since when it has been used by members of the National Associations of
Investors Corporation in the USA. The model is based upon fundamen-
tal analysis. It was introduced to Sweden at the end of the 1980s by
the Swedish Shareholders Association which popularized the model through
books, courses etc.

2. Problems and purpose

The Stock Selection Guide has been used by many investors for a long
time in the USA and many other countries, among them Sweden. One
problem with the model in its original form is that it takes long time to
perform the analysis without a computer. However computer software has
been developed to apply the model, by myself Sweden and by the Swedish
company Delphi Economics.

The user of the model should state his anticipated yearly growth in
earnings from the company. Based upon this figure the model will give
three zones, a buy zone, where the stock is worth buying, a neutral zone
and a sell zone. A central concept in the model is the earnings-loss ratio
defined by

H − P

P − L

where P = stock price now, H = optimistic highest stock price after 5 years
and L = lowest anticipated price after 5 years. How H and L are determined
is described later in the paper.
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The stock is considered to be worth buying if this ratio exceeds 2 (still
better is if it exceeds 3). The anticipated yearly growth in earnings per share
is used to determine H. I propose that this should be inverted. Instead I
pose the question: What is the required yearly growth in the earnings in
order to make the stock fall into the buy zone, i e to make the earnings-loss
ratio exceed 2?

Another weakness with the model is that it does not take the market
interest rate into account. There is a strong connection between the market
interest rate and the stock market. I have made a multiple regression study
of the average price-earnings-ratio in the Swedish stock market and some
market interest rates.1 This yields a method of determining the justified
average price-earnings-ratio.

I intend to further adjust the required yearly growth in the earnings
in order to place the stock in the buy zone so that the prevailing market
interest rate is taken into account.

3. The stock selection guide

The general goal for the investor should be to double his stock value
after 5 years. In order to achieve this he should

• think long term

• invest regularly

• limit his risks

• buy stocks in growth companies at a reasonable price

• understand what he buys

The model for analyzing a single stock covers two pages. The first page
contains a lin-log diagram. This should be used to plot bars over historic
values on earnings/share, sales, stock prices and dividends. On the assump-
tion of the future yearly growth in earnings per share, an extrapolation can
then be made in order to achieve predicted earnings per share after 5 years.

The second page consists of four sections, numbered 2-5. Here data
about profitability, past p/e-ratios, judgement of risks and return the next
5 years and expected total return should be entered. This results in the
stock price being placed in a buy zone, a neutral zone and a sell zone. The
stock price is placed in the buy zone if the earnings/loss ratio (see above)
is at least 2, and the rating is even higher if it exceeds 3.

The H and the L in the earnings/loss ratio are determined in the fol-
lowing way.

1The price/earnings-ratio is defined as stock price/earnings per share.
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From historical data the mean of the highest price/earnings ratio for
the last 5 years is calculated. In this paper H̄ is used to denote this mean.
Using the lin-log graph it is possible to predict the optimistic earnings per
share after 5 years. Multiplying these 2 numbers gives an optimistic highest
price after 5 years, here denoted by H .

For judgement of the lowest price after 5 years, denoted here by L, 4
alternatives exist
a) Historical data are used to calculate the mean of the lowest price/earnings
ratio for the last 5 years. Here this mean is denoted by L̄. An estimation of
lowest earnings per share after 5 years is then made. As a default value one
might use this year’s earnings per share. These 2 numbers are multiplied,
which gives the L in alternative a).
b) An average of the lowest stock price for the last five years is calculated.
This is L according to alternative b).
c) L = lowest price the last 3 years.

d) L = lowest price based upon dividend =
dividend now

highest yield the last five years
.

It is up to the investor to select one of these 4 alternatives. One common
procedure is to select the highest figure as an estimate of L.

My purpose is to derive a formula for required yearly growth in earnings
per share over the next 5 years needed to place the stock price in the buy
zone. This is obtained by using the following three equations and solving
them with respect to G.

Notations:
G = optimistic expected yearly growth in earnings per share
G2 = required yearly growth in earnings per share in order to place the
stock in the buy zone, i.e. with an earnings/loss-ratio exceeding 2 with the
price it has now
G3 analogously
E0 = current earnings per share
E5 = optimistic expected earnings per share after 5 years
H̄ = highest p/e-ratio after 5 years
H = highest price after 5 years based upon an optimistic judgement
L = lowest price after 5 years
P = stock price now

Equations:

E5 = E0 ·
(

1 +
G

100

)5

H = H̄ · E5 = H̄ · E0

(
1 +

G

100

)5

H − P

P − L
= 2
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Solution:

H − P = 2P − 2L

H = 3P − 2L

H̄ · E0

(
1 +

G

100

)5

= 3P − 2L

(
1 +

G2

100

)5

=
3P − 2L

H̄ · E0

1 +
G2

100
=

(
3P − 2L

H̄ ·E0

)0.2

G2 = 100 ·
((

3P − 2L

H̄ · E0

)0.2

− 1

)
Analogously we obtain

G3 = 100 ·
((

4P − 3L

H̄ · E0

)0.2

− 1

)

4. Connection between rate of interest and stock prices

Let us begin with some quotations:

“A rule of thumb that is used in the stock market is that a
change of the rate of interest by 1% affects stock prices by 10
%.” Mats Jonnerhag, Brsinsikt, Sweden.

”The model that Alan Greenspan uses is simple. He com-
pares the interest rate on 10-year Treasury Notes with the return
in the stock market. The interest rate on these 10-year American
Treasury notes is now at 5.5%. Today’s stock prices only yield
a return of 4.5 to 4.9% based upon the p/e-ratio on 20–22 that
the earnings of this year correspond to. The return on the more
risky stock market is therefore now 10–20% below the long term
interest rate.” Hans Westerberg in Svenska Dagbladet, Sweden,
25 Jan, 1998.

”Today the average p/e-ratio is between 19 and 20. It is the
highest valuation that we have noted. At the same time the
average market interest rate is 5.3%. This indicates that the
Stockholm Stock Exchange should have an average p/e ratio
in the range 18–19.” Peter Malmqvist in Market report from
Aragon Fondkommission, 30 Sept, 1997.
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These quotations show that the actors in the stock market are familiar
with the fact that there is a clear connection between rates of interest and
stock prices and that varying models exist to describe this connection.

Alan Greenspan’s formula is thus

jp/e =
1

10− year interest rate

where jp/e means justified p/e-ratio.
Peter Malmqvist’s formula is

jp/e =
1

10− year interest rate + 3−month interest rate

2

.2

Many other stock analysts also use the same formula as Peter Malmqvist.
Both Greenspan and Malmqvist thus invert the market interest rate to

obtain the jp/e. If we use i to denote the market interest rate we obtain

jp/e =
1

i

or
je/p = i

where je/p means justified earnings/price ratio.
I have performed a multiple regression analysis using data from Sweden

in the 1990s in order to analyze the connection between je/p and different
market interest rates. The model specification was

y = β1x1 + β2x2 + β3x3 + β4x4 + ε

where
y = average e/p for the whole Swedish Stock Market
x1 = 10-year interest rate in Sweden
x2 = 5-year interest rate in Sweden
x3 = 180 days interest rate in Sweden
x4 = 90 days interest rate in Sweden

This gave the following result.
e/p = 3.51 90 days -3.32 180 days + 0.326 5-years + 0.449 10-years

Predictor Coef Stdev t-ratio p
Noconstant
90 days 3.5071 0.7357 4.77 0.000
180 days -3.3158 0.8272 -4.01 0.001
5-years 0.3261 0.4845 0.67 0.508
10-years 0.4485 0.3132 1.43 0.166

2Oral information from Peter Malmqvist
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s = 0.4477
There is an apparent multicollinearity in the material. The β̂2 is negative

which is in contrary to logic. And the t-ratio connected with β3 is not
significant. Thus the variables x2 and x3 were removed from the model.
The subsequent analysis thus included only x1 and x4 as predictors. This
gave the following result.
e/p = 0.524 90 days + 0.491 10-years

Predictor Coef Stdev t-ratio p
Noconstant
90 days 0.52443 0.08708 6.02 0.000
10-years 0.49123 0.06874 7.15 0.000

s = 0.5677
An inversion of the result gives the following equation.

p

e
=

1

0.524 · 90 days interest rate + 0.491 · 10− years interest rate
.

A calculation of the Mean Absolute Deviation for the obtained formula
(“Regr”), for Greenspan’s formula (“Alan”) and for Malmqvist’s formula
(“Peter”) was made with the following result.

Model Mean Absolute Deviation
Regr 1.02
Alan 2.58
Peter 1.03

We see that the formula obtained by regressions analysis is very simi-
lar to that obtained by Malmqvist. Our choice of model will therefore be
Malmqvist’s, i.e.

jp/e =
1

10− year interest rate + 3−month interest rate

2

.

5. The new model

The purpose in now to adjust the G2 formula so that the market interest
rate (defined as in sec 4) is taken into account. I have not made any trials to
adjust L. The only adjustment needed is therefore a new way of determining
H̄ .

In the formula derived in section 3, H̄ was an average of the highest
p/e-ratio for the stock over the last 5 years. Let us denote these values by
H1, H2, . . . , H5. The first step is to adjust these values so that the market
interest rate during these 5 years is taken into account. An average of the
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market interest rate for each was calculated and denoted by i1, i2, . . . , i5.
The justified p/e-ratio for these years is denoted by j1, j2, . . . , j5 and is
found using the formula

jk =
1

ik
, k = 1, . . . , 5.

A correction factor for Hk is denoted by Fk and is obtained using

Fk =
Hk

jk
, k = 1, . . . , 5.

The average of F , . . . , F5 is denoted by F̄ .
The p/e-ratio today, justified by the present interest rate is denoted j0

and is in the same manner as above obtained using

j0 =
1

i0
.

We now substitute H̄ in the original formula for G2 with F̄ · j0 which gives
the adjusted G2-formula

G2 = 100 ·
((

3P − 2L

F̄ · j0 · E0

)0.2

− 1

)
.

Analogously we obtain the adjusted G3-formula

G3 = 100 ·
((

4P − 3L

F̄ · j0 · E0

)0.2

− 1

)
.
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DISCRETE APPROXIMATION OF OPTIMAL
STOPPING TIME IN THE PROBLEM OF

IRREVERSIBLE INVESTMENT

Let X1(t),X2(t) geometrical Brownian motions, possible correlated.
We study the problem of optimal stopping : finding of stopping time
τ∗ ∈ [0, T ] such that

sup
τ∈[0,T ]

Ex{X1(τ)−X2(τ)} = Ex{X1(τ∗)−X2(τ∗)},

where sup being taken all over all finite stopping times τ , and Ex

denotes the expectation when (X1(0),X2(0)) = x = (x1, x2).
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1. Introduction

Let (Ω,F , P )be a complete probability space,{Ft, t ∈ [0,∞)} be increas-
ing right continuous flow of σ -algebras, Ft ∈ F , B(t) = (B1(t), B2(t)) be
Ft adapted two dimensional Brownian motion, t ∈ [0,∞).Also let X1(t)
and X2(t) be a random processes , which are the solution of a system of
stochastic differential equations :{

dX1(t) = b1X1(t)dt + X1(t)[q11dB1(t) + q12dB2(t)], X1(0) = x1

dX2(t) = b2X2(t)dt + X2(t)[q21dB1(t) + q22dB2(t)], X2(0) = x2

where bi,qij are constants, 1 ≤ i, j ≤ 2, qi = (qi1, qi2) ∈ R2, i = 1, 2.
We can write solutions of these equations as

Xi(t) = xiexp{(bi −
1

2
aii)t + qi · B(t)},

where aij = qi · qj, 1 ≤ i, j ≤ 2.
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It is necessary to find stopping time τ ∗ ∈ [0, T ] - such that

E{X1(τ
∗)−X2(τ

∗)} = sup
τ

E{X1(τ)−X2(τ)}.

This problem was considered by Yaozhong Hu and Bernt Oksendal for T =
∞, they found τ ∗ only for 0 > b2 > b1, applying one variation inequality.
They proved that, under certain conditions, the stopping set S contains a
halfspace :

S = {(x1, x2) :∈ R2
+; x1 > µx2}

We find an optimal stopping time on finite interval. It is more difficult
problem. As it was impossible to indicate exact stopping time we construct
a sequence of stopping times’s that is easy to calculate and approximates
an optimal moment.

2. Main results

Let X(t) be a.s. continuous on [0, T ] process such that
E{ sup

t∈[0,T ]

|X(t)|} < ∞. Let us consider following uniform partition of interval

[0, T ] λn := {i�t, i = 0..n} and set of stopping times D := {τ : P{τ ∈
λn} = 1}.
Consider also stopping times

τn(n) := T

τk(n) :=

{
k�t, X(k�t) ≥ E{X(τk+1(n))|Fk�t}

τk+1(n), X(k�t) < E{X(τk+1(n))|Fk�t}
(1)

τ0(n) :=

{
�t, X(0) ≥ E{X(τ1(n))|F�t}

τ1(n), X(0) < E{X(τ1(n))|F�t}

for all n ≥ 1. Following theorems demonstrate that we can use this stopping
times to approximat τ ∗.

Theorem 1. Stopping time τ0(n) is optimal in λn.

Proof. Let τ ∈ λn a.s. Now, we assume for 0 ≤ i ≤ n

τ̃i := τ · I{τ < i�t}+ τi(n) · I{τ ≥ i�t}.

and show that E{X(τ0(n))} = E{X(τ̃0)} ≥ E{X(τ̃1)} . . . ≥ E{X(τ̃n)} =
E{X(τ)}. Since τ̃0 = τ0(n) and τ̃n = τn(n) then first and last equalities are
true. For 0 < i < n

E{X(τ̃i)−X(τ̃i+1)} =

= E{[X(τ̃i)−X(τ̃i+1)] · [I{τ < i�t}+ I{τ ≥ i�t, τi = τi+1}+

+I{τ = i�t, τi = i�t}+ I{τ > i�t, τi = i�t}]}.
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On {τ < i�t}, {τ ≥ i�t, τi = τi+1} and {τ = i�t, τi = i�t} τ̃i and
τ̃i+1 coincide and therefore E{X(τ̃i) − X(τ̃i+1)} = E{[X(τ̃i) − X(τ̃i+1)]×
×[I{τ > i�t, τi = i�t}]} ≥ 0. We obtain that E{X(τ0(n))} ≥ E{X(τ)}
for any τ ∈ λn.
In addition we can conclude that for k = 1..n E{X(τk(n))} ≥ E{X(τ)}
for any τ : P{τ ∈ {i�t, k ≤ i ≤ n}} = 1 and τk(n) is optimal on
{i�t, k ≤ i ≤ n}.

Theorem 2. E{X(τ ∗)−X(τ0(n))} → 0 a.s. when n →∞

Proof. Let consider

τ
′
0(n) :=

n−1∑
i=k+1

i�t · I{τ ∗ ∈ [(i− 1)�t, i�t)}+ T · I{τ ∗ ∈ [T −�t, T ]}.

Then

E{X(τ ∗)−X(τ0(n))} =

= E

{ n−1∑
i=k+1

(τ ∗ − i�t) · I{τ ∗ ∈ [(i− 1)�t, i�t)}+

+(τ ∗ − T ) · I{τ ∗ ∈ [T −�t, T ]}
}
≤

≤ E

{
n−1∑

i=k+1

(
sup

t∈[(i−1)�t,i�t]

X(t)− inf
t∈[(i−1)�t,i�t]

X(t)

)
×

×I{τ ∗ ∈ [(i− 1)�t, i�t)}+

+( sup
t∈[T−�t,T ]

X(t)− inf
t∈[T−�t,T ]

X(t)) · I{τ ∗ ∈ [T −�t, T ]}
}
≤

≤ E

{
max

i

(
sup

t∈[(i−1)�t,i�t]

X(t)− inf
t∈[(i−1)�t,i�t]

X(t)

)}
→ 0 a.s.

when n → ∞. Since on {i�t, k ≤ i ≤ n} τ0(n) is optimal from Theorem
1 then E{X(τ

′
0(n))} ≤ E{X(τ0(n))} ≤ E{X(τ ∗)}. Therefore E{X(τ ∗) −

X(τ0(n))} → 0 a.s. when n →∞.

3. Calculation of optimal time.

We shall consider only the cases when b1 > 0, b2 > 0 and b1 < 0, b2 < 0.
Really we have that E{X1(T )−X2(T )|Fi�t} = X1(i�t)eb1(n−i)�t −
−X2(i�t)eb2(n−1)�t. Therefore, for b1 > 0, b2 < 0

X1(i�t)−X2(i�t) < X1(t)e
b1(n−i)�t −X2(t)e

b2(n−1)�t
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X1(i�t)(1− eb1(n−i)�t) < X2(i�t)(1− eb2(n−1)�t)

for any X1(i�t), X2(i�t) thus τ0(n) = T a.s, and for
if b1 < 0, b2 > 0

X1(i�t)−X2(i�t) > X1(t)e
b1(n−i)�t −X2(t)e

b2(n−1)�t

X1(i�t)(1− eb1(n−i)�t) > X2(i�t)(1− eb2(n−1)�t)

for any X1(i�t), X2(i�t) thus τ0(n) = 0 a.s.

In order to know discrete stopping time τ0(n) for process
X(t) = X1(t)−X2(t) we need to calculate E{X1(τi+1)−X2(τi+1))|Fi�t} as
a function of a process value for any 0 ≤ i ≤ n− 1. It is easy to calculate
that E{X1(τn)−X2(τn))|F(n−1)�t} = X1((n−1)�t)·eb1�t−X2((n−1)�t)×
×eb2�t.

Further,

E

{
X1(τn−1)−X2(τn−1)|F(n−2)�t

}
= (2)

= E

{
[X1(T −�t)−X2(T −�t)] · IA +

+[X1(T )−X1(T )] · IĀ|FT−2�t

}
.

Where

A :=

{
ω : X1(T −�t)−X2(T −�t) > (3)

> X1(T −�t)eb1�t −X2(T −�t)eb2�t

}
.

Let us rewrite (2) as

X1(T − 2�t)C1E{eB1q11+B2q12IA|FT−2�t} −
−X2(T − 2�t)C2E{eB1q21+B2q22IA|FT−2�t}+ (4)

+X1(T − 2�t)C1 · eb1�tE{eB1q11+B2q12IĀ|FT−2�t} −
−X2(T − 2�t)C2 · eb2�tE{eB1q21+B2q22IĀ|FT−2�t},

where

C1 := e[b1− 1
2
(q2

11+q2
12)]�t, C2 := e[b2− 1

2
(q2

21+q2
22)]�t,

B1 := B1(T −�t)− B1(T − 2�t), B2 := B2(T −�t)− B2(T − 2�t).
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And (3) can be written as{
ω :

X1(T −�t)

X2(T −�t)
>

1− eb2�t

1− eb1�t

}
=

{
ω : B1q11 + B2q12 >

> �t

[
(b2 − b1)−

1

2
(q2

21 + q2
22 − q2

11 − q2
12)

]
+

+log

(
(1− eb2�t)X2(T − 2�t)

(1− eb1�t)X1(T − 2�t)

)}
.

The set A is half-plane in (B1, B2) space. Since X1(t) −X2(t) is Markov’s
process

E{eB1q11+B2q12IA|FT−2�t} =

∫ ∫
A

1

2π�t
eB1q11+B2q12e−

B2
1+B2

2
2�t dB1dB2.

After integration we obtain that E{eB1q11+B2q12IA|FT−2�t} = e
�t
2

(q2
11+q2

12) ·R,
where

Q :=
�t

2
[(q11 − q21)

2 − (q12 − q22)
2]

R :=
1

2
+

1

2
· erf

�t[b1 − b2] + Q + log
(

(1−eb1�t)X1(T−2�t)

(1−eb2�t)X2(T−2�t)

)
2
√

Q

 .

Other three expectations in (4) may be obtained in the same way. Then
the right-hand side of (2) equals

E{X1(τn−1)−X2(τn−1))|F(n−2)�t} =

=
[
X1(T − 2�t) · eb1�t −X2(T − 2�t) · eb2�t

]
· R +

+
[
X1(T − 2�t) · e2b1�t −X2(T − 2�t) · e2b2�t

]
· (1−R)

and continuation region at the moment T − 2�t is determined by the in-
equality

X1

X2
>

1− eb2�tR− e2b2�t(1− R)

1− eb1�tR− e2b1�t(1− R)
, b1 < 0, b2 < 0 (5)

X1

X2
<

1− eb2�tR− e2b2�t(1− R)

1− eb1�tR− e2b1�t(1− R)
, b1 > 0, b2 > 0.

where X1, X2, R mean X1(T − 2�t), X2(T − 2�t) and R
(

X1(T−2�t)
X2(T−2�t)

)
re-

spectively. Note that R
(

X1

X2

)
is monotone increasing function of X1

X2
, and
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the right-hand side of (5) can be transformed as

1− eb2�tR− e2b2�t(1− R)

1− eb1�tR− e2b1�t(1− R)
=

=
eb2�t

(
eb2�t − 1

)
eb1�t (eb1�t − 1)

+
−eb1�t + eb1�teb2�t − e2b2�t + eb2�t

e2b2�t(eb1�t − 1)
[
R− eb1�t+1

eb1�t

] = (6)

=
(eb1�t − eb2�t)(eb2�t − 1)

e2b2�t(eb1�t − 1)
[
R − eb1�t+1

eb1�t

] .
If b1 < b2 then (6) is monotone increasing and if b1 > b2 then (6) is monotone
decreasing function of X1

X2
, so if b1 > b2 continuation region has a form

X1

X2
< α or X1

X2
> α depending on sign of b1, b2, where α is a root of equation

α =
1− eb2�tR(α)− e2b2�t(1− R(α))

1− eb1�tR(α)− e2b1�t(1− R(α))
.

At the next step we need to calculate

E{X1(τn−2)−X2(τn−2)|FT−3�t)} = (7)

= E

{
[X1(T − 2�t)−X2(T − 2�t)] · IA +

+[X1(τn−1)−X1(τn−1)] · IĀ|FT−3�t

}
.

Where

A :=

{
ω : X1(T − 2�t)−X2(T − 2�t) >

> E{X1(τn−1)−X2(τn−1)|FT−2�t}
}

.

As in (2) represent (7) in such way

X1(T − 3�t)C1E{eB1q11+B2q12IA|FT−3�t} −
−X2(T − 3�t)C2E{eB1q21+B2q22IA|FT−3�t}+

+X1(T − 3�t)C1E{eB1q11+B2q12(eb1�tR + e2b1�t(1− R))IĀ|FT−3�t} −
−X2(T − 3�t)C2E{eB1q21+B2q22(eb2�tR− e2b2�t(1− R))IĀ|FT−3�t},

And again obtain that stopping set has a form

F

(
X1(T − 3�t)

X2(T − 3�t)

)
> 0. (8)
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The method of induction permits to calculate that that for all 0 ≤ k ≤ n−1
continuation region has a form

F

(
X1(k�t)

X2(k�t)

)
> 0. (9)

4. Simulation results

We have constructed simple model for simulation geometric Brownian
motion and finding discrete stopping times in double precision arithmetic.
In this model expectation (1) are computed by interpolation as surfaces
E(X1(i�t), X2(i�t)) in rectangular area to which process belong with prob-
ability 1−10−12 on uniform grid 150×150 items. In all the cases continuation
region was a half-plane X1(i�t)

X2(i�t)
> α(i�t). More over function α(i�t) with

computation error accuracy is linear function from i�t.
For example for x1 = 0.9, x2 = 1.9, b1 = 1.5, b2 = 1.1, q11 = 0.5, q12 = 0.5,
q21 = 0.2, q22 = 0.6, T = 2. On the figure n = 5, 10 and 15 respectively
from top to bottom.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
t0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 α(t)
�

�

When n is increasing then E{X1(τ0(n)) − X2(τ0(n))} is also increas-
ing and converges to E{X1(τ

∗)) − X2(τ
∗)}. On the following figure n =

4, 6, 8, 10, 16, 20, 24.
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JAN GRANDELL

SIMPLE APPROXIMATIONS OF RUIN
PROBABILITIES12

A “simple approximation” of a ruin probability is an approximation
using only some moments of the claim distribution and not the de-
tailed tail behaviour of that distribution. Such approximations may
be based on limit theorems or on more or less ad hoc arguments.
The most successful simple approximation is certainly the De Vylder
approximation, which is based on the idea to replace the risk pro-
cess with a risk process with exponentially distributed claims such
that the three first moments coincide. That approximation is known
to work extremely well for “kind” claim distributions. The main
purpose of this paper is to analyse the De Vylder approximation and
other simple approximations from a more mathematical point of view
and to give a possible explanation why the De Vylder approximation
is so good.

2000 Mathematics Subject Classifications. 62P05, 90A46, 62E17.

Key words and phrases. Ruin probability, Approximations.

1. Introduction

We will consider the classical model of an insurance risk business, i.e.
where the claim occur according to a Poisson process N = {N(t); t ≥ 0}
with intensity α and the costs of the claims are described by a sequence
{Zk}∞1 of independent and identically distributed random variables, having
the common distribution function F .

The total amount of claims paid by the company in the interval (0, t] is
then described by the claim process

Y (t) =

N(t)∑
k=1

Zk,

( 0∑
k=1

Zk
def
= 0

)
.

1Invited lecture.
2This paper was first published in the Proceedings of the conference “Probabilistic

Analysis of Rare Events: Theory and Problems of Safety, Insurance and Ruin” ed. by
V. V. Kalashnikov and A. M. Andronov. Riga Aviation University, Riga, Latvia, (1999).
It’s reprinting was approved by the editors of this Proceedings.
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The risk process, X, is defined by

X(t) = ct− Y (t),

where c is a positive real constant corresponding to the premium income.
We will here only treat the case with only positive risksums, i.e. we assume
that F (0) = 0.

The ruin probability Ψ(u) of a company facing the risk process X and
having initial capital u is defined by

Ψ(u) = P{u + X(t) < 0 for some t > 0}.

We have (this is, in fact, the Pollaczek–Khinchine formula)

Ψ(u) =
(
1− αµ

c

) ∞∑
n=0

(αµ

c

)n

F n∗
I (u) =

ρ

1 + ρ

∞∑
n=0

(
1

1 + ρ

)n

F n∗
I (u),

where

FI(z)
def
=

1

µ

∫ z

0

(1− F (x)) dx and ρ
def
=

c− αµ

αµ
.

This presentation is based on Grandell (2000), from which the abstract
above is taken. The rest of this paper may be looked upon as an extended
abstract of Grandell (2000).

2. Approximations

The most famous approximation is certainly the Cramér–Lundberg ap-
proximation

Ψ(u) ∼ ΨCL(u)
def
=

ρµ

h′(R)− c/α
e−Ru, u →∞, (1)

i.e.
lim

u→∞
eRu Ψ(u) =

ρµ

h′(R)− c/α
,

where the Lundberg exponent R is the positive solution of

h(r)
def
=

∫ ∞

0

(erz − 1) dF (z) = cr/α.

This approximation, which goes back to Cramér (1930), is very accurate for
large values of u. The approximation requires that the tail of F decreases at
least exponentially fast, and thus for instance the lognormal and the Pareto
distributions are excluded.

In order to include that last mentioned distributions it is usual to con-
sider distributions F such that FI ∈ S, i.e.

F 2∗
I (z) ∼ 2F I(z), z →∞.
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In that case

Ψ(u) ∼ 1

ρ
F I(u), u →∞. (2)

does hold exactly when FI ∈ S. The approximation (2) has a much slower
speed of convergence than (1).

Both (1) and (2) are practically somewhat difficult to apply, since they
require full knowledge of the claim distribution.

We will here concentrate on “simple” approximations, by which we mean
that the approximations only depend on some moments of F . Let

ζk = E[Zk
j ], k = 1, 2, 3

and note that

µ
def
= E[Zj ] = ζ1 and Var[Zj] = ζ2 − ζ2

1 .

The simplest such approximation seems to be the diffusion approxima-
tion

Ψ(u) ≈ ΨD(u)
def
= e−2ρζ1u/ζ2 (3)

which goes back to Hadwiger (1940). It is nowadays derived by application
of weak convergence of the compound Poisson process to a Wiener process,
from which it follows that (3) may be used if ρ is small and u is large in
such a way that u and ρ−1 are of the same order.

The De Vylder approximation, proposed by De Vylder (1978), is based

on the idea to replace the risk process X with a risk process X̃ with expo-
nentially distributed claims such that

E[Xk(t)] = E[X̃k(t)] for k = 1, 2, 3.

We are led to the approximation

ΨDV(u) =
3ζ2

2

3ζ2
2 + 2ζ1ζ3ρ

exp

{
− 6ζ1ζ2ρu

3ζ2
2 + 2ζ1ζ3ρ

}
.

Other simple approximations are:

The Rényi approximation:

ΨR(u)
def
=

1

1 + ρ
exp

{
− 2ρζ1u

ζ2(1 + ρ)

}
.

It is shown by Kalashnikov (1997) that

sup
u
|Ψ(u)−ΨR(u)| ≤ 4ρζ1ζ3

3ζ2
2 (1 + ρ)

for all ρ > 0.
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The exponential approximation:

ΨE(u)
def
= exp

{
−1− 2ρζ1u− ζ2√

ζ2
2 + 4

3
ρζ1ζ3

}
.

The Lundberg approximation:

ΨL(u)
def
= e−2ζ1ρu/ζ2

[
1 +

(
ρu− ζ2

2ζ1

)
4ρζ2

1ζ3

3ζ3
2

]
,

where the index L stands for Ove Lundberg – the son of Filip Lundberg;

The Beekman–Bowers approximation:

ΨBB(u)
def
=

1

1 + ρ

∫ ∞

βu

xγ−1

Γ(γ)
e−x dx,

where

β =
2ζ1ρ

ζ2 + (4ζ1ζ3
3ζ2

− ζ2)ρ
and γ =

1 + ρ

1 + (4ζ1ζ3
3ζ2

2
− 1)ρ

.

3. Comparisons of the approximations

For any approximation ΨA(u) of Ψ(u) we consider the relative error
EA(u) given by

EA(u)
def
=

ΨA(u)−Ψ(u)

Ψ(u)
(4)

or, when Ψ(u) is unknown,

EA,CL(u)
def
=

ΨA(u)−ΨCL(u)

ΨCL(u)
. (5)

We will always regard EA,CL(u) for a fixed value of ρu and small values of ρ
and then consider the leading term in the Taylor expansion around ρ = 0.

The result of those expansions will “often” be of the form

EA,CL(u) = cA(ρu− dA)ρk + O(ρk+1), k = 1, 2.
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Routine calculations yield:

ED,CL(u) = −4ζ2
1ζ3

3ζ3
2

(
ρu− ζ2

2ζ1

)
ρ + O(ρ2);

ER,CL(u) = −4ζ2
1ζ3 − 6ζ1ζ

2
2

3ζ3
2

(
ρu− ζ2

2ζ1

)
ρ + O(ρ2);

EE,CL(u) = −2ζ3
1

9ζ5
2

(3ζ2ζ4 − 2ζ2
3)

(
ρu− ζ2

ζ1

)
ρ2 + O(ρ3);

EDV,CL(u) = −2ζ3
1

9ζ5
2

(3ζ2ζ4 − 4ζ2
3)

(
ρu− ζ2

ζ1

)
ρ2 + O(ρ3);

EL,CL(u) = −8ζ4
1ζ

2
3

9ζ6
2

(ρu− dL−)(ρu− dL+)ρ2 + O(ρ3),

where

dL± = −3ζ2(ζ2ζ4 − 4ζ2
3 )

8ζ1ζ2
3

± ζ2

8ζ1ζ2
3

√
9ζ2

2ζ
2
4 − 24ζ2ζ

2
3ζ4 + 48ζ4

3

Thus it seems natural to regard

cL− = −8ζ4
1ζ

2
3

9ζ6
2

(dL− − dL+) and cL+ = −cL−

as the correspondences to cE or cDV.
For the Beekman–Bowers approximation the Taylor expansion of

EBB,CL(u) is more complicated. Nevertheless routine calculations yield

EBB,CL(u) =
2ζ1ζ3 − 3ζ2

2

3ζ2
2

· b(2ζ1ρu/ζ2) · ρ + O(ρ2),

where

b(x) = x− 2 log(x)− 2E1(x)ex − 2γ̃ + 1,

E1(x)
def
=

∫ ∞

x

e−t/t dt is the Exponential Integral,

γ̃ ≈ 0.57721 is Euler’s constant.

Let xBB− and xBB + be the two solutions of b(x) = 0. By numerical
solution of the equation we get

xBB− ≈ 0.38435, xBB + ≈ 2.7273

and
b′(xBB−) ≈ −1.1423, b′(xBB +) ≈ 0.43376.
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With similar arguments as for the Lundberg approximation it is natural to
let

dBB± =
ζ2xBB±

2ζ1

and cBB± =
(4ζ2

1ζ3 − 6ζ1ζ
2
2 )b′(xBB±)

3ζ3
2

.

Notice that this differ from the “general rule” for the other approxi-
mations regarding the relation between the order of ρ and the number of
moments used. This implies that cBB± is naturally compared with cD and
cR while the involved moments and numerical comparison indicate that ΨBB

ought to be compared with ΨL, ΨE and ΨDV.

Example 1 (Γ-distributed claims.) We consider the case with α = 1,
ρ = 10% and where the claims are Γ-distributed with mean 1 variance 100.
Then we have ζ1 = 1, ζ2 = 101, ζ3 = 20301, and ζ4 = 6110602.

In this case we have

dD = dR = 50.5, cD = −0.0263, cR = −0.0065,

dE = dDV = 101, cE = −0.0217, cDV = −0.0043,

dL− = 23.09, dL+ = 166.47, |cL±| = 0.0495,

dBB− = 19.41, dBB+ = 137.73, cBB− = −0.00739, cBB + = 0.00281.

Thus the approximations ΨD and ΨR ought to work reasonably well for
u ≈ 505. Further ΨR ought to be better than ΨD. Similarly ΨE and ΨDV

ought to work best for u ≈ 1010 and ΨL for u ≈ 231 and 1665. Finally,
by comparing cL±, cE , and cDV, the De Vylder approximation ought to be
best. All these considerations about the simple approximations are quite
in agreement with the figures given in the Table 2. The Beekman–Bowers
approximation ought to work best for u ≈ 194 and 1377. For u ≈ 194 the
picture might be “disturbed” by the fact that ΨBB(0) = Ψ(0). According
to the figures EBB(u) ≈ 0 and increasing for u ≈ 1600 which, by some good
will, may be regarded as being in agreement with the figures.
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u Ψ(u) ED(u) ER(u) EL(u) EE(u) EBB(u) EDV(u)

0 0.90909 10.0% 0.0% – 4.6% – 1.6% 0.0% – 2.8%
300 0.52114 5.9% 1.7% 0.2% 1.3% – 0.1% 0.3%
600 0.30867 – 1.3% 0.0% 1.2% 0.8% – 0.8% 0.2%
900 0.18287 – 8.0% – 1.6% 1.6% 0.4% – 0.9% 0.1%

1200 0.10834 – 14.3% – 3.3% 1.4% – 0.1% – 0.7% – 0.0%
1500 0.06418 – 20.1% – 4.8% 0.8% – 0.5% – 0.2% – 0.1%
1800 0.03803 – 25.5% – 6.4% – 0.2% – 1.0% 0.3% – 0.2%
2100 0.02253 – 30.6% – 7.9% – 1.5% – 1.5% 1.0% – 0.3%
2400 0.01335 – 35.4% – 9.5% – 3.2% – 1.9% 1.8% – 0.4%
2700 0.00791 – 39.8% – 11.0% – 5.0% – 2.4% 2.7% – 0.5%
3000 0.00468 – 43.8% – 12.3% – 7.0% – 2.7% 3.6% – 0.5%

Table 2: Γ-distributed claims.
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THE DISTRIBUTION OF EXTREMA FOR RISK
PROCESSES ON THE FINITE MARKOV CHAIN

Last time risk processes in Markov environments are intensively stud-
ied. Similar processes could be considered as the Poisson process
on the homogeneous irreducible Markov chain {x(t), t ≥ 0} with
m states. These processes {ξ(t), x(t)} are two-dimensional homoge-
neous Markov processes, where the first component {ξ(t), t ≥ 0, ξ(0) =
0} is the processes with conditionally independent increments.

On the base of some factorization results for such processes the re-
lations for the distributions of extrema are precised. Under corre-
sponding conditions the relation for the distribution of the absolute
minimum of ξ(t) is established. This distribution defines the ruin
probability for corresponding risk processes on Markov chain.

2000Mathematics Subject Classifications. 60J50, 60J70, 60K10,
60K15.

Key words and phrases. Risk process in Markov environments,
ruin probability, semi-continuous Poisson process, extrema of
process, distribution of absolute minimum, the infinitely divisi-
ble factorization identity, Pollachek-Khinchin formula.

Many papers (see Grandell (1981), Asmussen (1989, 1994), Shmidly
(1998)) are devoted to risk processes in Markov environments and to the
distributions of their functionals. Similar processes could be considered as
the Poisson processes on the finite irreducible Markov chain {x(t), t ≥ 0}
with infinitesimal matrix Q = Λ[P− I] and with the transition probabilities
pkr(t) (k, r = 1, m)

P(t) = ‖pkr(t)‖ = etQ; P0 = lim
s→0

s(sI−Q)−1 =

π1 . . . πm

. . . . . . . . . . .
π1 . . . πm

 .

These processes Z(t) = {ξ(t), x(t)} (see. Gusak (1995)) are 2-dimentional
homogeneous Markov processes, where {ξ(t), t ≥ 0, ξ(0) = 0} is the process

109
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with conditionally independent increments; ξ(t) is composed of Poisson pro-
cesses ξk(t), k = 1, m with the cumulant function

ψk(α) = iαak −
b2
k

2
α2 + λ′

k

∫ 0

−∞
(eiαx − 1)dFk(x). (1)

The evolution of Z(t) is defined by the ch.f.

Φt(α) = ‖E[eiαξ(t), x(t) = r|x(0) = k]‖ = etΨ(α),

Ψ (α) = ‖δkrψk(α)‖+ Q. (2)

The ruin probabilities for the considered processes are discribed by the
distributions of their extrema ξ±(t) = sup

0≤u≤t
(inf)ξ(u). Denote θs the random

variable (r.v.): P{θs > t} = e−st, s > 0;

Φ(s, α) = ‖Ekr[e
iαξ(θs)]‖ = s

∫ ∞

0

e−stΦt(α)dt = s(sI− Ψ (α))−1,

Φ±(s, α) = Eeiαξ±(θs). (3)

The ch.f. Φ±(s, α), are defined by the components of the factorization iden-
tity for Φ(s, α). The relation for distributions of absolute extrema

ξ± = lim
t→∞

ξ±(t) = lim
s→0

ξ±(θs)

are establshed under corresponding conditions.
To established the results about distributions of extrema for process

{ξ(t), x(t)} on Markov chain we remind some of them for usual processes
with independent increments {ξ(t), ξ(0) = 0; t ≥ 0}. We denote the charac-
teristic function (ch.f.) and the corresponding cumulant function (c.f.)

ϕt(α) = Eeiαξ(t) = etψ(α), (4)

ψ(α) = iαa− σ2

2
α2 +

∫ ∞

−∞
[eiαx − 1− iαxχ(|x| ≤ 1)]Π(dx). (5)

According to the identity of the infinitely divisible factorazation for ch.f.

ϕ(s, α) = Eeiαξ(θs) =
s

s− ψ(α)
(6)

the following decomposition is true

ϕ(s, α) = ϕ+(s, α)ϕ−(s, α), (7)
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where ϕ±(s, α) = Eeiαξ±(θs) = Eeiα(ξ(θs)−ξ∓(θs)). If Π(dx) ≡ 0 for x > 0 in
(5), then ξ(t) has only negative jumps and ξ(t) is upper semi-continuous.
In this case we denote

ρ(s) = P ′(s, +0)P
−1

(s, 0),

P (s, x) = P{ξ(θs) < x}, P (s, x) = 1− P (s, x),

P ′(s, x) =
∂

∂x
P (s, x), x �= 0,

P±(s, x) = P{ξ±(θs) < x} (±x ≥ 0).

If σ2 = 0, a > 0, P ′(s, +0)− P ′(s,−0) = sa−1.
The assertion about distribution of ξ±(θs) and ξ± follows from (Korolyuk

(1975), Bratijchuk, Gusak (1990), Gusak (1985)).

Proposition. If ξ(t) is upper semi-continuous process, then the distribu-
tion of ξ+(θs) is exponential

ϕ+(s, α) =
ρ(s)

ρ(s)− iα
, P{ξ+(θs) > x} = e−ρ(s)x, x > 0. (8)

The distrtibution of ξ−(θs) is defined by the relation

P{ξ−(θs) < x} = P{ξ(θs) < x} + ρ−1(s)P ′(s, x), x < 0. (9)

If σ2 = 0, a > 0, then

p−(s) = P{ξ−(θs) = 0} = s(aρ(s))−1, s > 0. (10)

From this proposition the relations for the distributions of ξ± follow,

ξ± = sup
t<∞

(inf)ξ(t) = lim
t→∞

ξ±(t) = lim
s→0

ξ±(θs).

There are the following three cases:
1. m1 = Eξ(1) > 0. In this case

m1ρ(s) ≈ s, s → 0; s−1ρ(s)−→
s→0

ρ′(0) = m−1
1 ,

ϕ+(s, α)−→
s→0

0, P{ξ+ = +∞} = 1. (11)

The absolute minimum ξ− has the distribution

P{ξ− < x} =
1

ρ′(0)

d

dx

∫ 0

−∞
P{ξ(t) < x}dt, x < 0. (12)
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For σ2 = 0, a > 0

p− = P{ξ− = 0} =
m1

a
> 0 (if σ2 > 0, p− = 0). (13)

If 0 < λ =
∫ 0

−∞ Π(dx) < ∞, σ2 = 0, a > 0, m1 > 0, then

ϕ−(α) = Eeiαξ− =
a− λF̃ (0)

a− λF̃ (α)
, F (x) = P{ξk < x},

F̃ (α) =

∫ 0

−∞
eiαxF (x)dx. (14)

Let ϕ̃(α) = F̃ (α)

F̃ (0)
= Eeiαξ̃ (ξ̃ ≤ 0), then Pollachek-Khinchin formula is true

Eeiαξ− =
p−

1− q−ϕ̃(α)
= p−

∞∑
k=0

(q−ϕ̃(α))k, q− = P{ξ− < 0} = 1− p−. (15)

2. m1 < 0. In this case ρ(s)−→
s→0

ρ > 0 (ρ is the root of the equation:

λ
0∫

−∞
eρxF (x)dx = a + ρσ2

2
). Absolute maximum ξ+ has the distribution

ϕ+(α) = Eeiαξ+

= lim
s→0

ϕ+(s, α) =
ρ

ρ− iα
, P{ξ+ > x} = e−ρx, x > 0; (16)

ϕ−(s, α) → 0 s → 0, P{ξ− = −∞} = 1.

Hence ξ− has the degenerate distribution.
3. m1 = 0. In this case

ρ2(s) ≈ 2s

Dξ(1)
, ρ(s) ≈

√
2s

Dξ(1)
, ϕ±(s, α)−→

s→0
0. (17)

Hence P{ξ± = ±∞} = 1.
If π = diag (π1, . . . , πm), then P0 = ‖1‖π. For risk processes in Markov

environments (b2
k = 0, ak > 0) in [ 2; 3] the averaged process ξ0(t) was

introduced with the help of

a0 =

m∑
k=1

πkak, λ0 =

m∑
k=1

λkπk, F0(x) =
1

λ0

m∑
k=1

πkλkFk(x).

The ruin probabilities for processes in Markov environments are defined by
distributions of ladder heights of ξ0(t).
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For general homogeneous processes with independent increments on
Markov chain {ξ(t), x(t)} instead of the identity (7) the dual identies (see
[5]) are true on Im α = 0

Φ(s, α) := Eeiαξ(θs) =

{
Φ+(s, α)P−1

s Φ̌−(s, α),

Φ−(s, α)P−1
s Φ̌+(s, α),

where
Φ±(s, α) = Eeiαξ±(θs), Ps = s(sI−Q)−1,

Φ̌±(s, α) = Eeiα(ξ(θs)−ξ±(θs)),

are the ch.f.of extrema and their complements.
We introduce the notations (by means of an exponential r.v. θs, which

does not depend on ξ(t) and x(t))

P(s, x) = ‖P{ξ(θs) < x, x(θs) = r/x(0) = k}‖,
Φ(s, α) =

∫∞
−∞ eiαxdP(s, x) = s(sI− Ψ (α))−1,

Ψ (α) = iαA− 1
2
B2α + Λ′ ∫ 0

−∞(eiαx − 1)dF(x) + Q,

A = ‖δkrak‖, B2 = ‖δkrb
2
k‖, F(x) = ‖δkrFk(x)‖,

 (19)

ak > 0, if b2
k = 0,

P′(s, x) =
∂

∂x
P(s, x), x �= 0, R+(s) = P′(s, +0)P

−1
(s, 0),

P(s, x) = Ps − P(s, x), Ř(s) = P
−1

(s, 0)P′(s, +0). (20)

We suppose that ξ(t) is upper semi-continuous process.
Let τ+(z) be the time of the first crossing of z > 0 by ξ(t)

τ+(z) = inf{t > 0 : ξ(t) > z}, z > 0.

The distribution of τ+(z) is tightly connected with the distribution of ξ+(t).
In the semi-continuous case the positive (negative) components of (18) could
be precised. Firstly we precise the relations for the positive components.

Theorem 1. Let {ξ(t), x(t)} be upper semi-continuous process with ch.f.
(19). Then {τ+(z), x(τ+(z))} is a non-decreasing homogeneous “process”
with respect to z ≥ 0 on Markov chain y(z) = x(τ+(z)) with m states. The
generating function (g.f.)

T+(s, z) = Ee−sτ+(z) = ‖E[e−sτ+(z), y(z) = r|y(0) = k]‖ (21)

is represented by an exponential matrix

T+(s, z) = exp{−zR+(s)}, z > 0, (22)
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where R+(s) is defined in (20).
The distribution of ξ+(θs) and T+(s, z) are connected by the relations

P{ξ+(θs) > z, x(θs) = r|x(0) = k} = T+(s, z)Ps, z > 0, (23)

Φ+(s, α) = (I− iαR−1
+ (s))−1Ps. (24)

The cumulant of {τ+(z), y(z)} – R+(s) satisfies the “leftside” equation

Ψ (−iR+(s))
def
= AR+ +

1

2
B2R2

+ + Λ

∫ 0

−∞
dF(x)(exR+(s) − I) + Q = sI. (25)

The ch.f.of the complement of the minimum ξ̌(θs) = ξ(θs)−ξ−(θs) is defined
by the relation

Φ̌+(s, α) = Eeiαξ̌(θs) = Ps(I− iαŘ−1(s))−1, (26)

where Ř(s) is defined in (20).

Proof is based on the additive property of τ+(z).

τ+(x + z)
·
= τ+(x) + τ+(z), x > 0, z > 0.

That means the g.f. (21) satisfies the equation

T(s, x + z) = T(s, x)T(s, z), x > 0, z > 0, T(s, 0) = I,

which has the matrix resolution (22). The equation for P′(s, x) (x �= 0)
defins R+(s) :

P′(s, z) = Ee−sτ+(z)P′(s, +0) = e−zR+(s)P′(s, +0) ⇒

⇒ P(s, 0) = R−1
+ (s)P′(s, +0).

It is evident that

Pkr{ξ+(t) > z} =

m∑
j=1

∫ t

0

Pkj{τ+(z) ∈ du}Pjr(t− u). (27)

After Laplace transformation the relation (27) implies (23). From (22)
and (23) after Stiltjes transformation the relation (24) is proved. The similar
relation is established for the distribution of ξ̌(θs) = ξ(θs)− ξ−(θs)

P{ξ̌(θs) > x} = Ps exp{−Ř(s)x}, x > 0,

which has the ch.f.(26).
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To find the distributions of

ξ+ = lim
s→0

ξ+(θs), ξ̌ = lim
s→0

ξ̌(θs)

we introduce for mk = Eξk(1) and Eξ2
k(1) the averaged moments

m0
1 =

m∑
k=1

πkmk, m0
2 =

m∑
k=1

πkEξ2
k(1) < ∞. (28)

If m0
1 < 0, then

lim
s→0

R+(s) = R+(0) =

=
d

dx

∫ ∞

0

P{ξ(t) < x}dt|x=+0(

∫ ∞

0

P{ξ(t) > 0}dt)−1, (29)

lim
s→0

Ř(s) = Ř(0) = (

∫ ∞

0

P{ξ(t) > 0}dt)−1 d

dx

∫ ∞

0

P{ξ(t) < x}dt|x=+0.

If m0
1 > 0, then

R+(0) = − d

dx

∫ ∞

0

P{ξ(t) < x}dt|x=+0Q,

Ř(0) = −Q
d

dx

∫ ∞

0

P{ξ(t) < x}dt|x=+0. (30)

If m0
1 = 0, then |R+(s)| −→

s→0
0, |Ř(s)| −→

s→0
0.

Corollary 1. If m0
1 < 0, then

E[eiαξ+
, τ+(z) < ∞] = (I− iαR−1

+ (0))−1P0,
P{ξ+ > z} = exp{−zR+(0)}P0, z > 0,

}
(31)

where R+(0) is defind in (29). Analogously

P{ξ̌ > z} = P0 exp{−zŘ(0)}, z > 0,

where Ř(0) is defined in (29). In the case m1 < 0

P{τ+(z) < ∞} = ‖P{τ+(z) < ∞, y(z) = r|y(0) = k}‖ =

= exp{−zR+(0)} ≤ P0. (32)

If m0
1 ≥ 0, then

P{ξ+ > z} = P0, ∀z > 0.

If m1 > 0, then R+(0) (see (30)) defines the transition matrix for {y(z), z ≥
0}

P{y(z) = r|y(0) = k} = exp{−zR+(0)}, z > 0. (33)
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For negative components of factorization the following assertion is true.

Theorem 2. If ξ(t) is {ξ(t), x(t)} is upper semi-continuous process with
ch.f. (19), then

Φ−(s, α) = Eeiαξ−(θs) = P(s, 0) + E−[eiαξ(θs)](I− iαŘ−1(s)),

P{ξ−(θs) < x} = P{ξ(θs) < x} − P′(s, x)Ř−1(s), x < 0,
P{ξ−(θs) = 0} = sA−1Ř−1(s), if B2 = 0, A > 0.

 (34)

If B2 ≥ 0, A > 0, then

P{ξ−(θs) = 0} = sA(−1)
∗ Ř−1(s), P′(s + 0)− P′(s− 0) = sA(−1)

∗ , (35)

A(−1)
∗ = ‖δkra

−1
k δ(ak > 0, bk = 0)‖; (A(−1)

∗ = O, if B2 > O).

The distribution of ξ(θs) = ξ(θs)− ξ+(θs) is defined by the relation

Φ̌−(s, α) = Eeiαξ(θs) = P(s, 0) + (I− iαR−1
+ (s))E−[eiαξ(θs)], (36)

where
E−[eiαξ(θs)] = E[eiαξ(θs), ξ(θs) < 0],

P{ξ(θs) = 0} = sA(−1)
∗ R−1

+ (s). (37)

From the Theorem 2 the next assertion follows after the limit passage
(s → 0).

Corollary 2. If m0
1 > 0, B2 = 0, then under conditions of Theorem 2

P−
0 = P{ξ− = 0} = lim

iα→∞
m0

1iαΨ−1(α)P0 = ‖p−kr‖, (37)

p−kr =
m0

1πr

ak

, p−k =
m∑

r=1

p−kr =
m0

1

ak

. (If B2 > 0, p−kr = 0 ∀k, r).

The distribution of negative values for ξ− is defined by the truncate ch.f.

E[eiαξ− , ξ− < 0] = m0
1[iαΨ−1(α)]−CP0, (38)

where CP0 = ‖c0
kπr‖) is defined from the condition

m0
1 lim

α→0
[iαΨ−1(α)]−CP0 = P0 − P− = P

−
= ‖p−kr‖. (39)

If m0
1 ≤ 0, then P{ξ− < z} = P0, ∀z < 0.

We remind that

[C +

∫ ∞

−∞
eiαxG(x)dx]± = ±

∫ ±∞

0

eiαxG(x)dx.
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To convert Ψ (α) and to realise the limit passage in (37) we put iα = r

F̃(r) =

∫ 0

−∞
erxF(x)dx,

then we receive instead of Ψ (α) (with B2 = 0)

K(r) = r(A− Λ′F̃(r)) + Q.

It follows from Korolyuk, Turbin (1978)

lim
r→0

rK−1(r) = P0(m
0
1)

−1,

and for r →∞ F̃(r) → 0, hence

lim
r→∞

m0
1rK−1

r (r)P0 = P−
0 = m0

1‖
πi

ak

‖, m0
1a

−1
k πi = p−ki.

From the second factorization identity (18)

s(sI− Ψ (α))−1 = Eeiαξ−(θs)(I− iαŘ−1(s))−1, (40)

taking into a count that det Ψ (α) = iαD(iα), we obtain the relation, equiv-
alent to (38).

E[eiαξ− , ξ− < 0] = [
1

D(iα)
Adj{Ψ (α)}]−CP0 = ‖ϕ−

kr(α)‖. (41)

ϕ−
kr(α) = ϕ−

k (α)πr; k = 1; m, r = 1; m,

ϕ−
k (α) = [

1

D(iα)

m∑
r=1

ψadj
kr (α)]−c0

k, ϕ−
k (0) =

m∑
r=1

p−kr = p−k . (42)

Constants c0
k are defined from (39).

Remark. Let ξ(u)(t) = u + ξ(t) (u > 0) be a risk process in Markov
environments, generated by Markov chain x(t) with m states. We consider
it as the Poisson process on the chain: {ξ(u)(t), x(t)}. The matrix of ruin
probabilities on finite interval [0;T ]

Q(u, T ) = P{ξ(u)(t) < 0 for some t ∈ [0, T ]} =

= ‖P{ξ(u)(t) < 0 for some t ∈ [0, T ], x(T ) = r|x(0) = k}‖
is defined by the distribution of minimum for ξ(t). Q(u, T ) = P{ξ−(T ) <
−u} = ‖P{ξ−(T ) < −u, x(T ) = r|x(0) = k}‖ (u > 0). The matrix of
classic ruin probabilities

Q(u) = lim
T→∞

Q(u, T ) = ‖qik(u)‖, qik(u) = qi(u)πk
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is defined by the distribution of the absolute minimum

Q(u) = P{ξ− < −u} (u > 0),

qk(u) = P{ξ− < −u, x(0) = k}, k = 1, m.

Example. Let {ξ(t), x(t)} be the process defined on two-state Markov
chain x(t) :

Λ = I, P =

(
0 1
1 0

)
, Q =

(
−1 1
1 −1

)
.

The process ξ(t) is composed from ξj(t) = (1 + δj)t − S(t) with corre-
sponding cumulant

kj(r) = rgj(r), gj(r) = δj + 1− F̃ (r), F̃ (0) = 1, j = 1, 2; ES(1) = 1.

Eξj(1) = δj (0 < δj ≤ 1) are interpretated as the relative safety loading.
For this process

π1 = π2 =
1

2
, m0

1 =
1

2
(δ1 + δ2) > 0.

Consequently the non-degenerate distribution of ξ− existes.
To find it we convert K(r)

K−1(r) =
1

det K(r)

(
rg2(r)− 1 −1

−1 rg1(r)− 1

)
,

det K(r) = rD(r), D(r) = rg1(r)g2(r)− 2(1− F̃ (r))− δ1 − δ2.

We form the matrix, which is used in (37)

rm0
1K

−1(r)P0 =
δ1 + δ2

4D(r)

(
rg2(r)− 2 rg2(r)− 2
rg1(r)− 2 rg1(r)− 2

)
. (43)

By limit passage (r →∞) we find out that

p−1 = P1{ξ− = 0} =
δ1 + δ2

2(1 + δ1)
=

m0
1

1 + δ1

> 0,

p−2 = P2{ξ− = 0} =
m0

1

1 + δ2
> 0.

By adding elements of the matrix (43) we obtain the functions which are
subjected to the proective operator:

f1(r) = m0
1

rg2(r)− 2

D(r)
, f2(r) = m0

1

rg1(r)− 2

D(r)
,
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fj(r)−→
r→∞

p−j (j = 1, 2).

According to (42) we find truncated g.f.

Ei[e
rξ−, ξ− < 0] = c0

i [fi(r)]
− (i = 1, 2),

c0
i = p̄−i ([fi(r)]

−)−1|r=0.

In particular case, when F (x) = ex (x < 0), F̃ (r) = 1
1+r

,

D(r) =
1

(r + 1)2
[r3(1 + δ1)(1 + δ2) + p2(r)] =

A(r)

(1 + r)2
,

p2(r) = 2r2(δ1δ2 − 1) + r(δ1δ2 − 2(1 + δ1 + δ2))− δ1 − δ2,

A(r) has two negative roots r1,2 = −ρ1,2 and one positive r0 > 0. That’s wy

fi(r) = p−i +
Ai

r + ρ1
+

Bi

r + ρ2
+

Ci

r − r0
.

By the proectiv operation (see (39)) we find

Ei[e
rξ−, ξ− < 0] = c0

i (
Ai

r + ρ1
+

Bi

r + ρ2
) (i = 1, 2),

Pi{ξ− < x} = c0
i (ρ

−1
1 Aie

ρ1x + ρ−1
2 Bie

ρ2x), x < 0, (44)

c0
i =

ρ1ρ2(1− p−i )

ρ2Ai + ρ1Bi
, p−i =

m0
1

1 + δi
, i = 1, 2.

If the risk process is ξ(u)(t) = u+ξ(t), then for the process {ξ(u)(t), x(t)}
according to (44) the ruin probabilities are defined by the relations (u > 0)

qi(u) = Pi{ξ− < −u} = c0
i

(
Ai

ρ1
e−ρ1u +

Bi

ρ2
e−ρ2u

)
, i = 1, 2.

If δ1 = 1
21

, δ2 = 1, then r0 = 2,

ρ1,2 =
12∓

√
23

22
; ρ1 ≈ 0, 578; ρ2 ≈ 0, 76,

p−1 =
1

2
, p−2 =

11

42
, c0

1 ≈ 0, 83682, c0
2 ≈ 1, 42669.

A1 ≈ 0, 00325497

B1 ≈ 0, 256236

C1 ≈ 0, 445055


A2 ≈ −0, 04555787

B2 ≈ 0, 248941

C2 ≈ −0, 0724097
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This example shows us that in the case, when jumps of ξj(t) (j = 1.m)
have the exponential distributions or Fj(x) = P{ξj < x} are the distribu-
tions of Erlang type then elements of K−1(r) are the fractionally-rational
functions. In this case the factorization and projective procedure are not
complicate for finding the matrix of ruin probabilities. If Fj(x) are arbitrary
continuous distributions (Fj(0) = 1) then D(r) has some root r∗ > 0 and
elements of K−1(r) have a form

fkj(r) =
gk(r)

r − r∗
πj , gk(r) =

∫ ∞

−∞
erxGk(x) dx.

In this case gk(r) is not necessarily fractionally-rational and[
gk(r)

r − r∗

]−
=

1

r − r∗
[g−

k (r)− g−
k (r∗)]

is easy inverted

G∗
k(x) =

∫ x

−∞
Gk(y)e−r∗(x−y)dy, x < 0.
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GLOBAL OPTIMIZATION OF COSTLY
NONCONVEX FUNCTIONS, WITH FINANCIAL

APPLICATIONS1

The paper considers global optimization of costly objective functions,
i.e. the problem of finding the global minimum when there are sev-
eral local minima and each function value takes considerable CPU
time to compute. Such problems often arise in industrial and fi-
nancial applications, where a function value could be a result of a
time-consuming computer simulation or optimization. Derivatives
are most often hard to obtain, and the algorithms discussed make
no use of such information. Response surface methods are promising
for global optimization of costly non-convex objective functions. We
discuss our implementation of an algorithm by Powell and Gutmann
based on the use of radial basis functions (RBF). Another interesting
response surface method is the Efficient Global Optimization (EGO)
method by Jones et al. We have implemented these two methods, to-
gether with the DIRECT and constrained DIRECT method by Jones
in the TOMLAB optimization environment (Holmström (1999)). We
discuss the application of these global optimization methods for pa-
rameter estimation in trading algorithms and in models for time se-
ries prediction.
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1. Introduction

The task of global optimization is to find the set of parameters x in the
feasible region Ω ⊂ Rd for which the objective function f(x) obtains its
smallest value. In other words, a point x∗ is a global optimizer to f(x) on
Ω, if f(x∗) ≤ f(x) for all x ∈ Ω. On the other hand, a point x̂ is a local
optimizer to f(x), if f(x̂) ≤ f(x) for all x in some neighborhood around
x̂. Obviously, when the objective function has several local minima, there
could be solutions that are locally optimal but not globally optimal and
standard local optimization techniques are likely to get stuck before the
global minimum is reached. Therefore, some kind of global search is needed
to find the global minimum with some reliability.

The global optimization page (http://solon.cma.univie.ac.at/˜neum/
glopt.html), maintained by Arnold Neumaier, contains many commented
links to online information relevant to global optimization. There is also an
online survey of different global optimization methods at http://www.cs.
sandia.gov/opt/survey/. The emphasis in this paper is on problems with
costly objective functions.

In our Applied Optimization and Modeling group at Mälardalen Uni-
versity we work in several applied areas with a need for global optimization
techniques. One example is the problem of designing a passenger train,
where the objective is to minimize the total mass with constraints on ride
quality measures. The design parameters are the carbody mass and fre-
quencies, the bogie frame mass and yaw damper attachment positions. In
this problem, a single function value is computed by running an expensive
(time-consuming) computer simulation. With a simplified model, one sim-
ulation takes more than three minutes and with an accurate model, about
half an hour. In computational finance, we study the prediction of various
kinds of quantities related to stock markets, like stock prices, stock volatility
and ranking measures. These are noisy problems with several local minima.
With the increasing use of high-frequency data, simulated trading and time
series analysis of multiple data series results in costly global optimization
problems as presented in Hellström and Holmström (1999), and further dis-
cussed in Section 4.

Previously we have made Matlab implementations of the DIRECT (Jones,
Perttunen and Stuckman 1993), the new constrained DIRECT (Jones 2001),
and the Efficient Global Optimization (EGO) (Jones, Schonlau, Welch 1998)
algorithms. The implementations are part of the TOMLAB optimization
environment, described in Holmström (1999a, 1999b, 1999c). The imple-
mentation of the DIRECT algorithm is further discussed and analyzed in
Björkman and Holmström (1999). Recently Powell (1999) and Gutmann
(1999) presented an algorithm of response surface type based on radial ba-
sis function approximation. The idea of the RBF algorithm is to use radial



GLOBAL OPTIMIZATION 123

basis function interpolation to define a utility function (Powell 1999). The
next point, where the original objective function should be evaluated, is
determined by optimizing on this utility function.

In Section 2 we describe the basic RBF algorithm and discuss some
special features of the implementation. The other global optimization al-
gorithms considered are briefly described in Section 3. In Section 4 the
application of global optimization methods on financial problems are dis-
cussed.

2. The RBF algorithm

Our RBF algorithm is based on the ideas presented by Gutmann (1999),
with some extensions and further development. The algorithm is imple-
mented in the Matlab routine rbfSolve and described in more detail in
Björkman and Holmström (2001). The RBF algorithm deals with box-
bounded global optimization problems of the form

min
x

f(x)

s/t −∞ < xL ≤ x ≤ xU < ∞,

(1)

where f(x) ∈ R and x, xL, xU ∈ Rd. We assume that no derivative in-
formation is available and that each function evaluation is very expensive.
For example, the function value could be the result of a time-consuming
experiment or computer simulation.

2.1. Description of the Algorithm. We now consider the question of
choosing the next point where the objective function should be evaluated.
The idea of the RBF algorithm is to use radial basis function interpolation
and a measure of ’bumpiness’ of a radial function, σ say. A target value
f ∗

n is chosen that is an estimate of the global minimum of f . For each
y /∈ {x1, . . . , xn} there exists a radial basis function sy that satisfies the
interpolation conditions

sy(xi) = f(xi), i = 1, . . . , n,
sy(y) = f ∗

n. (2)

The next point xn+1 is calculated as the value of y in the feasible region
that minimizes σ(sy). It turns out that the function y �→ σ(sy) is much
cheaper to compute than the original function.

Here, the radial basis function interpolant sn has the form

sn(x) =
n∑

i=1

λiφ (‖x− xi‖2) + bT x + a, (3)
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with λ1, . . . , λn ∈ R, b ∈ Rd, a ∈ R and φ is either cubic with φ(r) = r3

or the thin plate spline φ(r) = r2 log r. Gutmann (1999) considers other
choices of φ and of the additional polynomial, see the table below. Later
in Gutmann (2000) he concludes that the situation in the multiquadric and
Gaussian cases is disappointing.

RBF φ(r) > 0 p(x)
cubic r3 aT · x + b
thin plate spline r2 log r aT · x + b
linear r b

multiquadric
√

(r2 + γ2)
Gaussian exp(−γr2)

The unknown parameters λi, b and a are obtained as the solution of the
system of linear equations(

Φ P
P T 0

)(
λ
c

)
=

(
F
0

)
, (4)

where Φ is the n× n matrix with Φij = φ
(
‖xi − xj‖2

)
and

P =


xT

1 1
xT

2 1
. .
. .

xT
n 1

 , λ =


λ1

λ2

.

.
λn

 , c =


b1

b2

.

.
bd

a

 , F =


f(x1)
f(x2)

.

.
f(xn)

 . (5)

sy could be obtained accordingly, but there is no need to do that as one is
only interested in σ(sy). Powell (1992) shows that if the rank of P is d + 1,
then the matrix (

Φ P
P T 0

)
(6)

is nonsingular and the linear system (4) has a unique solution.
σ is defined in Gutmann (2000). For sn in (3) it is

σ(sn) =

n∑
i=1

λisn(xi). (7)

Further, it is shown that σ(sy) is

σ(sy) = σ(sn) + µn(y) [sn(y)− f ∗
n]2 , y /∈ {x1, . . . , xn}. (8)

Thus minimizing σ(sy) subject to constraints is equivalent to minimizing gn

defined as

gn(y) = µn(y) [sn(y)− f ∗
n]2 , y ∈ Ω \ {x1, . . . , xn} , (9)
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where µn(y) is the coefficient corresponding to y of the Lagrangian function
L that satisfies L(xi) = 0, i = 1, . . . , n and L(y) = 1. It can be computed
as follows. Φ is extended to

Φy =

(
Φ φy

φT
y 0

)
, (10)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n, and P is extended to

Py =

(
P

yT 1

)
. (11)

Then µn(y) is the (n + 1)-th component of v ∈ Rn+d+2 that solves the
system (

Φy Py

P T
y 0

)
v =

 0n

1
0d+1

 . (12)

We use the notation 0n and 0d+1 for column vectors with all entries equal
to zero and with dimension n and (d + 1), respectively. The computation
of µn(y) is done for many different y when minimizing gn(y). This requires
O(n3) operations if not exploiting the structure of Φy and Py. Hence it does
not make sense to solve the full system each time. A better alternative is
to factorize the interpolation matrix and update the factorization for each
y. An algorithm that requires O(n2) operations is described in Björkman
and Holmström (2001).

When there are large differences between function values, the interpolant
has a tendency to oscillate strongly. It might also happen min sn(y) is
much lower than the best known function value, which leads to a choice
of f ∗

n that overemphasizes global search. To handle these problems, large
function values are in each iteration replaced by the median of all computed
function values.

Note that µn and gn are not defined at x1, . . . , xn and

lim
y→xi

µn(y) = ∞, i = 1, . . . , n. (13)

This will cause problems when µn is evaluated at a point close to one of the
known points. The function hn(x) defined by

hn(x) =

{ 1
gn(x)

, x /∈ {x1, . . . , xn}
0, x ∈ {x1, . . . , xn}

(14)

is differentiable everywhere on Ω, and is thus a better choice as objective
function. Instead of minimizing gn(y) in (9) one may minimize −hn(y). In
our implementation we instead minimize − log(hn(y)). By this we avoid a
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flat minimum and numerial trouble when hn(y) is very small.

2.2. The Choice of f ∗
n. For the value of f ∗

n it should hold that

f ∗
n ∈
[
−∞, min

y∈Ω
sn(y)

]
. (15)

The case f ∗
n = min

y∈Ω
sn(y) is only admissible if min

y∈Ω
sn(y) < sn(xi), i =

1, . . . , n. There are two special cases for the choice of f ∗
n. In the case when

f ∗
n = min

y∈Ω
sn(y), then minimizing (9) is equivalent to

min
y∈Ω

sn(y). (16)

In the case when f ∗
n = −∞, then minimizing (9) is equivalent to

min
y∈Ω\{x1,...,xn}

µn(y). (17)

So how should f ∗
n be chosen? If f ∗

n = −∞, then the algorithm will choose
the new point in an unexplored region, which is good from a global search
point of view, but the objective function will not be exploited at all. If
f ∗

n = min
y∈Ω

sn(y), the algorithm will show good local behaviour, but the

global minimum might be missed. Therefore, there is a need for a mixture
of values for f ∗

n close to and far away from min
y∈Ω

sn(y). Gutmann (1999)

describes two different strategies for the choice of f ∗
n. In this paper we

study one of the strategies.
The strategy, denoted idea 1, is to perform a cycle of length N + 1 and

choose f ∗
n as

f ∗
n = min

y∈Ω
sn(y)−W ·

(
max

i
f(xi)−min

y∈Ω
sn(y)

)
, (18)

with

W =

[
(N − (n− ninit))mod(N + 1)

N

]2

, (19)

where ninit is the number of initial points. Here, N = 5 is fixed and
max

i
f(xi) is not taken over all points, except for the first step of the cycle.

In each of the subsequent steps the n − nmax points with largest function
value are removed (not considered) when taking the maximum. Hence the
quantity max

i
f(xi) is decreasing until the cycle is over. Then all points are

considered again and the cycle starts from the beginning. More formally, if
(n− ninit)mod(N + 1) = 0, nmax = n, otherwise

nmax = max {2, nmax − floor((n− ninit)/N)} . (20)
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A check is performed when (n − ninit)mod(N + 1) = N . This is the
stage when a purely local search is performed, so it is important to make
sure that the minimizer of sn is not one of the interpolation points or too
close to one. The test used is

fmin −min
y∈Ω

sn(y) ≤ 10−4 max {1, |fmin|} , (21)

where fmin is the best function value found so far, i.e. min
i

f(xi), i =

1, . . . , n. If (21) is true, then

f ∗
n = min

y∈Ω
sn(y)− 10−2 max {1, |fmin|} , (22)

otherwise f ∗
n is set to 0.

2.3. A Compact RBF Algorithm Description. In the previous sec-
tions the basic RBF algorithm implemented in our Matlab routine rbfSolve
were described in detail. We now summarize the RBF algorithm in the
compact description below.

• Choose n initial points X = {xi, i = 1, ..., n}.
Use 2d corner points or at least d + 1 points.

• Compute fi = f(xi), i = 1, ..., n, set ninit = n.

• Compute Radial basis interpolation minimizing semi-norm and inter-
polating points

sn = arg min
s

< s, s >

s/t s(xi) = f(xi), i = 1, ..., n

(23)

The optimal solution is the solution to (4).

• While n < MaxFuncEval
Repeat Cycle k = 0, ..., N (Local and global search, N = 5)

1. If k = 0 solve the minimization problem min
y∈Ω

sn(y).

2. Compute f ∗
n in (18) dependent on position k in the cycle.

3. xnew = arg miny − log hn(y), hn(y) defined in (14).

4. If new point xnew acceptable (Not too close to x1, . . . , xn),
n = n + 1; xnew = xn; fn = f(xnew); X = [X, xnew]; end

5. fbest = min f(xi), xi ∈ X;
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6. xbest = arg min f(xi), xi ∈ X;

7. Update the matrix factorizations of Φ and P and find new inter-
polant sn by solving (12).

• End of while

One problem is how to choose the points x1, . . . , xninit
to include in the

initial set. We only consider box constrained problems, and choose the
corners of the box as initial points, i.e. ninit = 2d. Starting with other
points is likely to lead to the corners during the iterations anyway. Having
a ”good” point beforehand, one can include it in the initial set.

The subproblem
min
y∈Ω

sn(y) , (24)

is itself a problem which could have more than one local minima. To solve
(24) (at least approximately), we start from the interpolation point with
the least function value, i.e. argminf(xi), i = 1, . . . , n, and perform a local
search. In many cases this leads to the minimum of sn. Of course, there is no
guarantee that it does. We use analytical expressions for the derivatives of
sn and perform the local optimization using ucSolve TOMLAB running the
inverse BFGS algorithm as described in Holmström and Björkman (1999).
As an alternative we use the NPSOL solver by Gill, Murray, Saunders and
Wright (1998) using the MEX-file interface that is part of TOMLAB.

To minimize − log hn(y) we use our Matlab routine glbSolve implement-
ing the DIRECT algorithm (see Section 3.1). We run glbSolve for 500 func-
tion evaluations and choose xn+1 as the best point found by glbSolve. When
(n − ninit)mod(N + 1) = N (when a purely local search is performed) and
the minimizer of sn is not too close to any of the interpolation points, i.e.
(21) is not true, glbSolve is not used to minimize gn(y) or f ∗(y). Instead, we
choose the minimizer of (24) as the new point xn+1. The TOMLAB routine
AppRowQR is used to update the QR decomposition.

Our experience so far with the RBF algorithm shows that the minimum is
sometimes very sensitive for the scaling of the box constraints. To overcome
this problem we transform the search space to the unit hypercube.

In our implementation it is possible to restart the optimization with
the final status of all parameters from the previous run.

3. Other global optimization algorithms

In the following sections, Section 3.1 - 3.3, short descriptions of the
DIRECT, constrained DIRECT and EGO algorithms are given.

3.1. DIRECT. DIRECT is an algorithm developed by Jones, Perttunen
and Stuckman (1993) for finding the global minimum of a multi-variate
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function subject to simple bounds, using no derivative information. The al-
gorithm is a modification of the standard Lipschitzian approach that elim-
inates the need to specify a Lipschitz constant. The idea is to carry out
simultaneous searches using all possible constants from zero to infinity. In
Jones et al. (1993) they introduce a different way of looking at the Lipschitz
constant. The Lipschitz constant is viewed as a weighting parameter that
indicate how much emphasis to place on global versus local search. In stan-
dard Lipschitzian methods, this constant is usually large because it must be
equal to or exceed the maximum rate of change of the objective function.
As a result, these methods place a high emphasis on global search, which
leads to slow convergence. In contrast, the DIRECT algorithm carries out
simultaneous searches using all possible constants, and therefore operates
on both the global and local level. DIRECT deals with problems of the form

min
x

f(x)

s.t. xL ≤ x ≤ xU ,
(25)

where f ∈ R and x, xL, xU ∈ Rd. The finite box defined by the bound
constraints is normalized to [0, 1]d. and partitioned into smaller boxes.
Then it is true that the side lengths of the boxes are 3−k for some k ∈ N.
It is guaranteed to converge to the global optimal function value, if the
objective function f is continuous or at least continuous in the neighborhood
of a global optimum. This could be guaranteed since, as the number of
iterations goes to infinity, the set of points sampled by DIRECT form a
dense subset of the unit hypercube. In other words, given any point x in
the unit hypercube and any δ > 0, DIRECT will eventually sample a point
(compute the objective function) within a distance δ of x. However, the use
of the midpoint in each box leads to the disadvantage that the boundary
can only be reached in the limit, and the convergence will be slow when the
minimizer lies at the boundary.

We have implemented the DIRECT algorithm in Matlab, and in Björk-
man and Holmström (1999), we discuss the implementation details of our
Matlab implementation. The efficiency of the implementation is analyzed by
a comparison to the results of Jones’s implementation on nine standard test
problems for box-bounded global optimization. In fifteen out of eighteen
runs the results were in favor of our implementation.

One version of the DIRECT code is available as the Matlab routine
gblSolve for download at http://www.ima.mdh.se/tom, the home page of
the Applied Optimization and Modeling group. It is free for academic use.
A faster version, glbSolve, is part of the TOMLAB v3.0 optimization envi-
ronment described in Holmström (2001).

3.2. Constrained DIRECT. Jones (2001) presents an extension of the
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DIRECT algorithm which handles nonlinear and integer constraints, a global
mixed-integer nonlinear programming problem of the form

min
x

f(x)

s.t.
xL ≤ x ≤ xU

cL ≤ c(x) ≤ cU

xi ∈ I integer
,

(26)

where f ∈ R, x, xL, xU ∈ Rd, c, cL, cU ∈ Rm and I is the index set for the
integer variables. The constrained version of DIRECT does not explicitly
handle equality constraints and it works best when the integer variables
describe an ordered quantity. It is less effective when the integer variables
are categorical. If no constraints are present, this constrained version of
DIRECT reduces to the box-bounded version, with some minor differences.

We have implemented the constrained version of the DIRECT algorithm
in Matlab with a slightly more general problem formulation that explicitly
handles linear constraints as

min
x

f(x)

s/t
−∞ < xL ≤ x ≤ xU < ∞

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU , xj ∈ N ∀j ∈I,

(27)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x),
cU ∈ Rm2.
The variables x ∈ I, the index subset of 1, ..., n, are restricted to be integers.
Our constrained DIRECT code is available as the Matlab routine glcSolve
in TOMLAB. Feedback from TOMLAB users and tests we have ran show
that the solver works well.

3.3. EGO. The EGO (Efficient Global Optimization) algorithm by Jones,
Schonlau and Welch (1998) is also an interesting algorithm, which like the
RBF algorithm belongs the class of Response Surface Methods. These mod-
els first fit a model function to data collected by evaluating the objective
function at a number of initial points. Then a utility function is used to de-
termine the new point where the objective function should be evaluated. In
EGO, a nonlinear stochastic process model, the DACE (Design and Analysis
of Computer Experiments) predictor, is fit by use of nonlinear regression
unlike the RBF algorithm, where linear regression is used. Then, EGO bal-
ances between global and local search by choosing the new point where
the objective function should be evaluated as the one which maximizes an
expected improvement utility function.

We have implemented the EGO algorithm in Matlab and it is available
as the Matlab routine ego in TOMLAB.
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4. Financial applications

Trading strategies present an interesting and challenging application for
global optimization without derivatives. The object function can be defined
as the achieved profit when applying a trading system on historical data. It
is clear that neither the object function nor the derivatives are available in
analytical form. Furthermore, the function value is often the result of a sim-
ulated trading with many years of data, and takes in the order of minutes
to compute with an ordinary desk top computer. The need for optimization
routines suitable for costly object functions is therefore clear. In this section
we will use the previously described DIRECT algorithm to optimize simple
trading rules parameterized with three and four parameters. A big problem
with such optimization is the estimation of out-of-sample performance for
the obtained trading rules. In particular, it is very easy to jump into con-
clusions regarding trading rules that exhibit extremely profitable behavior,
when tested on historical data. These misjudgments are often caused by the
rules covering too few examples in the examined data. We will approach
this problem with nonconvex global optimization of trading rules with a
constraint added in the problem formulation. The effect is a regularization,
where solutions covering too few examples are rejected. The modeling is
performed with a sliding-window technique and generates different param-
eters for the optimized trading rules in each time window. For more details
and results, refer to Hellström (2000b) where another data set is analyzed
with the same approach.

4.1. Trading Rules. A general way to formulate strategies for stock
trading is to define a trading rule as a time series T (t) such as

T (t) =


Buy : if g(t) = 1
Sell : if g(t) = −1
Do nothing : if g(t) = 0

(28)

where g is a function of the previous stock prices Close:

g : {Close(t), Close(t− 1), ..., Close(t− k)} → {−1, 0, 1}. (29)

Trading rule (28) is designed to serve as decision support in actual stock
trading, as indicated by the labels Buy, Sell, and Do Nothing. Function g
determines the type of the trading rule. By extending expression (29) with
the input variables High (highest-paid price), Low (lowest-paid price), Open
(first price) and Volume (number of traded stocks), most standard technical
indicators, such as the Stochastic Oscillator, the Relative Strength Index
(RSI), Moving Average Convergence/Divergence (MACD) etc. (Kaufman
(1998)), can be described in this fashion. Quite often the buy and sell
decisions are controlled by separate expressions and the trading rules are
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then denoted Buy rule and Sell rule respectively. Hereinafter we use the
notation gs to denote a trading rule applied to one specific stock s.

Function g is normally parameterized with a few parameters that can to
be determined by numerical optimization. In this paper, three trading rules
for generating Buy signals, are used to demonstrate the techniques with
constrained optimization. All three are based on standard technical indi-
cators, well-known by the trading community. For a thorough introduction
to the subject, refer to Kaufman (1998). However, the standard indicators
have been augmented with a term that includes the traded volume. This
too is in accordance with common practice among traders. We include the
traded volume as a term in all our technical trading rules. To facilitate a
uniform modeling for all stocks in the market, a normalized measure has to
be defined.

4.1.1. Gaussian Volume. The Gaussian volume Vn(t) is a transformation
of the traded volume (number of stocks) V (t) defined as

Vn(t) = (V (t)−mV (t))/σV (t), (30)

where the mean mV (t) and the standard deviation σV (t) for the volume are
computed in an n days long window up to time t. Vn expresses the number
of standard deviations, by which the volume differs from its running mean.
The normalization makes it possible to compare values of Vn for different
stocks and also for different times. In this paper the Gaussian volume V10

is used and is denoted by gvol10, since this is the name of the ASTA (Hell-
ström (2000a)) implementation of the function.

4.1.2. Crossing Moving-Average. This is an implementation of a com-
mon trading rule based on two moving averages of different length. The
trading rule signals Buy, if a short moving-average mavx1 crosses a long
moving-average mavx2 from below. A Sell signal is issued when mavx1

crosses the mavx2 from above. In this paper we define the Buy rule mav as

mav(x1, x2, x3) = Mavx(x1, x2) ∧ gvol10 > x3, (31)

where

Mavx(x1, x2) = mavx1(t) > mavx2(t) ∧mavx1(t− 1) ≤ mavx2(t− 1) (32)

and mavx1 is a x1-day moving average of the stock prices up to time t.

4.1.3. Trading Channel Breakout. The main part of this trading rule is
what is popularly known as Bollinger Bands (see e.g. page 91 in Kaufman
(1998)). The complete trading rule is defined as

break(x1, x2, x3) = breakout(x1, x2) ∧ gvol10 > x3, (33)
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where the breakout function is defined as

breakout(x1, x2) = Close(t) > (mavx1(t) + x2 · σx1(t)) ∧
Close(t− 1) ≤ (mavx1(t) + x2 · σx1(t))

(34)

and mavx1(t) is is a x1-day long moving average of the stock prices up to
time t. Function σx1(t) computes the standard deviation of the Close up to
time t. The idea is to define an upper boundary for a trading channel and
generate a Buy signal when the Close penetrates this boundary from below.
This upper boundary is defined as the sum of a moving average mavx1 and
x2 times an estimate of the standard deviation σx1 .

4.1.4. Level of Resistance. The trading rule Level of Resistance, in
this paper denoted resist, is based on a technique commonly executed by
manual inspection of the stock charts. The general idea is to identify peaks
in a window backwards, where the Close price is roughly the same. When
such peaks are found, a Buy signal is generated if the Close price crosses
from below the level for the found peaks. We define the trading rule resist
as

resist(x1, x2, x3, x4) = xresist(x1, x2, x3) ∧ gvol10 > x4 (35)

where

xresist(x1, x2, x3) = Close(t) > plevel ∧ Close(t− 1) ≤ plevel (36)

and

plevel =

 l :
if at least x2 peaks in Close that differs by less than x3% can
be identified at level l in an x1-day long window backwards.

0 : otherwise

4.2. Performance Evaluation. Performance evaluation for a trading
rule is needed in two stages of the process. First, in the optimization phase,
when parameters for the trading rule have to be determined. The sec-
ond stage is when the final trading rule is evaluated on the test data set
previously unseen. For more information about performance evaluation of
trading algorithm refer to Hellström (1999b) or Refenes (1995). Trading-
rule-based methods are normally evaluated by trading simulation, where
the trading rule controls the buying and selling of one or several stocks over
a period of time. Examples of this approach in conjunction with optimiza-
tion can be found in Hellström and Holmström (1999). However, it is also
possible to evaluate a trading rule with a fixed prediction horizon, of which
the advantage is that all situations where the trading rules fire (i.e.: T (t)
�= Do Nothing in (28)) are evaluated. When performing a trading simula-
tion, this is normally not the case, since the simulated trader is bounded



134 THOMAS HELLSTRÖM AND KENNETH HOLMSTRÖM

by the real-world constraint of a limited amount of money. This prevents
the trader from executing some of the Buy signals that the trading rules
produce. Since the fraction of left-out trades can be as high as 80-90%, a
scheme with randomization and repeated simulations is normally required
to produce reliable performance measures for the trading rules. Therefore
in this study we evaluate trading rules at fixed prediction horizons. The
measure of interest is the correctness of the sign of the price change from
the time of the prediction to 5 days ahead. This way of evaluating predic-
tions has gained increased interest in recent years as an alternative to the
more conventional way of minimizing the error of the level prediction. A
comparative study of sign and level methods can be found in Leung, Daouk
and Chen (2000) where the presented experiments suggest that methods
predicting the sign provide higher profits than methods predicting the level
for a number of investigated stock indexes.

For a time period [1, ..., T ] and a set of stocks S, the h-day positive hit
rate for a Buy rule g is defined as

H+
g =

card{(t, s)|Rs
h(t + h) > 0, gs(t) = 1, 1 ≤ t ≤ T − h, s ∈ S}

card {(t, s)|Rs
h(t + h) �= 0, gs(t) = 1, 1 ≤ t ≤ T − h, s ∈ S} (37)

where gs is the function specifying the trading rule as described in (28).
The return Rs

h is the relative change in price and is defined as

Rs
h(t) = 100 · Closes(t)− Closes(t− h)

Closes(t− h)
(38)

where Closes(t) is the price for a stock s at the end of day t. The hit
rate H+

g for a Buy rule g indicates how often a Buy signal is followed by a
true increase in the stock price. The hit rate H−

g for a Sell rule is defined
correspondingly but with returns Rh < 0.

4.3. Optimization. The function g that defines the trading rule is nor-
mally parameterized with a few parameters x that have to be determined in
order to maximize the chosen performance measure on the historical data.
To express this parameterization, the notation g[x] will be used.

One big problem about trading rules in general and optimizing them in
particular is the statistical significance of the estimated performance. The
trading rule (28) normally issues Buy or Sell signals only for a minor part
of the points in the time series. This results in low levels of significance for
the produced performance measures. It is often easy to find a trading rule
that historically outperforms any benchmark, as long as it does not have
to produce more than a few signals per year. However, the performance
on previously unseen data is most often very bad in these situations. We
therefore formulate a constrained optimization problem for a Buy rule g
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(Sell rules can be treated in a similar way) as

arg max
x

H+
g[x]

s.t.
card{(s, t)|gs[x](t) = 1, t ≤ T − h, s ∈ S} ≥ N0,
xL ≤ x ≤ xH

(39)

where xL and xH are lower and upper bounds for the unknown parameters
and the other constraint is the total number of Buy signals. The hit rate
H+

g[x] is given by definition (37). With the introduced notation, gs[x](t)
denotes the trading rule g parameterized with parameters x and applied to
stock s for time t. The optimization routine performs simulations up to
time T to compute the hit rate and number of trading signals for a given
g[x]. The purpose is to maximize the hit rate H+

g[x] by altering the variables
x that parameterize the function g. The final performance measure is the
out-of-sample hit rate H+

g[x], computed for time t > T with the optimal
estimated parameters x.

Using a ‘hard’ constraint in the optimization problem in (39) leads to a
nonsmooth problem. Because of the uncertainty in the choice of the ‘most’
suitable value of N0, it is reasonable to reformulate the problem using a ‘soft’
constraint approach that generates a smooth problem. The approach uses
a sigmoid function to smoothly model the behavior of the added constraint
and is inspired by the membership-function concept used in fuzzy logic (see
e.g. Klir and Yuan (1995)). The new problem formulation, in which the
objective function in (39) is weighted with the output of a sigmoid, is

arg max
x

H+
g[x]· supportN0 (card{(s, t)|gs[x](t) = 1, t ≤ T − h, s ∈ S})

s.t.
xL ≤ x ≤ xH

(40)
where supportN0 is given by the sigmoid function

supportN0(n) =
1

1 + e−α(n−β)
. (41)

The parameters α and β are computed to fulfill the equations supportN0(N0)
= 0.99 and supportN0(N0 · 0.5) = 0.01. This ensures a smooth penalty for
trading rules that generate less than N0 trading signals. If more than N0

trading signals are generated, the supportN0 function returns essentially 1
and hence does not affect the search for an optimal function g. The con-
straint acts like a regularizer, since the search space for the function g is
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reduced by requiring a minimum number of trading signals. This improves
the statistical significance of the estimated performance and the generaliz-
ability of the found solution (i.e. the achieved hit rate on previously unseen
data). The choice of the cut-off value N0 is a trade-off between the achieved
hit rate on the training data and the generalizability.

The optimization problem (40) is a box-bounded nonconvex global op-
timization problem. It is suitable to use derivative free methods, since no
analytical expressions for g[x] and H+

g[x] are available. In our tests we are
using the DIRECT algorithm described in Section 3.1.

4.4. Experimental Design. Technical analysis of stocks is normally
based on the premise that the market’s behavior does not change much over
time. While future movements in stock prices are never copies of the past,
the market’s way of responding to new situations is assumed to be similar
to the way it has handled them in the past (Gencay, Stengos (1998)). Since
this is not necessarily a valid assumption the optimization will be performed
with a sliding window technique.

The hit rate H+
g in the object function (39) is computed using the non-

interactive version of the ASTA system, which performs market simulations
of trading rules given in symbolic form. The ASTA system is written in
Matlab and has a large number of technical indicators implemented. The
system is thoroughly described in Hellström (2000a). Examples of usage is
found in Hellström (1999a).

The test is utilizing a sliding-window technique with a 2-year training
data period followed by a 1-year test period. The starting point of the
training period is moved between 1990 and 1995 in 1-year steps. This
results in six separate modeling/test periods. The presented performance
is the total for the six test periods (1992,...,1997). The purpose of using
sliding windows in the optimization is twofold. First, the stability in the
performance can be studied since we get six performance measures instead of
one. Second, the trading rules are allowed to adapt to time-varying market
conditions such as volatility, long-term trends etc. Eighty of the largest
Swedish stocks are included in the test, which provides a total number of
data points of around 111000 (not all stocks have data for the entire period).
The trading rules select a small fraction of these points (date and stock) as
suggested opportunities to buy stocks.

The results for 5-day prediction horizon are presented in Table 1 , with
positive hit rate H+ and number of points N where a trading signal is
generated. Separate measures for training data and test data are presented
in the columns labeled Htr, Ntr, Hte and Nte. The rightmost column shows
the lower 90% confidence limit2 for the hit rate Hte. The cut-off value N0,
used for the regularization, is set to 100. Each of the eight rows represents a

2The lower boundary for a 90% confidence interval.
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prediction method. The first three rows show the results for the trading rules
resist100, break100 and mav100 described in Section 4.1. The parameters
x1, x2, ... are optimized for best performance on the training data, using
the regularization described above (N0 = 100). The following three rows
show the same trading rules as above, but with no regularization to control
the number of generated trading signals (N0 = 1): resist1, break1 and
mav1. Performance for the benchmark methods Naive-5+ and Naive-ε are
also reported. The Naive-5+ predictor of the returns for a stock s asserts
today’s return Rs

5(t) (price increase since t−5) as the prediction of Rs
5(t+5).

The Naive-ε prediction of prices for a stock s asserts today’s price Closes(t)
as the best estimate of Closes(t + 5). To enable comparison of hit rate
predictions, the naive predictor is modified so the best estimate of today’s
price is assumed to be Closes(t + 5) + ε. This means that the predicted
returns Rs

5 are always positive. This naive predictor is denoted below Naive-
ε.

The computed optimal parameters for a specific Buy rule vary for the
six test periods. The ones computed for test period 1992 are presented in
Table 2.

Table 1: Hit rate and number of selected points for optimized trading rules.
Totals from 6 1-year test periods (1992-1997) with the preceding 2 years for
training. 5 days prediction horizon.

Method Htr Ntr Hte Nte 90%−low Hte

resist100 65.82 746 63.44 454 59.55
break100 63.07 1075 55.64 692 52.44
mav100 61.96 715 50.40 371 46.01
resist1 76.84 177 59.83 117 51.82
break1 64.89 786 52.04 417 47.89
mav1 71.55 239 53.75 160 46.94
Naive − e 48.33 196470 50.06 102651 49.80
Naive − 5+ 48.83 84054 49.53 46202 49.14

4.5. Results. As expected, the optimized trading rules perform much
better for the training data than for the test data. This effect is much more
emphasized for the non-regularized trading rules than for the regularized
ones. The difference can be understood as over-fitting of data that can
be controlled by the regularization. The out-of-sample hit rates Hte show
no systematic difference between the two kinds of predictors. The small
observed differences should be seen rather as stochastic fluctuations caused
by the low accuracy in the estimation of the hit rates for the non-regularized
trading rules. The lower 90% confidence limit reveals how uncertain the hit
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Table 2: Optimized trading rules for 1992. 5 days prediction horizon.

Method Optimized expression
resist100 xresist(84, 4, 4.06) ∧ gvol10 > 0.67
break100 breakout(38, 1.5) > 0 ∧ gvol10 > 2.94
mav100 Mavx(5, 83) ∧ gvol10 > 0.33
resist1 xresist(42, 6, 1.83) ∧ gvol10 > 3.78
break1 breakout(117, 2.5) > 0 ∧ gvol10 > 2.5
mav1 Mavx(11, 112) ∧ gvol10 > 1.3

rates Hte are for these rules. This uncertainty comes from the low number of
predictions generated. None of the non-regularized trading rules can be said
to significantly outperform the benchmark predictors, while the regularized
resist predictor has 63% hit rate, which is significantly higher than the
benchmarks.

4.6. Stability of the Found Optima. The experimental setup with
sliding windows gives a stable evaluation of the trading rules. In this section
an additional test of the stability and relevance of the optimized trading
rules is performed. In Table 3, the three regularized trading rules optimized
with data from 1990-1991 are applied not only for 1992 but also for the
following years up to 1997. This means that the optimized rules are regarded
as globally valid instead of valid only for the year following the optimization
period. Performance for the benchmark predictors are also presented for
comparison. The results show that the average hit rate for the trading rules
for the six years, is clearly lower than the one achieved by the sliding-window
approach, as shown in Table 1 (the relevant value for comparison is shown in
column Hte). Furthermore, the individual results for each year show no clear
tendency and can be regarded as random variations. These observations
give further credibility to the sliding-window results and show that the
optimizations really are catching patterns and regularities in the data and
not only spurious local optima in random and noisy object functions.

4.7. Summary of the Results. The constrained optimization that avoids
too few selected points is essential, both for practical reasons (since we want
to get assistance in our buy and sell decisions more than a few times per
year), and for a reasonably safe estimate of the expected hit rate out-of-
sample. Without safeguarding against too few points, the found optima
gives excellent performance on the training data, but no significant improve-
ment relative to pure chance on the test data. Furthermore, the results show
that the high hit rate achieved with the resist trading rule, to a large extent
is a result of the adaptive modeling with sliding windows.



GLOBAL OPTIMIZATION 139

Table 3: Hit rate for trading rules optimized with data from 1990-1991.
5-day prediction horizon.

Method 92 93 94 95 96 97 Average Hte

resist100 55.1 66.9 59.1 52.8 57.4 56.6 57.6 63.44
break100 54.8 65.1 48.3 46.5 55.8 52.1 54.5 55.64
mav100 45.8 59.8 39.3 44.3 58.7 57.1 50.3 50.40
Naive− e 44.1 55.6 46.7 47.4 53.8 52.1 50.1 50.06
Naive− 5+ 46.7 56.2 45.1 46.0 52.2 49.3 49.5 49.53

5. Conclusions and further work

Global optimization techniques can be used to improve the performance
of trading algorithms and time series predictions. When the problems are
costly to compute, the use of surrogate modeling techniques like the RBF
algorithm is promising and should be further exploited.

In the RBF algorithm, work is needed to avoid too large condition num-
ber on the interpolation matrix for increasing number of sampled points.
Also better choices of initial set must be investigated, when n is not small.
Our goal is to implement a robust and fast RBF algorithm in both Matlab
and Fortran.

We will further test the use of surrogate model techniques for the op-
timization of trading algorithms and time series model predictions. It is
interesting to use the regularization techniques described for more advanced
prediction methods, e.g. EXPAR (Exponential Autoregressive) models and
for high frequency data.
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ON PARETO πps SAMPLING: REFLECTIONS ON
UNEQUAL PROBABILITY SAMPLING

STRATEGIES1

In the design based approach for inference in survey sampling, un-
equal probability sampling is an essential part of efficient strategies,
i.e. efficient combinations of sampling design and estimator. During
the last five years of the 20th century, new probability (approxi-
mately) proportional-to-size sampling designs with attractive prop-
erties have been proposed. A short review of these will be given,
accompanied by a few reflections on their potential usefulness in ap-
plied settings.

2000 Mathematics Subject Classifications. 62D05.

Key words and phrases. Anticipated variance, GREG estima-
tor, model-based stratified sampling, optimal sampling designs,
Pareto sampling, PoMix sampling, probability proportional-to-
size.

1. Introduction

We will consider the following survey set-up. Let U = {1, ..., k, ..., N}
be a finite population of size N (the number of population elements). At
first, we assume that there is only one study variable, denoted y. The y
value for the kth population element is denoted yk. We want to estimate the
population total ty =

∑
k∈U yk =

∑
U yk from a sample survey. Furthermore,

we assume that there are Q auxiliary variables, denoted u1, . . . , uq, . . . , uQ.
The known value of the qth auxiliary variable for the kth population element
is denoted uqk. Hence, we have, for each population element k, access to a
known vector uk = (u1k, . . . , uqk, . . . , uQk)

′. Moreover, we assume that there
is a suitable known function h(·) such that every zk = h(uk) is known and
strictly positive (k = 1, ..., N), which means that the variable z can be used
as a size variable in the sampling design.

1Invited lecture
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A without-replacement probability proportional-to-size sampling design
p(·) based on the size variable z, denoted πps(z), will be used to select a
(set) sample s ⊆ U of size ns, i.e. the first-order inclusion probabilities
πk are given by πk = nzk/tz,where tz =

∑
U zk and n = Ep(ns) is the

expected sample size. (In the rest of the paper it is assumed that nzk/tz ≤ 1,
k = 1, ..., N.)

Much of the discussion in the literature focusses on strategies, design-
estimator pairs, in which a πps(z) design is combined with the unbiased π
estimator (Horvitz-Thompson estimator, HT estimator)

t̂yπ =
∑

k∈s

yk

πk

=
∑

s

yk

πk

(1)

From this expression, we see that if the study variable y is exactly propor-
tional to the size variable z, i.e. yk = czk (k = 1, ..., N), we have

t̂yπ =
ns

n
ty

which means that (i) for a random size design the only variation of the
estimator is due to variation in the sample size, while (ii) for a design of
the fixed given size n there is no variation at all, since all samples of the
given size result in t̂yπ = ty. So, if it is possible to find a size variable which
is approximately proportional to the study variable, the π estimator should
perform well. These facts are the original reasons for the long-lasting search
for πps designs with good properties.

However, there is no reason to restrict the discussion to strategies based
on the π estimator. On the contrary, in situations suitable for πps sampling,
we are apt to have access to auxiliary variables which can be used for GREG
(generalized regression) estimation. Thus, we will now suppose that it is
possible to use the Q auxiliary variables to form another set of auxiliary vari-
ables x1, . . . , xj , . . . , xJ . Let, for k = 1, ..., N , xk = (x1k, . . . , xjk, . . . , xJk)

′

be a known vector, let tx =
∑

U xk = (tx1 , . . . , txj
, . . . , txJ

)′ and let t̂xπ =

(t̂x1π, . . . , t̂xjπ, . . . , t̂xJπ)′ be the corresponding π estimator. The GREG es-
timator can now be defined as

t̂yGREG = t̂yπ + (tx − t̂xπ)′B̂ (2)

where

B̂ =

(∑
s

xkx
′
k

ckπk

)−1∑
s

xkyk

ckπk

(3)

where ck is a suitably chosen constant. If there is a strong linear relationship
between y and x, the GREG estimator will outperform the π estimator.
For a full account of the reasoning behind the GREG estimator and further
results, see e.g. chapter 6 in Särndal, Swensson and Wretman (1992), SSW
for short.
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For the comments to be made later in this paper we need a result from
chapter 12 in SSW, which should be consulted for more detail. Suppose that
the regression model ξ underlying the GREG estimator can be assumed to
be

yk = x′
kβ + εk (4)

with 
Eξ(εk) = 0
Vξ(εk) = σ2

k

Eξ(εkεl) = 0; k �= l
(5)

where σ2
1 , ..., σ

2
N are known up to a constant multiplier. In this case, an

approximation to the anticipated variance

EξEp[(t̂yGREG − ty)
2]− [EξEp(t̂yGREG − ty)]

2

denoted ANV (t̂yGREG) is given by

ANV (t̂yGREG) =
∑

U
(π−1

k − 1)σ2
k (6)

Result 12.2.1 in SSW now states that for a sampling design p(·) such that
Ep(ns) = n, an optimal design is such that the first-order inclusion proba-
bilities are given by

πk = π0k = nσk/
∑

U
σk (7)

Many sample selection schemes which implement πps sampling designs
have been proposed over the years, the most popular in applications being
the systematic sampling procedure suggested by Madow (1949). For ex-
ample, Brewer and Hanif (1983) list 50 schemes. However, if we exclude
random size designs, it has turned out to be hard to devise a scheme for
arbitrary sample size n that has a number of desirable properties, e.g. (a)
the actual selection of the sample is relatively simple, (b) all first-order in-
clusion probabilities are strictly proportional to the size variable, (c) the
design admits (at least approximately) unbiased estimation of the design
variances Vp(t̂yπ) and Vp(t̂yGREG). If we also want to be able to base the
sample selection on the technique of permanent random numbers (PRN ),
which is desirable in large survey organizations taking many surveys, some
of which are repeated over time, it will be even harder. (For a fairly recent
overview of the PRN technique, see Ohlsson (1995).)

In this paper we will give a very brief account of, and a few comments
on, Pareto πps sampling introduced by Rosén (1997a,b) as a special case
of a more general class of designs proposed by him under the name of
Order (sampling with fixed distribution shape) πps sampling, and Poisson
mixture (PoMix) sampling proposed by Kröger, Särndal and Teikari (1999,
2000). These designs will be briefly compared to model-based simple random
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stratified sampling, proposed by Wright (1983), as outlined in chapter 12 of
SSW. All these designs may be alternatives for the practitioner when the
use of the PRN technique is desirable.

2. A brief account of selected designs

In this brief overview, no account will be given of how to implement the
selected designs by using the PRN technique, since our comments will focus
on other aspects. The reader is referred the relevant literature, e.g. Ohls-
son (1995) and Kröger, Särndal and Teikari (1999) and further references in
these papers. We will also assume that the reader is familiar with Poisson
sampling and its special case Bernoulli sampling, e.g. as described in SSW.

2.1. Pareto πps sampling. Generalizing a πps sampling approach sug-
gested by Ohlsson (1990, 1998) under the name sequential Poisson sampling,
Rosén (1997a,b) introduces a family of fixed size order πps schemes, of which
sequential Poisson sampling is a special case. A particularly good scheme
in this family is Pareto πps sampling. A Pareto πps(z) sample is realized
as follows: (i) Compute λk = nzk/tz, k = 1, ..., N, (called target inclusion
probabilities). (ii) Realize independent standard uniform random variables
U1, U2, ..., UN and form the ranking variables

Qk =
Uk(1− λk)

λk(1− Uk)
(k = 1, ..., N) (8)

(iii) The elements with the n smallest Qk-values then constitute the sample
s (of size n) to be surveyed.

As an estimator for the population total ty Rosén suggests the so-called
quasi-HT-estimator

t̂yqHT =
∑

s

yk

λk
(9)

The motivation for the prefix ”quasi” lies in the fact that the target inclu-
sion probabilities λk do not exactly equal the corresponding true first-order
inclusion probabilities, πk, of the design. However, extensive studies show
that in most applied settings the differences are negligible. (The true πk

can be calculated to any degree of precision by an algorithm given by Aires,
see Aires (2000) and earlier references in this PhD thesis.) See also Traat,
Bondesson and Meister (2000). Rosén also provides the asymptotic variance
and an easily calculated consistent variance estimator. Furthermore, Rosén
(2000) outlines results for generalized regression estimation and Pareto πps
sampling.

2.2. Poisson Mixture (PoMix) sampling
2.2.1. Random size PoMix sampling. In Kröger, Särndal and Teikari

(1999) Poisson Mixture (PoMix ) sampling is introduced. It is based on the



146 ANDERS HOLMBERG AND BENGT SWENSSON

random size Poisson sampling design. If we disregard its implementation
by the use of permanent random numbers, it can simply be described as
follows. Let πPO

k = nzk/tz be the inclusion probabilities that would be
used for a Poisson πps(z) sampling design, let f = n/N be the expected
sampling fraction, and fix a value w ∈ [0, f ], where w is called the Bernoulli
width. Compute the PoMix first-order inclusion probabilities by the linear
transformation

πk = w + (1− w/f)πPO
k (10)

and draw a Poisson sample using these latter (non-πps) inclusion probabil-
ities. The term PoMix is used because the inclusion probabilities alterna-
tively can be written as

πk =
w

f
πBE

k + (1− w

f
)πPO

k (11)

where πBE
k = f is the constant inclusion probability that would be used in

Bernoulli sampling with expected size n (which, of course, is a special case
of Poisson sampling.) Choosing w = 0 leads to Poisson πps(z) sampling,
w = f leads to Bernoulli sampling, while intermediate w values can be
regarded as a Poisson-Bernoulli sampling mix.

The authors conduct a Monte Carlo study (based on slightly modified
real data from 1,000 Finnish enterprises), where four different estimators
for the population total ty, the π (HT ) estimator and three variants of the
GREG estimator, are considered, while using various Bernoulli widths. The
three GREG estimators behave similarly, and they outperform by far, as
expected, the π estimator. The authors also note that for their particular
study the choice w = 0.3f seems to be optimal, and it is offered as a
tentative general recommendation. However, no strong underpinning of
this recommendation is given.

2.2.2. Fixed size PoMix sampling. Choosing a random size design like
Poisson πps sampling instead of a corresponding fixed size design inflates
the variance of the π estimator. However, there is essentially no such vari-
ance penalty when using GREG estimation. On the other hand, we still
have to put up with an unpredictable sample size, an annoyance to many
practitioners. This is the reason for Kröger, Särndal and Teikari (2000) to
consider a fixed size PoMix approach based on order πps sampling.

The approach is essentially as follows. Let λORD
k = nzk/tz be target

inclusion probabilities that would be used for an order πps(z) sampling
design (sequential Poisson sampling and Pareto sampling are used in the
paper), let f = n/N be the sampling fraction, and fix a value w ∈ [0, f ],
where w is the width parameter. Compute the PoMix first-order target
inclusion probabilities by the following linear transformation of the λORD

k

λk = w + (1− w/f)λORD
k (12)
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and draw an order sample using these latter (non-πps) target inclusion
probabilities. The target inclusion probabilities can also be written as

λk =
w

f
λSI

k + (1− w

f
)λORD

k (13)

where λSI
k = f is the constant target inclusion probability that would be

used in simple random without-replacement sampling (SI for short) of size
n (which, of course, is a special case of order sampling.) Choosing w = 0
leads to order πps(z) sampling, w = f leads to SI, while intermediate w
values can be regarded as an Order-SI sampling mix.

The authors undertake a Monte Carlo study, based on artificial data gen-
erated from models where the regression of y on x (one auxiliary variable)
is linear through the origin with three different degrees of heteroscedasticity
using two sets of xk-values with different skewness. Two different GREG
estimators are included (together with the quasi-HT estimator.) Among
the conclusions are a recommendation to use a value of w in the range 0.2f
to 0.6f for populations of the type considered in the study. The paper leaves
unanswered the question of an optimal choice of w.

2.3. Model-based stratified simple random sampling. Suppose that
the regression model ξ underlying the GREG estimator is as assumed by
equations (4)-(5). Model-based stratified simple random sampling (mb-
STSI), proposed by Wright (1983), is an approach which comes close to an
optimal design. It is achieved as follows (borrowing from the presentation
in SSW ).

1. Order the values σk in increasing magnitude

σ(1) ≤ σ(2) ≤ . . . ≤ σ(N) (14)

2. Let H be the number of strata wanted, and calculate
∑

U σ(k) = Nσ̄.
In the first stratum, U1, include the first N1 elements ordered as in
(14) so that

∑
U1

σ(k) is as close as possible to Nσ̄/H. In the second
stratum, U2, include the next N2 elements ordered as in (14) so that∑

U2
σ(k) is as close as possible to Nσ̄/H, and so on.

3. Allocate (as close as possible) equally the n sample elements, i.e. take
nh = n/H , h = 1, ..., H.

4. Select by simple random without-replacement sampling nh elements
from Uh, h = 1, ..., H.

2.4. Comments on the choice of sampling design. Suppose that
the regression model (4)-(5) is such that the heteroscedasticity is given by
σ2

k = σ2zγ
k , i.e.
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yk = x′
kβ + εk

with 
Eξ(εk) = 0
Vξ(εk) = σ2

k = σ2zγ
k

Eξ(εkεl) = 0; k �= l
(15)

and that we want to use the GREG estimator (2). In this case, using
equation (7), an (approximately) optimal design is such that

π0k = nσk/
∑

U
σk = nz

γ/2
k /

∑
U

z
γ/2
k (16)

Furthermore, suppose that we in the planning phase of the survey use γp,
which means that we misjudge the heteroscedasticity if γp �= γ. This may
for example be the case if we use the standard approach γp = 2, leading to
inclusion probabilities directly proportional to z. Whatever the reason, we
end up with the inclusion probabilities

πpk = nz
γp/2
k /

∑
U

z
γp/2
k (17)

Let πpk(w) be the transformed inclusion probabilities used in PoMix sam-
pling, and let t̂yGREG0 and t̂yGREGp(w) be the GREG estimators based on the
two sets of inclusion probabilities, given by (16) and (17), respectively. (In
the case of order sampling the π0k and πpk are replaced by the corresponding
λ0k and λpk, respectively.) The two ANV s are now given by

ANV (t̂yGREG0) = σ2
∑

U
(π−1

0k − 1)zγ
k (18)

and
ANV (t̂yGREGp(w)) = σ2

∑
U
[πpk(w)−1 − 1]zγ

k (19)

respectively. Finally, let

AV P (γp, w) =
ANV (t̂yGREGp(w))

ANV (t̂yGREG0)
=

∑
U [πpk(w)−1 − 1]zγ

k∑
U(π−1

0k − 1)zγ
k

(20)

be a measure of the approximate anticipated variance penalty of using the
non-optimal inclusion probabilities

πpk(w) = w + (1− w/f)
nz

γp/2
k∑

U z
γp/2
k

Note that AV P (γp, 0) corresponds to no PoMix transformation at all,
and hence measures the approximate anticipated variance penalty of using
direct πps(zγp/2) sampling (e.g. Poisson sampling or Pareto sampling).
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2.5. Comments based on anticipated variances. Our comments in this
subsection will be based on a numerical example, using N = 1000 values on
a right-skewed z-variable. This set of values is essentially a blown up version
of the 1975 population sizes of the 281 smallest Swedish municipalities (e.g.
Stockholm, Gothenburg and Malmö are excluded), and it could be seen
as a rather typical size variable when πps sampling is contemplated. The
(expected) sample size is n = 50.

2.5.1. Effects of using nonoptimal direct πps(zγp/2) sampling. In order to
find a near optimal design, it is essential to have decent a priori knowledge
of the value of the heteroscedasticity parameter γ. Table 1 portrays the
approximate anticipated variance penalty for a few combinations of (γ, γp).

Table 1. AV P (γp, 0) for selected values of (γ, γp)
γp

0.00 0.50 1.00 1.50 2.00 2.50
0.00 1 1.07 1.32 1.91 3.38 7.52
0.50 1.06 1 1.06 1.27 1.72 2.73

γ 1.00 1.24 1.05 1 1.05 1.24 1.62
1.50 1.56 1.22 1.05 1 1.05 1.22
2.00 2.10 1.52 1.21 1.05 1 1.05
2.50 2.99 2.03 1.50 1.20 1.05 1

Table 1 gives an indication of the penalty that results from choosing an
”incorrect” planning value for γ. For |γp − γ| ≤ 0.5 there is only a slight
variance increase, while |γp − γ| > 1 may lead to severely increased vari-
ances. For example, using γp = 2, corresponding to inclusion probabilities
proportional to z, when γ in fact is 0.5, leads to a 72% variance increase.

Since most surveys have many survey variables which may exhibit quite
different degrees of heteroscedasticity and since we can only use one set of
inclusion probabilities in a specific survey, it is obvious that planning for
good variance properties of one estimator, may be bought at a high price
for estimators of other survey variable totals.

Table 1 also indicates that if you have good knowledge of γ, i.e. can
choose a γp-value close to γ, there is, from a pure optimality perspective,
little to win by using PoMix.

2.5.2. Effects of using PoMix sampling. In Kröger et al (1999) PoMix
sampling from an empirical population is studied using γp = 2 when γ ≈
1.45. In their application, the best choice of w/f seems to lie in the neigh-
borhood of 0.3. As a tentative recommendation, they propose the use of
w = 0.3f .

In table 2 below we give optimal choices (determined by a numerical
search algorithm) of w/f for different combinations of (γ, γp) together with
the corresponding anticipated variance penalties for PoMix sampling from
our population.
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Table 2. AV P (γp, wopt) indexed by wopt/f
for selected values of (γ, γp)

γp

0.00 0.50 1.00 1.50 2.00 2.50
0.00 1 1 1 1 1 1 1 1 1 1 1

0.50 1.06 10 1.00 0.47 1.01 0.66 1.01 0.75 1.01 0.82

γ 1.00 1.24 1.050 10 1.01 0.30 1.02 0.45 1.03 0.58

1.50 1.56 1.220 1.050 10 1.01 0.20 1.03 0.35

2.00 2.10 1.520 1.210 1.050 10 1.01 0.14

2.50 2.99 2.030 1.500 1.200 1.050 10

From table 2 it is clear that wopt = 0 when γp < γ, i.e. no design mix. When
γp > γ, it is always possible to find a PoMix transformation which leads to
an almost optimal design. For example, using the standard value γp = 2,
we can for known γ always find wopt. (Note that, for a given planning value
γp, larger (γp − γ) differences demands larger wopt.) However, since this
demands very good knowledge of the heteroscedasticity pattern, it will be
difficult to achieve.

Remark. It seems to be difficult to find a general closed analytical exact
expression for wopt. In our specific application, a good approximation when
γ ≤ γp is given by wopt/f ≈ (1−f/2)(1−γ/γp), extending a hint by Axelson
(2001).

Kröger et al (1999) recommend the use of w = 0.3f as a compromise
value. In table 3 the anticipated variance penalty is given when using this
compromise value. To make it easier to compare PoMix sampling, using
the compromise value for w, with direct πps(zγp/2) sampling we also give the
ratio between ANV (t̂yGREGp(0.3f)) and ANV (t̂yGREGp(0)) in table 4, which
thus directly indicates when the use of PoMix might be profitable.

Table 3. AV P (γp, 0.3f) for selected values of (γ, γp).

γp

0.00 0.50 1.00 1.50 2.00 2.50
0.00 1 1.03 1.11 1.23 1.38 1.54
0.50 1.06 1.01 1.01 1.06 1.14 1.25

γ 1.00 1.24 1.09 1.02 1.01 1.03 1.10
1.50 1.56 1.29 1.13 1.04 1.02 1.03
2.00 2.10 1.65 1.35 1.17 1.07 1.04
2.50 2.99 2.24 1.74 1.41 1.22 1.11

From tables 3 and 4 it is obvious that in situations where γp > γ, we
will be better off using PoMix than using direct πps(zγp/2) sampling, since
PoMix is less sensitive to deviations of γp from γ.
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Table 4. ANV (t̂yGREGp(0.3f))/ANV (t̂yGREGp(0))

for selected values of (γ, γp).

γp

0.00 0.50 1.00 1.50 2.00 2.50
0.00 1 0.96 0.84 0.64 0.41 0.20
0.50 1 1.01 0.95 0.83 0.66 0.46

γ 1.00 1 1.04 1.02 0.96 0.83 0.68
1.50 1 1.06 1.08 1.04 0.97 0.84
2.00 1 1.09 1.12 1.11 1.07 0.99
2.50 1 1.10 1.16 1.18 1.16 1.11

2.5.3. Effects of using mb-STSI. Good stratified simple random sam-
pling is often a robust approach, which is one of the reasons for its popularity
among practitioners. Since model based stratified simple random sampling
is expected to come close to being an optimal design, one might expect this
design to be a good compromise candidate in survey settings where the use
of πps sampling is contemplated.

Let ANVmb-STSIH
denote the approximate anticipated variance of the

GREG estimator under mb-STSI using H strata. In table 5 the ratio
between ANVmb-STSIH

and ANV (t̂yGREGp(0)) is given for a few values of γ
and γp. From this table we see that mb-STSI seems to be less sensitive to
nonoptimal choices of γ than πps. It should therefore be consider to be a
serious contender to various πps designs, since it also, like PoMix, avoids
the problem of extremely small inclusion probabilities.

Table 5. ANVmb-STSI10/ANV (t̂yGREGp(0))

for selected values of (γ, γp),

γp

0.00 0.50 1.00 1.50 2.00 2.50
0.00 1 0.99 0.94 0.81 0.59 0.34
0.50 1 1 1.00 0.97 0.88 0.71

γ 1.00 1 1.01 1.01 1.02 1.00 0.94
1.50 1 1.01 1.02 1.02 1.03 1.03
2.00 1 1.03 1.02 1.02 1.04 1.05
2.50 1 1.04 1.05 1.03 1.04 1.05

2.6. Comments based on a minor simulation study. Anticipated
variances give rough guidelines for practical work. However, for any real
finite population, factual conditions will deviate more or less from model
assumptions. Hence, it will be valuable to get insights from actual sampling
from finite populations that mirror such conditions. To this end, we will
now give a few results from a minor simulation study.
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2.6.1. Study design. For the simulation study we have used a finite pop-
ulation U of size N = 1, 000, three study variables and one auxiliary vari-
able. This population is a blown up version of an authentic population, viz.
MU281, which consists of the 281 smallest Swedish municipalities accord-
ing to the 1975 population size as given in SSW (Appendix B). Although
we use an artificial population, it should closely mirror actual real-world
conditions, since it has been created using a method suggested by Vale
and Maurelli (1983), which essentially preserves the correlation structure,
marginal means, variances, and coefficients of skewness and kurtosis of the
original population with respect to study variables and auxiliary variables.
In the present study P75 (1975 population) is used as the only auxiliary
variable, while REV84 (1984 real estate values), P85 (1985 population)
and RMT85 (1985 revenues from municipal taxation) are used as study
variables. P75 serves as auxiliary variable x in the regression estimator for
each of the study variable totals, and it is also used as size variable z in the
designs. The regression of each of the three study variables on the auxiliary
variable is linear, deviating more or less from the origin. Summary results
for ordinary (unweighted) least squares linear regressions on the popula-
tion data is given in table 6, together with ML estimates of γ according to
Harvey (1976).

Table 6. Summary results of population OLS linear
regression and ML estimates of γ

Regression R2 (%) γ̂
REV 84 = 506.8 + 94.1P75 83.5 0.6
P85 = 0.30 + 1.03P75 99.1 1.1
RMT85 = −17.1 + 8.55P75 97.5 1.5

For each γp = 0, 0.5, 1, 1.5, 2 and 2.5 three sampling designs were used,
viz. (D1) Pareto πps(zγp/2), (D2) PoMix based on a Pareto-SI mix with

λk = w + (1− w/f)λPar
k , where w = 0.3f and λPar

k = nz
γp/2
k /

∑
Uz

γp/2
k , and

(D3) mb-STSI with H = 10 strata formed by using σ2
k = σ2z

γp

k . For each
of the 6 × 3 = 18 combinations A = 10,000 independent samples of size n
= 50 were drawn. For sample a = 1, ..., A the three study variable totals
were estimated using the simple regression estimator

t̂yGREG = N [ỹs + B̂(x̄U − x̃s)]

where ỹs = (
∑

syk/πk) /N̂ , x̃s = (
∑

sxk/πk) /N̂ , N̂ =
∑

s1/πk, and where

B̂ = (
∑

s (xk − x̃s) (yk − ỹs)/πk) /
∑

s (xk − x̃s)
2 /πk. (For the two designs

D1 and D2 the πḱ s were replaced by λḱ s.) For each of the 18 combinations
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the variance of t̂yGREG, for each of the three estimators for the study variable
population totals, was estimated by

S2(t̂yGREG) =
∑A

a=1

(
t̂yGREGa −

∑A
a=1t̂yGREGa/A

)2

/(A− 1)

Finally, using Pareto sampling as benchmark, the variance ratios

S2(t̂yGREG)PoMix

S2(t̂yGREG)Pareto

and
S2(t̂yGREG)mb-STSI

S2(t̂yGREG)Pareto

(21)

were computed for each study variable.
2.6.3. Results and comments. The 18 variance ratios are given in table

7 below.

Table 7. Variance ratios according to (21)
using Pareto sampling as benchmark.

γp

0 0.5 1 1.5 2 2.5
REV84 PoMix 1 1.04 1.01 0.91 0.77 0.64
(γ̂ = 0.6) mb-STSI 0.95 0.93 0.94 0.91 0.88 0.83
P85 PoMix 1 1.05 1.05 0.96 0.85 0.73
(γ̂ = 1.1) mb-STSI 0.95 0.94 0.92 0.90 0.88 0.87
RMT85 PoMix 1 1.06 1.06 0.99 0.88 0.78
(γ̂ = 1.5) mb-STSI 0.93 0.96 0.93 0.91 0.88 0.88

Comparing tables 4, 5 and 7, we see that the simulation results by and
large give the same picture as the results from the study of anticipated
variances. In fact, mb-STSI now seems to perform even better.

3. Conclusions

During the last few years a renewed interest in unequal probability sam-
pling has emerged among survey statisticians. In addition to the papers
mentioned above, reference might be given to e.g. Sugden et al (1996),
Berger (1998), Deville and Tillé (1998), and Agarwal and Kumar (1998). In
the present paper we have focussed on sampling designs and schemes which
admit the use of permanent random numbers. As is obvious from our brief
overview, the introduction of order πps sampling and PoMix sampling has
equipped the survey sampling practitioner with new valuable tools. How-
ever, it is also obvious from our results, based on anticipated variances and a
simulation study from a population that mirrors factual conditions, that the
somewhat older model-based stratified sampling approach still is a strong
alternative in applications where probability proportional-to-size sampling
is considered to be appropriate.
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Sweden.

2. Agarwal, S.K., and Kumar, P. (1998). On the relative efficiency of estima-
tors of population total in unequal probability sampling when the study
variable has weak relationship with size variable. Computational Statistics
& Data Analysis, 28, 271-281.

3. Axelson, M. (2001). Personal communication.
4. Berger, Y.G. (1998). Variance Estimation Using List Sequential Scheme

for Unequal Probability Sampling. Journal of Official Statistics, 14, No.
3, 315-323.

5. Brewer, K.R.W., and Hanif, F. (1983). Sampling with Unequal Probabili-
ties. Springer-Verlag, New York.
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OPTIMAL PORTFOLIO THEORY FOR STABLE
DISTRIBUTED RETURNS

In this paper we examine the foundations of the classical portfolio
theory for assets with heavy-tailed distributed returns. We show
that the optimal allocation can be significantly changed if the heavy-
tailedness (non-normality) of the asset returns is taken into account.
The paper is based on results obtained jointly with Sergio Orto-
belli, University of Bergamo, Svetlozar (Zari ) Rachev, University of
Karlsruhe and UCSB, and Eduardo Schwartz, Anderson School of
Management.
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1. Introduction

In this work we introduce a stable (non-Gaussian) model for optimal
portfolio choice. While a vast number of empirical studies confirm that
financial asset returns are not normally distributed, many concepts in theo-
retical and empirical finance that have been developed over the past decades
still rest upon the assumption that asset returns follow a normal distribu-
tion.

The fundamental works of Mandelbrot (1962, 63a,b, 67) and Fama
(1965) have sparked considerable interest in studying the heavy-tailedness
of the empirical distributions of financial returns. The excess kurtosis found
in Mandelbrot’s and Fama’s investigations led them to reject the normal as-
sumption and propose the stable Paretian distribution as a statistical model
for asset returns. The Fama and Mandelbrot conjecture was supported by
numerous empirical investigations in the subsequent years (see the recent
work of Mittnik, Rachev and Paolella (1997) and the references in Rachev
and Mittnik (2000)). In fact, several empirical studies have examined the
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distributional properties of stock returns and found that empirical distribu-
tions of stock returns are typically fat tailed and more peaked around the
origin than the normal distribution.

The practical and theoretical appeal of the stable non-Gaussian ap-
proach is given by their attractive properties that are almost the same as
the normal one. A relevant desirable property of the stable distributional
assumption is that stable distributions have domain of attraction. Hence,
any distribution in the domain of attraction of a specified stable distribu-
tion will have properties which are close to those of the stable distribution.
The second attractive aspect of the stable- Paretian assumption (that is,
the stable non-Gaussian assumption) is the stability property, i.e. stable
distributions are stable with respect to summation independent identically
distributed random variables. Hence, the stability governs the main proper-
ties of the underlying distribution. Detailed accounts of theoretical aspects
of stable distributed random variables can be found in Janicki and Weron
(1994).

The fundamental portfolio optimization problem consists of minimiza-
tion of the individual risk when the mean portfolio return meets a given
benchmark. The goal of this paper is to implicitly propose the mean risk
analysis that facilitates the interpretation of the obtained results.

We consider as risk measure the expected value of a power of the mean
absolute deviation (hence when the power is equal to two we obtain the
classical quadratic optimal problem). We examine the optimal allocation
between a riskless return and risky stable distributed returns, and then
we compare the allocation obtained with the Gaussian and the stable non-
Gaussian disributional assumption for the risky return.

In the second section we introduce the optimal portfolio allocation prob-
lem. In the following section we analyze the obtained results for different
risk powers. The last section briefly summarizes the results.

2. An optimal allocation problem with stable distributed

returns

Consider the problem of finding the optimal allocation in an investment
portfolio x′z, where x is the weight vector, z = [z0, z1, . . . , zd]

′ is the vector of
asset returns in which z0 is the risk free asset return, and zi, i = 1, 2, . . . , d
is the i-th risky asset return. The problem is to minimize the investor’s
individual risk E (|x′z −E(x′z)|r), where r is the ”power-of-risk”. In this
framework, the investor’s goal is to find an optimal portfolio that maximizes
the expected mean of the increment wealth E(x′z), or, alternatively, an
optimal portfolio, that maximizes the utility functional

U(x′z) = E(x′z)− cE (|x′z −E(x′z)|r) , (1)
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where c and r are positive real numbers.

We assume that the vector of risky asset returns, z, is α-stable dis-
tributed, with index of stability α > 1 – which implies the existence of the

first moment – that is: z
d
= Sα(σz, βz, mz), where α is the index of stability,

σz is the scale (dispersion) parameter, βz is the skewness parameter, and
mz is the mean vector of z.

Suppose that short selling is allowed, but it is uniformly bounded, say
−0.03 ≤ xi ≤ 1, i = 0, 1, . . . , d. Thus we have the following minimization
problem:

minx E (|x′z − E(x′z)|r) ,
x′µ = mz,
x′e = 1,
−0.03 ≤ xi ≤ 1, i = 0, 1, . . . , d,

(2)

where µ = [µ0, µ1, . . . , µd]
′ is the vector of means of the asset returns, and

e = [1, . . . , 1]′.

In Problem (2) the objective functional is non-differentiable. Applying
in this case the subdifferential approach (see B. Morduchovich (1988) and
Appendix A) we obtain a numerical solution of (2).

Notice that r ∈ [1, α] and 1 < α < 2. In fact when, which is possible only
in the Gaussian case, and thus, the optimization problem (2) is equivalent
to the Markowitz - Tobin mean-variance model, that is, to the following
quadratic programming problem :

minx x′Qx,
x′µ = mz,
x′e = 1,
−0.03 ≤ xi ≤ 1, i = 0, 1, . . . , d,

(3)

where Q is the covariance matrix of the multivariate normal distributed
vector of returns r.

In this case the utility functional is the quadratic one. As it is well-
known (see the references in Ortobelli, Rachev and Schwartz (1999)) the
quadratic utility is sufficient for asset choice to be completely described in
terms of a preference relation defined over the mean and variance of expected
returns, but quadratic utility displays the undesirable properties of satiation
and increasing absolute risk aversion. Thus economic conclusions based on
the assumption of quadratic utility functions are often counter-intuitive and
are not applicable to individuals who always prefer more wealth to less and
who treat risky investments as normal goods.

3. Analysis of the numerical results
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We numerically solved problem (2) for series of index-daily returns (the
same data were used by Ortobelli, Rachev, Huber and Schwartz (2000) and
Ortobelli, Rachev, Schwartz (1999)).

(i) 13 risky asset returns and a risk free asset return;

(ii) 3 risky asset returns (DAX30, CAC40 and S & P500) and a risk free
asset return;

(iii) one risky asset return (S & P500) and a risk free one.

The risk free return is given by the three-month-LIBOR, 6 % p.a.
In order to make a choice for the power-of-risk r in problem (2), we first

estimate the stable parameters of the asset returns in the above portfolio.
Below is the table of estimated parameters of the stable fit to the sample
distribution of z. The estimation procedure is done via ML- method, see
Rachev and Mittnik (2000) and the references there in.

Table 1: Estimated stable daily index parameters

andreas.huber@ α β µ σ
mannheim.deAsset
DAX 30 1.6541 -0.3085 0.0010 0.0076
DAX 100 Perfomance 1.6311 -0.2870 0.0010 0.0070
CAC 40 1.8107 -0.4292 0.0006 0.0087
FTSE ALL SHARE 1.7453 -0.1140 0.0005 0.0053
FTSE 100 1.8066 -0.0429 0.0006 0.0062
FTSE ACTUARIES 350 1.7599 -0.1052 0.0006 0.0056
Nikkei 300 weighted stock 1.7244 0.0293 0.0001 0.0080
average
Nikkei 300 simple average 1.7167 -0.0036 0.0003 0.0074
Nikkei 500 1.7190 -0.0944 0.0000 0.0075
Corn No2 Yellow cents 1.6833 -0.1907 0.0000 0.0083
Coffee Brazilian 1.5763 -0.0587 0.0000 0.0143
Dow Jones Industrials 1.7355 -0.2471 0.0009 0.0049
S & P 500 Composite 1.6976 -0.0677 0.0010 0.0046

Because r ∈ [1, α) we performed the tests for the following values r =
1, r = 1.5, and r = 1.65. We also considered the normal case when r = 2.
The results of the numerical solution are shown on the figures 1-6.

The numerical tests showed that the best value of the risk power for
the other portfolios is r = 1 (Fig. 1, 2, 4). This value is often used in
practice because it satisfies the condition r < α, (α ∈ (1, 2]). In this case
it is not necessary to estimate the index of stability for each asset return.
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The efficient frontiers for r = 1.5, 1.65 and 2 are represented in Figures 3, 5
and 6. Zenios (1993) obtained similar results in the Gaussian case. These
graphs show that model (2) is sensitive to numerical errors and the obtained
real efficient frontiers are not optimal.

4. Conclusions

We introduce a numerical method for solution of an optimal allocation
problem in portfolio of assets that have different individual stable parame-
ters, thus allowing for various heavy-tailedness of the asset returns’ distri-
butions. The algorithm does not require imposing a general stable index α
for all the assets in the portfolio in contrast to the analytical approach.
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We believe that our approach can be a basis for software development
the goal of which is (i) to perform statistical forecast of distributions of
asset returns according to the historically estimated stable parameters and
then (ii) to obtain an optimal portfolio using the above proposed numerical
algorithm.

In our next paper we will present the new results on the model enhance-
ment: adjusting the input data using prior information, add constraints
(turnover, diversification, bounds) and testing for minimum- variance effi-
ciency within confidence limits.

Appendix A

We approximate the theoretical minimizing functional by it sample coun-
terpart:

E (|x′z − E(x′z)|r) ∼ 1

N

N∑
j=1

∣∣∣∣∣
d∑

i=0

xi(z
(j)
i − µi)

∣∣∣∣∣
r

, (A1)

where µi is the mean of the i-th asset return. Denote ci,j = (z
(j)
i − µi)/N .

Then the problem can be written in the following form

minxi

∑N
j=1

∣∣∣∑d
i=0 xici,j

∣∣∣r ,∑d
i=0 xiµi = mz,∑d
i=0 xi = 1,

−0.03 ≤ xi ≤ 1, i = 0, 1, . . . , d.

(A2)

The numerical solution of problem (A2) requires the computation of the
functional and subjective gradients (Optimization Toolbox User’s Guide,
Copyright 1990-1997 by MathWorks, Inc.). First we find the functional
gradient:

∂f

∂xi
=

∂

∂xi

N∑
j=1

∣∣∣∣∣
d∑

i=0

xici,j

∣∣∣∣∣
r

=

N∑
j=1

(
∂

∂xi

∣∣∣∣∣
d∑

i=0

xici,j

∣∣∣∣∣
r)

= r

N∑
j=1

∣∣∣∣∣
d∑

i=0

xici,j

∣∣∣∣∣
r−1

c̃i,j,

where

c̃i,j =


ci,j , xi > 0,
[−ci,j , ci,j], xi = 0,
−ci,j , xi < 0,

i = 0, 1, . . . , d, j = 1, 2, . . . , N.

We set g1 =
∑d

i=1 xiµi − mz , g2 =
∑d

i=1 xi − 1. Then the subjective
gradients are ∂g1/∂xi = µi, ∂g2/∂xi = 1, i = 0, 1, . . . , d.
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MONTE CARLO STUDIES OF AMERICAN TYPE
CALL OPTIONS WITH DISCRETE TIME1

The paper presents an algorithm for studies of optimal stopping do-
mains of American type call options with discrete time. To study
the stopping domain for each moment before the expiration day we
use a grid structure with discrete points. The idea is to compare the
profit from exercising the option with the expected profit of a future
exercise for every point on the grid. The expected profit is estimated
using a Monte Carlo method. Stopping domains for several differ-
ent types of payoff functions are presented. The paper also presents
studies of the probability of classification errors.
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1. Introduction

An option is a contract between a seller and a buyer, concerning some
underlying asset, giving the buyer the right, but not the obligation, to buy
(or sell) the underlying asset to a fixed price called the strike price. The
underlying asset can for example be a stock, a foreign currency or a stock
index. The option is only valid during a specific time period and it expires
at the expiration day.

There are several different types of options; e.g. American and European.
The difference between an American type option and an European type
option is in the ways to exercise the option. For the American type option,
it is possible to exercise the option at any given time until the expiration
date. For the European type option, on the other hand, it is only possible

1This work is supported in part by the project ”Stochastic modelling of insurance and
finance processes and systems” funded by The Knowledge Foundation.
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to exercise the option at the expiration date. For the holder of an European
type option it is always possible to resell the option in order to generate
a profit or minimize losses, and this reselling is similar to the exercising of
an American type option. In this paper only American type options are
considered.

For both the buyer and the seller of the option, it is important to max-
imize the profit of the investment. In this paper we study only optimal
strategies for buyer of American type options. The buyer of the American
type option is interested to determine when to exercise the option in or-
der to maximize the profit. The problem is to find the optimal time for
exercising the option.

The optimal time to exercise the option depends on which type of payoff
function that is used. There is a specific payoff function for each option type.

Optimal time to exercise the option is determined by the optimal stop-
ping domain. The stopping domain is defined for each moment as the set of
all stock prices for which it is better to exercise the option than to keep it.
The knowledge of the structure of the stopping domain of a payoff function
can be used to decide when to exercise an American type option. The first
time the price of the underlying stock enter the stopping domain, the rule
has to be to exercise the option. The structure of the stopping domain
varies between different types of payoff functions. The structure of the do-
main also depends on the volatility and the drift of the underlying stock,
and the risk-free interest rate in the market.

The present paper presents studies of the structure of the stopping do-
main for different types of payoff functions, in particular standard linear,
piecewise linear, quadratic, stepwise and logarithmic, for American type
options in discrete time. The studies are based on the Monte Carlo method
and the underlying stock is modelled with a geometrical random walk with
multiplicative increments with log-normal distribution.

Our discussion is based on the results of Kukush and Silvestrov (2000),
where theoretical studies of the stopping domains for standard, piecewise
linear convex and general convex payoff functions are presented. Boyle
(1977) introduced option pricing using the Monte Carlo method and a recent
survey of Monte Carlo methods in finance is given in Boyle, Broadie and
Glasserman (1997). A large variety of numerical methods in finance is
presented in the book edited by Rogers and Talay (1997). A survey of
recent numerical methods for pricing derivative securities are given in the
paper by Broadie and Detemple (1997).

In Section 2 different types of payoff functions are presented, a mathe-
matical definition of the stopping domains is also given and the model of
the underlying pricing process is introduced.

The Monte Carlo algorithm used to study the structure of the optimal
stopping domains are described in Section 3. To study the stopping domain,
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an upper and a lower threshold value of the initial stock price are set.
Between the boundaries we use a grid structure to choose the initial stock
price, i.e. the initial stock price can be chosen at levels which are increased
with a fixed delta from the lower threshold up to the upper threshold. The
idea is to work backward from the last moment N , the expiration date of the
option, until the first moment is reached and for each moment investigate the
stopping domain, i.e. which prices are contained in the set. By simulating
a large number of trajectories for each stock price on the grid, the expected
profit of the option is evaluated. If the expected profit is less than the profit
for the given stock price at the given moment, then the stock price is in the
stopping domain.

In Section 4 we analyze how good the results of the algorithm are. We
do this by investigating the probabilities of classification errors. There are
two types of classification errors. First, if the algorithm indicates that the
stock price belongs to the stopping domain but the right decision is that
it is not. Second, if the algorithm indicates that the stock price does not
belongs to the stopping domain, but the right decision is that it does. If we
know the probability of making a classification error for one point on the
grid, then we can estimate the probability of having a classification error
for the grid as a whole. And this gives us a way to decide how good our
results are.

Results of the experiments and several examples of the structures found
in the experiments are given in Section 5.

We would like to refer to the work by Peter Westermark (1999) where
some preliminary studies of the structures of optimal stopping domains for
some particular payoff functions were made with analogous methods. The
Bernoullian geometrical random walk was used as the model of the pricing
process of the underlying asset in this work.

Our studies cover a wider class of payoff functions and are based on a
more advanced model of the underlying pricing process, namely, the geomet-
rical random walk with log-normal multiplicative increments. This model
is a more realistic discrete analogue of the classical Brownian motion than
the Bernoullian geometrical random walk.

2. American Type Options

The American type option is defined by three parameters; the option
price C ≥ 0, the strike price K > 0 and the expiration date N . Since the
buyer always pays the price C for the option, the optimal stopping time
does not depend of C and hence we can simply set C = 0 in the studies of
the structure of the stopping domains.

Also, a payoff function is connected with the option. The payoff function
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is a function f : R+ → R+. We consider only payoff functions which are
homogenous in time.

A general formulation of the linear payoff function with a single slope is
given by

g(x) = a [x−Kn]+ =

{
a(x−K), if x > K,
0, if 0 ≤ x ≤ K,

(1)

where K > 0 and a > 0 is the strike price and the scale pricing coefficient,
respectively. For the payoff function of the standard American call option
with discrete time a = 1.

It is also interesting to study other types of payoff functions. The follow-
ing payoff functions are also considered in this paper. For all these payoff
functions the parameter K is called the strike price, by analogy with the
standard American option.

The piecewise linear payoff function with two intervals with different
slopes is given by

g(x) =


0, if x < K,
a1(x−K), if x ∈ [K, K ′),
a1(K

′ −K) + a2(x−K ′), if x ≥ K ′,
(2)

where K ′ > K > 0 is the second strike price and a1, a2 ≥ 0 are the scale
pricing coefficients for price intervals [K, K ′) and [K ′,∞), respectively.

Also, payoff functions with more than two intervals with different slopes
can be considered. However, we restrict our studies in this paper to the
simplest case with a payoff function with two intervals with different slopes
only.

Another payoff function considered is the quadratic function. A general
quadratic payoff function is given by

g(x) =

{
0, if x < K,
(x−K)2 if x ≥ K,

(3)

where K > 0 is again the strike price.
We can also construct a payoff function with stepwise increment, where

the payoff is constant on a certain level for a given price interval. For each
price interval [0, K1), [K1, K2), [K2, K3), ..., [KP−1, KP ), [KP ,∞) payoff val-
ues 0 < L1 < L2 < ... < LP < ∞ are defined. The general stepwise payoff
function can be defined by

g(x) =



0, if x ∈ [0, K1),
L1, if x ∈ [K1, K2),
L2, if x ∈ [K2, K3),
...

...
...

LP , if x ∈ [KP ,∞).

(4)
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In this paper we consider only stepwise payoff functions with two or three
steps.

The logarithmic function can also be interesting as a payoff function,
since it is non-convex, but monotonically increasing, and is commonly used
as a utility function. The logarithmic payoff function can be given by

g(x) =

{
0, if x ≤ K,
a ln(x−K), if x > K,

(5)

where again K > 0 and a > 0.
To model the underlying asset we consider a discrete time pricing pro-

cess. The discrete time pricing process considered can be formulated as

Sn = A(Sn−1, Yn), n = 0, 1, ..., N (6)

where A is a continuous function acting on R+ × R to R+, Sn is the stock
price at moment n and Yn, n = 0, 1, ..., N, is a sequence of i.i.d. non-negative
real-valued random variables. The initial value S0 of the pricing process is
a non-random value. In this paper the pricing process is considered to be a
geometrical random walk with multiplicative increment, i.e.

Sn = Sn−1Yn, n = 0, 1, ..., N (7)

where Yn have a log-normal distribution, i.e.

Yn = eµ+σXn , n = 0, 1, ..., N, (8)

and where µ and σ is the stocks drift and volatility, respectively, and Xn, n =
0, 1, ..., N, are independent standard normal random variables.

Since this paper presents studies of the structure of optimal stopping
domains, we have to define optimal stopping time and optimal stopping
domain.

The optimal stopping time τ ∗
opt has to be found in the set of all Markov

moments τ ≤ N and is given by the moment τ ∗
opt ≤ N which maximizes

the functional

Φg(τ) = Ee−rτg(Sτ), (9)

where r is the risk less interest rate. Thus, the optimal stopping time
satisfies

Φg(τ
∗
opt) = sup

τ≤N
Φg(τ). (10)

The optimal stopping time can be defined, as was proved in Shiryaev
(1978), as follows

τ ∗
opt = min{0 ≤ n ≤ N : Sn ∈ Γ∗

n}, (11)
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where Γ∗
n is the optimal stopping domain for moment n = 0, 1, ..., N and

Γ∗
N = [0,∞).

The optimal stopping domain can be found using the operator T, acting
on a non-negative measurable function f(x), defined as the expectation

Tf(x) = Ee−rf(A(x, Y1)) =

∫
R

e−rf(A(x, y))P{Y1 ∈ dy}, (12)

where e−r is the discounting factor of one day. Thus, the operator T is
defined as the expectation of a payoff starting from stock price x and taking
one step forward.

Further, let w0(x) = g(x) and for k = 1, 2, ..., N define the recursion

wk(x) = max{g(x), Twk−1(x)}, (13)

where g(x) is the payoff for stock price x.

Then the set

Γn = {x ∈ R+ : g(x) = wN−n(x)} (14)

is defined as the stopping domain for moment n.

For the optimal stopping time τ ∗
opt, the functional (9) is

Φg(τ
∗
opt) = wN(S0). (15)

To find the optimal moment to exercise the option, it is necessary to
know the structure of the optimal stopping domain. The above statement
of the existence of a stopping domain does not give the explicit structure of
such domains. The only thing we know is that the optimal stopping domain
exists and is determined by the recurrent equations (13) - (15), thus

Γ∗ ∈ {Γ0, Γ1, ..., ΓN−1, ΓN = [0,∞)} . (16)

where Γn, n = 0, 1, ..., N is a sequence of Borel measurable subsets on R+.
Note that ΓN = [0,∞), since all stock prices at the expiration day have to
belong to the stopping domain.

The structure of the stopping domain varies between different types of
payoff functions. Kukush and Silvestrov (2000) investigated the structure
for optimal stopping domains for different types of convex payoff functions.
In the present paper we have investigated the structure of the optimal stop-
ping domain for different types of payoff functions, in particular standard
linear, piecewise linear, quadratic, stepwise and logarithmic, using an algo-
rithm based on the results of Shiryaev (1978) and Kukush and Silvestrov
(2000).
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3. Description of the Algorithm

To study the structure of the stopping domain we first define an upper
and a lower boundary value for the stock price. It is possible do this, since it
is unlikely that the stock price will take values in the whole interval [0, +∞)
during the time period of interest. Let su and sl denote the upper and the
lower boundary value, respectively.

For each moment n = 0, 1, ..., N we define the stock price as discrete
values

sn,j = sl + j∆, j = 0, 1, 2, ..., J, (17)

such that sn,0 = sl and sn,J = su and ∆ is chosen to give a reasonable
accuracy in the approximative description of optimal stopping domains.
The result is a grid structure with discrete points (n, sn,j), since both the
time and the stock price is discrete.

The idea used to study the stopping domain is to work backwards from
the expiration day N and for each point (n, sn,j) on the grid compare the
profit if we exercise the option at moment n and stock price sn,j with the
expected profit if we wait to the moment n+1 before exercising the option.

From the formulation of payoff function (1) - (5), only stock prices
greater than the lower strike price can belong to the stopping domain, since
the profit is zero for all stock prices less than the strike price. Hence, sl

can be equal to the strike price K or K1, independent of the type of payoff
function considered.

For each moment n = 0, 1, ..., N we have to investigate not only the
discrete values sn,j, but the whole interval [sl, su] ⊂ R+, since the stopping
domain is a Borel measurable set on R+. This implies that we for each
moment n have to decide if the stock prices between two adjacent points
(n, sn,j) and (n, sn,j+1), j = 0, 1, ..., J, belongs to the stopping domain or
not. Given the interval

In,j = [sn,j −
∆

2
, sn,j +

∆

2
), (18)

we say that In,j ∈ Γn if sn,j ∈ Γn.
Since the option expires at n = N , all stock prices at the expiration date

have to belong to the stopping domain, i.e.

ΓN = [sl, su]. (19)

Next, moment N−1 is considered. For each stock price sN−1,j the profit
g(sN−1,j) is compared with the expected profit Tw0(sN−1,j). If g(sN−1,j) >
Tw0(sN−1,j) then IN−1,j ∈ ΓN−1. The approximative stopping domain for
moment N − 1 is defined by

ΓN−1 =
⋃

j:g(sN−1,j)>Tw0(sN−1,j )

IN−1,j. (20)
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We use a Monte Carlo method to estimate the value of the optimal
expected continuation profit Tw0(sN−1,j). For each stock price sN−1,j at
moment N−1 we estimate Tw0(sN−1,j), i.e. the expected profit of the option
if we wait to the expiration day N before exercising the option, using

T̂
(M)
N−1g(sN−1,j) =

1

M

M∑
i=1

e−rg(sN−1,jY
(i)
N ), (21)

where Y
(i)
N , i = 1, ..., M , are i.i.d. random variables with log-normal distri-

bution. This will give an approximation of the stopping domain (20)

Γ̂N−1 =
⋃

j:g(sN−1,j)>T̂N−1g(sN−1,j)

IN−1,j . (22)

For moment N − 2 we have to take into account that we already know
the structure of the stopping domain of moment N−1. For each stock price
sN−2,j we take one step ahead to moment N − 1 in each iteration, i.e. we

generate a sequence of stock prices s
(i)
N−1 = sN−2,jY

(i)
N−1, i = 0, 1, ..., M . Note

that the generated stock price s
(i)
N−1 may not be one of the discrete points

defined on the grid, i.e. it is possible that s
(i)
N−1 �= sN−1,j for all j = 0, 1, ..., J .

If s
(i)
N−1 does not belong to the stopping domain of moment N − 1, s

(i)
N−1 /∈

Γ̂N−1, we have to generate a new stock price s
(i)
N = s

(i)
N−1Y

(i)
N . Otherwise, we

calculate g(si
N−1).

The estimation of Tw1(sN−2,j), the optimal expected continuation profit
for each stock price sN−2,j , j = 0, 1, ..., J, in moment N − 2, is calculated
using

T̂
(M)
N−2g(sN−2,j) = 1

M

∑M
i=1 (e−rg(s

(i)
N−1)I(s

(i)
N−1 ∈ Γ̂N−1)+

e−2rg(s
(i)
N )I(s

(i)
N−1 /∈ Γ̂N−1)),

(23)

where s
(i)
N−1 = sN−2,jY

(i)
N−1 and s

(i)
N = sN−2,jY

(i)
N−1Y

(i)
N , i.e. the generated

stock price in iteration i starting from the stock price sN−2,j and taking one
step and two steps ahead, respectively. Further, I(x ∈ Γ) is equal to one if
x ∈ Γ, otherwise equal to zero.

After the expected profit has been estimated we have to decided if the
stock price sN−2,j, and thus the interval IN−2,j, belongs to the stopping
domain for moment N − 2 or not.

The structure of the stopping domain ΓN−2 is approximated by

Γ̂N−2 =
⋃

j:g(sN−2,j)>T̂
(M)
N−2g(sN−2,j)

IN−2,j . (24)

For every moment n < N − 2 we have to estimate the expected contin-
uation profit TwN−n−1(sn,j) of every stock price sn,j, j = 0, 1, 2, ..., J and
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we have to use the fact that we know the structure of the optimal stopping
domains of moment n + 1, n + 2, ..., N − 1, N when we estimate.

As the algorithm is stated we generate M independent series Y
(1)
0 , ..., Y

(1)
N ,

... , Y
(M)
0 , ..., Y

(M)
N of i.i.d. random variables with log-normal distribution.

In principle this is possible, but in the program we have used independent
series of i.i.d. random variables for each point sn,j.

To investigate the structure of the stopping domains for different types of
payoff function we use an algorithm based on the knowledge of the existence
of optimal stopping time, described in Shiryaev (1978), and presented above.
The algorithm creates a grid structure with discrete points (n, sn,j) that is
used to study the stopping domain for each moment. To decide which stock
prices that belongs to the stopping domain of moment n, we use a Monte
Carlo method to estimate the expected profit of the option if we exercise it in
the future. The actual stopping profit if we exercise the option at moment n
is compared with the estimate of the optimal expected continuation profit. If
the actual stopping profit is greater than the optimal expected continuation
profit, then the stock price belongs to the stopping domain of moment n.

4. Analysis of the Algorithm

To analyze the algorithm we study the probability of classification error.
A classification error occur when the stock price belongs to the stopping
domain, but the algorithm indicates that the stock price does not or vice
versa.

There are two types of classification errors. First, if the algorithm indi-
cates that the stock price sn,j belongs to the stopping domain, i.e. g(sn,j) >

T̂
(M)
n g(sn,j), but the stock price does not, i.e. g(sn,j) < TwN−n−1(sn,j). The

probability of making this type of classification error is given by

pn,j = P
{
T̂

(M)
n g(sn,j) < g(sn,j)

}
= P

{
T̂

(M)
n g(sn,j)−TwN−n−1(sn,j)

σn,j

√
M <

g(sn,j)−TwN−n−1(sn,j)

σn,j

√
M
}

" 1− Φ(
TwN−n−1(sn,j)−g(sn,j)

σn,j

√
M),

(25)

by the central limit theorem and where σn,j/
√

M is the standard deviation of

the estimate T̂
(M)
n g(sn,j) and σn,j is the standard deviation of one component

in the sum defining T̂
(M)
n g(sn,j).

The second type of classification error is when the algorithm indicates
that the stock price does not belong to the stopping domain, i.e. g(sn,j) <

T̂
(M)
n g(sn,j), but the stock price does, i.e. g(sn,j) > TwN−n−1(sn,j). The
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probability of this error is given by

qn,j = P
{
T̂

(M)
n g(sn,j) > g(sn,j)

}
= P

{
T̂

(M)
n g(sn,j)−TwN−n−1(sn,j)

σn,j

√
M >

g(sn,j)−TwN−n−1(sn,j)

σn,j

√
M
}

" 1− Φ(
g(sn,j)−TwN−n−1(sn,j)

σn,j

√
M).

(26)

Thus, the two types of classification error have the same probability.
Note that the probability is proportional to the square root of the num-

ber of simulations used M and it also depends on the standard deviation
σn,j . Thus, there are two ways of decreasing the probability, either we can
increase the number of simulations or we can reduce the variance. In this
paper we do not analyze any variance reduction techniques.

To calculate these probabilities we have to know the true values of
TwN−n−1(sn,j) and σn,j. Since this is not possible we have to estimate
both TwN−n−1(sn,j) and σn,j. We can use the same method as before to
estimate Tg(sn,j), the only difference is that we have to use a very large
number of calculations, something that we want to escape from when we
make our investigation about the stopping domains.

To get a good estimate of the standard deviation σn,j we first estimate
the second moment of the optimal continuation profit. For moment N − 1
and N − 2 this is done by

T̃
(M)
N−1g(sN−1,j) =

1

M

M∑
i=1

e−2rg2(sN−1,jY
(i)
N )), (27)

and

T̃
(M)
N−2g(sN−2,j) = 1

M

∑M
i=1 (e−2rg2(s

(i)
N−1)I(s

(i)
N−1 ∈ Γ̂N−1)+

e−4rg2(s
(i)
N )I(s

(i)
N−1 /∈ Γ̂N−1)),

(28)

respectively, and for moment n=0,1,...,N-3, the formulas are similar.
The estimate of the standard deviation is as follows

σ̃n,j =

√
T̃

(M)
n g(sn,j)− (T̂

(M)
n g(sn,j))2. (29)

It is easiest to study the probabilities pN−1,j and qN−1,j , since all stock
prices in moment N is in the stopping domain ΓN . For moment n = N −
2, ..., 0 we have to use the knowledge of the stopping domains of the moments
n + 1, ..., N when we calculate the probabilities.

We can also study the loss in optimality related to the classification er-
ror of stock price sn,j. Let g(sn,j) be the profit if we exercise the option at
moment n and let Econt

n,j = TwN−n−1(sn,j) be the optimal expected continu-
ation profit, i.e. the expected value of the profit if we wait at least one day
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before exercising the option. The loss in optimal profit is given by

L∗
n,j =

Econt
n,j − g(sn,j)

Eopt
n,j

, (30)

where Eopt
n,j = max(Econt

n,j , g(sn,j)). Thus, L∗
n,j is the loss or gain of using the

continuation strategy relative the optimal strategy.
Instead of using the optimal strategy we can study the loss in optimality

relative the stopping strategy,

Ln,j =
Econt

n,j − g(sn,j)

g(sn,j)
. (31)

If Ln,j > 0 we know that Econt
n,j is optimal and the gain of using the contin-

uation strategy relative the stopping strategy is given by Ln,j. If Ln,j < 0
we know that g(sn,j) is optimal and the relative loss using the continuation
strategy is given by Ln,j.

To get a dimensionless measure of the variance we use the quotient

d2
n,j =

σ2
n,j

(g(sn,j))2
. (32)

If

bn,j =
|Ln,j|
dn,j

, (33)

then the probability
pn,j " 1− Φ(

√
Mbn,j). (34)

We study only the classification errors for the standard payoff function
in this paper. Let us consider in details the case of n = N − 1. In the
limiting case, when sN−1,j →∞,

LN−1,j =
Econt

N−1,j−g(sN−1,j)

g(sN−1,j)
=

Ee−r[sN−1,jYN−K]+−[sN−1,j−K]+

[sN−1,j−K]+

=
e−rE[YN− K

sN−1,j
]+

[1− K
sN−1,j

]+
− 1 → eµ+ σ2

2
−r − 1,

(35)

d2
N−1,j → e2µ+σ2−2r(eσ2 − 1), (36)

and

bN−1,j →

∣∣∣eµ+ σ2

2
−r − 1

∣∣∣√
e2µ+σ2−2r(eσ2 − 1)

. (37)

We have studied the probability of classification error for two different
sets of parameters of the underlying pricing process. First we used a small
volatility and a zero drift. Second we used a larger volatility and a negative
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sN−1,j g(sN−1,j) Ẽcont
N−1,j σ̃2

N−1,j L̃N−1,j d̃2
N−1,j b̃N−1,j

101.00 1.00 1.005319 0.245170 0.005319 0.245170 0.010742
102.00 2.00 2.000951 0.259712 0.000476 0.064928 0.001867
103.00 3.00 3.000908 0.263820 0.000303 0.029313 0.001767
104.00 4.00 4.000536 0.270794 0.000134 0.016925 0.001031
105.00 5.00 5.000490 0.273660 0.000098 0.010946 0.000937
106.00 6.00 6.000411 0.281912 0.000069 0.007831 0.000775
107.00 7.00 7.000502 0.285575 0.000072 0.005828 0.000939
108.00 8.00 8.000199 0.284366 0.000025 0.004443 0.000373
109.00 9.00 8.999920 0.299919 -0.000009 0.003703 0.000145
110.00 10.00 9.999982 0.302093 -0.000002 0.003021 0.000034
111.00 11.00 10.999519 0.309146 -0.000044 0.002555 0.000865
112.00 12.00 11.999368 0.317137 -0.000053 0.002202 0.001123
113.00 13.00 12.999380 0.328893 -0.000048 0.001946 0.001082
114.00 14.00 13.999405 0.328798 -0.000042 0.001678 0.001037
115.00 15.00 14.998969 0.341408 -0.000069 0.001517 0.001765

Table 1: Stock price, stopping profit and estimated values of expected continu-
ation profit Econt

N−1,j = Tw0(sN−1,j), variance σ̃2
N−1,j, L̃N−1,j , d̃2

N−1,j and b̃N−1,j.
The values of the parameters of the underlying pricing process are µ = 0.0,
σ = 0.005.

drift. In both cases we used a risk less interest rate of four percent per year,
a strike price K = 100 and ∆ = 1.0. Numerical results are presented in
Table 1 - Table 4.

Table 1 shows the estimated values g(sN−1,j), Ẽcont
N−1,j , σ̃2

N−1,j , L̃N−1,j,

d̃2
N−1,j and b̃N−1,j for stock prices between 101 and 115. The parameters of

the underlying pricing process are µ = 0.0 and σ = 0.005. We used M=107

number of simulations to estimate the values.

The first thing that we can see is that every stock price greater than or
equal to s∗N−1 = 109 is in the stopping domain, since L̃N−1,j < 0. Further,

σ̃2
N−1,j is increasing but d̃2

N−1,j is decreasing when the stock price increases.

L̃N−1,j and b̃N−1,j decreases, on the other hand, until sN−1,j = 110 and then
starts to increase. Thus the loss in optimality is smallest near the threshold
value s∗N−1 = 109. This indicates that the difference between the stopping
profit and the optimal expected continuation profit is very small near the
threshold value. Note that the loss in optimality is small for all stock prices
in the interval. This is due to the fact that the mean of the Y

(i)
N ’s is small,

since the values of µ and σ are small.

Table 2 shows the estimated probabilities of making classification error
for four different the number of simulations M . The values corresponds to
the estimated values shown in Table 1.
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p̃N−1,j

sN−1,j b̃N−1,j M = 5 ∗ 104 M = 105 M = 106 M = 107

101.00 0.010742 0.008153 0.000341 0.000000 0.000000
102.00 0.001867 0.338168 0.277465 0.030953 0.000000
103.00 0.001767 0.346342 0.288108 0.038576 0.000000
104.00 0.001031 0.408879 0.372259 0.151386 0.000560
105.00 0.000937 0.417041 0.383525 0.174437 0.001527
106.00 0.000775 0.431246 0.403249 0.219292 0.007154
107.00 0.000939 0.416831 0.383235 0.173819 0.001489
108.00 0.000373 0.466785 0.453081 0.354658 0.119236
109.00 0.000145 0.487043 0.481679 0.442247 0.322974
110.00 0.000034 0.497000 0.495757 0.486586 0.457654
111.00 0.000865 0.423337 0.392250 0.193587 0.003123
112.00 0.001123 0.400891 0.361284 0.130783 0.000192
113.00 0.001082 0.404439 0.366152 0.139694 0.000312
114.00 0.001037 0.408333 0.371507 0.149915 0.000522
115.00 0.001765 0.346540 0.288368 0.038777 0.000000
116.00 0.001732 0.349278 0.291955 0.041644 0.000000
117.00 0.001823 0.341764 0.282135 0.034145 0.000000
118.00 0.002582 0.281849 0.207105 0.004911 0.000000
119.00 0.002979 0.252659 0.173078 0.001446 0.000000
120.00 0.002573 0.282523 0.207912 0.005040 0.000000
121.00 0.003375 0.225233 0.142936 0.000369 0.000000

Table 2: The stock price, the estimated values of b̃N−1,j and values of probabil-
ities for different number of simulations M. The values of the parameters of the
underlying pricing process are µ = 0.0, σ = 0.005.
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sN−1,j g(sN−1,j) Ẽcont
N−1,j σ̃2

N−1,j L̃N−1,j d̃2
N−1,j b̃N−1,j

101.00 1.00 1.807711 8.196880 0.807711 8.196880 0.282119
102.00 2.00 2.317591 10.416028 0.158795 2.604007 0.098405
103.00 3.00 2.906708 12.789239 -0.031097 1.421027 0.026087
104.00 4.00 3.565243 15.230821 -0.108689 0.951926 0.111400
105.00 5.00 4.293338 17.660846 -0.141332 0.706434 0.168153
106.00 6.00 5.073696 19.940714 -0.154384 0.553909 0.207435
107.00 7.00 5.908342 22.061303 -0.155951 0.450231 0.232419
108.00 8.00 6.776691 24.014385 -0.152914 0.375225 0.249632
109.00 9.00 7.679068 25.689649 -0.146770 0.317156 0.260616
110.00 10.00 8.610540 27.062420 -0.138946 0.270624 0.267093
111.00 11.00 9.554690 28.417028 -0.131392 0.234851 0.271126
112.00 12.00 10.513495 29.453017 -0.123875 0.204535 0.273906
113.00 13.00 11.482011 30.408137 -0.116768 0.179930 0.275279
114.00 14.00 12.459679 31.167297 -0.110023 0.159017 0.275906
115.00 15.00 13.436818 32.012825 -0.104212 0.142279 0.276279

Table 3: Stock price, stopping profit and estimated values of expected continu-
ation profit Econt

N−1,j = Tw0(sN−1,j), variance σ̃2
N−1,j, L̃N−1,j , d̃2

N−1,j and b̃N−1,j.
The values of the parameters of the underlying pricing process are µ = −0.015,
σ = 0.05.

As we can see in Table 2 the probability is very large for every stock
price when we use M = 5 ∗ 104 simulations. The large probabilities for
classification errors depends on the small values of L̃N−1,j. When we in-
crease the number of simulations the probability of making classification
error decreases as expected. When we use 10 million simulations at each
point sN−1,j it is only the stock prices near the threshold value s∗N−1 = 109
that has a probability that is not negligible. The probability of making a
classification error at the stock price 110 is almost 0.5 for every number of
simulations used. We need more than 107 number of simulations to reduce
the probability of classification error and in this case it is better to use vari-
ance reduction techniques instead of increasing the number of simulations.

Table 3 shows the values of g(sN−1,j), Ẽcont
N−1,j, σ̃2

N−1,j , L̃N−1,j , d̃2
N−1,j and

b̃N−1,j for moment N − 1 when the parameters of the underlying pricing
process is µ = −0.015 and σ = 0.05.

In Table 3 the value of the stock price for which L̃N−1,j < 0 for the first

time is s∗N−1 = 103. We can also see that the values of σ̃2
N−1,j , L̃N−1,j, d̃2

N−1,j

and b̃N−1,j are much larger than the corresponding values in Table 1. This
is a result of the higher drift µ and volatility σ of the underlying pricing
process, which gives a larger mean of the Y

(i)
N ’s.

As before the values of d̃2
N−1,j decreases when the stock price increases
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p̃N−1,j

sN−1,j b̃N−1,j M = 103 M = 104 M = 105 M = 106 M = 107

101.00 0.282119 0.000000 0.000000 0.000000 0.000000 0.000000
102.00 0.098405 0.000930 0.000000 0.000000 0.000000 0.000000
103.00 0.026087 0.204704 0.004545 0.000000 0.000000 0.000000
104.00 0.111400 0.000214 0.000000 0.000000 0.000000 0.000000
105.00 0.168153 0.000000 0.000000 0.000000 0.000000 0.000000
106.00 0.207435 0.000000 0.000000 0.000000 0.000000 0.000000
107.00 0.232419 0.000000 0.000000 0.000000 0.000000 0.000000
108.00 0.249632 0.000000 0.000000 0.000000 0.000000 0.000000
109.00 0.260616 0.000000 0.000000 0.000000 0.000000 0.000000
110.00 0.267093 0.000000 0.000000 0.000000 0.000000 0.000000

Table 4: The stock price, the estimated values of b̃N−1,j and values of probabil-
ities for different number of simulations M. The values of the parameters of the
underlying pricing process are µ = −0.015, σ = 0.05.

and the behavior of L̃N−1,j and b̃N−1,j are the same as in Table 1 and they
take their smallest values at the threshold value s∗N−1 = 103.

Table 4 shows the probabilities of making classification error for four
different number of simulations M . The values corresponds to the estimated
values shown in Table 3.

The probability is negligible everywhere even for M = 103 except for
the threshold value s∗N−1 = 103 where the probability is p = 0.199200 and
the two stock prices closest to s∗N−1 = 103, but the probabilities for these
two points are very small. This shows that it is possible to generate a good
result for moment N − 1 even for M = 103 and we need only to use 104 or
105 number of simulations for the threshold value.

Figure 1 shows d̃2
N−1,j as a function of the stock price between 100 and

1000 for the standard American call option for the same simulation as for
Table 3.

We can see that d̃2
N−1,j is converging to the asymptote (36) as the stock

price increase in Figure 1. The convergence indicates that the algorithm be-
haves properly. The difference between the values of d̃2

N−1,j and the asymp-
tote is large for stock prices between 100 and 200.

Figure 2 shows the value of b̃N−1,j as a function of the stock price for
the same simulation as Figure 1.

The value of b̃N−1,j in Figure 2 fluctuates around its asymptote (37)
when the difference between the values of the stock price and the strike
price is large.

We have also studied the probability of classification error for moment
n = N−5 for standard American call option with µ = −0.015 and σ = 0.05
of the underlying pricing process. As for moment N − 1 the probabil-
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ity of classification error was negligible for every stock price except at the
threshold value s∗N−5 = 105 when we used M = 104. The probability at
s∗N−5 = 105 was p = 0.003295. When we used M = 103 the probability was
nonzero for 104 ≤ sN−5 ≤ 106 and negligible otherwise. The probabilities
for stock price 104, 105 and 106 was 0.041746, 0.195126 and 0.001649, re-
spectively. The results shows that it should be possible to generate stopping
domains for all moments from N−5 to N using only M = 103 simulations at
each stock price sN−5,j and use M = 104 or M = 105 for 104 ≤ sN−5 ≤ 106
only.

The result presented in Table 4 and the results of moment N-5 indicates
that it is possible to generate stopping domains for the standard payoff
function with 103 number of simulations for all stock prices except for the
stock prices at the threshold value of moment N − 5 to N − 1, when µ =
−0.015 and σ = 0.05.

In this section we have shown that the probabilities of classification
errors for the standard American option depend on the values of the drift
and volatility of the underlying pricing process. Large values on µ and σ
give small probabilities of classification errors.

We have also shown that the probability of classification error is highest
near the threshold value of the stopping domain.

It is possible to study the probability of classification error for other
types of payoff functions using the same method.

5. Computational results

In this section we present some results of the investigation of the struc-
tures of stopping domains we have made. We have investigated the structure
of the stopping domain for several different types of payoff functions, in par-
ticular standard linear, piecewise linear, quadratic, piecewise stepwise and
logarithmic. All simulations were made using µ = −0.015 and σ = 0.05 of
the underlying pricing process.

Figure 3 shows the stopping domain for a standard American call option
with K = 500.

The picture clearly shows that the stopping domain of a standard Amer-
ican call option consists of a number of intervals [s∗n,∞] for n = 1, 2, ..., 30.
For each day there exists a threshold value s∗n such that s∗1 ≥ s∗2 ≥ ... ≥
s∗30 = 0. At day one the threshold value is equal to the stock price s∗1 = 531
and at the day before the expiration day the threshold value is equal to
s∗29 = 513.

Figure 4, Figure 5 and Figure 6 shows the stopping domain for a option
with a payoff function with two intervals with different slopes, see (2).

In Figure 4 the two slopes are a1 = 1.0 and a2 = 2.0, and the strike
prices are K1 = 500 and K2 = 570. We can see a division of the stopping
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domain into two domains around the second strike price K2. The lower
domain is defined by a lower and an upper threshold value. The difference
between these values is less in the beginning of the period and increases
close to the expiration day. The lower threshold has a similar shape as the
threshold of the standard option in Figure 3, it decreases from 534 at n=1
to 515 at n=29. As for the standard option the decrease is sharper in the
end of the period.

The upper domain in Figure 4 has the same structure as the stopping
domain of the standard payoff function, i.e. it consists of intervals [s∗n,∞]
with threshold values s∗n, n = 1, 2, ..., 30, but the change in the threshold
values are smaller than for the standard option. The values change from
567 at n = 1 to 569 at n = 29. Close to the expiration day, the upper
threshold of the lower domain and the threshold value of the upper domain
are approaching each other.

In Figure 5 the lower stopping domain has decreased and it exist only for
n ≥ 22. Here the slope a1 and the strike prices K2 and K2 are the same as
for Figure 4, but the slope a2 = 3.0. Also the upper domain has decreased
and the threshold values are 580 in the beginning of the period and 577 in
the end.

Note that the point with stock price 579 in moment n = 23 is classified
as a continuation point and that the point with the same stock price in
moment n = 22 is classified as a stopping point. It is probable that we have
a classification error in one of these points. Either the point in moment
n = 23 should be classified as a stopping point or the point in moment
n = 22 should be classified as a continuation point.

We can suspect that we have classification errors at the points with stock
prices around 540 in moment n = 21, since we have a single stopping point
here.

In Figure 6 we have used a strike prices K1 = 500 and K2 = 560 and
slope a1 = 1.0 and a2 = 2.0. Comparing with Figure 4 we see that the lower
domain has changed. This time the domain begins at n=5 and both the
upper and the lower threshold changes more than in the first case.

Note that the point with stock price 555 at moment n = 21 is classified
as a stopping point. It is very probable that we have a classification error at
this point, since the point at stock price 554 is classified as a continuation
point.

As we can see the shape of the lower domain depends on the difference
of K1 and K2 and the difference between the slopes a1 and a2. It is also
clear that the probability of making a classification error is larger when we
are close to the threshold values.

To get a sharp picture we used a larger number of simulations in the
regions of the domains where the probability of classification error is high.
We have not investigated the values of these probabilities but it is clear from
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the pictures produced that we had classification errors when the number of
simulations was 105, sometimes even for 106.

Figure 7 shows the stopping domain for a quadratic payoff function with
the strike price K = 500.

If we compare this stopping domain with the stopping domain of the
standard payoff function with the same strike price in Figure 3 we see that
they have the same structure, but the threshold values are much higher for
the quadratic function. We can also see that the change in the threshold
values are greater for the quadratic payoff function.

In Figure 8 and Figure 9 the stopping domains of a stepwise payoff
function with two and three steps, respectively, are shown.

In Figure 8, which shows the stopping domain of the stepwise payoff
function with K1 = 500, K2 = 550, L1 = 10 and L2 = 30, two domains
exists. For the lower domain the lower threshold value is constant and equal
to the stock price 501 for n = 1, ..., 29. The upper threshold value is 513 in
the beginning of the period and increases close to the expiration day. The
threshold value of the upper domain is constant and equal to the stock price
551.

In Figure 9, which shows the stopping domain of a stepwise payoff func-
tion with K1 = 500, K2 = 540, K3 = 580, L1 = 10, L2 = 20 and L3 = 40,
we have three well defined domains. The lower threshold value for each of
the three domains are constant at the stock prices 501, 541 and 581, respec-
tively. For the first and the second domain we have upper threshold values
that increases as we get closer to the expiration day. Note that the increase
is larger for the lower domain.

For the payoff function with a single step with strike price K = 500 the
stopping domain consists of the intervals [501,∞] for n = 1, ..., N − 1.

Figure 10 shows the stopping domain for the logarithmic payoff function
with a strike price K = 500.

The stopping domain has the same structure as for the standard payoff
function with a decreasing threshold value close to the expiration day. The
main difference is that the threshold value are larger for the standard payoff
function. For day one the threshold value is s∗1 = 507 and for day N−1 = 29
s∗29 = 503.

It is possible to model a logarithmic payoff function with the piecewise
linear payoff function. For example we can use the payoff function with two
slopes a1 = 1.0 and a2 = 0.25 and strike prices K1 = 500 and K2 = 530.
The stopping domain is shown in Figure 11.

Comparing with the logarithmic payoff function in Figure 10 the thresh-
old values of the stopping domain are larger, e.g. s∗1 = 519 and s∗29 = 511,
for the piecewise linear payoff function.

Comparing the different stopping domains shown above it is clear that
the structure of the stopping domain depends not only on the payoff function
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but also on the parameters of the function. The later was very clear in the
examples with the piecewise linear payoff function with two slopes were we
saw that the structure of the stopping domain was dependent on both the
difference between the slopes and the difference between the strike prices.

6. Conclusions

In this paper we have studied the structure of the stopping domain for
different types of payoff functions, in particular standard linear, piecewise
linear, quadratic, stepwise and logarithmic, for American type call option
with discrete time.

The algorithm used to study the structure is based on the idea of com-
paring the profit if we exercise the option at moment n and stock price sn,j

with the expected profit if we exercise the option in the future. To estimate
the expected profit we used a Monte Carlo method.

The first conclusion is that for a wide class of monotone payoff functions
the optimal stopping domain have a threshold structure. This structure can
be more complicated than the single threshold that exist for the standard
payoff function.

Second, the structure of the optimal stopping domain depends not only
on the type of payoff function studied, but also on the parameters of the
payoff function. The structure of the piecewise linear payoff function with
two different slopes, for example, showed a dependence on both the differ-
ence between the strike prices and the difference between the two slopes.

Third, the probabilities of making a classification error at a point are
dependent on both the distance to the threshold and the distance to the
expiration day. The error probabilities are large close to the threshold and
far away from the expiration day.
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Figure 1: Values of d2
N−1,j as a function of the stock price sN−1,j.

The parameters of the underlying pricing process are µ = −0.015
and σ = 0.05.
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Figure 2: Values of bN−1,j as a function of the stock price sN−1,j.
The parameters of the underlying pricing process are µ = −0.015
and σ = 0.05.
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Figure 3: Stopping domain for standard American call option with
strike price K = 500. The values of the parameters of the underlying
pricing process is µ = −0.015 and σ = 0.05.
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Figure 4: Stopping domain for American call option with piecewise
linear payoff function with two slopes a1 = 1.0 and a2 = 2.0, and strike
prices K1 = 500 and K2 = 570. Number of simulations M = 106 for
520 ≤ sn,j ≤ 540 and 560 ≤ sn,j ≤ 575, and M = 105 otherwise.The
values of the parameters of the underlying pricing process is µ = −0.015
and σ = 0.05.
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Figure 5: Stopping domain for American call option with payoff func-
tion with two slopes, a1 = 1.0 and a2 = 3.0. Strike price K1 = 500
and K2 = 570. M = 106 for 515 < S < 560 for n > 15 and for
575 < S < 585, M = 105 otherwise. The values of the parameters
of the underlying pricing process is µ = −0.015 and σ = 0.05.
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Figure 6: Stopping domain for American call option with payoff func-
tion with two slopes, a1 = 1.0 and a2 = 2.0. Strike price K1 = 500
and K2 = 560. M = 106 for 535 < S < 555 for n < 20 and for
530 < S < 570, M = 105 otherwise. The values of the parameters
of the underlying pricing process is µ = −0.015 and σ = 0.05.
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Figure 7: Stopping domain for American call option with quadratic
payoff function. M = 106 for S ≥ 550, M = 105 otherwise. The values
of the parameters of the underlying pricing process is µ = −0.015 and
σ = 0.05.
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Figure 8: Stopping domain for American call option with stepwise pay-
off function with two steps. Strike prices K1 = 500, K2 = 550 and steps
L1 = 10, L2 = 30. M = 106 for 510 < s < 530 and M = 105 other-
wise. The values of the parameters of the underlying pricing process is
µ = −0.015 and σ = 0.05.
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Figure 9: Stopping domain for American call option with stepwise
payoff function with three steps. Strike prices K1 = 500, K2 = 540,
K3 = 580 and steps L1 = 10, L2 = 20, L3 = 40. M = 105 for
510 < s < 525 and 55 < s < 565 and M = 105 otherwise. The val-
ues of the parameters of the underlying pricing process is µ = −0.015
and σ = 0.05.
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Figure 10: Stopping domain for American call option with logarithmic
payoff function. Strike prices K = 500. M = 105. The values of the
parameters of the underlying pricing process is µ = −0.015 and σ = 0.05.
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Figure 11: Stopping domain for American call option with piecewise
linear payoff function with two slopes a1 = 1.0 and a2 = 0.25 and strike
prices K1 = 500 and K2 = 530. M = 105. The values of the parameters
of the underlying pricing process is µ = −0.015 and σ = 0.05.
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1. Introduction

The aim of this paper is to present some generalization of the ruin prob-
ability problem in the classical risk theory.

We shall consider

c (u)

α
ϕ′ (u) = ϕ (u)−

u∫
0

ϕ (u− t) dF, u ≥ 0. (1.1)

Here F (t) is given as distribution function of individual claim amount
with density f and finite expectation m. Claims are counted according to
the generalised Poisson process (with parameter a), u is the initial surplus
of the insurance company,

c (u)

α
=

γ1 + λ1e
−u

γ2 + λ2e−u
(λ1,2 > 0, γ1,2 > 0, γ1λ2 − γ2λ1 �= 0)

is the function of gross premium risk and ϕ(u) is the probability of no ruin
satisfying the following conditions:

0 ≤ ϕ (u) ≤ 1, ϕ (∞) = 1. (1.2)

189
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2. Reducing the integro-differential equation to the

boundary value problem

For the strict exposition, we shall assume, further that the image of
Fourier of the density f of the distribution F belongs to space L2(0,∞).
We shall seek the function in space satisfying the following condition

e−νuϕ (u) ∈ L2 (0,∞) ,
(
e−νuϕ (u)

)′ ∈ L2 (0,∞) , ν > 0. (2.1)

Let us introduce the following notation

ϕ+ (u) =

{
ϕ (u) , u > 0
0, u < 0;

f+ (u) =

{
f (u) , u > 0
0, u < 0.

(2.2)

The following definitions and theorems will be also necessary for us.

Definition 1. By {{−m, ν,∞}}(m ≥ 0), we denote the space of functions
Φ(z) analytical in the half plane Imz ≥ ν for which there exists a constant
C such that for all y ≥ ν.

∞∫
−∞

|Φ (x + iy) (x + iy)m|2 dx ≤ C. (2.3)

Definition 2. By {−m, ν,∞}, (m ≥ 0), we denote the space of original
functions image which belongs to {{−m, ν,∞}}.
Theorem 1. The function ϕ(u) ∈ {−m, ω,∞}(m ≥ 0), if and only if when
ϕ(u) satisfies the following conditions

d

duk

(
e−νuϕ (u)

)
∈ L2 (0,∞) , k = 0, m. (2.4)

Theorem 2. In order that a function ϕ (u) ∈ {−m, ν,∞} it is necessary
and sufficient that the Fourier transform Φ+ (z) ∈ {{−m, ν,∞}}

Validity of the theorems 1 and 2 follows from the appropriate theorems
explained in [2]

Let us begin to solve equation (1.1). First, let us multiply both parts of
equality (1.1) on γ2 + λ2e

−u and after that apply the Fourier transform to
it. Due to the theorem 2 we shall receive the boundary value problem of
the theory of analytical functions

Φ+ (z + i) +
γ1

λ1

[
1 + K+ (z)

]
Φ+ (z) = G+

0 (z) , Imz ≥ ν. (2.5)
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Here Φ+ (z) = (V ϕ+) (z), f̂+ (z) = (V f+) (z) (V is a Fourier operator),

K+ (z) =
1− λ2λ

−1
1 + γ2γ

−1
1 −

(
γ2γ

−1
1 f̂+ (z) + λ2λ

−1
1 f̂+ (z + i)

)√
2π

iz − 1 + λ2λ
−1
1 − λ2λ

−1
1 f̂+ (z + i)

√
2π

, (2.6)

G+
0 (z) =

γ1 + γ2√
2π

ϕ+ (0)

−izλ1 + λ1 − λ2 + λ2f̂+ (z + i)
. (2.7)

3. Solution of the boundary value problem (2.5) by the

method of factorization

At first, we shall choose the number ν so large, that the function 1 +
K+ (z) has no zeroes and poles in the half-plane Imz ≥ ν. Next, we apply
the method of factorization [1], which allow us to represent function 1 +
K+ (z) in the form

1 + K+ (z) =
X+ (z + i)

X+ (z)
, (3.1)

where the function X+(z) should be the bounded analytical function and
have no zeroes there.

For the factorization (3.1) we shall define the logarithm

ln
(
1 + K+ (z)

)
= Ω+ (z) . (3.2)

Also we shall require, that the function

Ω+ (z) ∈ {{−1, µ,∞}} . (3.3)

Let’s take the logarithm of the equality (3.1). As a result we receive the
problem about ” saltus” in the form

Ω+ (x + iν) = A+ (x + iν + i)−A+ (x + iν) , x ∈ R, (3.4)

where
A+(z) = lnX+ (z) . (3.5)

The solution is the following:

A+ (x + iν) = −Ω+ (x + iν)

2
+

i

2

∞∫
−∞

Ω+ (t + iν) dt

thπ (x− t)
. (3.6)

Actually, applying inverse transformation of Fourier to (3.4), we shall

receive the function a+ (u) = − ω+(u)
1−e−u , with the following properties

a+ (u) ≡ 0 and u < 0, e−νua+ (u) ∈ L2 (0,∞) ,
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A+ (x) ∈ {{0, µ,∞}}
(
(V a+)(x) = A+(x)

)
.

The above mentioned properties follow from the theorem 2.
Applying transformation of Fourier to a+(u)e−νu, we shall receive the

formula (3.6). In doing so, we have used the properties of the function
a+(u) and formula [1]

(
V
(

1
1−e−u

))
(x) = i

√
π
2
cthπx +

√
π
2
δ (x) (δ(x) is the

Dirac delta - function).
Note that the condition (3.3) guarantees the boundedness of the function

A+(z) at Im z ≥ ν and that in its turn also guarantees the boundedness of
the function X+(z) in the same half-plane. The proof of the similar state-
ment is present in [1]. We can easily show that if K+(x) and (xK+(x))
belong to the space L2 (−∞,∞), then condition is satisfied(3.3). In accor-
dance with the formula (2.6) it can be possible only on condition that

λ2λ
−1
1 − γ2γ

−1
1 = 1. (3.7)

Let us assume condition (3.7) in this point hold true. Then the formulae
(3.5) - (3.6) give the required factorization

1 + K+ (z) =
exp (A+ (z))

exp (A+ (z + i))
, Im z ≥ µ. (3.8)

For convenience we introduce

exp
(
A+ (z)

)
= 1 + R+ (z) , exp

(
−A+ (z)

)
= 1 + S+ (z) , (3.9)

where

R+ (z) ∈ {{0, µ,∞}} , S+ (z) ∈ {{0, µ,∞}} .

Having introduced a new unknown function

M+ (z) =
[
1 + S+ (z)

]
Φ+ (z) ∈ {{0, µ,∞}}(

Φ+ (z) =
[
1 + R+ (z)

]
M+ (z)

)
(3.10)

we present the problem (2.5) in the form

M+ (z + i) +
γ1

λ1
M+ (z) =

[
1 + S+ (z)

]
G+

0 (z) . (3.11)

Applying inverse transformation of Fourier to both parts of equality
(3.11) we shall receive

m+(u) = g0+(u)
λ1

γ1 + λ1e−u
+

λ1

γ1 + λ1e−u

1√
2π

u∫
0

s+ (u− t) e−(u−t)g0+ (t) dt, u > 0. (3.12)
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Here m+ (u) = (V −1) (M+) (u) , s+ (u) = (V −1) (S+) (u) , g+ (u) =
(V −1)

(
G+

0

)
(u) (V −1 is the inverse operator of Fourier ).

At last, from (3.9) -(3.11) we shall receive the solution of equation (1.1)

ϕ+ (u) =
g0+ (u)

1 + γ1

λ1
e−u

+
1√
2π

u∫
0

Γ (u, t) g0+ (t) dt, u > 0, (3.14)

where

Γ (u, t) =
λ1s+ (u− t) e−(u−t)

γ1 + λ1e−u
+

λ1r+ (u− t)

γ1 + λ1e−u
+

1√
2π

u∫
t

λ1s+ (u− t) e−(u−t)r+ (u− τ )

γ1 + λ1e−τ
dτ,

r+ (u) =
(
V −1
) (

R+
)
(u) .

Thus we have established

Theorem 3. Let the parameters λ1,2 and γ1,2 of the function c(u) given
in the equation (1.1) to satisfy the condition (3.7) and the image of the
density of the distribution F to belong to space L2(0,∞). Then in the space
{−1, ν,∞} there exists a solution of the equation (1.1) determined by the
formula (3.13).

4. Normalization of the solution. Uniqueness of the solution

of equation (1.1), which satisfies to the condition (1.2)

As the equation (1.1) is homogeneous, then the unknown function is
defined precisely up to the constant factor. For its fixation the probability-
theoretic sense of function is used. In other words the unknown function
should satisfy the conditions (1.2). In particular, for realization of the
second condition (1.2) it is necessary that there existed a finite, different
from zero on infinity limit of the function ϕ+ (u)

The immediate transition to the limit on infinity in equality (3.13)
presents some difficulties. Therefore we apply another procedure to the
determine the required limit.

For this purpose we shall receive the relation from equality (3.9)

ϕ+ (u) = m+(u) +
1√
2π

u∫
0

r+(u− t)m+(t)dt. (4.1)

Next, letting u tend to infinity in equalities (3.12), (4.1). We finally
obtain the following algebraic system

m+(∞) =
λ1 (γ1 + γ2)

γ1

g0+ (∞)ϕ+ (0) +
λ1

γ1

S+ (i) g0+ (∞) ,
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ϕ+ (∞) = m+ (∞)
(
1 + R+ (0)

)
=

m+ (∞)

1 + S+ (0)
. (4.2)

The system is obtained with the help the Tauberian theorem [2] and
inverse transformation of Fourier function

G+ (z) =
1√
2π

1

−izλ1 + λ1 − λ2 + λ2

√
2πf̂+ (z + i)

. (4.3)

That is the functions determined by the equality,

g+ (u) =
1√
2π

∞+νi∫
−∞+νi

G+ (t + νi) e−(t+νi)udt, (4.4)

where by g+ (∞) its limit on infinity is denoted.
Let us investigate the system (4.2). First of all note that if the limit of

function g+ (u) at u →∞ is accordingly equal to zero, infinity or does not
exist, then the solution ϕ+ (u) is deprived of probability-theoretic sense. It
is necessary to assume, that a limit g+ (∞) different from zero exists by
it is possible only on condition that the limit g+ (∞) exists and, that the
function G+ (z) has a pole in a point z = 0. It immediately brings us to the
condition √

2πf̂+(i) = 1− λ1

λ2
. (4.5)

Let us consider , that the limit g+ (∞) exists and that the condition
(4.5) holds true. It is supposed also, that there exists a finite value S+(0).
But if the function G+ (z) has a pole in a point z=0, then by virtue of the
structure of function Ω+ (z) a finite limit S+(0)would possible not exist . It
is obvious, that for its existence it is necessary, that numerator of fraction
(2.6) in the point z = 0 converted to zero. Taking into account the condition
(3.7) our last conditions will look so:

f̂+ (i) =
γ2λ1

λ2γ1

f̂+ (0) . (4.6)

Besides let us assume, that the function f̂+ (x) is such that there exists

Lim
z→∞

K+ (z) = K+ (0) (4.7)

and
1 + K+(0) �= 0. (4.8)

If conditions (4.7)-(4.8)are fulfilled then condition (4.6) will be also suf-
ficient for the existence of finite value S+(0).

Let us assume conditions (4.6) - (4.8) in this point hold true. Then
taking into account the second condition (1.2) of a system (4.2) we shall
receive a relation

λ1 (γ1 + γ2)

γ1
ϕ+ (0) =

1 + S+ (0)− g+ (∞)λ1γ
−1
1 S+ (i)

g+ (∞)
. (4.9)
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At the made above suppositions we shall find out, that

S+ (0) = exp
(
−A+ (0)

)
− 1, S+ (i) = exp

(
−A+ (i)

)
− 1, (4.10)

where the function A+(z) is defined by the formula (3.6).
The following theorems are also true

Theorem 4. Let the conditions of the theorem 4 be satisfied,there exists
g+ (∞), and besides the density function of probability f(u) and that the con-
ditions (4.5) - (4.8) also satisfy . Then the equation (1.1) has an unique,
solution which satisfies the second condition (1.2). This solution is con-
structed sequentially by the formulae (2.6) - (2.7), (3.2), (3.2),(3.8) - (3.9).

Theorem 5. Let conditions of the theorem 5 satisfy and also

1 + S+ (0)− g+ (∞)λ1γ
−1
1 S+ (i)

g+ (∞)
> 0.

Then the problem (1.1) - (1.2) has a unique solution. This solution de-
termines function ϕ(u) (the probability for the company not being ruin),
which is constructed sequentially by the formulae (2.6)-(2.7),(3.2),(3.7)-
(3.9),(4.9)-(4.10).

The proof is based on validity of the theorem 5 and equality (4.9)
Remark. In case the function with c(u) is equal to constant a problem
(1.1) - (1.2) represents a classical problem of the theory of risk [3] - [4].
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TESTING WEAK STATIONARITY
OF STOCK RETURNS

Geometric Brownian motion provides the most commonly used math-
ematical model of the behavior of stock prices. Accordingly, in the
discrete approximation, the de-meaned logarithm of stock returns
should represent a white noise. We examine six stocks using a test
designed by Y. Okabe and Y. Nakano and based on experimental
mathematics, to investigate to what extend this theoretical assump-
tion holds in practice. In particular, we test the more general assump-
tion of weak stationarity of the returns, where a certain dependence
between returns is allowed.
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tion; weak stationarity; white noise.

1. Introduction

The claim that stock price processes can be modelled in continuous time
by geometric Brownian motion has dominated modern finance for nearly half
a century. Its justification is usually derived from to the Efficient Market
Hypothesis. The usefulness of the geometric Brownian motion model is be-
yond a doubt, but as every mathematical model of reality it has limitations.
In fact, numerous well documented features in the behavior of stock prices
do not seem to conform to the Brownian motion approach prompting search
for alternative explanations. A broad discussion of this issue can be found
e.g. in Mandelbrot (1997) and (Lo and McKinlay,1999). In this situation
there is a clear need for testing empirical data to ascertain boundaries of
applicability of the conventional model. This note is intended as a step in
this direction.

A discrete representation of a stock price process, which approximates
a geometric Brownian motion can be described by the formula

Sj+1 = Sj exp(ν∆t + σεj

√
∆t), j = 0, 1, . . . ,

where Sj denotes the stock price at time tj , ∆t = tj+1 − tj is the basic
time interval, ν and σ are positive constants, and the εj ’s are independent

196
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normally distributed random variables of mean zero and standard deviation
1. Consequently, the process

Z(j) = log
Sj+1

Sj

− ν∆t, j = 0, 1, . . . ,

should be a Gaussian white noise. The assumption of independence of
the εj ’s can be relaxed by requiring only weak stationarity of the sequence
and thus allowing observations which are k time units apart to influence
each other in a manner independent of the time when the observations are
made. The purpose of this note is to check to what extent the de-meaned
logarithmic return sequences represent white noise or at least are weakly
stationary in the case of six major Swedish companies. In particular we
will show that Zj may be weakly-stationary without being a white noise or
even not weakly-stationary. Our principal tool is a test devised by Yasunori
Okabe and Yuji Nakano which we describe in the next section.

2. The Okabe-Nakano test of stationarity

In this section we summarize a special case of the so called Test(S)
of weak-stationarity introduced by Y. Okabe and Y. Nakano (see (Okabe
and Nakano, 1991); see also (Okabe and Inoue, 1994), Nakano (1995) and
(Ohama and Yanagawa, 1997)). In its more general form the test applies
also to multichannel signals. The scientific methodology of the Okabe-
Nakano test is characteristic for experimental mathematics understood as a
combination of a mathematical argument and computer simulation. Conse-
quently it differs from the methodology of standard hypotheses testing used
in statistics.

Recall that a finite time stochastic process (Xj) is said to be weakly
stationary if all the random variables Xj have the same mean and if the
covariance of any two of these random variables, say Xi and Xj, depends
only on j− i. Let N be a positive integer. Suppose that the finite duration
signal Z : {0, 1, . . . , N} −→ R is our experimental data. The objective is to
test whether or not it represents a weakly stationary process. We calculate
the sample mean µZ and the sample autocovariance RZ according to the
formulas

µZ =
1

N + 1

N∑
m=0

Z(m)

and

RZ(n) =
1

N + 1

N−n∑
m=0

(
Z(n−m)− µZ) (Z(m)− µZ) ,

for n = 0, . . . , N . Then we normalize the observations Z(n) by defining

X (n) =
Z(n)− µZ√

RZ(0)
, n = 0, . . . , N.
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The quantities µX and RX are calculated similarly to µZ and RZ . Clearly
µX = 0. For the test to work, we have to assume that the Toeplitz matrices

SX
n =

[
RX (|i− j|)

]
0≤i,j≤n

, n = 1, . . . , N

are non-singular.
Define M = �3

√
N + 1# − 1. It can be demonstrated that only the

the first M + 1 coefficients RX can be used reliably. Using the standard
Levinson-Durbin algorithm (see e.g. Hayes (1996)), we calculate the num-
bers γ(n, k), V (m) for 1 ≤ n ≤ M, 0 ≤ k < n, 0 ≤ m ≤ M so that the
following matrix equation is solved:[

1 γ(n, n− 1) γ(n, n− 2) . . . γ(n, 0)
]
SX

n =
[

V (n) 0 0 . . . 0
]
,

where V (0) = RX (0).
To gain better access to the internal structure of X we look at shifted

segments Xi : {0, . . . , M} −→ R of X , where Xi(n) = X (i + n) for i ∈
{0, . . . , N − M} and n ∈ {0, . . . , M}. For these values of i we also define
ξi : {0, . . . , M} −→ R by the formulas:

ξi(0) = Xi(0)V (0)−1/2

and

ξi(n) =

(
Xi(n) +

n−1∑
k=0

γ(n, k)Xi(k)

)
V (n)−1/2, n = 1, . . . , M.

It can be shown (see Okabe (1988); see also e.g. (Okabe and Nakano, 1991)
or (Okabe and Inoue, 1994)) that Xi is a realization of a weakly stationary
process (with the covariance function RX ) if and only if ξi is a realization
of a standard white noise.

To check the latter, one uses three criteria, which will be denoted by
(M), (V) and (O). Suppose that Y ∈ {ξ0, . . . , ξN−M}. Condition (M)
requires that √

M + 1|µY | < 1.96,

where

µY =
1

M + 1

M∑
k=0

Y (k).

Condition (V) requires that

|(vY − 1)̃ | < 2.2414,

where

(vY − 1)̃ =

M∑
k=0

(Y (k)2 − 1)

(
M∑

k=0

(Y (k)2 − 1)2

)−1/2

.
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Condition (O) has the form of the inequality

(M + 1)|RY (n, m)|
(√

L
(1)
n,m +

√
L

(2)
n,m

)−1

< 1.96,

where

RY (n, m) =
1

M + 1

M−n∑
k=m

Y (k)Y (n + k),

where 1 ≤ n ≤ L, 0 ≤ m ≤ L − n, L = �2
√

M + 1# − 1, and the

numbers L
(l)
n,m are defined as follows. For l ∈ {1, 2}, n ∈ {1, . . . , L} and

m ∈ {0, . . . , L− n} we put

L(l)
n,m = n

(
q − (−1)s+l

⌈s

2

⌉)
− 1− (−1)s+l

2
m− (−1)l max

(
0, (−1)l(n− r)

)
,

where

q =

⌊
M + 1

2n

⌋
, r = M + 1− 2nq and s =

⌊m
n

⌋
.

Note that M + 1− n−m = L
(1)
n,m + L

(2)
n,m.

It is observed in (Okabe and Nakano, 1991), that if Y is obtained by
sampling white noise consisting of independent random variables, then in
view of the Central Limit Theorem and the Law of Large Numbers Y should
satisfy Conditions (M), (V) and (O) with probabilities 0.95, 0.975 and
0.90, respectively. Okabe and Nakano have used this fact in conjunction
with extensive computer simulation to justify the following test of weak
stationarity:

Test(S) (Okabe and Nakano, 1991): If ξi satisfies Criterion (M) for over
80% of i ∈ {0, 1, . . . , N−M}, Criterion (V) for over 70% of i and Criterion
(O) for over 80% of i, then Z is a realization of a weakly stationary process.

If Z passes Test(S), we might ask if Z − µZ represents a white noise.
To this end we check if the data sequences Xi satisfy Condition (O). If
Xi fulfills Condition (O) for over 80% of i, we assert that Z − µZ is a
realization of a white noise. In what follows we will call this statement the
white noise test.

3. Testing stock returns

We apply the above tests as follows. Let m be either 100 or 150. Let

S : {−(m− 1), . . . , 1000} −→ R
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be the sequence of closing stock prices for a company over the period of
1000 + m trading days ending either at June 30, 1995 or at June 30, 1999.
We define

Z(n) = log
S(n)

S(n− 1)

for n = −(m− 2), . . . , 1000 and

Zi(n) = Z(i−m + n)

for i = 1, .., 1000 and n = 1, . . . , m. Then we calculate the percentage of
days j in the period {1, . . . , 1000} such that the data sequence Zj passes
Test(S). If Zj passes Test(S), we also check if the de-meaned process Zj

is a representation of white noise. The results of our tests are presented
in Tables 1-4. Horizontal graph bars correspond to the relevant period of
1000 trading days. The white/gray/black areas represent the days such that
the prior m day period, respectively, passes the white noise test, passes the
weak stationarity test and fails the weak stationarity test.
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4. Conclusion

The results of the tests show that the degree to which logarithmic re-
turns of different stocks conform to the standard model varies considerably.
For some stocks, the percentage of running 100-day periods (resp. 150-day
periods) that pass the white noise test is as low 35.2% (resp. 24%). The
highest score was 73.2% (resp. 66.4%). However a less demanding require-
ment of weak stationarity is satisfied more often. The lowest pass rate is
58.1% (resp. 50.1%) and the highest 89% (resp. 79.6%). Nevertheless, even
in this case the rate of failure is rather high and can be linked to the fact
that the volatility of the actual market data does not remain constant dur-
ing the relevant period of 100 (resp. 150) days. This may be seen as further
evidence in favor of models allowing stochastic volatility.
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1. Introduction

We want to present an approach to the investigation of natural catas-
trophe claims in the presence of a trend. The so-called Nevzorov’s model
is studied. We assume that the yearly catastrophe claims are realizations
of an independent sequence {Xi, i ≥ 1} of random variables with support
R+ := [0,∞) and continuous cumulative d.f. {Fi, i ≥ 1}, s.t. Fi = F γi ,
with γi = γi−1, γ ≥ 1 . Here F is a fixed cumulative d.f. with F (0) = 0. In
Kukush (1999) some results concerning asymptotic properties of the MLE in
the Nevzorov’s record model are obtained, such as consistency, asymptotic
normality and efficiency. In that paper the semi-parametric and the three-
parameter model are studied. The author interprets the observed claims
as a stochastically increasing sequence of Fréchet distributed random vari-
ables. This idea was first proposed in Pfeifer (1997) with some simulation
study.

Here we continue that investigations. The goodness-of-fit test is obtained
for the above-mentioned model.

The paper is organized as follows. In Section 2 the main results are
presented, and in Section 3 proofs are given.

2. Goodness-of-fit test

Let θ0 be an interior point of Θ ⊂ Rd, and θ̂n be a strongly consistent es-
timator of a parameter θ0, i.e., θ̂n converges to θ0 a.s., as n →∞. Consider
a random functional Qn(θ) ∈ C1(Θ) and suppose that with probability 1

203
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Qn(θ) converges uniformly on each compact subset of Θ to a limit functional
Q∞(θ, θ0), and Q∞(u, v) ∈ C1(Θ× Θ). Suppose also that Qn(θ) ≤ Qn(θ̂n)
a.s. for all θ ∈ Θ and Q∞(θ, θ0) < Q∞(θ0, θ0) for all θ ∈ Θ, θ �= θ0.

Theorem 1. Assume that:

1)

(√
n(Qn(θ0)−Q∞(θ0, θ0))√

n grad Qn(θ0)

)
→
(

ξ1

ξ2

)
in distribution, ξ1 is a random

variable, and ξ2 is a random vector in Rd;

2) Q′′
n(θ0) → S in probability, S is a nonsingular matrix;

3) limε→0+ lim supn P{sup‖θ−θ0‖≤ε ‖Q′′
n(θ −Q′′

n(θ0‖ > δ} = 0 for all δ.

Then Tn =
√

n(Qn(θ̂n)−Q∞(θ̂n, θ̂n)) → ν =
(
1, gS−1

)(ξ1

ξ2

)
in law.

Here g = ∂Q∞
∂v

(θ0, θ0). We regard here and further the derivative vectors as
row vectors.

The model in which d.f. Fi has a form Fi = F (x)γi−1
, and F (x) is

unspecified is called semi-parametric.
We call three-parameter model to be the model in which d.f. Fi has a form

Fi = F (x; A, α)γi−1
, F is Fréchet distribution function with parameters A,

α, F (x) = exp (−(Ax)−α) , i = 1, 2, ....
Let L be a log-likelihood function, and Qn(X, θ) be a normalized log-

likelihood function, Qn = 1
n
L. In the semiparametric model

Qn(γ) =
1

n

n∑
i=2

(Ii − p0
i ) ln

pi

1− pi
+

1

n

n∑
i=2

[
p0

i ln
pi

1− pi
+ ln (1− pi)

]
,

and in the three-parameter model

Qn(θ) =
1

n
L(A, α, γ) =

(
1− 1

n

)ψ

2
+ ln α− α ln A + (α + 1) lnA0−

−α + 1

α0

ψ0

2

(
1− 1

n

)
− 1

n

α + 1

α0

n∑
i=1

ln Zi −
(

A0

A

)α
1

n

n∑
i=1

e
i−1
n

(ψ−ψ0
α

α0
)
Z

− α
α0

i .

In the semi-parametric model for γ > 1, γ0 > 1 define

Q∞(γ, γ0) = (1− γ−1
0 ) ln(γ − 1)− ln γ.

In the three-parameter model define for θ = (A, α, ψ) ∈ Θ = (0,∞) ×
(0,∞)×R, ψ = n ln γ, θ0 = (A0, α0, ψ0) ∈ Θ, ψ0 = n ln γ0.

Q∞(θ, θ0) =
1

2

(
ψ − α + 1

α0
ψ0

)
+ ln αA0 + α ln

A0

A
− α + 1

α0
γ−
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−
(

A0

A

)α

Γ
(
1 +

α

α0

)e
ψ− α

α0
ψ0 − 1

ψ − α
α0

ψ0

.

Applying the Theorem 1 to semi-parametric and three-parameter models
we obtain the following results:
Theorem 2. In semi-parametric model with γ0 > 1

Tn =
√

n(Qn(γ̂n)−Q∞(γ̂n, γ̂n)) → N(0, σ2(γ0)) in law. Here

σ2(γ0) =
2l0(l0γ

2
0 − 2l0γ0 + l0 + 1)

γ4
0

, l0 = (ln(γ0 − 1))2.

Corollary 1. Let the conditions of Theorem 2 hold. Then Vn = Tn

σ(γ̂n)
→

N(0,1) in law.

Theorem 3. In three-parameter model with γ0 > 1

Tn =
√

n(Qn(θ̂n)−Q∞(θ̂n, θ̂n)) → N(0, σ2(θ0)) in law. Here

σ2(θ0) = κT BKBT κ, κT = (1, gS−1), g =
(

1
A0

, 1
2

ψ0+2α0+2γe

α2
0

, − 1
2α0

)
,

B =


α0+1

α0
1 0 0

0 −α0

A0
0 0

0 0 −ψ0

α0

1
α0

0 0 1 0

 ,

K =


π2

6
−1 −1

2
γe

−1 1 1
2

1− γe

−1
2

1
2

1
3

1−γe

2

γe 1− γe
1−γe

2
1 + π2

3
+ 4γe + γ2

e

 ,

S =


−α2

0

A2
0

−1
2

ψ0−2+2γe

A0

1
2

α0

A0

−1
2

ψ0−2+2γe

A0
−1

6

6γ2
e−12γe−6ψ0+2ψ2

0+π2+6+6ψ0γe

α2
0

1
6

3γe−3+2ψ0

α0

1
2

α0

A0

1
6

3γe−3+2ψ0

α0
−1

3

 ,

γe is Euler’s constant.

Corollary 2. Let the conditions of Theorem 3 hold. Then Vn = Tn

σ(θ̂n)
→

N(0,1) in law.

Corollaries 1 and 2 are applied to goodness-of-fit test. In both semi-
parametric and three-parameter cases we reject the hypothesis about valid-
ity of the model with γ0 > 1 if |Vn| > Nα/2, where Nα/2 is α/2-quantile of
normal law, i.e., P{N(0, 1) > Nα/2} = α/2.
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3. Proofs

Proof of the Theorem 1. Before proving the Theorem 1 consider the
following three statements:

Lemma 1. Let Θ ⊂ Rd, θ0 be an interior point of Θ, {Qn(θ), θ ∈ Θ, n ≥
1} be sequence of random fields, which are twice differentiable in the neigh-
borhood of θ0. Let θn be a random vector defined by

θn ∈ arg max
θ∈Θ

Qn(θ),

and suppose that θn → θ0 in probability. Assume also that:

a)
√

nQ′
n(θ0) converges in law to a random vector γ,

b) Q′′
n(θ0) → S in probability, where S is nonsingular nonrandom matrix,

c) For each δ > 0

lim
ε→0

lim sup
n→∞

P
(

sup
‖θ−θ0‖≤ε

‖Q′′
n(θ)−Q′′

n(θ0)‖ > δ
)

= 0.

Then δn :=
√

n(θn − θ0) → −S−1γ in law.

Proof. Q′
n(θn) = 0 with probability tending to 1, because θn ∈ arg max

θ
Qn(θ)

and θn → θ0 in probability, θ0 is interior point. Then

∂Qn(θn)

∂θi
= 0,

∂Qn(θ0)

∂θi
+

n∑
j=1

∂2Qn(θ̄i)

∂θi∂θj
(θj

n − θj
0) = 0, θ̄i ∈ [θ0, θn].

Then
√

nQ′
n(θ0)+Q′′

n(θ0)δn +Rn = 0, Rn = Λn(θn−θ0)
√

n, Λn = (Λij
n )3

i,j=1,

Λij
n =

∂2Qn(θ̄i)

∂θi∂θj
− ∂2Qn(θ0)

∂θi∂θj
.

So,
(Q′′

n(θ0) + Λn)δn = −
√

nQ′
n(θ0). (1)

Now, Λn → 0 in probability. Indeed,

P{‖Λn‖ ≥ δ} ≤ P{‖θn − θ0‖ > ε}+ P{ sup
‖θ̄i−θ0‖≤ε

‖Λn‖ ≥ δ},

lim sup
n→∞

P{‖Λn‖ ≥ δ} ≤ lim sup
n→∞

P sup
‖θ̄i−θ0‖≤ε

{‖Λn‖ ≥ δ} → 0, ε → 0+

by condition (c). Thus Λn → 0 in probability.
Then in (1) −√nQ′

n(θ0) → −γ in law, Q′′
n(θ0) + Λn → S in probability.

So, δn = (Q′′
n(θ0)+Λn)−1(−

√
nQ′

n(θ0)), it holds with probability tending to
1 and δn → −S−1γ in distribution, because S is nonsingular.�
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Lemma 2. Assume that:

1)
√

nQ′
n(θ0) → ξ in distribution, ξ is a random vector in Rd;

2) Q′′
n(θ0) → S in probability, S is a nonsingular non-random matrix;

3) limε→0+ lim supn P{sup‖θ−θ0‖≤ε ‖Q′′
n(θ −Q′′

n(θ0‖ > δ} = 0 for all δ.

Then
√

n(Q∞(θ̂n, θ̂n) − Q∞(θ0, θ0)) = gδn + op(1), n → ∞, where g =
∂Q∞
∂v

(θ0, θ0).

Proof. Expand the value Q∞(θ̂n, θ̂n) into Taylor series near the point (θ0, θ0).

Q∞(θ̂n, θ̂n) = Q∞(θ0, θ0) +
∂Q∞

∂u
(θ0, θ0)(θ̂n − θ0)+

+
∂Q∞

∂v
(θ0, θ0)(θ̂n − θ0) + o(‖θ̂n − θ0‖).

θ = θ0 is a maximum point of Q∞(θ, θ0). So ∂Q∞
∂u

(θ0, θ0) = 0. According

to lemma 1, all the conditions of which are satisfied, δn =
√

n(θ̂n − θ0) →
−S−1ξ. So,

√
n(θ̂n − θ0) = Op(1) and

√
n‖θ̂n − θ0‖ = Op(1). Thus o(‖θ̂n −

θ0‖) = o( 1√
n
)Op(1)) = op(

1√
n
). And finally

√
n(Q∞(θ̂n, θ̂n)− Q∞(θ0, θ0)) =

gδn + op(1).�

Lemma 3. Let the conditions of lemma 2 hold.
Then

√
n(Qn(θ̂n)−Qn(θ0)) = op(1), n →∞ .

Proof. Expand the value Qn(θ0) into Taylor series near the point θ = θ̂n.

Qn(θ0) = Qn(θ̂n) +
dQn

dθ
(θ̂n)(θ0 − θ̂n) +

d2Qn

dθ2
(θ̄)(θ0 − θ̂n)2, θ̄ ∈ [θ0, θ̂n].

With probability 1 θ̂n → θ0, θ0 is interior point, so θ̂n is interior point
for n > n0(ω). θ = θ̂n is a maximum point of Qn(θ). So dQn

dθ
(θ̂n) = 0.

Using again Lemma 1 we obtain δn =
√

n(θ̂n − θ0) = Op(1), n →∞. Thus

n(θ̂n−θ0)
2 = Op(1), n →∞ and

√
n(θ̂n−θ0)

2 = 1√
n
Op(1) = op(1), n →∞.

Now, show that d2Qn

dθ2 (θ̄) is stochastically bounded.

P
{∥∥∥d2Qn

dθ2
(θ̄)
∥∥∥ ≥ C

}
≤ P{‖θ̄n − θ0‖ > ε}+ P

{
sup

‖θ̄−θ0‖≤ε

∥∥∥d2Qn

dθ2
(θ̄)
∥∥∥ ≥ C

}
≤

P{‖θ̂n−θ0‖ > ε}+P
{

sup
‖θ̄−θ0‖≤ε

(∥∥∥d2Qn

dθ2
(θ̄)−d2Qn

dθ2
(θ0)
∥∥∥+∥∥∥d2Qn

dθ2
(θ0)
∥∥∥) ≥ C

}
≤

P{‖θ̂n − θ0‖ > ε} + P
{

sup
‖θ̄−θ0‖≤ε

∥∥∥d2Qn

dθ2
(θ̄)− d2Qn

dθ2
(θ0)
∥∥∥ ≥ C

2

}
+
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+P
{∥∥∥d2Qn

dθ2
(θ0)
∥∥∥ ≥ C

2

}
.

Since θ̂n → θ0, a.s., n →∞, for any ε > 0

lim sup
n→∞

P
{∥∥∥d2Qn

dθ2
(θ̄)
∥∥∥ ≥ C

}
≤

lim sup
n→∞

P
{

sup
‖θ̄−θ0‖≤ε

∥∥∥d2Qn

dθ2
(θ̄)− d2Qn

dθ2
(θ0)
∥∥∥ ≥ C

2

}
+

+ lim sup
n→∞

P
{∥∥∥d2Qn

dθ2
(θ0)
∥∥∥ ≥ C

2

}
.

Now, tend ε to 0 and use the condition 3) of the lemma.

lim sup
n→∞

P
{∥∥∥d2Qn

dθ2
(θ̄)
∥∥∥ ≥ C

}
≤ lim sup

n→∞
P
{∥∥∥d2Qn

dθ2
(θ0)
∥∥∥ ≥ C

2

}
.

According to the condition 2) of the lemma
∥∥∥d2Qn

dθ2 (θ0)
∥∥∥ = Op(1). By this

way we have proved that
√

nd2Qn

dθ2 (θ̄)(θ0 − θ̂n)2 = op(1), θ̄ ∈ [θ0, θ̂n].
From this the statement of the lemma follows.�

Now, prove Theorem 1. At first mention that condition 1) of Lemma 2
and conditions of Lemma 3 follow from the condition 1 of the Theorem 1.

From Lemma 1 we have: δn =
√

n(θ̂n−θ0) = (Q′′
n(θ0))

−1(−
√

nQ′
n(θ0))+

op(1), n →∞; Sδn +
√

nQ′
n(θ0) → 0, n →∞ in probability. Thus(√

n(Qn(θ0)−Q∞(θ0, θ0))
Sδn

)
→
(

ξ1

ξ2

)
in probability.

Apply to this vector the continuous transformation

F

(
υ1

υ2

)
=

(
1 0
0 S−1

)(
υ1

υ2

)
.

From condition 1) of Lemma 1 using Slutsky lemma we obtain:(√
n(Qn(θ0)−Q∞(θ0, θ0))

δn

)
→
(

ξ1

−S−1ξ2

)
in distribution.

And similarly(√
n(Qn(θ0)−Q∞(θ0, θ0))

gδn

)
→
(

ξ1

−gS−1ξ2

)
in distribution.

In Lemma 3 it was proved that

√
n(Q∞(θ̂n, θ̂n)−Q∞(θ0, θ0)) = gδn + op(1), n →∞.
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So, ( √
n(Qn(θ0)−Q∞(θ0, θ0))√

n(Q∞(θ̂n, θ̂n)−Q∞(θ0, θ0))

)
→
(

ξ1

−gS−1ξ2

)
in distribution.

Using Lemma 4 we obtain:( √
n(Qn(θ̂n)−Q∞(θ0, θ0))√

n(Q∞(θ̂n, θ̂n)−Q∞(θ0, θ0))

)
→
(

ξ1

−gS−1ξ2

)
in distribution.

Finally, considering the transformation G

(
υ1

υ2

)
= υ1 − υ2 we obtain:

√
n(Qn(θ̂n)−Q∞(θ̂n, θ̂n)) → ξ1+gS−1ξ2 = (1, gS−1)

(
ξ1

ξ2

)
in distribution.�

Proof of the Theorem 2. We must check three conditions of the theorem

1 and prove that the vector (1, gS−1)

(
ξ1

ξ2

)
is normally distributed with

parameters (0, σ2(θ0)).

Check the first condition. Consider W =

(√
n(Qn(θ0)−Q∞(θ0, θ0)√

n grad Qn(θ0)

)
.

It was proved above that

W =

(
1√
n

∑n
i=2 (Ii − p0

i ) ln
p0

i

1−p0
i

1√
n

∑n
i=2 (Ii − p0

i )
p′i(γ0)

p0
i (1−p0

i )

)
=

1√
n

n∑
i=2

(Ii − p0
i )

(
ln

p0
i

1−p0
i

p′i(γ0)

p0
i (1−p0

i )

)

Denote Ai(γ0) =

(
ln

p0
i

1−p0
i

p′i(γ0)

p0
i (1−p0

i )

)
. Then Var W = 1

n

∑n
i=1 AivAT

i . Here v =

Var (Ii − p0
i ) = p0

i (1− p0
i ). Thus

Var W →
(

(ln (γ0 − 1))2 (γ0−1)
γ2
0

− ln (γ0−1)
γ2
0

− ln (γ0−1)

γ2
0

1
γ2
0 (γ0−1)

)
:= K.

Now, the second condition of the theorem 1 holds, as Q′′
n(γ0) → S =

− 1
γ2
0 (γ0−1)

, n →∞ in probability.

It is easy to see that g = ∂Q∞
∂v

(θ0, θ0) = ln γ0−1
γ2
0

.

The third condition of the theorem holds as well. Therefore, applying
the theorem 1 we obtain:

Tn =
√

n(Qn(γ̂n)−Q∞(γ̂n, γ̂n)) → N(0, σ2(γ0)) in law.
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σ2(γ0) = κKκT , κ = (1, gS−1)T .

σ2(γ0) =
2l0(l0γ

2
0 − 2l0γ0 + l0 + 1)

γ4
0

, l0 = (ln(γ0 − 1))2.�

Proof of the Theorem 3. (i) Reparametrization. Consider the maxi-
mum likelihood function for the observed data set X1, ..., Xn, L(A, α, γ) =∑n

i=1 ln f(xi; A, α, γ). Here fi(x; A, α, γ) is density function of described

above distribution, fi(x; A, α, γ) = ∂Fi(x;A,α,γ)
∂x

. Let ψ = n ln γ. Rewrite this
functional using new parameter θ = (A, α, ψ) (the same is for true values),
θ ∈ (0,∞)× (0,∞)×R.

Qn(θ) =
1

n
L(A, α, γ) = (1− 1

n
)
ψ

2
+ ln (αA−α)−

1

n
(α + 1)

n∑
i=1

ln Xi −
1

n

n∑
i=1

e
i−1
n

ψ(AXi)
−α

Rewrite the functional Qn(θ) using the i.i.d. sequence Zi = (A0Xi)
α0

(γ
1/α0
0 )i−1

, i =

1, 2, ...,

Qn(θ) =
1

n
L(A, α, γ) =

(
1− 1

n

)ψ

2
+ ln α− α ln A + (α + 1) lnA0−

−α + 1

α0

ψ0

2

(
1− 1

n

)
− 1

n

α + 1

α0

n∑
i=1

ln Zi −
(

A0

A

)α
1

n

n∑
i=1

e
i−1
n

(ψ−ψ0
α

α0
)
Z

− α
α0

i .

We obtain

Qn(θ) =
n− 1

2n

(
ψ − α + 1

α0

ψ0

)
+ ln αA0 + α(ln

A0

A
)−

−α + 1

α0

1

n

n∑
i=1

ln Zi −
(

A0

A

)α
1

n

n∑
i=1

e
i−1
n

(ψ−ψ0
α

α0
)
Z

− α
α0

i (2)

(ii) Limit functional. Consider θ belong to a compact subset of Θ. Uni-
formly on this set we have

Qn(θ) = Q∞(θ) + R1 + R2 + o(1),

with the limit functional

Q∞(θ, θ0) =
1

2

(
ψ − α + 1

α0
ψ0

)
+ ln αA0 + α ln

A0

A
− α + 1

α0
γ−

−
(

A0

A

)α

Γ
(
1 +

α

α0

)e
ψ− α

α0
ψ0 − 1

ψ − α
α0

ψ0
(3)
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and

R1(θ) = −1

n

α + 1

α0

n∑
i=1

(
lnZi −E ln Zi

)
; (4)

R2(θ) = −1

n

(
A0

A

)α n∑
i=1

e
i−1
n

(ψ−ψ0
α

α0
)
(
Z

− α
α0

i − EZ
− α

α0
i

)
. (5)

With probability 1 Qn(θ) converges to Q∞(θ, θ0) uniformly.
(iii) We must check the conditions of Theorem 1 and prove that

(1, gS−1)

(
ξ1

ξ2

)
is normally distributed with mean 0 and variance σ2(θ0).

Check the first condition of the Theorem 1: Consider

W =

(√
n(Qn(θ0)−Q∞(θ0, θ0)√

n grad Qn(θ0)

)
.

It is easy to see that
√

n(Qn(θ0)−Q∞(θ0, θ0) =
√

n(R1(θ0) + R2(θ0)). Here

R1(θ0) = −α0 + 1

α0

1

n

n∑
i=1

(ln zi −E ln zi);

R2(θ0) = R2 = −1

n

n∑
i=1

z−1
i − Ez−1

i .

Another part of W has the form:
√

nQ′
n(θ0) =

− 1√
n

n∑
i=1

 − α0
A0

(z−1
i − Ez−1

i )
1
α0

[((1− z−1
i ) ln zi − ψ0

i−1
n z−1

i )− E((1 − z−1
i ) ln zi − ψ0

i−1
n z−1

i )]
i−1
n (z−1

i − Ez−1
i )

.

Thus W is equal to

− 1√
n

n∑
i=1


(α0+1

α0
ln zi + z−1

i )− E(α0+1
α0

ln zi + z−1
i )

− α0
A0

(z−1
i − Ez−1

i )
1
α0

[((1− z−1
i ) ln zi − ψ0

i−1
n z−1

i )− E((1 − z−1
i ) ln zi − ψ0

i−1
n z−1

i )]
i−1
n (z−1

i − Ez−1
i )

.

Consider the vector

ζi =

 ln zi −E ln zi

z−1
i − Ez−1

i

(1− z−1
i ) ln zi − E((1− z−1

i ) ln zi)


with

Γ = Var ζi =

a b c
b d e
c e f

 .
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Consider also continuous linear transformation

Ai =


1 0 0
0 1 0
0 i−1

n
0

0 0 1

 .

Then

1√
n

n∑
i=1

Aiζi =
1√
n

n∑
i=1


ln zi − E ln zi

z−1
i − Ez−1

i
i−1
n

(z−1
i −Ez−1

i )
(1− z−1

i ) ln zi −E((1− z−1
i ) ln zi)

.

The corresponding covariance matrix has the form

Var
( 1√

n

n∑
i=1

Aiζi

)
=

1

n

n∑
i=1

AiΓAT
i =

=
1

n

n∑
i=1


a b i−1

n
b c

b d i−1
n

d e

i−1
n

b i−1
n

d
(

i−1
n

)2

d i−1
n

e

c e i−1
n

e f

 =

=


a b bS2

n2 c
b d dbS2

n2 e
bS2

n2 dS2

n2 dS3

n3 eS2

n2

c e eS2

n2 f

 �−→


a b b

2
c

b d d
2

e
b
2

d
2

d
3

e
2

c e e
2

f

 := K.

Here Sk =
∑n

i=1 (i− 1)k−1, k > 1, S2

n2 = n(n−1)
2n2 → 1

2
; S3

n3 = n(n−1)(2n−1)
6

→ 1
3
.

Now by multivariate CLT 1√
n

∑n
i=1 Aiζi → ρ, ρ is normal distributed

with mean 0 and covariance matrix K. Indeed, check Lyapunov condition
for this vector. It is sufficient to check it for the components of the vector.
Check it only for third component of the vector 1√

n

∑n
i=1 Aiζi. (Checking

the condition for the other components is obvious.) Let

ξi = z−1
i −Ez−1

i , ξni =
i− 1

n
√

n
ξi, Sn =

n∑
i=1

ξni =
( 1√

n

n∑
i=1

Aiζi

)
3
.

Now,

s2
n = Var Sn =

1

n

n∑
i=1

(i− 1)2

n2
→ 1

3
.

Check Lyapunov condition:

1

s3
n

n∑
i=1

E|ξnk|3 → 0, n →∞.
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Indeed,

1

(n
√

n)3

n∑
i=1

E|ξi|3 =
S4(n)

n4
√

n
E|ξ1|3 → 0, n →∞, S4(n) =

n∑
i=1

(i− 1)3.

Consider another transformation:

B =


α0+1

α0
1 0 0

0 −α0

A0
0 0

0 0 −ψ0

α0

1
α0

0 0 1 0


It is easy to see that W = −B

(
1√
n

∑n
i=1 Aiζi

)
. And we obtain that

W → N(0, T ), where T = Var W = BKBT . Obviously, (1, gS−1)

(
ξ1

ξ2

)
is normally distributed with mean 0 and variance σ2(θ0), where σ2(θ0) =
= κT BKBT κ, κT = (1, gS−1).

Now, check the second condition of the theorem 1.
Consider Qn(θ) = Q∞(θ, θ0) + R1(θ) + R2(θ). Direct calculations show

that (Q∞)′′(θ0, θ0) =
−α2

0

A2
0

−1
2

ψ0−2+2γe

A0

1
2

α0

A0

−1
2

ψ0−2+2γe

A0
−1

6

6γ2
e−12γe−6ψ0+2ψ2

0+π2+6+6ψ0γe

α2
0

1
6

3γe−3+2ψ0

α0

1
2

α0

A0

1
6

3γe−3+2ψ0

α0
−1

3

 := S.

It is easy to see that R′′
1(θ) ≡ 0 for all θ ∈ Θ.

Now consider R′′
2(θ0). Every element of this matrix consists of linear

combination of the following expressions:

1

n

n∑
i=1

(i− 1)k

nk
(z−1

i − Ez−1
i ),

1

n

n∑
i=1

(i− 1)k

nk
(z−1

i ln zi − E(z−1
i ln zi)),

1

n

n∑
i=1

(i− 1)k

nk
(z−1

i ln 2zi −E(z−1
i ln 2zi)), k = 0, 1, 2.

Thus R′′
2(θ0) → 0, n →∞, in probability. Consider, for example, the most

interesting term

∂2R2

∂ψ2
(θ) = −

(
A0

A

)α
1

n

n∑
i=1

(i− 1)2

n2
e

i−1
n

(ψ−ψ0
α

α0
)
(
zi

α
α0 −Ezi

α
α0

)
,

∂2R2

∂ψ2
(θ0) =

1

n

n∑
i=1

(i− 1)2

n2

(
zi

−1 −Ezi
−1
)
.
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But

Var
∂2R2

∂ψ2
(θ0) =

1

n2

1− 3n + 2n2

n
Const $ 1

n
→ 0, n →∞.

And ∂2R2

∂ψ2 (θ0) → 0, n →∞ in probability.

Finally, check the last condition of the theorem 1. Consider Q′′′
n (θ0).

Every element of this tensor consists of linear combination of the following
expressions:

1

n

n∑
i=1

(i− 1)k

nk
(z−1

i − Ez−1
i ),

1

n

n∑
i=1

(i− 1)k

nk
(z−1

i ln zi − E(z−1
i ln zi)),

1
n

n∑
i=1

(i− 1)k

nk
(z−1

i ln 2zi − E(z−1
i ln 2zi)),

n∑
i=1

(i− 1)k

nk
(z−1

i ln 3zi − E(z−1
i ln 3zi)),

k = 0, 1, 2, 3. Consider the most interesting: 1
n

∑n
i=1

(i−1)3

n3

(
zi

−1 −Ezi
−1
)
.

Var
{ 1

n

n∑
i=1

(i− 1)3

n3

(
zi

−1 −Ezi
−1
)}

=

1

n2

1− 2n + n2

n
Const $ 1

n
→ 0, n →∞.

Therefore there exists a constant C = C(ω) s.t. |Q′′′
n (θ0)| < C. From this

statement the third condition follows.�
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1. Introduction

Traditional methods of option pricing are based on models of pricing
processes which are various modifications of the classical model of geomet-
rical Brownian motion. Stochastic differential equations can be written
down for such pricing processes. Then partial differential equations and
the corresponding variational problems can be derived for functions which
represent optimal strategies, see for instance Øksendal (1992), Duffie (1996)
and Karatzas and Shreve (1998). Finally various numerical algorithms can
be applied to find optimal strategies for continuous time models and their
discrete time approximations. The extended survey of latest results can be
found in the book edited by Rogers and Talay (1998), in particular in the
paper by Broadie and Detemple (1998).

We do prefer to use an alternative approach for evaluation of optimal
stopping Buyer strategies for American type options. The structure of opti-
mal stopping strategies is investigated by applying of the direct probabilistic
analysis under general assumptions for underlying pricing processes.

1The paper represents a part of an invited lecture.
2This work is supported in part by the project “Stochastic modelling of insurance and

finance processes and systems” funded by the Knowledge Foundation.
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In the papers by Kukush and Silvestrov (2000a, 2000b) the structure
of optimal stopping strategies were investigated for a general model of dis-
crete time pricing processes and pay-off functions. The model of pricing
process is a two component inhomogeneous in time Markov process with a
phase space [0,∞)× Y . The first component is the corresponding pricing
process and the second component (with a general measurable phase space
Y ) represents some stochastic index process controlling the pricing process.
Pay-off functions under consideration are in sequel: (a) an inhomogeneous
in time analogue of a standard one gn(x) = an[x−Kn]+; (b) piecewise linear
convex functions, and finally (c) general convex functions.

At present paper we study skeleton type approximations for continuous
time pricing processes. The explicit upper bounds are given for the step of
discretisation for ε-optimal stopping strategies. These upper bounds enable
us to use the results given in Kukush and Silvestrov (2000a, 2000b) for
constructive description of ε-optimal stopping strategies for American type
options with continuous time. The special attention is paid to the case of
general model of pricing processes which are geometrical diffusion processes
controlled by stochastic index processes.

We think that the main advantage of direct probabilistic approach in
structural studies of optimal stopping strategies is that this approach is
much more flexible and less sensitive to the modifications of models of un-
derlying pricing processes, pay-off functions and other characteristics of the
models.

The knowledge of the explicit structure of optimal stopping strategies is
the base for the creation of effective optimising Monte Carlo pricing algo-
rithms for numerical evaluation of the corresponding optimal strategies.
Such algorithms and programs have been elaborated by Silvestrov, Ga-
lochkin and Sibirtsev (1999). We would like also to refer to the papers
by

We would like to refer to the book by Shiryaev (1978) and the paper
by Shiryaev, Kabanov, Kramkov, and Mel’nikov (1994), which stimulated
the present research. We also refer to the paper by Kukush and Silvestrov
(1999), where part of the current results was presented without the proofs.

2. Skeleton approximations for American type options in

continuous time

Consider a two component inhomogeneous in time Markov process Zt =
(St, It), t ≥ 0, with a phase space Z = [0,∞)×Y . Here (Y,BY ) is a general
measurable space and as usual we consider Z as a measurable space with
the σ–field BZ = σ(B+ × BY ) where B+ is a Borel σ–field on R+ = [ 0,∞).

We assume that Zt, t ≥ 0 is a measurable process ( Zt(ω), t ≥ 0 are
BZ –measurable functions with respect to (t, ω) ). Without loss of generality
we assume that Z0 = (S0, I0) is a non-random value in Z.

We interpret the first component St as a pricing process and the second
component It as a stochastic index process controlling the pricing process.
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A basic example of the model described above is the pricing process
given in the following form:

St = S0 · exp{
t∫

0

(a(u, Iu)−
1

2
σ(u, Iu)

2)du +

t∫
0

σ(u, Iu)dw(u)}, t ≥ 0,

where (a) a(t, y) and σ(t, y) ≥ 0 are measurable real-valued functions de-
fined on Z, (b) It, t ≥ 0 is a measurable inhomogeneous in time Markov
process such that functions E|a(t, It)| and Eσ(t, It)

2 are integrable at fi-
nite intervals and w(u), u ≥ 0 is the Wiener process independent of process
It, t ≥ 0, (d) Z0 = (S0, I0) is a non-random value in Z.

In this case vector process Zt = (St, It), t ≥ 0 is an inhomogeneous
Markov process with the first component St, t ≥ 0 is a continuous geomet-
rical diffusion process controlled by the index process It, t ≥ 0.

Let Ft, t ≥ 0 be a flow of σ–fields, associated with process Zt, t ≥ 0.
We shall consider Markov moments τ with respect to Ft. It means that τ
is a random value distributed in [0,∞] and with the property {ω : τ(ω) ≤
t} ∈ Ft, t ≥ 0.

Introduce further a pay-off function g(x, t), x ∈ R+, t ≥ 0. We assume
that g(x, t) is a nonnegative measurable function. Let also Rt, t ≥ 0 be
a nondecreasing function with R0 = 0. Typically Rt =

∫ t

0
r(s)ds, where

r(s) ≥ 0 is a Borel function representing riskless interest rate at moment s.
The typical example of pay-off function is:

g(x, t) = at [x−Kt]+ =

{
at (x−Kt), if x > Kt,

0, if 0 ≤ x ≤ Kt,

where at, t ≥ 0 and Kt, t ≥ 0 are two nonnegative measurable functions.
The case, where at = a and Kt = K do not depend on t, corresponds to the
standard American call option.

We fix parameter T > 0 which we call an expiration date. It is convenient
to operate with the transformed pricing process Sg(t) = e−Rtg(St, t), t ≥ 0.
Let us formulate conditions which we impose on pricing processes and pay-
off functions:

A: Sg(t), t ≥ 0 is a.s. continuous from the right process.

B: E sup
0≤t≤T

Sg(t) < ∞.

Let denote Mmax,T the class of all Markov moments τ ≤ T . Let now
choose a partition Π = {0 = t0 < t1 < . . . tN = T} of interval [0, T ]. We
also consider the class M̂Π,T of all Markov moments from Mmax,T which
only take the values t0, t1, . . . tN , and the class MΠ,T of all Markov moments

from M̂Π,T such that event {ω : τ(ω) = tk} ∈ σ[Z0, . . . Ztk ] for k = 0, . . . N .
By definition

MΠ,T ⊆ M̂Π,T ⊆Mmax,T . (1)
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The goal functional under consideration is:

Φg(τ) = Ee−Rτ g(Sτ , τ). (2)

Denote for a class of Markov moments MT ⊆Mmax,T

Φg(MT ) = sup
τ∈MT

Ee−Rτ g(Sτ , τ). (3)

Conditions A, B and relation (1) imply that

Φg(MΠ,T ) ≤ Φg(M̂Π,T ) ≤ Φg(Mmax,T ) < ∞. (4)

Random variables Zt0 , Zt1, . . . ZtN are connected in an inhomogeneous
Markov chain with discrete time. The optimisation problem (2)-(3) for the
class MΠ,T is a problem of optimal pricing for American type options with
discrete time.

In Kukush and Silvestrov (2000a, 2000b) the structure of optimal and
ε-optimal stopping moments in the class MΠ,T is described for various
classes of convex in x pay-off functions g(x, tk), k = t0, . . . tN . Also, op-
timising Monte Carlo algorithms and programs for numerical evaluation of
optimal stopping strategies, functionals Φg(MΠ,T ) and other functionals for
standard American options with discrete time are described in Silvestrov,
Galochkin and Sibirtsev (1999).

Our goal is to show in which way the functional Φg(Mmax,T ) can be ap-
proximated by functionals Φg(MΠ,T ) and to give explicit upper bounds for
the accuracy of this approximation. This makes it possible to find stopping
moments τε ∈ MΠ,T that are 2ε-optimal stopping moments in the class
Mmax,T .

The next important statement is a base of skeleton approximation.

Lemma 1. For every partition Π = {0 = t0 < t1 < . . . < tN = T} of
interval [0, T ] and for the classes MΠ,T and M̂Π,T of Markov moments

Φg(MΠ,T ) = Φg(M̂Π,T ). (5)

Proof. Consider the optimization problem (2)-(3) for the class M̂Π,T as a
problem of optimal pricing for American type options with discrete time.
For this purpose add to the random variables Ztn additional components
Z̄tn = {Zt, tn−1 < t ≤ tn} with the phase space Z(tn−1,tn] endowed by
cylindrical σ- field. Consider the extended Markov chain In = (Ztn , Z̄tn).
As is known (Shiryaev (1978)) the optimal stopping moment τ exists in
any discrete time model, and it has the form of the first hitting time τ =
min{0 ≤ n ≤ N : In ∈ Dn}, where optimal stopping domains Dn are
determined by the transition probabilities of Markov chain In. However,
in this case the transition probabilities depend only on values of the first
component Ztn . This case was considered in the papers by Kukush and
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Silvestrov (2000a, 2000b). To imbed the model described above in the
model introduced in these papers one should to consider the two component
Markov chain (Sn, In) with the components Sn = Stn , In = (Ztn , Z̄tn). The
first component Sn is in this case completely determined by the component
Ztn = (Stn , Itn) while, as was pointed out above, transition probabilities of
Markov chain In do depend only of the values of the first component Ztn . As
was shown in Kukush and Silvestrov (2000a, 2000b) in this case the optimal
stopping moment has the the form of the first hitting times for the process
(Stn , Ztn) and do not depend on the component Z̄tn . Since Stn is determined
by Ztn this moment can by represented in the form τ = min{0 ≤ n ≤ N :
Ztn ∈ D′

n}, i.e. as the first hitting time for the Markov Chain Ztn .
Therefore for the optimal stopping moment τ ∈ MΠ,T . Hence

Φg(MΠ,T ) ≥ Φg(M̂Π,T ), and by (4) we obtain equality (5).
⊕

For any Markov moment τ ∈ Mmax,T and a partition Π = {0 = t0 <
t1 < . . . < tN = T} one can define the discretisation of this moment

τ [Π] =

{
0, if τ = 0,
tk, if tk−1 < τ ≤ tk, k = 1, . . . N.

Now, let τε be ε-optimal stopping moment in the class Mmax,T , i.e.

ESg(τε) ≥ Φg(Mmax,T )− ε. Since τε[Π] ∈ M̂Π,T the relation (5) implies

ESg(τε[Π]) ≤ Φg(M̂Π,T ) = Φg(MΠ,T ) ≤ Φg(Mmax,T ). (6)

Denote d(Π) = max{tk − tk−1, k = 1, . . .N}. Let also ΠN = {0 = t0N <
t1N < . . . tNN = T} be a sequence of partitions such that d(ΠN) → 0 as
N →∞.

By definition τε ≤ τε[ΠN ] ≤ τε + d(ΠN). That is why condition A
implies that random variables Sg(τε[ΠN ]) → Sg(τε) as N → ∞ almost
surely. This relation, condition B and Lebesgue theorem easily implies that
ESg(τε[ΠN ]) → ESg(τε) ≥ Φg(Mmax,T ) − ε as N → ∞. Since ε can be
chosen arbitrary small the last relation and (6) implies in an obvious way
that under conditions A and B

lim
N→∞

Φg(MΠN ,T ) = Φg(Mmax,T ). (7)

Relation (7) gives the base for the use of skeleton discrete time approx-
imation for continuous time model. This relation guarantees that for any
fixed ε > 0 there exists N = Nε such that Φg(Mmax,T )− Φg(MΠNε ,T ) ≤ ε.
Let τ ′

ε be an ε-optimal stopping moment in the class MΠNε ,T , i.e. ESg(τ
′
ε) ≥

Φg(MΠNε ,T )−ε. Obviously τ ′
ε is a 2ε-optimal stopping moment in the class

Mmax,T .
However, relation (7) does not give quantitative estimates which connect

the maximal step of the partition d(ΠN) with ε. Such estimates can be
obtained with the use of inequality (6).
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For a separable process S(t), t ≥ 0 the modulus of continuity on the
interval [0, T ] is defined in the following way:

∆h,T (S(·)) = sup
t′,t′′,∈[0,T ],|t′−t′′|≤h

|S(t′)− S(t′′)|, h > 0.

Condition B implies that E∆h,T (S(·)) < ∞ for all h > 0. Note also that
E∆h,T (S(·)) monotonically does not decrease in h > 0.

Let us assume the following condition:

C: E∆h,T (Sg(·)) → 0 as h → 0.

Under minimal assumption of separability of the process Sg(t), t ≥ 0 con-
dition C implies that this process is an a.s. continuous process. Therefore
condition A holds.

Let τε be ε-optimal stopping moment in the class Mmax,T . Then in-
equality (6) and the relation τε ≤ τε[ΠN ] ≤ τε + d(ΠN) imply that

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ ε + ESg(τε)− ESg(τε[ΠN ]) ≤ (8)

≤ ε + E
∣∣∣Sg(τε)− Sg

(
τε[ΠN ]

)∣∣∣ ≤ ε + E∆d(ΠN ),T

(
Sg(·)

)
.

Since ε can be chosen arbitrary small relation (8) implies finally that

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ E ∆d(ΠN ),T (Sg (·)) . (9)

Condition C implies that there exists h = hε such that E∆hε,T (Sg(·)) ≤
ε. Since d(ΠN) → 0 as N → 0 there exists N = Nε such that d(ΠNε) ≤ hε.
Let τ ′

ε be an ε-optimal stopping moment in the class MΠNε ,T . Then (9)
implies that τ ′

ε is a 2ε-optimal stopping moment in the class Mmax,T .

So, the problem is reduced to solving with respect to h the following
inequality:

E ∆h,T (Sg(·)) ≤ ε. (10)

In the next section we give explicit upper bounds for the expectation of
the modulus of continuity E∆h,T (Sg(·)) in terms of moments of increments
of the transformed pricing processes Sg(t), t ≥ 0 and link explicitly the
parameters h and ε.



SKELETON APPROXIMATIONS 221

3. Upper bounds for expectation of the modulus of

continuity

Let S(t), t ≥ 0 be a separable real-valued process. We assume that the
following condition holds:

D: E|S(t′) − S(t′′)|m ≤ H|t′ − t′′|r, 0 ≤ t′, t′′ ≤ T for some H > 0 and
m, r > 1.

We use estimates for tail probabilities for the modulus of continuity given
in Gikhman and Skorokhod (1974). However, we estimate the expectation
for the modulus of continuity and give the upper bounds with explicit con-
stants due to detailed technical account at all steps of calculations.

Lemma 2. (Gikhman and Skorokhod (1974)). Let S(t), t ∈ [0, T ] be a
separable process, such that there exist nonnegative, nondecreasing function
g(h) and function q(C, h), C > 0, h > 0, with

P{|S(t + h)− S(t)| > Cg(h)} ≤ q(C, h), (11)

and

G =
∞∑

n=0

g(T/2n) < ∞, Q(C) =
∞∑

n=1

2nq(C, T/2n) < ∞. (12)

Then for each δ > 0

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′)| > δ} ≤ Q(δ/2G), (13)

and for each ε > 0, C > 0

P{∆ε,T (S(·)) > CG([log2 T/2ε])} ≤ Q([log2 T/2ε], C), (14)

where

G(p) =

∞∑
n=p

g(T/2n), Q(p, C) =

∞∑
n=p

2nq(C, T/2n). (15)

Lemma 3. Let condition D holds. Then S(t), t ∈ [0, T ] is a.s. continuous
process and for every 1 < r′ < r and for every 0 < h ≤ T :

E ∆h,T (S(·)) ≤ B1h
r−1
m , (16)

where

B1 =
m

m− 1
2

r−1
m (1− 2−

r′−1
m )−1 (1− 2−(r−r′))−

1
m H

1
m T

1
m . (17)

Proof. Apply Lemma 2 to the process S(t). Fix a positive number r′ < r

and set g(h) = h
r′−1

m . Find G(p), q(C, h) and Q(p, C) defined in (15), (11)
and (12).

G(p) = T
r′−m

m 2−
p(r′−1)

m (1− 2−
r′−1

m )−1 ,
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therefore

G ([log2

T

2ε
]) ≤ 2

r′−1
m ε

r′−1
m (1− 2−

r′−1
m )−1.

We have by D:
P{|S(t + h)− S(t)| > C g(h)} ≤

E |S(t + h)− S(t)|m
Cm gm(h)

≤ H

Cm
h1+r−r′ := q(C, h),

and

Q(p, C) =
H T 1+r−r′

Cm
2−p(r−r′) (1− 2−(r−r′))−1.

Then

Q ([log2

T

2ε
], C) ≤ C−m T H εr−r′ (1− 2−(r−r′))−1 · 2r−r′.

By (14) we obtain

P{∆ε,T

(
S(·)
)

> C 2
r′−1

m ε
r′−1

m (1− 2−
r′−1

m )−1} ≤

≤ C−m T H εr−r′ (1− 2−(r−r′))−1 · 2r−r′.

Denote
δ = C 2

r′−1
m ε

r′−1
m (1− 2−

r′−1
m )−1.

Then

P{∆ε,T (S(·)) > δ} ≤ TkHεr−1

δm
,

where
k = 2r−1 (1− 2−

r′−1
m )−m (1− 2−(r−r′))−1.

Next,

E ∆h,T

(
S(·)
)

=

∞∫
0

P{∆h,T

(
S(·)
)

> v}dv ≤
(T k H)

1
m h

r−1
m∫

0

dv+

+

∞∫
(T k H)

1
m h

r−1
m

T k H hr−1

vm
dv =

m

m− 1
(T k H)

1
m h

r−1
m = B1 h

r−1
m ,

where B1 is given by (17). Inequality (16) is proved.
Finally, for a separable process S(t) condition D implies continuity of

the paths, see Gikhman and Skorokhod (1974).
⊕

Corollary. Let condition D holds. Then for every 0 < u < m, 0 < r′ < r

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) ≤ m

m− u
k1 H

u
m T

ru
m , (18)
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where
k1 = 2u (1− 2−

r′−1
m )−u (2r−r′ − 1)−

u
m .

Proof. Use (13) for the process S(t). Let again g(h) = h
r′−1

m , 0 < r′ < r,

and q(C, h) =
H

Cm
h1+r−r′ . Then according to (12)

G = T
r′−1

m (1− 2−
r′−1

m )−1, Q(C) =
H

Cm
T 1+r−r′ (2r−r′ − 1)−1.

Now,

Q(δ/2G) = k0
H T r

δm
,

where
k0 = 2m (1− 2−

r′−1
m )−m (2r−r′ − 1)−1.

By (13) we have

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′) | > δ} ≤ k0 H T r

δm
,

and

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) =

∞∫
0

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′) | > v
1
u}dv

≤
A∫

0

dv +

∞∫
A

k0 H T r

v
m
u

dv.

Choose A from the condition k0 H T r A−m
u = 1. After straightforward

calculation we obtain

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) ≤ m

m− u
(k0 H T r)

u
m =

m

m− u
k1 H

u
m T

ru
m ,

and (18) is proved.
⊕

Lemma 3, applied to the transformed pricing processes Sg(t), yields the
explicit solution in (10) and links parameters h and ε.

For example we get by substituting the corresponding upper bound

in (10) the stronger inequality B1h
r−1
m ≤ ε, which guarantees that hε =

(ε/B1)
m

r−1 is the solution of (10). In sequel, if a partition ΠNε is chosen in
such a way that the maximal step d(ΠNε) ≤ (ε/B1)

m
r−1 then any a ε-optimal

stopping moment τ ′
ε in the class MΠNε ,T will be a 2ε-optimal stopping mo-

ment in the class Mmax,T .
Sometimes it is not convenient to apply Lemma 1 to the transformed

pricing process Sg(t) and it would be better to have similar estimates given
in terms of increments of the pricing process St itself. Such estimates can
be obtained in the case of smoothed pricing functions.
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Let again S(t), t ≥ 0 be a separable real-valued process for which the con-
dition D holds. Let also G(x, t) be a measurable real-valued function defined
on R×R+. We consider the transformed process SG(t) = G(S(t), t), t ≥ 0.

In the case of pricing processes transformation function is G(x, t) =
e−Rtg(x, t) and the transformed pricing process is Sg(t) = e−Rtg(St, t), t ≥ 0.

In general case we do not make any assumptions about structure of
transformation function G(x, t). We assume only the following smoothness
condition, which links the order of smoothness for function G(x, t) with the
parameter r in condition D:

E: (a) G(x, t) is absolutely continuous upon x for every fixed t ≥ 0 and

upon t for every fixed x ∈ R; (b) for every x ∈ R function |∂G(x,t)
∂t

| ≤
K1|x|p1 for almost all t ∈ [0, T ] with respect to Lebesgue measure,
where K1 > 0 and 0 ≤ p1 < r; (c) for every t ∈ [0, T ] function

|∂G(x,t)
∂x

| ≤ K2|x|p2 for almost all x ∈ R with respect to Lebesgue
measure, where K2 > 0 and 0 ≤ p2 < r − 1.

Condition E guarantees the existence of the moments of the order m for
increments of the process S(t). Since nonlinear character of transformation
function G(x, t) we need also the following condition:

F: E |S(0)|m < ∞.

In Lemma 3 an additional parameter 1 < r′ < r was involved. Here we
need to involve another additional parameter 1 < q < r′. Let denote:

B2 =
m

m− q
2

m+r−2q
m (1− 2−

r′−q
m )−1 (1− 2−

r−r′
q )−

q
m× (19)

×T
q
m{K

m
q

1 M1 (p1m/q) T
m−r

q + K
m
q

2 (M2(p2m/(q − 1)))
q−1

q H
1
q }

q
m ,

where

M1 (u) = 2[u−1]+ · (E |S(0)|u + H
u
m T

ru
m ),

M2 (u) = 2[u−1]+ ·{E |S(0)|u+
m

m− u
2u(1−2−

r′−1
m )−u (2r−r′−1)−

u
m H

u
m T

ru
m }.

Lemma 4. Let conditions D with m ≥ r > 1 and E–F hold. Then for
every q and r′ such that p2 + 1 < q < r′ < r, p1 ≤ q and every 0 < h ≤ T :

E ∆h,T (SG(·)) ≤ B2h
r−q
m .

Proof. Assumption E implies

|G(St , t)−G(Ss , s)| ≤ |G(St , t)−G(St , s)| + |G(St , s)−G(Ss , s)| ≤

≤ K1 |St|p1 |t− s| + K2 sup
t∈ [0,T ]

|St|p2 |St − Ss|.
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Let q and r′ satisfy the conditions of Lemma 4. Then

E|G(St , t)−G(Ss , s)|
m
q ≤ 2

m
q
−1 {K

m
q

1 |t− s|
m
q E |St|

mp1
q +

+K
m
q

2 (E |St − Ss |m)
1
q (E sup

t∈[0,T ]

|St|
p2m
q−1 )

q−1
q }. (20)

Now, by D we have for 0 ≤ u ≤ m:

E|St|u ≤ 2[u−1]+ × {E|S(0)|u + (E|S(t)− S(0)|m)
u
m} ≤ M1 (u), (21)

and by D and Corollary for 0 ≤ u < m :

E sup
t∈ [0,T ]

|St|u ≤ 2[u−1]+ × {E
∣∣S(0)|u + E sup

t∈ [0,T ]

|S(t)− S(0)
∣∣u} ≤

≤ 2[u−1]+ × {E|S(0)|u +
m

m− u
k1 H

u
m T

ru
m } = M2 (u). (22)

¿From (20) – (22) we obtain

E|G(St , t)−G(Ss , s)|
m
q ≤ H1|t− s|

r
q , (23)

where

H1 = 2
m
q
−1{K

m
q

1 T
m−r

q M1(mp1/q) + K
m
q

2 H
1
q [M2(mp2/(q − 1))]

q−1
q }.

Finally, by Lemma 3 and inequality (23) we get

E ∆h,T (SG(·)) ≤ B1 (m/q, r/q, H1) h( r
q
−1) (m

q
)−1

= B1(m/q, r/q, H1) h
r−q
m .
(24)

Here B1(m/q, r/q, H1) is obtained from B1, which is given in (17), by
substitution m/q, r/q and H1 instead of m, r and H , respectively; we
substitute also in (17) r′/q instead of r′. We have

B1(m/q, r/q, H1) =
m

m− q
2

r−q
m (1− 2−

r′−q
m )−1×

×(1− 2−
r−r′

q )−
q
m × H

q
m
1 T

q
m = B2. (25)

Now, (24) and (25) imply that

E ∆h,T

(
SG(·)

)
≤ B2 h

r−q
m .

Lemma 4 is proved.
⊕

4. Skeleton approximations for the basic example
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Let us illustrate the possible application of Lemmas 3 and 4 to the model
where the pricing process St, t ≥ 0 is given in the form:

St = S0 · exp{
t∫

0

(a (u, Iu)−
1

2
σ(u)2) du +

t∫
0

σ(u) dw(u)}, t ≥ 0,

where (a) a(t, y) is a measurable real-valued functions defined on Z, (b)
σ(t) ≥ 0 is a measurable real-valued functions defined on R+, (c) It, t ≥ 0
is a measurable inhomogeneous in time Markov process, (d) w(u), u ≥ 0 is
the Wiener process independent of process It, t ≥ 0, (e) Z0 = (S0, I0) is a
non-random value in Z.

In this case vector process Zt = (St, It), t ≥ 0 is an inhomogeneous
Markov process with the first component St, t ≥ 0 is a continuous geomet-
rical diffusion process controlled by process It, t ≥ 0.

We assume the following condition:

G: (a) A = sup
0≤t≤T, y∈Y

|a(t, y)− 1

2
σ(t)2| < ∞; (b) B = sup

0≤t≤T
σ(t) < ∞.

Lemma 5. Let condition G holds. Then for any m > 2

E |St′ − St′′ |m ≤ Hm |t′ − t′′|m/2, 0 ≤ t′, t′′ ≤ T,

where

Hm =
1

2
(2S0 eAT+ 1

2
mB2 T T− 1

2 )m ((eAT − 1)m + E |eBT
1
2 N(0,1) − 1|m).

Proof. Fix m > 2 and denote b(t, y) = a(t, y)− 1
2
σ(t)2, 0 ≤ t ≤ T, y ∈ Y .

We suppose that S0 > 0. Then for every t ∈ [0, T ] St > 0 a.s. Fix t ∈ [0, T ]
and positive h, such that t + h ∈ [0, T ]. Consider the increment

|St+h − St| = St · | exp{
t+h∫
t

b(u, Iu) du +

t+h∫
t

σ(u) dw(u)} − 1| ≤

≤ St · {exp(

t+h∫
t

σ(u) dw(u))× (eAh − 1) + | exp
( t+h∫

t

σ(u) dw(u))− 1|}.

Now, St ≤ S0e
AT · exp(

t∫
0

σ(u) dw(u)). Therefore

|St+h − St|
S0eAT

≤ exp{
t+h∫
0

σ(u) dw(u)} × (eAh − 1)
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+ exp{
t∫

0

σ(u) dw(u)} × | exp{
t+h∫
t

σ(u) dw(u)} − 1|.

Then

E|St+h − St

S0eAT
|m ≤ 2m−1 (eAh − 1)m · E exp{m

t+h∫
0

σ(u) dw(u)}+

+ 2m−1 · E exp{m
t∫

0

σ(u) dw(u)} · E| exp{
t+h∫
t

σ(u) dw(u)} − 1 |m. (26)

For each t ∈ [ 0, T ] we have

E exp{m
t∫

0

σ(u) dw(u)} = exp{m2

2
·

t∫
0

σ2(u) du} ≤ e
m2B2T

2 . (27)

The inequality |eαz − 1| ≤ |eβz − 1|, 0 ≤ α ≤ β, z ∈ R, implies

E| exp{
t+h∫
t

σ(u) dw(u)}−1|m = E| exp{(
t+h∫
t

σ2(u) du)
1
2 ×N(0, 1)}−1|m ≤

≤ E|eB
√

h·N(0,1) − 1|m ≤ (
√

h/T )m× E|eB
√

T ·N(0,1) − 1|m. (28)

Here we used the inequality

|ehz − 1| ≤ h

T
|eTz − 1|, 0 < h ≤ T, z ∈ R, (29)

which follows from the convexity of the exponential function. From (26) –
(29) we obtain finally

E|St+h − St

S0 eAT
|m ≤ (

h

T
)

m
2 2m−1×e

1
2
m2B2T{ (eAT −1)m +E |eB

√
T ·N(0,1)−1|m },

and
E|St+h − St|m ≤ Hm h

m
2 .

This completes the proof.
⊕

So, condition D holds and Lemma 4 can be applied to the pricing process
St, t ≥ 0 if condition E holds for the transformation function G(x, t) =
e−Rtg(x, t).

Consider the case of standard American option. Here the transformation
function

G(x, t) = e−r̃t [x−K]+, x ≥ 0, 0 ≤ t ≤ T,
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where r̃ > 0, K > 0.
Let us apply Lemmas 4 and 5.
For m > 2 we have

E |St′ − St′′ |m ≤ Hm |t′ − t′′|m/2, 0 ≤ t′, t′′ ≤ T,

where Hm is given in Lemma 5. Thus D holds with m > 2, r = m
2
, H = Hm.

Now, check the condition E. We have

|∂G(x, t)

∂t
| ≤ r̃, |∂G(x, t)

∂x
| ≤ 1

(except the point x = K), therefore E holds with p1 = p2 = 0, k1 = r̃, k2 =
1.

Fix q and r′ such that 1 < q < r′ < m
2
. By lemma 4 we have

E ∆h,T (SG(·)) ≤ B2 h
1
2
− q

m ,

where B2 is given by (19), with r = m
2
, K1 = r̃, K2 = 1, H = Hm, p1 =

p2 = 0, M1(0) = M2(0) = 2.
According to (9)

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ B2 d(ΠN)
1
2
− q

m ≤ ε,

if d(ΠN) ≤ (ε/B2)
α , with α = (1

2
− q

m
)−1.

To find Φg(MΠN ,T ) one can apply the results given papers Kukush and
Silvestrov (2000a, 2000b). Let

ΠN = {0 = t0 < t1 < ... < tN = T} .

In order to imbed the model in those considered in these papers one
should consider the two component Markov chain (Sn, In = (I ′

n, I ′′
n)), where

Sn = Stn , I ′
n = Itn , I ′′

n = exp{
tn∫

tn−1

(a(u, Iu)−
1

2
σ(u)2)du +

tn∫
tn−1

σ(u)dw(u)}.

Let rk = r̃(tk+1 − tk), k = 0, 1, ..., N − 1, R0 = 0, Rn = r0 + r1 + ... +
rn−1, n = 1, 2, ..., N .

The functional Φg(τ) defined in (2) for τ ∈ MΠN ,T coincides with the
functional

Φg(τ) = E e−Rτ [Sτ −K]+ (30)

introduced in Kukush and Silvestrov (2000a, 2000b) for the discrete Markov
chain (Sn, In).

It follows from the formulas, which define Markov chain (Sn, In) that
the first component can be given in the following dynamical form Sn =
Sn−1 ·I ′′

n. Also it is obvious that component In is also a Markov chain and it’s



SKELETON APPROXIMATIONS 229

transition probabilities depend only of the first component I ′
n. That is why

a conditions A-C used in Kukush and Silvestrov (2000a, 2000b) obviously
hold. In particular the dynamical transition function A(x, (y′, y′′)) = x · y′,
which is derived from the formula Sn = A(Sn−1, In) = Sn−1 · I ′′

n, is convex
and continuous in x for every (y′, y′′).

Assume additionally that

H: D = sup
0≤t≤T, y∈Y

a(t, y) < r̃.

Condition condition implies that condition D, introduced in Kukush and
Silvestrov (2000a, 2000b), holds with an ≡ 1 (recall that we consider the
case of standard American option). Really, for each x > 0

1

x
E{Stn+1/Stn = x, Itn = y} =

E{exp{
tn+1∫
tn

(a(u, Iu)−
1

2
σ(u)2)du +

tn+1∫
tn

σ(u)dw(u)}/Itn = y} =

E{exp{
tn+1∫
tn

a(u, Iu)du}/Itn = y} ≤ eD (tn+1−tn) < ern.

Therefore Theorem 2 from Kukush and Silvestrov (2000a, 2000b) is ap-
plicable now, and the structure of τopt ∈ MΠN ,T for the functional (30) is
given in that theorem.

Remark also that if to replace H by

I: E{a(u, Iu)/It = y} ≥ r̃, for each 0 ≤ t ≤ u ≤ T, y ∈ Y ,

then for x > 0, t < s:

1

x
E{Stn+1/Stn = x, Itn = y} =

E{exp{
tn+1∫
tn

(a(u, Iu)−
1

2
σ(u)2)du +

tn+1∫
tn

σ(u)dw(u)}/Itn = y} =

= E{exp{
tn+1∫
tn

a(u, Iu)du}/Itn = y} ≥ er̃ (s−t),

and the process Vt = e−r̃t[St−K]+, 0 ≤ t ≤ T is a submartingale (compare
with the proof of Theorem 4 from Kukush and Silvestrov (2000a)). There-
fore under I for the functional (2) in the class Mmax,T we have τopt = T .

The cases of American type options with linear convex pay-off functions
and with general convex pay-off functions can be considered by similar way
with the use of corresponding results given in Kukush and Silvestrov (2000a,
2000b).
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ESTIMATION FOR THE FUNCTION OF A TIME
DEFORMATION IN THE MODEL OF THE

STATIONARY REDUCTION

Let δ(t),t ∈ R1 be a stationary Gaussian random process with zero
mean and the known function of correlation. The non-parametric
consistent in mean square estimate of the function of the time defor-
mation Φ(t), t ∈ T by the observations of Gaussian random process
Z(t) = δ(Φ(t)), t ∈ T is constructed by means of Baxter sums of the
random process Z(t), t ∈ T .

2000 Mathematics Subject Classifications. 60G15, 60G17, 62G05.

Key words and phrases: Estimation, Baxter sums, Gaussian pro-
cess, time deformation

1. Introduction

Often the problem of the reduction of the non-stationary process Z(t),
t ∈ T to the stationary process appears in most applications dealing with
non-stationary processes. To this end the non-stationary random process
Z(t), t ∈ T with the function of correlation r(t, s) = EZ(t)Z(s) is modeled
in the form

Z(t) = δ(Φ(t)), t ∈ T (1)

where Φ : T → R1 is a time deformation, δ(s), s ∈ R1 is a stationary
random process with zero mean and the function of correlation Eδ(s)δ(t) =
R(s− t), s, t ∈ R1.

The representation (1) is possible if and only if

r(s, t) = R(Φ(s)− Φ(t)), s, t ∈ T. (2)

In the article by Perrin and Senoussi (1999) the criterion of the stationary
reduction was established. The problem of the estimation of the time defor-
mation Φ(t), t ∈ T by the observations of Z(t), t ∈ T appears in the model
of stationary reduction. In this item we construct the non-parametric con-
sistent in mean square estimate of the time deformation by means of Baxter
sums of the random process Z(t), t ∈ [0, 1].

231
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2.The statement of the problem of estimation

Let δ(s), s ∈ R be a stationary Gaussian process with zero mean and the
function of correlation R(s), s ∈ R1. We need the following assumptions:

(R1) for some γ ∈ (0, 2), and A > 0

R(τ) = 1−A|τ |γ + o(|τ |γ), τ → 0;

(R2) for some C > 0 when τ �= 0 the second derivative R′′(τ) exists and

|R′′(τ)| ≤ C

|τ |2−γ
, |τ | ≤ 1, τ �= 0;

(R3) for some β > γ

R(τ)− 1 + A|τ |γ = O(|τ |β), τ → 0.

Let we assume with respect to the function of the time deformation Φ :
[0, b] → R, where b > 1, the following properties:

(Φ) Φ(0) = 0, Φ ∈ C(2)([0, 1]) and Φ′(t) > 0 for all t ∈ [0, 1].
The non-parametric estimate of the function Φ(t), t ∈ [0, 1] must be

constructed from one realization of the random process Z(t) = δ(Φ(t)), t ∈
[0, 1] observed in discrete times k

n
, k = 0, 1, . . . , n, n ≥ 1. In the item

by Perrin (1999) this problem was studied in the case of more restrictive
assumptions.

3. Limit of Baxter sums

Let Z(t), t ∈ [0, 1] be Gaussian random process with zero mean and
the function of correlation r(s, t), s, t ∈ [0, 1]. Let λn = {tnk = k

n
: 0 ≤

k ≤ n} be the equidistant partitioning of the segment [0,1]. We set for
k = 1, 2, . . . , n

Znk = Z

(
k

n

)
− Z

(
k − 1

n

)
.

For real number p > 1 and x ∈ [0, 1] we consider Baxter sums Sn(x) of
Z along the partitioning λn(x) = {0, 1/n, 2/n, . . . , [nx]/n} (here [nx] is the
greatest integer smaller than or equal to nx) as follows:

Sn(x) =

[nx]∑
k=1

|Znk|p + (nx− [nx])|Zn([nx]+1)|p, n ≥ 1.

Theorem 3.1. Let for Gaussian random process Z(t), t ∈ [0, b] (b > 1)
the following conditions are fulfilled:
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1) for some γ ∈ (0, 2) and some positive function α : [0, 1] → (0,∞)

E(Z(t + h)− Z(t))2

hγ
→ α(t)

uniformly on [0, 1] when h → +0;
2) it exist L > 0 and γ ∈ (0, 2) such that∣∣∣∣∂2r(s, t)

∂s∂t

∣∣∣∣ ≤ L

|s− t|2−γ
, t �= s.

Let p = 2
γ
. Then for each x ∈ [0, 1]

Sn(x) → S(x) =

√
2p

π
Γ

(
p + 1

2

)∫ x

0

√
αp(t)dt

in mean square as n →∞. Furthermore,

Var Sn(x) =


O
(

1
n

)
if γ ∈ (0, 3

2
)

O
(

log n
n

)
if γ = 3

2

O
(

1
n4−2γ

)
if γ ∈ (3

2
, 2).

(3)

uniformly on x ∈ [0, 1] as n →∞.

This theorem follows from corollary 2 of the item by Kurchenko (1999).

Theorem 3.2 Let the {n(k) : k ≥ 1} be the subsequence of the natural
numbers, x ∈ [0, 1] and the series

∞∑
k=1

VarSn(k)(x) (4)

converges. Then
Sn(k)(x) → S(x)

with probability one as n →∞.

Proof. From the convergence of the series (4) by Chebyshev inequality and
Borel-Kantelli lemma it follows that

Sn(k)(x)− ESn(k)(x) → 0

with probability one as k → ∞. But ESn(x) → S(x) as n → ∞. Hence,
Sn(k)(x) → S(x) with probability one as k →∞. The theorem is proved.

In particular, for each x ∈ [0, 1] S2k(x) → S(x) with probability one as
k →∞.

In the following theorem the rate of convergence in mean square of the
sequence of Baxter sums {Sn(x) : n ≥ 1} is estimated uniformly on x ∈
[0, 1].
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Theorem 3.3. Let the conditions of the theorem 3.1 are true and the
following conditions are fulfilled:

1) (r(t + h, t + h)− 2r(t + h, t) + r(t, t))
p
2 − α

p
2 (t)h = O(h3/2)

uniformly on t ∈ [0, 1] as h → 0+;
2) the function αp/2(t), t ∈ [0, 1] belongs to Lipshits space Lip1/2([0, 1]).
Then

√
E(Sn(x)− S(x))2 =


O
(

1√
n

)
if γ ∈ (0, 3

2
)

O

(√
log n

n

)
if γ = 3

2

O
(

1
n2−γ

)
if γ ∈ (3

2
, 2).

(5)

uniformly on x ∈ [0, 1] as n →∞.

Proof. For each x ∈ [0, 1] by virtue of the triangle inequality√
E(Sn(x)− S(x))2 ≤ (VarSn(x))1/2 + |ESn(x)− S(x)|.

From the assumptions 1), 2) it follows that

ESn(x)− S(x) = O

(
1√
n

)
uniformly on x ∈ [0, 1] as n → ∞. Taking into account (3) we obtain (5).
The theorem is proved.

4. The estimation of the function of a time deformation

Now we return to the problem of the estimation of the function of a time
deformation Φ(x), x ∈ [0, 1] in the model (1), (2). Let the assumptions (R1),
(R2), (Φ) are true. We go to verify the conditions of the theorem 3.1:

lim
h→0+

r(t + h, t + h)− 2r(t, t + h) + r(t, t)

hγ
=

lim
h→0+

2A|Φ(t + h)− Φ(t)|γ + o(|Φ(t + h)− Φ(t)|γ)
hγ

= 2A(Φ′(t))γ

uniformly on [0, 1]. Thus the condition 1) of the theorem 3.1 is fulfilled for

α(t) = 2A(Φ′(t))γ , t ∈ [0, 1].

We consider the following estimate for the time deformation Φ(x), x ∈ [0, 1]
by the observations of the random process Z(t) = δ(Φ(t)) in the points
k/n, k = 0, 1, . . . , n; n ≥ 1:

Φn(x) =

√
π

(4A)1/γ
(
Γ
(

1
γ

+ 1
2

))
 [nx]∑

k=1

|Znk|2/γ + (nx− [nx])|Zn([nx]+1)|2/γ

 .
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From the theorem 3.1 and theorem 3.3 it follows

Theorem 4.1. Let the assumptions (R1), (R2), (Φ) are fulfilled. Then
the random variable Φn(x) for each x ∈ [0, 1] is the consistent in mean
square estimate of Φ(x). If additionally the assumption (R3) is true and
β − γ ≥ 1/2 then

sup
x∈[0,1]

√
E(Φn(x)− Φ(x))2 =

O
(

1√
n

)
if γ ∈ (0, 3

2
)

O

(√
log n

n

)
if γ = 3

2

O
(

1
n2−γ

)
if γ ∈ (3

2
, 2).

It should be noted that for each x ∈ [0, 1] Φ2n(x) → Φ(x) with prob-
ability one as n → ∞. For proof it is sufficient to observe that the series
∞∑

n=1

VarΦ2n(x) converges and to make use of theorem 3.2.

5. Example

Let X(t), t ∈ R1 be a stationary Gaussian random process with zero
mean and the function of correlation

R(u) = ch(Hu)− 22H−1(sh(|u|/2))2H, u ∈ R1,

where H ∈ (0, 1) (Example 3.1.1 in Perrin and Senoussi (1999)). For this
random process the assumptions (R1), (R2), (R3) are true for γ = 2H ,
A = 1/2, C = 7, β = 2.
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NONLINEAR INPUT-OUTPUT BALANCE FOR
OPEN ECONOMY WITH

HAUTHAKKER-JOHANSEN PRODUCTION
FUNCTIONS

We consider the case of multibranch open economy. The way of
researc is construstion and analysis of optimizing problems at balance
restristions. The criterion is maximization of total output. The basis
of mathematical modelling is nonlinear input-output balance of open
economy with Hautakker-Johansen production function.
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1. Introduction

Now as the basic way of the description of technological structure de-
scription the inter-branch scheme input - output by V.Leontiev is used
[1]. For the description of structural changes in industrial system the pure
branches with many technologies are considered, which intensity of use is
limited to capacities [2,3]. Natural generalization of Leontiev scheme be-
came model with continual set of technologies, that is offered in works
H.Hautakker and L.Johansen [4,5]. In [6] such description was used for
study of structural changes in economy. The theory of production functions
given by distribution of capacities on technologies, is advanced in [6-8].

2. Hautakker-Johansen production function

We shall describe shortly Hautakker-Johansen model, following [2,3].
Let pure branch produces a homogeneous product, using n kinds of produc-
tion factors (resources). In branch there are different technological processes
of manufacture, each of which is set by a vector a = (a1,..., an) norms of
expenses of production factors on output of a unit of production. Intensity
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of use of technologies u(a) are limited to capacities, available in branch. It
is supposed, that the technology within the framework of the given capacity
is chosen at a stage of construction of branch. Let’s designate µ(ν) total
capacity of technologies, which vectors of expenses norms belong to some
set in non-negative orthant of Euclidean space Rn

+. The measure µ(ν) is
given on Rn

+ and is called the distribution of capacity on technologies.
Then capacity of branch

M =

∫
Rn

+

µ (da) , (1)

flows of production factors ensuring this capacity,

Lk =

∫
Rn

+

akµ (da) , k = 1, ..., n,

or in a vector form

L =

∫
Rn

+

aµ (da) ,

where L=(L1,...,Ln) is a vector of available industrial resources.
If the flows lk<Lk, total output Y of branch is less than capacity M. The

value Y depends on economic mechanisms of regulation of manufacture and
distribution of resources. It is supposed usually, that these mechanisms are
completely competitive markets ensuring effective distribution of resources.

It is supposed, that the measure µ(ν) is non-negative function, and func-
tion of capacities loading u (a), 0 ≤ u (a) ≤ 1, is measurable on Lebesgue
and is determined on orthant Rn

+.
The task of optimal distribution of industrial resources flow l=(l1,...,ln),

come in the branch with the purpose of branch output maximization looks
like ∫

Rn
+

u (a)µ (da) → max
u(a)

,

∫
Rn

+

au (a)µ (da) ≤ l, (2)

0 ≤ u (a) ≤ 1.

Production function F (l) in [2,3] is called the function which compares
to a vector l0 the greatest possible output of branch in a problem of optimal
distribution of resources (3). The appointed production function has the
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basic properties, that is postulated neo-classic theory (continuity, monotony,
concavity) usually, and satisfies to the law of ”ultimate output” [9].

According to (3) to calculate one value of production function, it is
necessary to solve a problem of optimization in functional space. With the
purpose of more simple and convenient macrodescription of branch in [2,3]
it is offered to use profit function

Π (p0, p) =

∫
Rn

+

max (0; p0 − p · a) µ (da) , (3)

where p0 is a price of output production; p = (p1,..., pn)≥ 0 is a price of
production resources; Π(p0,p) is a total profit of branch.

Production function F (l) and profit function Π(p0,p) are dual and are
connected by Legendre transformation [7,8]:

Π (p0, p) = sup
l≥0

[p0F (l)− p · l] , F (l) = inf
p≥0

1

p0

[Π (p0, p) + p · l] . (4)

The functions of supply and demand are expressed through the profit
function:

g0 (p0, p) =
∂Π (p0, p)

∂p0

, gk (p0, p) =
∂Π (p0, p)

∂pk

, k = 1, ..., n. (5)

Thus

g0(p0,p)≡F (g1(p0,p),...,gn(p0,p)).

If the measure µ(·) is absolutely continuous on orthant Rn
+ and ϕ(a) is

its density, then the problem (3) will be transformed as

Y =

∫
Rn

+

u (a) ϕ (a) da → max
u(a)

,

∫
Rn

+

au (a) ϕ (a) da ≤ l, (6)

0 ≤ u (a) ≤ 1.

In [7] the statement similar to generalized Neuman-Pirson lemma on
existence and structure of the solution of problem (6) is proved. It is shown,
that there are such prices p0>0, p=(p1,...,pn)≥0, at that the solution of the
problem (6) looks like
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u(a)=1, if p0 −p · a > 0,

u(a)=0, if p0 − p · a < 0.

Prices p0, p are dual variables of formulated optimization problem.
Thus, the market mechanisms of the perfect competition provide the maxi-
mal release of branch Y at given l ; under these conditions the pure branch
can be described by production function Y =F (l) or supply function g0(p0, p)
and demand functions g i(p0, p), i=1,..., n.

3. The model of production

Let’s consider one more description of production function using distri-
bution of capacities on technologies [10]. For this purpose we shall consider
the model of production, which we shall write down as the following problem
of mathematical (generally nonlinear) programming

f (x) → max,
g (x) ≤ b,
x ∈ TX ,

(7)

where x is non-negative m-dimensional vector of output (or in other in-
terpretation: x is a vector of intensities of technologies of complex man-
ufacture), TX ⊆ Rm

t , b is n-dimensional vector of available and necessary
resources for manufacture (in further it is possible to consider this vector
as strictly positive), g(x ) is a n-dimensional vector of expenses of resources
on manufacture of a vector of products x (0 ≤ gi (x) ≤ bi, i=1,...,n), f (x ) is
the income of realization (or release) of vector of production x (f (x) ≥ 0).

The problem (7) (as a problem of rational conducting of economy) con-
sists in maximization of the income at available volumes of production fac-
tors (resources) within the framework of existing technological opportunities
specified by a vector g(x ) and set of technologically allowable releases TX .
It is supposed logically, that g i(0)=0, i=1,...,n, i.e. the resources are used
only then, when manufacture functions. Also it is supposed, that the set
TX is convex, the function f (x ) is concave (convex upwards), functions
g i(x ), i=1,...,n are convex. Thus, the problem (7) is a problem of convex
programming. As bi>0 (if even one bi=0, the problem (7) has a zero vector
as a solution, i.e. any manufacture in such situation does not exist), the
problem (7) has the regular allowable solution, for which are carried out
Sleuter’s conditions of a regularity: g i(0)< bi, i=1,...,n.

If the zero vector does not belong to set TX , all the same it is required,
that this set should be regular.

The designations are entered:
X (b) = {x ∈ TX/g (x) ≤ b} is allowable set of problem (7);
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B =
{
b ∈ Rm

+/X (b) �= ∅
}

is a set of vector parameters b, at which the
problem (7) has the allowable decisions;

F (b) = max
x∈X(b)

f (x) , b ∈ B, is a value of problem (7);

Λ∗ (b) =
{
λ∗ ∈ Rm

+/F (b) ≥ L (x, λ∗) = f (x) + λ∗ · (b− g (x)) ∀x ∈ TX

}
is a

set of Khun-Tucker’s vectors (optimal dual variables) for problem (7) (L(x,λ)
is a regular Lagrange function);

∂̄F (b) =
{

θ ∈ Rm/F
(
b̃
)
≤ F (b) + θ ·

(
b̃− b

)
∀b̃ ∈ B

}
is a superdiffer-

ential of function F (b) in a point b ∈ B [11].
At the made assumptions the set X (b) is not empty and compact at

everyone fixed b≥0, therefore according to the known Weierschtrass the-
orems the problem (7) has solution, and F (b) < +∞. According to the
Khun-Tucker’s theorem for each solution x∗(b) ∈ X(b) there will be such
Khun-Tucker’s vector λ∗ (b)∈Λ∗ (b), that the point (x∗ (b) , λ∗ (b)) will be
a saddle point for regular Lagrange function L(x,λ), i.e. the values of the
primal problem (7) and dual to it will coincide.

The problem (7) is a general model of production function. This function
is described implicitly and is a mapping of the set of allowable resources to
the set of effective releases at the given technologies (generally variable and
nonlinear).

The following statement follows from the theory of convex programming
[12].

Theorem. Let for the problem of convex programming (7) the earlier made
assumptions are right. Then the function of values F(b) has such properties:

1) F(b) is finite, concave and monotone non-decreasing at all b ∈ B;
2) F(b) is continuous at each internal point b ∈ B;
3) ∂̄F (b) = Λ∗ (b) at all b ∈ B;
4) F(b) has derivative at any direction h ∈ Rn in each internal point

b ∈ B, and

F ′ (b, h) = min
λ∗(b)∈Λ∗(b)

λ∗ (b) · h;

5) F(b) is differentiable at internal point b ∈ B if and only if Khun-
Tucker’s vector of a problem (7) is unique, i.e. if Λ∗ (b) = {λ∗ (b)}. Thus
a gradient F ′ (b) = λ∗ (b) ;

6) if λ∗
i (b) = 0 at some λ∗ (b) ∈ Λ∗ (b), then F

(
b + αe(i)

)
= F (b) at

every α > 0, where e(i) is the i-th single ort at Rn
+;

7) if λ∗
i (b) > 0 at every λ∗ (b) ∈ Λ∗ (b), then F

(
b + αe(i)

)
> F (b) at

all α > 0.

From the theorem follows, that in addition to finiteness, concavity and
monotonous non-decrease, the function F (b) will be piecewise smooth in
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general case, in particular at linear functions f (x ), g i(x ), i=1,...,m, it will
be piecewise linear [13]. The last property essentially distinguishes func-
tion F (b) from neoclassic production functions, which are always assumed
smooth.

4. The case of multibranch open economy

Below branch production functions given by distributions of capacities
on technologies, we use for the description of open economy with the help
of Leontiev scheme ”input-output”. Let’s consider N pure branches, each
of which is described by production function

Y i=F i(X
i
1, ...X

i
N , li1, ..., l

i
n) , i=1,...,N.

Here X i
j, i,j=1,...,N, are production inputs of branch j on output of

branch i (material inputs); lik, i=1,...,N, k=1,...,n, are inputs of a primary
resource k on output of branch i (resource inputs). Besides that, let lk
k=1,...,n, is given quantity of resources; X0

i , i=1,...,N, is output of final
production i for internal consumption; Ii, i ∈ MI is import of production
i, pI

i is its price, MI is given set of imported products; Ei, i ∈ ME is ex-
port of production i, pE

i is its price, ME is given set of exported products;
MI ∪ME ⊆ M = {1, ..., N} , MI ∩ME = ∅; K={1,...,N }.

Balance model by scheme ”input - output” for open economy with non-
negative export-import balance is written in the form:

Yi + Ii ≥
∑
j∈M

X i
j + X0

i + Ei, i ∈ M,

∑
i∈M

lik ≤ lk, k ∈ K,

∑
i∈ME

pE
i Ei ≥

∑
i∈MI

pI
i Ii,

Yi = Fi(X
i
1, ..., X

i
N , li1, ..., l

i
n), i ∈ M, (8)

X0
i ≥ 0, X i

j ≥ 0, lik ≥ 0, i, j ∈ M, k ∈ K,

Ii ≥ 0, i ∈ MI ; Ei ≥ 0, i ∈ ME .

It is possible to name model (8) as nonlinear input-output balance for
open economy by analogy with [2,3].

With the purpose of further research model (8) shall copy as:

Fi

(
X i, li

)
−
∑
j∈M

X i
j − Y 1

i ≥ 0,i ∈ M1; (9)
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Fi

(
X i, li

)
−
∑
j∈M

X i
j + Y 2

i ≥ 0,i ∈ M2; (10)

l −
∑
j∈M

lj ≥ 0; (11)

pE · E − pI · I ≥ 0; (12)

X0
i ≥ 0, X i

j ≥ 0, lj ≥ 0, i, j ∈ M ; (13)

Ii ≥ 0, i ∈ MI ; Ei ≥ 0, i ∈ ME ,

where

Y 1
i = X0

i + Ei − Ii > 0, i ∈ M1; (14)

Y 2
i = − (X0

i + Ei − Ii) ≥ 0, i ∈ M2.

Here all set of products (branches) is divided into two disjoint subsets
M 1 and M 2 by a rule (14): M1 ∪M2 = M, M1 ∩M2 = ∅, and

X i = (X i
1, ..., X

i
N) , li = (li1, ..., l

i
N) , l = (l1, ..., ln),

I = (Ii, i ∈ MI) , E = (Ei, i ∈ ME) ,

pI =
(
pI

i , i ∈ MI

)
, pE =

(
pE

i , i ∈ ME

)
are vectors of appropriate dimension.

Correlations (8) - (10) determine the set E (l) of final outputs of products
X0 = (X0

1 , ..., X
0
N). From concavity of branch production functions follows,

that the set E (l) is convex. Besides that if X 0 ∈ E (l) and 0 ≤ Y 0 ≤ X0,
then Y 0 ∈ E (l).

Let’s assume, that the economy of industrial branches is productive, that
is to say there are such non-negative vectors

{
Z1, ..., ZN , L1, ..., LN

}
, that

Fi (Z
i, Li)−

∑
j∈M

Z i
j > 0, i = 1, ..., N . Let’s assume also, that the conditions

of efficiency of open economy are satisfied, that is to say for considered X 0,
I, E, which are given, the sufficient conditions of existence of non-negative
solutions X i, l i, i=1,,N, of inequalities system (8) - (10) are satisfied. The
hyperplane pE·E=pI ·I passes through a point of zero position of export and
import (E=0, I=0), which is admissible for productive open economy.
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Let’s choose number t so that 0< t <1 and t
∑

j∈M

Lj < l. Such t exists, if

l>0. From concavity of production functions F i(X
i, l i) and from efficiency

of considered group of branches follows, that at l>0 will be

Fi

(
tZ i, tLi

)
−
∑
j∈M

tZi
j ≥ t

[
Fi

(
Z i, Li

)
−
∑
j∈M

Z i
j

]
> 0.

Thus, at l>0 restrictions (8) - (13) satisfy to Slater condition (see [14]).
The mutual deliveries of branches and distribution of primary resources

between them are determined by economic mechanisms, working in indus-
trial system. The economic activity is an aspiration of the agent in system
of the usual relations to use resources with the greatest benefit, which he can
dispose of. Agreeing, competing, submitting, the agents establish system
of the formal and informal arrangements - balance - how to divide common
benefit. If thus the agents take all possible benefit from resources, which
they dispose of, their economic activity can be simulated by a problem of
optimal distribution of resources [15].

Bibliography

1. Leontiev, V.V. Interbranch economy. M.: Publishing house ”Economics”,
(1997), 479 p. (in Russian).

2. Petrov, A.A. and Shananin, A.A. Economic Mechanisms and the Prob-
lem of Input-Output Model Aggregation, Mathematical modeling, (1993),
5, No.9, 18-42 (in Russian).

3. Petrov, A.A., Pospelov, I.G. and Shananin, A.A. Experience of Mathe-
matical Modeling of Economy, M.: Energoatomizdat, (1996), 544 p. (in
Russian).

4. Hautakker, H.S. The Pareto-Distribution and the Cobb-Douglas Production
Function in Activity Analysis, Rev. Econ. Stud. (1955/56), Vol.23 (2),
No.60, 27-31.

5. Johansen, L. Outline of an Approach to Production Studies Memorandum
from inst. of economics. Univ. of Oslo, 28 April, (1969), 68 p.

6. Petrov, A.A. and Pospelov I.G. The System Analysis of Developing Econ-
omy: To the Theory of Production Functions, News of Academy of Sciences
of the USSR. Technical Cybernetics. (1979), No.2, 18-27 (in Russian).

7. Shananin, A.A. One Class of Production Functions Investigation arising at
Macrodescription of Economic Systems, Zhurnal Vychislit. Matem. I Mat.
Fiziki. (1984), Vol.24, No.12, 1799-1811 (in Russian).



244 OLENA LYASHENKO

8. Shananin, A.A. Research of One Class of Profit Functions Arising at Macro-
description of Economic Systems, Zhurnal Vychislit. Matem. I Mat.
Fiziki. (1985), vol.25, No.1, 53-65 (in Russian).

9. Johansen, L. Production Functions, Amsterdam - London: North Holland
Co., (1972), 274 p.

10. Grigorkiv, V.S. Generalized Linearly Homogeneous Production Functions,
Cybernetics and system analysis, (1999), No.5, 124-132 (in Russian).

11. Dem’yanov, V.F.and Vasiliev, L.V. Nondifferentiable Optimization, M.:
Nauka, 1981. - 384 p.(in Russian).

12. Sukharev, A.G., Timohov, A.V. and Fedorov V.V. Course of Optimization
Methods, M.: Nauka, (1986,) - 328 p.(in Russian).

13. Ashmanov, S.A. Linear Programming, M.:Nauka, (1981)-340 p. (in Rus-
sian).

14. Karmanov, V.G. Mathematical Programming, M.: Nauka, (1975), 272 p.
(in Russian).

15. Nikaido, H. Convex Structures and Mathematical Economy, M.: Mir, (1972),
518 p. (in Russian).

Department of Economic Cybernetics, Kiev Taras Shevchenko Uni-

versity, Kiev, Ukraine.

E-mail: lei@mmed.cyb.univ.kiev.ua and lyashenkoolena@hotmail.com



Theory of Stochastic Processes
Vol.7 (23), no.1-2, 2001, pp.245-252

OLEKSANDR MERTENS

STOCHASTIC QUASI-GRADIENT TECHNIQUES
IN VAR-BASED ALM MODELS

The paper presents VaR-based stochastic optimization model of asset-
liability management with no particular assumptions about distribu-
tion of returns and other random parameters. VaR is widely accepted
measure of portfolio risk and a number of research on implementa-
tion of the VaR measure in portfolio optimization models appeared
recently. Proposed approach allows to include VaR constraints into
the optimization model using combination of Monte-Carlo simulation
and stochastic quasi-gradient techniques.
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1. Value-at-Risk measure in the optimization framework

In the last decade Value-at-Risk (VaR) became industry standard as
measure of risk of investment portfolios and widely used tool for risk eval-
uation and control. The important problem which is considered in this
context is the construction of the portfolio with pre-determined constraints
on VaR or with minimum possible VaR. As a consequence the task of in-
cluding VaR measure into optimization problem appears.

Traditionally VaR is determined as lowest amount L such that with
probability α the loss in portfolio value will not exceed L within some time
interval t. Approaches for calculation of VaR can be divided into two groups.
The first approach is based on assumption of probability distribution of risk
factors (normal for returns or log-normal for values). The second approach
use Monte-Carlo simulations generating scenarios and does not depend on
particular distributional assumptions. The latter is very often the only
possible technique for large portfolios especially when it include instruments
with options properties. But including VaR into optimization problem is
difficult due to bad mathematical properties (e.g. non-convexity).

245
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One approach for optimizing VaR, which is calculated from scenarios,
was proposed in Rocafellar and Uryasev (1999). It uses alternative risk
measure, Conditional Value-at-Risk (CVaR). CVaR is defined as conditional
expectation of losses above amount L (where L is defined as in above defi-
nition of VaR). CVaR is better than VaR in terms of its properties, but at
the same time, optimizing CVaR is very close to optimizing VaR.

According to Rocafellar and Uryasev (2000) if we denote f (x, r (θ)) -
the function of losses in portfolio value which depends on decision vector
x and random parameters vector r (θ), and Φ (x, L) - the probability that
losses will not exceed L:

Φ (x, L) =

∫
r:f(x,r)≤L

p (r) dr, (1)

VaR and CVaR could be defined respectively as:

V aR (x, α) = min {L : Φ (x, L) ≥ α} , (2)

CV aR (x, α) =
1

1− α

∫
r:f(x,r)≥V aR(x,α)

f (x, r) p (r) dr. (3)

With function Fα (x, L) defined as:

Fα (x, L) = L +
1

1− α

∫
r∈Rm

max {f (x, r)− L, 0} p (r) dr (4)

(Fα (x, L) is convex and continuously differentiable as function of α), CVaR
and VaR could be expressed as following:

CV aR (x, α) = min
L∈R

Fα (x, L) , (5)

V aR = min

{
argmin

L∈R
Fα (x, L)

}
. (6)

Theorem 2 in Rocafellar and Uriasev (2000) postulates that minimizing
of CVaR over x ∈ X is equivalent to minimizing Fα (x, L) over (x, L) ∈
X × R so that:

min
x∈X

CV aR (x, α) = min
(x,L)∈X×R

Fα (x, L) , (7)

while Fα (x, L) is convex on (x, L), and if Xis convex set, minimization of
Fα (x, L) is convex problem.

In practice, having the set of observations over random vector r (θ):

r1, r2, . . . , rN ,
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one can approximate the function Fα (x, L) :

F̄α (x, L) = L +
1

(1− α) N

N∑
i=1

max {f (x, ri)− L, 0}. (8)

Function F̄α (x, L) could be included into optimization problem either
as objective:

min
x,L

F̄α (x, L) , (9)

or as constraint:

F̄α (x, L) ≤ L̄. (10)

In order to linearize the problem, one can use auxiliary variables, so
that:

F̄α (x.L) = L +
1

(1− α)N

N∑
i=1

ui, (11)

f (x, ri)− L ≤ ui, ui ≥ 0, i = 1, . . . , N. (12)

2. VaR-based optimization in the two-stage model

In many practical problems of asset-liability management some correc-
tions of decision parameters could be made after obtaining information
about realizations of random parameters. It means two-stage (or multi-
stage in general case) setting of decision problem. Some decision variables
should be chosen before observation of the state of nature, but some cor-
rections are possible after observation. In this case, for example, the loss
function could be presented as f (x, y (x, θ) , r (θ)), where x is ex ante (strate-
gic) decision and y (x, θ) is correction (or adaptation) which is dependent
on the decision x and the state of nature.

The problem for minimizing CVaR could be written as follows:

min
x,y,L

L +
1

1− α
E [u (θ)] (13)

s.t.:

f (x, y (θ) , r (θ))− L ≤ u (θ) a.s., (14)

u (θ) ≥ 0 a.s., x ∈ X, y (x, θ) ∈ Y (θ) (15)

If loss function f (x, y (x, θ) , r (θ)) is linear in x and y and sets X and
Y include only linear in x and y constraints, problem (13) - (14) become
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well known two-stage linear stochastic programming problem (Dantzig and
Madansky (1961)). In its general form this problem can be written as:

max
x

xT a + E
[
y (x, θ)T b (θ)

]
,

s.t. :
Dx ≤ d, x ≥ 0,
y (x, θ) = arg max

y

{
yT b (θ) : B (θ) y ≤ q (θ)−A (θ) x, y ≥ 0

}
.

(16)

where x and y (x, θ) are first and second stage decisions respectively, a, d
and D - deterministic parameters, b (θ), q (θ), A (θ) and B (θ) - random
parameters, θ - state of nature.

3. Approaches for solving two-stage model: combining of

Monte-Carlo simulation with optimization

The approach, which is most often used in practice to solve problem like
(16), is based on Benders (1962) decomposition (see e.g. Infager (1994)).
Modern techniques utilize Monte-Carlo simulation for generating scenarios
and efficient algorithms, which allow solution of very large scale problems.

In this paper we propose to use alternative technique, which is well-
known stochastic quasi-gradient algorithm (see e.g. Ermoliev (1976), Er-
moliev and Yastremsky (1979), Ermoliev and Wets (1988)). Despite widely
accepted thought about slow convergence rate of quasi-gradient methods,
our experience suggests that this approach is fully operational for practical
problems while considerably more flexible (in terms of class of problems
which could be solved) comparing to Benders decomposition and related
algorithms.

For the problem (16) so-called linearization quasi-gradient method could
be used (Ermoliev (1976)). One calculate new approximation of the opti-
mum on each iteration, which is based on random direction calculated using
stochastic quasi-gradient:

xs+1 = xs + ρs (x̄s − xs)
zs+1 = zs + δs (ξs − zs)
x̄s = arg max

x

{
xT zs : Dx ≤ d, x ≥ 0, x ∈ Is

}
,

(17)

where xs is approximation of the solution on the iteration s, ξs is stochastic
quasi-gradient - random vector which satisfy following conditions:

E [ξs /x0, x1, . . . , xs ] = ∇F (xs) + bs,
bs → 0 a.s. (s →∞)

(18)

zs is average of stochastic quasi-gradient over all iterations (it is necessary
to guarantee convergence), Is is the set of so-called induced constraints (we
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need induced constraints to guarantee non-empty set for the second-stage
problem).

Stochastic quasi-gradient for the problem (16) is calculated from the
following conditions (actually from the solution of the dual to the second-
stage problem):

ξs = a− A (θs)T v (xs, θs)

v (xs, θs) = arg min
v

{
(vs)T (q − A (θs) xs) : B (θs) v, v ≥ 0

}. (19)

The set of induced constraint could be written as follows:

Is = {x : A (θs) x ≤ q (θs)} (20)

The algorithm consists in generating random scenarios θs on each it-
eration, calculating quasi-gradient using (19) (it requires solution of linear
programming problem) and calculating next approximation of the solution
using (17) (one more linear problem).

It was proved in Ermoliev (1976) that process (17) converges to the
optimal solution if step coefficients ρs and δs satisfy following conditions:

ρs ≥ 0, δs ≥ 0, ρs /δs → 0 a.s. (s →∞) ,
∞∑

s=0

ρs = ∞,
∞∑

s=0

δs = ∞ a.s.,

∞∑
s=0

ρs ‖bs‖ < ∞ a.s.,
∞∑

s=0

E [ρ2
s + δ2

s ] < ∞.

(21)

An example of such coefficients is as follows:

ρs = K1 /(1 + s)α , δs = K2

/
(1 + s)β ,

α > β, 1/2 < α ≤ 1, 1/2 < β ≤ 1

0 < K ≤ K1 ≤ K2 ≤ K < ∞
(22)

The software for implementing algorithm (17) for the problem (16) was
developed at Economic Cybernetics department of the Kiev State Univer-
sity in 1991 (see Mertens (1991)). This software (called ROS, i.e. Risk
Optimization System), which is developed using platform-independent C-
code, solves general form of the two-stage stochastic linear problem (16)
and utilizes number of techniques, which improve efficiency of the algorithm
(for example, speed up of the solution of linear problems on each iteration
and adaptive algorithms for the step size - see e.g. Uryasev (1991)). The
stopping criteria, which is one of the main difficulties in quasi-gradient al-
gorithms, is based on observations on the statistics of objective function in
(16):
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fs = 1
(1+s)

s∑
i=1

f (xi, θi),

Fs = 1
(1+L)

s∑
i=s−L

f (xi, θi),
(23)

where f (xi, θi) is the random value of objective on s-th iteration. The num-
ber of stopping criteria are used in the ROS software including comparison
with estimates of value of objective functions in dual problem, e.g.:

|Fs −Gs| < ε,

Gs = 1
(1+L)

s∑
i=s−L

(
(us)T d + v (xs, θs)

)
,

us = arg min
u

{
uTd : DT u ≥ a−A (θs)T v (xs, θs)

}
,

v (xs, θs) = arg min
v

{
(vs)T (q − A (θs) xs) : B (θs) v, v ≥ 0

}
.

(24)

or: ∣∣∣(xs)T (a− Vs)
∣∣∣ < ε,

Vs = 1
s

s∑
i=1

(
A (θi)

T
v (xi, θi)

)
,

(25)

(for additional discussion on stopping criteria see e.g. Pflug (1996)).

4. Model of optimization of inter-bank loans portfolio

Proposed approach was used for the real-life asset-liability management
problem, namely management of the inter-bank loans portfolio of commer-
cial bank. The problem consists in establishing of tomorrow limits of opera-
tion for the instruments with different maturities so that the Value-at-Risk
of inter-bank loans portfolio was at pre-determined level and the expected
return on entire portfolio was at maximum.

Let us define:
W (θ) = W̄ + w (θ) is exogenous to the model general limit on to-

morrow inter-bank operations which is defined form financing needs or
excess liquidity of the bank; t− time to maturity of particular instru-
ment; rt (θ)− tomorrow spot rate at inter-bank market (continuously com-
pounded); pt (θ) = exp (−rt (θ) · t)− tomorrow price of one currency unit
of inter-bank loan with maturity t; st− existing position in particular in-
strument; xt− tomorrow limit (decision); yt (x, θ)− tomorrow correction of
the limit which is bounded in some way.

The loss function which is necessary to build VaR constraint is defined
as dollar duration of total inter-bank loans position:
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f (x, y (x, θ) , θ) = −
∑

t

t · pt (θ) · (st + xt + yt (θ)) .

The possible objectives are minimizing of the Value-at-Risk of inter-bank
loans portfolio or maximizing of the total return:

max
x

E

[∑
t

rt (θ) · (xt + yt (θ))

]
.

The problem was solved for more than one hundred instruments (inter-
bank loans with 120 different maturities) for the real-life situation at the
Ukrainian inter-bank loans market. The number of utilized scenarios (iter-
ations in quasi-gradient algorithm) was up to 100,000, but for the relatively
good approximation of the optimal solution it was enough about 10,000 it-
erations. The time of calculations at ordinary Pentium III 1 GHz processor
was about 30 min for 10,000 iterations.

5. Conclusion

The paper demonstrates possibility of using quasi-gradient techniques in
VaR-based asset-liability management optimization models. The approach
was used for real-life problem of inter-bank loans portfolio management.
The obtained results demonstrate that this approach is fully operational
and efficient while allowing to solve more general (comparing to traditional
approach) form of two-stage stochastic programming problem.

The main directions of future research are (2) development and practi-
cal implementation of wider range of asset-liability management problems
(including credit risk management, etc.) using proposed approach, and (3)
precise comparison in terms of efficiency of numerical algorithms between
traditional (based on Benders decomposition) techniques and quasi-gradient
methods.
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GAME THEORY AND CONVEX OPTIMIZATION
METHODS IN ROBUST ESTIMATION

PROBLEMS

We considere the problem of the mean square optimal estimate of
the functional

Aξ =
∫ ∞

0
〈 a(t), ξ(t) 〉 dt

which is determined by the unknown values of the Hilbert space
valued stationary stochastic process ξ(t), t ∈ R1 from observations
of the process ξ(t)+η(t) for t < 0, where η(t) is an uncorrelated with
ξ(t) Hilbert space valued stationary stochastic process. The mean
square error and the spectral characteristic of the optimal estimate of
the functional Aξ are proposed. The minimax spectral characteristic
and the least favorable spectral densities are found for various classes
of spectral densities.

2000 Mathematics Subject Classifications. 60G25, 62M20.

Key words and phrases. Stationary stochastic process, Hilbert
space, mean square optimal estimate, minimax spectral charac-
teristic, least favorable spectral density

1. Introduction

The Hilbert space projection method of linear interpolation, extrapola-
tion and filtering of weakly stationary stochastic processes (see Kolmogorov
(1986), Rozanov (1967)) may be employed in the case where spectral den-
sities of stochastic processes are known. In practice, however, problems
of estimation of the unknown values of stochastic processes arise where the
spectral densities are not known exactly. To solve the problem the paramet-
ric or nonparametric estimates of the unknown spectral densities are found.
Then the traditional method is applied provided that estimates of the den-
sities are true. This procedure can result in a significant increasing of the
value of the error as Vastola and Poor (1983) have demonstrated with the
help of some examples. For this reason it is necessary to search the estimate
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that has the least value of the error for all densities from a certain class of
spectral densities. Such an approach to the problem of interpolation, ex-
trapolation and filtering of stationary stochastic processes have been taken
into consideration by many investigators. A survey of results in minimax
(robust) methods of data processing can be found in the paper Kassan and
Poor (1985). See also papers by the author [8-10]. In this article it is shown
that convex optimization methods can be applied to determine the least
favorable spectral densities and minimax (robust) spectral characteristic of
the optimal estimate of linear functional of a Hilbert space valued stationary
stochastic process from observations with noise.

2. Hilbert space projection method of extrapolation

Denote by X a separable Hilbert space with the orthonormal basis {ek :
k = 1, 2, . . .}. Stationary stochastic processes ξ(t) and η(t) with values in
X have spectral densities f(λ) and g(λ) if the correlation functions Bξ(s)
and Bη(s) can be represented in the form

〈Bξ(s) ek, ej〉 =
1

2π

∞∫
−∞

eiλs 〈f(λ) ek, ej〉 dλ, k, j = 1, 2, . . . ,

〈Bη(s) ek, ej〉 =
1

2π

∞∫
−∞

eiλs 〈g(λ) ek, ej〉 dλ, k, j = 1, 2, . . .

For almost all λ ∈ R1 the spectral densities f(λ) and g(λ) are nuclear
operators with integrable nuclear norms (see Kallianpur and Mandrekar
(1965)).

Denote by K(f + g) a set of all k ∈ N such that fk(λ) + gk(λ), fk(λ) =
〈f(λ)ek, ek〉, gk(λ) = 〈f(λ)ek, ek〉 satisfy the minimality condition:∫ ∞

−∞

|γ(λ)|
fk(λ) + gk(λ)

dλ < ∞

for some nontrivial function of the exponential type γ(λ) =
∫∞
0

α(t) eitλ dt.
We will consider the estimation problem in the case where K(f + g) �= ∅.
This condition is necessary and sufficient in order that the mean square
error of the optimal linear estimate of the unknown value of the process
ξ(t) be not equal to zero (see Rozanov (1967)).

Let the sequence a(t) that determine the functional

Aξ =

∫ ∞

0

〈 a(t), ξ(t) 〉 dt =

∞∑
k=1

∫ ∞

0

ak(t)ξk(t) dt,
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satisfy the conditions

∞∑
k=1

∫ ∞

0

|ak(t)| dt < ∞,
∞∑

k=1

∫ ∞

0

t |ak(t)|2 dt < ∞. (1)

Under these conditions E |Aξ|2 < ∞. The mean square error of a linear

estimate Âξ of the functional Aξ is determined by the spectral characteristic

h(λ) =
{

hk(λ) : k = 1, 2, . . .
}

of the estimate and the spectral densities

f(λ) and g(λ) of processes ξ(t) and η(t). The value of the mean square error

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2
=

∞∑
k=1

1

2π

∫ ∞

−∞

[
|Ak(λ)− hk(λ)|2 fk(λ) + |hk(λ)|2 gk(λ)

]
dλ,

where

Ak(λ) =

∫ ∞

0

ak(t)e
itλ dt.

The spectral characteristic h(λ) =
{

hk(λ) : k = 1, 2, . . .
}

of the estimate

Âξ belongs to the subspace L−
2 (f + g) of the space L2(f + g) generated by

the functions

hk(λ) =

∫ ∞

0

hk(t)e
−itλ dt,

∞∑
k=1

∫ ∞

−∞
|hk(λ)|2 (fk(λ) + gk(λ)) dλ < ∞.

The spectral characteristic h(f, g) of the optimal linear estimate of the func-
tional Aξ minimizes the mean square error. With the help of the Hilbert
space projection method (see Kolmogorov (1986), Rozanov (1967)) we can
derive the following formulas for the value ∆(f, g) of the error and the spec-
tral characteristic h(f, g) of the optimal linear estimate of the functional Aξ
under the condition that the spectral densities f(λ), g(λ) of the processes
η(t) and ξ(t) are known. In this case

∆(f, g) =
∑
k∈K

{
1

2π

∫ ∞

−∞

|Ak(λ)gk(λ) + Ck(λ)|2

(fk(λ) + gk(λ))2 fk(λ) dλ+

+
1

2π

∫ ∞

−∞

|Ak(λ)fk(λ)− Ck(λ)|2

(fk(λ) + gk(λ))2 gk(λ) dλ

}
=

=
∑
k∈K

[∫ ∞

0

(Bk ck) (t) c̄k(t) dt +

∫ ∞

0

(Rk ak) (t) āk(t) dt

]
=



256 MIKHAIL MOKLYACHUK

=
∑
k∈K

[〈Bk ck, ck〉+ 〈Rk ak, ak〉] , (2)

and

hk(f, g) =
Ak(λ) fk(λ)− Ck(λ)

fk(λ) + gk(λ)
=

= Ak(λ)− Ak(λ) gk(λ) + Ck(λ)

fk(λ) + gk(λ)
, (3)

where

Ck(λ) =

∫ ∞

0

ck(t) eitλ dt, ck(t) =
(
B−1

k Dk ak

)
(t), k ∈ K(f + g),

〈a, c〉 is the inner product and Bk, Dk, Rk are operators in the space
L2[0,∞) that are determined by the relations(

Bk c
)
(t) =

1

2π

∫ ∞

0

c(u)

∫ ∞

−∞
ei(u−t)λ(fk(λ) + gk(λ))−1 dλ du,

(
Dk c

)
(t) =

1

2π

∫ ∞

0

c(u)

∫ ∞

−∞
ei(u−t)λfk(λ) (fk(λ) + gk(λ))−1 dλ du,

(
Rk c

)
(t) =

1

2π

∫ ∞

0

c(u)

∫ ∞

−∞
ei(u−t)λfk(λ) gk(λ) (fk(λ) + gk(λ))−1 dλ du.

Lemma 1. Let ξ(t) and η(t) be uncorrelated stationary stochastic pro-
cesses with spectral densities f(λ) and g(λ) such that K(f + g) �= ∅ and
condition (1) is satisfied. The mean square error ∆(f, g) and the spectral
characteristic h(f, g) of the optimal linear estimate of the functional Aξ
from observations of the process ξ(t) + η(t) for t < 0 can be computed by
(2) and (3).

In the case of observations without noise formulas for the mean square
error and spectral characteristic are the following.

∆(f) =
∑
k∈K

1

2π

∫ ∞

−∞
|Ck(λ)|2 f−1

k (λ) dλ =
∑
k∈K

〈
B−1

k ak, ak

〉
=
∑
k∈K

‖Ak dk‖2,

(4)
hk(f) = Ak(λ)− Ck(λ) f−1

k (λ) = Ak(λ)− (Ak dk)(λ)d−1
k (λ), (5)

where the functions dk(t) are detemined by the factorization

fk(λ) = |dk(λ)|2 =

∣∣∣∣∫ ∞

0

dk(t) e−itλ dt

∣∣∣∣2
of the density fk(λ),

Ck(λ) =

∫ ∞

0

(
B−1

k ak

)
(t) eitλ dt,
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(Ak d)(t) =

∫ ∞

0

ak(t + u)d(u)du,

(Ak dk)(λ) =

∫ ∞

0

(Ak dk) (t) eitλ dt,

(
Bk c

)
(t) =

1

2π

∫ ∞

0

c(u)

∫ ∞

−∞
ei(u−t)λf(λ)−1

k dλ du.

Lemma 2. Let ξ(t) be a stationary stochastic process with the spectral
density f(λ) such that K(f) �= ∅ and let condition (1) be satisfied. The
mean square error ∆(f) and the spectral characteristic h(f) of the optimal
linear estimate of the functional Aξ from observations of the process ξ(t)
for t < 0 can be computed by formulas (4), (5).

3. Minimax-robust approach to extrapolation problem

Formulas (1) – (5) can be applied to compute the mean square error and
the spectral characteristic of the optimal linear estimate of the functional
Aξ if the spectral densities f(λ) and g(λ) of the processes η(t) and ξ(t) are
known. In the case where the spectral densities are not known exactly, but
sets Df andDg of possible spectral densities are given, we apply the minimax
(robust) approach to the problem of estimation of the unknown values of
stochastic processes and functionals. With the help of this approach we
can find an estimate that minimizes the mean square error for all spectral
densities f(λ), g(λ) from a given class D = Df ×Dg simultaneously.

Definition 1. For a given class D = Df × Dg of spectral densities the
spectral densities f 0(λ) ∈ Df and g0(λ) ∈ Dg are called the least favorable
in D = Df ×Dg for the optimal linear estimation of the functional Aξ if

∆(f 0, g0) = ∆
(
h(f 0, g0); f 0, g0

)
= max

(f,g)∈Df×Dg

∆
(
h(f, g); f, g

)
.

Definition 2. For a given class D = Df × Dg of spectral densities the
spectral characteristic h0(λ) is called minimax (robust) if

h0(λ) ∈ HD =
⋂

(f,g)∈Df×Dg

L−
2 (f + g),

min
h∈HD

max
(f,g)∈Df×Dg

∆
(
h; f, g

)
= max

(f,g)∈Df×Dg

∆
(
h0; f, g

)
.

The detailed analysis of the relations (2) – (5) makes it possible to con-
clude that the following statement is true.
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Lemma 3.Spectral densities f 0(λ) and g0(λ) are the least favorable in the
class D = Df ×Dg for the optimal linear estimation of the functional Aξ if
K(f 0, g0) �= ∅ and the Fourier transform of functions

1(
f 0

k (λ) + g0
k(λ)

) , f 0
k (λ)(

f 0
k (λ) + g0

k(λ)
) , f 0

k (λ)g0
k(λ)(

f 0
k (λ) + g0

k(λ)
)

form operators B0
k, D0

k, R0
k that determine a solution of the conditional

extremum problem

max
(f,g)∈Df×Dg

∑
k∈K

[〈
Dk ak, B−1

k Dk ak

〉
+
〈
Rk ak, ak

〉]
=

=
∑
k∈K

[〈
D0

k ak, (B0
k)

−1 D0
k ak

〉
+
〈
R0

k ak, ak

〉]
. (6)

The minimax (robust) spectral characteristic h0 = h(f 0, g0) can be computed
by the formula (3) if h(f 0, g0) ∈ HD.

For the case of observations without noise we have the following state-
ment.

Lemma 4. A spectral density f 0(λ) ∈ Df is the least favorable in the
class Df for the optimal linear estimation of the functional Aξ from observa-
tions of the process ξ(t) for t < 0 if K(f 0) �= ∅ and the Fourier transformat
of functions (f 0

k (λ))
−1

, k = 1, 2, . . . form operators B0
k, k = 1, 2, . . . that

determine a solution of the conditional extremum problem

max
f∈Df

∑
k∈K

〈
B−1

k ak, ak

〉
=
∑
k∈K

〈
(B0

k)
−1 ak, ak

〉
. (7)

The minimax (robust) spectral characteristic h0 = h(f 0) can be computed
by the formula (5) if h(f 0) ∈ HDf

.
The least favorable spectral densities f 0(λ), g0(λ) and the minimax (ro-

bust) spectral characteristic h0 = h(f 0, g0) form a saddle point of the func-
tion ∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆
(
h0; f, g

)
≤ ∆

(
h0; f 0, g0

)
≤ ∆

(
h; f 0, g0

)
∀h ∈ HD ∀f ∈ Df ∀g ∈ Dg

hold when h0 = h(f 0, g0) and h(f 0, g0) ∈ HD, and (f 0, g0) is a solution of
the conditional extremum problem

sup
(f,g)∈Df×Dg

∆
(
h(f 0, g0); f, g

)
= ∆

(
h(f 0, g0); f 0, g0

)
, (8)

where
∆
(
h(f 0, g0); f, g

)
=
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=
∑
k∈K

{
1

2π

∫ ∞

−∞

|Ak(λ)g0
k(λ) + C0

k(λ)|2

(f 0
k (λ) + g0

k(λ))
2 fk(λ) dλ+

+
1

2π

∫ ∞

−∞

|Ak(λ)f 0
k (λ)− C0

k(λ)|2

(f 0
k (λ) + g0

k(λ))
2 gk(λ) dλ

}
.

The conditional extremum problem (8) is equivalent to the unconditional
extremum problem:

∆D(f, g) = −∆
(
h(f 0, g0); f, g

)
+ δ
(
(f, g) | Df ×Dg

)
→ inf, (9)

where δ
(
(f, g) | Df × Dg

)
is the indicator function of the set D = Df ×

Dg. A solution (f 0, g0) of problem (9) is characterized by the condition
0 ∈ ∂∆D(f 0, g0), where ∂∆D(f 0, g0) is the subdifferential of the convex
functional ∆D(f, g) at the point (f 0, g0) (see Pshenichnyi (1971))

This condition gives us a possibility to determine the least favorable
spectral densities for concrete classes of spectral densities.

Lemma 5. Let (f 0, g0) be a solution of the extremum problem (9).
The spectral densities f 0(λ) and g0(λ) are the least favorable in the class
D = Df ×Dg and the spectral characteristic h0 = h(f 0, g0) is the minimax
(robust) for the optimal linear estimate of the functional Aξ if h(f 0, g0) ∈
HD.

4. Least favorable spectral densities in the class D0
f ×D0

g

Let us consider the problem for the set of spectral densities D = D0
f×D0

g ,
where

D0
f =

{
f(λ)

∣∣ 1

2π

∞∑
k=1

∫ ∞

−∞
fk(λ) dλ ≤ P1

}
,

D0
g =

{
g(λ)

∣∣ 1

2π

∞∑
k=1

∫ ∞

−∞
gk(λ) dλ ≤ P2

}
.

Stochastic processes which have spectral densities from the class D0
f satisfy

the power constraint: E|ξ(t)|2 ≤ P1. Let the densities f 0(λ) ∈ D0
f and

g0(λ) ∈ D0
g , K(f 0 + g0) �= ∅ and the functions

hkf(f
0, g0) =

∣∣Ak(λ)g0
k(λ) + C0

k(λ)
∣∣

f 0
k (λ) + g0

k(λ)
, (10)

hkg(f
0, g0) =

∣∣Ak(λ)f 0
k (λ)− C0

k(λ)
∣∣

f 0
k (λ) + g0

k(λ)
, (11)

k ∈ K(f 0 + g0),
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are bounded. Under these conditions the functional ∆
(
h(f 0, g0); f, g

)
is a

continuous linear functional in the space L1 × L1 and

∂∆D0
f×D0

g
(f 0, g0) = −∂∆

(
h(f 0, g0); f 0, g0

)
+ ∂δ

(
(f 0, g0) | D0

f ×D0
g

)
.

From the condition 0 ∈ ∂∆D(f 0, g0) for D = D0
f × D0

g we find that the
components of the least favorable densities f 0 ∈ D0

f , g0 ∈ D0
g satisfy the

equations

αk1

∣∣Ak(λ)g0
k(λ) + C0

k(λ)
∣∣ = (f 0

k (λ) + g0
k(λ)

)
(12)

αk2

∣∣Ak(λ)f 0
k (λ)− C0

k(λ)
∣∣ = (f 0

k (λ) + g0
k(λ)

)
, (13)

where constants αk1 ≥ 0, αk2 ≥ 0.

Note, that αk1 �= 0 if∑
k∈K

1

2π

∫ ∞

−∞
f 0

k (λ) dλ = P1 (14)

and αk2 �= 0 if ∑
k∈K

1

2π

∫ ∞

−∞
g0

k(λ) dλ = P2. (15)

Theorem 1. Let spectral densities f 0(λ) and g0(λ) belong to the set
D = D0

f ×D0
g , K(f 0 + g0) �= ∅ and the functions hkf(f

0, g0) and hkg(f
0, g0),

k ∈ K(f 0 + g0) computed by the formulas (10) and (11) are bounded.
The spectral densities f 0(λ) and g0(λ) are the least favorable in the class
D = D0

f ×D0
g for the optimal linear estimation of the functional Aξ if they

satisfy the relations (12) and (13) and determine a solution of the extremum
problem (6). The minimax (robust) spectral characteristic of the optimal
linear estimate of the functional is computed by the formula (3).

Theorem 2. Let a spectral density f(λ) is known, a density g0(λ) belong
to the set D0

g , K(f + g0) �= ∅ and the functions hkg(f, g0), k ∈ K(f + g0)
computed by the formula (11) are bounded. The spectral density g0(λ) is the
least favorable in the class D0

g for the optimal estimation of the functional
Aξ if the components of the density satisfy the relations

g0
k(λ) = max

{
0, αk2

∣∣Ak(λ)fk(λ)− C0
k(λ)

∣∣− fk(λ)
}

and (f(λ), g0(λ)) determine a solution of the extremum problem (6). The
function h(f, g0) computed by the formula (3) is the minimax (robust) spec-
tral characteristic of the optimal linear estimate of the functional Aξ.

Theorem 3. Let a spectral density f 0(λ) belong to the set D0
f , K(f 0) �= ∅

and let functions hkf(f
0), k ∈ K(f 0) computed by formula (5) be bounded.

The spectral density f 0(λ) is the least favorable in the class D0
f for the
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optimal estimation of the functional Aξ from observations of the process
ξ(t) for t < 0 if it satisfy the equation

f 0
k (λ) = αk1

∣∣C0
k(λ)

∣∣
and determine a solution of the extremum problem (7). The minimax (ro-
bust) spectral characteristic of the optimal linear estimate of the functional
is computed by the formula (5).

5. Least favorable spectral densities in the class D = Dε ×Du
v

Let us consider the problem for the set of spectral densities D = Dε×Du
v ,

Dε =

{
f
∣∣ fk(λ) = (1− ε)f 1

k (λ) + εwk(λ),
1

2π

∞∑
k=1

∫ ∞

−∞
fk(λ) dλ = P1

}
,

Du
v =

{
g
∣∣ vk(λ) ≤ gk(λ) ≤ uk(λ);

1

2π

∞∑
k=1

∫ ∞

−∞
gk(λ) dλ ≤ P2

}
,

where the spectral densities v(λ), u(λ) and f 1(λ) are known and the densi-
ties uk(λ), k = 1, 2, . . . are bounded. The class Dε describes the ”ε - pol-
lution” model of stochastic processes. The class Du

v describes the ”band”
model of stochastic processes.

If f 0(λ) ∈ Dε, g0(λ) ∈ Du
v , K(f 0 + g0) �= ∅ and the functionhkf (f 0, g0)

and hkg(f
0, g0), k ∈ K(f 0 + g0) computed by the formulas (10) and (11)

are bounded, the condition 0 ∈ ∂∆D(f 0, g0) for D = Dε ×Du
v is satisfied if

components of the densities f 0(λ) and g0(λ) satisfy the equations∣∣Ak(λ)g0
k(λ) + C0

k(λ)
∣∣ = (f 0

k (λ) + g0
k(λ)

)(
ϕk(λ) + α−1

k1

)
, (16)∣∣Ak(λ)f 0

k (λ)− C0
k(λ)

∣∣ = (f 0
k (λ) + g0

k(λ)
)(

γk1(λ) + γk2(λ) + α−1
k2

)
, (17)

where γk1(λ) ≤ 0 a. e. and γk1(λ) = 0 if g0
k(λ) ≥ vk(λ); γk2(λ) ≥ 0 a.

e. and γk2(λ) = 0 if g0
k(λ) ≤ uk(λ); ϕk(λ) ≤ 0 a. e. and ϕk(λ) = 0 if

f 0
k (λ) ≥ (1− ε)f 1

k (λ).
Theorem 4. Let spectral densities f 0(λ) and g0(λ) belong to the set

D = Dε×Du
v , K(f 0 +g0) �= ∅ and the functions hkf(f

0, g0) and hkg(f
0, g0),

k ∈ K(f 0 + g0) computed by the formulas (10) and (11) are bounded.
The spectral densities f 0(λ) and g0(λ) are the least favorable in the class
D = Dε ×Du

v for the optimal linear estimation of the functional Aξ if they
satisfy the relations (14) – (17) and determine a solution of the extremum
problem (6). The minimax (robust) spectral characteristic of the optimal
linear estimate of the functional is computed by the formula (3).

Theorem 5. Let a spectral density f(λ) is known, a density g0(λ) belong
to the set Du

v , K(f +g0) �= ∅ and the functions hkg(f, g0) and k ∈ K(f +g0)
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computed by the formula (11) are bounded. The spectral density g0(λ) is the
least favorable in the class Du

v for the optimal estimation of the functional
Aξ if components of the density satisfy the relations

g0
k(λ) = max

{
vk(λ), min

{
uk(λ), αk2

∣∣Ak(λ)fk(λ)− C0
k(λ)

∣∣− fk(λ)
}}

and (f(λ), g0(λ)) determine a solution of the extremum problem (6). The
function h(f, g0) computed by the formula (3) is the minimax (robust) spec-
tral characteristic of the optimal linear estimate of the functional Aξ.

Theorem 6. Let a spectral density f 0(λ) belong to the set Dε, K(f 0) �= ∅
and the functions hkf(f

0), k ∈ K(f 0) computed by the formula (5) are
bounded. The spectral density f 0(λ) is the least favorable in the class Dε

for the optimal estimation of the functional Aξ from observations of the
sequence ξ(t) for t < 0 if the components f 0

k (λ) , k ∈ K(f 0) of the density
satisfy the equation

f 0
k (λ) = max

{
(1− ε)f 1

k (λ), αk1

∣∣C0
k(λ)

∣∣}
and determine a solution of the extremum problem (7). The minimax (ro-
bust) spectral characteristic of the optimal linear estimate of the functional
is computed by the formula (5).

6. Least favorable spectral densities in the class D2δ1 ×D1δ2

Let the set of densities is of the form D = D2δ1 ×D1δ2 ,

D2δ1 =

{
f
∣∣ 1

2π

∞∑
k=1

∫ ∞

−∞

∣∣fk(λ)− f 1
k (λ)

∣∣2 dλ ≤ δ1

}
,

D1δ2 =

{
g
∣∣ 1

2π

∞∑
k=1

∫ ∞

−∞

∣∣gk(λ)− g1
k(λ)

∣∣ dλ ≤ δ2

}
,

where f 1
k (λ) and g1

k(λ) are known bounded spectral densities. The sets D2δ1

and D1δ2 describe the ”δ – neighbourhood” models of stochastic processes
in the spaces L1 and L2. If f 0(λ) ∈ D2δ1 and g0(λ) ∈ D1δ2 , K(f 0 + g0) �= ∅
and the functions hkf(f

0, g0) and hkg(f
0, g0), k ∈ K(f 0 + g0) computed by

the formulas (10) and (11) are bounded, the condition 0 ∈ ∂∆D(f 0, g0) for
D = D2δ1 × D1δ2 is satisfied if the components of the densities f 0(λ) and
g0(λ) satisfy the equations∣∣Ak(λ)g0

k(λ) + C0
k(λ)

∣∣2 =
(
f 0

k (λ) + g0
k(λ)

)2(
f 0

k (λ)− f 1
k (λ)

)
αk1, (18)∣∣Ak(λ)f 0

k (λ)− C0
k(λ)

∣∣ = (f 0
k (λ) + g0

k(λ)
)
ψk(λ)αk2, (19)

k ∈ K(f 0 + g0),
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where |ψk(λ)| ≤ 1 a. e. and ψk(λ) = sign (g0
k(λ)− g1

k(λ)) if g0
k(λ) �= g1

k(λ).
The equations (18) and (19) with the extremum condition (6) and the con-
ditions ∞∑

k=1

1

2π

∫ ∞

−∞

∣∣fk(λ)− f 1
k (λ)

∣∣2 dλ = δ1, (20)

∞∑
k=1

1

2π

∫ ∞

−∞

∣∣gk(λ)− g1
k(λ)

∣∣ dλ = δ2 (21)

determine the least favorable spectral densities.
Theorem 7. Let spectral densities f 0(λ) and g0(λ) belong to the set

D2δ1 × D1δ2 , K(f 0 + g0) �= ∅ and the functions hkf(f
0, g0) and hkg(f

0, g0),
k ∈ K(f 0 + g0) computed by the formulas (10) and (11) are bounded.
The spectral densities f 0(λ) and g0(λ) are the least favorable in the class
D2δ1 × D1δ2 for the optimal linear estimation of the functional Aξ if they
satisfy the relations (18) – (21) and determine a solution of the extremum
problem (6). The minimax (robust) spectral characteristic of the optimal
linear estimate of the functional is computed by the formula (3).

Theorem 8. Let a spectral density f(λ) is known, a density g0(λ) belong
to the set D1δ2 , K(f + g0) �= ∅ and the functions hkg(f, g0), k ∈ K(f + g0)
computed by the formula (11) are bounded. The spectral density g0(λ)
is the least favorable in the class D1δ2 for the optimal estimation of the
functional Aξ if components of the density satisfy the relations

g0
k(λ) = max

{
g1

k(λ), αk2

∣∣Ak(λ)fk(λ)− C0
k(λ)

∣∣− fk(λ)
}

and (f(λ), g0(λ)) determine a solution of the extremum problem (6). The
function h(f, g0) computed by the formula (3) is the minimax (robust) spec-
tral characteristic of the optimal linear estimate of the functional Aξ.

Theorem 9. Let a spectral density f 0(λ) belong to the set D2δ1 , K(f 0) �=
∅ and the functions hkf(f

0), k ∈ K(f 0) computed by the formula (5) are
bounded. The spectral density f 0(λ) is the least favorable in the class D2δ1

for the optimal estimation of the functional Aξ from observations of the
sequence ξ(t) for t < 0 if the components f 0

k (λ), k ∈ K(f 0) of the density
satisfy the equation∣∣C0

k(λ)
∣∣2 =

(
f 0

k (λ)
)2(

f 0
k (λ)− f 1

k (λ)
)
αk1,

and determine a solution of the extremum problem (7). The minimax (ro-
bust) spectral characteristic of the optimal linear estimate of the functional
is computed by the formula (5).
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1. Introduction

In many cases mathematical models for spatial phenomenon or images
are obtained as particular instances of random fields. Models of this type are
often characterized reasonably well by their correlation or spectral functions.
There are a lot of numerical methods for estimating the values of correlation
or spectral functions. Since we usually have a finite number of observations,
it is clear that these methods build estimates only for finite area. For
this reason it is important to obtain estimates of the closeness in different
metrics of the spectral and correlation functions of random fields. Some
results on multidimensional probability metrics were obtained in the paper
by Malyarenko (1979), book by Rachev and Rüschendorf (1998) and papers
by Olenko (1993, 1996, 1997, 2000) and Pavlov (1999, 2000, 2001).

Denote by Fξ(x), Fη(x)(x ∈ R) the distribution functions of random
variables ξ, η and by ϕξ(t), ϕη(t)(t ∈ R) their characteristic functions.

Let us introduce the following probability metrics (see book by Zolotarev
(1986)) for one-dimensional distribution functions Fξ (x) , Fη (x) :

a) Kolmogorov’s (uniform) metric:

ρ (ξ, η) ≡ ρ (Fξ, Fη) = sup
x∈R

|Fξ (x)− Fη (x)| ;

b) average metric: κ1 (ξ, η) ≡ κ1 (Fξ, Fη) =
∫
R

|Fξ (x)− Fη (x)|dx;

c) weighted uniform metric for characteristic functions:

χs(ξ, η) ≡ χs(ϕξ, ϕη) = sup
t∈R

|ϕξ(t)− ϕη(t)|
|t|s

265
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and
d) modified weighted semi-metric

κ̃k;a (ξ, η) ≡ κ̃k;a (Fξ, Fη) =

∣∣∣∣∣∣
∞∫

0

(Fξ (λ)− Fη (λ))λke−aλdλ

∣∣∣∣∣∣ .
Let γ1 (x) , γ2 (x) (x ∈ Rn) be real, measurable, mean-square continuous,

homogeneous isotropic random fields (see book by Yadrenko (1983)).
Denote by Bn,1 (t) , Bn,2 (t) their correlation functions and by Φn,1 (λ) ,

Φn,2 (λ) corresponding spectral functions.
Suppose that Eγ1 (x) = Eγ2 (x) = 0,Eγ2

1 (x) = Eγ2
2 (x) = 1 for all

x ∈ Rn and, therefore, Bn,1 (0) = Bn,2 (0) = 1.
Through entire article we will suppose that Φn,1(λ) − Φn,2(λ) is not a

singular function.
The following conditions will be considered:

(i) ∀r ∈ [0; H] Bn,1 (r) = Bn,2 (r) ;

(ii) ∀λ ∈ [0; K] Φn,1 (λ) = Φn,2 (λ) ;

(iii) ∀λ ≥ c Φn,1 (λ) = Φn,2 (λ) .

Denote bν = sup
z≥0

|Jν(z)| , rν = inf {z > 0 |Jν (z) = 0} , where Jν is the

first kind Bessel function of the order ν.
Denote for n > 1, H > 0, y > 0 and one-dimensional distribution func-

tions F1(x), F2(x)

Tn(H, y, F1, F2) =

= min

{
π
H

;
+∞∫
y

|F1 (u)− F2 (u)| du + 3 (y + 2)
√

2
(

π
√

n
H

) n
n+1

}
and for n > 1, H > 0 and probability density p(λ)

Un(H, p) = min

{
48

πH
· sup

λ≥0
|p (λ)| ;

(
1 + sup

λ≥0
p (λ)

)
·
(

π
√

n

H

) n
n+1

}
.

Denote by BV ([a; b]) the set of functions of bounded variation on [a; b]
and by V (f ; [a; b]) the variation of the function f ∈ BV ([a; b]).

2. Main results

Theorem 2.1. If κ1 (Φn,1, Φn,2) < +∞ and there exists such H > 0 that
(i) holds, then for all y > 0

χ1 (Bn,1, Bn,2) ≤
Γ
(

n
2

)
Tn(H, y, Φn,1, Φn,2)

Γ
(

n+1
2

)√
π

.
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Proof. See corollary 3 and theorem 3 in papers by Olenko (1993, 1997)
respectively and theorem 1 in the paper by Pavlov (1999).

Theorem 2.2. Let Φn,1 − Φn,2 be a piecewise continuously differentiable
function, n ≥ 5 and there exist H > 0, K > 0 such that (i), (ii) hold.

If Φn,1(λ) has a bounded density Φ′
n,1(λ), then

χ 4−n
2

(Bn,1, Bn,2) ≤
2

n
2 Γ
(

n
2

)
bn

2

(n− 4) ·K n−4
2

· Un(H, Φ′
n,1).

Proof. See theorem 2 with remark in the paper by Pavlov (1999) and corol-
lary 2 and theorem 5 in papers by Olenko (1993, 1997) respectively.

Theorem 2.3. Let ηn be a random variable with the distribution function

Fηn(x) =


1 ∀x ≥ 1

Γ(n
2 )√

π·Γ(n−1
2 )

·
x∫

−1

(1− u2)
n−3

2 du ∀x ∈ [−1; 1]

0 ∀x ≤ −1

,

the random variables ξ1, ξ2 be independent of ηn, Fξ1(0) = Fξ2(0) = 0,
+∞∫
0

|Fξ1(λ)− Fξ2(λ)|dλ < +∞ and there exists such H > 0 that for all

t ∈ [0; H ] ϕξ1ηn(t) = ϕξ2ηn(t).
Then for all y > 0

Γ
(

n
2

)
κ̃0;0(ξ1, ξ2)

Γ
(

n+1
2

)√
π

≤ κ1 (ξ1 · ηn, ξ2 · ηn) ≤

≤
Γ
(

n
2

)
κ1 (ξ1, ξ2)

Γ
(

n+1
2

)√
π

≤
Γ
(

n
2

)
Tn(H, y, Fξ1, Fξ2)

Γ
(

n+1
2

)√
π

.

Proof. See theorem 3 and corollary 3 in papers by Olenko (1997, 1993)
respectively and corollary in the paper by Pavlov (1999).

Theorem 2.4. If (iii) holds with c ∈
[
0; rn

2

]
, then

|Bn,1(t)−Bn,2(t)| ≤
∣∣∣∣∣2n−2

2 Γ
(n

2

) Jn−2
2

(ct)

(ct)
n−2

2

− 1

∣∣∣∣∣ ρ (Φn,1, Φn,2)
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for all t ∈ [0; 1].

Proof. Let us denote hn(λ) = Φn,1(λ)− Φn,2(λ) , gn,t(λ) =
J n−2

2
(λt)

(λt)
n−2

2
.

Since c ∈
[
0; rn

2

]
, t ∈ [0; 1], λ ∈ [0; c], tλ ∈ [0; c] and

J n
2

(z)

z
n−2

2
is of constant

sign on [0; c] , then gn+2,t is of constant sign on [0; c] too.

Hence, gn,t(λ) is monotonic on [0; c].

The theorem of mean gives us that ∃Λn,t ∈
[
inf [0;c] hn; sup[0;c] hn

]
(i.e.

∃Λn,t ∈ [−ρ (Φn,1, Φn,2) ; ρ (Φn,1, Φn,2)] ) such that∫ c

0

hn(λ)dgn,t(λ) = Λn,t · (gn,t(c)− gn,t(0)) .

If hn is continuous (though it is not necessary), then ∃θn,t ∈ [0; c] such
that hn (θn,t) = Λn,t.

|Bn,1(t)−Bn,2(t)| =
∣∣∣∣−2

n−2
2 Γ
(n

2

)∫ c

0

hn(λ)dgn,t(λ)

∣∣∣∣ =
=
∣∣∣−2

n−2
2 Γ
(n

2

)
· Λn,t · (gn,t(c)− gn,t(0))

∣∣∣ ≤
≤
∣∣∣∣∣2n−2

2 Γ
(n

2

) Jn−2
2

(ct)

(ct)
n−2

2

− 1

∣∣∣∣∣ ρ (Φn,1, Φn,2) .

Theorem 2.5. Let there exist H > 0 and c > 0 such that (i), (iii) hold.
Then

a) for small t > 0 and for all y > 0

|Bn,1(t)− Bn,2(t)| ≤ 2
n−2

2 Γ
(n

2

)
· t · sup

λ∈[0;c]

∣∣∣∣∣Jn
2

(λt)

(λt)
n−2

2

∣∣∣∣∣ · Tn(H, y, Φn,1, Φn,2);

b) if Φn,1(λ) has a bounded density Φ′
n,1(λ), then for all t ≥ 0

|Bn,1(t)− Bn,2(t)| ≤ 2
n−2

2 · Γ
(n

2

)
· V (gn,t; [0; c]) · Un(H, Φ′

n,1).

Proof. See corollaries 2 and 3 in the paper by Olenko (1993), theorems 3
and 4 in the paper by Pavlov (2001), and theorems 3 and 5 in the paper by
Olenko (1997).
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Theorem 2.6. Let a > 0, k ∈ {0; 1}, χ0 (Bn,1, Bn,2) < +∞ and

+∞∫
0

∣∣(Bn,1 (r)−Bn,2 (r)) Jn
2

(λr)
∣∣ r n

2
−1dr < +∞

for all λ > 0.
Then

κ̃k;a (Φn,1, Φn,2) ≤
χ0 (Bn,1, Bn,2)

ak+1

and

κ̃k;a (Φn,1, Φn,2) ≤
akΓ
(

n+1
2

+ k
)

2
n−1

2 Γ
(

n
2

)√
π
·

a∫
0

|Bn,1 (r)− Bn,2 (r)| dr

r2k+2
+

+
Γ
(

n+1
2

+ k
)

2
n−1

2 an+1+kΓ
(

n
2

)√
π
·

+∞∫
a

rn−1 |Bn,1 (r)− Bn,2 (r)| dr

provided both integrals exist.

Proof.

κ̃k;a (Φn,1, Φn,2) =

=
1

2
n−2

2 Γ
(

n
2

) ·
∣∣∣∣∣∣

∞∫
0

∞∫
0

Bn,1(r)−Bn,2(r)

r
Jn

2
(λr) (λr)

n
2 λke−aλdrdλ

∣∣∣∣∣∣ .
Under the theorem assumption it is possible to exchange the order of

integration.
Since for Reν > −1

2
, a > 0, b > 0, k ∈ {0; 1}

+∞∫
0

Jν (bt) e−attν+kdt =
(2a)k(2b)νΓ

(
ν + k + 1

2

)
(a2 + b2)ν+k+ 1

2
√

π

(see, for example, the book by Watson (1945)), then

κ̃k;a (Φn,1, Φn,2) =
(2a)k · 2Γ

(
n+1

2
+ k
)

Γ
(

n
2

)√
π

·

∣∣∣∣∣∣
+∞∫
0

(Bn,1(r)− Bn,2(r)) rn−1dr

(a2 + r2)
n+1

2
+k

∣∣∣∣∣∣ ≤

≤
(2a)k · 2Γ

(
n+1

2
+ k
)

Γ
(

n
2

)√
π

·
+∞∫
0

rn−1dr

(a2 + r2)
n+1

2
+k
· χ0 (Bn,1, Bn,2) .



270 ANDRIY Ya. OLENKO AND DMYTRO V. PAVLOV

It is easy to show that for a > 0, n ∈ N, k ∈ {0; 1}

+∞∫
0

rn−1dr

(a2 + r2)
n+1

2
+k

=
1

a2k+1

π
2∫

0

sinn−1 (t) cos2k (t) dt =

=
1

a2k+1
· (n− 2)!!

(n− 1 + 2k)!!
·
(
12N (n) +

π

2
· 12N−1 (n)

)
,

Γ
(

n+1
2

+ k
)

Γ
(

n
2

) · (n− 2)!!

(n− 1 + 2k)!!
=

√
π

2
· 12N (n) + 1√

π
· 12N−1 (n)

2k
,

where N is the set of all positive integer numbers and 1A(x) is the indicator
function of the set A.

Hence, we get the first inequality of the theorem:

κ̃k;a (Φn,1, Φn,2) ≤
χ0 (Bn,1, Bn,2)

ak+1
.

Finally,

κ̃k;a (Φn,1, Φn,2) =
(2a)k · 2Γ

(
n+1

2
+ k
)

Γ
(

n
2

)√
π

·

∣∣∣∣∣∣
+∞∫
0

(Bn,1(r)− Bn,2(r)) rn−1dr

(a2 + r2)
n+1

2
+k

∣∣∣∣∣∣ ≤

≤
(2a)k · 2Γ

(
n+1

2
+ k
)

Γ
(

n
2

)√
π

 1

2
n+1

2
+k

a∫
0

|Bn,1(r)− Bn,2(r)| dr

r2k+2
+

+
1

(2a2)
n+1

2
+k

+∞∫
a

|Bn,1(r)− Bn,2(r)| rn−1dr


implies the second inequality of theorem.

3. Remarks

1. The following example illustrates that the result of theorem 2.4 cannot
be improved by the constant reduction.

Let Φn,1(c, λ) = 1λ>c, Φn,2(ε, λ) = 1λ>ε , where ε ∈ (0; c].

Then Bn,1(c, t) = 2
n−2

2 Γ
(

n
2

) J n−2
2

(ct)

(ct)
n−2

2
, Bn,2(ε, t) = 2

n−2
2 Γ
(

n
2

) J n−2
2

(εt)

(εt)
n−2

2
.

By theorem 2.4

2
n−2

2 Γ
(n

2

) ∣∣∣∣∣Jn−2
2

(ct)

(ct)
n−2

2

−
Jn−2

2
(εt)

(εt)
n−2

2

∣∣∣∣∣ ≤
∣∣∣∣∣2n−2

2 Γ
(n

2

) Jn−2
2

(ct)

(ct)
n−2

2

− 1

∣∣∣∣∣
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for all t ∈ [0; 1] .
The left side is continuous with respect to ε. Let us make ε going to

0. We get then the identity of the right and left sides, in other words, the
inequality becomes an equality. We cannot get ε = 0 because the theorem
requires the condition Φn,1(c, 0+) = Φn,2(ε, 0+). Finally, it is obvious that
the only a ∈ R, for which for all δ > 0 there exists ε > 0 such that

0 <

∣∣∣∣∣2n−2
2 Γ
(n

2

) Jn−2
2

(ct)

(ct)
n−2

2

− 1

∣∣∣∣∣− a · |Bn,1(c, t)− Bn,2(ε, t)| < δ,

is a = 1.
Therefore, it is clearly seen that it is impossible to improve the result of

the theorem 2.4 by the reduction of the constant.

2. Let us make two remarks to the theorem 2.6.

a) If there exists such H > a that (i) holds, then

0 ≤ κ̃k;a (Φn,1, Φn,2) ≤

≤
Γ
(

n+1
2

+ k
)

2
n−1

2 an+1+kΓ
(

n
2

)√
π
·

+∞∫
H

rn−1 |Bn,1 (r)− Bn,2 (r)| dr → 0,

if H → +∞.

b) By the Stirling formula for all n, k there exist θ1(n, k), θ2(n, k) ∈ (0; 1)
such that

Γ
(

n+1
2

+ k
)

2
n−1

2 Γ
(

n
2

) =

√
2π
(

n+1
2

+ k
)n

2
+k

e−
n+1

2
−ke

θ1(n,k)
6(n+1)+12k

2
n−1

2

√
2π
(

n
2

)n−1
2 e−

n
2 e

θ2(n,k)
6n

=

=

(
n+1

2
+ k
)k+ 1

2

2
n−1

2

·
(
1 + 2k+1

n

)n−1
2

ek+ 1
2

· e
θ1(n,k)

6(n+1)+12k
− θ2(n,k)

6n → 0,

if n → +∞ .
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1. Introduction

In the beginning of the nineties years in connection with the transforma-
tion processes in social, political and economical life in Ukraine there were
arisen the problems of corresponding transformation in educational system.

The Department of Probability and Mathematical Statistics of Kyiv Na-
tional Taras Shevchenko University (head of Department prof.M.Yadrenko),
Economic and Mathematical Center (president O.Ponomarenko), the Fac-
ulty of Mechanics and Mathematics of Kyiv National University (dean prof.
M.Perestyuk) made the big work for implementation and development a new
educational direction for Higher Educational System of Ukraine ”Statistics”
together with other mathematical directions as Pure Mathematics and Ap-
plied Mathematics. This new direction is oriented mainly on Economics,
Financial and Actuarial Applications of statistical, stochastic and mathe-
matical methods and models.

In April 1996 the Council of Kyiv National University decided to intro-
duce since 1996/1997 academic year at Faculty of Mechanics and Mathemat-
ics new educational direction ”Statistics” as third mathematical direction
in education and to begin training the specialists (on three levels of Bach-
elors, Specialists and Masters) in framework of such educational direction
which includes three new economic-statistical specializations:

273



274 OLEKSANDR PONOMARENKO

(i) Mathematical Economics and Econometrics;

(ii) Financial and Actuarial Mathematics;

(iii) Applied Statistics.

The first version of educational programmes for these specializations
was worked out by Economic and Mathematical Center in 1994 and the last
(second) version (only for of so-called normative courses which are the same
for all statistical specializations) was created in 1998. This last version has
some non-principal changes and improvements.

The important role in creation of new statistical specializations at Kyiv
National University played the project ”Mathematical Economics” (1994-
1995) which was supported by US AID through ”The EuroAsia Founda-
tion”. Realization of this project gave the possibilities to write and pub-
lish first Ukrainian textbooks on Modern Microeconomic and Macroeco-
nomic Theories, Mathematical Economics, Theory of Social Choice, Applied
Statistics, Econometrics, Decision Making in Economics and Management,
Actuarial and Financial Mathematics ([1]-[3]). This project also gave possi-
bility to begin organizing of the library of economic and financial literature
at the Department of Probability and Statistics of Kyiv National University.

The very important role in further development and updating of curric-
ula for new statistical specializations in Kyiv National University (especially
in respect of creation of systems of special professionally- oriented courses)
plays the project JEP-10353-97 ”Statistical Aspect of Economics” in frame-
work of the TEMPUS-TACIS Programme of European Union.

2. Outline of Programme

The programme presented below follows the general structure of training
for higher school in Ukraine. It is supposed that the Master education
programme for specialization ”Mathematical Economics and Econometrics”
is a special part of a general programme for speciality ”Statistics”. The last
programme include three levels of training. The first level is a level of Junior
Specialist of Statistics (first two years studies). The second level is a level of
Bachelor of Statistics (else two years of studies). Such level include system
of obligatory normative courses for all statistical specializations and system
of special courses, which is different for different specializations. The third
level is a level of Master of Statistics or Specialist of Statistics (else one year
of study). The Master Level deals with narrow specialization of students
with high educational rating. The other students with Bachelor degree deals
with Specialist Level with respect to narrow specialization also.

The structure of first educational concentre (level of Junior Specialist of
Statistics) is the following.
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I. Basic Mathematical Courses (which are the same as for speciality
”Pure Mathematics”): Mathematical Analysis I and II (840 hours); Analyt-
ical Geometry (108 hours); Linear Algebra (289 hours); Common Algebra
and Number Theory (157 hours); Differential Equations (210 hours); Infor-
matics and Programming (420 hours);

II. Standard Cycle of Humanitarian Disciplines (for all Ukrainian
Universities): History of Ukraine (108 hours); History of Ukrainian and
World Culture (156 hours); Foreign Language (420 hours); Sport training
(244 hours).

III. Professionally-oriented normative courses (which are the sa-
me for all statistical specializations): Basic Financial Theory (102 hours);
Foundation of Microeconomics and Macroeconomics (108 hours); Finan-
cial Analysis and Calculations (108 hours); Discrete Models in Probability
Theory and its Applications (102 hours).

The structure of second educational concentre (level of Bachelor of Sta-
tistics, 5-8 semesters) is the following.

I. Basic Mathematical Courses: (the same as for speciality ”Pure
Mathematics”): Theory of Measure and Integral (108 hours); Theory of
Probability (135 hours); Mathematical Statistics (102 hours); Mathematical
Logic (54 hours); Complex Analysis (210 hours); Functional Analysis (210
hours); Equations of Mathematical Physics (210 hours).

II. The Cycle of Social and Humanitarian Branches: Essentials of
State and Law (51 hours); Politology (81 hours); Management and Market-
ing (48 hours); Psychology (77 hours); History of Mathematics (54 hours);
Basic Ecology (48 hours).

III. Normative professionally-oriented courses: Additional Chap-
ters of Probability Theory (77 hours); Mathematical Statistics II (108 hours);
Theory of Stochastic Processes (102 hours); Mathematical Economics (153
hours); Methods of Economic and Financial Computations (108 hours); Ba-
sic Actuarial Mathematics (158 hours); Stochastic Financial Mathematics
(102 hours).

IV. Professionally-oriented special courses of specialization
”Mathematical Economics and Econometrics”: (Year 3) Methods
of Economic and Financial Statistics (54 hours); Essentials of Economet-
rics (51 hours); Principles of Book-keeping, Financial and Management Ac-
counting (51 hours); (Year 4) History of Economic and Statistical Thoughts
(54 hours); Basic Statistics of Stochastic Processes (54 hours); Nonstation-
ary and Nonlinear Time Series (51 hours); Computer Statistics (51 hours).

Structure of Master’s Level training of specialization ”Mathematical
Economics and Econometrics” (fifth year of study) is the following.

I. Cycle of Humanitarian Disciplines: Philosophic Problems of Nat-
ural Sciences (48 hours); Foreign Language (96 hours); Sociology (96 hours).

II. Normative professionally-oriented courses: Sampling Survey
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(48 hours); Stochastic Models in Management (96 hours); Nonsmooth Anal-
ysis and Optimization (96 hours).

III. Special professionally-oriented courses: Modern Statistical
Microeconomics (48 hours); Modern Macroeconomic Theory (48 hours);
Nonlinear Economic Dynamics (48 hours); Bayesian Methods in Economet-
rics (48 hours).

IV. Scientific seminars (96 hours).

V. Pedagogical and assistant practice (216 hours).

VI. Qualification thesis (324 hours).

At last time were created some new textbook and manuals for statistical
specializations and specialization on ”Mathematical Economics and Econo-
metrics” [4] - [7]. Part of them are connected with the project of Economic
and Mathematical Center ”Analytical and Statistical Models and Methods
for Social and Humanitarian Sciences”, which was supported by ”Renais-
sance International Foundation” [8]- [10].

In conclusion we give brief sketch of syllabuses for some main courses
of specialization in ”Mathematical Economics and Econometrics”. The de-
tailed syllabuses of all normative and special courses for all statistical spe-
cializations were published in special collection books [11] [12] and method-
ological investigation [13] edited by the author.

1. Mathematical Economics. The course intends to introduce basic con-
cepts and models of mathematical economics: Consumption Models, Theory
of Production Function, Theory of firm, Modeling of Markets and Market
Economy, Theory of General Economic Equilibrium, Models of Behavior
of Economic Agents under Uncertainty, Financial and Insurance Markets,
Theory of Economic Welfare and Cooperative Economic Decision, Statisti-
cal Leontief’s input-output Models, Dynamical Multi-branch Models, Mod-
els of Economic Growth, Economic-Ecological Models.

2. Essentials of Econometrics. The course intends to introduce basic
concepts and models of econometrics: Two-variable linear regression models
(estimation, hypothesis testing, applications), Multiple regression (estima-
tion and hypothesis testing); Functional Forms of Regression Models; Re-
gression of Dummy Explanatory Variables; Regression Analysis in Practice
(Multi-collinearity, heteroscedasticity), Autocorrelation, Model Selections:
Criteria and Tests; Elements of Nonlinear Regression and its Applications.

3. Modern Statistical Microeconomics. The course intends to intro-
duce basic practical problems of statistical microeconomics: Methodology of
Applications of Informational and Statistical Methods in Microeconomics,
Express Estimators for Microeconomics characteristics and Indexes, Modern
Statistical Methods of Analysis for Market Demand, Forecasting of Microe-
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conomic Indexes, Statistical Methods of Marketing Investigations, Analysis
of Dynamical Processes in Microeconomics, Statistical Estimation of Mi-
croeconomics Parameters based on Bounded Data, Simulation of Microeco-
nomic Indexes and Processes.
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1. Introduction

The problem is devoted to approximated evaluations of the ruin proba-
bility for insurance companies. In Classic Risk Model the ruin probability
can be directly calculated only for exponential distribution of the insurance
claims. Otherwise it is advisable to use approximated estimations of this
probability. In my work three of such approximations were used: these
are the De Vylder, the Beekman-Bowers and the diffusion approximations.
I estimated the ruin probability of 30 largest Ukrainian insurance compa-
nies applying mentioned approximations depending on initial funds of these
companies. For such evaluation it is also necessary to know the mean of
the insurance claims and relative safety loading of specific company. Com-
parison of these estimations makes it possible to draw a conclusion about
reliability of each insurance company.

2. Classical risk model

The values of payments, which are carried out by insurance company,
form the sequence of independent and identically distributed random vari-
ables (Yk, k ≥ 1) with the distribution function F (x ). We assume that
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F (0) = 0, i.e. risk sums are positive (Yk > 0). The expectation EYk = µ,
the variance DYk = σ2.

The insurance payment takes place when a company receives a claim.
Let us make assumptions about the coming of insurance claims:

1) the entrances of insurance claims on nonoverlapping time intervals
are independent random events;

2) the number of claims received on interval [t, t+h) depends on h and
is independent of t ;

3) the coming of at the least one claim on interval [t, t+h) happens with

probability αh + o (h), where α = const and lim
h→∞

o(h)
h

= 0;

4) the coming of more than one claim on interval [t, t+h) happens with
probability o (h).

Let Nt be the number of insurance claims received on [0, t) and

Pm (t) = P {Nt = m} . (1)

Under these assumptions the next theorem takes place.

Theorem 1. Random variable Nt has a Poisson distribution with intensity
αt, i.e.

Pm (t) = e−αt (α t)m

m!
, m = 0, 1, . . . . (2)

The proof of this theorem see for instance in [1].
Since Nt is a Poisson process with intensity αt it follows that ENt = α t.
Random process

St =

Nt∑
k=1

Yk (3)

expresses the sum of payments which are carried out by insuranse com-

pany on interval [0, t ] (we consider that
0∑

k=1

Yk = 0). So we have that the

expectation

ESt = ENtEYk = α tµ = αµ t . (4)

The profit of the company on interval [0, t ] equals to

Qt = ct− St, (5)

where c is the constant which defines intensity of entrance of insurance
premiums. The expectation of this profit is equal to

EQt = ct− αµ t = (c− αµ) t. (6)
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The relative safety loading ρ is defined as the ratio of company’s average
profit and average value of payments:

ρ =
EQt

ESt

=
c− αµ

αµ
=

c

αµ
− 1. (7)

The total capital of the company at moment t equals to

Ut = u + ct− St, (8)

where u is the initial capital of the company.
Let us consider the question about the ruin probability ψ (u) for the

insurance company which has the initial capital u on time interval [0, +∞).
Than ψ (u) = P{Ut < 0 for some value t > 0}.

Here we have the important result which will be used later on.

Theorem 2. Let the insurance payments be exponentially distributed vari-
ables with the average µ, i.e. density function is

f (x, a) =

{
ae−ax, x ≥ 0,
0, x < 0,

(9)

at that a = 1
µ
. Then the ruin probability ψ (u) for initial capital u is equal

to

ψ (u) =

{
1

1+ρ
e−

ρu
(1+ρ)µ , if c > αµ,

1, if c ≤ αµ.
(10)

3. Asymptotic behavior of the ruin probability when u → +∞

Let us analyse asymptotic behavior of the ruin probability ψ (u) on in-
terval [0, +∞) for initial capital u when u → +∞.

Put

µ =
α

c

+∞∫
0

yeRy [1− F (y)] dy. (11)

Then the next theorem exists.

Theorem 3. Let αµ
c

< 1, equation

α

c

+∞∫
0

eRy [1− F (y)] dy = 1 (12)

has a root R and µ < +∞. Then if u → +∞
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ψ (u) ~
ρ

(1 + ρ)Rµ
e−Ru. (13)

Now we will examine the existence conditions for the root of equation
(12). Let

h (r) =

+∞∫
0

erzdF (z)− 1. (14)

Let us make a supposition. There exists such value of r∞ > 0 that
h (r) ↑ +∞, when r ↑ r∞ (it is allowed that r∞ = +∞).

Under this supposition the equation (14) may be written as

h (R) =
c

α
R. (15)

Lemma 1. On these assumptions the equation (15) has the single root R,
at that R < r∞.

Thus, the theorem 3 may be formulated in such a way.

Theorem 4. (Cramer-Lundberg Theorem). Under the assumptions about
h(r) and if u → +∞

ψ (u) ~
ρµ

h′ (R)− c
α

e−Ru, (16)

where R is the root of equation (15).

The right-hand member of (16) is called the Cramer-Lundberg approx-
imation.

Notice that in the case of exponentially distributed claims the Cramer-
Lundberg approximation is exact, see [1].

Let us assume that c > αµ (if c ≤ αµ, then company’s ruin takes place
with probability 1).

We can point at upper estimate for probability ψ (u) which is valid for
any u > 0.

Theorem 5. Let equation (12) have a positive root R. Then for any u > 0
the inequation (17) holds true:

ψ (u) ≤ e−Ry. (17)

The inequality (17) is called the Cramer-Lundberg inequality, and num-
ber R is the Lundberg coefficient.
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4. Some approximations for the ruin probability in classical

risk model

In practice it is rather difficult to calculate the exact values of the ruin
probability, unless the payments are exponentially distributed (in this case
accurate formula (10) for ψ (u) applies).

So it is natural to use approximations for ψ (u). Three of such approxi-
mations are given below.
4.1. The Beekman-Bowers approximation for ψ (u).

Let

H (u) = P

{
inf
t≥0

Q (t) < −u/ inf
t≥0

Q (t) < 0

}
(18)

Then

H (u) = 1− (1 + ρ) ψ (u) , (19)

whence

ψ (u) =
1

1 + ρ
[1−H (u)] . (20)

Let µH and σ2
H are the expectation and the variance of the distribution

H (u). The idea of the approximate formula lies in replacement of H (u) in
(20) for Gamma distribution G(u), the first two moments of which coincide
with the moments of H (u).

Then the approximated formula for ψ (u) is

ψBB (u) =
1

1 + ρ
[1−G (u)] . (21)

Denote the k -th moment of the distribution function F (y) of payments
as µk, i.e.

µk = EY k
1 , k = 1, 2, 3. (22)

Using the Laplace-Stieltjes transformation of function F (y) we can de-
fine variables µH and σ2

H with the moments of function F (y), see [1]:

µH =
µ2 (1 + ρ)

2ρµ1

(23)

σ2
H =

µ2 (1 + ρ)

2ρµ1

[
2

3

µ3

µ2
+

µ2 (1 + ρ)

2ρµ1

]
. (24)

An algorithm to apply formula (21) follows below:
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1) we find first three moments µ1, µ2, µ3 of the distribution function
F (y);

2) we calculate the value of the ruin probability ψ (u) by formula (21)
using the Gamma-distribution table for the expectation µH and the variance
σ2

H .

When the payments are exponentially distributed, we can determine
that the approximate formula (21) is accurate.

4.2. The De Vylder approximation. We approximate the process Q(t)
in general Classical Risk Model by the process Q̃ (t) so that the payments
of process Q̃ (t) have exponential distribution and

EQk (t) = EQ̃k (t) fork = 1, 2, 3. (25)

Knowing the exact formula for the ruin probability ψDV (u), we take
ψDV (u) in process Q̃ (t) for the ruin probability ψ (u).

The risk process Q̃ (t) is determined by the three parameters (α̃, c̃, µ̃) or
(α̃, ρ̃, µ̃), taking into account that ρ̃ = c̃

α̃µ̃
− 1.

Then the values of

µ̃ =
µ3

3µ2
, ρ̃ =

2µ1µ3

3µ2
2

ρ, α̃ =
9µ3

2

2µ2
2

α. (26)

Thus the value of the ruin probability

ψ (u) ≡ ψDV (u) =
1

1 + ρ̃
a− uρ̃

µ̃(1+ρ̃) . (27)

By construction of the approximation it follows that ψDV (u) = ψ (u) in
the case of exponentially distributed claims.

4.3. The diffusion approximation. Let D be space of right continuous
functions on [0, ∞) and limit on left existing (space of functions without
nonremovable discontinuities).

Definition. Consecution X n converges distributionwise to the random pro-

cess X (we will write: Xn
d−→ X) if for any bounded and continuous func-

tion f on space D

Ef (Xn) → Ef (X) . (28)

Using the idea of convergence distributionwise, such diffusion approxi-
mation for ψ (u) can be determined as:

ψ (u) ~ψD(u) = e
−uρ 2µ

µ2+σ2 . (29)
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5. Comparison of the approximations

As it was shown above, under certain assumptions there exists number
R (the Lundberg coefficient) such that ψ (u) ≤ e−Ru.

In the case of the diffusion approximation (29) it is natural to consider

RD =
2ρµ

µ2 + σ2
=

2µ1

µ2

ρ, (30)

as the diffusion approximation of R.
In the same way for the De Vylder approximation (27) we put

RDV =
ρ̃

µ̃ (1 + ρ̃)
=

2µ1

µ2 + 2µ1µ3

3µ2

ρ (31)

and also consider RDV as the approximation of the Lundberg coefficient.
The Beekman-Bowers approximation (21) is not exponential but it is

possible to define

RBB =
µB

σ2
B

=
2µ1

µ2 +
(

4µ1µ3

3µ2
− 1
)

ρ
ρ (32)

For each of the three ruin probability approximations we consider the
relative error of the approximation. For example,

εD (u) =
ψD (u)− ψ (u)

ψ (u)
(33)

is the relative error of the diffusion approximation.
Let us consider an example.

Example 1.
The payments are Gamma-distributed with the mean µ = 1 and the variance
σ2 =100. We assume that ρ = 10%. Then µ1 = 1, µ2 = 101, µ3 = 20301.
Exact values of ψ (u) are given in [4]. The values of ψ (u) for different values
of u and the relative errors for all three approximations are listed below.
Also notice that R = 0,0017450, RBB = 0,0016992, RD = 0,0019802, RDV

= 0,0017483.

u ψ (u) εD εBB εDV

300 0,52114 5,9% -0,1% 0,3%
600 0,30867 -1,3% -0,8% 0,2%
900 0,18287 -8,0% -0,9% 0,1%
1200 0,10834 -14,3% -0,7% 0,0%
1500 0,06418 -20,1% -0,2% -0,01%
1800 0,03803 -25,5% 0,3% -0,2%
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2100 0,02253 -30,6% 1,0% -0,3%
2400 0,01335 -35,4% 1,8% -0,4%
2700 0,00791 -39,8% 2,7% -0,5%
3000 0,00468 -43,8% 3,6% -0,5%

From the table we can see that the De Vylder approximation is the best
of the three approximations for the given example. The examination of other
practical cases also confirms advantages of the De Vylder approximation.

6. Practical application of the ruin probability

approximations for Ukrainian insurance market

In applications of classical risk model the intensity α and the distribution
function F (y) (or its moments µ1, µ2, µ3) are the parameters of the model,
ρ and u being the variables that influence the degree of risk. If the ruin
probability p is determined, it is natural to choose ρ and u so that ψ (u)
= p. In practice ψ (u) is replaced by one of the approximations. Using the
diffusion approximation we get

u =
−lnp

RD
, (34)

and applying the De Vylder approximation we have

u =
−lnp− ln (1 + ρ̃)

RDV
. (35)

It is slightly more difficult to define the necessary value of the initial
capital u, using the Beekman-Bowers approximation. In that case it is
equal to

u = Ginv (1− p (1 + ρ)) , (36)

where Ginv is the inverse function of Gamma distribution with the param-
eters µH and σ2

H , which are defined from the equations (23) and (24). The
expression (1− p (1 + ρ)) is the argument of this function.

As it was shown above, for the estimation of the ruin probability it is
necessary to know the distribution function of the payments or its first three
moments. Certainly, for each insurance company we can construct only the
sum polygon, thereto we should have a sample of the insurance payments.

In contrast to commercial banks the information about insurance
companies’ activities is not available in Ukraine. Granting this, during
the calculation of the ruin probability approximations we made certain
assumptions about the distribution function and its parameters.
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6.1. The exponential distribution. First we assume that the insurance
payments are exponentially distributed with the density function (9). Then
if random variable ς has the exponential distribution, its expectation Eς = 1

α

and the variance Dς = 1
α2 .

As it was shown in item 1, in the case of exponentially distributed pay-
ments we can define explicit function (10) for ψ (u). For calculation of ψ (u)
we should know only the mean value of payments µ and relative safety load-
ing ρ. The results of calculations of the ruin probability ψ (u) for 30 largest
Ukrainian insurance companies are given in table 1. At that the value of
the initial capital was defined by the next formula:

u = initialfund + insurancefunds. (37)

Starting from the rough mean of an insurance payment and the value of
relative safety loading, the ruin probability was calculated for the mean of
payment µ = 500, 1000, 1500 and 2000 UAH (Ukrainian hryvna) and the
relative safety loading ρ = 30%, 40% and 50% (12 combinations of values
in all).

Obviously, on increase of the mean of payments µ the ruin probability
ψ (u) increases and on increase of the relative safety loading ρ it decreases.
For example, the initial capital u of the insurance company ”UASK ASKA”
makes up 10975,2 thousand of UAH. Then for ρ = 30% and µ = 1000 UAH
the ruin probability ψ (u) = 6,11%. If µ rises to 1500 UAH, ψ (u) increases
to 14,22%; if µ = 1000 UAH and ρ rises to 40%, then the ruin probability
ψ (u) reduces to 3,10%.

If an insurance company wants to get the value of the ruin probability
for values µ and ρ, which are not stated in the table (e.g. µ = 1200 UAH
and ρ = 35%), the electronic table developed in Microsoft Excel gives the
possibility to obtain the necessary results.

Under the values of ψ (u) for 30 companies for each of the 12 combina-
tions of average payments and relative safety loadings there is the minimum
initial capital (in thousands of UAH), which is necessary for insurance com-
pany in order that the ruin probability does not exceed 5% or 1%. These
items are calculated using the next formula:

u = −(1 + ρ)µ

ρ
ln (p (1 + ρ)) , (38)

where p is the required ruin probability (5% or 1%). This formula is inverse
to the formula (10). Knowing the value of the minimum initial capital
defined by (38) the insurance company can determine the lowest level of this
item necessary to hold the ruin probability on the safe level if ψ (u) was less
than the required value. Also the company can define the necessary increase
of the initial capital or the relative safety loading in order to guarantee the
safe level of ψ (u) if the value of ψ (u) was more than this safe level. For
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example, the initial capital u of the insurance company ”Avante” amounts
4844,3 thousand of UAH. Then for ρ = 30% and µ = 500 UAH the ruin
probability ψ (u) = 8,22%. In order to obtain the ruin probability ψ (u)
= 5% the company should increase its initial capital to 5922,3 thousand of
UAH or it should rise the safety loading ρ to 40% (in this case the value of
ψ (u) becomes equal to 4,48%).

We should note that using the electronic table a company can compute
the minimum initial capital for any other level of the ruin probability (for
instance, 3%, 10% etc.).

6.2. Gamma distribution
Let us consider a situation of non-exponentially distributed insurance

payments. Gamma distribution is one of the most popular distributions.
The density function of Gamma distribution is

f (x, α, β) =

{
1

βαΓ(α)
xα−1e−

x
β , x ≥ 0,

0, x < 0,
(39)

at that the expectation of the random variable ς which has Gamma distri-
bution (39) is equal to Eς = αβ and its variance Dς = αβ2.

Notice that when α = 1 the distribution (39) is exponential with param-
eter 1

β
and when β = 1 the distribution (39) is called the standard Gamma

distribution. The density function of the standard Gamma distribution is

f (x, α) =

{
xα−1e−x

Γ(α)
, x ≥ 0,

0, x < 0,
(40)

In this case Eς = Dς = α.
As it was stated above, in practice it is impossible to get the exact

value of the ruin probability for non-exponentially distributed payments.
That is why we use three ruin probability approximations: the Beekman-
Bowers, the De Vylder and the diffusion approximation. The algorithm of
calculating these approximations and formulas (21), (27), (29) applied for
calculation of estimates are given in item 4.

The values of the three ruin probability approximations for 30 largest
Ukrainian insurance companies in case of standard Gamma distributed pay-
ments are listed in table 2. The relative safety loading equals 30%, and the
mean of payments µ = 500, 1000, 1500, 2000 UAH. As it was shown above
the standard Gamma distribution has only one parameter α, which is equal
to the mean of payments, so the data about the safety loading and the mean
of payments are enough to compute all the three approximations.

The same way as in the situation of exponential distribution under the
values of ψ (u) there is the minimum initial capital (in thousands of UAH),
which is necessary for insurance company in order that the ruin probability
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does not exceed 5% or 1%. These items were calculated with the use of all
the three approximations by the formulas (34), (35), (36).

Analysing the received results we can note that in all cases three ap-
proximations give almost the same results if the ruin probability is close to
20%. As it was stated above the De Vylder approximation works the best
as a rule. Also the company may take into consideration the approximation
which gives the largest value of the ruin probability (i.e. the worst situation
for the insurance company).

At last we should note that if it is necessary to use some other (not expo-
nential and not Gamma) distribution function of payments while calculating
the ruin probabilities, then it is enough to define the first three moments of
this function and to change corresponding formulas in the electronic table.
All ruin probabilities will be automatically recalculated according to the
new data.
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OPTAN — A PILOT PROGRAM SYSTEM
FOR ANALYSIS OF OPTIONS12

We present a project, which intend the elaboration of a pilot program
system OptAn (OPTion ANalyzer) for analysis of options of differ-
ent types. The system is based on advanced optimizing Monte Carlo
methods. It works under Microsoft Windows 95/98/ME/NT/2000.
The structure of the system let one flexibly modify and extend its
algorithmic contents. The Option Analyzer intends to provide a flex-
ible tool for research studies related to options market and analysis
of options: (a) solving of wide range of problems of option analy-
sis, including optimal execution, re-selling, evaluation and forecast
of American, European and some exotic options; (b) both automatic
and manual choice of models of the pricing process, including clas-
sical geometrical Brownian motion, geometrical fractional Brown-
ian motion, parametric and nonparametric dynamical models and
stochastic automata; (c) comparison of several different options; (d)
extended presentation of output information including optimal stop-
ping strategies, dynamical histograms of expected profit and other
profit-risk parameters.

2000 AMS Mathematics Subject Classifications. 62P05.

Key words and phrases. Option, Monte-Carlo method, Program
system.

1. Introduction

The elaboration of a pilot program system OptAn (OPTion ANalyzer)
is a project focused on the development of new optimizing simulation algo-
rithms and programs for analysis of options.

1The paper represents a part of an invited lecture.
2This work is supported in part by the project “Stochastic modelling of insurance and

finance processes and systems” funded by the Knowledge Foundation.
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The principle problem, which exists in the area of optimal option pric-
ing, is that mathematical models of pricing processes used nowadays in op-
tions calculations, are still too simple in comparison with the corresponding
real-life pricing processes. The present project is based on the alterna-
tive (to the traditional analytical one) optimising Monte Carlo (simulation)
approach based on extensive multi-step simulation-optimisation computer
procedures. The principle advantage of this approach is the possibility to
use more complicated and advanced models of pricing processes in the op-
tion analysis. Our aim is also to demonstrate a great potential of Monte
Carlo optimising methods in problems of optimal option pricing as uni-
versal methods of global statistical analysis including selection of models,
estimation of parameters, simulation, optimisation and visual presentation
of data.

The program system OptAn is a pilot program system oriented to two
categories of users, first researchers and second students of specialities in
mathematical economics, analytical finance and similar specialities. It can
also be useful for the individual investors, which would like to perform a
sophisticated analysis of real or potential options.

At this stage we do not intend to develop a commercial program sys-
tem. However, we search for partners from financial industry that would be
interested to support the development of the project in this direction.

In Section 2 we describe the principles of design of OptAn program
system. Section 3 is devoted to the description of three main problems,
which can be solved by the existing variant of the system. In Section 4 we
describe in brief the components, which are not ready now, but are planned
to be added to the system in the nearest future.

We would like also to refer to papers by Boyle, Broadie and Glasser-
man (1997), Broadie and Glasserman (1997), Broadie, Detemple, Ghysels
and Torres (2000a, b) and Broadie and Glasserman (2000), where different
aspects of applications of Monte Carlo methods to the problem of option
pricing are considered.

2. Principles of design of the OptAn program system

We follow to the approach, that the interface of the program should be
similar, as the most popular programs like Microsoft Word have, that is:
multiple document interface (Figure 12).

One can see, that our program has all the elements of the standard
Windows interface, i.e., toolbar, status bar, menu bar, common controls
etc. The multi-document interface allows the user to work with one window
while the system makes long calculations in another one.

The first group box contains wide range of problems of option analysis,
which can be solved with the help of the program. They will be described
in details later.
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The second group box contains possible types of options, with which
the program can work. We plan to investigate not only standard options of
American and European type, but also some exotic options.

The third group box simulates the future Internet interface of our pro-
gram. With the help of it the user will have a possibility to choose a
company, a type of historical data, i.e. share prices or options prices re-
lated to this company. Then the program should generate a query to the
database located somewhere in the Internet, obtain the corresponding data
and represent it to the user in both table and graphical forms. Later these
data will be used as an input for advanced optimising Monte Carlo methods
calculating options.

The fourth and fifth group boxes are intended for more experienced
users. The fourth group box allows them to choose a model of the pricing
process, with the help of which the options will be calculated. In future this
list will be essentially extended.

The fifth group box will allow the users to select the model of a pricing
process, to check goodness of a fit test for the chosen model and to estimate
parameters of a model.

3. Main problems

Three main problems can be solved by the existing variant of the system.
These task are: (a) access to the current option’s data through the Internet;
(b) solving the problem of optimal execution of the option of American type;
(c) forecast of the option and share prices.

The first problem, the decision of which is already realised in the pro-
gram, is the access to the current option’s data through the Internet. The
user should check the radio button called “Viewing” (Figure 12) and press
Go button. The result is shown on Figure 13.

The access to the current option’s data is realised as the very first prob-
lem in the list. In this case the user can choose an Internet site from the
list (Figure 13) and analyze options data containing inside.

The second problem is the optimal execution of the option of American
type. The user should check the radio button called “Execution” (Figure 14)
and press Go button. In this case the previously written program “Optimal
pricing” is called.

The detailed description of this program was given in Silvestrov, Ga-
lochkin and Sibirtsev (1999). In particular, this program has a module for
estimation of threshold levels for optimal stopping strategies. The output
data of this module are represented in a graphical form. The typical exam-
ple of output picture is given in Figure 15 (upper window, the differences
between the values of optimal threshold levels and the striking price are
displayed).
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The module for estimation of basic option characteristics let estimate
and output the following characteristics of options (a) expected profit for
optimal stopping strategy (buyer’s income); (b) standard deviation, min-
imum and maximum of profit for optimal stopping strategy, quotient of
expected profit and standard deviation, probability of realizing of the op-
tion; (c) profit histogram for optimal stopping strategies, (d) probabilities
that the profit for optimal stopping strategies belongs to some given inter-
val. The typical example of output picture is also given in Figure 16 (lower
window).

The third problem is the forecast of option and share prices. The user
should check the radio button called “Forecast” (Figure 16). After that the
first list of the group box “Shares data” becomes enabled. It simulates the
future access to the Internet database, which should contain historical data
about options up to today.

After choosing of a database the second list of the group box “Shares
data” becomes enabled. It simulates the choice of company, for which the
forecast of option and share prices should be done. After choosing of a
company the Monte Carlo simulation will start, and the progress control
“Calculation progress” will indicate the process of calculations.

After finishing of the Monte Carlo simulations the user should press Go
button. A window containing the results of simulation will appear (Fig-
ure 16). The line denoting historical data is placed on the left hand side
from the vertical axis. The digits on the horizontal axis denote day numbers
(today’s number is equal to 0). The lines denoting quantiles of the price
distribution are placed on the right hand side from the vertical axis. The
denote levels corresponding to 10%, 25%, 50%, 75%, and 90% of the dis-
tribution’s content. There exists also a line representing the average. Note
that “today” can be any fixed date in historical data array. In this case
a real realization of pricing process can be also drawn and compared with
dynamic histogram.

The user can right-click in the area of quantiles. In this case a local
menu will appear (Figure 16). One of the items in the menu is: building
the histogram of the distribution of a price. The number of a day depends
on the current position of a mouse cursor. In our case the user calls a
histogram of the seventh day.

Calling the histogram can be repeated. For example, Figure 17 shows
the case, when the user called histograms for both seventh and thirtieth
days. The columns corresponds to the histogram, the line corresponds to
the theoretical log-normal distribution of prices. One can see, that the more
late histogram is wider than more early one.

4. The development of the program system

One of the important task from the programmer’s point of view is to
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realise a connection through the Internet with database, which contains
historical share and option prices as well as provide daily updating of such
prices. At the moment, this problem is solved in principle, and is in the
process of practical realisation.

The historical data are used in the system for estimation of parameters
of the corresponding dynamical models of pricing processes. After that
artificial trajectories of the corresponding pricing processes are generated
and used for the prediction of prices, finding optimal strategies, etc.

At present time, the following models of discrete time pricing processes
are implemented in the OptAn program system: geometrical random walk
with multiplicative log-normal increments, which is a discrete time ana-
logue of classical model of geometrical Brownian motion, similar model with
Bernoullian increments and additive analogues of these models.

Also a couple of automaton models of a pricing process is realised. These
models show very promising results, when appliyng to some real pricing
data. The automaton models are based on approximation of pricing pro-
cesses by a geometrical random walk controlled by a Markov chain. This
automaton use historical price data by accumulating (as a current state
of the controlling Markov chain) information about appearance of special
serial events in the realisation of pricing processes. As far as distributions
of multiplicative increments are concerned, they are smoothed empirical
distributions of increments (constructed with the use of sub-samples of in-
crements corresponding to different states of the automaton).

In the simplest case of a trivial automaton with one state the distribu-
tion of the increment is a smoothed variant of the empirical distribution
constructed from the sample of historical multiplicative increments of the
corresponding pricing process.

The list of models is planned to be essentially extended. Some paramet-
rical variants of automaton models will be included. Another interesting
model for a pricing process, which is planned to be implemented is a frac-
tional Brownian motion (see Cavler, Fisher and Mandelbrot (1997)).

One of the most interesting task for the further development of the
OptAn program system is to implement algorithms of evaluation and re-
selling of the option of European type. The reselling option problem do
requires the development of the model which describes dynamics of devi-
ations of market option prices of theoretical Black-Sholes prices. We have
been elaborating such models.

Also the list of option types will be essentially extended. It will include
variants of American type options with various payoff functions and various
exotic options. We would like to refer here to Jönsson (2001), where results
related to the development of the project in this direction, are presented.

The possibility to use different models of pricing processes for option
analysis causes appearance of an additional problem of a model selection
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(the fifth group box on Figure 12). Statistical tests connected to the choice
of a model and various goodness of fit tests will be implemented in the
system. Any good Windows program should contain print subsystem, which
prints the results of calculations. Such a subsystem must be added to the
program system.

A lot of users never read documentation, but prefer to read a help file.
The system already contains help subsystem, but it must be extended. A
written documentation in PDF format with a detailed description of a pro-
gram should also be prepared.

The Monte Carlo optimising methods, which is the scientific base for
the development of OptAn program system can be also effectively used for
portfolio analysis. The transformation of the system in the effective tool for
analysis of multi-variate share-option portfolios will be the next step in the
development of the project.
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Figure 12: Multiple document interface

Figure 13: Current option’s data
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Figure 14: Estimation of threshold levels

Figure 15: Optimal execution of the option
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Figure 16: Forecast of option and share prices

Figure 17: Comparison of histograms
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STATISTICAL INFERENCE IN SAMPLING
THEORY 12

In this paper a stochastic representation of survey data is presented
allowing to handle them along classical statistical traditions. The
man-made randomization law, the sampling design, is given by a
discrete multivariate disribution. The design-based, model-based
and model-design-based finite population inference under with- and
without-replacement sampling designs are covered. A very general
variance formula of the estimator of the sum of population means is
derived. The framework is developed to handle sampling and resam-
pling methods jointly. The keypoint in this is the two-phase sampling
design expressed by multivariate distributions. The random selection
variables of the first phase are explicitly given in the second-phase
design.

2000 Mathematics Subject Classifications. 62D05, 62E15, 62F10,
62H10.

Keywords and phrases. Finite population, random survey data,
model-design-based inference, multivariate Bernoulli and multi-
nomial designs, two-phase sampling, resampling, bootstrap.

1. Introduction

Classical inference theory is based on the distributional assumptions of
the sample. Usually, it is assumed that elements of the sample are i.i.d.
random variables − generated independently from the population distribu-
tion of the study variable. If the independence assumption is violated then,
often, a random process (time series, Markov chain etc.) can be assumed
for the observations. Thus, the observations are viewed as random variables
with their randomness described by the assumptions on the data generation

1Invited lecture.
2This work was supported by the grant No. 3939 of the Estonian Science Foundation

and the grant No. 2461/2000(381/N20) of the Visby Programme of the Swedish Institute.
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process. These assumptions are the building blocks for theoretical deriva-
tions of various inference matters in classical statistics.

In the finite population sampling theory a special kind of data genera-
tion process has appeared − the man-made randomization which according
to some probability mechanism, called sampling design, selects observa-
tions from the population. Until recently, the man-made sampling process
was not expressed in the observations in a way which would have allowed
to handle survey data along classical statistical traditions. Therefore, its
own inference theory has been developed for the finite population statistics.
Through the history it has been developing separately in several different
branches (forming e.g. the design-based, model-based and model-design-
based inference, the with- and without-replacement inference, etc.), without
general unifying approach being available. Different approaches in the finite
population inference have been systematically covered by Cassel, Särndal
and Wretman (1977).

In the first part of this paper a stochastic representation of survey data is
presented in which two random processes − the process generating values of
the study variable(s) in the population and the process randomly selecting
some of these values into a sample − are explicitly given in the observations.
The idea was put forward in Traat (1997). In Traat and Meister (1998) it
was shown that the elements of the classical estimation theory (the methods
of moments and least squares) can be easily applied to the random survey
data defined in the proposed way. The material of the first part of the paper
was delivered in a lecture during the 52nd Session of the ISI in Helsinki,
summarized in Traat and Meister (1999). The same idea was independently
used, but only for without-replacement sampling designs, in Molina, Smith
and Sugden (1999) who have made further developments in the estimation
theory on survey data. Using the unified approach on the sampling designs
as multivariate discrete distributions (Traat 1997, 2000, Traat, Bondesson
and Meister 2000) we are able to incorporate also with-replacement sampling
designs here. In this way, the presented stochastic representation of data,
and the inference built on data, will have wider statistical applicability,
satisfying also needs of the resampling theories.

In sections 3-4 the stochastic representation of survey data is presented
in a very general form which includes the design-based, model-based and
model-design-based special cases. The randomization process may be either
with or without replacement. Based on the distributional assumptions of
data generation processes the random feature of sampled data is described
and applied in the inference. An unbiased estimator of the sum of the pop-
ulation means is derived. It includes the classical Horvitz-Thompson (1952)
and Hansen-Hurwitz (1943) estimators as special cases. A very general vari-
ance formula of this estimator is derived and numerous important special
cases are drawn from it.

In section 5 a wider look on the sampling concept in statistics is given by
considering the finite population sampling and resampling like bootstrap,
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jacknife and subsampling (see Politis, Romano and Wolf 1999) in the same
framework. In fact, the probability mechanisms of the classical resampling
methods are the simpliest sampling designs of the sampling theory − sim-
ple random sampling with replacement for nonparametric bootstrap, simple
random sampling without replacement for jacknife and for what is called
subsampling procedure. In this section the two-phase sampling design is
defined in the language of multivariate distribution. A crucial component
in it is a probability function of the second-phase sampling design which
explicitly includes the first-phase selection variables. In the examples dif-
ferent sampling designs for the phases are combined with each other and
the probability law of the resulting selection mechanism is expressed.

2. Sampling design

Let us have a population U with labelled elements U = {1, 2, . . . , N}.
Let a random vector I = (I1, I2, . . . , IN) describe the sampling process in
U , so that its outcome k = (k1, k2, . . . , kN) identifies a sample by ki = 0
meaning that the unit i is not sampled, and ki > 0 meaning that the unit
i is sampled ki times. The multivariate distribution p(k) = Pr(I = k),
with k belonging to the space of nonnegative integers, is called sampling
design. This concept of the sampling design (Traat 1997, 2000) differs from
the traditional one, the latter being defined as a distribution on the sets or
ordered sets (Cassel, Särndal and Wretman 1977). The advantages of the
present definition appear in the possibility to consider both the with- and
without-replacement sampling designs jointly in a more general level, and in
the availability of the knowledge and tools worked out for the multivariate
distributions in mathematical statistics and probability theory.

In our approach all without-replacement sampling designs are certain
multivariate Bernoulli distributions with probability function in the most
general form being simply a list of probabilities on all possible points k,

p(k) = Pr(I = k), ki ∈ {0, 1},
∑

kp(k) = 1. (1)

Any first order marginal distribution of (1) is a Bernoulli distribution

Ii ∼ B(1, πi), (2)

where πi = E(Ii) = Pr(Ii = 1) is the inclusion probability of the unit i. The
random sample size is

∑
Ii and the realized sample size is

∑
ki. The fixed-

sample-size-n-design has
∑

Ii ≡ n. In this paper the summation index, if
not specified, runs from 1 to N .

The with-replacement sampling design with predetermined selection pro-
babilities pi,

∑
pi = 1, and n independent draws from U , is a multinomial

distribution

p(k) = Pr(I = k) =
n!∏N

i=1 ki!

N∏
i=1

pki
i , if |k| = n, (3)
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where |k| =
∑

ki. Marginal distributions of (3) are binomial

Ii ∼ B(n, pi). (4)

The most important special case of the multivariate Bernoulli design is sim-
ple random sampling without-replacement or simple multivariate Bernoulli
design (SI-design)

p(k) =
(

N
n

)−1
, if |k| = n, (5)

and, of the multinomial design, simple random sampling with-replacement
or simple multinomial design (SIR-design)

p(k) =
n!

Nn
∏N

i=1 ki!
, if |k| = n. (6)

Many other probability functions of sampling designs are derived in Traat
(2000) and Traat, Bondesson and Meister(2000).

3. Stochastic representation of survey data

Survey data are generated by at least two random processes − the pro-
cess generating finite population values, denoted by the random N -vector
Y = (Y1, Y2, . . . , YN), and the process selecting a sample from the popula-
tion, described by the design vector I. These processes can be simultane-
ously expressed by the random vector Y s:

Y s = (Ysi) = (I1Y1, I2Y2, . . . , INYN), Ysi = IiYi. (7)

The vector Y s displays in a simple manner the random variables Yi selected
by the design vector I. When random Y generates the observations in the
population then Y s generates them in the sample. The vector Y s expresses
the random character of survey data, and, therefore, plays a crucial role
while making inference from survey data.

Let us denote the outcome of Ys by ys:

ys = (ysi), ysi = kiyi. (8)

It is clear that not all the components of ys are observations of the study
variable. If ysi = 0 due to ki = 0 then it is not an observed value. If
ysi = kiyi with ki > 1 then it is a multiple of the observed value yi. Of
course, real observations can be extracted from ys by using the outcome k
of the design vector I. Therefore the full description of survey data is given
by the pair (ys, k) which is an outcome of the random survey data

(Y s, I). (9)

The pair of random vectors (9) is a stochastic representation of survey data.
The inference can be built upon this pair and on the assumptions on the
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design vector I and population vector Y . Note, that (9) with Y s given
in (7) describes also the situation in the classical resampling context. In
the case of bootstrap I has the SIR-design (6) with n = N , in the case of
jacknife I has the SI-design (5) with n = N −1, and in case of subsampling
(in the sense of Politis, Romano and Wolf 1999) I has the SI-design (5)
with n < N − 1. In survey situation, it is straightforward to include vector
of auxiliary variables known for the whole population in the representation
(9). It is also easy to think about Yi as a vector of response and explanatory
variables associated with the unit i.

In the earlier sampling literature also other possibilities for describing
survey data are considered. For example, the element-wise definition of
survey data has been used for the inference theory by Cassel, Särndal and
Wretman (1977). They present realized data as a collection of values d =
{(i, yi) : i ∈ s}, produced by the random analog D = {(i, Yi) : i ∈ S},
where s and S are the realized and random sample from U , respectively. We
would say that the representation (9) is more traditional for the classical
statistical derivations than the representation D.

In some other works it has been customary to devide the population into
sampled and unsampled parts y = (ysa, ys̄a), and to call (ysa, k) the survey
data with the corresponding random analog (Y sa, I). The pair (Y sa, I) itself
can not be used as a description of random survey data. But, for example,
Pfeffermann, Krieger, Rinott (1998) have expressed the density function
of Y sa, and develop classical maximum-likelihood inference on survey data
under general conditions including informative designs. The restrictions of
their approach stand in the assumption of the independent or asymptotically
independent components of the design vector I. Also, the approach is not
meant for the purely design-based case with fixed values yi.

The advantages when working with the representation (9) of survey data
are listed below:

• Y s displays naturally the sampled and unsampled parts of the popu-
lation letting the design vector I to do it.

• (Y s, I) includes simultaneously information on the labels i, observed
variables Yi and the design variables Ii.

• (Y s, I) describes random nature of data both for with- and without-
replacement sampling designs (including those used for the classical
resampling procedures).

• Y s includes the information about the selection dependencies imposed
by the sampling design, by the multivariate distribution of I.

• In the special case, when no random feature of the finite population
is assumed, i.e. Y ≡ y, the vector Y s still remains random due to
the sampling design I involved in it, and, thus, represents random
observation vector for the fixed finite population case.
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• In the special case of fixed I ≡ k, the distribution of Y s = (kiYi) is
determined by the marginal distribution of Y , by the one correspond-
ing to the components Yi for which ki > 0. If ki ≡ 1, i.e. no random
selection is involved, then Y s ≡ Y which is the classical statistical
situation without man-made randomization.

• It is easy to find distributional characteristics (moments) of the vector
Y s.

4. Estimation

Let us have random survey data (Y s, I). The inference is directed
to the population vector Y and its characteristics or, in case of the fixed
finite population, to the vector y. For the inference a suitably defined
statistic to some extent known random behaviour is needed. According
to Cassel, Särndal and Wretman (1977), in our notations, a statistic T
is a function of survey data such that for any given selection result k of
I, the statistic T depends on Y only through those Yi for which ki > 0
(i.e. through the selected elements). It is possible to construct many
functions of (Y s, I) which do not depend on the non-sampled elements.

For example, T (Y s, I) =
∑

ciYsi =
∑

ci(IiYi) and T (Y s, I) =
∑

ciIiY
ai
i∑

Ii
,

with any constants ci, ai are the statistics.

4.1 Distributional characteristics of survey data

Let us call the probabilistic assumptions on (Y , I) the survey model.
Survey model determines the probabilistic behaviour of survey data (Y s, I),
and hence, the behaviour of statistics built on data. Let the survey model
be given as follows:

Eξ(Yi) = µi, Vξ(Yi) = σii, Covξ(Yi, Yj) = σij , (10)

Ep(Ii) = mi, Vp(Ii) = ∆ii, Covp(Ii, Ij) = ∆ij, (11)

I, Y independent. (12)

Here ξ marks the distribution of Y . The condition (12) expresses the ig-
norable or noninformative feature of the sampling design.

For the probability sampling design mi > 0, ∀i. If p(k) is the multivari-
ate Bernoulli design then the moments in (11) take the form,

mi = πi, ∆ii = πi(1− πi), ∆ij = πij − πiπj , (13)

where πij = Ep(IiIj). If the sampling design is multinomial, p(k) ∼ M(n, p1,
p2, . . . , pN), then

mi = npi, ∆ii = npi(1− pi), ∆ij = −npipj. (14)
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The fixed finite population case, Y ≡ y, is an important special case of the
survey model above, in which case Eξ(Yi) = yi, σii = 0, σij = 0. Another
important special case is the model with fixed selection result, I ≡ k, in
which case Ep(Ii) = ki, ∆ii = 0, ∆ij = 0. Note that the ignorability
condition (12) looses its sense for the special models. The model I ≡ k
needs more care in the inference stage since here Ep(Ii) = ki can equal to
zero.

It is easy to derive the first moments of the observations under the survey
model (10)-(12):

Epξ(Ysi) = Epξ(IiYi) = miµi, (15)

Vpξ(Ysi) = (m2
i + ∆ii)σii + ∆iiµ

2
i , (16)

Covpξ(Ysi, Ysj) = (mimj + ∆ij)σij + ∆ijµiµj, i �= j. (17)

It can be seen from (17) that for the observed data to be uncorrelated, it has
to hold σij = 0, and either ∆ij = 0 or µi = 0, ∀i, j. It is useful to know that
observations from the i.i.d. populations with µi = 0 can be uncorrelated in
spite of the correlated design. The uncorrelated designs are rare, Poisson
sampling design being an example here.

Moments of the observations in (15)-(17) take the following forms under
special survey models:

Epξ(Ysi) = miyi, Vpξ(Ysi) = ∆iiy
2
i , Covpξ(Ysi, Ysj) = ∆ijyiyj, if Y ≡ y,(18)

Epξ(Ysi) = kiµi, Vpξ(Ysi) = k2
i σii, Covpξ(Ysi, Ysj) = kikjσij , if I ≡ k.(19)

Note that if no selection process is present (k = 1, the vector consisting
of 1’s) then the moments of the observations in (19) coincide with the
population moments in (10).

4.2 Unbiased estimation

Let us assume the survey model (10)-(12). Let us look at the statistic∑
ciYsi where c = (ci) is a vector of constants. Due to the expectations in

(15)-(17) it follows that

Epξ(
∑

ciYsi) =
∑

cimiµi. (20)

From (20) it is clear that by taking ci = 1/mi we receive an unbiased
estimator t̂ for the parameter t =

∑
µi under the assumed model:

t̂ =
∑

Ysi/mi =
∑

IiYi/mi. (21)

By inserting the outcome ysi = kiyi of the random observation Ysi in (21)
we get the following point estimate for t:

t̂ =
∑

ysi/mi =
∑

kiyi/mi =
∑

ki>0kiyi/mi. (22)
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In the special case Y ≡ y, the estimated parameter transforms to the fixed
population total t =

∑
yi, and the estimator in (21) takes the form

t̂ =
∑

Iiyi/mi. (23)

The corresponding estimate, t̂ =
∑

ki>0 kiyi/mi, has the same form as the
estimate under general survey model, given in (22).

For a multivariate Bernoulli design with inclusion probabilities πi we
have ki ∈ {0, 1}, mi = πi, ∀i, and the estimate in (22) turns out to be the
famous π-estimate, t̂ =

∑
ki>0 yi/πi, invented by Horvitz and Thompson

(1952). For a multinomial design with parameters (n, pi) we have mi = npi,
and the estimate in (22) turns out to be another famous estimate (pwr-
estimate), t̂ =

∑
ki>0 kiyi/(npi), invented by Hansen and Hurwitz (1943).

Under the special case of the model where I ≡ k we can not derive the
special form of the estimator from (21) since some mi in the denominator
may be equal to zero. Writing the initial equality (20) down for this special
case we have

Epξ(
∑

cikiYi) =
∑

cikiµi. (24)

The relationship in (24) is equivalent to

Epξ(
∑

ki>0cikiYi) =
∑

ki>0cikiµi, (25)

from which we get the following unbiased estimator for the parameter t =∑
ki>0 µi:

t̂ =
∑

ki>0Yi. (26)

The inference under the model I ≡ k is not directed to the parameters of
the full vector Y but to those of the selected components alone. Note, that
the repeatedly selected elements appear only once in the estimator.

The variance of the estimator in (21) is

Vpξ(t̂) =
∑

iVpξ(Ysi)/m
2
i +
∑∑

i�=jCovpξ(Ysi, Ysj)/(mimj), (27)

which can be developed with moments in (16)-(17) to the following form:

Vpξ(t̂) =
∑∑

((mimj + ∆ij)σij + ∆ijµiµj)/(mimj). (28)

The double sum with unspecified summation indeces means that both inde-
ces run from 1 to N . In fact, the variance in (28) depends on the sampling
design only through the quantity cij = ∆ij/mimj which may be viewed as
a coefficient of co-variation (it is a square of the well-known coefficient of
variation if i = j):

Vpξ(t̂) =
∑∑

((1 + cij)σij + cijµiµj). (29)



STATISTICAL INFERENCE 309

The variance formula in (29) is very general. Some of its special cases
are listed below:

Vpξ(t̂) =
∑

(1 + cii)σii +
∑∑

cijµiµj, for uncorrelated Yi, (σij = 0, i �= j);
=
∑∑

σij +
∑

cii(σii + µ2
i ), for uncorrelated Ii, (∆ij = 0, i �= j);

= σ2(N +
∑

cii) + µ2∑∑cij , for i.i.d. Yi, (σii = σ2, µi = µ, ∀i);
= σ2(N +

∑
cii), for i.i.d. Yi, self-weighting fixed size n design

(mi = n/N ∀i,
∑∑

cij = 0, due to
∑

Ii = n);
(30)

= N2σ2/n, for conditions in (30) and multiv. Bernoulli design; (31)

= N2σ2/n(1 +
n− 1

N
), for conditions in (30) and multinomial

design (SIR-design).
(32)

Under the fixed finite population case,Y ≡ y, the parameter transforms
to the finite population total t =

∑
yi, and the variance of the estimator

t̂ takes the following well-known forms of the pure design-based variance
(Särndal, Swensson, Wretman 1992):

Vpξ(t̂) =
∑∑

cijyiyj;

=
∑∑

(πij − πiπj)yiyj/(πiπj), multivariate Bernoulli design;

=
∑

(yi/pi − t)2pi/n, multinomial M(n, p1, p2, . . . , pN) design.

Under the special case of the fixed selection result, I ≡ k, the parameter to
be estimated is t =

∑
ki>0 µi with the estimator given in (26). The general

variance formula in (28) obtains the following form for this special case:

Vpξ(t̂) =
∑∑

kikjσij =
∑∑

ki>0,kj>0kikjσij . (33)

Comment 1. It can be seen from the general variance formula (28) that the
cosistency statements are not so straightforward. It has to be formulated
how the parameters in (28) behave when the sample and the population
mutually increase. These conditions are much easier to establish for i.i.d.
Yi and fixed size sampling designs. The formulae (31) and (32) tell that
in this case they can be formulated in terms of the sample size n and the
population size N alone. If we look the average population mean

∑
µi/N

and the corresponding estimator t̂/N then the variance formulae in (31)
and (32) for i.i.d. Yi and self-weighting fixed size sampling designs take the
forms:

Vpξ(t̂/N) = σ2/n, multivariate Bernoulli design; (34)

= σ2(1 +
n− 1

N
)/n, multinomial design. (35)

Now, if N is fixed, we have that limn→N Vpξ(t̂/N) = σ2

N
under multivariate

Bernoulli design, and limn→N Vpξ(t̂/N) = σ2

N
(2− 1

N
) under multinomial de-

sign. Letting also N free (n < N) we have limn,N→∞ Vpξ(t̂/N) = 0. Note
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that if N is fixed then under multinomial sampling n can increase the value
N , and then limn→∞ Vpξ(t̂/N) = σ2/N .

Comment 2. The stochastic representation (9) of survey data enables
to develop inference for informative sampling designs too. Let I be an
informative sampling design. This means that I and Y are dependent. Now
Epξ(IiYi) �= Eξ(Ii)Ep(Yi) and instead EξEp(IiYi | Yi) should be evaluated.
Since the inner expectation can be developed for the fixed yi as

Ep(IiYi | Yi = yi) = yiEp(Ii | Yi = yi) = yimi(yi), (36)

where mi(yi) is the expected selection frequency of the element i conditional
on yi. In sample surveys this conditional expected selection frequency is
known either for each i or for i in the sample. Since the expected selection
frequency is expressed either by the inclusion or by the selection probability
(mi(yi) = πi(yi) for the multivariate Bernoulli design, and mi(yi) = npi(yi)
for the multinomial design) then it is necessary to model dependence of the
probability on the study variable. Pfeffermann, Krieger and Rinott (1998)
offer several models to describe πi(y). The same models can be applied to
describe the selection probability pi(y).

Comment 3. Molina, Smith and Sugden (1999) consider the survey
model (10)-(12) in the form of a linear model where the vector of population
means is expressed by µ = (µi) = Xβ with β being a vector of regression
coefficients, X being a design matrix, and I being an without-replacement
sampling design. Using the framework similar to ours (in matrix form)
and the theory of estimating functions they have elegantly derived a very
general estimator for β and corresponding efficiency. Using our definition
of the sampling design their results can also be written down for the
with-replacement designs by using covariance matrix of the multinomial
distribution.

5. Sampling and resampling

There are many common features between finite population sampling
and resampling theories. For example, sampling from the initial sample
is a common element both in the two-phase sampling and resampling
procedures. Substantial difference is in the reasons for sampling from a
sample. In the two-phase sampling the estimator can be calculated only
in the second-phase sample and its variability is created by the designs of
both phases. In the resampling situation the estimator is calculated in the
first-phase sample and its variability is formed by the first-phase sampling
design (and model distribution, if present). In the classical resampling
situation the first-phase sample is a sample with a model distribution. Due
to the difficulty to find an analytical variance formula, the second-phase
sampling is started. With suitable choice of the second-phase design,
and some other manipulations, it is sometimes possible to achieve that
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the second-phase variance approximates the first-phase variance. The
second-phase variance can be calculated exactly, if not analytically then
by evaluating the estimator on all possible second-phase samples and
calculating its variance with the help of design probabilities. Although,
usually it is estimated from a smaller number of samples generated from
the second-phase design. Generally, arbitrary sampling designs can be
used in the phases of a two-phase sampling procedure. We benefit from
the fact that approach of the present paper enables to consider with- and
without-replacement sampling designs in the same framework. Yet, in
this paper the variability of an estimator in the stages of the two-phase
sampling design is not considered (remains for future work). The main
stress has been put to the description of the two-phase sampling design in
the language of multivariate distributions.

5.1 Two-phase sampling

Here the two-phase sampling design is considered in the framework of
multivariate discrete distributions. The presentation is more general than
the one in Särndal, Swensson, Wretman (1992) since it allows joint consid-
eration of both the with- and without-replacement sampling designs. The
latter makes it possible to study resampling methods (involving also with-
replacement sampling) for samples drawn with more or less complex designs.
Below the probability function of the two-phase sampling design is presented
and interpreted. The randomness due to the sampling in the first phase is
explicitly incorporated to the design expression of the second phase, making
theoretical operations in deriving design properties simpler. Special cases
where with- and without-replacement sampling designs are combined in the
phases are considered in the examples. The first moments of corresponding
two-phase designs are presented.

Two-phase sampling procedure in the finite population U = {1, 2, . . . , N}
is a subsequent sampling where in the first phase a random sample is drawn,
and in the second phase a sample from it is drawn. The sampling designs
in the phases may be arbitrary.

Let Ia ∼ pa(ka) be sampling design in the first phase: pa(ka) = Pr(Ia =
ka). Let I|ka ∼ p(k|ka) be sampling design in the second phase conditional
on the first phase outcome: p(k|ka) = Pr(I = k|Ia = ka). Denote I ∼ p(k)
the two-phase sampling design expressing probability to get the sample k
through the two phases. Then

p(k) = Pr(I = k) =
∑
ka

p(k|ka) pa(ka). (37)

Note, that p(k|ka) = 0 for some ka since the point k on the left-hand side
of (37) can not be received from each ka. For example p(k|ka) = 0 for such
k in which ki > 0, but kai = 0 in ka, meaning that unit i is to be sampled
in the second phase, though it is not sampled in the first phase. Denoting
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by ka(k) such ka for which sample k is possible in the second phase we can
write (37) alternatively

p(k) =
∑

ka(k)

p(k|ka) pa(ka). (38)

It is confirmed by (38) that if the entire population is sampled in the first
phase pa(ka) = 1 for ka = 1, the two-phase sampling design equals the
second phase design, p(k) = p(k|1). Thus, the classical resampling set-up
(the i.i.d. random variables Y1, Y2, . . . , YN are the first-phase sample and
subsamples are drawn from it) is a special case of the two-phase sampling
procedure.

The formulae (37) or (38) can be alternatively read as expectation with
respect to the first-phase design of the conditional probability to get sample
k in the second phase:

p(k) = Ea [p(k|Ia)]. (39)

Note that the design probabilities p(k|Ia) are random. If the functional form
of p(k|Ia) is known, and even more important, if the functional forms of
corresponding marginal distributions are known, they can be conveniently
utilized (as shown below) for evaluating characteristics of the two-phase
sampling design. Functional forms of many sampling designs are presented
in Traat, Bondesson, Meister (2000). Moments of the two-phase sampling
design can be evaluated by the following standard formulae:

E(Ii) = Ea E(Ii|Ia), (40)

V (Ii) = EaV (Ii|Ia) + VaE(Ii|Ia), (41)

Cov(Ii, Ij) = EaCov(Ii, Ij |Ia) + Cova(E(Ii|Ia), E(Ij|Ia)). (42)

From (39) it also follows that the second-phase design p(k|Ia) is an
unbiased estimator of the two-phase design p(k). The same holds for
many second-phase design characteristics. For example, second-phase
design moments E(Ir

i |Ia) are unbiased estimators of the two-phase design
moments EIr

i (see formula (40) for r = 1). On the other hand, since a
two-phase sampling design is an averaged second-phase design with respect
to the first-phase design, this averaged measure can be used to assess the
performance of a resampling procedure.

Example 1. It is easy to see that with SI-sampling in both phases the
final design is a SI-design. Let the sample size be n in the first phase. Then

pa(ka) =
(

N
n

)−1
, if |ka| = n. The sample size m in the second phase gives

p(k|ka) =
(

n
m

)−1
, if |k| = m. The final outcome k has m components being

equal to 1. To find the probability (38) we note that there are
(

N−m
n−m

)
such

vectors ka in which the above mentioned m 1’s are fixed, and the remaining
n−m 1’s stand in the N −m places. Finally the two-phase design is

p(k) =
(

N−m
n−m

)(
n
m

)−1(N
n

)−1
=
(

N
m

)−1
, if |k| = m, (43)
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which is a SI-design with sample size m and with moments

E(Ii) =
m

N
, V (Ii) =

m

N
(1− m

N
), (44)

Cov(Ii, Ij) = − 1

N − 1

m

N
(1− m

N
). (45)

Classical jacknife situation is a special case of the present example with
n = N and m = N − 1.

Let us now assume multinomial sampling with sample size m in the
second phase

p(k|Ia) =
m!∏N
i=1 ki!

N∏
i=1

pki
i , if |k| = m, (46)

where ki ∈ {0, 1, . . . , m} is a realized selection count of the element i in the
second phase, and pi is the probability to sample unit i in one trial. The
pis are random depending on the first-phase design:

pi =
uiIai∑
ulIal

, (47)

where uis are certain positive unit-specific quantities in the population level
(size measure, for example). Note, that index a marks the first phase, and
the second index, if in the sum, runs from 1 to N . The first order marginal
distributions of (46) are binomial

Ii|Ia ∼ B(m, pi). (48)

The terms in (46) depending on the first-phase outcome can have the fol-
lowing values:

pki
i = (

uiIai∑
uiIai

)ki =


0, if Iai = 0, ki �= 0;
1, if Iai = 0, ki = 0;
1, if Iai �= 0, ki = 0;
( uikai∑

ulkal
)ki, if Iai = kai �= 0, ki �= 0.

(49)

One can see from (49) that if the unit i is not selected in the first phase
Iai = 0 then it can not be selected also in the second phase (the probability
of corresponding sample becomes zero), and if the unit is selected in the
first phase then it can be either unselected or selected in the second phase.

Expectations, variances and covariances of the components of I|Ia in
the second phase are the following multinomial moments:

E(Ii|Ia) = mpi, (50)

V (Ii|Ia) = mpi(1− pi), (51)

Cov(Ii, Ij |Ia) = −mpipj , (52)
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where pi is given by (47).

Example 2. Let us assume SI-sampling in the first phase and SIR-sampling
in the second phase (

∑
Iai = n,

∑
Ii = m, ui ≡ c (a constant), i.e. pi =

Iai

n
). Then the two-phase sampling design has the form

p(k) =
m!

nm
∏N

i=1 ki!

∑
ka(k)

pa(ka), if |ki| = m. (53)

The design (53) is not a SIR-design, except for the special case ka ≡ 1. Its
moments are

E(Ii) =
m

N
, (54)

V (Ii) =
m

N
(1− 1

n
+

m

n
(1− n

N
)), (55)

Cov(Ii, Ij) = − m

nN
(
n− 1

N − 1
+

m

N

N − n

N − 1
). (56)

In the classical bootstrap situation we have m = n = N , and consequently,
E(Ii) = 1, V (Ii) = 1− 1/N, Cov(Ii, Ij) = −1/N .

Example 3. Let us assume a multinomial sampling with sample size∑
Iai = n and selection probabilities qi in the first phase, and a multi-

nomial sampling with sample size m and pi = Iai

n
, in the second phase, i.e.

ui ≡ c. Then applying expressions of the multinomial moments for the first
phase we get from (40)-(42) and (50)-(52)

E(Ii) = mqi, (57)

V (Ii) =
m

n
(n + m− 1)qi(1− qi), (58)

Cov(Ii, Ij) = −m

n
(n + m− 1)qiqj . (59)

We see the interesting phenomena that if the first-phase sample size n →∞
then two-phase sampling design tends to multinomial having sample size m
and first-phase selection probabilities qi.

Let us further assume hypergeometric sampling in the second phase. An
hypergeometric sampling design is described by the multivariate hyperge-
ometric distribution. It is the with-replacement sampling design where for
each unit a predetermined upper bound of selection multiplicity is given.
The hypergeometric second-phase design with sample size m can be pre-
sented in the following form:

p(k|Ia) =

∏N
i=1

(
uiIai

ki

)(∑
ulIal

m

) , if |k| = m, (60)
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where uiIai is the upper bound of the selection multiplicity for the unit
i in the second phase and uis are some predetermined counts. The first-
order marginal distributions of this design are univariate hypergeometric
distributions

Pr(Ii = ki|Ia) =

(
uiIai

ki

)(∑
ulIal−uiIai

m−ki

)(∑
ulIal

m

) . (61)

Using relationship (47) for pi we have the following expressions for the first
moments of the second-phase design (about hypergeometric distribution see
Johnson, Kotz and Balakrishnan 1997):

E(Ii|Ia) = mpi, (62)

V (Ii|Ia) = m

∑
ulIal −m∑
ulIal − 1

pi(1− pi), (63)

Cov(Ii, Ij|Ia) = −m

∑
ulIal −m∑
ulIal − 1

pipj. (64)

The variances and covariances differ from the ones of multinomial distribu-
tion by the factors less (or equal) than one.

Example 4. Let us have SIR-design with size n in the first phase (
∑

Iai =
n, EIai = n

N
, V (Iai) = n

N
(1 − 1

N
), Cov(Iai, Iaj) = − n

N2 ). Let us have
hypergeometric design in the second phase with ui ≡ 1, meaning that the
upper bound of the multiplicity for each unit in the second phase is just
the first-phase result of this unit. Using (62)-(64) and (40)-(42) we get the
following moments for the two-phase design:

E(Ii) =
m

N
, (65)

V (Ii) =
m(n−m)

N(n− 1)
(1− N + n− 1

nN
) +

m2

nN
(1− 1

N
), (66)

Cov(Ii, Ij) = − m

N2
. (67)

In the special case of m = n (all units sampled in the first phase are sampled
also in the second phase), the formulae (65)-(67) express the moments of
the initial SIR-design.
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3. Horvitz, D.G. and Thompson, D.J., A generalisation of sampling without re-
placement from a finite universe, Journal of the American Statistical Association,
47, (1952), 663-685.
4. Johnson, N. L., Kotz, S. and Balakrishnan, N., Discrete Multivariate Distri-
butions, New York: John Wiley, (1997).
5. Molina, E. A., Smith, T. M. F. and Sugden, R. A., Analytical inferences
from finite population: a new perspective, Preprint Series No. 330, Faculty of
Mathematical Studies, University of Southampton, (1999).
6. Pfefferman, D., Krieger A.M. and Rinott, Y., Parametric distributions of
complex survey data under informative probability sampling, Statistica Sinica,
8, (1998), 1087-1114.
7. Politis, D. N., Romano, J. P. and Wolf, M., Subsampling, New York: Sprin-
ger-Verlag, (1999).
8. Särndal, C.-E., Swensson, B. and Wretman, J., Model Assisted Survey Sam-
pling, New York: Springer-Verlag, (1992).
9. Traat, I., Sampling design as a multivariate distribution. Research Report No.
17, Department of Mathematical Statistics, Ume̊a University, Sweden, (1997).
10. Traat, I., Meister, K., Unified inference in survey sampling, In Probability
Theory and Mathematical Statistics, Proceedings of the 7th Vilnius Conference,
Vilnius, Utrecht: VSP/TEV, (1998), 697-700.
11. Traat, I., Meister, K., Distributional assumptions for the inference in sur-
vey sampling, In Bulletin of the International Statistical Institute, ISI 99, 52nd
Session, Contributed Papers, Book 3, (1999), 365-366.
12. Traat, I., Sampling design as a multivariate distribution. In New trends in
Probability and Statistics 5, Multivariate Statistics. Vilnius, Utrecht: VSP/TEV,
(2000), 195-208.
13. Traat, I., Bondesson, L., Meister, K., Distribution theory for sampling de-
signs. Research Report No. 2, Department of Mathematical Statistics, Ume̊a
University, Sweden, (2000).

Department of Mathematical Statistics

University of Tartu, 2 Liivi Str., 50409 Tartu, Estonia

E-mail: imbi@ut.ee



Theory of Stochastic Processes
Vol.7 (23), no.1-2, 2001, pp.317-320

JOHAN TYSK

ABSENCE OF ARBITRAGE IN MARKETS WITH
INFINITELY MANY ASSETS

We consider two different conditions for the absence of arbitrage
in one-period models of markets with infinitely many assets. The
notions of arbitrage under study we refer to as approximate and
strict arbitrage, respectively. Strict arbitrage corresponds to mak-
ing a profit without risk, whereas approximate arbitrage is making a
profit with arbitrarily small risk. The condition of absence of approx-
imate arbitrage is used, in the case of one-period models, to study the
mean-variance efficient set. We show that for markets with infinitely
many assets the absence of approximate arbitrage is equivalent to
the conditions of absence of strict arbitrage and the cost functional
being continuous.
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1. Introduction

The interest in different definitions of the notion of arbitrage has in-
creased over the last few years where the main objective has been to find
the right notion of arbitrage that establishes the equivalence between the
absence of arbitrage and the existence of a martingale measure for the price
process. In this direction various notions of approximate arbitrage have
been introduced, notably the condition of ”no free lunch with vanishing
risk” of F. Delbaen and W. Schachermeyer in [1].

In the present paper we consider two different notions of absence of
arbitrage for one-period models of markets with infinitely many assets. We
state the conditions presented by G.Chamberlain and M.Rothschild in [2].
We refer to their definition of arbitrage as approximate arbitrage, since
it involves making a profit with arbitrarily small risk. In their paper it
is shown, as a consequence of the absence of this approximate arbitrage,
that the cost functional is continuous, which in turn is used to study the
mean-variance efficient set. In the present paper we study the difference
between the stronger assumption of absence of approximate arbitrage and
the weaker one of absence of strict arbitrage. Strict arbitrage should here be
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interpreted as the possibility of a risk free profit with no initial investment.
We show that assumption of absence of approximate arbitrage is the same
as assumptions of absence of strict arbitrage and of the continuity of the
cost functional.

2. A model of a market with infinitely many assets

We consider a market with countably many assets where the return of
one currency unit invested in the ith asset is a random variable xi, i =
1, 2, 3, ..., on some underlying probability space with probability measure
P . Assuming that the returns xi have finite variances, the returns belong
to a Hilbert space L2(P ) with an inner product

(p, q) = E(pq) = Cov(p, q) + E(p)E(q)

where E(·) denotes expected value and Cov(·, ·) is the covariance. The vari-
ance of a random variable x is denoted by V (x) so that V (x) = Cov(x, x).
In this framework, portfolios p are just linear combinations p =

∑
i αixi of

the random variables xi. The coefficients αi are the amounts invested in
the corresponding assets so that the cost of the portfolio p is C(p) =

∑
i αi.

Short-selling is allowed so the coefficients αi may be negative. To ensure
that the cost functional is well-defined on the space of portfolios we may
assume the xi

′s are linearly independent or more generally that the price
of the zero portfolio, having zero variance and return, also has the price
zero. We denote by M , the closure of the space of portfolios in L2(P ), with
respect to norm given above and refer to the elements of this space as limit
portfolios. In this way M becomes a closed subspace of L2(P ) and a Hilbert
space in itself. We say that the market M permits no approximate arbi-
trage opportunities if the following conditions hold for sequences of finite
portfolios pn in M:

Condition AAi): If V (pn) → 0 and C(pn) → 0, then E(pn) → 0.

Condition AAii): If V (pn) → 0, C(pn) → 1, and E(pn) → α, then α > 0.

As a comparison we note that the absence of a risk free profit in M can
be stated as

Condition A): If V (p) = 0 and C(p) ≤ 0, then E(p) ≤ 0,

for any portfolio p which we refer to as the condition of absence of strict
arbitrage.
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3. Equivalence between absence of arbitrage and continuity

of the cost functional

We can now state the result on the equivalence between absence of ap-
proximate arbitrage and the conditions of continuity of the cost functional
and absence of strict arbitrage.

Theorem. There is an absence of approximate arbitrage if and only if the
cost functional is continuous and there is an absence of strict arbitrage.

Proof. We first assume an absence of approximate arbitrage. Let pn be a
sequence of portfolios with ‖pn‖ → 0. Following the argument in [2] we
asssume, to reach a contradiction, that C(pn) does not tend to zero. Note
that since C is a linear functional it is enough to reach this contradiction
to verify that C is continuous. Since C(pn) does not tend to zero there is
an ε > 0 and a subsequence {p′n} with |C(p′n)| ≥ ε. Defining qn = p′n/C(p′n)
we have C(qn) = 1 and

‖qn‖ = ‖p′n‖/|C(p′n)| ≤ ‖p′n‖/ε → 0.

Hence E(qn) tends to zero and we have arrived at the desired contra-
diction to AAii). Then C can be extended by continuity to M. By choosing
pn to be constant sequences in Condition AAi) and AAii) we see that these
conditions imply Condition A, the absence of strict arbitrage.

To prove the converse we first assume that there are no non-zero limit
portfolios with variance equal to zero in M . Then the variance is a norm in
M equivalent to the given norm. This is a well-known fact, see for instance
[2], but since we do not need explicit constants in the inequalites between
the norms we present a simple proof here. Assume to reach a contradiction
that there is a sequence pn of portfolios with V (pn) tending to zero, but that
(pn, pn) does not tend to zero. By choosing a subsequence and multiplying
by suitable scalars we can always assume that E(pn) = 1. This means that
(pn − 1, pn − 1) tends to zero, i.e. pn tends to a non-zero asset with zero
variance which is the desired contradiction. Thus Condition AAi) holds and
AAii) is vacously satisfied.

Next we assume that there are assets with variance equal to zero. From
condition A we see that an asset with zero variance with cost normalized
to one is unique. Let us call this asset s and refer to it as the riskless asset.
The expected return of s has to be positive by condition A. We note that s
is a limit portfolio and Condition A is formulated only for portfolios, but of
course this condition can be extended to limit portfolios by the continuity
of the cost functional. Now, we can write our space of portfolios F as the
direct sum F = F ′+Fs, where F ′ contains no non-zero elements of variance
zero and Fs is the one-dimensional space being the linear span of s. We
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can for instance simply choose F ′ to be the orthogonal complement of Fs.
Now, let us first verify Condition AAi). Thus we take a sequence pn with
variance and cost tending to zero with n. We write pn = p′n + λns, where
p′n belongs to F ′ and λn is a real number. Then

V (pn) = V (p′n) + V (λns) = V (p′n),

where the equalities hold since s has variance zero. In F ′ the covariance is
an inner product so we can conclude that p′n tends to zero. Since the cost
functional is assumed to be continuous we then know that

C(pn) → λnC(s) = λn.

Since C(pn) is assumed to tend to zero with n this means that λn tends to
zero, i.e. pn tends to zero and thus the expected return tends to zero since
it is continuous with respect to the given norm.

Finally, to verify condition Aii), we consider a sequence pn of portfolios
and make the same decompostion as above. Also in this case we conclude
that pn tends to λns. The condition that the cost tends to 1 with n means
that λn tends to 1. Thus

E(pn) → E(s) > 0,

thus completing our proof.
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1. Historical remarks

Kyiv National Taras Shevchenko University (founded in 1834) is a lead-
ing higher educational institution in Ukraine. Traditionally it is a base
for implementation of the best educational innovations and its teaching
and training experience is used intensively by other Ukrainian universities.
The lectures in mathematics were delivered at Kyiv University since its
foundation; at first at the Faculty of Natural Science, then at the Faculty
of Physics and Mathematics. The outstanding specialists in algebra, the-
ory of functions, geometry, differential equations, mechanics, mathematical
physics worked at the faculty, among them: D. Grave, B. Delone, O. Shmidt,
M. Chebotaryov, M. Kravchuk, E. Slutskii, M. Krylov, M. Bogolyubov.

It worth to be mentioned that the first lecture in probability theory was
delivered by M. Vashchenko-Zakharchenko in 1863 and the first text-book in
probability theory was published by V. Ermakov in 1878 in the ”University
Notes”.
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Professor D. Grave was the first who delivered courses in actuarial math-
ematics and published text-books on insurance mathematics (1912), theory
of pension funds (1917) and mathematics of social insurance (1924). In 1911
E. Slutskii represented the work ”The Theory of Limiting Utility” to grad-
uate competition and worn gold medal. This work was not published and
hand-written variant is now in the Ukrainian National Scientific Library.

In 1940, the Faculty of Physics and Mathematics was divided into two
Faculties; so, the Mechanics and Mathematics Faculty was founded.

The Department of Probability Theory and Mathematical Statistics of
Kyiv University was founded in 1949 by the prominent scientist Academi-
cian of the Ukrainian Academy of Sciences, Professor B. Gnedenko, who was
a head of the department from 1949 till 1959. His first students were the
future well-known mathematicians V. Korolyuk, V. Mykhalyevich, A. Sko-
rokhod. At the same time I. Gikhman began intensive investigations in the
theory of random processes and stochastic analysis. Professor I. Gikhman
was a head of the department from 1962 till 1966 followed by Professor
M. Yadrenko, who held this position from 1966 till 1998. Academicians V.
Korolyuk in 1956 - 1999 and A. Skorokhod in 1956 - 1992 lectured at the
department sharing their professorships with the work in the Institute of
Mathematics of Ukrainian Academy of Science. Also, I. Ezhov in 1962 -
1975 and D. Silvestrov in 1974 - 1992 were Professors at the department.

Most of representatives of the world-wide recognized Ukrainian school
of probability theory and stochastic processes are the department’s gradu-
ates, among them seven Full Members and eight Corresponding Members
of National Academy of Science, 40 Doctors of Science and 135 Candidates
(Ph.D.) of Science in Mathematics.

At present, there are six Professors at the department: Yu. Kozachenko
(the head of the department), M. Yadrenko, M. Kartashov, M. Leonenko,
M. Moklyachuk and R. Maiboroda. Also Associate Professors O. Bory-
senko, A. Olenko, O. Ponomarenko, the secretary T. Lapida and engineer
O. Vasylyk work at the department. There is also a research group at the
department, which staff is: Dr.Sc. N. Zinchenko and Dr.Sc. V. Masol (lead-
ing researchers), Dr. V. Parkhomenko (senior researcher), Dr. L. Sakhno
and Dr. Z. Vyzhwa (researchers), G. Bagro , A. Revenko and I. Didkovsky
(engineers).

Graduates of the Department of Probability Theory and Mathemati-
cal Statistics work at research and educational institutions in 27 countries.
Nowadays the department has 145 students and 23 Ph.D. students on study
programmes.

The Department of Probability Theory and Mathematical Statistics is
responsible for the edition of two scientific journals. The first one is Theory
of Probability and Mathematical Statistics (Editor-in-Chief is Professor A.
Skorokhod). This journal has a well established international reputation and
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it is translated in English by the American Mathematical Society beginning
from the first issue appeared in 1970. Another journal In the World of Math-
ematics (Editor-in-Chief is Professor M.Yadrenko) is the scientific-popular
mathematical journal for scholars and students. The journal represents
current discoveries and achievements in mathematics, unsolved problems,
typical examination tasks, gives information about mathematical olympiads
of different levels. Besides this, the department takes an active part in edi-
tion of other two scientific journals: Theory of Stochastic Processes and
Random Operators and Equations.

2. Studies in Probability and Mathematical Statistics

During 50 years the Department of Probability Theory and Mathemat-
ical Statistics provides the studies in probability theory and mathematical
statistics in the framework of educational direction ”Mathematics”. The
corresponding curricula include basic courses in mathematical and func-
tional analysis, algebra, geometry, differential equations as well as general
and special courses in probability theory, theory of stochastic processes,
various aspects of mathematical statistics, stochastic analysis, computer
statistics. In 1956 the Department initiated the course ”Programming for
High-Speed Computers”. The first in USSR text-book in programming by
Gnedenko, Korolyuk and Yushchenko (1962) also was prepared at the de-
partment.

In the 70th the department introduced new specializations connected
with applied statistics and methods of optimization.

During 50 years more than 60 research monographs and text books were
published by the staff of the department. We point out here only some
of the most well known text books: the text book on probability theory
by Gnedenko (1950) re-printed in many editions and translated to several
languages ( 8 Russian, 11 German, 6 English editions), the text book on
stochastic processes by Gikhman and Skorokhod (1965 and 1977), the text
book by Skorokhod (1990) on stochastic processes, based on his well known
course delivered at Kyiv University, as well as the book by Dorogovtsev,
Silvestrov, Skorokhod and Yadrenko (1976), which is possibly the largest
(about 1500 problems) collection of problems in probability and stochastic
processes, have Ukrainian, Russian and English editions.

In the middle of 90th the transformation processes in Ukrainian eco-
nomics caused the needs in qualified specialists in applied statistics skillful
in financial and actuarial mathematics, financial analysis and risk theory,
econometrics and sample survey. In new economic conditions such spe-
cialist are in high demand with banks, financial institutions and insurance
companies and governmental organizations.

The Department of Probability Theory and Mathematical Statistics ini-
tiated the preparation new courses in economic-statistical area, implemen-
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tation the new Educational Programme ”Statistics” in Kyiv University and
its approval by national educational authorities.

Professor M. Yadrenko, who was a head of the department at that time,
Associate Professor O. Ponomarenko and the dean of the Mechanics and
Mathematics Faculty , Professor M. Perestyuk initiated the preparation of
the first in Ukraine text books in this area. The text-books on mathemat-
ical economics by Ponomarenko, Perestyuk and Burym (1995), statistical
methods in econometrics and financial mathematics by Leonenko, Mishura,
Parhomenko, and Yadrenko (1995) and system methods in economics, man-
agement and business by O.Ponomarenko and V.Ponomarenko (1995) were
published under support of US AID grants.

In 1996 the new educational direction ”Statistics” was approved by the
Ukrainian Ministry of Education and included in the official state list of ed-
ucation specialities (it is the highest level of official recognition in Ukraine).

In the same teaching year 1996/97 the Mechanics and Mathematics
Faculty started three level (bachelor, spesialist, master) Educational Pro-
gramme in ”Statistics”.

In order to support the realization of this educational programme Pro-
fessors G. Kulldorff and D. Silvestrov from Ume̊a University (Sweden) and
Professor M. Yadrenko initiated an application for the Tempus Tacis Pre-
JEP. This pre-project coordinated by Professor G. Kulldorff was realiszed
in 1997 and has been following by a full scale tree years Tempus Tacis
Joint European Project ”Statistical Aspects of Economics” coordinating by
Professor D. Silvestrov.

3. Curricula for three level educational

programme ”Statistics”

The Ukrainian university system can be characterized as a teacher-
oriented system. The teachers play leading role in the studies. The main
part of work is moved to classrooms. In total it can be 30-32 such hours per
week. The education process is shifted towards lectures as a main element
of the process.

This differs very much of Swedish university system which can be charac-
terized as a student-oriented system, where the education process is shifted
towards self-work of students and the role of teacher is in some sense to
assist students in their studies. Here, a regular self-work of students with
textbooks and other teaching materials is an important element of studies
while an amount of classroom can actually be only 14-16 hours per week.

One can say that Ukrainian system is more concentrated on maximi-
sation of information content of the education programme while Swedish
system is more oriented towards the development self-education skill of stu-
dents.
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It should be also pointed out that the secondary education in Sweden
is based on 12 years programme, while now in Ukraine it is 10 years pro-
gramme. The studies of English, other languages and some humanitarian
disciplines are realized at the secondary education programme. That is
why language and humanitarian courses as a rule are not included in the
university education programme at the natural science and engineering spe-
cialities in Sweden. In contrary education programme in Ukrainian universi-
ties include language courses and humanitarian disciplines. Also a military
service, which is included in the programme of studies at Ukrainian univer-
sities, is not included in the programme of studies at Swedish universities.
We refer here to the paper by Silverstrov and Silvestrova (1999), where one
can find discussion concerning these questions.

The three level Educational Programme ”Statistics” gives possibility to
students to choose one of three level of education and graduate from univer-
sity with of one of the following degrees: ”Bachelor” (four years of studies),
”Specialist” (five years of studies) and ”Master” (six years of studies).

Total duration of the basic Bachelor programme is four years. It con-
sists of two parts: (i) block of humanitarian disciplines including history of
Ukraine, Ukrainian culture, world culture and history of Mathematics, phi-
losophy, psychology, pedagogics, politology, foreign language, ecology, foun-
dations of the law, additional military training and physical culture training
(1776 hours in total), (ii) block of fundamental and professionally oriented
discipline. In total there is 7568 teaching hours in the programme including
2862 lectures and 5010 other types of auditorium studies. The list of basic
obligatory fundamental courses for Bachelor programme is given below in
the Table 1.

1. Management and marketing 48 hours
2. Mathematical Analysis I 420 hours
3. Analytical Geometry 108 hours
4. Linear Algebra 289 hours
5. Discrete Mathematics 130 hours
6. Mathematical Analysis II 420 hours
7. Algebra and Number Theory 210 hours
8. Differential Equations 235 hours
9. Financial analysis and calculations 108 hours

10. Informatics 420 hours
11. Foundations of micro- and macroeconomics 108 hours
12. Foundations of the theory of finance 102 hours
13. Discrete models in the Theory of Probability 102 hours
14. Theory of Probability 135 hours
15. Mathematical Statistics 102 hours
16. Functional Analysis 210 hours
17. Theory of measure and integration 108 hours
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18. Complex analysis 211 hours
19. Decision making 158 hours
20. Method of economical calculations 108 hours
21. PC practical studies 210 hours
22. Mathematical Economics 153 hours
23. Equations of Mathematical Physics 204 hours
24. Foundations of Actuarial Mathematics 158 hours
25. Variational calculus and methods of optimization 96 hours
26. Mathematical logics 81 hours

Students can also choose between specialities inside of Educational Pro-
gramme ”Statistics”. These specialities are (1) Financial and Actuarial
Mathematics, (2) Econometrics and Mathematical Economics, (3) Applied
Statistics.

The Bachelor programme includes a large number of special courses,
which can be obligatory or facultative (740 hours in total) and can variate
depending of the Speciality.

The list of special courses for Bachelor programme include such courses
as (number of hours is shown in the brackets): advanced course of prob-
ability theory (51), discrete probability in martingale representation (52),
advanced course of mathematical statistics (68), stochastic processes (68),
applied statistics (50), stochastic differential equations (32), statistical in-
ference for random processes (50), time series analysis (52), non-stationary
non-linear time series (36), limit theorems for risk processes (36), discrete
models for random evolutions (70), partial differential equations with ran-
dom initial conditions (34), computer statistics (68), non-negative matrices
and their applications (70), statistical analysis of psychological data (34),
ergodic theory (36), methods of data classification (32).

The Specialist and Master programmes do include some additional oblig-
atory basic courses and also a large number of special courses, which can
be obligatory or facultative. The curriculum for Master programme dif-
fers from those for Specialist programme by emphasis on individual activity
plans for each student. The basic courses for Specialist and Master studies
are (number of hours is shown in the brackets): optimization methods (64),
stochastic methods in management (64), financial mathematics of funds
market (64), theory of decision making (48), statistical methods in socio-
humanitarian discipline (24).

The list of special courses for Specialist and Master programmes includes
such courses as: statistical inference for random processes (32), multivariate
statistical analysis (32), random evolutions and their applications in finan-
cial and actuarial mathematics (32), spectral theory of random fields (32),
correlation and spectral theory of random series in economics (32) , math-
ematical models in life insurance (32), probabilistic methods of informa-
tion defense (32), models with stable distributions in finance and insurance
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(32), stochastic methods in economics and management (36), probabilistic
methods in combinatorics (48), simulation of random processes (36), ro-
bust estimation of random processes (48), wavelet analysis in mathematical
economics (48).

In June 2000 the first group ( 25 students) finished the four year studies
and graduated from Kyiv University with degree ”Bachelor in Statistics”.
In 2000/2001 academic year first two groups started training according to
programme ”Specialist in Statistics” and ”Master in Statistics”.

4. Tempus Tacis Joint European Project

”Statistical Aspects of Economics”

The Tempus Tacis EU Programme (approved by European Council in
1990 and prolonged for six years from 1 July 2000) is directed to stimu-
late co-operation between higher education institutions of European Union
and New Independent States in the development and restructuring of their
education system.

According to this Programme the Tempus Tacis Joint European Project
”Statistical Aspects of Economics” is carrying out in 1998-2001. The EU
Grant supports it for the amount of 558.000 Euro. Kyiv National Taras
Shevchenko University, Ume̊a University (co-ordinating institution), Stock-
holm University, Mälardalen University and University of Helsinki take part
in the project.

The project objective is to promote the creation of the three level edu-
cational system (Bachelor, Specialist and Master degrees) at Kyiv Univer-
sity for the new educational direction ”Statistics” including new economic-
statistical specialities: (1) Financial and Actuarial Mathematics, (2) Econo-
metrics and Mathematical Economics and (3) Applied Statistics.

The programme of the project includes creating the new curricula, new
courses with the corresponding teaching materials in economic-statistical
area, development of the cooperation with Faculty of Economics; improv-
ing of the academic staff qualification, visits of professors and teachers from
Kyiv University to EU partner universities for collection of information, the
development of new courses and training; visits of professors and teachers
from EU partner universities to Kyiv University for consulting and lecturing;
participation of teachers and postgraduate students from Kyiv University
in conferences and workshops related to the subject of project; purchase of
computer equipment, software and teaching literature to Kyiv University;
organization of workshops in Ukraine, Sweden and Finland, development of
co-operation with state and non-state Ukrainian institutions and dissemi-
nation of project results.

At Kyiv National Taras Shevchenko University, the project is carried
out by the Department of Probability Theory and Mathematical Statistics
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(Mechanics and Mathematics Faculty) in cooperation with the Department
of Economic Cybernetics (Faculty of Economics).

Coordinator of the Project is Professor D. Silvestrov (Ume̊a University
and Mälardalen University (from 1999)). Local Coordinators are Professor
A. Martin-Löf (Stockholm University), Professor E. Valkeila (University of
Helsinki) and Professor M. Yadrenko (Kyiv University).

The first step in achievement the project objective was the promotion
of the creation the new curricula for the three level education system for
Educational Programme ”Statistics” adopted to the EU standards for higher
education. According to new curricula 25 new courses were prepared at the
Department of Probability Theory and several existing basic courses were
changed and updated. Also more than 10 new courses were prepared at the
Department of Economic Cybernetics.

All new and reconstructed courses are provided with relevant teaching
materials (collections of syllables with detailed lists of recommended litera-
ture, lecture notes, manuals, text books, tasks for practical studies, control
tests, etc.). The list of main teaching materials and text books prepared
and published within the framework of the Project by the staff of the De-
partment of Probability Theory and Mathematical Statistics is given in the
bibliography under the numbers [14]-[29]. Also more than 15 works were
prepared by the staff of the Department of Economical Cybernetics, the
main of them are [27]-[34].

To promote these activities an intensive mobility programme involving
about 35 professors and teachers from Kyiv University was realised within
the Project. Professors and teachers from Kiev University visited EU part-
ner universities for collection of information, the development of new courses
and training, they also participated in conferences, schools, workshops and
short intensive courses related to the subject of the Project and held in Swe-
den and Finland. In total the mobility programme of the Project included
more than 120 such trips.

Professors G. Kulldorff, A. Martin-Löf, E. Valkeila, D. Silvestrov and
other staff members in Ume̊a University, Stockholm University, Univer-
sity of Helsinki and Mälardalen University provided lecturers from Kyiv
University by books, periodicals, software, advices and consultations in fi-
nancial mathematics, risk theory, econometrics, survey sampling and other
subjects. They gave all necessary support for efficient and productive co-
operation within the Project activities.

As was mentioned above professors and teachers from Kyiv University
participated in the short intensive courses, schools and workshops in Sweden
and Finland. For example, seven Ukrainian lecturers took part in the work
of the 52nd Session of the International Statistical Institute in 1999. This
activity gave them possibility to collect the latest information in the area
and to update the courses in various statistical topics.
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During the second and the third Project year a student mobility pro-
gramme was also realized within the project for Ph.D. students from Kyiv
University. For example a special Ph.D. studies in mathematical economics
were organized at the Mälardalen University in January 2001.

At the same time, a large group of Swedish and Finish professors and lec-
turers, among them G. Kulldorff, A. Martin-Löf, E. Valkeila, D. Silvestrov,
K. Bränäs, M. Gyllenberg, H. Niemi, P. Salminen visited Kyiv University for
consulting and lecturing as well as for lecturing at three schools organised
in Ukraine within the Project.

The technical base of the Mechanics and Mathematics Faculty was es-
sentially improved due to equipment purchased via Project. The Faculty
of Mechanics and Mathematics have got access to Internet and created
the base for further computerization. The PC class for practical studies
in applied statistics was organized. This give the possibility to introduce
new courses, such as Methods of Economical Calculus, Mathematical Eco-
nomics, Computer Statistics, Time Series Analysis based on applied soft-
ware MATEMATICA and SPSS purchased via the Project. New active
methods of teaching and control testing were implemented.

Also a library of recent statistical and economics literature (including
more that 150 books) was created that is of a great importance for the
development of the new educational programme.

The dissemination is an essential part of Project activities. Three In-
ternational Schools in economic-statistical area were successfully organized
within framework of the Project: the First International School on Financial
Mathematics and Mathematical Economics (Kyiv, 7-12 September 1998),
the Second International School on Actuarial and Financial Mathematics
(Kyiv, 8-12 June 1999) and the Third International School on Applied
Statistics, Actuarial and Financial Mathematics (Feodosiya, 4-13 Septem-
ber 2000).

Representatives (lecturers, researchers, managers, Ph.D. and MA Stu-
dents) from Kyiv University and other Ukrainian Universities, National
Academy of Sciences, Foreign Exchange, Pension Fund, private and state
insurance companies took part in the work of these schools. Prominent
specialists from Finland, Sweden, Ukraine and also from Denmark, Es-
tonia, Russia, USA delivered lectures in economic-statistical areas. The
programmes of these schools covered the following topics: mathematical
models in finance and insurance; time series in economics, finance and in-
surance; analytical, simulation and statistical methods in the risk theory;
optimization and financial software, mathematical models in micro- and
macroeconomics, survey sampling in economics and the teaching method-
ology and programmes in mathematical economics and related subjects.
Teaching-methodological seminars and round tables were carried out within
framework of the first and third International Schools for dissemination on
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national level of results, teaching know-how and experience achieved within
the Project in Kyiv University .

The International School on Mathematical and Statistical Application in
Ecinomics (Väster̊as, 15-19 January 2000) was also organized in the frame-
work of the Project and with the support of the universities participating
in the project.

The Proceedings of these schools were published (See, [26]-[28] and the
current volume) and have been distributing to Ukrainian universities, finan-
cial and insurance institutions, libraries that contributes to the dissemina-
tion programme realizing within the Project.

Such activities not only provides a good training/updating for a wide
educational and scientific community but supports the development of the
links with external environment. Due to realization of the Project the De-
partment of Probability Theory and Mathematical Statistics (Mechanics
and Mathematics Faculty) and the Department of Economic Cybernetics
(Faculty of Economics) at Kyiv University become centers of implemen-
tation and dissemination of know-how, modern teaching methodology and
good practices in new economic-statistical specialities.

The Tempus Tacis Joint European Project ”Statistical Aspects of Eco-
nomics” is a very good example of useful co-operation between Scandina-
vian and Ukrainian universities. The realization of the Project effectively
promotes the development of new type of economic-statistical specialities
answering the requirement of the transition market economics in Ukraine
and adapted to the EU standards for higher education as well as the de-
velopment of international co-operation in the area of higher education and
science.
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TETYANA ZATONATSKA

USING STATISTICAL METHODS FOR
MARKETING RESEARCH

One of the problems in statistical processing of the marketing investi-
gations (for example, interrogation) is the separation of the groups of
objects with similar characteristics that is to say segments. The cor-
rect customers segmenting is possible with the use of mathematical
instrument based on the concept of ”distance” between objects. In
mathematical statistics the process of division of the investigated ob-
jects population into groups, which are uniform according to definite
characteristics, is called as classification. One of the instruments of
the classification is cluster analysis. In the calculation of the distance
between clusters the data of definite informational fields of question-
naires are used. These fields are called as classifying parameters.
The parameters have different physical measurement units.

2000 Mathematics Subject Classifications. 62P20

Key words and phrases. Marketing investigations, customers,
objects, units.

Clustering techniques try to find similar patterns within sets of data.
Clustering groups elements that are similar on their dimensions into ho-
mogenous segments (clusters). And usually computer software is used to
carry out the analysis.

In this arcticle we are going to consider clustering technique that uses
Euclid’s formula - mathimatic formula for measurenig distance in between
multidimensional objects. Close consideration of this technique helps deeper
comprehend clustering analysis procedure and results when it is carried out
by the computer.

The technique is going to be illustrated with the example where we
will group different cigarette brands, present at the Ukrainian market, by 2
parameters into 5 homogenous segments.

Let’s start with the Euclid’s formula as it is:

RA,B =

n∑
j=1

((XAj −XBj)
2)1/2 (2)
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where,
n number of dimensions;
XAj , XBj values of j dimension of objects A and B;
RA,B distance between objects A and B measured by n dimensions.
Using this formula the way it is implies 2 major problems that can

pervert results of the analysis:
1. Values of dimensions can be measured in different units (years, mine-

tary units, custom scale rates, etc.).
2. Values of dimensions can substantially differ by arithmetic extent.
These problems are avoided by mean of rate setting procedure. It implies

computation of fixed values of dimensions using the folloing formula:

Zij = (Xij −Xjm)/σj (3)

where,
Zij fixed value of j dimension for i object;
Xij initial value of j dimension for i object;
Xjm mean value of j dimension;
σj standard deviation of j dimention.
Xjm and σj are computed using the following formulas:

Xjm =

m∑
i=1

(Xij)/m (4)

σj = ((

m∑
i=1

(Xij −Xjm)2)/m)1/2 (5)

where,
m - number of objetcs in the data array;
Xij initial value of j dimension for i object.
Rate setting procedure is effective due to one important assuamtion.

It is that values of most dimensions have normal probability distribution.
That means that fixed values Zij appears in the range [-3σ; 3σ] with the
probability of 99,7%. That allows to compare all kinds of dimensions.

For more precise clusterng weights of different dimensions are added to
the formula. Weight (Wj) shows how much a specific dimenion is critical
for the object of the research. Note that 0< Wj ≤1.

So the final formula for computation of distance in between multidimen-
tional objects is the following:

RA,B = (
n∑

j=1

Wj(ZAjZBj)
2)1/2 (6)

Now let’s illustrate the clustering technique with the example.
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Data array for the example was formed of 30 (number of objects) ciga-
rette brands that all together are about 95% of all the brands present at the
Ukrane cigarette market. Two dimansions price and image rate are taken
for omputation of distances. The dimensions weights are equal Wp=Wir=1.

Prices are given the way they appeared at places of observation (small
reatil points of sale) in national monitary units (uhr). Image rates were set
based on author’s perception of it (usually image rates are determined by
group of experts).

The table of initial data and fixed values is given below.

Standart deviations and mean values are shown below the table. Values
in columns (P/c.-Aver.)2 and (Im.-Aver.)2 are interim and were com-
puted to simplify the computation of standard deviations.

The following table is the matrix of distances in between objects in the
data array computed by formula (5).

The dimansion of the matrix is 30 x 30. The right upper part of the
matrix is empty because values of distances here are the same that in the
left lower part. Note that filling in the right upper part and leaving empty
left lower woudn’t be a mistake and is optional.

The next step after we had built the matrix of distances would be to
choose the smallest value in the matrix. For our example it is 0 (see table
2). In our example we have several values that equal 0 in the matrix and
we can choose whichever we want. After that we put 2 objects the distance
between which is smallest togethher and reconstruct the matrix considering
these binded objects as one. Note that the initial matrix of distances consists
of clusters only with one element and by the end of the analysis we are going
to have group clusters.

To reconstruct the matrix of distances we have to figure out distances
from the new object to all ather objects in the data array. For that we
compare values of distances form parts of the new object to other objects
and chose the smaller ones. These would be values of distances from the
new object to other objects.

The above procedure beginning with choosing the smallest value of dis-
tance in the matrix is repeted (n-nw) times (n is number of objects in the
data array; nw is number of clusters at the end of the analysis). For our
example it is (30 - 5) = 25 times.

The following table is the final 5-cluster matrix of distances:

Also discription of final clusters is given in tables below.

As it is shown in these tables as the result of clustering analysis in our
example we have recieved 5 homogeneus segments:

; segment #1 60% of all brands, avarage price per pack of 20 pcs. is
2,25 (uhr), image rate 2,39 points;
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; segment #2 16,7% of all brands, avarage price per pack of 20 pcs. is
4,22 (uhr), image rate 5 points;

; segment #3 3,3% of all brands, avarage price per pack of 20 pcs. is
7 (uhr), image rate 10 points;

; segment #4 13,3% of all brands, avarage price per pack of 20 pcs. is
6,5 (uhr), image rate 9 points;

; segment #5 - 6,7% of all brands, avarage price per pack of 20 pcs. is
5,3 (uhr), image rate 6,5 points.

Considering the results of clustering analysis we can see how it helped
us see major segments at the Ukrainian cigarette market.

Economic Cybernetics Department, Faculty of Economics, Kyiv Na-
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NADIYA M. ZINCHENKO

HEAVY-TAILED MODELS IN FINANCE AND
INSURANCE: A SURVEY

Heavy-tailed distributions and processes have long been studied by
probabilistics, but the major advances in the practical applications
have been made in last 10-15 years. We give the survey of the
main trends in theoretical investigations and practical applications of
heavy-tailed models with emphasis on subexponencial, Pareto-type
and stable distributions. Certain problems connected with limit the-
orems, approximation, estimation, numerical simulation for heavy
tails are treated as well as the connection with the risk theory.

2000 Mathematics Subject Classifications: 62P05, 60E07, 60F15.

Key words and phrases. Stable distributions, weak conver-
gence, domains of attraction, extreme value distributions, stable
Lévy processes,parameter estimation, numerical simulation, ruin
probabilities, subexponencial distributions.

1. Introduction

Statistical applications in various research fields often deals with stochas-
tic models based on Gaussian distributions or Gaussian processes (Brownian
motion, geometrical Brownian motion, fractional Brownian motion, etc).

But real data often show the deviations from Gaussian hypothesis, for
instance, they have heavy-tailed asymmetric histograms. Economists and
financial analysts, for example, have been aware for almost 40 years that
much economic data are of such category. In fact, the presence of the
heavy tails in financial asset return distributions became obvious after the
Mandelbrot’s work (1963) on cotton prices, see also Fama (1965). Although
the discussion about the adequacy of stable models for assets return is still
going on in the financial research community, the presence of heavy-tailed
distributions in this set-up is doubtless.

The notion of heavy tails needs more rigorous mathematical formulation.
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It is often said that a random variable ξ follow a heavy tailed distribution
if

P (ξ > x) ∼ x−α as x →∞, 0 < α < 2. (1)

The simpliest example is the Pareto distribution with density function
p(x) = αkαx−α−1, α, k > 0, x ≥ k and distribution function (d.f.)
F (x) = 1− (k/x)α.

Another example of the distributions satisfying (1) is the class of stable
distributions.

The fact that α-stable distribution decay like a power function means
that a stable r.v. exhibits much more variability than a Gaussian one: it
is much more likely to take large values, i.e. values far from the median.
The high variety of the stable distributions is one of the reasons of their
important role in modeling not only economic phenomena ( stock market
prices, foreign rate returns, large claims in insurance, etc.), but also in
other areas such as: physics and astronomy (gravitation fields of stars, tem-
perature distributions in nuclear reactors, stresses in crystalline lattices),
telecommunications, World Wide Web and Network traffic, climatology.

Stable distributions have several desirable theoretical properties; the
main of them are: stability under summation and deep relations with limit
theorems for the sums Sn =

∑n
1 ξi of independent identically distributed

random variables (i.i.d.r.v.). More precise, only stable laws can appear as
limit distributions for the linear normalized sums of i.i.d.r.v.

Unlike Gaussian distribution with two parameters (scale and location),
stable laws constitute the four parameter family of distributions and their
density functions can have a various shape: symmetric and asymmetric,
more or less curtozis, with various tail decay depending on α.

The wider class of heavy-tailed distributions is formed by distributions
attracted to the α-stable laws. These distributions have regularly varying
tails with exponent -α, and, thus, their tail behaviour generalise (1).

So, the models with α-stable distributions or distributions in the domain
of attraction of an α-stable law can be considered as a good alternative
to the Gaussian models. The main reason which made them less popu-
lar was absence of well-developed statistical technique and good numerical
procedures. This situation changed during last 10-15 years or so , when
appearing of new generation of PC and corresponding software essentially
simplified the computational problems connected with applications of the
models based on stable distributions.

The other class of heavy-tailed laws appears in the risk theory for a
formal definition of the large claim sizes. It is the class of subexponential
distributions which is rather rich and includes the set of distributions on
(0,∞) with regularly varying tails.

In the Section 2 we give the various equivalent definitions and basic
properties of the stable distributions; Section 3 clearifies the links with the
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limit theorems for i.i.d.r.v., describes the domains of attraction to the stable
law. The results on limit behavior of the maximum of a sequence of iidrv
is also in this section. Section 4 presents the results on the fluctuation
of the sums of totally asymmetric stable variables. Section 5 is devoted
to the classical problem of statistical inference - parameter estimation in
the models including α-stable distributions or distributions attracted to α-
stable law, p.4.3. presents the brief overview of the methods of numerical
simulation. Section 5 deals with the ruin probability calculating in the
case of large claims. It is demonstrated how classical risk theory has to be
developed to take into account such claims. The elements of the theory of
subexponential distributions are discussed with emphasis on the properties
applicable within risk theory.

Finally, I want to remark that the list of references is far from complete:
except a few original pioneer works, the main attention being paid to the
recent works, especially monographs, guides and surveys where the reader
can find additional references.

2. One-dimensional stable distributions. Basic properties.

Stable laws were introduced and studied by Paul Lévy in 1920s, the
remarkable results were also obtained by Aleksander Khintchine in 1930s.
The classical results which underline the links with the weak convergence
of the sums of iidrv are presented in the famous monograph by Gnedenko
and Kolmogorov (1949), see also Ibragimov & Linnik (1965), Feller (1971).
The analytical properties of the univariate (one-dimensional) stable distri-
butions and various fields of their applications are presented in the book
by Zolotarev (1983). The basic theoretical facts as well as contemporary
achievements in the theory of stable processes are summarised in mono-
graph by Samorodnitsky and Taqqu (1994); for those who are interested in
this topic and more general theory of Lévy processes the books by Gikhman
and Skorokhod (1974), Skorokhod (1963,1986) are yet of great interest as
well as a recent Bertoin (1996). A monograph by Yanicki and Weron (1994)
is devoted to the simulation problems and ”A Practical Guide to Heavy
Tails” under edition of Adler, Feldman and Taqqu (1998) is directed more
on applications than on theory and is primary concerning with statistical
techniques appropriated for heavy-tailed data. It also worth to mention the
fundamental work by Embrehts et al. (1997), which includes theoretical
material, statistical methodology and a lot of interesting examples of using
heavy-tailed models in finance and insurance.

2.1. Definitions. Below we give several equivalent definitions of a stable
distribution:

Definition 1. A non-degenerate variable ξ is said to have a stable distri-
bution if for any positive numbers a and b ,there are c > 0 and d ∈ R1 such



HEAVY-TAILED MODELS 349

that
aξ1 + bξ2

d
= cξ + d, (2)

where ξ1 and ξ2 are independent copies of ξ and notation
d
= stands for

equality in distribution.
For any stable ξ there exist a number α ∈ (0, 2] such that c in (2) satisfies

cα = aα + bα. (3)

A random variable ξ is called strictly stable if (2) is true with d = 0.

Definition 2. A non-degenerate variable ξ is said to have a stable distri-
bution if for any n ≥ 2 there are c = cn > 0 and real d = dn such that

ξ1 + · · ·+ ξn
d
= cnξ + dn, (4)

in the other words, the n-th convolution of the identical stable distributions
is again of the same type.

In (4), necessarily, cn = n1/α for some α ∈ (0, 2], where α is the same as
in (3).

Stable laws constitute the subclass of the infinitely divisible distributions
with canonical Levy-Khintchine representation for characteristic function of
α-stable distribution

log gα(t) = itγ − σ2

2
+

∫ ∞

−∞
(eitx − 1− itx

1 + x2
)dH(x), (5)

where α ∈ (0, 2], γ ∈ R1, σ2 ≥ 0,
∫∞
−∞ x2dH(x), and include the Gaussian

distribution (α = 2, σ2 > 0). For 0 < α < 2 there is no Gaussian component
and Lévy spectral function H(x) = C1|x|−α for x < 0 and H(x) = −C2x

−α

for x > 0, where C1, C2 ≥ 0, C1 + C2 > 0.
The stable characteristic function (ch.f.) admits the simpler representa-

tion, which also can be considered as a definition of a stable distribution

gα,β(t) = g(t; α, β, γ, λ) = exp{itγ − λ|t|α{1− iβsign(t)ω(t, α)}}, (6)

where the main parameters α ∈ (0, 2] and β ∈ [−1, 1] characterize the shape
and symmetry properties of the distribution, λ ≥ 0 is a scale parameter and
γ ∈ R1 is a location parameter. Here ω(t, α) = tan(πα/2) as α �= 1 and
ω(t, α) = −(2/π)β ln t as α = 1, parameter α is often called index of stability
or characteristic exponent and β is a skewness parameter.

There are other than (6) parametrizations of the α-stable ch.f. more or
less convenient for various purposes (for details see Zolotarev (1986)).

The support of stable distributions is the real line except if α < 1 and
|β| = 1, in which case it is (−∞, 0) for β = −1 and (0,∞) for β = 1. The
distributions with β = 0 are symmetric about γ, while those with β < 0
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are left skewed and those with β > 0 are right skewed. The distributions
with |β| = 1 are called ”totally skewed” or ”extreme/ totally asymmetric”
stable distributions. All symmetric stable distributions are strictly stable,
but inverse assertion is not true. In fact, the α-stable distribution with
α �= 1 is strictly stable iff γ = 0.

Denote by Sα,β(x) = Sα,β(x; λ, γ) the distribution function (d.f.) of the
stable law. We omit the index β if its value is not essential and write
ξ ∼ Sα,β(λ, γ) to indicate that r.v. ξ has the stable d.f. Sα,β(x; λ, γ).

Zolotarev (1983) gives an expression for the stable d.f. at x = 0:

Sα,β(x; 1, 0) =
1

2
(1− β∗K(α)/α), α �= 1, where K(α) = α− 1 + sign(1− α)

and β∗ satisfies: tan(β∗πK(α)/2) = β tan(πα/2).
Stable distributions are continuous with smooth unimodal densities, but

explicit form of the stable densities is known only in 4 exceptional cases:
Gaussian distribution (α = 2), Caushy distribution (α = 1, β = 0), Levy
distribution (α = 1/2, β = 1), and its symmetric contrapart (α = 1/2,
β = −1). Nevertheless in general case the stable densities or d.f. can be
represented ( Zolotarev (1986)) as the integrals or as the sums of infinite
series, which however, can be numerically approximated. These facts as
well as using the fast Fourier transform (FFT) algorithms for inverting
the characteristic functions give the possibility to calculate numerically the
densities and d.f. of the stable laws.

2.2. Tail behaviour and moments. If ξ ∼ Sα,β(λ, γ) with 0 < α < 2,
then

lim
x→∞

xαP (ξ > x) = Cα
1 + β

2
λα, lim

x→∞
xαP (ξ < −x) = Cα

1− β

2
λα, (6)

where

Cα = (1− α)/Γ(2− α)cos(πα/2), α �= 1 and Cα = 2/π, α = 1. (7)

This fact shows that the tails of α-stable d.f.(as well as the tails of the
α-stable densities) decay like a power function (unlike the exponential decay
of the tails of Gaussian distributions).

An interesting consequence followers from (6) : α-stable r.v. ξ possesses
the finite moments of order δ < α, but all moments of order δ > α do
not exist. So, in the set of stable laws the Gausian distribution is only
one possessing all moments (particularly, finite variance). Besides this, the
finite mathematical expectation exists only for α-stable distributions with
1 < α ≤ 2 and for α < 1, E|ξ| = ∞. Thus, such distributions are useful
when some very large observations may be expected and may dominate
sums of other observations. It is not valid to treat such values as outliers,
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because excluding them takes away much of specifity of the data and leads
to reduce the useful information. Precisely these observations may be of
main interest in understanding the data generating mechanism. The fact
that α-stable variables with α < 2 have infinite variance also means that
techniques valid for the Gaussian case do not apply and special methods
must be developed.

Remark . Formula (6) for β = −1 established that P (ξ > x) → 0 faster
than x−α. In the case β = −1 and 1 < α < 2 the true rate of decay is expo-
nential. This fact was proved by Skorokhod (1953), who also obtained the
asymptotic expression for P (ξ > x) (see also Zolotarev (1983), Samorod-
nitsky & Taqqu (1994)). For β = −1, α < 1, P (ξ > x) = 0 for all x > 0
because ξ is totally skewed to the left.

2.3. Le Page series representation. Let {εi, i ≥ 1}, {Wi, i ≥ 1},
{Γi, i ≥ 1} be three independent sequences of r.v., where {εi, i ≥ 1} is
an iid sequence of Rademacher variables, {Wi, i ≥ 1} are iidrv with finite
E|W1|α, {Γi, i ≥ 1} is a sequence of arrival times of a Poisson process with
unite arrival rate, i.e. Γi has gamma distribution with parameter i. Any
symmetric α-stable r.v. ξ ∼ Sα(λ, 0) admits the series representation (i.e.
has the same distribution as)

λ(Cα/E|W1|α)1/α
∞∑
i=1

εiWiΓi
−1/α, (9)

where the series in (9) converges a.s. and Cα is determined by (7).
The series representation of skewed α-stable r.v. can be found in Samo-

rodnitsky and Taqqu (1994).

3. Limit theorems. Domains of attraction.

3.1. Limit theorems for sums of iidrv. Let {ξi, i ≥ 1} be i.i.d.r.v. with
common d.f. F (x), Sn =

∑n
1 ξi, S0 = 0. As it was mentioned above stable

laws and only they appear as limit distributions for the linear normalized
sums S∗

n = b−1
n (Sn − An). Two questions are of a great interest:

a) What properties of d.f. F (x) determine the parameters of Sα,β(x)?
b) What is the form of norming coefficients An and bn and how they are

connected with d.f. F(x) and Sα,β(x)?
The investigation of domains of attraction gave the answer to these

questions.

Definition 3. D.f. F(x) belongs to the domain of attraction of the sta-
ble distribution Sα,β(x) (notation F ∈ DASα,β) if there exist sequences of
norming constants an ∈ R1 and bn ≥ 0 such that for i.i.d.r.v. {ξi, i ≥ 1}
with common distribution F(x) linear normalized sums

S∗
n = b−1

n (Sn − An) = b−1
n (ξ1 + · · ·+ ξn − An) ⇒ Sα,β. (10)
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The set of all d.f. satisfying (10), forms the domain of attraction of
Sα,β(x), and only stable distributions possess their domains of attraction.

Theorem 1. D.f. F ∈ DASα,β if and only if

F (−x)

1− F (x) + F (−x)
→ p,

1− F (−x)

1− F (x) + F (−x)
→ q, (11)

where p + q = 1, β = p− q, and for any t > 0

lim
x→∞

1− F (x) + F (−x)

1− F (tx) + F (−tx)
= tα. (12)

Condition (11) is formulated in the form convenient for calculation of the
parameter’s β value, while condition (12) determines the value of parameter
α. In the other terminology it means, that the tail distribution P{|ξ1| >
x} = 1− F (x) + F (−x) is regularly varying function of order −α, i.e. for
large x

1− F (x) + F (−x) = x−αL(x), (13)

where L(x) is slowly varying at infinity.
Norming coefficients bn are also regularly varying, i.e. bn = n1/αL1(n),

L1(x) is slowly varying, and centering coefficients can be determined as

An = 0 for 0 < α < 1, An = nEξ1 for 1 < α < 2 and An = n
∫ bn

−bn
xdF (x)

for α = 1.
The distributions attracted to the stable law with parameter 0 < α < 2

have the same moment properties as the α-stable distributions.
Every stable law Sα belongs to his own domain of attraction with norm-

ing constants bn = n1/α. This fact was a good reason for Gnedenko to
introduce the notion of normal attraction.

Definition 4. D.f. F (x) belongs to the domain of normal attraction (F ∈
DNSα,β ), if bn = an1/α, a > 0.

Following statement completely characterized such domains:

Theorem 2. F ∈ DNSα,β for α ∈ (0, 2), |β| ≤ 1 iff for some x0 > 0

F (−x) = (c1a
α + ε1(x))|x|−α, 1− F (x) = (c2a

α + ε2(x))x−α as x > x0,

where a > 0, limx→−∞ ε1(x) = limx→∞ ε2(x) = 0, β = (c1 − c2)/(c1 + c2).
In this case An = 0 for 0 < α < 1, An = nEξ1 for 1 < α < 2 and

An = (2/π)βn lnn for α = 1.

3.2. Invariance principles. Let {ξi, i ≥ 1} be i.i.d.r.v. in domain of
attraction of α-stable law Sα,β(x; 1, 0), i.e. (n1/αL1(n))−1(Sn − An) ⇒ Sα,β

for appropriate slowly varying function L1. Then the process

(n1/αL1(n))−1(S[nt] − An), 0 < t < 1, (14)
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converges weakly to an α-stable Lévy process Yα(t), 0 < t < 1. Here weak
convergence is convergence in D[0, 1] equipped with Skorokhod J1 metric;
Yα(t) = Yα,β(t) is a separable process started from 0 with independent
stationary increments distributed according to the stable law and Yα(1) ∼
Sα,β(x; 1, 0). Such processes are cad-lag and for |β| = 1 have jumps of one
sign: only positive if β = 1 and negative if β = −1.

The other type of limit theorems (which deal with a.s. convergence) is
so-called strong invariance principle. In this context the strong invariance
principle means the possibility to construct on a single probability space
the sequence of partial sums Sn of i.i.d.r.v. {ξi, i ≥ 1} ∈ DNSα,β and the
sequence of sums Tn of the Sα,β-stable i.i.d.r.v. {ηi, i ≥ 1} in such a way
that a.s.

max
m≤n

|Sm − Tm| = o(n1/d) for some d > α. (15)

Sufficient conditions, which ensure (15), as well as possibility of a.s. approx-
imation of Sn with error term o(n1/α−ρ), ρ > 0, by α-stable Lévy process
Yα,β(t), t > 0, were obtained by Zinchenko (1987, 1998). For example, such
condition is boundedness of pseudomoments of order l > α.

3.3. Weak convergence of max under affine transformations. Let
{ξi, i ≥ 1} be i.i.d.r.v. with common d.f. F (x). If there exists constant
cn > 0 and dn ∈ R1 and non-degenerate d.f. G such that

cn(max
1≤i≤n

ξi − dn) ⇒ G, (16)

then G has one of three types:
a) Fréchet with G = Φα(x) = exp(−xα), x > 0, α > 0;
b) Weibull with G = Ψα(x) = exp(−(−x)α) , x ≤ 0, α > 0;
c) Gumbel with G = Λ(x) = exp(− exp(−x)),x ∈ R1.
In many cases the following von-Mises general representation for extreme

value distributions is rather useful

G(x) = Gh(x) = exp(−(1 + hx)−1/h), h �= 0,

and
G(x) = Gh(x) = exp(− exp(−x)), h = 0.

The case h = 1/α > 0 corresponds to Fréchet distribution, h = −1/α < 0
corresponds to Weibull distribution and h = 0 is the Gumbel case.

Definition 5. We say that r.v. ξ (d.f. F ) belongs to the maximum domain
of attraction to the extreme value distribution G if there exist constants cn

and dn such that (16) holds. We write ξ ∈ MDA(G) (F ∈ MDA(G)) in
this case.

There is a simple characterization of maximum domain of attraction to
the Fréchet distribution.
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Theorem 3. The d.f. F ∈ MDA(Φα) if and only if F̄ is regularly varying
at infinity with index −α.

Thus, for 0 < α < 2 there is a deep inter-relation between the domains
of attraction of α-stable law and maximum domains of attraction to the
Fréchet distribution.

For an excellent introduction in this topic see Embrechts et al. (1997).

4. Fluctuation of the sums of heavy-tailed r.v.

Let {ξi, i ≥ 1} be i.i.d.r.v. with the common d.f.F (x);

Sn =
n∑

i=1

ξi, S0 = 0, Sn
m =

n∑
i=m+1

ξi, L(N, k) = max
0≤n≤N−k

Sn+k
n .

What is the asymptotic behaviour of SN+k
N , SN

N−k and L(N, k), when 1 <
k = kN < N and N →∞ ?

In particular case of i.i.d. Bernoulli r.v.’s with success probability p ∈
(0, 1) this question about the magnitude of the increments of a random walk
Sn is closely related to the problem of the longest success-run. Also statistics
that depend only on the last k observations are used in time series analysis
and analysis of censored data. Particularly, it is interesting to study the
growth rate of Sn

n−k and to obtain the explicit form of normalizing sequence
γn = γ(n, kn), which provides the a.s. convergence

lim sup
n→∞

1

γn
Sn

n−k = c = const �= 0.

Erdös and Rényi were first who studied the Bernoulli case as well as the
case of Gaussian summands.

In this Section we consider i.i.d.r.v. with ”heavy tails”, and focus on
i.i.d.r.v. distributed according to the stable law Sα,β with parameters 1 <
α < 2, β = −1, Eξ1 = 0.

Zinchenko (1992) proposed to use integral tests to investigate the the
growth rate of increments of Levy stable process Yα,β(t) with parameters
1 < α < 2, β = −1. As a consequence of such approach it is possible to
obtain a number of asymptotic results for the lag sums of r.v. distributed
according to the stable law with given above parameter values.

Theorem 4. Let {kN , n ≥ 1} be non-decreasing sequence of positive num-
bers, such that: (i) 0 < kN < N , (ii) N/kN does not decrease in N. Then
with the probability 1

lim sup
N→∞

SN+kN
N /k

1/α
N d∗(N) = lim sup

N→∞
L(N, kN )/k

1/α
N d∗(N) = 1, (17)

lim sup
N→∞

max
1≤m≤N−kN

max
1≤l≤kN

Sm+l
m /k

1/α
N d∗(N) = 1, (18)
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where d∗(N) = {B−1 ln ln N + ln N/kN)}1/λ.

Corollary 1. For kN = [c lnN ], c > 0 we have a.s.

lim sup
N→∞

L(N, [c ln N)/c1/α lnN = B−1/λ,

this is a straightforward generalization of Erdös-Rényi law for sums of ran-
dom variables with asymmetric stable distribution.

Corollary 2. With the probability 1

lim sup
N→∞

L(N, [cN ])

N1/α(ln ln N)1/λ
= c1/αB−1/λ, 0 < c < 1,

lim sup
N→∞

L(N, [Nρ])

Nρ/α(ln N)1/λ
= (

1− ρ

B
)1/λ, 0 < ρ < 1;

lim sup
N→∞

L(N, [lnτ N ])

(ln N)τ+α−1
= B−1/λ, τ > 0;

lim sup
N→∞

L(N, 1)

(lnN)1/λ
= lim sup

N→∞
( max
1≤k≤N−1

ξk)/(lnN)1/λ = B−1/λ.

The last relation in terms of order statistics ξ
(n)
i for n independent Sα,−1-

distributed observations means that a.s.

lim sup
N→∞

ξ
(n)
n

(lnN)1/λ
= lim sup

N→∞
( max
1≤k≤N−1

ξk)/(lnN)1/λ = B−1/λ.

The statements of Theorem 3 and Corollary 1 via strong invariance
principle can be easily extended on i.i.d.r.v. belonging to the domain of
normal attraction of the stable law (Zinchenko (1999)).

5. Statistical inference for heavy-tailed models

5.1. Estimation of the index α of regular varying. We start with a
very simple but not exact method.

5.1.1. Log-log CD (complementary distribution) plots.
CD plots present the complementary distribution F (x) on log-log axes.

Ploted in this way d.f. F ∈ DNGα,β has a property log(1−F (x)) ∼ −α log x
for large x. In practice one obtain an estimate for α by ploting CD plot
of the data set (x1, . . . , xn) selecting a minimal value x0 above which the
plot appears to be approximately linear. Then it is necessary to take points
xi > x0 and estimate the slope using least-square regression.

5.1.2. Hill’s-type estimators. This approach is based on relation be-
tween domains of attraction to α-stable law and maximal domains of at-
traction to extreme value law (see Theorem 3). The basic idea consists of
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finding conditions equivalent to F ∈ MDA(Gh), which involves parameter
h = 1/α in a simple way, and applying the properties of order statistics.
Note that this approach provides estimators which valid for rather wide
classes of distributions.

Let (x1, . . . , xn) be a sample of iidrv with common d.f. F . We use
notation x∗

(n) ≤ · · · ≤ x∗
(1) for the ordered sample and called x∗

(k) the k-th
upper statistics.
Hill estimator ( 1975) of index α for d.f. F ∈ MDA(Φα) depends on the k
largest observations and has a form α̂ = 1/Ĥ, where

Ĥ = Ĥk,n = (1/k)

k∑
i=1

(log x∗
(i) − log x∗

(k+1)).

Pickands estimator (1975) is applicable for estimating a shape parameter h
of d.f. F in domain of maximal attraction of any extreme value distribution

ĥ = p̂k = (1/ ln 2)
log x∗

(k) − log x∗
(2k)

log x∗
(2k) − log x∗

(4k)

.

So, the estimator for α is α̂ = 1/ĥ.
De Haan-Resnick estimator (1980) has a form α̂ = 1/R̂, where

R̂ = R̂k = (1/ ln k)(log x∗
(1) − log x∗

(k)).

Dekker-Einmahl-de Haan estimator (1990) was proposed as modification of
Hill estimator extended to cover the whole class MDA(Gh), h ∈ R1. It has
a form

D = H + 1− 1

2
{1− (H)2/H∗}−1,

where H is Hill estimator,

H∗ = (1/k)
k∑

i=1

(log x∗
(i) − log x∗

(k+1))

and can be interpreted as moment estimator.
If k → ∞, k/n → 0 for n → ∞ then Hill’s estimators are consistent;

they are strong consistent if, additionally, k/ ln ln n →∞.
The main disadvantages of Hill’s type estimations are presence of bias

and absence of formal procedures for optimal choice of k = k(n); Hill es-
timator is very sensitive with respect to dependence. The numerical in-
vestigation of these estimators carried out by Pitet, Dacorogna and Muller
(1998)demonstrated that Dekker-Einmahl-de Haan estimator is generally
downward bias, de Haan-Resnick estimator systematically has upward bias,
Pickand’s and Hill’s estimators show fluctuations around true value.
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5.2. Estimation of stable law parameters. McCulloch (1984,1996)
proposed estimators based on the functions of the sample quantiles; his
approach seems to be optimal in the exact stable case, but situation changes
when in data there are deviations from assumption of stability. In this
case Hill estimators may be preferable. An alternative approach based on
properties of d.f. in DASα,β (analogous to Theorem 1) and empirical d.f. is
discussed in de Haan & Pereira (1997), while Koutrouvelis (1980) suggested
estimators based on empirical ch.f.

5.3. Numerical simulation. LePage series representation can be taken
as a base for computer simulation, but a very slow convergence of LePage
sums makes this method practically usefulles.

The best method of computer simulation of an important class of sym-
metric α-stable variables X ∼ Sα(x; 1, 0) includes following steps:

i) generate a r.v. V uniformly distributed on (−π/2, π/2) and an expo-
nent r.v. W with mean 1; ii) compute

X =
sin(αV )

{cos(αV )}1/α
{cos(V − αV )

W
}(1−α)/α.

The analogous algorithm providing simulation of skewed stable r.v. with
α �= 1 is presented in Yanicki and Weron (1994).

5.4. Comments. Stable distributions were successfully used to fit data
sets that includes interest rate changes, stock returns and foreign exchange
rates (Mitinik and Rachev (1995), McCuloch (1996), McDonalds (1996),
Embrechts et al (1998), see also articles by Mitinik , Rachev & Peolella
and Mullar, Dacorogna & Pictet in collection [1] with further references);
portfolio optimization and Capital Asset Pricing Model as wel as the ways
of extension of Black-Sholes option pricing model for α-stable Paretian case
(α < 2) are also discussed in these works. Chapter 7 of Embrechts et al.
(1998) and Rachev, Kim & Mitinik (1999) can serve as a good introduction
in time series analysis under stable non-Gaussian hypothesis.

6. Ruin probabilities in the presence of large claims.

6.1. Ruin probabilities in classical Cramer-Lundberg set-up. We
start with Cramer-Lundberg set-up, when the resulting risk process U(t),
t ≥ 0, is defined as

U(t) = u + ct− S(t) = u + ct−
N(t)∑
i=1

Xi, (19)

where the claim arrival process N(t), t > 0 is a Poisson process with rate λ;
the claim sizes {Xi, i ≥ 1} are positive iidrv with common non-lattice d.f.
F and finite mean µ = EX1, u - initial capital, c - loaded premium rate .
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Denote by MX(ν) = E(exp νX1), F (x) = 1− F (x) stands for tail of F ,
F ∗n denotes the n-th convolution of F and

FI(x) =
1

µ

∫ x

0

F (y)dy, x > 0,

is called integrated tail distribution.

The classical problem of calculating ruin probabilities deals with

(a) ψ(u, T ) = P{u(t) < 0 for some 0 < t ≤ T}, 0 < T < ∞, u > 0 -
the ruin probability in finite time;

(b) ψ(u) = ψ(u,∞) = P{u(t) < 0 for some t > 0} - the ruin probability
in infinite time.

We focused on asymptotic behaviour of ψ(u) when initial capital u grows.

Let net profit condition ρ = (c/λµ) − 1 > 0 be true and assume that
there exists a solution ν > 0 (called adjustment coefficient) of the equation
MX(ν) = (cν + λ)/λ. Then the selebrated Cramer-Lundberg’s inequality
states that for any initial capital u ≥ 0

ψ(u) ≤ e−νu.

If, moreover,
∫∞
0

xeνxF (x) dx < ∞, then ψ(u) ∼ Ce−νx for certain C > 0.

Condition on MX(ν) means that claim distribution has exponentially
bounded tails. The class of distributions with ”light tails” , which satisfy
this condition, includes, for instance, exponential, gamma, truncated normal
and Weibull distribution with df F (x) = 1−exp(−cxτ ), c > 0, τ ≥ 1, as well
as all distributions with bounded support; for all of them Cramer-Lundberg
estimate holds true.

Pareto distribution is often used to model the claim sizes in property
insurance, but unfortunately, we cannot use Cramer-Lundberg estimate in
this case because an adjustment coefficient does not exists. Two questions
arise from this simple example:

1)Is it possible to obtain simple estimates for ψ(u) for concrete heavy-
tailed distribution?

2) Is there alternative methodology and rich classes of heavy-tailed dis-
tributions which admit general approach to ruin probability evaluation ?

In 1970s the positive answers on the first question were given by von
Bahr for Pareto distributions and by Thorin and Wikstad for lognormal
claim sizes.

On the other hand, Embrechts and Veraverbeke (1982) pointed out the
fundamental role of class of subexponential distributions for ruin theory in
the case of heavy tails.

6.2. Ruin probabilities in subexponential case. In this section assume
that df F has support (a,∞), a ≥ 0.
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Definition 6. A d.f. F is subexponential if for all n ≥ 2

lim
x→∞

F n∗(x)

F (x)
= lim

x→∞

1− F n∗(x)

1− F (x)
= n. (20)

The class of subexponential df is denoted by S. A few words about proba-
bilistic sense of (20): if X1, . . . , Xn are iidrv with df F , Sn =

∑n
i=1 Xi, then

1 − F n∗(x) = P{Sn ≥ x} and P{max1≤i≤nXi ≥ x} = F
n
(x) ∼ nF (x), as

x →∞. Thus,
P{Sn ≥ x} ∼ P{max1≤i≤nXi ≥ x}.

So, asymptotically, behaviour of the total claim amount is governed by
one very big claim. This is one of the intuitive notions of heavy-tailed
distributions, which explained why S can be applied to model big claim
amounts and clarifies the links with extremal value theory.

Condition (20) can be simplified, so that one needs to check (20) only
for n = 2.

Class S is rather rich, it includes, besides other, the class R−α of the
distributions with regular varying tails with index −α, α > 1. Examples
of subexponential distributions are: lognormal,Pareto, Burr, log-gamma,
Weibull with parameter 0 < τ < 1, Benktander type I, II; truncated stable
distribution 1−F (x) = P{|ξ| > x} where ξ is α-stable r.v.with |β| ≤ 1, 1 <
α < 2. The assumption 1 < α < 2 provides the existence of the finite mean
Eξ < ∞. The typical example of d.f. not belonging to S is an exponential
distribution itself.

In the case of claims with subexponential integrated tail distributions
the ruin probability has rather simple asymptotics:

Theorem 5. Consider the Cramer-Lundberg model with net profit condition
ρ > 0 and FI(x) ∈ S. Then

ψ(u) ∼ ρ−1F I(u), u →∞. (21)

The next theorem (see Embrehts et al(1997)) states that formula (21) is
only possible under condition FI ∈ S.

Theorem 6. In Cramer-Lundberg model with net profit ρ > 0 following
assertions are equivalent:

(a) FI ∈ S,

(b) lim
u→∞

ψ(u)/FI(u) = ρ−1.

This fact ones more underline the natural choice (from analytic point of
view) of class S when classical Cramer-Lundberg condition is violated.

The above results can be generalized to more general risk models (
Grandell (1991), Rolski et al. (1999), Schmidli (1999), Asmussen et al.
(1999)).
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A number of sufficient conditions for F ∈ S and FI ∈ S in terms of
the hazard rate g(x) = f(x)/F (x) and hazard function Q(x) = − ln F (x)
are given in Kluppelberg (1989), Embrechts and Veraverbeke (1982), Em-
brechts et al(1997)). This conditions help to check that all distributions,
mentioned above, i.e. Pareto, Weibull (τ < 1), lognormal, loggamma, Burr,
Benktander-type-I and II are subexponential as well as their integrated tails
FI . Thus, for these distributions theorem 5 is true.

6.3. Ruin probabilities in the presence of heavy tails and inter-
est rates. Consider the classical Cramer-Lundberg model when insurance
company in addition to the linear premium income also receives interest on
its reserves with a constant force of interest δ > 0, then the risk process

Uδ(t) = ueδt + c

t∫
0

eδvdv −
t∫

0

eδ(t−v)dS(v), t ≥ 0,

where S(t) =
∑N(t)

n=1 Xn, premium rate c > 0, u is initial capital.

It occurs that for δ > 0 relation (21) is no longer valid. Instead Klup-
pelberg and Stadmular (1998) obtained that under assumption that size
distribution F has a regular varying tail (F ∈ R−α, α > 1):

ψδ(u) ∼ kδF (u), u →∞. (22)

Hence this result is applied, for instance, to Pareto, loggamma, certain
Benktander and stable claim sizes. By different methods Assmussen (1996)
derived analogous results for the whole class of subexponential claims.

6.4. Perturbed processes. There are other possibilities of appearing
heavy tails in risk models. For instance, we can consider the model

U(t) = u + ct− S(t) + Yα(t) = u + ct−
N(t)∑
i=1

Xi + Yα(t),

perturbed by α-stable process Yα(t), t > 0, 1 < α < 2, β = 1. The pertur-
bation can be interpretered as a fluctuation of the premium income, of the
return from investment income, or as a fluctuation of the environment. Case
α = 2 corresponds to perturbation by Brownian motion (Grandell(1970)).
When α < 2 the perturbation leads to heavy tails even in the case of
light-tailed claims. Models which includes heavy tails both in claim sizes
and perturbation process are also rather interesting; for details see Furrer
(1998) and Schmidli (1999) with a rich bibliography.
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