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3.9 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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Preface

This book originated with several courses given at the University of Texas.

The audience consisted of graduate students of mathematics, physics, electri-
cal engineering, and finance. Most had met some stochastic analysis during

work in their field; the course was meant to provide the mathematical un-
derpinning. To satisfy the economists, driving processes other than Wiener

process had to be treated; to give the mathematicians a chance to connect
with the literature and discrete-time martingales, I chose to include driving

terms with jumps. This plus a predilection for generality for simplicity’s sake
led directly to the most general stochastic Lebesgue–Stieltjes integral.

The spirit of the exposition is as follows: just as having finite variation and

being right-continuous identifies the useful Lebesgue–Stieltjes distribution
functions among all functions on the line, are there criteria for processes to

be useful as “random distribution functions.” They turn out to be straight-
forward generalizations of those on the line. A process that meets these

criteria is called an integrator, and its integration theory is just as easy as
that of a deterministic distribution function on the line – provided Daniell’s

method is used. (This proviso has to do with the lack of convexity in some
of the target spaces of the stochastic integral.)

For the purpose of error estimates in approximations both to the stochastic

integral and to solutions of stochastic differential equations we define various
numerical sizes of an integrator Z and analyze rather carefully how they

propagate through many operations done on and with Z , for instance, solving
a stochastic differential equation driven by Z . These size-measurements

arise as generalizations to integrators of the famed Burkholder–Davis–Gundy
inequalities for martingales. The present exposition differs in the ubiquitous

use of numerical estimates from the many fine books on the market, where

convergence arguments are usually done in probability or every once in a
while in Hilbert space L2 . For reasons that unfold with the story we employ

the Lp-norms in the whole range 0 ≤ p < ∞ . An effort is made to furnish
reasonable estimates for the universal constants that occur in this context.

Such attention to estimates, unusual as it may be for a book on this subject,
pays handsomely with some new results that may be edifying even to the

expert. For instance, it turns out that every integrator Z can be controlled

xi



xii Preface

by an increasing previsible process much like a Wiener process is controlled
by time t ; and if not with respect to the given probability, then at least

with respect to an equivalent one that lets one view the given integrator as a
map into Hilbert space, where computation is comparatively facile. This

previsible controller obviates prelocal arguments [91] and can be used to
construct Picard norms for the solution of stochastic differential equations

driven by Z that allow growth estimates, easy treatment of stability theory,
and even pathwise algorithms for the solution. These schemes extend without

ado to random measures, including the previsible control and its application
to stochastic differential equations driven by them.

All this would seem to lead necessarily to an enormous number of tech-

nicalities. A strenuous effort is made to keep them to a minimum, by these
devices: everything not directly needed in stochastic integration theory and

its application to the solution of stochastic differential equations is either
omitted or relegated to the Supplements or to the Appendices. A short sur-

vey of the beautiful “General Theory of Processes” developed by the French
school can be found there.

A warning concerning the usual conditions is appropriate at this point.
They have been replaced throughout with what I call the natural conditions.

This will no doubt arouse the ire of experts who think one should not “tamper
with a mature field.” However, many fine books contain erroneous statements

of the important Girsanov theorem – in fact, it is hard to find a correct
statement in unbounded time – and this is traceable directly to the employ

of the usual conditions (see example 3.9.14 on page 164 and 3.9.20). In
mathematics, correctness trumps conformity. The natural conditions confer

the same benefits as do the usual ones: path regularity (section 2.3), section

theorems (page 437 ff.), and an ample supply of stopping times (ibidem),
without setting a trap in Girsanov’s theorem.

The students were expected to know the basics of point set topology up
to Tychonoff’s theorem, general integration theory, and enough functional

analysis to recognize the Hahn–Banach theorem. If a fact fancier than that
is needed, it is provided in appendix A, or at least a reference is given.

The exercises are sprinkled throughout the text and form an integral part.
They have the following appearance:

Exercise 4.3.2 This is an exercise. It is set in a smaller font. It requires
no novel argument to solve it, only arguments and results that have appeared
earlier. Answers to some of the exercises can be found in appendix B. Answers
to most of them can be found in appendix C, which is available on the web via

http://www.ma.utexas.edu/users/cup/Answers.

I made an effort to index every technical term that appears (page 489), and

to make an index of notation that gives a short explanation of every symbol
and lists the page where it is defined in full (page 483). Both indexes appear

in expanded form at http://www.ma.utexas.edu/users/cup/Indexes.
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http://www.ma.utexas.edu/users/cup/Errata contains the errata. I
plead with the gentle reader to send me the errors he/she found via email

to kbi@math.utexas.edu, so that I may include them, with proper credit of
course, in these errata.

At this point I recommend reading the conventions on page 363.



1

Introduction

1.1 Motivation: Stochastic Differential Equations

Stochastic Integration and Stochastic Differential Equations (SDEs) appear

in analysis in various guises. An example from physics will perhaps best
illuminate the need for this field and give an inkling of its particularities.

Consider a physical system whose state at time t is described by a vector Xt

in Rn . In fact, for concreteness’ sake imagine that the system is a space

probe on the way to the moon. The pertinent quantities are its location and
momentum. If xt is its location at time t and pt its momentum at that

instant, then Xt is the 6-vector (xt, pt) in the phase space R6 . In an ideal
world the evolution of the state is governed by a differential equation:

dXt

dt
=

(
dxt/dt

dpt/dt

)
=

(
pt/m

F (xt, pt)

)
.

Here m is the mass of the probe. The first line is merely the definition of p :

momentum = mass × velocity. The second line is Newton’s second law: the

rate of change of the momentum is the force F . For simplicity of reading we
rewrite this in the form

dXt = a(Xt) dt , (1.1.1)

which expresses the idea that the change of Xt during the time-interval dt
is proportional to the time dt elapsed, with a proportionality constant or

coupling coefficient a that depends on the state of the system and is provided
by a model for the forces acting. In the present case a(X) is the 6-vector

(p/m, F (X)). Given the initial state X0 , there will be a unique solution
to (1.1.1). The usual way to show the existence of this solution is Picard’s

iterative scheme: first one observes that (1.1.1) can be rewritten in the form

of an integral equation:

Xt = X0 +

∫ t

0

a(Xs) ds . (1.1.2)

Then one starts Picard’s scheme with X0
t = X0 or a better guess and defines

the iterates inductively by

Xn+1
t = X0 +

∫ t

0

a(Xn
s ) ds .

1



2 1 Introduction

If the coupling coefficient a is a Lipschitz function of its argument, then the
Picard iterates Xn will converge uniformly on every bounded time-interval

and the limit X∞ is a solution of (1.1.2), and thus of (1.1.1), and the only
one. The reader who has forgotten how this works can find details on pages

274–281. Even if the solution of (1.1.1) cannot be written as an analytical
expression in t , there exist extremely fast numerical methods that compute

it to very high accuracy. Things look rosy.

In the less-than-ideal real world our system is subject to unknown forces,

noise. Our rocket will travel through gullies in the gravitational field that are
due to unknown inhomogeneities in the mass distribution of the earth; it will

meet gusts of wind that cannot be foreseen; it might even run into a gaggle
of geese that deflect it. The evolution of the system is better modeled by an

equation

dXt = a(Xt) dt+ dGt , (1.1.3)

where Gt is a noise that contributes its differential dGt to the change dXt

of Xt during the interval dt . To accommodate the idea that the noise comes
from without the system one assumes that there is a background noise Zt
– consisting of gravitational gullies, gusts, and geese in our example – and
that its effect on the state during the time-interval dt is proportional to the

difference dZt of the cumulative noise Zt during the time-interval dt , with
a proportionality constant or coupling coefficient b that depends on the state

of the system:

dGt = b(Xt) dZt .

For instance, if our probe is at time t halfway to the moon, then the effect
of the gaggle of geese at that instant should be considered negligible, and the

effect of the gravitational gullies is small. Equation (1.1.3) turns into

dXt = a(Xt) dt+ b(Xt) dZt , (1.1.4)

in integrated form Xt = X0
t +

∫ t

0

a(Xs) ds+

∫ t

0

b(Xs) dZs . (1.1.5)

What is the meaning of this equation in practical terms? Since the back-

ground noise Zt is not known one cannot solve (1.1.5), and nothing seems to

be gained. Let us not give up too easily, though. Physical intuition tells us
that the rocket, though deflected by gullies, gusts, and geese, will probably

not turn all the way around but will rather still head somewhere in the vicin-
ity of the moon. In fact, for all we know the various noises might just cancel

each other and permit a perfect landing.

What are the chances of this happening? They seem remote, perhaps, yet
it is obviously important to find out how likely it is that our vehicle will at

least hit the moon or, better, hit it reasonably closely to the intended landing
site. The smaller the noise dZt , or at least its effect b(Xt) dZt , the better

we feel the chances will be. In other words, our intuition tells us to look for
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a statistical inference: from some reasonable or measurable assumptions on
the background noise Z or its effect b(X)dZ we hope to conclude about the

likelihood of a successful landing.
This is all a bit vague. We must cast the preceding contemplations in a

mathematical framework in order to talk about them with precision and,
if possible, to obtain quantitative answers. To this end let us introduce

the set Ω of all possible evolutions of the world. The idea is this: at the
beginning t = 0 of the reckoning of time we may or may not know the state-

of-the-world ω0 , but thereafter the course that the history ω : t 7→ ωt of the
world actually will take has the vast collection Ω of evolutions to choose from.

For any two possible courses-of-history 1ω : t 7→ ωt and ω′ : t 7→ ω′t the state-
of-the-world might take there will generally correspond different cumulative

background noises t 7→ Zt(ω) and t 7→ Zt(ω
′). We stipulate further that

there is a function P that assigns to certain subsets E of Ω, the events,
a probability P[E] that they will occur, i.e., that the actual evolution lies

in E . It is known that no reasonable probability P can be defined on all
subsets of Ω. We assume therefore that the collection of all events that can

ever be observed or are ever pertinent form a σ-algebra F of subsets of Ω
and that the function P is a probability measure on F . It is not altogether

easy to defend these assumptions. Why should the observable events form
a σ-algebra? Why should P be σ-additive? We content ourselves with this

answer: there is a well-developed theory of such triples (Ω,F ,P); it comprises
a rich calculus, and we want to make use of it. Kolmogorov [57] has a better

answer:

Project 1.1.1 Make a mathematical model for the analysis of random phenomena
that does not require σ-additivity at the outset but furnishes it instead.

So, for every possible course-of-history 1 ω ∈ Ω there is a background noise
Z. : t 7→ Zt(ω), and with it comes the effective noise b(Xt) dZt(ω) that our

system is subject to during dt . Evidently the state Xt of the system depends
on ω as well. The obvious thing to do here is to compute, for every ω ∈ Ω,

the solution of equation (1.1.5), to wit,

Xt(ω) = X0
t +

∫ t

0

a(Xs(ω)) ds+

∫ t

0

b(Xs(ω)) dZs(ω) , (1.1.6)

as the limit of the Picard iterates X0
t

def= X0,

Xn+1
t (ω) def= X0

t +

∫ t

0

a(Xn
s (ω)) ds+

∫ t

0

b(Xn
s (ω)) dZs(ω) . (1.1.7)

Let T be the time when the probe hits the moon. This depends on chance,

of course: T = T (ω). Recall that xt are the three spatial components of Xt .

1 The redundancy in these words is for emphasis. [Note how repeated references to a
footnote like this one are handled. Also read the last line of the chapter on page 41 to see
how to find a repeated footnote.]
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Our interest is in the function ω 7→ xT (ω) = xT (ω)(ω), the location of the
probe at the time T . Suppose we consider a landing successful if our probe

lands within F feet of the ideal landing site s at the time T it does land.
We are then most interested in the probability

pF
def= P

(
{ω ∈ Ω :

∥∥xT (ω) − s
∥∥ < F}

)

of a successful landing – its value should influence strongly our decision to

launch. Now xT is just a function on Ω, albeit defined in a circuitous way. We
should be able to compute the set {ω ∈ Ω : ‖xT (ω) − s‖ < F} , and if we have

enough information about P , we should be able to compute its probability pF
and to make a decision. This is all classical ordinary differential equations

(ODE), complicated by the presence of a parameter ω : straightforward in
principle, if possibly hard in execution.

The Obstacle

As long as the paths Z.(ω) : s 7→ Zs(ω) of the background noise are
right-continuous and have finite variation, the integrals

∫
· · ·s dZs appear-

ing in equations (1.1.6) and (1.1.7) have a perfectly clear classical meaning

as Lebesgue–Stieltjes integrals, and Picard’s scheme works as usual, under
the assumption that the coupling coefficients a, b are Lipschitz functions (see

pages 274–281).

Now, since we do not know the background noise Z precisely, we must
make a model about its statistical behavior. And here a formidable ob-

stacle rears its head: the simplest and most plausible statistical assumptions
about Z force it to be so irregular that the integrals of (1.1.6) and (1.1.7) can-

not be interpreted in terms of the usual integration theory. The moment we

stipulate some symmetry that merely expresses the idea that we don’t know
it all, obstacles arise that cause the paths of Z to have infinite variation and

thus prevent the use of the Lebesgue–Stieltjes integral in giving a meaning to
expressions like

∫
Xs dZs(ω).

Here are two assumptions on the random driving term Z that are eminently

plausible:

(a) The expectation of the increment dZt ≈ Zt+h − Zt should be zero;

otherwise there is a drift part to the noise, which should be subsumed in the
first driving term

∫
· ds of equation (1.1.6). We may want to assume a bit

more, namely, that if everything of interest, including the noise Z.(ω), was
actually observed up to time t , then the future increment Zt+h − Zt still

averages to zero. Again, if this is not so, then a part of Z can be shifted into
a driving term of finite variation so that the remainder satisfies this condition

– see theorem 4.3.1 on page 221 and proposition 4.4.1 on page 233. The
mathematical formulation of this idea is as follows: let Ft be the σ-algebra

generated by the collection of all observations that can be made before and at
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time t ; Ft is commonly and with intuitive appeal called the history or past
at time t . In these terms our assumption is that the conditional expectation

E
[
Zt+h − Zt

∣∣Ft
]

of the future differential noise given the past vanishes. This makes Z a

martingale on the filtration F. = {Ft}0≤t<∞ – these notions are discussed in
detail in sections 1.3 and 2.5.

(b) We may want to assume further that Z does not change too wildly
with time, say, that the paths s 7→ Zs(ω) are continuous. In the example

of our space probe this reflects the idea that it will not blow up or be hit
by lightning; these would be huge and sudden disturbances that we avoid by

careful engineering and by not launching during a thunderstorm.
A background noise Z satisfying (a) and (b) has the property that almost

none of its paths Z.(ω) is differentiable at any instant – see exercise 3.8.13
on page 152. By a well-known theorem of real analysis, 2 the path s 7→ Zs(ω)

does not have finite variation on any time-interval; and this irregularity

happens for almost every ω ∈ Ω!
We are stumped: since s 7→ Zs does not have finite variation, the integrals∫
· · ·dZs appearing in equations (1.1.6) and (1.1.7) do not make sense in any

way we know, and then neither do the equations themselves.

Historically, the situation stalled at this juncture for quite a while. Wiener
made an attempt to define the integrals in question in the sense of distribution

theory, but the resulting Wiener integral is unsuitable for the iteration scheme
(1.1.7), for lack of decent limit theorems.

Itô’s Way Out of the Quandary

The problem is evidently to give a meaning to the integrals appearing in

(1.1.6) and (1.1.7). Not only that, any prospective integral must have rather

good properties: to show that the iterates Xn of (1.1.7) form a Cauchy
sequence and thus converge there must be estimates available; to show that

their limit is the solution of (1.1.6) there must be a limit theorem that permits
the interchange of limit and integral, to wit,

∫ t

0

lim
n
b
(
Xn
s

)
dZs = lim

n

∫ t

0

b
(
Xn
s

)
dZs .

In other words, what is needed is an integral satisfying the Dominated Con-

vergence Theorem, say. Convinced that an integral with this property cannot
be defined pathwise, i.e., ω for ω , the Japanese mathematician Itô decided

to try for an integral in the sense of the L2-mean. His idea was this: while
the sums

SP (ω) def=

K∑

k=1

b
(
Xσk

(ω)
) (
Zsk+1

(ω) − Zsk
(ω)
)
, sk ≤ σk ≤ sk+1 , (1.1.8)

2 See for example [96, pages 94–100] or [9, page 157 ff.].
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which appear in the usual definition of the integral, do not converge for
any ω ∈ Ω, there may obtain convergence in mean as the partition

P = {s0 < s1 < . . . < sK+1} is refined. In other words, there may be a ran-
dom variable I such that

‖SP − I ‖L2 → 0 as mesh[P] → 0 .

And if SP should not converge in L2-mean, it may converge in Lp-mean for

some other p ∈ (0,∞), or at least in measure (p = 0).

In fact, this approach succeeds, but not without another observation that

Itô made: for the purpose of Picard’s scheme it is not necessary to integrate
all processes.3 An integral defined for non-anticipating integrands suffices. In

order to describe this notion with a modicum of precision, we must refer again

to the σ-algebras Ft comprising the history known at time t . The integrals∫ t
0
a(X0) ds = a(X0) · t and

∫ t
0
b(X0) dZs(ω) = b(X0) ·

(
Zt(ω)−Z0(ω)

)
are at

any time measurable on Ft because Zt is; then so is the first Picard iterate
X1
t . Suppose it is true that the iterate Xn of Picard’s scheme is at all

times t measurable on Ft ; then so are a(Xn
t ) and b(Xn

t ). Their integrals,
being limits of sums as in (1.1.8), will again be measurable on Ft at all

instants t ; then so will be the next Picard iterate Xn+1
t and with it a(Xn+1

t )
and b(Xn+1

t ), and so on. In other words, the integrands that have to be dealt

with do not anticipate the future; rather, they are at any instant t measurable
on the past Ft . If this is to hold for the approximation of (1.1.8) as well,

we are forced to choose for the point σi at which b(X) is evaluated the left
endpoint si−1 . We shall see in theorem 2.5.24 that the choice σi = si−1

permits martingale4 drivers Z – recall that it is the martingales that are
causing the problems.

Since our object is to obtain statistical information, evaluating integrals
and solving stochastic differential equations in the sense of a mean would pose

no philosophical obstacle. It is, however, now not quite clear what it is that

equation (1.1.5) models, if the integral is understood in the sense of the mean.
Namely, what is the mechanism by which the random variable dZt affects the

change dXt in mean but not through its actual realization dZt(ω)? Do the
possible but not actually realized courses-of-history 1 somehow influence the

behavior of our system? We shall return to this question in remarks 3.7.27
on page 141 and give a rather satisfactory answer in section 5.4 on page 310.

Summary: The Task Ahead

It is now clear what has to be done. First, the stochastic integral in the
Lp-mean sense for non-anticipating integrands has to be developed. This

3 A process is simply a function Y : (s, ω) 7→ Ys(ω) on R+×Ω. Think of Ys(ω) = b(Xs(ω)).
4 See page 5 and section 2.5, where this notion is discussed in detail.
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is surprisingly easy. As in the case of integrals on the line, the integral
is defined first in a non-controversial way on a collection E of elementary

integrands. These are the analogs of the familiar step functions. Then that
elementary integral is extended to a large class of processes in such a way

that it features the Dominated Convergence Theorem. This is not possible
for arbitrary driving terms Z , just as not every function z on the line is

the distribution function of a σ-additive measure – to earn that distinction
z must be right-continuous and have finite variation. The stochastic driving

terms Z for which an extension with the desired properties has a chance to
exist are identified by conditions completely analogous to these two and are

called integrators.
For the extension proper we employ Daniell’s method. The arguments are

so similar to the usual ones that it would suffice to state the theorems, were it

not for the deplorable fact that Daniell’s procedure is generally not too well
known, is even being resisted. Its efficacy is unsurpassed, in particular in the

stochastic case.
Then it has to be shown that the integral found can, in fact, be used to

solve the stochastic differential equation (1.1.5). Again, the arguments are
straightforward adaptations of the classical ones outlined in the beginning

of section 5.1, jazzed up a bit in the manner well known from the theory
of ordinary differential equations in Banach spaces

(
e.g., [22, page 279 ff.]

– the reader need not be familiar with it, as the details are developed in
chapter 5

)
. A pleasant surprise waits in the wings. Although the integrals

appearing in (1.1.6) cannot be understood pathwise in the ordinary sense,
there is an algorithm that solves (1.1.6) pathwise, i.e., ω–by–ω . This answers

satisfactorily the question raised above concerning the meaning of solving a
stochastic differential equation “in mean.”

Indeed, why not let the cat out of the bag: the algorithm is simply the

method of Euler–Peano. Recall how this works in the case of the deterministic
differential equation dXt = a(Xt) dt . One gives oneself a threshold δ and

defines inductively an approximate solution X
(δ)
t at the points tk

def= kδ ,

k ∈ N , as follows: if X
(δ)
tk

is constructed, wait until the driving term t
has changed by δ , and let tk+1

def= tk + δ and

X
(δ)
tk+1

= X
(δ)
tk

+ a(X
(δ)
tk

) × (tk+1 − tk) ;

between tk and tk+1 define X
(δ)
t by linearity. The compactness criterion

A.2.38 of Ascoli–Arzelà allows the conclusion that the polygonal paths X (δ)

have a limit point as δ → 0, which is a solution. This scheme actually

expresses more intuitively the meaning of the equation dXt = a(Xt) dt than
does Picard’s. If one can show that it converges, one should be satisfied that

the limit is for all intents and purposes a solution of the differential equation.
In fact, the adaptive version of this scheme, where one waits until the

effect of the driving term a(X
(δ)
tk

)× (t− tk) is sufficiently large to define tk+1
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and X
(δ)
tk+1

, does converge for almost all ω ∈ Ω in the stochastic case, when

the deterministic driving term t 7→ t is replaced by the stochastic driver
t 7→ Zt(ω) (see section 5.4).

So now the reader might well ask why we should go through all the labor
of stochastic integration: integrals do not even appear in this scheme! And

the question of what it means to solve a stochastic differential equation “in
mean” does not arise. The answer is that there seems to be no way to prove

the almost sure convergence of the Euler–Peano scheme directly, due to the
absence of compactness. One has to show 5 that the Picard scheme works

before the Euler–Peano scheme can be proved to converge.

So here is a new perspective: what we mean by a solution of equa-
tion (1.1.4),

dXt(ω) = a(Xt(ω)) dt+ b(Xt(ω)) dZt(ω) ,

is a limit to the Euler–Peano scheme. Much of the labor in these notes is

expended just to establish via stochastic integration and Picard’s method
that this scheme does, in fact, converge almost surely.

Two further points. First, even if the model for the background noise Z

is simple, say, is a Wiener process, the stochastic integration theory must
be developed for integrators more general than that. The reason is that the

solution of a stochastic differential equation is itself an integrator, and in this
capacity it can best be analyzed. Moreover, in mathematical finance and in

filtering and control theory, the solution of one stochastic differential equation
is often used to drive another.

Next, in most applications the state of the system will have many compo-
nents and there will be several background noises; the stochastic differential

equation (1.1.5) then becomes 6

Xν
t = Cνt +

∑

1≤η≤d

∫ t

0

F νη [X1, . . . , Xn] dZη , ν = 1, . . . , n .

The state of the system is a vector X = (Xν)ν=1...n in Rn whose evolution
is driven by a collection

{
Zη : 1 ≤ η ≤ d

}
of scalar integrators. The d vector

fields Fη = (F νη )ν=1...n are the coupling coefficients, which describe the effect
of the background noises Zη on the change of X . Ct = (Cνt )ν=1...n is the

initial condition – it is convenient to abandon the idea that it be constant. It

eases the reading to rewrite the previous equation in vector notation as 7

Xt = Ct +

∫ t

0

Fη[X] dZη . (1.1.9)

5 So far – here is a challenge for the reader!
6 See equation (5.2.1) on page 282 for a more precise discussion.
7 We shall use the Einstein convention throughout: summation over repeated indices in

opposite positions (the η in (1.1.9)) is implied.
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The form (1.1.9) offers an intuitive way of reading the stochastic differential
equation: the noise Zη drives the state X in the direction Fη[X] . In our

example we had four driving terms: Z1
t = t is time and F1 is the systemic

force; Z2 describes the gravitational gullies and F2 their effect; and Z3 and

Z4 describe the gusts of wind and the gaggle of geese, respectively. The need
for several noises will occasionally call for estimates involving whole slews

{Z1, ..., Zd} of integrators.

1.2 Wiener Process

Wiener process8 is the model most frequently used for a background noise.
It can perhaps best be motivated by looking at Brownian motion, for which

it was an early model. Brownian motion is an example not far removed from
our space probe, in that it concerns the motion of a particle moving under the

influence of noise. It is simple enough to allow a good stab at the background
noise.

Example 1.2.1 (Brownian Motion) Soon after the invention of the microscope

in the 17th century it was observed that pollen immersed in a fluid of its own
specific weight does not stay calmly suspended but rather moves about in

a highly irregular fashion, and never stops. The English physicist Brown
studied this phenomenon extensively in the early part of the 19th century

and found some systematic behavior: the motion is the more pronounced the

smaller the pollen and the higher the temperature; the pollen does not aim for
any goal – rather, during any time-interval its path appears much the same as

it does during any other interval of like duration, and it also looks the same
if the direction of time is reversed. There was speculation that the pollen,

being live matter, is propelling itself through the fluid. This, however, runs
into the objection that it must have infinite energy to do so (jars of fluid with

pollen in it were stored for up to 20 years in dark, cool places, after which the
pollen was observed to jitter about with undiminished enthusiasm); worse,

ground-up granite instead of pollen showed the same behavior.
In 1905 Einstein wrote three Nobel-prize–worthy papers. One offered the

Special Theory of Relativity, another explained the Photoeffect (for this
he got the Nobel prize), and the third gave an explanation of Brownian

motion. It rests on the idea that the pollen is kicked by the much smaller
fluid molecules, which are in constant thermal motion. The idea is not,

as one might think at first, that the little jittery movements one observes

are due to kicks received from particularly energetic molecules; estimates of
the distribution of the kinetic energy of the fluid molecules rule this out.

Rather, it is this: the pollen suffers an enormous number of collisions with
the molecules of the surrounding fluid, each trying to propel it in a different

direction, but mostly canceling each other; the motion observed is due to

8 “Wiener process” is sometimes used without an article, in the way “Hilbert space” is.
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statistical fluctuations. Formulating this in mathematical terms leads to a
stochastic differential equation 9

(
dxt
dpt

)
=

(
pt/m dt

−αpt dt + dWt

)
(1.2.1)

for the location (x, p) of the pollen in its phase space. The first line expresses

merely the definition of the momentum p ; namely, the rate of change of the
location x in R3 is the velocity v = p/m , m being the mass of the pollen.

The second line attributes the change of p during dt to two causes: −αp dt
describes the resistance to motion due to the viscosity of the fluid, and dWt is
the sum of the very small momenta that the enormous number of collisions

impart to the pollen during dt . The random driving term is denoted W

here rather than Z as in section 1.1, since the model for it will be a Wiener

process.
This explanation leads to a plausible model for the background noise W :

dWt = Wt+dt − Wt is the sum of a huge number of exceedingly small
momenta, so by the Central Limit Theorem A.4.4 we expect dWt to have

a normal law. (For the notion of a law or distribution see section A.3 on
page 391. We won’t discuss here Lindeberg’s or other conditions that would

make this argument more rigorous; let us just assume that whatever condition
on the distribution of the momenta of the molecules needed for the CLT is

satisfied. We are, after all, doing heuristics here.)
We do not see any reason why kicks in one direction should, on the average,

be more likely than in any other, so this normal law should have expectation

zero and a multiple of the identity for its covariance matrix. In other words,
it is plausible to stipulate that dW be a 3-vector of identically distributed

independent normal random variables. It suffices to analyze one of its three
scalar components; let us denote it by dW .

Next, there is no reason to believe that the total momenta imparted during
non-overlapping time-intervals should have anything to do with one another.

In terms of W this means that for consecutive instants 0 = t0 < t1 < t2 <
. . . < tK the corresponding family of consecutive increments

{
Wt1 −Wt0 , Wt2 −Wt1 , . . . , WtK −WtK−1

}

should be independent. In self-explanatory terminology: we stipulate that

W have independent increments.
The background noise that we visualize does not change its character with

time (except when the temperature changes). Therefore the law of Wt −Ws

should not depend on the times s, t individually but only on their difference,

the elapsed time t− s . In self-explanatory terminology: we stipulate that W
be stationary.

9 Edward Nelson’s book, Dynamical Theories of Brownian Motion [82], offers a most
enjoyable and thorough treatment and opens vistas to higher things.
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Subtracting W0 does not change the differential noises dWt , so we simplify
the situation further by stipulating that W0 = 0.

Let δ = var(W1) = E[W 2
1 ] . The variances of W(k+1)/n −Wk/n then must

be δ/n , since they are all equal by stationarity and add up to δ by the

independence of the increments. Thus the variance of Wq is δq for a rational
q = k/n . By continuity the variance of Wt is δt , and the stationarity forces

the variance of Wt −Ws to be δ(t− s).

Our heuristics about the cause of the Brownian jitter have led us to a stoch-

astic differential equation, (1.2.1), including a model for the driving term W
with rather specific properties: it should have stationary independent incre-

ments dWt distributed as N(0, δ · dt) and have W0 = 0.

Does such a background noise exist? Yes; see theorem 1.2.2 below. If so,

what further properties does it have? Volumes; see, e.g., [47]. How many
such noises are there? Essentially one for every diffusion coefficient δ (see

lemma 1.2.7 on page 16 and exercise 1.2.14 on page 19). They are called
Wiener processes.

Existence of Wiener Process

What is meant by “Wiener process 8 exists”? It means that there is a

probability space (Ω,F ,P) on which there lives a family {Wt : t ≥ 0}
of random variables with the properties specified above. The quadruple(
Ω,F ,P, {Wt : t ≥ 0}

)
is a mathematical model for the noise envisaged.

The case δ = 1 is representative (exercise 1.2.14), so we concentrate on it:

Theorem 1.2.2 (Existence and Continuity of Wiener Process) (i) There exist

a probability space (Ω,F ,P) and on it a family {Wt : 0 ≤ t <∞} of random
variables that has stationary independent increments, and such that W0 = 0

and the law of the increment Wt −Ws is N(0, t− s) .

(ii) Given such a family, one may change every Wt on a negligible set
in such a way that for every ω ∈ Ω the path t 7→ Wt(ω) is a continuous

function.

Definition 1.2.3 Any family
{
Wt : t ∈ [0,∞)

}
of random variables (defined

on some probability space) that has continuous paths and stationary indepen-
dent increments Wt − Ws with law N(0, t − s) , and that is normalized to

W0 = 0 , is called a standard Wiener process.

A standard Wiener process can be characterized more simply as a continuous
martingale W scaled by W0 = 0 and E[W 2

t ] = t (see corollary 3.9.5).

In view of the discussion on page 4 it is thus not surprising that it serves
as a background noise in the majority of stochastic models for physical,

genetic, economic, and other phenomena and plays an important role in
harmonic analysis and other branches of mathematics. For example, three-

dimensional Wiener process8 “knows” the zeroes of the ζ-function, and thus
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the distribution of the prime numbers – alas, so far it is reluctant to part
with this knowledge. Wiener process is frequently called Brownian motion

in the literature. We prefer to reserve the name “Brownian motion” for
the physical phenomenon described in example 1.2.1 and capable of being

described to various degrees of accuracy by different mathematical models
[82].

Proof of Theorem 1.2.2 (i). To get an idea how we might construct the
probability space (Ω,F ,P) and the Wt , consider dW as a map that associates

with any interval (s, t] the random variable Wt−Ws on Ω, i.e., as a measure
on [0,∞) with values in L2(P). It is after all in this capacity that the noise W

will be used in a stochastic differential equation (see page 5). Eventually we
shall need to integrate functions with dW , so we are tempted to extend this

measure by linearity to a map
∫
· dW from step functions

φ =
∑

k

rk · 1(tk,tk+1]

on the half-line to random variables in L2(P) via∫
φ dW =

∑

k

rk · (Wtk+1
−Wtk) .

Suppose that the family {Wt : 0 ≤ t < ∞} has the properties listed
in (i). It is then rather easy to check that

∫
· dW extends to a linear

isometry U from L2[0,∞) to L2(P) with the property that U(φ) has a
normal law N(0, σ2) with mean zero and variance σ2 =

∫∞
0
φ2(x) dx , and so

that functions perpendicular in L2[0,∞) have independent images in L2(P).
If we apply U to a basis of L2[0,∞), we shall get a sequence (ξn) of

independent N(0, 1) random variables. The verification of these claims is
left as an exercise.

We now stand these heuristics on their head and arrive at the

Construction of Wiener Process Let (Ω,F ,P) be a probability space that ad-

mits a sequence (ξn) of independent identically distributed random variables,
each having law N(0, 1). This can be had by the following simple construc-

tion: prepare countably many copies of (R,B•(R), γ1)
10 and let (Ω,F ,P)

be their product; for ξn take the nth coordinate function. Now pick any

orthonormal basis (φn) of the Hilbert space L2[0,∞). Any element f of

L2[0,∞) can be written uniquely in the form

f =
∑∞
n=1anφn ,

with ‖f‖2
L2[0,∞) =

∑∞
n=1 a

2
n <∞ . So we may define a map Φ by

Φ(f) =
∑∞
n=1anξn .

10 B•(R) is the σ-algebra of Borel sets on the line, and γ1(dx) = (1/
√

2π) ·e−x2/2 dx is the
normalized Gaussian measure, see page 419. For the infinite product see lemma A.3.20.
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Φ evidently associates with every class in L2[0,∞) an equivalence class of
square integrable functions in L2(P) = L2(Ω,F ,P). Recall the argument: the

finite sums
∑N
n=1 anξn form a Cauchy sequence in the space L2(P), because

E
[(∑N

n=Manξn

)2 ]
=
∑N
n=Ma

2
n ≤∑∞n=Ma

2
n

−−−−→M→∞ 0 .

Since the space L2(P) is complete there is a limit in 2-mean; since L2(P), the
space of equivalence classes, is Hausdorff, this limit is unique. Φ is clearly

a linear isometry from L2[0,∞) into L2(P). It is worth noting here that
our recipe Φ does not produce a function but merely an equivalence class

modulo P-negligible functions. It is necessary to make some hard estimates
to pick a suitable representative from each class, so as to obtain actual random

variables (see lemma A.2.37).

Let us establish next that the law of Φ(f) is N(0, ‖f‖2
L2[0,∞)). To this

end note that f =
∑
n anφn has the same norm as Φ(f):

∫ ∞

0

f2(t) dt =
∑

a2
n = E[(Φ(f))2] .

The simple computation

E
[
e
iαΦ(f)

]
= E

[
e
iα
P

n
anξn

]
=
∏

n

E
[
eiαanξn

]
= e
−α2

P
n
a2

n/2

shows that the characteristic function of Φ(f) is that of a N(0,
∑
a2
n) random

variable (see exercise A.3.45 on page 419). Since the characteristic function
determines the law (page 410), the claim follows.

A similar argument shows that if f1, f2, . . . are orthogonal in L2[0,∞),
then Φ(f1),Φ(f2), . . . are not only also orthogonal in L2(P) but are actually

independent:

clearly
∥∥∑

kαkfk
∥∥2

L2[0,∞)
=
∑
kα

2
k · ‖fk‖2

L2[0,∞) ,

whence E
[
e
i
P

k
αkΦ(fk)

]
= E

[
e
iΦ(
P

k
αkfk)

]
= e
−‖P

k
αkfk‖2

/
2

=
∏

k
e
−α2

k·‖fk‖2/2 =
∏

k
E
[
e
iαkΦ(fk)

]
.

This says that the joint characteristic function is the product of the marginal

characteristic functions, so the random variables are independent (see exer-
cise A.3.36).

For any t ≥ 0 let Ẇt be the class Φ
(
1[0,t]

)
and simply pick a member Wt

of Ẇt . If 0 ≤ s < t , then Ẇt − Ẇs = Φ
(
1(s,t]

)
is distributed N(0, t − s)

and our family {Wt} is stationary. With disjoint intervals being orthogonal

functions of L2[0,∞), our family has independent increments.
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Proof of Theorem 1.2.2 (ii). We start with the following observation: due to
exercise A.3.47, the curve t 7→ Ẇt is continuous from R+ to the space Lp(P),

for any p < ∞ . In particular, for p = 4

E
[
|Wt −Ws|4

]
= 4 · |t− s|2 . (1.2.2)

Next, in order to have the parameter domain open let us extend the process

Ẇt constructed in part (i) of the proof to negative times by Ẇ−t = Ẇt for
t > 0. Equality (1.2.2) is valid for any family {Wt : t ≥ 0} as in theo-

rem 1.2.2 (i). Lemma A.2.37 applies, with (E, ρ) = (R, | |), p = 4, β = 1,
C = 4: there is a selection Wt ∈ Ẇt such that the path t → Wt(ω) is

continuous for all ω ∈ Ω. We modify this by setting W.(ω) ≡ 0 in the
negligible set of those points ω where W0(ω) 6= 0 and then forget about

negative times.

Uniqueness of Wiener Measure

A standard Wiener process is, of course, not unique: given the one we
constructed above, we paint every element of Ω purple and get a new Wiener

process that differs from the old one simply because its domain Ω is different.

Less facetious examples are given in exercises 1.2.14 and 1.2.16. What is
unique about a Wiener process is its law or distribution.

Recall – or consult section A.3 for – the notion of the law of a real-valued
random variable f : Ω → R . It is the measure f [P] on the codomain of f ,

R in this case, that is given by f [P](B) def= P[f−1(B)] on Borels B ∈ B•(R).
Now any standard Wiener process W. on some probability space (Ω,F ,P)

can be identified in a natural way with a random variable W that has values
in the space C = C[0,∞) of continuous real-valued functions on the half-line.

Namely, W is the map that associates with every ω ∈ Ω the function or path
w = W (ω) whose value at t is wt = W t(w) def= Wt(ω), t ≥ 0. We also call

W a representation of W. on path space.11 It is determined by the equation

W t ◦W (ω) = Wt(ω) , t ≥ 0 , ω ∈ Ω .

Wiener measure is the law or distribution of this C -valued random vari-

able W , and this will turn out to be unique.
Before we can talk about this law, we have to identify the equivalent of

the Borel sets B ⊂ R above. To do this a little analysis of path space
C = C[0,∞) is required. C has a natural topology, to wit, the topology of

uniform convergence on compact sets. It can be described by a metric, for

instance,12

d(w,w′) =
∑

n∈N

sup
0≤s≤n

∣∣ws − w′s
∣∣ ∧ 2−n for w,w′ ∈ C . (1.2.3)

11 “Path space,” like “frequency space” or “outer space,” may be used without an article.
12 a ∨ b (a ∧ b) is the larger (smaller) of a and b.
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Exercise 1.2.4 (i) A sequence (w(n)) in C converges uniformly on compact sets

to w ∈ C if and only if d(w(n), w) → 0. C is complete under the metric d .
(ii) C is Hausdorff, and is separable, i.e., it contains a countable dense subset.

(iii) Let {w(1), w(2), . . .} be a countable dense subset of C . Every open subset
of C is the union of balls in the countable collection

Bq(w
(n)) def=


w : d(w,w(n)) < q

ff
, n ∈ N , 0 < q ∈ Q .

Being separable and complete under a metric that defines the topology makes

C a polish space. The Borel σ-algebra B•(C ) on C is, of course, the
σ-algebra generated by this topology (see section A.3 on page 391). As to

our standard Wiener process W , defined on the probability space (Ω,F ,P)

and identified with a C -valued map W on Ω, it is not altogether obvious
that inverse images W−1(B) of Borel sets B ⊂ C belong to F ; yet this is

precisely what is needed if the law W [P] of W is to be defined, in analogy
with the real-valued case, by

W [P](B) def= P[W−1(B)] , B ∈ B•(C ) .

Let us show that they do. To this end denote by F0
∞[C ] the σ-algebra

on C generated by the real-valued functions W t : w 7→ wt , t ∈ [0,∞), the

evaluation maps. Since W t ◦W = Wt is measurable on Ft , clearly

W−1(E) ∈ F , ∀ E ∈ F0
∞[C ] . (1.2.4)

Let us show next that every ball Br(w
(0)) def=

{
w : d(w,w(0)) < r

}
belongs

to F0
∞[C ] . To prove this it evidently suffices to show that for fixed w(0) ∈ C

the map w 7→ d(w,w(0)) is measurable on F0
∞[C ] . A glance at equa-

tion (1.2.3) reveals that this will be true if for every n ∈ N the map w 7→
sup0≤s≤n |ws − w

(0)
s | is measurable on F0

∞[C ] . This, however, is clear, since

the previous supremum equals the countable supremum of the functions

w 7→
∣∣∣wq − w(0)

q

∣∣∣ , q ∈ Q , q ≤ n ,

each of which is measurable on F0
∞[C ] . We conclude with exercise 1.2.4 (iii)

that every open set belongs to F0
∞[C ] , and that therefore

F0
∞[C ] = B•

(
C
)
. (1.2.5)

In view of equation (1.2.4) we now know that the inverse image under

W : Ω → C of a Borel set in C belongs to F . We are now in position to
talk about the image W [P] :

W [P](B) def= P[W−1(B)] , B ∈ B•(C ) .

of P under W (see page 405) and to define Wiener measure:
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Definition 1.2.5 The law of a standard Wiener process
(
Ω,F ,P,W.

)
, that is

to say the probability W = W [P] on C given by

W(B) def= W [P](B) = P[W−1(B)] , B ∈ B•(C ) ,

is called Wiener measure. The topological space C equipped with Wiener
measure W on its Borel sets is called Wiener space. The real-valued random

variables on C that map a path w ∈ C to its value at t and that are denoted
by W t above, and often simply by wt , constitute the canonical Wiener

process.8

Exercise 1.2.6 The name is justified by the observation that the quadruple
(C ,B•(C ),W, {W t}0≤t<∞) is a standard Wiener process.

Definition 1.2.5 makes sense only if any two standard Wiener processes have

the same distribution on C . Indeed they do:

Lemma 1.2.7 Any two standard Wiener processes have the same law.

Proof. Let (Ω,F ,P,W.) and (Ω′,F ′,P′,W ′.) be two standard Wiener pro-

cesses and let W denote the law of W. . Consider a complex-valued function

on C = C[0,∞) of the form

φ(w) = exp
(
i
K∑

k=1

rk(wtk − wtk−1
)
)

= exp
(
i
K∑

k=1

rk(W tk(w) −W tk−1
(w))

)
,

(1.2.6)
rk ∈ R , 0 = t0 < t1 < . . . < tK . Its W-integral can be computed:

∫
φ(w) W(dw) =

∫
exp

(
i
K∑

k=1

rk(W tk ◦W −W tk−1
◦W )

)
dP

by independence: =
K∏

k=1

∫
exp

(
irk(Wtk −Wtk−1

)
)
dP

=
K∏

k

∫ ∞

−∞
eirkx · e

−x2/2(tk−tk−1)

√
2π(tk − tk−1)

dx

by exercise A.3.45: =

K∏

k

e−r
2
k(tk−tk−1)/2 .

The same calculation can be done for P′ and shows that its distribution W′

under W ′ coincides with W on functions of the form (1.2.6). Now note that
these functions are bounded, and that their collection M is closed under

multiplication and complex conjugation and generates the same σ-algebra as
the collection {W t : t ≥ 0} , to wit F0

∞[C ] = B•
(
C[0,∞)

)
. An application of

the Monotone Class Theorem in the form of exercise A.3.5 finishes the proof.
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Namely, the vector space V of bounded complex-valued functions on C on
which W and W′ agree is sequentially closed and contains M , so it contains

every bounded B•
(
C[0,∞)

)
-measurable function.

Non-Differentiability of the Wiener Path

The main point of the introduction was that a novel integration theory is

needed because the driving term of stochastic differential equations occurring
most frequently, Wiener process, has paths of infinite variation. We show

this now. In fact,2 since a function that has finite variation on some interval
is differentiable at almost every point of it, the claim is immediate from the

following result:

Theorem 1.2.8 (Wiener) Let W be a standard Wiener process on some

probability space (Ω,F ,P) . Except for the points ω in a negligible subset N
of Ω , the path t 7→Wt(ω) is nowhere differentiable.

Proof [27]. Suppose that t 7→ Wt(ω) is differentiable at some instant s .
There exists a K ∈ N with s < K − 1. There exist M,N ∈ N such that for

all n ≥ N and all t ∈ (s − 5/n, s + 5/n), |Wt(ω) −Ws(ω)| ≤ M · |t − s| .
Consider the first three consecutive points of the form j/n , j ∈ N , in the

interval (s, s+ 5/n). The triangle inequality produces

|W j+1
n

(ω) −W j
n
(ω)| ≤ |W j+1

n
(ω) −Ws(ω)| + |W j

n
(ω) −Ws(ω)| ≤ 7M/n

for each of them. The point ω therefore lies in the set

N =
⋃

K

⋃

M

⋃

N

⋂

n≥N

⋃

k≤K·n

k+2⋂

j=k

[
|W j+1

n
−W j

n
| ≤ 7M/n

]
.

To prove that N is negligible it suffices to show that the quantity

Q def= P
[ ⋂

n≥N

⋃

k≤K·n

k+2⋂

j=k

[
|W j+1

n
−W j

n
| ≤ 7M/n

]]

≤ lim inf
n→∞

P
[ ⋃

k≤K·n

k+2⋂

j=k

[
|W j+1

n
−W j

n
| ≤ 7M/n

]]

vanishes. To see this note that the events[
|W j+1

n
−W j

n
| ≤ 7M/n

]
, j = k, k + 1, k + 2,

are independent and have probability

P
[
|W 1

n
| ≤ 7M/n

]
=

1√
2π/n

∫ +7M/n

−7M/n

e
−x2n/2

dx

=
1√
2π

∫ +7M/
√
n

−7M/
√
n

e
−ξ2/2

dξ ≤ 14M√
2πn

.

Thus Q ≤ lim inf
n→∞

K·n ·
(
const√
n

)3

= 0 .
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Remark 1.2.9 In the beginning of this section Wiener process 8 was motivated
as a driving term for a stochastic differential equation describing physical

Brownian motion. One could argue that the non-differentiability of the
paths was a result of overly much idealization. Namely, the total momentum

imparted to the pollen (in our billiard ball model) during the time-interval
[0, t] by collisions with the gas molecules is in reality a function of finite

variation in t . In fact, it is constant between kicks and jumps at a kick by
the momentum imparted; it is, in particular, not continuous. If the interval dt

is small enough, there will not be any kicks at all. So the assumption that the
differential of the driving term is distributed N(0, dt) is just too idealistic.

It seems that one should therefore look for a better model for the driver, one
that takes the microscopic aspects of the interaction between pollen and gas

molecules into account.

Alas, no one has succeeded so far, and there is little hope: first, the total
variation of a momentum transfer during [0, t] turns out to be huge, since

it does not take into account the cancellation of kicks in opposite directions.
This rules out any reasonable estimates for the convergence of any scheme for

the solution of the stochastic differential equation driven by a more accurately
modeled noise, in terms of this variation. Also, it would be rather cumbersome

to keep track of the statistics of such a process of finite variation if its structure
between any two of the huge number of kicks is taken into account.

We shall therefore stick to Wiener process as a model for the driver in
the model for Brownian motion and show that the statistics of the solution

of equation (1.2.1) on page 10 are close to the statistics of the solution of
the corresponding equation driven by a finite variation model for the driver,

provided the number of kicks is sufficiently large (exercise A.4.14). We shall
return to this circle of problems several times, next in example 2.5.26 on

page 79.

Supplements and Additional Exercises

Fix a standard Wiener process W. on some probability space (Ω,F ,P).
For any s let F0

s [W.] denote the σ-algebra generated by the collection

{Wr : 0 ≤ r ≤ s} . That is to say, F0
s [W.] is the smallest σ-algebra on

which the Wr : r ≤ s are all measurable. Intuitively, F0
t [W.] contains all

information about the random variables Ws that can be observed up to and
including time t . The collection

F0
. [W.] = {F0

s [W.] : 0 ≤ s <∞}
of σ-algebras is called the basic filtration of the Wiener process W. .

Exercise 1.2.10 F0
s [W.] increases with s and is the σ-algebra generated by

the increments {Wr −Wr′ : 0 ≤ r, r′ ≤ s} . For s < t , Wt − Ws is independent
of F0

s [W.] . Also, for 0 ≤ s < t <∞ ,

E[Wt|F0
s [W.]] = Ws and E

ˆ
W 2
t −W 2

s |F0
s [W.]

˜
= t− s . (1.2.7)
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Equations (1.2.7) say that both Wt and W 2
t − t are martingales4 on F0

. [W.] .
Together with the continuity of the path they determine the law of the whole
process W uniquely. This fact, Lévy’s characterization of Wiener process, 8 is
proven most easily using stochastic integration, so we defer the proof until co-
rollary 3.9.5. In the meantime here is a characterization that is just as useful:

Exercise 1.2.11 Let X. = (Xt)t≥0 be a real-valued process with continuous paths
and X0 = 0, and denote by F0

. [X.] its basic filtration – F0
s [X.] is the σ-algebra

generated by the random variables {Xr : 0 ≤ r ≤ s} . Note that it contains the basic

filtration F0
. [Mz

. ] of the process Mz
. : t 7→ Mz

t
def= ezXt−z

2t/2 whenever 0 6= z ∈ C .
The following are equivalent:
(i) X is a standard Wiener process; (ii) the M z are martingales4 on F0

. [X.] ; (iii)

Mα : t 7→ eiαXt+α
2t/2 is an F0

. [Mα
. ]-martingale for every real α .

Exercise 1.2.12 For any bounded Borel function φ and s < t

E
ˆ
φ(Wt)|F0

s [W.]
˜

=
1p

2π(t− s)

Z +∞

−∞

φ(y) · e−(y−Ws)2/2(t−s) dy . (1.2.8)

Exercise 1.2.13 For any bounded Borel function φ on R and t > 0 define the
function Ttφ by T0φ = φ if t = 0, and for t > 0 by

(Ttφ)(x) =
1√
2πt

Z +∞

−∞

φ(x+ y)e
−y2/2t

dy .

Then Tt is a semigroup (i.e., Tt ◦ Ts = Tt+s ) of positive (i.e., φ ≥ 0 =⇒ Ttφ ≥ 0)
linear operators with T0 = I and Tt1 = 1, whose restriction to the space C0(R) of
bounded continuous functions that vanish at infinity is continuous in the sup-norm
topology. Rewrite equation (1.2.8) as

E
ˆ
φ(Wt)|F0

s [W.]
˜

= (Tt−sφ)(Ws) .

Exercise 1.2.14 Let (Ω,F ,P,W.) be a standard Wiener process. (i) For every
a > 0,

√
a ·Wt/a is a standard Wiener process. (ii) t 7→ t ·W1/t is a standard

Wiener process. (iii) For δ > 0, the family {
√
δWt : t ≥ 0} is a background noise

as in example 1.2.1, but with diffusion coefficient δ .

Exercise 1.2.15 (d-Dimensional Wiener Process) (i) Let 1 ≤ n ∈ N . There
exist a probability space (Ω,F ,P) and a family (Wt : 0 ≤ t <∞) of Rd-valued
random variables on it with the following properties:

(a) W0 = 0.
(b) W. has independent increments. That is to say, if 0 = t0 < t1 < . . . < tK

are consecutive instants, then the corresponding family of consecutive increments


Wt1 − Wt0 , Wt2 − Wt1 , . . . , WtK − WtK−1

ff

is independent.
(c) The increments Wt−Ws are stationary and have normal law with covariance

matrix Z
(W η

t −W η
s )(W θ

t −W θ
s ) dP = (t− s) · δηθ .

Here δηθ def=


1 if η = θ

0 if η 6= θ
is the Kronecker delta.

(ii) Given such a family, one may change every Wt on a negligible set in such a
way that for every ω ∈ W the path t 7→ Wt(ω) is a continuous function from [0,∞)
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to Rd . Any family {Wt : t ∈ [0,∞)} of Rd-valued random variables (defined on
some probability space) that has the three properties (a)–(c) and also has continuous
paths is called a standard d-dimensional Wiener process.

(iii) The law of a standard d-dimensional Wiener process is a measure defined
on the Borel subsets of the topological space

C
d = CRd [0,∞)

of continuous paths w : [0,∞) → Rd and is unique. It is again called Wiener
measure and is also denoted by W .

(iv) An Rd-valued process (Ω,F , (Zt)0≤t<∞) with continuous paths whose law
is Wiener measure is a standard d-dimensional Wiener process.

(v) Define the basic filtration F0
s [W.] and redo exercises 1.2.10–1.2.13 after

proper reformulation.

Exercise 1.2.16 (The Brownian Sheet) A random sheet is a family Sη,t
of random variables on some common probability space (Ω,F ,P) indexed by the
points of some domain in R2 , say of Ȟ def= {(η, t) : η ∈ R , 0 ≤ t < ∞} . Any
two points z1 = (η1, t1) and z2 = (η2, t2) in Ȟ with η1 ≤ η2 and 0 ≤ t1 ≤ t2
determine a rectangle (z1, z2] = (η1, η2]× (t1, t2] , and with it goes the “increment”

dS((z1, z2]) = Sη2,t2 − Sη2,t1 − Sη1,t2 + Sη1,t1 .

A Brownian sheet or Wiener sheet on Ȟ is a random sheet with the following
properties:

W0,0 = 0; if R1, . . . RK are disjoint rectangles, then the corresponding family

{dS(R1), . . . , dS(RK)}
of random variables is independent; for any rectangle Ȟ , the law of dS(R) is
N(0, λ(R)), λ(R) being the Lebesgue measure of R .

Show: there exists a Brownian sheet; its paths, or better, sheets, (η, t) 7→ Sη,t(ω)
can be chosen to be continuous for every ω ∈ Ω; the law of a Brownian sheet is
a probability defined on all Borel subsets of the polish space C(Ȟ) of continuous

functions from Ȟ to the reals and is unique; for fixed η , t 7→ η−1/2Sη,t is a standard
Wiener process.

Exercise 1.2.17 Define the Brownian box and show that it is continuous.

1.3 The General Model

Wiener process is not the only driver for stochastic differential equations,

albeit the most frequent one. For instance, the solution of a stochastic
differential equation can be used to drive yet another one; even if it is not

used for this purpose, it can best be analyzed in its capacity as a driver. We
are thus automatically led to consider the class of all drivers or integrators.

As long as the integrators are Wiener processes or solutions of stochastic

differential equations driven by Wiener processes, or are at least continuous,
we can take for the underlying probability space Ω the path space C of

the previous section (exercise 1.2.6). Recall how the uniqueness proof of the
law of a Wiener process was facilitated greatly by the polish topology on C .

Now there are systems that should be modeled by drivers having jumps, for
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instance, the signal from a Geiger counter or a stock price. The corresponding
space of trajectories does not consist of continuous paths anymore. After

some analysis we shall see in section 2.3 that the appropriate path space Ω
is the space D of right-continuous paths with left limits. The probabilistic

analysis leads to estimates involving the so-called maximal process, which
means that the naturally arising topology on D is again the topology of

uniform convergence on compacta. However, under this topology D fails to
be polish because it is not separable, and the relation between measurability

and topology is not so nice and “tight” as in the case C . Skorohod has given
a useful polish topology on D , which we shall describe later (section A.7).

However, this topology is not compatible with the vector space structure of D

and thus does not permit the use of arguments from Fourier analysis, as in

the uniqueness proof of Wiener measure.

These difficulties can, of course, only be sketched here, lest we never reach
our goal of solving stochastic differential equations. Identifying them has

taken probabilists many years, and they might at this point not be too clear
in the reader’s mind. So we shall from now on follow the French School

and mostly disregard topology. To identify and analyze general integrators
we shall distill a general mathematical model directly from the heuristic

arguments of section 1.1. It should be noted here that when a specific physical,

financial, etc., system is to be modeled by specific assumptions about a driver,
a model for the driver has to be constructed (as we did for Wiener process, 8

the driver of Brownian motion) and shown to fit this general mathematical
model. We shall give some examples of this later (page 267).

Before starting on the general model it is well to get acquainted with some

notations and conventions laid out in the beginning of appendix A on page 363
that are fairly but not altogether standard and are designed to cut down on

verbiage and to enhance legibility.

Filtrations on Measurable Spaces

Now to the general probabilistic model suggested by the heuristics of sec-

tion 1.1. First we need a probability space on which the random variables
Xt, Zt , etc., of section 1.1 are realized as functions – so we can apply func-

tional calculus – and a notion of past or history (see page 6). Accordingly,
we stipulate that we are given a filtered measurable space on which ev-

erything of interest lives. This is a pair (Ω,F.) consisting of a set Ω and an
increasing family

F. = {Ft}0≤t<∞

of σ-algebras on Ω. It is convenient to begin the reckoning of time at t = 0;

if the starting time is another finite time, a linear scaling will reduce the
situation to this case. It is also convenient to end the reckoning of time

at ∞ . The reader interested in only a finite time-interval [0, u) can use
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everything said here simply by reading the symbol ∞ as another name for
his ultimate time u of interest.

To say that F. is increasing means of course that Fs ⊆ Ft for 0 ≤ s ≤ t .
The family F. is called a filtration or stochastic basis on Ω. The intuitive

meaning of it is this: Ω is the set of all evolutions that the world or the
system under consideration might take, and Ft models the collection of “all

events that will be observable by the time t ,” the “history at time t .” We
close the filtration at ∞ with three objects: first there are

the algebra of sets A∞ def=
⋃

0≤t<∞
Ft

and the σ-algebra F∞ def=
∨

0≤t<∞
Ft

that it generates. Lastly there is the universal completion F ∗∞ of F∞ – see
page 407 of appendix A.

A random variable is simply a universally (i.e., F∗∞-) measurable func-

tion on Ω.
The filtration F. is universally complete if Ft is universally complete

at any instant t < ∞ . We shall eventually require that F. have this and
further properties.

The Base Space

The noises and other processes of interest are functions on the base space

B def= [0,∞)× Ω .
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Figure 1.1 The base space

Its typical point is a pair (s, ω), which will frequently be denoted by $ .
The spirit of this exposition is to reduce stochastic analysis to the analysis

of real-valued functions on B . The base space has a rather rich structure,
being a product whose fibers {s} × Ω carry finer and finer σ-algebras Fs
as time s increases. This structure gives rise to quite a bit of terminology,
which we will be discussing for a while. Fortunately, most notions attached

to a filtration are quite intuitive.
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Processes

Processes are simply functions 13 on the base space B . We are mostly
concerned with processes that take their values in the reals R or in the

extended reals R (see item A.1.2 on page 363). So unless the range is explicitly
specified differently, a process is numerical. A process is measurable if

it is measurable on the product σ-algebra B•[0,∞) ⊗F∗∞ on R+ × Ω.

It is customary to write Zs(ω) for the value of the process Z at the point
$ = (s, ω) ∈ B , and to denote by Zs the function ω 7→ Zs(ω):

Zs : ω 7→ Zs(ω) , s ∈ R+ .

The process Z is adapted to the filtration F. if at every instant t the random

variable Zt is measurable on Ft ; one then writes

Zt ∈ Ft .

In other words, the symbol ∈ is not only shorthand for “is an element of”

but also for “is measurable on” (see page 391).

The path or trajectory of the process Z , on the other hand, is the function

Z.(ω) : s 7→ Zs(ω) , 0 ≤ s <∞ ,

one for each ω ∈ Ω. A statement such as “Z is continuous (left-
continuous, right-continuous, increasing, of finite variation, etc.)”

means that every path of Z has this property.

Stopping a process is a useful and ubiquitous tool. The process Z

stopped at time t is the function12 (s, ω) 7→ Zs∧t(ω) and is denoted by Zt .

After time t its path is constant with value Zt(ω).

Remark 1.3.1 Frequently the only randomness of interest is the one intro-
duced by some given process Z of interest. Then one appropriate filtration

is the basic filtration F0
. [Z] =

{
F0
t [Z] : 0 ≤ t < ∞

}
of Z . F0

t [Z] is the
σ-algebra generated by the random variables {Zs : 0 ≤ s ≤ t} . An instance

of this was considered in exercise 1.2.10. We shall see soon (pages 37–40) that
there are more convenient filtrations, even in this simple case.

Exercise 1.3.2 The projection on Ω of a measurable subset of the base space is
universally measurable. A measurable process has Borel-measurable paths.

Exercise 1.3.3 A process Z is adapted to its basic filtration F 0
. [Z] . Conversely,

if Z is adapted to the filtration F. , then F0
t [Z] ⊆ Ft for all t .

13 The reader has no doubt met before the propensity of probabilists to give new names
to everyday mathematical objects – for instance, calling the elements of Ω outcomes, the
subsets events, the functions on Ω random variables, etc. This is meant to help intuition
but sometimes obscures the distinction between a physical system and its mathematical
model.
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Wiener Process Revisited On the other hand, it occurs that a Wiener process
W is forced to live together with other processes on a filtration F. larger than

its own basic one (see, e.g., example 5.5.1). A modicum of compatibility is
usually required:

Definition 1.3.4 W is standard Wiener process on the filtration F. if

it is adapted to F. and Wt −Ws is independent of Fs for 0 ≤ s < t <∞ .

See corollary 3.9.5 on page 160 for Lévy’s characterization of standard Wiener

process on a filtration.

Right- and Left-Continuous Processes Let D denote the collection of all paths

[0,∞) → R that are right-continuous and have finite left limits at all instants
t ∈ R+ , and L the collection of paths that are left-continuous and have

right limits in R at all instants. A path in D is also called 14 càdlàg and a
path in L càglàd. The paths of D and L have discontinuities only where

they jump; they do not oscillate. Most of the processes that we have occasion
to consider are adapted and have paths in one or the other of these classes.

They deserve their own symbols: the family of adapted processes whose paths
are right-continuous and have left limits is denoted by D = D[F.] , and the

family of adapted processes whose paths are left-continuous and have right
limits is denoted by L = L[F.] . Clearly C = L ∩ D , and C = L ∩ D is the

collection of continuous adapted processes.

The Left-Continuous Version X.− of a right-continuous process X with left
limits has at the instant t the value

Xt−
def=

{
0 for t = 0 ,

lim
t>s→t

Xs for 0 < t ≤ ∞ .

Clearly X.− ∈ L whenever X ∈ D . Note that the left-continuous version is

forced to have the value zero at the instant zero. Given an X ∈ L we might
– but seldom will – consider its right-continuous version X.+ :

Xt+
def= lim

t<u↓t
Xu , 0 ≤ t <∞ .

If X ∈ D , then taking the right-continuous version of X.− leads back to X .

But if X ∈ L , then the left-continuous version of X.+ differs from X at t = 0,
unless X happens to vanish at that instant. This slightly unsatisfactory lack

of symmetry is outweighed by the simplification of the bookkeeping it affords
in Itô’s formula and related topics (section 4.2). Here is a mnemonic device:

imagine that all processes have the value 0 for strictly negative times; this
forces X0− = 0.

14 càdlàg is an acronym for the French “continu à droite, limites à gauche” and càglàd for
“continu à gauche, limites à droite.” Some authors write “corlol” and “collor” and others
write “rcll” and “lcrl.” “càglàd,” though of French origin, is pronounceable.
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The Jump Process ∆X of a right-continuous process X with left limits is
the difference between itself and its left-continuous version:

∆Xt
def=
(
Xt −Xt−

)
=

{
X0 for t = 0,

Xt −Xt− for t > 0.

∆X. is evidently adapted to the basic filtration F0
. [X] of X .

Progressive Measurability The adaptedness of a process Z reflects the idea

that at no instant t should a look into the future be necessary to determine
the value of the random variable Zt . It is still thinkable that some property of

the whole path of Z up to time t depends on more than the information in Ft .
(Such a property would have to involve the values of Z at uncountably many

instants, of course.) Progressive measurability rules out such a contingency:
Z is progressively measurable if for every t ∈ R the stopped process Z t

is measurable on B•[0,∞) ⊗ Ft . This is the the same as saying that the

restriction of Z to [0, t] × Ω is measurable on B•[0, t] ⊗ Ft and means that
any measurable information about the whole path up to time t is contained

in Ft .
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Figure 1.2 Progressive measurability

Proposition 1.3.5 There is some interplay between the notions above:
(i) A progressively measurable process is adapted.

(ii) A left- or right-continuous adapted process is progressively measurable.
(iii) The progressively measurable processes form a sequentially closed family.

Proof. (i): Zt is the composition of ω 7→ (t, ω) with Z . (ii): If Z is left-

continuous and adapted, set

Z(n)
s (ω) = Z k

n
(ω) for

k

n
≤ s <

k + 1

n
.

Clearly Z(n) is progressively measurable. Also, Z(n)($) −−−→n→∞ Z($) at every

point $ = (s, ω) ∈ B . To see this, let sn denote the largest rational of the
form k/n less than or equal to s . Clearly Z(n)($) = Zsn

(ω) converges to

Zs(ω) = Z($).
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Suppose now that Z is right-continuous and fix an instant t . The stopped
process Zt is evidently the pointwise limit of the functions

Z(n)
s (ω) =

∑+∞

k=0
Z k+1

n ∧t
(ω) · 1( k

n ,
k+1

n

](s) ,

which are measurable on B•[0,∞)⊗ Ft . (iii) is left to the reader.

The Maximal Process Z? of a process Z : B → R is defined by

Z?t = sup
0≤s≤t

|Zs| , 0 ≤ t ≤ ∞ .

This is a supremum over uncountably many indices and so is not in general ex-
pected to be measurable. However, when Z is progressively measurable and

the filtration is universally complete, then Z? is again progressively measur-

able. This is shown in corollary A.5.13 with the help of some capacity theory.
We shall deal mostly with processes Z that are left- or right-continuous, and

then we don’t need this big cannon. Z? is then also left- or right-continuous,
respectively, and if Z is adapted, then so is Z? , inasmuch as it suffices to

extend the supremum in the definition of Z?t over instants s in the countable
set

Qt def= {q ∈ Q : 0 ≤ q < t} ∪ {t} .
A path that has finite right and left limits in R is bounded on every bounded

interval, so the maximal process of a process in D or in L is finite at all
instants.

Exercise 1.3.6 The maximal process W ? of a standard Wiener process almost
surely increases without bound.
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Figure 1.3 A path and its maximal path

The Limit at Infinity of a process Z is the random variable limt→∞ Zt(ω),

provided this limit exists almost surely. For consistency’s sake it should be
and is denoted by Z∞− . It is convenient and unambiguous to use also the

notation Z∞ :
Z∞ = Z∞− def= lim

t→∞
Zt .
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The maximal process Z? always has a limit Z?∞ , possibly equal to +∞ on
a large set. If Z is adapted and right-continuous, say, then Z∞ is evidently

measurable on F∞ .

Stopping Times and Stochastic Intervals

Definition 1.3.7 A random time is a universally measurable function on Ω

with values in [0,∞] . A random time T is a stopping time if

[T ≤ t] ∈ Ft ∀ t ∈ R+ . (∗)

This notion depends on the filtration F. ; and if this dependence must be

stressed, then T is called an F.-stopping time. The collection of all stopping
times is denoted by T , or by T[F.] if the filtration needs to be made explicit.
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Figure 1.4 Graph of a stopping time

Condition (∗) expresses the idea that at the instant t no look into the future
is necessary in order to determine whether the time T has arrived. In sec-

tion 1.1, for example, we were led to consider the first time T our space probe
hit the moon. This time evidently depends on chance and is thus a random

time. Moreover, the event [T ≤ t] that the probe hits the moon at or before
the instant t can certainly be determined if the history Ft of the universe up

to this instant is known: in our stochastic model, T should turn out to be
a stopping time. If the probe never hits the moon, then the time T should

be +∞ , as +∞ is by general convention the infimum of the void set of num-
bers. This explains why a stopping time is permitted to have the value +∞ .

Here are a few natural notions attached to random and stopping times:

Definition 1.3.8 (i) If T is a stopping time, then the collection

FT def=
{
A ∈ F∞ : A ∩ [T ≤ t] ∈ Ft ∀ t ∈ [0,∞]

}
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is easily seen to be a σ-algebra on Ω . It is called the past at time T or
the past of T . To paraphrase: an event A occurs in the past of T if at

any instant t at which T has arrived no look into the future is necessary to
determine whether the event A has occurred.

(ii) The value of a process Z at a random time T is the random variable

ZT : ω 7→ ZT (ω)(ω) .

(iii) Let S, T be two random times. The random interval ((S, T ]] is the set

((S, T ]] def=
{

(s, ω) ∈ B : S(ω) < s ≤ T (ω), s <∞
}

;

and ((S, T )), [[S, T ]], and [[S, T )) are defined similarly. Note that the point

(∞, ω) does not belong to any of these intervals, even if T (ω) = ∞ . If

both S and T are stopping times, then the random intervals ((S, T ]], ((S, T )),
[[S, T ]], and [[S, T )) are called stochastic intervals. A stochastic interval is

finite if its endpoints are finite stopping times, and bounded if the endpoints
are bounded stopping times.

(iv) The graph of a random time T is the random interval

[[T ]] = [[T, T ]] def=
{
(s, ω) ∈ B : T (ω) = s <∞

}
.
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Figure 1.5 A stochastic interval

Proposition 1.3.9 Suppose that Z is a progressively measurable process and T

is a stopping time. The stopped process ZT , defined by ZTs (ω) = ZT∧s(ω) ,
is progressively measurable, and ZT is measurable on FT .

We can paraphrase the last statement by saying “a progressively measurable

process is adapted to the ‘expanded filtration’ {FT : T a stopping time} .”

Proof. For fixed t let F t = B•[0,∞) ⊗ Ft . The map12 that sends (s, ω) to(
T (ω) ∧ t ∧ s, ω

)
from B to itself is easily seen to be F t/F t-measurable.
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(ZT )t = ZT∧t is the composition of Zt with this map and is therefore
F t-measurable. This holds for all t , so ZT is progressively measurable. For

a ∈ R , [ZT > a] ∩ [T ≤ t] = [ZTt > a] ∩ [T ≤ t] belongs to Ft because ZT

is adapted. This holds for all t , so [ZT > a] ∈ FT for all a : ZT ∈ FT , as

claimed.

Exercise 1.3.10 If the process Z is progressively measurable, then so is the
process t 7→ ZT∨t − ZT .

Let T1 ≤ T2 ≤ . . . ≤ T∞ = ∞ be an increasing sequence of stopping times and X
a progressively measurable process. For r ∈ R define K = inf {k ∈ N : XTk > r}.
Then TK : ω 7→ TK(ω)(ω) is a stopping time.

Some Examples of Stopping Times

Stopping times occur most frequently as first hitting times – of the moon in

our example of section 1.1, or of sets of bad behavior in much of the analysis
below. First hitting times are stopping times, provided that the filtration F.

satisfies some natural conditions – see figure 1.6 on page 40. This is shown
with the help of a little capacity theory in appendix A, section A.5. A few

elementary results, established with rather simple arguments, will go a long
way:

Proposition 1.3.11 Let I be an adapted process with increasing right-

continuous paths and let λ ∈ R. Then

Tλ def= inf{t : It ≥ λ}
is a stopping time, and ITλ ≥ λ on the set [T λ < ∞] . Moreover, the

functions λ 7→ T λ(ω) are increasing and left-continuous.

Proof. T λ(ω) ≤ t if and only if It(ω) ≥ λ . In other words, [T λ ≤ t] =
[It ≥ λ] ∈ Ft, so T λ is a stopping time. If T λ(ω) < ∞ , then there is a

sequence (tn) of instants that decreases to T λ(ω) and has Itn(ω) ≥ λ . The
right-continuity of I produces ITλ(ω)(ω) ≥ λ .

That T λ ≤ Tµ when λ ≤ µ is obvious: T . is indeed increasing. If T λ ≤ t
for all λ < µ , then It ≥ λ for all λ < µ , and thus It ≥ µ and Tµ ≤ t . That

is to say, supλ<µ T
λ = Tµ : λ 7→ T λ is left-continuous.

The main application of this near-trivial result is to the maximal process of
some process I . Proposition 1.3.11 applied to (Z − ZS)? yields the

Corollary 1.3.12 Let S be a finite stopping time and λ > 0 . Suppose that Z
is adapted and has right-continuous paths. Then the first time the maximal

gain of Z after S exceeds λ ,

T = inf{t > S : sup
S<s≤t

|Zs − ZS | ≥ λ} = inf{t : |Z − ZS |?t ≥ λ} ,

is a stopping time strictly greater than S , and |Z − ZS |?T ≥ λ on [T <∞] .
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Proposition 1.3.13 Let Z be an adapted process, T a stopping time, X a
random variable measurable on FT , and S = {s0 < s1 < . . . < sN} ⊂ [0, u)

a finite set of instants. Define

T ′ = inf{s ∈ S : s > T , Zs �X} ∧ u ,
where � stands for any of the relations >,≥,=,≤, < . Then T ′ is a stopping

time, and ZT ′ ∈ FT ′ satisfies ZT ′ �X on [T ′ < u] .

Proof. If t ≥ u , then [T ′ ≤ t] = Ω ∈ Ft . Let then t < u . Then

[T ′ ≤ t] =
⋃{

[T < s] ∩ [Zs �X] : S 3 s ≤ t
}
.

Now [T < s] ∈ Fs and so [T < s]Zs ∈ Fs . Also, [X > x] ∩ [T < s] ∈ Fs
for all x , so that [T < s]X ∈ Fs as well. Hence [T < s] ∩ [Zs �X] ∈ Fs for

s ≤ t and so [T ′ ≤ t] ∈ Ft . Clearly ZT ′ [T ′ ≤ t] =
⋃
S3s≤t Zs[T

′=s] ∈ Ft for
all t ∈ S , and so ZT ′ ∈ FT ′ .

Proposition 1.3.14 Let S be a stopping time, let c > 0 , and let X ∈ D . Then

T = inf {t > S : |∆Xt| ≥ c}
is a stopping time that is strictly later than S on the set [S < ∞] , and

|∆XT | ≥ c on [T <∞] .

Proof. Let us prove the last point first. Let tn ≥ T decrease to T and

|∆Xtn | ≥ c . Then (tn) must be ultimately constant. For if it is not, then it
can be replaced by a strictly decreasing subsequence, in which case both Xtn

and Xtn− converge to the same value, to wit, XT . This forces ∆Xtn
−−−→n→∞ 0,

which is impossible since |∆Xtn | ≥ c > 0. Thus T > S and ∆XT ≥ c .

Next observe that T ≤ t precisely if for every n ∈ N there are numbers
q, q′ in the countable set

Qt = (Q ∩ [0, t]) ∪ {t}
with S < q < q′ and q′ − q < 1/n , and such that |Xq′ − Xq| ≥ c − 1/n .

This condition is clearly necessary. To see that it is sufficient note that in
its presence there are rationals S < qn < q′n ≤ t with q′n − qn → 0 and

|Xq′n − Xqn
| ≥ c − 1/n . Extracting a subsequence we may assume that

both (qn) and (q′n) converge to some point s ∈ [S, t] . (qn) can clearly not

contain a constant subsequence; if (q′n) does, then |∆Xs| ≥ c and T ≤ t . If
(q′n) has no constant subsequence, it can be replaced by a strictly monotone

subsequence. We may thus assume that both (qn) and (q′n) are strictly
monotone. Recalling the first part of the proof we see that this is possible

only if (qn) is increasing and (q′n) decreasing, in which case T ≤ t again.
The upshot of all this is that

[T ≤ t] =
⋂

n∈N

⋃

q,q′∈Qt

q<q′<q+1/n

[S < q] ∩
[
|Xq′ −Xq| ≥ c− 1/n

]
,

a set that is easily recognizable as belonging to Ft .
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Further elementary but ubiquitous facts about stopping times are developed
in the next exercises. Most are clear upon inspection, and they are used freely

in the sequel.

Exercise 1.3.15 (i) An instant t ∈ R+ is a stopping time, and its past equals Ft .
(ii) The infimum of a finite number and the supremum of a countable number of
stopping times are stopping times.

Exercise 1.3.16 Let S, T be any two stopping times. (i) If S ≤ T , then FS ⊆ FT .
(ii) In general, the sets [S < T ] , [S ≤ T ] , [S = T ] belong to FS∧T = FS ∩ FT .

Exercise 1.3.17 A random time T is a stopping time precisely if the (indicator
function of the) random interval [[0, T )) is an adapted process. 15 If S, T are stopping
times, then any stochastic interval with left endpoint S and right endpoint T is an
adapted process.

Exercise 1.3.18 Let T be a stopping time and A ∈ FT . Setting

TA(ω) def=


T (ω) if ω ∈ A

∞ if ω 6∈ A
= T + ∞ ·Ac

defines a new stopping time TA , the reduction of the stopping time T to A .

Exercise 1.3.19 Let T be a stopping time and A ∈ F∞ . Then A ∈ FT if and
only if the reduction TA is a stopping time. A random variable f is measurable
on FT if and only if f · [T ≤ t] ∈ Ft at all instants t .

Exercise 1.3.20 The following “discrete approximation from above” of a stopping
time T will come in handy on several occasions. For n = 1, 2, . . . set

T (n) def=

8
>><
>>:

0 on [T = 0];

k + 1

n
on
hk
n
< T ≤ k + 1

n

i
,

∞ on [T = ∞].

k = 0, 1, . . . ;

Using convention A.1.5 on page 364, we can rewrite this as

T (n) def=

∞X

k=0

k + 1

n
·
hk
n
< T ≤ k + 1

n

i
+ ∞ · [T = ∞] .

Then T (n) is a stopping time that takes only countably many values, and T is the
pointwise infimum of the decreasing sequence T (n) .

Exercise 1.3.21 Let X ∈ D . (i) The set {s ∈ R+ : |∆Xs(ω)| ≥ ε} is discrete
(has no accumulation point in R+ ) for every ω ∈ Ω and ε > 0. (ii) There exists
a countable family {Tn} of stopping times with bounded disjoint graphs [[Tn]] at
which the jumps of X occur:

[∆X 6= 0] ⊆
[

n

[[Tn]] .

(iii) Let h be a Borel function on R and assume that for all t < ∞ the sum
Jt def=

P
0≤s≤t h(∆Xs) converges absolutely. Then J. is adapted.

15 See convention A.1.5 and figure A.14 on page 365.
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Probabilities

A probabilistic model of a system requires, of course, a probability measure P
on the pertinent σ-algebra F∞ , the idea being that a priori assumptions on,

or measurements of, P plus mathematical analysis will lead to estimates of
the random variables of interest.

The need to consider a family P of pertinent probabilities does arise: first,
there is often not enough information to specify one particular probability as

the right one, merely enough to narrow the class. Second, in the context
of stochastic differential equations and Markov processes, whole slews of

probabilities appear that may depend on a starting point or other parameter
(see theorem 5.7.3). Third, it is possible and often desirable to replace a

given probability by an equivalent one with respect to which the stochastic
integral has superior properties (this is done in section 4.1 and is put to

frequent use thereafter). Nevertheless, we shall mostly develop the theory for

a fixed probability P and simply apply the results to each P ∈ P separately.
The pair

(
F.,P

)
or
(
F.,P

)
, as the case may be, is termed a measured

filtration.

Let P ∈ P . It is customary to denote the integral with respect to P by EP

and to call it the expectation; that is to say, for f : Ω → R measurable
on F∞ ,

EP[f ] =

∫
f dP =

∫
f(ω) P(dω) , P ∈ P .

If there is no doubt which probability P ∈ P is meant, we write simply E .

A subset N ⊂ Ω is commonly called P-negligible, or simply negligible
when there is no doubt about the probability, if its outer measure P∗[N ]

equals zero. This is the same as saying that it is contained in a set of F∞ that
has measure zero. A function on Ω is negligible if it vanishes off a negligible

set; this is the same as saying that the upper integral 16 of its absolute value
vanishes. The functions that differ negligibly, i.e., only in a negligible set,

from f constitute the equivalence class ḟ . We have seen in the proof of
theorem 1.2.2 (ii) that in the present business we sometimes have to make

the distinction between a random variable and its class, boring as this is. We
write f

.
= g if f and g differ negligibly and also ḟ

.
= ġ if f and g belong to

the same equivalence class, etc.

A property of the points of Ω is said to hold P-almost surely or simply

almost surely, if the set N of points of Ω where it does not hold is negligible.

The abbreviation P-a.s. or simply a.s. is common. The terminology “almost
everywhere” and its short form “a.e.” will be avoided in context with P since

it is employed with a different meaning in chapter 3.

16 See page 396.
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The Sizes of Random Variables

With every probability P on F∞ there come many different ways of measur-
ing the size of a random variable. We shall review a few that have proved

particularly useful in many branches of mathematics and that continue to
be so in the context of stochastic integration and of stochastic differential

equations.
For a function f measurable on the universal completion F∗∞ and

0 < p < ∞, set

‖f ‖p def= ‖f ‖Lp
def=
(∫

|f |p dP
)1/p

.

If there is need to stress which probability P ∈ P is meant, we write ‖f ‖
Lp(P)

.

The p-mean ‖ ‖
p

is

absolute-homogeneous: ‖r·f‖p = |r|·‖f‖p
and subadditive: ‖f + g‖p ≤ ‖f‖p + ‖g‖p
in the range 1 ≤ p < ∞ , but not for 0 < p < 1. Since it is often more
convenient to have subadditivity at one’s disposal rather than homogeneity,

we shall mostly employ the subadditive versions

ddf eep def=





‖f‖Lp(P) =
(∫

|f |p dP
)1/p

for 1 ≤ p <∞,

‖f‖pLp(P) =

∫
|f |p dP for 0 < p ≤ 1 .

(1.3.1)

Lp or Lp(P) denotes the collection of measurable functions f with ddfee
p
< ∞,

the p-integrable functions. The collection of Ft-measurable functions in Lp

is Lp(Ft) or Lp(Ft,P). It is well known that Lp is a complete pseudomet-

ric space under the distance distp(f, g) = ddf − gee
p

– it is to make distp a

metric that we generally prefer the subadditive size measurement dd ee
p

over

its homogeneous cousin ‖ ‖
p
.

Two random variables in the same class have the same p-means, so we
shall also talk about dd ḟ ee

p
, etc.

The prominence of the p-means ‖ ‖
p

and dd ee
p

among other size mea-
surements that one might think up is due to Hölder’s inequality A.8.4, which

provides a partial alleviation of the fact that L1 is not an algebra, and to
the method of interpolation (see proposition A.8.24). Section A.8 contains

further information about the p-means and the Lp-spaces. A process Z
is called p-integrable if the random variables Zt are all p-integrable, and

Lp-bounded if
sup
t

‖Zt ‖p < ∞ , 0 < p ≤ ∞.

The largest class of useful random variables is that of measurable a.s. finite

ones. It is denoted by L0 , L0(P), or L0(Ft,P), as the context requires. It
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extends the slew of the Lp-spaces at p = 0. It plays a major role in stochastic
analysis due to the fact that it forms an algebra and does not change when P
is replaced by an equivalent probability (exercise A.8.11). There are several
ways to attach a numerical size to a function f ∈ L0 , the most common17

being

ddf ee0 = ddf ee0;P def= inf
{
λ : P

[
|f | > λ

]
≤ λ

}
.

It measures convergence in probability, also called convergence in mea-

sure; namely, fn → f in probability if

dist0(fn, f) def= ddfn − f ee0 −−−→n→∞ 0 .

dd ee
0

is subadditive but not homogeneous (exercise A.8.1). There is also a
whole slew of absolute-homogeneous but non-subadditive functionals, one for

every α ∈ R , that can be used to describe the topology of L0(P):

‖f ‖[α] = ‖f ‖[α;P]
def= inf

{
λ > 0 : P[|f | > λ] ≤ α

}
.

Further information about these various size measurements and their relation
to each other can be found in section A.8. The reader not familiar with L0

or the basic notions concerning topological vector spaces is strongly advised
to peruse that section. In the meantime, here is a little mnemonic device:

functionals with “straight sides” ‖ ‖ are homogeneous, and those with a
little “crossbar,” like dd ee , are subadditive. Of course, if 1 ≤ p < ∞ , then

‖ ‖
p

= dd ee
p

has both properties.

Exercise 1.3.22 While some of the functionals dd ee
p

are not homogeneous – the

dd ee
p

for 0 ≤ p < 1 – and some are not subadditive – the ‖ ‖
p

for 0 < p < 1 and

the ‖ ‖
[α]

– all of them respect the order: |f | ≤ |g| =⇒ ‖f ‖. ≤ ‖g‖. . Functionals

with this property are termed solid.

Two Notions of Equality for Processes

Modifications Let P be a probability in the pertinent class P . Two proces-

ses X,Y are P-modifications of each other if, at every instant t , P-almost
surely Xt = Yt . We also say “X is a modification of Y ,” suppressing as

usual any mention of P if it is clear from the context. In fact, it may happen
that [Xt 6= Yt] is so wild that the only set of Ft containing it is the whole

space Ω. It may, in particular, occur that X is adapted but a modification Y
of it is not.

Indistinguishability Even if X and a modification Y are adapted, the sets
[Xt 6= Yt] may vary wildly with t . They may even cover all of Ω. In

other words, while the values of X and Y might at no finite instant be
distinguishable with P , an apparatus rigged to ring the first time X and

17 It is commonly attributed to Ky–Fan.
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Y differ may ring for sure, even immediately. There is evidently a need for
a more restrictive notion of equality for processes than merely being almost

surely equal at every instant.
To approach this notion let us assume that X,Y are progressively mea-

surable, as respectable processes without ESP are supposed to be. It seems
reasonable to say that X,Y are indistinguishable if their entire paths X., Y.
agree almost surely, that is to say, if the event

N def= [X. 6= Y.] =
⋃

k∈N
[|X − Y |?k > 0]

has no chance of occurring. Now Nk = [Xk
. 6= Y k. ] = [|X − Y |?k > 0] is

the uncountable union of the sets [Xs 6= Ys] , s ≤ k , and looks at first sight
nonmeasurable. By corollary A.5.13, though, N k belongs to the universal

completion of Fk ; there is no problem attaching a measure to it. There is
still a little conceptual difficulty in that Nk may not belong to Fk itself,

meaning that it is not observable at time k , but this seems like splitting
hairs. Anyway, the filtration will soon be enlarged so as to become regular;

this implies its universal completeness, and our little trouble goes away. We
see that no apparatus will ever be able to detect any difference between X

and Y if they differ only on a set like
⋃
k∈N N

k , which is the countable
union of negligible sets in A∞ . Such sets should be declared inconsequential.

Letting A∞σ denote the collection of sets that are countable unions of sets
in A∞ , we are led to the following definition of indistinguishability. Note

that it makes sense without any measurability assumption on X,Y .

Definition 1.3.23 (i) A subset of Ω is nearly empty if it is contained in a

negligible set of A∞σ . A random variable is nearly zero if it vanishes outside

a nearly empty set.
(ii) A property P of the points ω ∈ Ω is said to hold nearly if the set N

of points of Ω where it does not hold is nearly empty. Writing f = g for two
random variables f, g generally means that f and g nearly agree.

(iii) Two processes X,Y are indistinguishable if [X. 6= Y.] is nearly
empty. A process or subset of the base space B that cannot be distinguished

from zero is called evanescent. When we write X = Y for two processes
X,Y we mean generally that X and Y are indistinguishable.

When the probability P ∈ P must be specified, then we talk about
P-nearly empty sets or P-nearly vanishing random variables, properties hold-

ing P-nearly, processes indistinguishable with P or P-indistinguishable, and
P-evanescent processes.

A set N is nearly empty if someone with a finite if possibly very long life
span t can measure it (N ∈ Ft ) and find it to be negligible, or if it is the

countable union of such sets. If he and his offspring must wait past the
expiration of time (check whether N ∈ F∞ ) to ascertain that N is negligible

– in other words, if this must be left to God – then N is not nearly empty even
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though it be negligible. Think of nearly empty sets as sets whose negligibility
can be detected before the expiration of time.

There is an apologia for the introduction of this class of sets in warnings

1.3.39 on page 39 and 3.9.20 on page 167.

Example 1.3.24 Take for Ω the unit interval [0, 1]. For n ∈ N let Fn be the

σ-algebra generated by the closed intervals [k2−n, (k + 1)2−n] , 0 ≤ k ≤ 2n .
To obtain a filtration indexed by [0,∞) set Ft = Fn for n ≤ t < n+ 1. For

P take Lebesgue measure λ . The negligible sets in Fn are the sets of dyadic
rationals of the form k2−n , 0 < k < 2n . In this case A∞ is the algebra of

finite unions of intervals with dyadic-rational endpoints, and its span F∞ is

the σ-algebra of all Borel sets on [0, 1]. A set is nearly empty if and only if it
is a subset of the dyadic rationals in (0, 1). There are many more negligible

sets than these. Here is a striking phenomenon: consider a countable set I
of irrational numbers dense in [0, 1]. It is Lebesgue negligible but has outer

measure 1 for any of the measured triples
(
[0, 1],Ft,P|Ft

)
. The upshot: the

notion of a nearly empty set is rather more restrictive than that of a negligible

set. In the present example there are 2ℵ0 of the former and ≥ 2ℵ1 of the
latter. For more on this see example 1.3.32.

Exercise 1.3.25 N ⊂ Ω is negligible if and only if there is, for every ε > 0, a set
of A∞σ that has measure less than ε and contains N . It is nearly empty if and
only if there exists a set of A∞σ that has measure equal to zero and contains N .
N ⊂ Ω is nearly empty if and only if there exist instants tn < ∞ and negligible
sets Nn ∈ Ftn whose union contains N .

Exercise 1.3.26 A subset of a nearly empty set is nearly empty; so is the countable
union of nearly empty sets. A subset of an evanescent set is evanescent; so is the
countable union of evanescent sets.

Near-emptyness and evanescence are “solid” notions: if f, g are random vari-
ables, g nearly zero and |f | ≤ |g| , then f is nearly zero; if X,Y are processes, Y
evanescent and |X| ≤ |Y | , then X is evanescent. The pointwise limit of a sequence
of nearly zero random variables is nearly zero. The pointwise limit of a sequence of
evanescent processes is evanescent.

A process X is evanescent if and only if the projection πΩ[X 6= 0] is nearly
empty.

Exercise 1.3.27 (i) Two stopping times that agree almost surely agree nearly.
(ii) If T is a nearly finite stopping time and N ∈ FT is negligible, then it is

nearly empty.

Exercise 1.3.28 Indistinguishable processes are modifications of each other. Two
adapted left- or right-continuous processes that are modifications of each other are
indistinguishable.

The Natural Conditions

We shall now enlarge the given filtration slightly, and carefully. The purpose

of this is to gain regularity results for paths of integrators (theorem 2.3.4)
and to increase the supply of stopping times (exercise 1.3.30 and appendix A,

pages 436–438).
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Right-Continuity of a Filtration Many arguments are simplified or possible
only when the filtration F. is right-continuous:

Definition 1.3.29 The right-continuous version F.+ of a filtration F. is
defined by

Ft+ def=
⋂

u>t

Fu ∀ t ≥ 0 .

The given filtration F. is termed right-continuous if F. = F.+ .

The following exercise develops some of the benefits of having the filtration

right-continuous. We shall see soon (proposition 2.2.11) that it costs nothing
to replace any given filtration by its right-continuous version, so that we can

easily avail ourselves of these benefits.

Exercise 1.3.30 The right-continuity of the filtration implies all of this: (i) A
random time T is a stopping time if and only if [T < t] ∈ Ft for all t > 0. This is
often easier to check than that [T ≤ t] ∈ Ft for all t . For instance (compare with
proposition 1.3.11): (ii) If Z is an adapted process with right- or left-continuous
paths, then for any λ ∈ R

Tλ+ def= inf{t : Zt > λ}
is a stopping time. Moreover, the functions λ 7→ T λ+(ω) are increasing and right-
continuous. (iii) If T is a stopping time, then A ∈ FT iff A ∩ [T < t] ∈ Ft ∀ t .

(iv) The infimum T of a countable collection {Tn} of stopping times is a stopping
time, and its past is FT =

T
n FTn (cf. exercise 1.3.15).

(v) F. and F.+ have the same adapted left-continuous processes. A process
adapted to the filtration F. and progressively measurable on F.+ is progressively
measurable on F. .

Regularity of a Measured Filtration It is still possible that there exist mea-

surable indistinguishable processes X,Y of which one is adapted, the other
not. This unsatisfactory state of affairs is ruled out if the filtration is regu-

lar. For motivation consider a subset N ⊂ Ω that is not measurable on Ft
(too wild to be observable now, at time t) but that is measurable on Fu for
some u > t (observable then) and turns out to have probability P[N ] = 0 of

occurring. Or N might merely be a subset of such a set. The class of such N
and their countable unions is precisely the class of nearly empty sets. It does

no harm but confers great technical advantage to declare such an event N to
be both observable and impossible now. Precisely:

Definition 1.3.31 (i) Given a measured filtration
(
F.,P

)
on Ω and a proba-

bility P in the pertinent class P , set

FP
t

def=
{
A ⊂ Ω : ∃AP ∈ Ft so that |A− AP| is P-nearly empty

}
.

Here |A−AP| is the symmetric difference
(
A \AP

)
∪
(
AP \A

)
(see conven-

tion A.1.5). FP
t is easily seen to be a σ-algebra; in fact, it is the σ-algebra

generated by Ft and the P-nearly empty sets. The collection

FP
.

def=
{
FP
t

}
0≤t≤∞
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is the P-regularization of F. . The filtration FP composed of the σ-algebras

FP
t

def=
⋂

P∈P

FP
t , t ≥ 0 ,

is the P-regularization, or simply the regularization, when P is clear
from the context.

(ii) The measured filtration
(
F.,P

)
is regular if F. = FP

. . We then also

write “F. is P-regular,” or simply “F. is regular” when P is understood.

Let us paraphrase the regularity of a filtration in intuitive terms: “an event

that proves in the long run to be indistinguishable, whatever the probability
in the admissible class P , from some event observable now is considered to

be observable now.”

FP
t contains the completion of Ft under the restriction P|Ft

, which in turn
contains the universal completion. The regularization of F is thus universally

complete. If F is regular, then the maximal process of a progressively
measurable process is again progressively measurable (corollary A.5.13). This

is nice. The main point of regularity is, though, that it allows us to prove
the path regularity of integrators (section 2.3 and definition 3.7.6). The

following exercises show how much – or rather how little – is changed by
such a replacement and develop some of the benefits of having the filtration

regular. We shall see soon (proposition 2.2.11) that it costs nothing to replace
a given filtration by its regularization, so that we can easily avail ourselves of

these benefits.

Example 1.3.32 In the right-continuous measured filtration (Ω = [0, 1],F ,P = λ)
of example 1.3.24 the Ft are all universally complete, and the couples (Ft,P) are
complete. Nevertheless, the regularization differs from F : F P

t is the σ-algebra
generated by Ft and the dyadic-rational points in (0, 1). For more on this see
example 1.3.45.

Exercise 1.3.33 A random variable f is measurable on FP
t if and only if there

exists an Ft-measurable random variable fP that P-nearly equals f .

Exercise 1.3.34 (i) FP
. is regular. (ii) A random variable f is measurable on FP

t

if and only if for every P ∈ P there is an Ft-measurable random variable P-nearly
equal to f .

Exercise 1.3.35 Assume that F. is right-continuous and let P be a probability
on F∞ .

(i) Let X be a right-continuous process adapted to FP
. . There exists a process

X ′ that is P-nearly right-continuous and adapted to F. and cannot be distinguished
from X with P . If X is a set, then X ′ can be chosen to be a set; and if X is
increasing, then X ′ can be chosen increasing and right-continuous everywhere.

(ii) A random time T is a stopping time on FP
. if and only if there exists an

F.-stopping time TP that nearly equals T . A set A belongs to FT if and only if
there exists a set AP ∈ FTP

that is nearly equal to A .

Exercise 1.3.36 (i) The right-continuous version of the regularization equals the
regularization of the right-continuous version; if F. is regular, then so is F.+ .



1.3 The General Model 39

(ii) Substituting F.+ for F. will increase the supply of adapted and of progres-
sively measurable processes, and of stopping times, and will sometimes enlarge the
spaces Lp[Ft,P] of equivalence classes (sometimes it will not – see exercise 1.3.47.).

Exercise 1.3.37 FP
t contains the σ-algebra generated by Ft and the nearly empty

sets, and coincides with that σ-algebra if there happens to exist a probability with
respect to which every probability in P is absolutely continuous.

Definition 1.3.38 (The Natural Conditions) Let (F.,P) be a measured fil-

tration. The natural enlargement of F. is the filtration FP
.+ obtained by

regularizing the right-continuous version of F. (or, equivalently, by taking the
right-continuous version of the regularization — see exercise 1.3.36).

Suppose that Z is a process and the pertinent class P of probabilities

is understood; then the natural enlargement of the basic filtration F 0
. [Z] is

called the natural filtration of Z and is denoted by F.[Z] . If P must be

mentioned, we write FP
. [Z] .

A measured filtration is said to satisfy the natural conditions if it equals
its natural enlargement.

Warning 1.3.39 The reader will find the term usual conditions at this
juncture in most textbooks, instead of “natural conditions.” The usual con-

ditions require that F. equal its usual enlargement, which is effected by

replacing F. with its right-continuous version and throwing into every Ft+ ,
t < ∞ , all P-negligible sets of F∞ and their subsets, i.e., all sets that are

negligible for the outer measure P∗ constructed from (F∞,P∗). The latter
class is generally cardinalities bigger than the class of nearly empty sets (see

example 1.3.24). Doing the regularization (frequently called completion) of
the filtration this way evidently has the consequence that a probability abso-

lutely continuous with respect to P on F0 is already absolutely continuous
with respect to P on F∞ . Failure to observe this has occasionally led to

vacuous investigations of the local equivalence of probabilities and to erro-
neous statements of Girsanov’s theorem (see example 3.9.14 on page 164 and

warning 3.9.20 on page 167). The term “usual conditions” was coined by the
French School and is now in universal use.

We shall see in due course that definition 1.3.38 of the enlargement fur-
nishes the advantages one expects: path regularity of integrators and a plen-

tiful supply of stopping times, without incurring some of the disadvantages
that come with too liberal an enlargement. Here is a mnemonic device: the

natural conditions are obtained by adjoining the nearly empty (instead of the
negligible) sets to the right-continuous version of the filtration; and they are

nearly the usual conditions, but not quite: The natural enlargement does
not in general contain every negligible set of F∞ !

The natural conditions can of course be had by the simple expedient of re-

placing the given filtration with its natural enlargement – and, according
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to proposition 2.2.11, doing this costs nothing so far as the stochastic inte-
gral is concerned. Here is one pretty consequence of doing such a replace-

ment. Consider a progressively measurable subset B of the base space B .
The debut of B is the time (see figure 1.6)

DB(ω) def= inf{t : (t, ω) ∈ B} .
It is shown in corollary A.5.12 that under the natural conditions DB is a

stopping time. The proof uses some capacity theory, which can be found
in appendix A. Our elementary analysis of integrators won’t need to employ

this big result, but we shall make use of the larger supply of stopping times
provided by the regularity and right-continuity and established in exercises

1.3.35 and 1.3.30.
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Figure 1.6 The debut of A

Exercise 1.3.40 The natural enlargement has the same nearly empty sets and
evanescent processes as the original measured filtration.

Local Absolute Continuity A probability P′ on F∞ is locally absolutely

continuous with respect to P if for all finite t <∞ its restriction P′t to Ft
is absolutely continuous with respect to the restriction Pt of P to Ft . This is

evidently the same as saying that a P-nearly empty set is P′-nearly empty and
is written P′ �. P . This can very well happen without P′ being absolutely

continuous with respect to P on F∞ ! If both P′ �. P and P �. P′ , we say
that P and P′ are locally equivalent and write P ≈. P′ ; it simply means

that P and P′ have the same nearly empty sets. For more on the subject see

pages 162–167.

Exercise 1.3.41 Let P′ �. P . (i) A P-evanescent process is P′-evanescent.
(ii) (FP

. ,P′) is P′-regular. (iii) If T is a P-nearly finite stopping time, then a
P-negligible set in FT is P′-negligible.
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Exercise 1.3.42 In order to see that the definition of local absolute continuity
conforms with our usual use of the word “local” (page 51), show that P′ �. P if and
only if there are arbitrarily large finite stopping times T so that P′ � P on FT . If
P is enlarged by adding every measure locally absolutely continuous with respect
to some probability in P , then the regularization does not change. In particular, if
there exists a probability P in P with respect to which all of the others are locally
absolutely continuous, then FP

. = FP
. .

Exercise 1.3.43 Replacing Ft by FP
t is harmless in this sense: it will increase

the supply of adapted and of progressively measurable processes, but it will not
change the spaces Lp[Ft,P] of equivalence classes 0 ≤ p ≤ ∞, 0 ≤ t ≤ ∞,P ∈ P .

Exercise 1.3.44 Construct a measured filtration (F.,P) that is not regular yet
has the property that the pairs (Ft,P) all are complete measure spaces.

Example 1.3.45 Recall the measured filtration (Ω = [0, 1],F P
. ,P = λ) of examp-

le 1.3.32. It is right-continuous and regular. On F∞ = B•[0, 1] let P′ be Dirac
measure at 0.18 Its restriction to FP

t is absolutely continuous with respect to P ; in
fact, for n ≤ t < n+1 a Radon–Nikodym derivative is Mt

def= 2n · [0, 2−n] . So P′ is
locally absolutely continuous with respect to P , evidently without being absolutely
continuous with respect to P on F∞ . For another example see theorem 3.9.19 on
page 167.

Exercise 1.3.46 The set N of theorem 1.2.8 where the Wiener path is differen-
tiable at at least one instant was actually nearly empty.

Exercise 1.3.47 (A Zero-One Law) Let W be a standard Wiener process on
(Ω,P). (i) The P-regularization of the basic filtration F 0

. [W ] is right-continuous.
(ii) Set T± def= inf{t > 0 : Wt

>
<0} . Then P[T+ = 0] = P[T− = 0] = 1; to paraphrase

“W starts off by oscillating about 0.”

Exercise 1.3.48 A standard Wiener process 8 is recurrent. That is to say, for
every s ∈ [0,∞) and x ∈ R and almost all ω ∈ Ω there is an instant t > s at which
Wt(ω) = x .

Repeated Footnotes: 31 52 64 87 98 1412

18 Dirac measure at ω is the measure A 7→ A(ω) – see convention A.1.5.
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Integrators and Martingales

Now that the basic notions of filtration, process, and stopping time are at
our disposal, it is time to develop the stochastic integral

∫
X dZ , as per

Itô’s ideas explained on page 5. We shall call X the integrand and Z the
integrator. Both are now processes.

For a guide let us review the construction of the ordinary Lebesgue–
Stieltjes integral

∫
x dz on the half-line; the stochastic integral

∫
X dZ

that we are aiming for is but a straightforward generalization of it. The
Lebesgue–Stieltjes integral is constructed in two steps. First, it is defined on

step functions x . This can be done whatever the integrator z . If, however,
the Dominated Convergence Theorem is to hold, even on as small a class as

the step functions themselves, restrictions must be placed on the integrator:

z must be right-continuous and must have finite variation. This chapter
discusses the stochastic analog of these restrictions, identifying the processes

that have a chance of being useful stochastic integrators.
Given that a distribution function z on the line is right-continuous and

has finite variation, the second step is one of a variety of procedures that
extend the integral from step functions to a much larger class of integrands.

The most efficient extension procedure is that of Daniell; it is also the only
one that has a straightforward generalization to the stochastic case. This is

discussed in chapter 3.

Step Functions and Lebesgue–Stieltjes Integrators on the Line

By way of motivation for this chapter let us go through the arguments in the
second paragraph above in “abbreviated detail.” A function x : s 7→ xs on

[0,∞) is a step function if there are a partition

P = {0 = t1 < t2 < . . . < tN+1 <∞}

and constants rn ∈ R , n = 0, 1, . . . , N , such that

xs =




r0 if s = 0
rn for tn < s ≤ tn+1 , n = 1, 2, . . . , N ,

0 for s > tN+1.
(2.1)

43
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Figure 2.7 A step function on the half-line

The point t = 0 receives special treatment inasmuch as the measure

µ = dz might charge the singleton {0} . The integral of such an elementary
integrand x against a distribution function or integrator z : [0,∞) → R is

∫
x dz =

∫
xs dzs

def= r0 · z0 +

N∑

n=1

rn ·
(
ztn+1

− ztn

)
. (2.2)

The collection e of step functions is a vector space, and the map x 7→
∫
x dz

is a linear functional on it. It is called the elementary integral.
If z is just any function, nothing more of use can be said. We are after an

extension satisfying the Dominated Convergence Theorem, though. If there
is to be one, then z must be right-continuous; for if (tn) is any sequence

decreasing to t , then

ztn − zt =

∫
1(t,tn] dz −−−→n→∞ 0 ,

because the sequence
(
1(t,tn]

)
of elementary integrands decreases pointwise

to zero. Also, for every t the set
∫

e1 dz
t def=

{∫
x dzt : x ∈ e , |x| ≤ 1

}

must be bounded.1 For if it were not, then there would exist elementary inte-
grands x(n) with |x(n)| ≤ 1[0,t] and

∫
x(n) dz > n ; the functions x(n)/n ∈ e

would converge pointwise to zero, being dominated by 1[0,t] ∈ e , and yet their
integrals would all exceed 1. The condition can be rewritten quantitatively

as z
t

def= sup

{∣∣∣
∫
x dz

∣∣∣ : |x| ≤ 1[0,t]

}
< ∞ ∀ t <∞ , (2.3)

or as ‖y‖z def= sup
{∣∣∣
∫
x dz

∣∣∣ : |x| ≤ y
}
<∞ ∀ y ∈ e+ ,

1 Recall from page 23 that zt is z stopped at t.
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or again thus: the image under
∫

. dz of any order interval

[−y, y] def= {x ∈ e : −y ≤ x ≤ y}

is a bounded subset of the range R , y ∈ e+ . If (2.3) is satisfied, we say that z

has finite variation.

In summary, if there is to exist an extension satisfying the Dominated Con-
vergence Theorem, then z must be right-continuous and have finite variation.

As is well known, these two conditions are also sufficient for the existence of
such an extension.

The present chapter defines and analyzes the stochastic analogs of these

notions and conditions; the elementary integrands are certain step functions
on the half-line that depend on chance ω ∈ Ω; z is replaced by a process Z

that plays the role of a “random distribution function”; and the conditions
of right-continuity and finite variation have their straightforward analogs in

the stochastic case. Discussing these and drawing first conclusions occupies
the present chapter; the next one contains the extension theory via Daniell’s

procedure, which works just as simply and efficiently here as it does on the
half-line.

Exercise 2.1 According to most textbooks, a distribution function z : [0,∞) → R
has finite variation if for all t <∞ the number

z
t
= sup

n
|z0| +

X

i

|zti+1 − zti | : 0 = t1 ≤ t2 ≤ . . . ≤ tI+1 = t
o
,

called the variation of z on [0, t] , is finite. The supremum is taken over all finite
partitions 0 = t1 ≤ t2 ≤ . . . ≤ tI+1 = t of [0, t] . To reconcile this with the definition
given above, observe that the sum is nothing but the integral of a step function, to
wit, the function that takes the value sgn(z0) on {0} and sgn(zti+1 − zti) on the
interval (zti , zti+1 ] . Show that

z
t
= sup

n˛̨
˛
Z
xs dzs

˛̨
˛ : |x| ≤ [0, t]

o
= ‖ [0, t]‖

z
.

Exercise 2.2 The map y 7→ ‖y‖
z

is additive and extends to a positive measure

on step functions. The latter is called the variation measure µ = d z = |dz| of
µ = dz. Suppose that z has finite variation. Then z is right-continuous if and only
if µ = dz is σ-additive. If z is right-continuous, then so is z . z is increasing
and its limit at ∞ equals

z
∞

= sup
n˛̨
˛
Z
xs dzs

˛̨
˛ : |x| ≤ 1

o
.

If this number is finite, then z is said to have bounded or totally finite variation.

Exercise 2.3 A function on the half-line is a step function if and only if it is left-
continuous, takes only finite many values, and vanishes after some instant. Their
collection e forms both an algebra and a vector lattice closed under chopping. The
uniform closure of e contains all continuous functions that vanish at infinity. The
confined uniform closure of e contains all continuous functions of compact support.
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2.1 The Elementary Stochastic Integral

Elementary Stochastic Integrands

The first task is to identify the stochastic analog of the step functions in

equation (2.1). The simplest thing coming to mind is this: a process X is an
elementary stochastic integrand if there are a finite partition

P = {0 = t0 = t1 < t2 . . . < tN+1 <∞}

of the half-line and simple random variables f0 ∈ F0, fn ∈ Ftn , n = 1, 2, . . . , N
such that

Xs(ω) =




f0(ω) for s = 0

fn(ω) for tn < s ≤ tn+1 , n = 1, 2, . . . , N ,
0 for s > tN+1 .

In other words, for tn < s ≤ t ≤ tn+1 , the random variables Xs = Xt

are simple and measurable on the σ-algebra Ftn that goes with the left
endpoint tn of this interval. If we fix ω ∈ Ω and consider the path t 7→ Xt(ω),

then we see an ordinary step function as in figure 2.7 on page 44. If we fix t
and let ω vary, we see a simple random variable measurable on a σ-algebra

strictly prior to t . Convention A.1.5 on page 364 produces this compact
notation for X :

X = f0 · [[0]] +

N∑

n=1

fn · ((tn, tn+1]] . (2.1.1)

The collection of elementary integrands will be denoted by E , or by E [F.] if
we want to stress the fact that the notion depends – through the measurability

assumption on the fn – on the filtration.

Ω

Ω →

                   t
0
                                                   t

1
           t

2
                          t

3
                                  t

4

Figure 2.8 An elementary stochastic integrand
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Exercise 2.1.1 An elementary integrand is an adapted left-continuous process.

Exercise 2.1.2 If X,Y are elementary integrands, then so are any linear com-
bination, their product, their pointwise infimum X ∧ Y , their pointwise maximum
X ∨ Y , and the “chopped function” X ∧ 1. In other words, E is an algebra and
vector lattice of bounded functions on B closed under chopping. (For the proof of
proposition 3.3.2 it is worth noting that this is the sole information about E used
in the extension theory of the next chapter.)

Exercise 2.1.3 Let A denote the collection of idempotent functions, i.e., sets, 2

in E . Then A is a ring of subsets of B and E is the linear span of A . A is the
ring generated by the collection {{0} ×A : A ∈ F0}∪ {(s, t] ×A : s < t, A ∈ Fs}
of rectangles, and E is the linear span of these rectangles.

The Elementary Stochastic Integral

Let Z be an adapted process. The integral against dZ of an elementary
integrand X ∈ E as in (2.1.1) is, in complete analogy with the deterministic

case (2.2), defined by

∫
X dZ = f0 · Z0 +

N∑

n=1

fn · (Ztn+1
− Ztn) . (2.1.2)

This is a random variable: for ω ∈ Ω

(∫
X dZ

)
(ω) = f0(ω) · Z0(ω) +

N∑

n=1

fn(ω) ·
(
Ztn+1

(ω) − Ztn(ω)
)
.

However, although stochastic analysis is about dependence on chance ω , it is
considered babyish to mention the ω ; so mostly we shan’t after this. The path

of X is an ordinary step function as in (2.1). The present definition agrees
ω -for-ω with the classical definition (2.2). The linear map X 7→

∫
X dZ of

(2.1.2) is called the elementary stochastic integral.

Exercise 2.1.4
R
X dZ does not depend on the representation (2.1.1) of X and

is linear in both X and Z .

The Elementary Integral and Stopping Times

A description in terms of stopping times and stochastic intervals of both the
elementary integrands and their integrals is natural and most useful. Let us

call a stopping time elementary if it takes only finitely many values, all of
them finite.

Let S ≤ T be two elementary stopping times. The elementary stochastic
interval ((S, T ]] is then an elementary integrand. 2 To see this let

{0 ≤ t1 < t2 < . . . < tN+1 <∞}
2 See convention A.1.5 and figure A.14 on page 365.
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be the values that S and T take, written in order. If s ∈ (tn, tn+1] , then the
random variable ((S, T ]]s takes only the values 0 or 1; in fact, ((S, T ]]s(ω) = 1

precisely if S(ω) ≤ tn and T (ω) ≥ tn+1 . In other words, for tn < s ≤ tn+1

((S, T ]]s = [S ≤ tn] ∩ [T ≥ tn+1]

= [S ≤ tn] \ [T ≤ tn] ∈ Ftn ,

so that ((S, T ]] =

N∑

n=1

(tn, tn+1] ×
(
[S ≤ tn] ∩ [T ≥ tn+1]

)
:

((S, T ]] is a set in E . Let us compute its integral against the integrator Z :

∫
((S, T ]] dZ =

N∑

n=1

([S ≤ tn][T ≥ tn+1])(Ztn+1
− Ztn)

=
∑

1≤m<n≤N+1

([S = tm][T = tn])(Ztn − Ztm)

=
∑

1≤m<n≤N+1

([S = tm][T = tn])(ZT − ZS)

= ZT − ZS . (2.1.3)

This is just as it should be.
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Figure 2.9 The indicator function of the stochastic interval ((S, T ]]

Next let A ∈ F0 . The stopping time 0 can be reduced by A to produce

the stopping time 0A (see exercise 1.3.18 on page 31). Its graph [[0A]] =
{0} × A is evidently an elementary integrand with integral A · Z0 . Finally,

let 0 = T1 < . . . < TN+1 be elementary stopping times and r1, . . . , rN real
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numbers, and let f0 be a simple random variable measurable on F0 . Since f0
can be written as f0 =

∑
k ρk ·Ak , Ak ∈ F0 , the process f0 · [[0]] is again an

elementary integrand with integral f0 · Z0 . The linear combination

X = f0 · [[0]] +
∑N
n=1rn · ((Tn, Tn+1]] (2.1.4)

is then also an elementary integrand and its integral against dZ is∫
X dZ = f0 · Z0 +

∑N
n=1rn · (ZTn+1

− ZTn
) .

Exercise 2.1.5 Let 0 = T1 ≤ T2 ≤ . . . ≤ TN+1 be elementary stopping times and
let f0 ∈ F0, f1 ∈ FT1 , . . . , fN ∈ FTN be simple functions. Then

X = f0 · [[0]] +
PN
n=1fn · ((Tn, Tn+1]]

is an elementary integrand, and its integral is
Z
X dZ = f0 · Z0 +

PN
n=1fn · (ZTn+1 − ZTn) .

Exercise 2.1.6 Every elementary integrand is of the form (2.1.4).

Lp -Integrators

Formula (2.1.2) associates with every elementary integrand X : B → R a
random variable

∫
X dZ . The linear map X 7→

∫
X dZ from E to L0 is just

like a signed measure, except that its values are random variables instead of

numbers – the technical term is that the elementary integral defined by (2.1.2)
is a vector measure. Measures with values in topological vector spaces like

Lp , 0 ≤ p < ∞ , turn out to have just as simple an extension theory as
do measures with real values, provided they satisfy some simple conditions.

Recall from the introduction to this chapter that a distribution function z on
the half-line must be right-continuous, and its associated elementary integral

must map order-bounded sets of step functions to bounded sets of reals, if
there is to be a satisfactory extension.

Precisely this is required of our random distribution function Z , too:

Definition 2.1.7 (Integrators) Let Z be a numerical process adapted to F. ,

P a probability on F∞ , and 0 ≤ p <∞ .
(i) Let T be any stopping time, possibly T = ∞ . We say that Z is

Ip-bounded on the stochastic interval [[0, T ]] if the family of random
variables

∫
E1 dZ

T =

{∫
X dZT : X ∈ E , |X| ≤ 1

}

if T is elementary: =

{∫
X dZ : X ∈ E , |X| ≤ [[0, T ]]

}

is a bounded subset of Lp .
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(ii) Z is an Lp-integrator if it satisfies the following two conditions:

Z is right-continuous in probability; (RC-0)

Z is Ip-bounded on every bounded interval [[0, t]]. (B-p)

(B-p) simply says that the image under
∫

. dZ of any order interval

[−Y, Y ] def= {X ∈ E : −Y ≤ X ≤ Y } , Y ∈ E+ ,

is a bounded subset of the range Lp , or again that
∫

. dZ is continuous in
the topology of confined uniform convergence (see item A.2.5 on page 370).

(iii) Z is a global Lp-integrator if it is right-continuous in probability

and Ip-bounded on [[0,∞)).
If there is a need to specify the probability, then we talk about Ip[P]-boundedness

and (global) Lp(P)-integrators.

The reader might have wondered why in (2.1.1) the values fn that X

takes on the interval (tn, tn+1] were chosen to be measurable on the small-
est possible σ-algebra, the one attached to the left endpoint tn . The

way the question is phrased points to the answer: had fn been allowed
to be measurable on the σ-algebra that goes with the right endpoint, or

the midpoint, of that interval, then we would have ended up with a larger
space E of elementary integrands. A process Z would have a harder time

satisfying the boundedness condition (B-p), and the class of Lp-integra-
tors would be smaller. We shall see soon (theorem 2.5.24) that it is pre-

cisely the choice made in equation (2.1.1) that permits martingales to be
integrators.

The reader might also be intimidated by the parameter p . Why con-
sider all exponents 0 ≤ p < ∞ instead of picking one, say p = 2, to

compute in Hilbert space, and be done with it? There are several reasons.

First, a given integrator Z might not be an L2-integrator but merely an
L1-integrator or an L0-integrator. One could argue here that every inte-

grator is an L0-integrator, so that it would suffice to consider only these.
In fact, L0-integrators are very flexible (see proposition 2.1.9 and proposi-

tion 3.7.4); almost every reasonable process can be integrated in the sense L0

(theorem 3.7.17); neither the feature of being an integrator nor the inte-

gral change when P is replaced by an equivalent measure (proposition 2.1.9
and proposition 3.6.20), which is of principal interest for statistical anal-

ysis; and finally L0 is an algebra. On the other hand, the topological
vector space L0 is not locally convex, and the absence of a single homo-

geneous gauge measuring the size of its functions makes for cumbersome
arguments – this problem can be overcome by replacing in a controlled

way the given probability P by an equivalent one for which the driving
term is an L2-integrator or better – see theorem 4.1.2 on page 191. Sec-

ond and more importantly, in the stability theory of stochastic differential
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equations Kolmogoroff’s lemma A.2.37 will be used. The exponent p in
inequality (A.2.4) will generally have to be strictly greater than the dimen-

sion of some parameter space (theorem 5.3.10) or of the state space (examp-
le 5.6.2).

The notion of an L∞-integrator could be defined along the lines of de-

finition 2.1.7, but this would be useless; there is no satisfactory extension
theory for L∞-valued vector measures. Replacing Lp with an Orlicz space

whose defining Young function satisfies a so-called ∆2-condition leads to
a satisfactory integration theory, as does replacing it with a Lorentz space

Lp,∞ , p < ∞ . The most reasonable generalization is touched upon in exer-
cise 3.6.19. We shall not pursue these possibilities.

Local Properties

A word about global versus “plain” Lp-integrators. The former are evidently

the analogs of distribution functions with totally finite or bounded variation
z ∞ , while the latter are the analogs of distribution functions z on R+ with

just plain finite variation: z
t
<∞ ∀ t <∞ . z

t
may well tend to ∞ as

t→ ∞ , as witness the distribution function zt = t of Lebesgue measure.

Note that a global integrator is defined in terms of the sup-norm on E :
the image of the unit ball

E1
def=
{
X ∈ E : |X | ≤ 1

}
=
{
X ∈ E : −1 ≤ X ≤ 1

}

under the elementary integral must be a bounded subset of Lp . It is not

good enough to consider only global integrators – a Wiener process, for

instance, is not one. Yet it is frequently sufficient to prove a general result
for them; given a “plain” integrator Z , the result in question will apply to

every one of the stopped processes Zt , 0 ≤ t < ∞ , these being evidently
global Lp-integrators. In fact, in the stochastic case it is natural to consider

an even more local notion:

Definition 2.1.8 Let P be a property of processes – P might be the property
of being a (global) Lp-integrator or of having continuous paths, for example.

A stopping time T is said to reduce Z to a process having the property P if

the stopped process ZT has P.

The process Z is said to have the property P locally if there are arbi-
trarily large stopping times that reduce Z to processes having P, that is

to say, if for every ε > 0 and t ∈ (0,∞) there is a stopping time T with
P[T < t] < ε such that the stopped process ZT has the property P.

A local Lp-integrator is generally not an Lp-integrator. If p = 0, though,

it is; this is a first indication of the flexibility of L0-integrators. A second
indication is the fact that being an L0-integrator depends on the probability

only up to local equivalence:
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Proposition 2.1.9 (i) A local L0-integrator is an L0-integrator; in fact, it is
I0-bounded on every finite stochastic interval.

(ii) If Z is a global L0(P)-integrator, then it is a global L0(P′)-integrator
for any measure P′ absolutely continuous with respect to P .

(iii) Suppose that Z is an L0(P)-integrator and P′ is a probability
on F∞ locally absolutely continuous with respect to P . Then Z is an

L0(P′)-integrator.

Proof. (i) To say that Z is a local L0(P)-integrator means that, given an

instant t and an ε > 0, we can find a stopping time T with P[T ≤ t] < ε
such that the set of classes

Bε def=

{∫
X dZT∧t : X ∈ E , |X| ≤ 1

}

is bounded in L0(P). Every random variable
∫
X dZ in the set

B def=

{∫
X dZt : X ∈ E , |X| ≤ 1

}

differs from the random variable
∫
X dZT∧t ∈ Bε only in the set [T ≤ t] .

That is, the distance of these two random variables is less than ε if measured

with dd ee
0

3. Thus B ⊂ L0 is a set with the property that for every ε > 0
there exists a bounded set Bε ⊂ L0 with supf∈B inff ′∈B′ ddf − f ′ ee

0
≤ ε .

Such a set is itself bounded in L0 . The second half of the statement follows
from the observation that the instant t above can be replaced by an almost

surely finite stopping time without damaging the argument. For the right-
continuity in probability see exercise 2.1.11.

(iii) If the set {
∫
X dZ : X ∈ E , |X| ≤ [[0, t]]} is bounded in L0(P), then

it is bounded in L0(Ft,P). Since the injection of L0(Ft,P) into L0(Ft,P′)
is continuous (exercise A.8.19), this set is also bounded in the latter space.
Since it is known that tn ↓ t implies Ztn → Zt in L0(Ft1 ,P), it also implies

Ztn → Zt in L0(Ft1 ,P′) and then in L0(F∞,P′). (ii) is even simpler.

Exercise 2.1.10 (i) If Z is an Lp-integrator, then for any stopping time T so is
the stopped process ZT . A local Lp-integrator is locally a global Lp-integrator.
(ii) If the stopped processes ZS and ZT are plain or global Lp-integrators, then so
is the stopped process ZS∨T . If Z is a local Lp-integrator, then there is a sequence
of stopping times reducing Z to global Lp-integrators and increasing a.s. to ∞ .

Exercise 2.1.11 A locally right-continuous process is right-continuous. A process
locally right-continuous in probability is right-continuous in probability. An adapted
process locally of finite variation nearly has finite variation.

Exercise 2.1.12 The sum of two (local, plain, global) Lp-integrators is a (local,
plain, global) Lp-integrator. If Z is a (local, plain, global) Lq-integrator and
0 ≤ p ≤ q <∞ , then Z is a (local, plain, global) Lp-integrator.

Exercise 2.1.13 Argue along the lines on page 43 that both conditions (B-p) and
(RC-0) are necessary for the existence of an extension that satisfies the Dominated
Convergence Theorem.

3 The topology of L0 is discussed briefly on page 33 ff., and in detail in section A.8.
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Exercise 2.1.14 The map X 7→
R
X dZ is evidently a measure (that is to say a

linear map on a space of functions) that has values in a vector space (Lp ). Not every
vector measure I : E → Lp is of the form I[X] =

R
X dZ . In fact, the stochastic

integrals are exactly the vector measures I : E → L0 that satisfy I[f · [[0, 0]]] ∈ F0

for f ∈ F0 and

I[f · ((s, t]]] = f · I[((s, t]]] ∈ Ft
for 0 ≤ s ≤ t and simple functions f ∈ L∞(Fs).

2.2 The Semivariations

Numerical expressions for the boundedness condition (B-p) of definition 2.1.7

are desirable, in fact are necessary, to do the estimates we should expect, for
instance, in Picard’s scheme sketched on page 5. Now, the only difference

with the classical situation discussed on page 44 is that the range R of the
measure has been replaced by Lp(P). It is tempting to emulate the definition

(2.3) of the ordinary variation on page 44. To do that we have to agree on a
substitute for the absolute value, which measures the size of elements of R ,

by some device that measures the size of the elements of Lp(P).

The obvious choice is the subadditive p-mean of equation (1.3.1) on

page 33. With it the analog of inequality (2.3) becomes

ddY eeZ−p def= sup
{⌈⌈∫

X dZ
⌉⌉
p

: X ∈ E , |X| ≤ Y
}
, (2.2.1)

0 ≤ p < ∞ . The functional Y 7→ ddY ee
Z−p is called the

⌈⌈ ⌉⌉
p
-semivariation

of Z . Recall our little mnemonic device: functionals with “straight sides”
like ‖ ‖ are homogeneous, and those with a little “crossbar” like dd ee are

subadditive. Of course, for 1 ≤ p < ∞ , ‖ ‖
p

= dd ee
p

is both; we then also

write ‖Y ‖
Z−p for ddY ee

Z−p . In the case p = 0, the homogeneous gauges

‖ ‖
[α]

occasionally come in handy; the corresponding semivariation is

‖Y ‖Z−[α]
def= sup

{∥∥∥
∫
X dZ

∥∥∥
[α]

: X ∈ E , |X| ≤ Y
}
, p = 0 , α ∈ R .

If there is need to mention the measure P , we shall write ‖ ‖
Z−p;P , dd ee

Z−p;P ,

and ‖ ‖
Z−[α;P]

. It is clear that we could define a Z-semivariation for any other
functional on measurable functions that strikes the fancy. We shall refrain

from that.

In view of exercise A.8.18 on page 451 the boundedness condition (B-p)

can be rewritten in terms of the semivariation as

ddλ · Y eeZ−p −−−→
λ→0 0 ∀ Y ∈ E+ . (B-p)

When 0 < p <∞ , this reads simply: ddY ee
Z−p <∞ ∀ Y ∈ E+ .
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Proposition 2.2.1 The semivariation dd ee
Z−p is subadditive.

Proof. Let Y1, Y2 ∈ E+ and let r < ddY1 + Y2 eeZ−p . There exists an integrand

X ∈ E with |X| ≤ Y1 + Y2 and r < dd
∫
X dZ ee

p
. Set Y ′1

def= |X| ∧ Y1 ,
Y ′2

def= |X| − |X| ∧ Y1 = Y2 , and

X1+
def= Y ′1 ∧X+ , X2+

def= X+ − Y ′1 ∧X+ ,

X1− def= Y ′1 − Y ′1 ∧X+ , X2− def= X− + Y ′1 ∧X+ − Y ′1 .

The columns of this matrix add up to Y ′1 and Y ′2 , the rows to X+ and
X− . The entries are positive elementary integrands. This is evident, except

possibly for the positivity of X2− . But on [X− = 0] we have Y ′1 = X+ ∧ Y1

and with it X2− = 0, and on [X+ = 0] we have instead Y ′1 = X− ∧ Y1 and

therefore X2− = X− −X− ∧ Y1 ≥ 0. We estimate

r <
⌈⌈∫

X dZ
⌉⌉
p

=
⌈⌈∫

(X1+ −X1−) dZ +

∫
(X2+ −X2−) dZ

⌉⌉
p

≤
⌈⌈∫

(X1+ −X1−) dZ
⌉⌉
p

+
⌈⌈∫

(X2+ −X2−) dZ
⌉⌉
p

(∗)

≤ ddX1+ +X1−eeZ−p + ddX2+ +X2−eeZ−p
as Y ′

i ≤ Yi : =
⌈⌈
Y ′1
⌉⌉
Z−p +

⌈⌈
Y ′2
⌉⌉
Z−p ≤ ddY1eeZ−p + ddY2eeZ−p .

The subadditivity of dd ee
Z−p is established. Note that the subadditivity

of dd ee
p

was used at (∗).

At this stage the case p = 0 seems complicated, what with the bounded-

ness condition (B-p) looking so clumsy. As the story unfolds we shall see
that L0-integrators are actually rather flexible and easy to handle. Propo-

sition 2.1.9 gave a first indication of this; in theorem 3.7.17 it is shown in
addition that every halfway decent process is integrable in the sense L0 on

every almost surely finite stochastic interval.

Exercise 2.2.2 The semivariations dd ee
Z−p

, ‖ ‖
Z−p

, and ‖ ‖
Z−[α]

are solid; that

is to say, |Y | ≤ |Y ′| =⇒ ‖Y ‖. ≤ ‖Y ′‖. . The last two are absolute-homogeneous.

Exercise 2.2.3 Suppose that V is an adapted increasing process. Then for X ∈ E
and 0 ≤ p < ∞ , ddX ee

V−p
equals the p-mean of the Lebesgue–Stieltjes integralR

|X| dV .

The Size of an Integrator

Saying that Z is a global Lp-integrator simply means that the elementary

stochastic integral with respect to it is a continuous linear operator from one
topological vector space, E , to another, Lp ; the size of such is customarily

measured by its operator norm. In the case of the Lebesgue–Stieltjes integral
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this was the total variation z ∞ (see exercise 2.2). By analogy we are led
to set

Z Ip
def= sup

{∥∥∥
∫
X dZ

∥∥∥
p

: X ∈ E , |X| ≤ 1
}
, 0 < p <∞ ,

Z Ip
def= sup

{⌈⌈∫
X dZ

⌉⌉
p

: X ∈ E , |X| ≤ 1
}
, 0 ≤ p <∞ ,

Z
[α]

def= sup
{∥∥∥
∫
X dZ

∥∥∥
[α]

: X ∈ E , |X| ≤ 1
}
, p = 0, α ∈ R ,

depending on our current predilection for the size-measuring functional. If Z
is merely an Lp-integrator, not a global one, then these numbers are generally

infinite, and the quantities of interest are their finite-time versions

Zt Ip
def= sup

{⌈⌈∫
X dZ

⌉⌉
p

: X ∈ E , |X| ≤ [[0, t]]
}
,

0 ≤ t <∞, 0 < p < ∞ , etc.

Exercise 2.2.4

(i) Z + Z′

Ip ≤ Z
Ip + Z′

Ip ,

Z
Ip = Z

p∧1

Ip , and λZ
Ip = |λ|1∧p Z

Ip

for p > 0. (ii) Ip forms a vector space on which Z 7→ Z
Ip is subbadditive.

(iii) If 0 < p < ∞ , then (B-p) is equivalent with Z
Ip < ∞ or Z

Ip < ∞ .

(iv) If p = 0, then (B-p) is equivalent with Z
[α]

<∞ ∀ α > 0.

Exercise 2.2.5 If Z is an Lp-integrator and T is an elementary stopping time,
then the stopped process ZT is a global Lp-integrator and

λ · ZT
Ip = ddλ · [[0, T ]]eeZ−p ∀ λ ∈ R .

Also, dd[[0, T ]]eeZ−p = ZT
Ip , ‖[[0, T ]]‖Z−p = ZT

Ip ,

and ‖[[0, T ]]‖Z−[α] = ZT
[α]

.

Exercise 2.2.6 Let 0 ≤ p ≤ q < ∞ . An Lq-integrator is an Lp-integrator. Give
an inequality between ddZ ee

Ip and ddZ ee
Iq and between ‖ZT ‖

Ip and ‖ZT ‖
Iq in

case p is strictly positive.

Exercise 2.2.7 If Z is an Lp-integrator and X ∈ E , then Yt def=
R
X dZt =R t

0
X dZ defines a global Lp-integrator Y . For any X ′ ∈ E ,

Z
X ′ dY =

Z
X ′X dZ .

Exercise 2.2.8 1/p 7→ log Z
Ip is convex for 0 < p <∞ .
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Vectors of Integrators

A stochastic differential equation frequently is driven by not one or two but

a whole slew Z = (Z1, Z2, . . . , Zd) of integrators, even an infinity of them. 4

It eases the notation to set, 5 for X = (X1, . . . , Xd) ∈ Ed ,

∫
X dZ def=

∫
Xη dZ

η (2.2.2)

and to define the integrator size of the d-tuple Z by

Z Ip = sup
{∥∥∥
∫

X dZ
∥∥∥
Lp

: X ∈ Ed1
}
, p > 0 ;

Z
[α]

= sup
{∥∥∥
∫

X dZ
∥∥∥

[α]
: X ∈ Ed1

}
, p = 0, α > 0 ,

and so on. These definitions take advantage of possible cancellations among
the Zη . For instance, if W = (W 1,W 2, . . . ,W d) are independent stan-

dard Wiener processes stopped at the instant t , then W I2 equals
√
d·t

rather than the first-impulse estimate d
√
t . Lest the gentle reader think us

too nitpicking, let us point out that this definition of the integrator size is
instrumental in establishing previsible control of random measures in theo-

rem 4.5.25 on page 251, control which in turn greatly facilitates the solution
of differential equations driven by random measures (page 296).

Definition 2.2.9 A vector Z of adapted processes is an Lp-integrator if its
components are right-continuous in probability and its Ip-size Zt

Ip is finite

for all t <∞ .

Exercise 2.2.10 Ed is a self-confined algebra and vector lattice closed under
chopping of bounded functions, and the vector Z of càdlàg adapted processes is an
Lp-integrator if and only if the map X 7→

R
X dZ is continuous from Ed equipped

with the topology of confined uniform convergence (see item A.2.5) to Lp .

The Natural Conditions

The notion of an Lp-integrator depends on the filtration. If Z is an

Lp-integrator with respect to the given filtration F. and we change every Ft
to a larger σ-algebra Gt , then Z will still be adapted and right-continuous

in probability – these features do not mention the filtration. But doing so

will generally increase the supply of elementary integrands, so that now Z

4 See equation (1.1.9) on page 8 or equation (5.1.3) on page 271 and section 3.10 on
page 171.
5 We shall use the Einstein convention throughout: summation over repeated indices in

opposite positions (the η in (2.2.2)) is implied.
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has a harder time satisfying the boundedness condition (B-p). Namely, since
E [F.] ⊂ E [G.] ,

the collection
{∫

X dZ : X ∈ E [G.], |X| ≤ 1
}

is larger than
{∫

X dZ : X ∈ E [F.], |X| ≤ 1
}

;

and while the latter is bounded in Lp , the former need not be. However, a
slight enlargement is innocuous:

Proposition 2.2.11 Suppose that Z is an Lp(P)-integrator on F. for some

p ∈ [0,∞). Then Z is an Lp(P)-integrator on the natural enlargement FP
.+ ,

and the sizes Zt Ip computed on FP
.+ are at most twice what they are

computed on F. – if Z0 = 0 , they are the same.

Proof. Let EP = E [FP
.+] denote the elementary integrands for the natural

enlargement and set

B def=

{∫
X dZt : X ∈ E1

}
and BP def=

{∫
X dZt : X ∈ EP

1

}
.

B is a bounded subset of Lp , and so is its “solid closure”

B� def= {f ∈ Lp : |f | ≤ |g| for some g ∈ B} .

We shall show that BP is contained in B� + B� , where B� is the closure of

B� in the topology of convergence in measure; the claim is then immediate
from this consequence of solidity and Fatou’s lemma A.8.7:

sup
{
ddf eep : f ∈ B� + B�

}
≤ 2 sup

{
ddf eep : f ∈ B

}
.

Let then X ∈ EP
1 , writing it as in equation (2.1.1):

X = f0 · [[0]] +

N∑

n=1

fn · ((tn, tn+1]] , fn ∈ FP
tn+ .

For every n ∈ N there is a simple random variable f ′n ∈ Ftn+ that differs

negligibly from fn . Let k be so large that tn + 1/k < tn+1 for all n and set

X(k) def= f ′0 · [[0]] +

N∑

n=1

f ′n · ((tn + 1/k, tn+1]] , k ∈ N .

The sum on the right clearly belongs to E1 , so its stochastic integral

f ′0 · Z0 +
∑

f ′n ·
(
Ztn+1

− Ztn+1/k

)

belongs to B . The first random variable f ′0Z0 is majorized in absolute value

by |Z0| =
∣∣ ∫ [[0]] dZ

∣∣ and thus belongs to B� . Therefore
∫
X(k) dZ lies in the
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sum B� + B ⊂ B� + B� . As k → ∞ these stochastic integrals on E converge
in probability to

f ′0 · Z0 +
∑

f ′n ·
(
Ztn+1

− Ztn
)

=

∫
X dZ ,

which therefore belongs to B� + B� .
Recall from exercise 1.3.30 that a regular and right-continuous filtration has
more stopping times than just a plain filtration. We shall therefore make our

life easy and replace the given measured filtration by its natural enlargement:

Assumption 2.2.12 The given measured filtration (F.,P) is henceforth

assumed to be both right-continuous and regular.

Exercise 2.2.13 On Wiener space (C ,B•(C ),W) consider the canonical Wiener
process w. (wt takes a path w ∈ C to its value at t). The W-regularization of
the basic filtration F0

. [w] is right-continuous (see exercise 1.3.47): it is the natural
filtration F.[w] of w . Then the triple (C ,F.[w],W) is an instance of a measured
filtration that is right-continuous and regular. w : (t, w) 7→ wt is a continuous
process, adapted to F.[w] and p-integrable for all p ≥ 0, but not Lp-bounded for
any p ≥ 0.

Exercise 2.2.14 Let A′ denote the ring on B generated by {[[0A]] : A ∈ F0}
and the collection {((S, T ]] : S, T bounded stopping times} of stochastic intervals,
and let E ′ denote the step functions over A′ . Clearly A ⊂ A′ and E ⊂ E ′ . Every
X ∈ E ′ can be written in the form

X = f0·[[0]] +
PN

n=0fn·((Tn, Tn+1]] ,

where 0 = T0 ≤ T1 ≤ . . . ≤ TN+1 are bounded stopping times and fn ∈ FTn are
simple. If Z is a global Lp-integrator, then the definition

Z
X dZ def= f0·Z0 +

P
nfn·(ZTn+1 − ZTn) (∗)

provides an extension of the elementary integral that has the same modulus of con-
tinuity. Any extension of the elementary integral that satisfies the Dominated Con-
vergence Theorem must have a domain containing E ′ and coincide there with (∗).

2.3 Path Regularity of Integrators

Suppose Z,Z ′ are modifications of each other, that is to say, Zt = Z ′t almost

surely at every instant t . An inspection of (2.1.2) then shows that for every
elementary integrand X the random variables

∫
X dZ and

∫
X dZ ′ nearly

coincide: as integrators, Z and Z ′ are the same and should be identified. It
is shown in this section that from all of the modifications one can be chosen

that has rather regular paths, namely, càdlàg ones.

Right-Continuity and Left Limits

Lemma 2.3.1 Suppose Z is a process adapted to F. that is I0[P]-bounded on
bounded intervals. Then the paths whose restrictions to the positive rationals

have an oscillatory discontinuity occur in a P-nearly empty set.
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Proof. Fix two rationals a, b with a < b , an instant u < ∞ , and a finite set

S = {s0 < s1 < . . . < sN}
of consecutive rationals in [0, u). Next set T0

def= min{s ∈ S : Zs < a} ∧ u
and continue by induction:

T2k+1 = inf{s ∈ S : s > T2k , Zs > b} ∧ u
T2k = inf{s ∈ S : s > T2k−1 , Zs < a} ∧ u .

It was shown in proposition 1.3.13 that these are stopping times, evidently

elementary. (Tn(ω) will be equal to u for some index n(ω) and all higher

ones, but let that not bother us.) Let us now estimate the number U
[a,b]
S of

upcrossings of the interval [a, b] that the path of Z performs on S . (We say

that S 3 s 7→ Zs(ω) upcrosses the interval [a, b] on S if there are points
s < t in S with Zs(ω) < a and Zt(ω) > b . To say that this path has n

upcrossings means that there are n pairs: s1 < t1 < s2 < t2 < . . . < sn < tn
in S with Zsν

< a and Ztν > b .) If S 3 s 7→ Zs(ω) upcrosses the interval

[a, b] n times or more on S , then T2n−1(ω) is strictly less than u , and vice
versa: [

U
[a,b]
S ≥ n

]
= [T2n−1 < u] ∈ Fu . (2.3.1)

This observation produces the inequality 2

[
U

[a,b]
S ≥ n

]
≤ 1

n(b− a)

( ∞∑

k=0

(ZT2k+1
− ZT2k

) + |Zu − a|
)
, (2.3.2)

for if U
[a,b]
S ≥ n , then the (finite!) sum on the right contributes more than

n times a number greater than b − a . The last term of the sum might be

negative, however. This occurs when T2k(ω) < sN and thus ZT2k
(ω) < a ,

and T2k+1(ω) = u because there is no more s ∈ S exceeding T2k(ω) with

Zs(ω) > b . The last term of the sum is then Zu(ω)− ZT2k
(ω). This number

might well be negative. However, it will not be less than Zu(ω)− a : the last

term
∣∣Zu(ω) − a

∣∣ of (2.3.2) added to the last non-zero term of the sum will
always be positive.

The stochastic intervals ((T2k, T2k+1]] are elementary integrands, and their
integrals are ZT2k+1

−ZT2k
. This observation permits us to rewrite (2.3.2) as

[
U

[a,b]
S ≥ n

]
≤ 1

n(b− a)

(∫ ∞∑

k=0

((T2k, T2k+1]] dZ
u + |Zu − a|

)
. (2.3.3)

This inequality holds for any adapted process Z . To continue the estimate

observe now that the integrand
∑∞
k=1 ((T2k, T2k+1]] is majorized in absolute

value by 1. Measuring both sides of (2.3.3) with dd ee
0

yields the inequality

P
[
U

[a,b]
S ≥ n

]
=
⌈⌈[
U

[a,b]
S ≥ n

]⌉⌉
L0(P)

≤ dd1/n(b− a)eeZu−0;P +
⌈⌈(
a− Zu

)/
n(b− a)

⌉⌉
L0(P)

≤ 2 · dd1/n(b− a)eeZu−0;P + |a|/n(b− a) .
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Now let Qu−
+ denote the set of positive rationals less than u . The right-hand

side of the previous inequality does not depend on S ⊂ Qu−
+ . Taking the

supremum over all finite subsets S of Qu−
+ results, in obvious notation, in

the inequality

P
[
U

[a,b]

Q
u−
+

≥ n
]
≤ 2 · dd1/n(b− a)eeZu−0;P + a/n(b− a) .

Note that the set on the left belongs to Fu (equation (2.3.1)). Since Z is

assumed I0-bounded on [0, u] , taking the limit as n→ ∞ gives

P
[
U

[a,b]

Q
u−
+

= ∞
]

= 0 .

That is to say, the restriction to Qu−
+ of nearly no path upcrosses the interval

[a, b] infinitely often. The set

Osc =
⋃

u∈N

⋃

a,b∈Q, a<b

[
U

[a,b]
Qu

+
= ∞

]

therefore belongs to A∞σ and is P-negligible: it is a P-nearly empty set.

If ω is in its complement, then the path t 7→ Zt(ω) restricted to the rationals
has no oscillatory discontinuity.

The upcrossing argument above is due to Doob, who used it to show the
regularity of martingales (see proposition 2.5.13).

Let Ω0 be the complement of Osc . By our standing regularity assumption
2.2.12 on the filtration, Ω0 belongs to F0 . The path Z.(ω) of the process Z

of lemma 2.3.1 has for every ω ∈ Ω0 left and right limits through the rationals
at any time t . We may define

Z ′t(ω) =

{
lim

Q3q↓t
Zq(ω) for ω ∈ Ω0,

0 for ω ∈ Osc.

The limit is understood in the extended reals R , since nothing said so far
prevents it from being ±∞ . The process Z ′ is right-continuous and has left

limits at any finite instant.
Assume now that Z is an L0-integrator. Since then Z is right-continuous

in probability, Z and Z ′ are modifications of one another. Indeed, for fixed
t let qn be a sequence of rationals decreasing to t . Then Zt = limn Zqn

in measure, in fact nearly, since
[
Zt 6= limn Zqn

]
∈ Fq1 . On the other

hand, Z ′t = limn Zqn
nearly, by definition. Thus Zt = Z ′t nearly for all

t < ∞ . Since the filtration satisfies the natural conditions, Z ′ is adapted.
Any other right-continuous modification of Z is indistinguishable from Z ′

(exercise 1.3.28).
Note that these arguments apply to any probability with respect to which

Z is an Lp-integrator: Osc is nearly empty for every one of them. Let P[Z]



2.3 Path Regularity of Integrators 61

denote their collection. The version Z ′ that we found is thus “universally
regular” in the sense that it is adapted to the “small enlargement”

FP[Z]
.+

def=
⋂{

FP
.+ : P ∈ P[Z]

}
.

Denote by P0[Z] the class of probabilities under which Z is actually a global
L0(P)-integrator. If P ∈ P0[Z] , then we may take ∞ for the time u of the

proof and see that the paths of Z that have an oscillatory discontinuity any-
where, including at ∞ , are negligible. In other words, then Z ′∞

def= limt↑∞ Z ′t
exists, except possibly in a set that is P-negligible simultaneously for all
P ∈ P0[Z] .

Boundedness of the Paths

For the remainder of the section we shall assume that a modification of the
L0-integrator Z has been chosen that is right-continuous and has left limits

at all finite times and is adapted to FP[Z]
.+ . So far it is still possible that

this modification takes the values ±∞ frequently. The following maximal

inequality of weak type rules out this contingency, however:

Lemma 2.3.2 Let T be any stopping time and λ > 0 . The maximal process Z?

of Z satisfies, for every P ∈ P[Z] ,

P[Z?T ≥ λ] ≤ ZT /λ I0[P]
, p = 0;

‖Z?T ‖[α] ≤ ZT
[α;P]

, p = 0 , α ∈ R;

P[Z?T ≥ λ] ≤ λ−p · ZT
p

Ip[P]
, 0 < p <∞.

Proof. We resurrect our finite set S = {s0 < s1 < . . . < sN} of consecutive

positive rationals strictly less than u and define

U = inf{s ∈ S : |ZTs | > λ} ∧ u .

This is an elementary stopping time (proposition 1.3.13). Now
[
sup
s∈S

|ZTs | > λ
]

= [U < u] ∈ Fu ,

on which set |ZTU | = |
∫

[[0, U ]] dZT | > λ .

Applying dd ee
p

to the resulting inequality

[
sup
s∈S

|ZTs | > λ
]
≤ λ−1

∣∣∣
∫

[[0, U ]] dZT
∣∣∣

gives
⌈⌈[

sup
s∈S

|ZTs | > λ
]⌉⌉

p
≤
⌈⌈
λ−1

∫
[[0, U ]] dZT

⌉⌉
p
≤ λ−1ZT Ip .
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We observe that the ultimate right does not depend on S ⊂ Q+ ∩ [0, u).
Taking the supremum over S ⊂ Q+ ∩ [0, u) therefore gives
⌈⌈[

sup
s<u

|ZTs | > λ
]⌉⌉

p
=
⌈⌈[

sup
s∈Q+,s<u

|ZTs | > λ
]⌉⌉

p
≤ λ−1ZT Ip . (2.3.4)

Letting u→ ∞ yields the stated inequalities (see exercise A.8.3).

Exercise 2.3.3 Let Z = (Z1, . . . , Zd) be a vector of L0-integrators. The maximal
process of its euclidean length

|Z|t def=
“ X

1≤η≤d

(Zηt )2
”1/2

satisfies
‚‚|Z|?t

‚‚
[α]

≤ K(A.8.6)

0 · Z
[ακ0]

, 0 < α < 1 .

(See theorem 2.3.6 on page 63 for the case p > 0 and a hint.)

Redefinition of Integrators

Note that the set
[
Z?Tu > λ

]
on the left in inequality (2.3.4) belongs to

Fu ∈ A∞ . Therefore

N def=
[
Z?T = ∞

]
∩ [T <∞] =

⋃

u∈N

[
Z?Tu = ∞

]

is a P-negligible set of A∞σ ; it is P-nearly empty. This is true for all
P ∈ P[Z] . We now alter Z by setting it equal to zero on N . Since F.

is assumed to be right-continuous and regular, we obtain an adapted right-
continuous modification of Z whose paths are real-valued, in fact bounded

on bounded intervals. The upshot:

Theorem 2.3.4 Every L0-integrator Z has a modification all of whose paths
are right-continuous, have left limits at every finite instant, and are bounded

on every finite interval. Any two such modifications are indistinguishable.
Furthermore, this modification can be chosen adapted to FP[Z]

.+ . Its limit at

infinity exists and is P-almost surely finite for all P under which Z is a global
L0-integrator.

Convention 2.3.5 Whenever an Lp-integrator Z on a regular right-continuous
filtration appears it will henceforth be understood that a right-continuous

real-valued modification with left limits has been chosen, adapted to FP[Z]
.+

as it can be.

Since a local Lp-integrator Z is an L0-integrator (proposition 2.1.9), it is

also understood to have càdlàg paths and to be adapted to FP[Z]
.+ .

In remark 3.8.5 we shall meet a further regularity property of the paths of an

integrator Z ; namely, while the sums
∑

k |ZTk
− ZTk−1

| may diverge as the
random partition {0 = T1 ≤ T2 ≤ . . . ≤ TK = t} of [[0, t]] is refined, the sums∑
k |ZTk

− ZTk−1
|2 of squares stay bounded, even converge.
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The Maximal Inequality

The last “weak type” inequality in lemma 2.3.2 can be replaced by one of

“strong type,” which holds even for a whole vector

Z = (Z1, . . . , Zd)

of Lp-integrators and extends the result of exercise 2.3.3 for p = 0 to strictly

positive p . The maximal process of Z is the d-tuple of increasing processes

Z? = (Zη?)dη=1
def=
(
|Zη|?

)
d
η=1 .

Theorem 2.3.6 Let 0 < p <∞ and let Z be an Lp-integrator. The euclidean

length |Z?| of its maximal process satisfies |Z |? ≤ |Z?| and

∥∥|Z?|t
∥∥
Lp = |Z?|t Ip ≤ C?p · Zt

Ip , (2.3.5)

with universal constant C?p ≤ 10

3
·K(A.8.5)

p ≤ 3.35 · 2
2−p
2p ∨0

.

Proof. Let S = {0 = s0 < s1 < . . . < t} be a finite partition of [0, t] and
pick a q > 1. For η = 1 . . . d , set T η0 = −1, Zη−1 = 0, and define inductively

T η1 = 0 and

T ηn+1 = inf{s ∈ S : s > T ηn and |Zηs | > q
∣∣∣ZηTη

n

∣∣∣} ∧ t .

These are elementary stopping times, only finitely many distinct. Let N η be
the last index n such that |Zη

Tη
n
| > |Zη

Tη
n−1

| . Clearly sups∈S |Zηs | ≤ q |Zη
Tη

Nη
| .

Now ω 7→ T ηNη(ω) is not a stopping time, inasmuch as one has to check Zt

at instants t later than T ηNη in order to determine whether T ηNη has arrived.
This unfortunate fact necessitates a slightly circuitous argument.

Set ζη0 = 0 and ζηn =
∣∣Zη
Tη

n

∣∣ for n = 1, . . . , Nη . Since ζηn ≥ qζηn−1 for
1 ≤ n ≤ Nη ,

ζNη ≤ Lq

(
Nη∑

n=1

(ζηn − ζηn−1)
2

)1/2

;

we leave it to the reader to show by induction that this holds when the choice

L2
q

def= (q + 1)/(q − 1) is made.

Since sup
s∈S

|Zηs | ≤ q
∣∣∣ZηTη

Nη

∣∣∣ = q ζηNη ≤ qLq

(
Nη∑

n=1

(ζηn − ζηn−1)
2

)1/2

(2.3.6)

≤ qLq

( ∞∑

n=1

(
Zη
Tη

n
− Zη

Tη
n−1

)2
)1/2

,

the quantity ζS def=

∥∥∥
(

d∑

η=1

(
sup
s∈S

|Zηs |
)2
)1/2∥∥∥

Lp
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satisfies, thanks to the Khintchine inequality of theorem A.8.26,

ζS ≤ qLq

∥∥∥
(

d∑

η=1

∞∑

n=1

∣∣∣ZηTη
n
− Zη

Tη
n−1

∣∣∣
2
)1/2∥∥∥

Lp(P)

≤ qLqK
(A.8.5)
p

∥∥∥
∥∥∥
∑

n,η

(
Zη
Tη

n
− Zη

Tη
n−1

)
εn,η(τ)

∥∥∥
Lp(dτ)

∥∥∥
Lp(P)

by Fubini: = qLqKp

∥∥∥
∥∥∥
∑

n,η

(
Zη
Tη

n
− Zη

Tη
n−1

)
εn,η(τ)

∥∥∥
Lp(P)

∥∥∥
Lp(dτ)

= qLqKp

∥∥∥
∥∥∥
∫ ∑

η

(∑

n

((T ηn−1, T
η
n ]] εn,η(τ)

)
dZη

∥∥∥
Lp(P)

∥∥∥
Lp(dτ)

≤ qLqKp

∥∥∥ Zt
Ip

∥∥∥
Lp(dτ)

= qLqKp Zt
Ip .

In the penultimate line ((T η0 , T
η
1 ]] stands for [[0]] . The sums are of course really

finite, since no more summands can be non-zero than S has members. Taking
now the supremum over all finite partitions of [0, t] results, in view of the

right-continuity of Z , in ‖|Z?|
t
‖
Lp ≤ qLqKp Zt

Ip . The constant qLq is

minimal for the choice q = (1+
√

5)/2, where it equals (q+1)/
√
q − 1 ≤ 10/3.

Lastly, observe that for a positive increasing process I , I = |Z?| in this
case, the supremum in the definition of I t Ip on page 55 is assumed at the

elementary integrand [[0, t]], where it equals ‖I t‖
Lp . This proves the equality

in (2.3.5); since |Z?| is plainly right-continuous, it is an Lp-integrator.

Exercise 2.3.7 The absolute value |Z| of an Lp-integrator Z is an Lp-integrator,
and

|Z|t
Ip ≤ 3 Zt

Ip , 0 ≤ p <∞, 0 ≤ t ≤ ∞ .

Consequently, Ip forms a vector lattice under pointwise operations.

Law and Canonical Representation

2.3.8 Adapted Maps between Filtered Spaces Let (Ω,F.) and (Ω,F.) be

filtered probability spaces. We shall say that a map R : Ω → Ω is adapted
to F. and F . if R is Ft/F t-measurable at all instants t . This amounts to

saying that for all t

F t
def= R−1(F t) = F t ◦R 2 (2.3.7)

is a sub-σ-algebra of Ft . Occasionally we call such a map R a morphism of

filtered spaces or a representation of (Ω,F.) on (Ω,F.), the idea being
that it forgets unwanted information and leaves only the “aspect of interest”

(Ω,F.). With such R comes naturally the map (t, ω) 7→
(
t, R(ω)

)
of the

base space of Ω to the base space of Ω. We shall denote this map by R as

well; this won’t lead to confusion.
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The following facts are obvious or provide easy exercises:
(i) If the process X on Ω is left-continuous (right-continuous, càdlàg,

continuous, of finite variation), then X def= X ◦R has the same property on Ω.
(ii) If T is an F .-stopping time, then T def= T ◦ R is an F .-stopping

time. If the process X is adapted (progressively measurable, an elementary
integrand) on (Ω,F .), then X def= X◦R is adapted (progressively measurable,

an elementary integrand) on (Ω,F.) and on (Ω,F.). X is predictable6 on
(Ω,F.) if and only if X is predictable on (Ω,F.); it is then predictable on

(Ω,F.).
(iii) If a probability P on F∞ ⊂ F∞ is given, then the image of P under R

provides a probability P on F∞ . In this way the whole slew P of pertinent
probabilities gives rise to the pertinent probabilities P on (Ω,F∞).

Suppose Z. is a càdlàg process on Ω. Then Z is an Lp(P)-integrator on

(Ω,F.) if and only if X def= Z ◦R is an Lp(P)-integrator on (Ω,F .).
7 To see

this let E denote the elementary integrands for the filtration F .
def= R−1(F.).

It is easily seen that E = E ◦R , in obvious notation, and that the collections
of random variables

{∫
X dZ : X ∈ E , |X| ≤ Y

}
and

{∫
X dZ : X ∈ E, |X| ≤ Y

}

upon being measured with dd ee∗
Lp(P)

and dd ee∗
Lp(P)

, respectively, produce the

same sets of numbers when Y = Y ◦R . The equality of the suprema reads
⌈⌈
Y
⌉⌉
Z−p;P

= ddY eeZ−p;P (2.3.8)

for Y = Y ◦ R , P = R[P] , and Z = Z ◦ R considered as an integrator
on (Ω,F.).

7

Let us then henceforth forget information that may be present in F. but
not in F . , by replacing the former filtration with the latter. That is to say,

Ft = R−1(F t) = F t ◦R ∀ t ≥ 0 , and then E = E ◦R .

Once the integration theory of Z and Z is established in chapter 3, the
following further facts concerning a process X of the form X = X ◦ R will

be obvious:
(iv) X is previsible with P if and only if X is previsible with P .

(v) X is Z−p;P-integrable if and only if X is Z−p;P-integrable, and then

(X∗Z). ◦R = (X∗Z). . (2.3.9)

(vi) X is Z-measurable if and only if X is Z-measurable. Any

Z-measurable process differs Z-negligibly from a process of this form.

6 A process is predictable if it belongs to the sequential closure of the elementary integrands
– see section 3.5.
7 Note the underscore! One cannot expect in general that Z be an Lp(P)-integrator, i.e.,
be bounded on the potentially much larger space E of elementary integrands for F. .
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2.3.9 Canonical Path Space In algebra one tries to get insight into the struc-
ture of an object by representing it with morphisms on objects of the same

category that have additional structure. For example, groups get represented
on matrices or linear operators, which one can also add, multiply with scalars,

and measure by size. In a similar vein 8 the typical target space of a repre-
sentation is a space of paths, which usually carries a topology and may even

have a linear structure:

Let (E, ρ) be some polish space. DE denotes the set of all càdlàg paths
x. : [0,∞) → E. If E = R , we simply write D ; if E = Rd , we write Dd . A

path in Dd is identified with a path on (−∞,∞) that vanishes on (−∞, 0).

A natural topology on DE is the topology τ of uniform convergence on
bounded time-intervals; it is given by the complete metric

d(x., y.) def=
∑

n∈N

2−n ∧ ρ(x., y.)?n x., y. ∈ DE ,

where ρ(x., y.)?t
def= sup

0≤s≤t
ρ(xs, ys) .

The maximal theorem 2.3.6 shows that this topology is pertinent. Yet its

Borel σ-algebra is rarely useful; it is too fine. Rather, it is the basic filtration
F0
. [DE ] , generated by the right-continuous evaluation process

Rs : x. 7→ xs , 0 ≤ s <∞ , x. ∈ DE ,

and its right-continuous version F0
.+[DE ] that play a major role. The final

σ-algebra F0
∞[DE ] of the basic filtration coincides with the Baire σ-algebra

of the topology σ of pointwise convergence on DE . On the space CE of

continuous paths the σ-algebras generated by σ and τ coincide (generalize
equation (1.2.5)).

The right-continuous version F0
.+[DE ] of the basic filtration will also be

called the canonical filtration. The space DE equipped with the topo-
logy τ 9 and its canonical filtration F0

.+[DE ] is canonical path space.10

Consider now a càdlàg adapted E-valued process R on (Ω,F.). Just as a

Wiener process was considered as a random variable with values in canonical
path space C (page 14), so can now our process R be regarded as a map R

from Ω to path space DE , the image of an ω ∈ Ω under R being the path
R.(ω) : t 7→ Rt(ω). Since R is assumed adapted, R represents (Ω,F.) on

path space (DE ,F0
. [DE ]) in the sense of item 2.3.8. If F. is right-continuous,

then R represents (Ω,F.) on canonical path space (DE ,F0
.+[DE ]) . We call

R the canonical representation of R on path space.

8 I hope that the reader will find a little farfetchedness more amusing than offensive.
9 A glance at theorems 2.3.6, 4.5.1, and A.4.9 will convince the reader that τ is most
pertinent, despite the fact that it is not polish and that its Borels properly contain the
pertinent σ-algebra F∞ .
10 “Path space”, like “frequency space” or “outer space,” may be used without an article.
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If (Ω,F.) carries a distinguished probability P , then the law of the pro-
cess R is of course nothing but the image P def= R[P] of P under R . The

triple (DE ,F0
.+[DE ],P) carries all statistical information about the process R

– which now “is” the evaluation process R. – and has forgotten all other in-

formation that might have been available on (Ω,F.,P).

2.3.10 Integrators on Canonical Path Space Suppose that E comes equipped

with a distinguished slew z = (z1, . . . , zd) of continuous functions. Then
t 7→ Zt

def= z ◦Rt is a distinguished adapted Rd-valued process on the path

space (DE ,F0
. [DE ],P). These data give rise to the collection P[Z] of all

probabilities on path space for which Z is an integrator. We may then define

the natural filtration on DE : it is the regularization of F0
.+[DE ] , taken for

the collection P[Z] , and it is denoted by F.[DE ] or F.[DE ; z] .

2.3.11 Canonical Representation of an Integrator Suppose that we face an

integrator Z = (Z1, . . . , Zd) on (Ω,F.,P) and a collection C = (C1, C2, . . .)
of real-valued processes, certain functions fη of which we might wish to

integrate with Z , say. We glob the data together in the obvious way into
a process Rt

def= (Ct,Zt) : Ω → E def= RN × Rd , which we identify with a

map R : Ω → DE . “R forgets all information except the aspect of interest
(C,Z).” Let us write ω. = (cν. , z

η
. ) for the generic point of Ω = DE . On E

there are the distiguished last d coordinate functions z1, . . . , zd . They give
rise to the distinguished process Z : t 7→

(
z1(ωt), . . . , z

d(ωt)
)
. Clearly the

image under R of any probability in P ⊂ P[Z] makes Z into an integrator
on path space.10 The integral

∫ t
0
fη[ω.]s dZ

η

s(ω.), which is frequently and

with intuitive appeal written as∫ t

0

fη[c., z.]s dz
η , (2.3.10)

then equals
∫ t
0
fη[C.,Z.]s dZ

η
s , after composition with R , that is, and after

information beyond F . has been discarded.7 In other words,

X∗Z = (X∗Z) ◦R . (2.3.11)

In this way we arrive at the canonical representation R of (C,Z) on
(DE ,F.[DE ]) with pertinent probabilities P def= R[P] . For an application see

page 316.

2.4 Processes of Finite Variation

Recall that a process V has bounded variation if its paths are functions of

bounded variation on the half-line, i.e., if the number

V ∞(ω) = |V0| + sup
{ I∑

i=1

|Vti+1
(ω) − Vti(ω)|

}

is finite for every ω ∈ Ω. Here the supremum is taken over all finite partitions

T = {t1 < t2 < . . . < tI+1} of R+ . V has finite variation if the stopped
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processes V t have bounded variation, at every instant t . In this case the
variation process V of V is defined by

V
t
(ω) = |V0(ω)| + sup

T

{ I∑

i=1

|Vt∧ti+1
(ω) − Vt∧ti(ω)|

}
. (2.4.1)

The integration theory of processes of finite variation can of course be handled

path-by-path. Yet it is well to see how they fit in the general framework.

Proposition 2.4.1 Suppose V is an adapted right-continuous process of finite
variation. Then V is adapted, increasing, and right-continuous with left

limits. Both V and V are L0-integrators.

If V
t
∈ Lp at all instants t , then V is an Lp-integrator. In fact, for

0 ≤ p < ∞ and 0 ≤ t ≤ ∞
dd [[0, t]]eeV−p = V t Ip ≤

⌈⌈
V

t

⌉⌉
p
. (2.4.2)

Proof. Due to the right-continuity of V , taking the partition points ti of

equation (2.4.1) in the set Qt = (Q ∩ [0, t]) ∪ {t} will result in the same path
t 7→ V

t
(ω); and since the collection of finite subsets of Qt is countable, the

process V is adapted. For every ω ∈ Ω, t 7→ V
t
(ω) is the cumulative

distribution function of the variation dV (ω) of the scalar measure dV.(ω)
on the half-line. It is therefore right-continuous (exercise 2.2). Next, for

X ∈ E1 as in equation (2.1.1) we have∣∣∣
∫
X dV t

∣∣∣=
∣∣∣f0 · V0 +

∑
n
fn · (V ttn+1

− V ttn)
∣∣∣

≤ |V0| +
∑

n

∣∣∣V ttn+1
− V ttn

∣∣∣ ≤ V
t
.

We apply dd ee
p

to this and obtain inequality (2.4.2).

Our adapted right-continuous process of finite variation therefore can be

written as the difference of two adapted increasing right-continuous processes
V ± of finite variation: V = V + − V − with

V +
t = 1/2

(
V

t
+ Vt

)
, V −t = 1/2

(
V

t
− Vt

)
.

It suffices to analyze increasing adapted right-continuous processes I .

Remark 2.4.2 The reverse of inequality (2.4.2) is not true in general, nor is it
even true that V

t
∈ Lp if V is an Lp-integrator, except if p = 0. The reason is

that the collection E is too small; testing V against its members is not enough to
determine the variation of V , which can be written as

V
t
= |V0| + sup

Z t

0

sgn(Vti+1 − Vti) dV .

Note that the integrand here is not elementary inasmuch as (Vti+1 − Vti) 6∈ Fti .
However, in (2.4.2) equality holds if V is previsible (exercise 4.3.13) or increasing.
Example 2.5.26 on page 79 exhibits a sequence of processes whose variation grows
beyond all bounds yet whose I2-norms stay bounded.

Exercise 2.4.3 Prove the right-continuity of V directly.
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Decomposition into Continuous and Jump Parts

A measure µ on [0,∞) is the sum of a measure cµ that does not charge points

and an atomic measure jµ that is carried by a countable collection {t1, t2, . . .}
of points. The cumulative distribution function 11 of cµ is continuous and

that of jµ constant, except for jumps at the times tn , and the cumulative
distribution function of µ is the sum of these two. All of this is classical,

and every path of an increasing right-continuous process can be decomposed
in this way. In the stochastic case we hope that the continuous and jump

components are again adapted, and this is indeed so; also, the times of the

jumps of the discontinuous part are not too wildly scattered:

Theorem 2.4.4 A positive increasing adapted right-continuous process I can

be written uniquely as the sum of a continuous increasing adapted process cI
that vanishes at 0 and a right-continuous increasing adapted process jI of the

following form: there exist a countable collection {Tn} of stopping times with
bounded disjoint graphs, 12 and bounded positive FTn

-measurable functions

fn , such that
jI =

∑

n

fn · [[Tn,∞)) .

Proof. For every i ∈ N define inductively T i,0 = 0 and

T i,j+1 = inf
{
t > T i,j : ∆It ≥ 1/i

}
.

From proposition 1.3.14 we know that the T i,j are stopping times. They

increase a.s. strictly to ∞ as j → ∞ ; for if T = supj T
i,j <∞ , then It = ∞

after T . Next let T i,jk denote the reduction of T i,j to the set

[∆IT i,j ≤ k + 1] ∩ [T i,j ≤ k] ∈ FT i,j .

(See exercises 1.3.18 and 1.3.16.) Every one of the T i,jk is a stopping time
with a bounded graph. The jump of I at time T i,jk is bounded, and the set

[∆I 6= 0] is contained in the union of the graphs of the T i,jk . Moreover, the
collection {T i,jk } is countable; so let us count it: {T i,jk } = {T ′1, T ′2, . . .} . The

T ′n do not have disjoint graphs, of course. We force the issue by letting Tn
be the reduction of T ′n to the set

⋃
m<n[T

′
n 6= T ′m] ∈ FT ′

n
(exercise 1.3.16). It

is plain upon inspection that with fn = ∆ITn
and cI = I − jI the statement

is met.

Exercise 2.4.5 jIt =
P

s≤t∆Is =
P
n

P
s≤t fn · [Tn = s] .

Exercise 2.4.6 Call a subset S of the base space sparse if it is contained in the
union of the graphs of countably many stopping times. Such stopping times can be
chosen to have disjoint graphs; and if S is measurable, then it actually equals the
union of the disjoint graphs of countably many stopping times (use theorem A.5.10).

11 See page 406.
12 We say that T has a bounded graph if [[T ]] ⊂ [[0, t]] for some finite instant t.
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Next let V be an adapted càdlàg process of finite variation. Then V is the sum
V = cV + jV of two adapted càdlàg processes of finite variation, of which cV has

continuous paths and djV = S · djV with S def= [∆V 6= 0] = [∆jV 6= 0] sparse. For
more see exercise 4.3.4.

The Change-of-Variable Formula

Theorem 2.4.7 Let I be an adapted positive increasing right-continuous
process and Φ : [0,∞) → R+ a continuously differentiable function. Set

Tλ = inf{t : It ≥ λ} and T λ+ = inf{t : It > λ} , λ ∈ R .

Both {T λ} and {T λ+} form increasing families of stopping times, {T λ}
left-continuous and {T λ+} right-continuous. For every bounded measurable

process X 13

∫ ∞

[0

Xs dΦ(Is) =

∫ ∞

0

XTλ · Φ′(λ) · [T λ <∞] dλ (2.4.3)

=

∫ ∞

0

XTλ+ · Φ′(λ) · [T λ+ <∞] dλ . (2.4.4)

Proof. Thanks to proposition 1.3.11 the T λ are stopping times and are in-
creasing and left-continuous in λ . Exercise 1.3.30 yields the corresponding

claims for T λ+ . Tλ < T λ+ signifies that I = λ on an interval of strictly pos-
itive length. This can happen only for countably many different λ . Therefore

the right-hand sides of (2.4.3) and (2.4.4) coincide.

To prove (2.4.3), say, consider the family M of bounded measurable
processes X such that for all finite instants u

∫
[[0, u]] ·X dΦ(I) =

∫ ∞

0

XTλ · Φ′(λ) · [T λ ≤ u] dλ . (?)

M is clearly a vector space closed under pointwise limits of bounded se-
quences. For processes X of the special form

X = f · [0, t] , f ∈ L∞(F∞) , (∗)

the left-hand side of (?) is simply

f ·
(
Φ(It∧u) − Φ(I0−)

)
= f ·

(
Φ(It∧u) − Φ(0)

)

13 Recall from convention A.1.5 that [T λ < ∞] equals 1 if Tλ < ∞ and 0 otherwise.
Indicator function aficionados read these integrals as

R ∞
0 XTλ ·Φ′(λ) · 1[T .<∞](λ) dλ, etc.
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and the right-hand side is13

f ·
∫ ∞

0

[0, t](T λ) · Φ′(λ) · [T λ ≤ u] dλ

=f ·
∫ ∞

0

[Tλ ≤ t] · Φ′(λ) · [T λ ≤ u] dλ

=f ·
∫ ∞

0

[Tλ ≤ t ∧ u] · Φ′(λ) dλ

=f ·
∫ ∞

0

[λ ≤ It∧u] · Φ′(λ) dλ = f ·
(
Φ(It∧u) − Φ(0)

)

as well. That is to say, M contains the processes of the form (∗), and also

the constant process 1 (choose f ≡ 1 and t ≥ u). The processes of the
form (∗) generate the measurable processes and so, in view of theorem A.3.4

on page 393, (∗) holds for all bounded measurable processes. Equation (2.4.3)

follows upon taking u to ∞ .

Exercise 2.4.8 It = inf{λ : T λ > t} =
R
[Tλ, t] dλ =

R
[[Tλ,∞))t dλ (see

convention A.1.5). A stochastic interval [[T,∞)) is an increasing adapted process
(ibidem). Equation (2.4.3) can thus be read as saying that Φ(I) is a “continuous
superposition” of such simple processes:

Φ(I) =

Z ∞

0

Φ′(λ)[[T λ,∞)) dλ .

Exercise 2.4.9 (i) If the right-continuous adapted process I is strictly increasing,
then T λ = Tλ+ for every λ ≥ 0; in general, {λ : T λ < Tλ+} is countable.

(ii) Suppose that T λ+ is nearly finite for all λ and F. meets the natural condi-
tions. Then (FTλ+)λ≥0 inherits the natural conditions; if Λ is an FT .+ -stopping
time, then TΛ+ is an F.-stopping time.

Exercise 2.4.10 Equations (2.4.3) and (2.4.4) hold for measurable processes X
whenever one or the other side is finite.

Exercise 2.4.11 If T λ+ <∞ almost surely for all λ , then the filtration (FTλ+)λ
inherits the natural conditions from F. .

2.5 Martingales

Definition 2.5.1 An integrable process M is an (F.,P)-martingale if14

EP [Mt|Fs] = Ms

for 0 ≤ s < t < ∞ . We also say that M is a P-martingale on F. , or
simply a martingale if the filtration F. and probability P meant are clear

from the context.

Since the conditional expectation above is unique only up to P-negligible and
Fs-measurable functions, the equation should be read “Ms is a (one of very

many) conditional expectation of Mt given Fs .”
14 EP [Mt|Fs] is the conditional expectation of Mt given Fs – see theorem A.3.24 on
page 407.
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A martingale on F. is clearly adapted to F. . The martingales form a class
of integrators that is complementary to the class of finite variation processes

– in a sense that will become clearer as the story unfolds – and that is much
more challenging. The name “martingale” seems to derive from the part of

a horse’s harness that keeps the beast from throwing up its head and thus
from rearing up; the term has also been used in gambling for centuries. The

defining equality for a martingale says this: given the whole history Fs of the
game up to time s , the gambler’s fortune at time t > s , $Mt , is expected to

be just what she has at time s , namely, $Ms ; in other words, she is engaged
in a fair game. Roughly, martingales are processes that show, on the average,

no drift (see the discussion on page 4).

The class of L0-integrators is rather stable under changes of the probability
(proposition 2.1.9), but the class of martingales is not. It is rare that a

process that is a martingale with respect to one probability is a martingale

with respect to an equivalent or otherwise pertinent measure. For instance, if
the dice in a fair game are replaced by loaded ones, the game will most likely

cease to be fair, that being no doubt the object of the replacement. Therefore
we will fix a probability P on F∞ throughout this section. E is understood

to be the expectation EP with respect to P .

Example 2.5.2 Here is a frequent construction of martingales. Let g be an
integrable random variable, and set M g

t = E[g|Ft] , the conditional expecta-

tion of g given Ft . Then Mg is a uniformly integrable martingale – it is
shown in exercise 2.5.14 that all uniformly integrable martingales are of this

form. It is an easy exercise to establish that the collection

{E[g|G] : G a sub-σ-algebra of F∞ }

of random variables is uniformly integrable.

Exercise 2.5.3 Suppose M is a martingale. Then E[f · (Mt −Ms)] = 0 for s < t
and any f ∈ L∞(Fs). Next assume M is square integrable: Mt ∈ L2(Ft,P) ∀ t .
Then

E[(Mt −Ms)
2|Fs] = E[M2

t −M2
s |Fs] , 0 ≤ s < t <∞ .

Exercise 2.5.4 If W is a Wiener process on the filtration F. , then it is a
martingale on F. and on the natural enlargement of F. , and so are W 2

t − t , and

ezWt−z
2t/2 for any z ∈ C .

Exercise 2.5.5 Let (Ω,F ,P) be a probability space and F a collection of sub-
σ-algebras of F that is increasingly directed. That is to say, for any two F1,F2 ∈ F

there is a σ-algebra G ∈ F containing both F1 and F2 . Let g ∈ L1(F ,P) and
for G ∈ F set gG def= E[f |G] . The collection {gG : G ∈ F} is uniformly integrable
and converges in L1-mean to the conditional expectation of g with respect to the
σ-algebra

W
F ⊂ F generated by F .

Exercise 2.5.6 Let (Ω,F ,P) be a probability space and f, f ′ : Ω → R+ two
F-measurable functions such that [f ≤ q] = [f ′ ≤ q] P-almost surely for all
rationals q . Then f = f ′ P-almost surely.
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Submartingales and Supermartingales

The martingales are the processes of primary interest in the sequel. It eases

their analysis though to introduce the following generalizations. An integrable
process Z adapted to F. is a submartingale (supermartingale) if

E [Zt|Fs] ≥ Zs a.s. (≤ Zs a.s., respectively), 0 ≤ s ≤ t <∞ .

Exercise 2.5.7 The fortune of a gambler in Las Vegas is a supermartingale, that
of the casino is a submartingale.

Since the absolute-value function | · | is convex, it follows immediately from
Jensen’s inequality in A.3.24 that the absolute value of a martingale M is a

submartingale:
∣∣Ms

∣∣ =
∣∣∣E[Mt|Fs]

∣∣∣ ≤ E
[∣∣Mt

∣∣ |Fs
]

a.s., 0 ≤ s < t <∞ .

Taking expectations, E
[∣∣Ms

∣∣] ≤ E
[∣∣Mt

∣∣] 0 ≤ s < t <∞
follows. This argument lends itself to some generalizations:

Exercise 2.5.8 Let M = (M1, . . . ,Md) be a vector of martingales and Φ : Rd → R
convex and so that Φ(Mt) is integrable for all t . Then Φ(M) is a submartingale.
Apply this with Φ(x) = |x |

p
to conclude that t 7→ |Mt|p is a submartingale for

1 ≤ p ≤ ∞ and that t 7→ ‖M1
t ‖Lp is increasing if M1 is p-integrable (bounded if

p = ∞).

Exercise 2.5.9 A martingale M on F. is a martingale on its own basic filtration
F0
. [M ] . Similar statements hold for sub– and supermartingales.

Here is a characterization of martingales that gives a first indication of the

special role they play in stochastic integration:

Proposition 2.5.10 The adapted integrable process M is a martingale (sub-

martingale, supermartingale) on F. if and only if

E
[∫

X dM
]

= 0 (≥ 0 , ≤ 0 , respectively)

for every positive elementary integrand X that vanishes on [[0]] .

Proof. =⇒ : A glance at equation (2.1.1) shows that we may take X to be

of the form X = f · ((s, t]], with 0 ≤ s < t <∞ and f ≥ 0 in L∞(Fs). Then

E
[∫

X dM
]

= E
[
f · (Mt −Ms)

]
= E

[
f ·Mt

]
− E

[
f ·Ms

]

= E
[
f ·
(

E
[
Mt|Fs

]
−Ms

)]

= (≥,≤) E
[
f · (Ms −Ms)

]
= 0 .

⇐=: If, on the other hand,

E
[∫

X dM
]

= E
[
f ·
(

E
[
Mt|Fs

]
−Ms

)]
= (≥,≤) 0

for all f ≥ 0 in L∞(Fs), then E
[
Mt|Fs

]
−Ms = (≥,≤) 0 almost surely,

and M is a martingale (submartingale, supermartingale).
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Corollary 2.5.11 Let M be a martingale (submartingale, supermartingale).
Then for any two elementary stopping times S ≤ T we have nearly

E
[
MT −MS|FS

]
= 0 (≥ 0, ≤ 0) .

Proof. We show this for submartingales. Let A ∈ FS and consider the
reduced stopping times SA, TA . From equation (2.1.3) and proposition 2.5.10

0 ≤ E
[∫

((SA, TA]] dM
]

= E
[
MTA

−MSA

]
= E

[(
MT −MS

)
· 1A

]

= E
[(

E
[
MT |FS

]
−MS

)
· 1A

]
.

As A ∈ FS was arbitrary, this shows that E
[
MT |FS

]
≥ MS , except in a

negligible set of FT ⊂ FmaxT .

Exercise 2.5.12 (i) An adapted integrable process M is a martingale (submar-
tingale, supermartingale) if and only if E [MT −MS ] = 0 (≥ 0, ≤ 0) for any two
elementary stopping times S ≤ T .

(ii) The infimum of two supermartingales is a supermartingale.

Regularity of the Paths: Right-Continuity and Left Limits

Consider the estimate (2.3.3) of the number of upcrossings of the interval

[a, b] that the path of our martingale M performs on the finite subset

S = {s0 < s1 < . . . < sN} of Qu−
+

def= Q+ ∩ [0, u) :

[
U

[a,b]
S ≥ n

]
≤ 1

n(b− a)

(∫ ∞∑

k=0

((T2k, T2k+1]] dM +
∣∣Mu − a

∣∣
)
.

Applying the expectation and proposition 2.5.10 we obtain an estimate of the
probability that this number exceeds n ∈ N :

P
[
U

[a,b]
S ≥ n

]
≤ 1

n(b− a)
· E
[∣∣Mu

∣∣+ |a|
]
.

Taking the supremum over all finite subsets S ⊂ Qu−
+ and then over all n ∈ N

and all pairs of rationals a < b shows as on page 60 that the set

Osc def=
⋃

n

⋃

a,b∈Q,a<b

[
U

[a,b]

Q
n−
+

= ∞
]

belongs to A∞σ and is P-nearly empty. Let Ω0 be its complement and define

M ′t(ω) =

{
lim

Q3q↓t
Mq(ω) for ω ∈ Ω0,

0 for ω ∈ Osc.

The limit is understood in the extended reals R as nothing said so far prevents

it from being ±∞ . The process M ′ is right-continuous and has left limits
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at any finite instant. If M is right-continuous in probability, then clearly
Mt = M ′t nearly for all t . The same is true when the filtration is right-

continuous. To see this notice that Mq → M ′t in ‖ ‖
1
-mean as Q 3 q ↓ t ,

since the collection
{
Mq : q ∈ Q, t < q < t + 1

}
is uniformly integrable

(example 2.5.2 and theorem A.8.6); both Mt and M ′t are measurable on
Ft =

⋂
Q3q>tFq and have the same integral over every set A ∈ Ft :

∫

A

Mt dP =

∫

A

Mq dP −−−−→t<q→t

∫

A

M ′t dP .

That is to say, M ′ is a modification of M .

Consider the case that M is L1-bounded. Then we can take ∞ for the

time u of the proof and see that the paths of M that have an oscillatory
discontinuity anywhere, including at ∞ , are negligible. In other words, then

M ′∞
def= lim

t↑∞
M ′t

exists almost surely.

A local martingale is, of course, a process that is locally a martingale.
Localizing with a sequence Tn of stopping times that reduce M to uniformly

integrable martingales, we arrive at the following conclusion:

Proposition 2.5.13 Let M be a local P-martingale on the filtration F. . If

M is right-continuous in probability or F. is right-continuous, then M has
a modification adapted to the P-regularization FP

. , one all of whose paths

are right-continuous and have left limits. If M is L1-bounded, then this
modification has almost surely a limit M∞ ∈ R at infinity.

Exercise 2.5.14 M also has a modification that is adapted to F. and whose paths
are nearly right-continuous. If M is uniformly integrable, then it is L1-bounded
and is a modification of the martingale M g of example 2.5.2, where g = M∞ .

Example 2.5.15 The positive martingale Mt of example 1.3.45 on page 41
converges at every point, the limit being +∞ at zero and zero elsewhere. It is
L1-bounded but not uniformly integrable, and its value at time t is not E[M∞|Ft] .
Exercise 2.5.16 Doob considered martingales first in discrete time: let {Fn :
n ∈ N} be an increasing collection of sub-σ-algebras of F . The random variables
Mn , n ∈ N form a martingale on {Fn} if E[Fn+1|Fn] = Fn almost surely for
all n ≥ 1. He developed the upcrossing argument to show that an L1-bounded
martingale converges almost surely to a limit in the extended reals R as n→ ∞ ,
in R if {Mn} is uniformly integrable.

Exercise 2.5.17 (A Strong Law of Large Numbers) The previous exercise
allows a simple proof of an uncommonly strong version of the strong law of large
numbers. Namely, let F1, F2, . . . be a sequence of square integrable random variables
that all have expectation p and whose variances all are bounded by some σ2 .
Assume that the conditional expectation of Fn+1 given F1, F2, . . . , Fn equals p as
well, for n = 1, 2, 3, . . . . [To paraphrase: knowledge of previous executions of the
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experiment may influence the law of its current replica only to the extent that the
expectation does not change and the variance does not increase overly much.] Then

lim
n→∞

1

n

nX

ν=1

Fν = p

almost surely. See exercise 4.2.14 for a generalization to the case that the Fn merely
have bounded moments of order q for some q > 1 and [80] for the case that the
random variables Fn are merely orthogonal in L2 .

Boundedness of the Paths

Lemma 2.5.18 (Doob’s Maximal Lemma) Let M be a right-continuous

martingale. Then at any instant t and for any λ > 0

P
[
M?
t > λ

]
≤ 1

λ

∫

[M?
t >λ]

|Mt| dP ≤ 1

λ
· E[|Mt|] .

Proof. Let S = {s0 < s1 < . . . < sN} be a finite set of rationals contained

in the interval [0, t] , let u > t , and set

MS = sup
s∈S

|Ms| and U = inf
{
s ∈ S : |Ms| > λ

}
∧ u .

Clearly U is an elementary stopping time and |MU | = |MU∧t| > λ on

[U < u] = [U ≤ t] =
[
MS > λ

]
⊂
[
M?
t > λ

]
.

Therefore 1[
MS>λ

] ≤ |MU |
λ

· 1[
U≤t
] ∈ Ft .

We apply the expectation; since |M | is a submartingale,

P
[
MS > λ

]
≤ λ−1 ·

∫

[U≤t]
|MU | dP = λ−1 ·

∫

[U∧t≤t]
|MU | dP

by corollary 2.5.11: ≤ λ−1 ·
∫

[U∧t≤t]
E
[
|Mt|

∣∣ FU∧t
]
dP

= λ−1 ·
∫

[MS>λ]

|Mt| dP ≤ λ−1 ·
∫

[M?
t >λ]

|Mt| dP .

We take the supremum over all finite subsets S of {t} ∪ (Q ∩ [0, t]) and use

the right-continuity of M : Doob’s inequality follows.

Theorem 2.5.19 (Doob’s Maximal Theorem) Let M be a right-continuous
martingale on (Ω,F.,P) and p, p′ conjugate exponents, that is to say,

1 ≤ p, p′ ≤ ∞ and 1/p+ 1/p′ = 1 . Then

‖M?
∞ ‖Lp(P) ≤ p′ · sup

t
‖Mt ‖Lp(P) .
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Proof. If p = 1, then p′ = ∞ and the inequality is trivial; if p = ∞ , then
it is obvious. In the other cases consider an instant t ∈ (0,∞) and resurrect

the finite set S ⊂ [0, t] and the random variable MS from the previous proof.
From equation (A.3.9) and lemma 2.5.18,

∫
(MS)p dP = p

∫ ∞

0

λp−1P[MS > λ] dλ

≤ p

∫ ∞

0

∫
λp−2|Mt| · [MS > λ] dP dλ

=
p

p− 1

∫
|Mt|(MS)p−1 dP .

by A.8.4:

∫
(MS)p dP ≤ p

p− 1
·
(∫

|Mt|p dP
) 1

p

·
(∫

(MS)p dP

) p−1
p

.

Now
∫

(MS)p dP is finite if
∫
|Mt|p dP is, and we may divide by the second

factor on the right to obtain
∥∥∥MS

∥∥∥
Lp(P)

≤ p′ ·
∥∥Mt

∥∥
Lp(P)

.

Taking the supremum over all finite subsets S of {t} ∪ (Q ∩ [0, t]) and using
the right-continuity of M produces ‖M ?

t ‖Lp(P)
≤ p′ · ‖Mt‖Lp(P)

. Now let

t→ ∞ .

Exercise 2.5.20 For a vector M = (M1, . . . ,Md) of right-continuous martingales
set

|Mt|∞ = ‖Mt‖`∞ def= sup
η

|Mη
t | and M

?
t

def= sup
s≤t

|Ms|∞ .

Using exercise 2.5.8 and the observation that the proofs above use only the property
of |M | of being a positive submartingale, show that

‚‚M
?
∞

‚‚
Lp(P)

≤ p′ · sup
t<∞

‚‚ |Mt|∞
‚‚
Lp(P)

.

Exercise 2.5.21 (i) For a standard Wiener process W and α, β ∈ R+ ,

P[ sup
t

(Wt − αt/2) > β] ≤ e−αβ .

(ii) limt→∞Wt/t = 0.

Doob’s Optional Stopping Theorem

In support of the vague principle “what holds at instants t holds at stop-

ping times T ,” which the reader might be intuiting by now, we offer this
generalization of the martingale property:

Theorem 2.5.22 (Doob) Let M be a right-continuous uniformly integrable
martingale. Then E [M∞|FT ] = MT almost surely at any stopping time T .
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Proof. We know from exercise 2.5.14 that Mt = E
[
M∞

∣∣Ft
]

for all t . To start

with, assume that T takes only countably many values 0 ≤ t0 ≤ t1 ≤ . . .,

among them possibly the value t∞ = ∞ . Then for any A ∈ FT∫

A

M∞ dP =
∑

0≤k≤∞

∫

A∩[T=tk]

M∞ dP =
∑

0≤k≤∞

∫

A∩[T=tk]

Mtk dP

=
∑

0≤k≤∞

∫

A∩[T=tk]

MT dP =

∫

A

MT dP .

The claim is thus true for such T . Given an arbitrary stopping time T we

apply this to the discrete-valued stopping times T (n) of exercise 1.3.20. The
right-continuity of M implies that

MT = lim
n

E[M∞|FT (n) ] .

This limit exists in mean, and the integral of it over any set A ∈ FT is the
same as the integral of M∞ over A (exercise A.3.27).

Exercise 2.5.23 (i) Let M be a right-continuous uniformly integrable martingale
and S ≤ T any two stopping times. Then MS = E[MT |FS ] almost surely.
(ii) If M is a right-continuous martingale and T a stopping time, then the stopped
process MT is a martingale; if T is bounded, then MT is uniformly integrable.
(iii) A local martingale is locally uniformly integrable. (iv) A positive local martin-
gale M is a supermartingale; if E[Mt] is constant, M is a martingale. In any case,
if E[MS ] = E[MT ] = E[M0] , then E[MS∨T ] = E[M0] .

Martingales Are Integrators

A simple but pivotal result is this:

Theorem 2.5.24 A right-continuous square integrable martingale M is an
L2-integrator whose size at any instant t is given by

M t
I2 = ‖Mt ‖2 . (2.5.1)

Proof. Let X be an elementary integrand as in (2.1.1):

X = f0 · [[0]] +
N∑

n=1

fn · ((tn, tn+1]] , 0 = t1 < . . . , fn ∈ Ftn ,

that vanishes past time t . Then

(∫
X dM

)2

=
(
f0M0 +

N∑

n=1

fn ·
(
Mtn+1

−Mtn

))2

= f2
0M

2
0 + 2f0M0 ·

N∑

n=1

fn ·
(
Mtn+1

−Mtn

)

+

N∑

m,n=1

fm(Mtm+1
−Mtm) · fn(Mtn+1

−Mtn) . (∗)
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If m 6= n , say m < n , then fm(Mtm+1
−Mtm)·fn is measurable on Ftn . Upon

taking the expectation in (∗), terms with m 6= n will vanish. At this point

our particular choice of the elementary integrands pays off: had we allowed
the steps to be measurable on a σ-algebra larger than the one attached to

the left endpoint of the interval of constancy, then fn = Xtn would not be
measurable on Ftn , and the cancellation of terms would not occur. As it is

we get

E
[(∫

X dM

)2]
= E

[
f2
0M

2
0 +

N∑

n=1

f2
n · (Mtn+1

−Mtn)2
]

≤ E
[
M2

0 +
∑
n

(
Mtn+1

−Mtn

)2]

= E
[
M2

0 +
∑
n

(
M2
tn+1

− 2Mtn+1
Mtn +M2

tn

)]

by exercise 2.5.3: = E
[
M2

0 +
∑N
n=1

(
M2
tn+1

−M2
tn

)]
= E

[
M2
tN+1

]
≤ E[M2

t ] .

Taking the square root and the supremum over elementary integrands X that
do not exceed2 [[0, t]] results in equation (2.5.1).

Exercise 2.5.25 If W is a standard Wiener process on the filtration F. , then it
is an L2-integrator on F. and on its natural enlargement, and for every elementary
integrand X

ddXeeW−2 = ‖X‖W−2 =

„Z Z
X2
s ds dP

«1/2

.

In particular W t

I2 =
√
t . (For more see 4.2.20.)

Example 2.5.26 Let X1, X2, . . . be independent identically distributed

Bernoulli random variables with P[Xk = ±1] = 1/2. Fix a (large) natu-
ral number n and set

Zt =
1√
n

∑

k≤tn
Xk 0 ≤ t ≤ 1 .

This process is right-continuous and constant on the intervals [k/n, (k+ 1)/n),

as is its basic filtration. Z is a process of finite variation. In fact, its variation
process clearly is

Z
t
=

1√
n
· btnc ≈ t · √n .

Here brc denotes the largest integer less than or equal to r . Thus if we
estimate the size of Z as an L2-integrator through its variation, using proposi-

tion 2.4.1 on page 68, we get the following estimate:

Zt I2 ≤ t
√
n . (v)

Z is also evidently a martingale. Also, the L2-mean of Zt is easily seen to
be
√
btnc/n ≤

√
t. Theorem 2.5.24 yields the much superior estimate

Zt I2 ≤
√
t , (m)

which is, in particular, independent of n .
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Let us use this example to continue the discussion of remark 1.2.9 on
page 18 concerning the driver of Brownian motion. Consider a point mass

on the line that receives at the instants k/n a kick of momentum p0Xk ,
i.e., either to the right or to the left with probability 1/2 each. Let us scale

the units so that the total energy transfer up to time 1 equals 1. An easy
calculation shows that then p0 = 1/

√
n . Assume that the point mass moves

through a viscous medium. Then we are led to the stochastic differential
equation (

dxt
dpt

)
=

(
pt/m dt

−αpt dt + dZt

)
, (2.5.2)

just as in equation (1.2.1). If we are interested in the solution at time 1, then
the pertinent probability space is finite. It has 2n elements. So the problem

is to solve finitely many ordinary differential equations and to assemble their
statistics. Imagine that n is on the order of 1023 , the number of molecules per

mole. Then 2n far exceeds the number of elementary particles in the universe!
This makes it impossible to do the computations, and the estimates toward

any procedure to solve the equation become useless if inequality (v) is used.
Inequality (m) offers much better prospects in this regard but necessitates

the development of stochastic integration theory.
An aside: if dt is large as compared with 1/n , then dZt = Zt+dt−Zt is the

superposition of a large number of independent Bernoulli random variables

and thus is distributed approximately N(0, dt). It can be shown that Z tends
to a Wiener process in law as n→ ∞ (theorem A.4.9) and that the solution

of equation (2.5.2) accordingly tends in law to the solution of our idealized
equation (1.2.1) for physical Brownian motion (see exercise A.4.14).

Martingales in Lp

The question arises whether perhaps a p-integrable martingale M is an

Lp-integrator for exponents p other than 2. This is true in the range
1 < p < ∞ (theorem 2.5.30) but not in general at p = 1, where M can

only be shown to be a local L1-integrator. For the proof of these claims some
estimates are needed:

Lemma 2.5.27 (i) Let Z be a bounded adapted process and set

λ = sup |Z| and µ = sup
{

E
[∫

X dZ
]

: X ∈ E1

}
.

Then for all X in the unit ball E1 of E

E
[∣∣∣
∫
X dZ

∣∣∣
]
≤

√
2 · (λ+ µ) . (2.5.3)

In other words, Z has global L1-integrator size Z I1 ≤
√

2 · (λ+ µ) .

Inequality (2.5.3) holds if P is merely a subprobability: 0 ≤ P[Ω] ≤ 1 .
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(ii) Suppose Z is a positive bounded supermartingale. Then for all X ∈ E1

E
[∣∣∣
∫
X dZ

∣∣∣
2]

≤ 8 · supZ · E[Z0] . (2.5.4)

That is to say, Z has global L2-integrator size Z I2 ≤ 2
√

2 supZ · E[Z0] .

Proof. It is easiest to argue if the elementary integrand X ∈ E1 of the claims
(2.5.3) and (2.5.4) is written in the form (2.1.1) on page 46:

X = f0 · [[0]] +

N∑

n=1

fn · ((tn, tn+1]] , 0 = t1 < . . . < tN+1, fn ∈ Ftn .

Since X is in the unit ball E1
def= {X ∈ E : |X| ≤ 1} of E , the fn all have

absolute value less than 1. For n = 1, . . . , N let

ζn
def= Ztn+1

− Ztn and Z ′n
def= E

[
Ztn+1

∣∣Ftn
]

;

ζ̂n
def= E

[
ζn
∣∣Ftn

]
= Z ′n − Ztn and ζ̃n

def= ζn − ζ̂n = Ztn+1
− Z ′n .

Then

∫
X dZ = f0 · Z0 +

N∑

n=1

fn ·
(
Ztn+1

− Ztn
)

= f0 · Z0 +

N∑

n=1

fn · ζn

=
(
f0 · Z0 +

N∑

n=1

fn · ζ̃n
)

+
( N∑

n=1

fn · ζ̂n
)

= M + V .

The L1-means of the two terms can be estimated separately. We start on M .

Note that E
[
fmζ̃m · fnζ̃n

]
= 0 if m 6= n and compute

E[M2] = E
[
f2
0 · Z2

0 +
N∑

n=1

f2
n · ζ̃2

n

]
≤ E

[
Z2

0 +
N∑

n=1

ζ̃2
n

]

= E
[
Z2
t1

+
∑
n

(
Ztn+1

− Z ′n
)2]

= E
[
Z2
t1

+
∑
n

(
Z2
tn+1

− 2Ztn+1
Z ′n + Z ′2n

)]

= E
[
Z2
t1 +

∑
n

(
Z2
tn+1

− Z ′2n
)]

= E
[
Z2
t1 +

∑
n

(
Z2
tn+1

− Z2
tn

)
+
∑
n

(
Z2
tn − Z ′2n

)]

= E
[
Z2
tN+1

+
∑
n

(
Ztn + Z ′n

)
·
(
Ztn − Z ′n

)]

= E
[
Z2
tN+1

+
∑
n

(
Ztn + Z ′n

)
·
(
Ztn − Ztn+1

)]

= E
[
Z2
tN+1

]
− E

[∫ (∑N
n=1

(
Ztn + Z ′n

)
· ((tn, tn+1]]

)
dZ
]

≤ λ2 + 2λµ . (*)
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After this preparation let us prove (i). Since P has mass less than 1,
(*) results in

E[|M |] ≤
(
E[M2]

)1/2 ≤
√
λ2 + 2λµ .

We add the estimate of the expectation of

|V | ≤
∑

n

∣∣fnζ̂n
∣∣ =

∑

n

|fn| sgn
(
ζ̂n
)
· ζ̂n :

E|V | ≤ E
[ N∑

n=1

|fn| sgn
(
ζ̂n
)
· ζ̂n
]

= E
[ N∑

n=1

|fn| sgn
(
ζ̂n
)
· ζn
]

= E
[∫ N∑

n=1

|fn| sgn
(
ζ̂n
)
· ((tn, tn+1]] dZ

]
≤ µ

to get E
[∣∣∣
∫
X dZ

∣∣∣
]
≤
√
λ2 + 2λµ+ µ ≤

√
2 · (λ+ µ) .

We turn to claim (ii). Pick a u > tN+1 and replace Z by Z · [[0, u)). This
is still a positive bounded supermartingale, and the left-hand side of inequal-

ity (2.5.4) has not changed. Since X = 0 on ((tN+1, u]] , renaming the tn so
that tN+1 = u does not change it either, so we may for convenience assume

that ZtN+1
= 0. Continuing (*) we find, using proposition 2.5.10, that

E[M2] ≤ −E
[∫

((0,tN+1]]

2λ dZ
]

= 2λ · E
[
Z0 − ZtN+1

]
= 2 supZ · E

[
Z0

]
. (**)

To estimate E[V 2] note that the ζ̂n are all negative:
∣∣∣
∑
n fn · ζ̂n

∣∣∣ is largest

when all the fn have the same sign. Thus, since −1 ≤ fn ≤ 1,

E[V 2] = E
[( N∑

n=1

fn · ζ̂n
)2]

≤ E
[( N∑

n=1

ζ̂n

)2]

≤ 2
∑

1≤m≤n≤N
E
[
ζ̂m · ζ̂n

]
= 2

∑

1≤m≤n≤N
E
[
ζ̂m · ζn

]

= 2
∑

1≤m≤N
E
[
ζ̂m ·

(
ZtN+1

− Ztm
)]

= 2
∑

1≤m≤N
E
[
−ζ̂m · Ztm

]

≤ 2 supZ
∑

1≤m≤N
E
[
−ζ̂m

]
= −2 supZ

∑

1≤m≤N
E
[
ζm
]

= −2 supZ ·
(
ZtN+1

− Z0

)
= 2 supZ · E

[
Z0

]
.

Adding this to inequality (**) we find

E
[∣∣∣
∫
X dZ

∣∣∣
2 ]

≤ 2E[M2] + 2E[V 2] ≤ 8 · supZ · E[Z0] .
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The following consequence of lemma 2.5.27 is the first step in showing
that p-integrable martingales are Lp-integrators in the range 1 < p < ∞
(theorem 2.5.30). It is a “weak-type” version of this result at p = 1:

Proposition 2.5.28 An L1-bounded right-continuous martingale M is a global
L0-integrator. In fact, for every elementary integrand X with |X| ≤ 1 and

every λ > 0,

P
[∣∣∣
∫
X dM

∣∣∣ > λ
]
≤ 2

λ
· sup

t
‖Mt ‖L1(P) . (2.5.5)

Proof. This inequality clearly implies that the linear map X 7→
∫
X dM is

bounded from E to L0 , in fact to the Lorentz space L1,∞ . The argument is

again easiest if X is written in the form (2.1.1):

X = f0 · [[0]] +

N∑

n=1

fn · ((tn, tn+1]] , 0 = t1 < . . . , fn ∈ Ftn .

Let U be a bounded stopping time strictly past tN+1 , and let us assume to

start with that M is positive at and before time U . Set

T = inf {tn : Mtn ≥ λ} ∧ U .

This is an elementary stopping time (proposition 1.3.13). Let us estimate the
probabilities of the disjoint events

B1 =
[∣∣∣
∫
X dM

∣∣∣ > λ, T < U
]

and B2 =
[∣∣∣
∫
X dM

∣∣∣ > λ, T = U
]

separately. B1 is contained in the set M?
U ≥ λ , and Doob’s maximal lem-

ma 2.5.18 gives the estimate

P[B1] ≤ λ−1 · E
[
|MU |

]
. (∗)

To estimate the probability of B2 consider the right-continuous process

Z = M · [[0, T )) .

This is a positive supermartingale bounded by λ ; indeed, using A.1.5,

E
[
Zt|Fs

]
= E

[
Mt · [T > t]

∣∣Fs
]

≤ E
[
Mt · [T > s]

∣∣Fs
]

= E
[
Ms · [T > s]

∣∣Fs
]

= Zs .

On B2 the paths of M and Z coincide. Therefore
∫
X dZ =

∫
X dM on B2 ,

and B2 is contained in the set

[∣∣∣
∫
X dZ

∣∣∣ > λ
]
.



84 2 Integrators and Martingales

Due to Chebyschev’s inequality and lemma 2.5.27, the probability of this set
is less than

λ−2 · E
[(∫

X dZ
)2 ]

≤ 8λ · E[Z0]

λ2
=

8E[M0]

λ
≤ 8

λ
· E[|MU |] .

Together with (*) this produces

P
[∣∣∣
∫
X dM

∣∣∣ > λ
]
≤ 9

λ
· E[MU ] .

In the general case we split MU into its positive and negative parts M±U
and set M±t = E

[
M±U |Ft

]
, obtaining two positive martingales with differ-

ence MU . We estimate

P
[∣∣∣
∫
X dM

∣∣∣ ≥ λ
]
≤ P

[∣∣∣
∫
X dM+

∣∣∣ ≥ λ/2
]

+ P
[∣∣∣
∫
X dM−

∣∣∣ ≥ λ/2
]

≤ 9

λ/2
·
(
E[M+

U ] + E[M−U ]
)

=
18

λ
· E[|MU |]

≤ 18

λ
· sup

t
E[|Mt|] .

This is inequality (2.5.5), except for the factor of 1/λ , which is 18 rather
than 2, as claimed. We borrow the latter value from Burkholder [14], who

showed that the following inequality holds and is best possible: for |X| ≤ 1

P
[
sup
t

∣∣∣
∫ t

0

X dM
∣∣∣ > λ

]
≤ 2

λ
· sup

t
‖Mt‖L1 .

The proof above can be used to get additional information about local mar-
tingales:

Corollary 2.5.29 A right-continuous local martingale M is a local L1-integrator.
In fact, it can locally be written as the sum of an L2-integrator and a process

of integrable total variation. (According to exercise 4.3.14, M can actually be

written as the sum of a finite variation process and a locally square integrable
martingale.)

Proof. There is an arbitrarily large bounded stopping time U such that MU

is a uniformly integrable martingale and can be written as the difference of

two positive martingales M± . Both can be chosen right-continuous (propo-
sition 2.5.13). The stopping time T = inf{t : M±t ≥ λ} ∧ U can be made

arbitrarily large by the choice of λ . Write

(M±)T = M± · [[0, T )) +M±T · [[T,∞)) .

The first summand is a positive bounded supermartingale and thus is a

global L2(P)-integrator; the last summand evidently has integrable total
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variation |M±T | . Thus MT is the sum of two global L2(P)-integrators and
two processes of integrable total variation.

Theorem 2.5.30 Let 1 < p < ∞ . A right-continuous Lp-integrable mar-

tingale M is an Lp-integrator. Moreover, there are universal constants Ap
independent of M such that for all stopping times T

MT
Ip ≤ Ap · ‖MT ‖p . (2.5.6)

Proof. Let X be an elementary integrand with |X| ≤ 1 and consider the

following linear map U from L∞(F∞,P) to itself:

U(g) =

∫
X dMg .

Here Mg is the right-continuous martingale M g
t = E[g|Ft] of examp-

le 2.5.2. We shall apply Marcinkiewicz interpolation to this map (see pro-

position A.8.24). By (2.5.5) U is of weak type 1–1:

P
[
|U(g)| > λ

]
≤ 2

λ
· ‖g‖1 .

By (2.5.1), U is also of strong type 2–2:

‖U(g)‖2 ≤ ‖g‖2 .

Also, U is self-adjoint: for h ∈ L∞ and X ∈ E1 written as in (2.1.1)

E[U(g) · h] = E

[(
f0M

g
0 +

∑

n

fn

(
Mg
tn+1

−Mg
tn

))
Mh
∞

]

= E

[
f0M

g
0M

h
0 +

∑

n

fn

(
Mg
tn+1

Mh
tn+1

−Mg
tn
Mh
tn

)]

= E

[(
f0M

h
0 +

∑

n

fn

(
Mh
tn+1

−Mh
tn

))
Mg
∞

]

= E[U(h) · g] .
A little result from Marcinkiewicz interpolation, proved as corollary A.8.25,

shows that U is of strong type p−p for all p ∈ (1,∞). That is to say,

there are constants Ap with ‖
∫
X dM ‖

p
≤ Ap · ‖M∞ ‖

p
for all elementary

integrands X with |X| ≤ 1. Now apply this to the stopped martingale MT

to obtain (2.5.6).

Exercise 2.5.31 Provide an estimate for Ap from this proof.

Exercise 2.5.32 Let St be a positive bounded P-supermartingale on the filtration
F. and assume that S is right-continuous in probability and almost surely strictly
positive; that is to say, P[St = 0] = 0 ∀ t . Then there exists a P-nearly empty
set N outside which the restriction of every path of S to the positive rationals is
bounded away from zero on every bounded time-interval.

Repeated Footnotes: 472 565 657 6610 7013
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Extension of the Integral

Recall our goal: if Z is an Lp-integrator, then there exists an extension
of its associated elementary integral to a class of integrands on which the

Dominated Convergence Theorem holds.
The reader with a firm grounding in Daniell’s extension of the integral will

be able to breeze through the next 40 pages, merely identifying the results
presented with those he is familiar with; the presentation is fashioned so as

to facilitate this transition from the ordinary to the stochastic integral. The
reader not familiar with Daniell’s extension can use them as a primer.

Daniell’s Extension Procedure on the Line

As before we look for guidance at the half-line. Let z be a right-continuous
distribution function of finite variation, let the integral be defined on the

elementary functions by equation (2.2) on page 44, and let us review step 2
of the integration process, the extension theory. Daniell’s idea was to apply

Lebesgue’s definition of an outer measure of sets to functions, thus obtaining
an upper integral of functions. A short overview can be found on page 395 of

appendix A. The upshot is this. Given a right-continuous distribution func-
tion z of finite variation on the half-line, Daniell first defines the associated

elementary integral e → R by equation (2.2) on page 44, and then defines a
seminorm, the Daniell mean ‖ ‖∗

z
, on all functions f : [0,∞) → R by

‖f ‖∗z = inf
|f |≤h∈e↑

sup
φ∈e,|φ|≤h

∣∣∣∣
∫
φ dz

∣∣∣∣ . (3.1)

Here e↑ is the collection of all those functions that are pointwise suprema

of countable collections of elementary integrands. The integrable functions
are simply the closure of e under this seminorm, and the integral is the

extension by continuity of the elementary integral. This is the Lebesgue–
Stieltjes integral. The Dominated Convergence Theorem and the numerous

beautiful features of the Lebesgue–Stieltjes integral are all due to only two
properties of Daniell’s mean ‖ ‖∗

z
; it is countably subadditive:

∥∥∑∞
n=1fn

∥∥∗
z
≤∑∞n=1‖fn ‖

∗
z , fn ≥ 0 ,

87
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and it is additive on e+ , as it agrees there with the variation measure dz .

Let us put this procedure in a general context. Much of modern analysis

concerns linear maps on vector spaces. Given such, the analyst will most

frequently start out by designing a seminorm on the given vector space, one
with respect to which the given linear map is continuous, and then extend

the linear map by continuity to the completion of the vector space under
that seminorm. The analysis of the extended linear map is generally easier

because of the completeness of its domain, which furnishes limit points to
many arguments. Daniell’s method is but an instance of this. The vector

space is e , the linear map is x 7→
∫
x dz , and the Daniell mean ‖ ‖∗

z
is a

suitable, in fact superb, seminorm with respect to which the linear map is

continuous. The completion of e is the space L1(dz) of integrable functions.

3.1 The Daniell Mean

We shall extend the elementary stochastic integral in literally the same way,

by designing a seminorm under which it is continuous. In fact, we shall
simply emulate Daniell’s “up-and-down procedure” of equation (3.1) and

thence follow our noses.

The first thing to do is to replace the absolute value, which measures the
size of the real-valued integral in equation (3.1), by a suitable size measure-

ment of the random variable-valued elementary stochastic integral that takes
its place. Any of the means and gauges mentioned on pages 33–34 will suit.

Now a right-continuous adapted process Z may be an Lp(P)-integrator for
some pairs (p,P) and not for others. We will pick a pair (p,P) such that it

is. The notation will generally reflect only the choice of p , and of course Z ,

but not of P ; so the size measurement in question is ‖ ‖
p
, dd ee

p
, or ‖ ‖

[α]
,

depending on our predilection or need. The stochastic analog of definition

(3.1) is

ddF ee∗Z−p = inf
|F |≤H∈E↑+

sup
X∈E,|X|≤H

⌈⌈∫
X dZ

⌉⌉
p

, etc. (3.1.1)

Here E↑+ denotes the collection of positive processes that are pointwise

suprema of a sequence of elementary integrands. Let us write separately
the “up-part” and the “down-part” of (3.1.1): for H ∈ E↑+

‖H‖∗Z−p = sup
{∥∥∥
∫
X dZ

∥∥∥
p

: X ∈ E , |X| ≤ H
}

(p ≥ 1) ;

ddHee∗Z−p = sup
{⌈⌈∫

X dZ
⌉⌉
p

: X ∈ E , |X| ≤ H
}

(p ≥ 0) ;

‖H‖∗Z−[α] = sup
{∥∥∥
∫
X dZ

∥∥∥
[α]

: X ∈ E , |X| ≤ H
}

(p = 0) .
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Then on an arbitrary numerical process F ,

‖F‖∗Z−p = inf
{
‖H‖∗Z−p : H ∈ E↑+ , H ≥ |F |

}
(p ≥ 1) ;

ddF ee∗Z−p = inf
{
ddHee∗Z−p : H ∈ E↑+ , H ≥ |F |

}
(p ≥ 0) ;

‖F‖∗Z−[α] = inf
{
‖H‖∗Z−[α] : H ∈ E↑+ , H ≥ |F |

}
(p = 0) .

We shall refer to dd ee∗
Z−p as THE Daniell mean. It goes with that semivari-

ation which comes from the subadditive functional dd ee
p

– the subadditivity

of dd ee
p

is the reason for singling it out. dd ee∗
Z−p , too, will turn out to be

subadditive, even countably subadditive. This property makes it best suited
for the extension of the integral. If the probability needs to be mentioned,

we also write dd ee∗
Z−p;P etc.

As we would on the line we shall now establish the properties of the mean.
Here as there, the Dominated Convergence Theorem and all of its beautiful

corollaries are but consequences of these. The arguments are standard.

Exercise 3.1.1 dd ee∗
Z−p

agrees with the semivariation dd ee
Z−p

on E+ . In fact, for

X ∈ E we have ddX ee∗
Z−p

= dd|X|ee
Z−p

. The same holds for the means associated

with the other gauges.

Exercise 3.1.2 The following comes in handy on several occasions: let S, T be
stopping times and assume that the projection [S < T ] of the stochastic interval
((S, T ]] on Ω has measure less than ε . Then any process F that vanishes outside
((S, T ]] has ddF ee∗

Z−0
≤ ε .

Exercise 3.1.3 For a standard Wiener process W and arbitrary F : B → R ,

‖F ‖∗W−2 =

„Z ∗

F 2(s, ω) ds×P(dω)

«1/2

.

‖ ‖∗
W−2

is simply the square mean for the measure ds × P on E . It is the mean

originally employed by Itô and is still much in vogue (see definition (4.2.9)).

A Temporary Assumption

To start on the extension theory we have to place a temporary condition on

the Lp-integrator Z , one that is at first sight rather more restrictive than the
mere right-continuity in probability expressed in (IC-0); we have to require

Assumption 3.1.4 The elementary integral is continuous in p-mean along

increasing sequences. That is to say, for every increasing sequence
(
X(n)

)
of

elementary integrands whose pointwise supremum X also happens to be an

elementary integrand, we have

lim
n

∫
X(n) dZ =

∫
X dZ in p-mean. (IC-p)
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Exercise 3.1.5 This is equivalent with either of the following conditions:
(i) σ-continuity at 0: for every sequence (X(n)) of elementary integrands that

decreases pointwise to zero, limn→∞

R
X(n) dZ = 0 in p-mean;

(ii) σ-additivity: for every sequence (X(n)) of positive elementary integrands
whose sum is a priori an elementary integrand,

X

n

Z
X(n) dZ =

Z X

n

X(n) dZ in p-mean.

Assumption 3.1.4 clearly implies (RC-0). In view of exercise 3.1.5 (ii), it is also

reasonably called p-mean σ-additivity. An Lp-integrator actually satisfies

(IC-p) automatically; but when this fact is proved in proposition 3.3.2, the
extension theory of the integral done under this assumption is needed. The

reduction of (IC-p) to (RC-0) in section 3.3 will be made rather simple if the
reader observes that

In the extension theory of the elementary integral below, use is made only
of the structure of the set E of elementary integrands – it is an algebra and

vector lattice closed under chopping of bounded functions on some set, which

is called the base space or ambient set – and of the properties (B-p) and
(IC-p) of the vector measure

∫
. dZ : E → Lp .

In particular, the structure of the ambient set is irrelevant to the extension

procedure. The words “process” and “function” (on the base space) are used
interchangeably.

Properties of the Daniell Mean

Theorem 3.1.6 The Daniell mean dd ee∗
Z−p has the following properties:

(i) It is defined on all numerical functions on the base space and takes values
in the positive extended reals R+ .

(ii) It is solid: |F | ≤ |G| implies ddF ee∗
Z−p ≤ ddGee∗

Z−p .

(iii) It is continuous along increasing sequences
(
H(n)

)
of E↑+ :

⌈⌈
sup
n
H(n)

⌉⌉∗
Z−p

= sup
n

⌈⌈
H(n)

⌉⌉∗
Z−p

.

(iv) It is countably subadditive: for any sequence
(
F (n)

)
of positive func-

tions on the base space

⌈⌈ ∞∑

n=1

F (n)
⌉⌉∗
Z−p

≤
∞∑

n=1

⌈⌈
F (n)

⌉⌉∗
Z−p

.

(v) Elementary integrands are finite for the mean: limr→0 ddrX ee∗
Z−p = 0

for all X ∈ E – when p > 0 this simply reads ddX ee∗
Z−p < ∞ .



3.1 The Daniell Mean 91

(vi) For any sequence
(
X(n)

)
of positive elementary integrands

(
lim
r→0

⌈⌈
r ·
∞∑

n=1

X(n)
⌉⌉∗
Z−p

= 0

)
implies

(⌈⌈
X(n)

⌉⌉∗
Z−p

−−−→n→∞ 0

)
(M)

– when p > 0 this simply reads:
(⌈⌈ ∞∑

n=1

X(n)
⌉⌉∗
Z−p

< ∞
)

implies

(⌈⌈
X(n)

⌉⌉∗
Z−p

−−−→n→∞ 0

)
.

[It is this property which distinguishes the Daniell mean from an ordinary

sup-norm and which is responsible for the Dominated Convergence Theorem
and its beautiful consequences.]

(vii) The mean dd ee∗
Z−p majorizes the elementary stochastic integral:

⌈⌈∫
X dZ

⌉⌉
p
≤ ddX ee∗Z−p ∀X ∈ E .

Proof. The first property that is possibly not obvious is (iii). To prove it

let (H(n)) be an increasing sequence of E↑+ . Its pointwise supremum H

clearly belongs to E↑+ as well. From the solidity,

ddH ee∗Z−p ≥ sup
⌈⌈
H(n)

⌉⌉∗
Z−p

.

To show the reverse inequality assume that ddH ee∗
Z−p > a . There exists an

X ∈ E with |X| ≤ H and

⌈⌈∫
X dZ

⌉⌉
p
> a .

Write X as the difference X = X+ −X− of its positive and negative parts.

For every n there is a sequence (X (n,k)) with pointwise supremum H(n) . Set

X(N) =
∨

n,k≤N
X(n,k) and X

(N)
± = X(N) ∧X± .

Clearly X
(N)
± ↑ X± , and therefore, with X

(N)
= X

(N)
+ −X

(N)
− ,

∫
X

(N)
dZ →

∫
X dZ in p-mean.

It is here that assumption 3.1.4 is used. Thus dd
∫
X

(N)
dZ ee

p
> a for suffi-

ciently large N . As |X(N)| ≤ H(N) , ddH(N) ee∗
Z−p > a eventually. This argu-

ment applies to the Daniell extension of any other semivariation – associated

with any other solid and continuous functional on Lp – as well and shows that
‖ ‖∗

Z−p and ‖ ‖∗
Z−[α]

, too, are continuous along increasing sequences of E↑+ .
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(iv) We start by proving the subadditivity of dd ee∗
Z−p on the class E↑+ . Let

H(i) ∈ E↑+ , i = 1, 2. There is a sequence
(
X(i,n)

)
n

in E+ whose pointwise

supremum is H(i) . Replacing X(i,n) by supν≤nX
(i,ν) , we may assume that(

X(i,n)
)

is increasing. By (iii) and proposition 2.2.1,
⌈⌈
H(1) +H(2)

⌉⌉∗
Z−p

= lim
n

⌈⌈
X(1,n) +X(2,n)

⌉⌉∗
Z−p

≤ lim
n

(⌈⌈
X(1,n)

⌉⌉∗
Z−p

+
⌈⌈
X(2,n)

⌉⌉∗
Z−p

)
=
⌈⌈
H(1)

⌉⌉∗
Z−p

+
⌈⌈
H(2)

⌉⌉∗
Z−p

.

To prove the countable subadditivity in general let
(
F (n)

)
be a sequence

of numerical functions on the base space with
∑ ddF (n) ee∗

Z−p < a < ∞ – if

the sum is infinite, there is nothing to prove. There are H (n) ∈ E↑+ with

F (n) ≤ H(n) and
∑ ddH(n) ee∗

Z−p < a . The process H =
∑
H(n) belongs

to E↑+ and exceeds F . Consequently

ddF ee∗Z−p ≤ ddHee∗Z−p = sup
N

⌈⌈ N∑

n=1

H(n)
⌉⌉∗
Z−p

from first part of proof: ≤ sup
N

N∑

n=1

⌈⌈
H(n)

⌉⌉∗
Z−p

=
∞∑

n=1

⌈⌈
H(n)

⌉⌉∗
Z−p

< a .

(v) follows from condition (B-p) on page 53, in view of exercise 3.1.1.

It remains to prove (M), which is the substitute for the additivity that
holds in the scalar case. Note that it is a statement about the behavior

of the mean dd ee∗
Z−p on E , where it equals the semivariation dd ee

Z−p (see
definition (2.2.1)).

We start with the case p > 0. Since dd ee∗
Z−p = (‖ ‖∗

Z−p )
p∧1

, it suffices to
show that(∥∥∥

∞∑

n=1

X(n)
∥∥∥
∗

Z−p
<∞

)
implies

(∥∥∥X(n)
∥∥∥
Z−p

−−−→n→∞ 0

)
. (∗)

Now ‖X(n)‖
Z−p −−−→n→∞ 0 means that for any sequence

(
X ′(n)

)
of elementary

integrands with |X ′(n)| ≤ X(n)

∥∥∥
∫
X ′(n) dZ

∥∥∥
p
−−−→n→∞ 0 . (∗∗)

For if ‖X(n) ‖
Z−p 6→ 0, then the very definition of the semivariation would

produce a sequence violating (∗∗).
Let ε1(t), ε2(t), . . . be independent identically distributed Bernoulli ran-

dom variables, defined on a probability space (D,D, τ), with τ([εν = ±1])

= 1/2. Then, with fn
def=
∫
X ′(n) dZ ,

∑

n≤N
εn(t)fn =

∫ ∑

n≤N
εn(t)X

′(n) dZ , t ∈ D .
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The second of Khintchine’s inequalities, proved as theorem A.8.26, provides
a universal constant Kp = K

(A.8.5)
p such that

(∑

n≤N
f2
n

)1/2

≤ Kp ·
(∫ ∣∣∣

∑

n≤N
εn(t)fn

∣∣∣
p

τ(dt)
)1/p

.

Applying ‖·‖
p

and using Fubini’s theorem A.3.18 on this results in

∥∥∥
(∑

n≤N
f2
n

)1/2∥∥∥
p
≤ Kp ·

(∫ ∫ ∣∣∣
∫ ∑

n≤N
εn(t)X

′(n) dZ
∣∣∣
p

dP τ(dt)
)1/p

≤ Kp ·
(∫ ∥∥∥

∑

n≤N
εn(t)X

′(n)
∥∥∥
p

Z−p
τ(dt)

)1/p

≤ Kp · sup
N

∥∥∥
∑

n≤N
X(n)

∥∥∥
Z−p

≤ Kp ·
∥∥∥
∞∑

n=1

X(n)
∥∥∥
∗

Z−p
< ∞ .

The function h def= (
∑
n∈N f

2
n )

1/2
therefore belongs to Lp . This implies that

fn → 0 a.s. and dominatedly (by h); therefore ‖fn‖p −−−→n→∞ 0.

If p = 0, we use inequality (A.8.6) instead:

(∑

n≤N
f2
n

)1/2

≤ K0 ·
∥∥∥
∑

n≤N
εn(t)fn

∥∥∥
[κ0;τ ]

;

and thus, applying ‖ ‖
[α;P]

and exercise A.8.16,

∥∥∥
(∑

n≤N
f2
n

) 1
2
∥∥∥

[α;P]
≤ K0 ·

∥∥∥
∥∥∥
∑

n≤N
εn(t)fn

∥∥∥
[κ0;τ ]

∥∥∥
[α;P]

≤ K0 ·
∥∥∥
∥∥∥
∫ ∑

n≤N
εnX

′(n) dZ
∥∥∥

[γ;P]

∥∥∥
[ακ0−γ;τ ]

≤ K0 ·
∥∥∥
∥∥∥
∑

n≤N
X(n)

∥∥∥
Z−[γ]

∥∥∥
[ακ0−γ;τ ]

≤ K0 ·
∥∥∥
∑

n≤N
X(n)

∥∥∥
Z−[γ]

.

This holds for all γ < ακ0 , and therefore

∥∥∥
(∑

n≤N
f2
n

)1/2∥∥∥
[α]

≤ K0 ·
∥∥∥
∑

n≤N
X(n)

∥∥∥
Z−[ακ0]

≤ K0 ·
∥∥∥
∞∑

n=1

X(n)
∥∥∥
∗

Z−[ακ0]
.

It is left to the reader to show that (∗) implies

∥∥∥
∞∑

n=1

X(n)
∥∥∥
∗

Z−[ακ0]
<∞ ∀α > 0 ,
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which, in conjunction with the previous inequality, proves that

( ∞∑

n=1

f2
n

)1/2

<∞ a.s.

Thus clearly fn → 0 in L0 .

It is worth keeping the quantitative information gathered above for an appli-

cation to the square function on page 148.

Corollary 3.1.7 Let Z be an adapted process and X (1), X(2), . . . ∈ E . Then

∥∥∥
(∑

n

(∫
X(n) dZ

)2)1/2∥∥∥
p

≤ Kp ·
∥∥∥
∑

n

|X(n)|
∥∥∥
∗

Z−p
, p > 0;

and
∥∥∥
(∑

n

(∫
X(n) dZ

)2)1/2∥∥∥
[α]

≤ K0 ·
∥∥∥
∑

n

|X(n)|
∥∥∥
∗

Z−[ακ0]
, p = 0.

The constants Kp, κ0 are the Khintchine constants of theorem A.8.26.

Exercise 3.1.8 The ‖ ‖∗
Z−p

for 0 < p < 1, and the ‖ ‖∗
Z−[α]

for 0 < α , too, have

the properties listed in theorem 3.1.6, except countable subadditivity.

3.2 The Integration Theory of a Mean

Any functional dd ee∗ satisfying (i)–(vi) of theorem 3.1.6 is called a mean
on E . This notion is so useful that a little repetition is justified:

Definition 3.2.1 Let E be an algebra and vector lattice closed under chopping
of bounded functions, all defined on some set B . A mean on E is a positive

R-valued functional dd ee∗ that is defined on all numerical functions on B

and has the following properties:

(i) It is solid: |F | ≤ |G| implies ddF ee∗ ≤ ddGee∗ .
(ii) It is continuous along increasing sequences

(
X(n)

)
of E+ :

⌈⌈
sup
n
X(n)

⌉⌉∗
= sup

n

⌈⌈
X(n)

⌉⌉∗
.

(iii) It is countably subadditive: for any sequence
(
F (n)

)
of positive func-

tions on B
⌈⌈ ∞∑

n=1

F (n)
⌉⌉∗

≤
∞∑

n=1

⌈⌈
F (n)

⌉⌉∗
. (CSA)

(iv) The functions of E are finite for the mean: for every X ∈ E

lim
r→0

ddrX ee∗ = 0 .
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(v) For any sequence
(
X(n)

)
of positive functions in E

(
lim
r→0

⌈⌈
r ·
∞∑

n=1

X(n)
⌉⌉∗

= 0

)
implies

(⌈⌈
X(n)

⌉⌉∗
−−−→n→∞ 0

)
. (M)

Let V be a topological vector space with a gauge dd eeV defining its topology,

and let I : E → V be a linear map. The mean dd ee∗ is said to majorize I
if ddI(X)eeV ≤ ddX ee∗ for all X ∈ E . dd ee∗ is said to control I if there is

a constant C <∞ such that for all X ∈ E

ddI(X)eeV ≤ C · ddX ee∗ . (3.2.1)

The crossbars on top of the symbol dd ee∗ are a reminder that the mean is sub-
additive but possibly not homogeneous. The Daniell mean was constructed

so as to majorize the elementary stochastic integral.
This and the following two sections will use only the fact that the elemen-

tary integrands E form an algebra and vector lattice closed under chopping,
of bounded functions, and that dd ee∗ is a mean on E . The nature of the

underlying set B in particular is immaterial, and so is the way in which

the mean was constructed. In order to emphasize this point we shall de-
velop in the next few sections the integration theory of a general mean dd ee∗ .
Later on we shall meet means other than Daniell’s mean dd ee∗

Z−p , so that we
may then use the results established here for them as well. In fact, Daniell’s

mean is unsuitable as a controlling device for Picard’s scheme, which so far
was the motivation for all of our proceedings. Other “pathwise” means con-

trolling the elementary integral have to be found (see definition (4.2.9) and
exercise 4.5.18).

Exercise 3.2.2 A mean is automatically continuous along increasing sequences
(H(n)) of E↑

+ : ll
sup
n
H(n)

mm∗
= sup

n

ll
H(n)

mm∗
. (↑)

(Every mean that we shall encounter in this book, including Daniell’s, is actually
continuous along arbitrary increasing sequences. That is to say, (↑) holds for any
increasing sequence of positive numerical functions. See proposition 3.6.5.)

Negligible Functions and Sets

In this subsection only the solidity and countable subadditivity of the mean

dd ee∗ are exploited.

Definition 3.2.3 A numerical function F on the base space (a process) is

called
⌈⌈ ⌉⌉∗

-negligible or negligible for short if ddF ee∗ = 0 . A subset of the
base space is negligible if its indicator function is negligible. 1

1 In accordance with convention A.1.5 on page 364 we write variously A or 1A for the
indicator function of A; the

˚̊ ˇ̌∗
-size of the set A,

˚̊
1A

ˇ̌∗
, is mostly written

˚̊
A

ˇ̌∗
when

A is a subset of the ambient space.
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A property of the points of the underlying set is said to hold almost
everywhere, or a.e. for short, if the set of points where it fails to hold

is negligible.

If we want to stress the point that these definitions refer to dd ee∗ , we

shall talk about dd ee∗-negligible processes and
⌈⌈ ⌉⌉∗

-a.e. convergence, etc.
If we want to stress the point that these definitions refer in particular to

Daniell’s mean dd ee∗
Z−p , we shall talk about dd ee∗

Z−p-negligible processes and

dd ee∗
Z−p-a.e. convergence, or also about Z−p-negligible processes, Z−p-a.e.

convergence, etc.

These notions behave as one expects from ordinary integration:

Proposition 3.2.4 (i) The union of countably many negligible sets is negligible.
Any subset of a negligible set is negligible.

(ii) A process F is negligible if and only if it vanishes almost everywhere,
that is to say, if and only if the set [F 6= 0] is negligible.

(iii) If the real-valued functions F and F ′ agree almost everywhere, then
they have the same mean.

Proof. For ease of reading we use the same symbol for a set and its indicator

function. For instance, A1 ∪ A2 = A1 ∨ A2 in the sense that the indicator
function on the left1 is the pointwise maximum of the two indicator functions

on the right.

(i) If Nn, n = 1, . . . , are negligible sets, then due to inequality (CSA) 1

ddN1 ∪N2 ∪ . . .ee∗ =
⌈⌈ ∞∨

n=1

Nn

⌉⌉∗

≤
⌈⌈∑∞

n=1Nn
⌉⌉∗ ≤∑∞n=1ddNnee

∗
= 0 ,

due to the countable subadditivity of dd ee∗ .
(ii) Obviously1 [F 6= 0] ≤∑∞n=1 |F | . Thus if ddF ee∗ = 0, then

dd [F 6= 0] ee∗ ≤∑∞n=1ddF ee∗ = 0.

Conversely, |F | ≤∑∞n=1[F 6= 0], so that dd [F 6= 0] ee∗ = 0 implies

ddF ee∗ ≤∑∞n=1dd [F 6= 0] ee∗ = 0.

(iii) Since by the previous argument ddF · [F 6= F ′]ee∗ ≤ dd∞ · [F 6= F ′]ee∗ = 0,

ddF ee∗ ≤
⌈⌈
F · [F = F ′]

⌉⌉∗
+
⌈⌈
F · [F 6= F ′]

⌉⌉∗
=
⌈⌈
F · [F = F ′]

⌉⌉∗

=
⌈⌈
F ′ · [F = F ′]

⌉⌉∗ ≤
⌈⌈
F ′
⌉⌉∗

and vice versa.

Exercise 3.2.5 The filtration being regular, an evanescent process is Z−p-negligible.
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Processes Finite for the Mean and Defined Almost Everywhere

Definition 3.2.6 A process F is finite for the mean dd ee∗ provided

ddr · F ee∗ −−→r→0 0 .

The collection of processes finite for the mean dd ee∗ is denoted by F[dd ee∗] ,
or simply by F if there is no need to specify the mean.

If dd ee∗ is the Daniell mean dd ee∗
Z−p for some p > 0, then F is finite for the

mean if and only if simply ddF ee∗ <∞ . If p = 0 and dd ee∗ = dd ee∗
Z−0 , though,

then ddF ee∗ ≤ 1 for all F , and the somewhat clumsy looking condition
ddrF ee∗ −−→r→0 0 properly expresses finiteness (see exercise A.8.18).

Proposition 3.2.7 A process F finite for the mean dd ee∗ is finite dd ee∗-a.e.

Proof. 1 [|F | = ∞] ≤ |F |/n for all n ∈ N , and the solidity gives

⌈⌈ [
|F | = ∞

] ⌉⌉∗ ≤ ddF/nee∗ ∀ n ∈ N.

Let n→ ∞ and conclude that dd
[
|F | = ∞

]
ee∗ = 0.

The only processes of interest are, of course, those finite for the mean. We

should like to argue that the sum of any two of them has finite mean again,

in view of the subadditivity of dd ee∗ . A technical difficulty appears: even
if F and G have finite mean, there may be points $ in the base space where

F ($) = +∞ and G($) = −∞ or vice versa; then F ($) + G($) is not
defined. The solution to this tiny quandary is to notice that such ambiguities

may happen at most in a negligible set of $′s . We simply extend dd ee∗ to
processes that are defined merely dd ee∗-almost everywhere:

Definition 3.2.8 (Extending the Mean) Let F be a process defined almost
everywhere, i.e., such that the complement of dom(F ) is dd ee∗-negligible.

We set ddF ee∗ def= ddF ′ ee∗ , where F ′ is any process defined everywhere and
coinciding with F almost everywhere in the points where F is defined.

Part (iii) of proposition 3.2.4 shows that this definition is good: it does not
matter which process F ′ we choose to agree dd ee∗-a.e. with F ; any two will

differ negligibly and thus have the same mean. Given two processes F and G
finite for the mean that are merely almost everywhere defined, we define their

sum F + G to equal F ($) + G($) where both F ($) and G($) are finite.
This process is almost everywhere defined, as the set of points where F or G

are infinite or not defined is negligible. It is clear how to define the scalar

multiple r·F of a process F that is a.e. defined.

From now on, “process” will stand for “almost everywhere defined pro-
cess” if the context permits it. It is nearly obvious that propositions 3.2.4

and 3.2.7 stay. We leave this to the reader.
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Exercise 3.2.9 | ddF ee∗ − ddGee∗ | ≤ ddF −Gee∗ for any two F,G ∈ F[dd ee∗] .

Theorem 3.2.10 A process finite for the mean is finite almost everywhere.
The collection F[dd ee∗] of processes finite for dd ee∗ is closed under taking

finite linear combinations, finite maxima and minima, and under chopping,
and dd ee∗ is a solid and countably subadditive functional on F[dd ee∗] . The

space F[dd ee∗] is complete under the translation-invariant pseudometric

dist(F, F ′) def=
⌈⌈
F − F ′

⌉⌉∗
.

Moreover, any mean-Cauchy sequence in F[dd ee∗] has a subsequence that

converges dd ee∗-almost everywhere to a dd ee∗-mean limit.

Proof. The first two statements are left as exercise 3.2.11. For the last two
let
(
Fn
)

be a mean-Cauchy sequence in F[dd ee∗] ; that is to say

sup
m,n≥N

ddFm − Fn ee∗ −−−−→N→∞ 0 .

For n = 1, 2, . . . let F ′n be a process that is everywhere defined and finite and

agrees with Fn a.e. Let Nn denote the negligible set of points where Fn is
not defined or does not agree with F ′n . There is an increasing sequence (nk)

of indices such that ddF ′n − F ′nk
ee∗ ≤ 2−k for n ≥ nk . Using them set

G def=

∞∑

k=1

∣∣F ′nk+1
− F ′nk

∣∣ .

G is finite for the mean. Indeed, for |r| ≤ 1,

ddrGee∗ ≤
K∑

k=1

⌈⌈
r ·
(
F ′nk+1

− F ′nk

)⌉⌉∗
+

∞∑

k=K+1

⌈⌈
F ′nk+1

− F ′nk

⌉⌉∗
.

Given ε > 0 we first choose K so large that the second summand is less than

ε/2 and then r so small that the first summand is also less than ε/2. This
shows that limr→0 ddrGee∗ = 0.

N def=

∞⋃

n=1

Nn ∪ [G = ∞]

is therefore a negligible set. If $ /∈ N , then

F ($) = F ′n1
($) +

∞∑

k=1

(
F ′nk+1

($) − F ′nk
($)

)
= lim
k→∞

F ′nk
($)

exists, since the infinite sum converges absolutely. Also, 1

ddF − FnK
ee∗ =

⌈⌈
F − F ′nK

⌉⌉∗

≤
⌈⌈
N ·(F − F ′nK

)
⌉⌉∗

+
⌈⌈
N c·(F − F ′nK

)
⌉⌉∗

≤
⌈⌈ ∞∑

k=K+1

|F ′nk+1
− F ′nk

|
⌉⌉∗

≤ 2−K −−−→K→∞ 0 .
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Thus
(
F ′nk

)∞
k=1

converges to F not only pointwise but also in mean. Given
ε > 0, let K be so large that both

ddFm − Fnee∗ < ε/2 for m,n ≥ nK

ddF − Fnk
ee∗ =

⌈⌈
F − F ′nk

⌉⌉∗
< ε/2 for k ≥ K .and

For any n ≥ N def= nK

ddF − Fn ee∗ < ddF − FnK
ee∗ + ddFnK

− Fn ee∗ < ε ,

showing that the original sequence
(
Fn
)

converges to F in mean. Its subse-

quence
(
Fnk

)
clearly converges dd ee∗-almost everywhere to F .

Henceforth we shall not be so excruciatingly punctilious. If we have to

perform algebraic or limit arguments on a sequence of processes that are
defined merely almost everywhere, we shall without mention replace every

one of them with a process that is defined and finite everywhere, and perform
the arguments on the resulting sequence; this affects neither the means of the

processes nor their convergence in mean or almost everywhere.

Exercise 3.2.11 Define the linear combination, minimum, maximum, and product
of two processes defined a.e., and prove the first two statements of theorem 3.2.10.
Show that F[dd ee∗] is not in general an algebra.

Exercise 3.2.12 (i) Let (Fn) be a mean-convergent sequence with limit F . Any
process differing negligibly from F is also a mean limit of (Fn). Any two mean
limits of (Fn) differ negligibly. (ii) Suppose that the processes Fn are finite for the
mean dd ee∗ and

P
n ddFn ee

∗
is finite. Then

P
n |Fn| is finite for the mean dd ee∗ .

Integrable Processes and the Stochastic Integral

Definition 3.2.13 An dd ee∗-almost everywhere defined process F is
⌈⌈ ⌉⌉∗

-in-

tegrable if there exists a sequence
(
Xn

)
of elementary integrands converging

in dd ee∗-mean to F : ddF −Xn ee∗ −−−→n→∞ 0 .
The collection of dd ee∗-integrable processes is denoted by L1[dd ee∗] or

simply by L1 . In other words, L1 is the dd ee∗-closure of E in F (see ex-
ercise 3.2.15). If the mean is Daniell’s mean dd ee∗

Z−p and we want to stress

this point, then we shall also talk about Z−p-integrable processes and write
L1[dd ee∗

Z−p] or L1[Z−p] . If the probability also must be exhibited, we write

L1[Z−p; P] or L1[dd ee∗
Z−p;P] .

Definition 3.2.14 Suppose that the mean dd ee∗ is Daniell’s mean dd ee∗
Z−p or at

least controls the elementary integral (definition 3.2.1), and suppose that F is

an dd ee∗-integrable process. Let
(
Xn

)
be a sequence of elementary integrands

converging in dd ee∗-mean to F ; the integral
∫
F dZ is defined as the limit

in p-mean of the sequence
( ∫

Xn dZ
)

in Lp . In other words, the extended
integral is the extension by dd ee∗-continuity of the elementary integral. It is

also called the Itô stochastic integral.
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This is unequivocal except perhaps for the definition of the integral. How do
we know that the sequence

( ∫
Xn dZ

)
has a limit? Since dd ee∗ controls the

elementary integral, we have

⌈⌈∫
Xn dZ −

∫
Xm dZ

⌉⌉
p

by equation (3.2.1): ≤ C·ddXn −Xmee∗

≤ C·ddF −Xnee∗ + C·ddF −Xmee∗−−−−−→n,m→∞ 0 .

The sequence
( ∫

Xn dZ
)

is therefore Cauchy in Lp and has a limit
in p-mean (exercise A.8.1). How do we know that this limit does not

depend on the particular sequence
(
Xn

)
of elementary integrands cho-

sen to approximate F in dd ee∗-mean? If
(
X ′n
)

is a second such se-

quence, then clearly ddXn −X ′n ee
∗ → 0, and since the mean controls

the elementary integral, dd
∫
Xn dZ −

∫
X ′n dZeep → 0: the limits are the

same.
Let us be punctilious about this. The integrals

∫
Xn dZ are by definition

random variables. They form a Cauchy sequence in p-mean. There is not
only one p-mean limit but many, all differing negligibly. The integral

∫
F dZ

above is by nature a class in Lp(P)! We won’t be overly religious about this
point; for instance, we won’t hesitate to multiply a random variable f with

the class
∫
X dZ and understand f ·

∫
X dZ to be the class ḟ ·

∫
X dZ .

Yet there are some occasions where the distinction is important (see defini-

tion 3.7.6). Later on we shall pick from the class
∫
F dZ a random variable

in a nearly unique manner (see page 134).

Exercise 3.2.15 (i) A process F is dd ee∗-integrable if and only if there exist
integrable processes Fn with F =

P
n Fn and

P
n ddFn ee

∗
<∞ . (ii) An integrable

process F is finite for the mean. (iii) The mean satisfies the all-important property
(M) of definition 3.2.1 on sequences (Xn) of positive integrable processes.

Exercise 3.2.16 (i) Assume that the mean controls the elementary integralR
. dZ : E → Lp (see definition 3.2.1 on page 94). Then the extended integral is a

linear map
R

. dZ : L1[dd ee∗] → Lp again controlled by the mean:

llZ
F dZ

mm
p
≤ C(3.2.1) · ddF ee∗ , F ∈ L1[dd ee∗] .

(ii) Let dd ee∗ ≤ dd ee′∗ be two means on E . Then a dd ee′∗-integrable process is
dd ee∗-integrable. If both means control the elementary stochastic integral, then their

integral extensions coincide on L1[dd ee′∗] ⊂ L1[dd ee∗] .
(iii) If Z is an Lq-integrator and 0 ≤ p < q < ∞ , then Z is an Lp-integrator;

a Z−q-integrable process X is Z−p-integrable, and the integrals in either sense
coincide.

Exercise 3.2.17 If the martingale M is an L1-integrator, then E[
R
X dM ]= 0 for

any M−1-integrable process X with X0 = 0.

Exercise 3.2.18 If F∞ is countably generated, then the pseudometric space
L1[dd ee∗] is separable.
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Exercise 3.2.19 Suppose that we start with a measured filtration (F.,P) and
an Lp-integrator Z in the sense of the original definition 2.1.7 on page 49. To
obtain path regularity and simple truths like exercise 3.2.5, we replace F. by its
natural enlargement FP

.+ and Z by a nice modification. L1 is then the closure of
EP = E[FP

.+] under dd ee∗
Z−p

. Show that the original set E of elementary integrands

is dense in L1 .

Permanence Properties of Integrable Functions

From now on we shall make use of all of the properties that make dd ee∗ a
mean. We continue to write simply “integrable” and “negligible” instead

of the more precise “dd ee∗-integrable” and “dd ee∗-negligible,” etc. The next

result is obvious:

Proposition 3.2.20 Let
(
Fn
)

be a sequence of integrable processes converging
in dd ee∗-mean to F . Then F is integrable. If dd ee∗ controls the elementary

integral in dd ee
p
-mean, i.e., as a linear map to Lp , then

∫
F dZ = lim

n→∞

∫
Fn dZ in dd ee

p
-mean.

Permanence Under Algebraic and Order Operations

Theorem 3.2.21 Let 0 ≤ p < ∞ and Z an Lp-integrator. Let F and F ′ be

dd ee∗-integrable processes and r ∈ R . Then the combinations F + F ′ , rF ,
F ∨ F ′ , F ∧ F ′ , and F ∧ 1 are dd ee∗-integrable. So is the product F ·F ′ ,
provided that at least one of F, F ′ is bounded.

Proof. We start with the sum. For any two elementary integrands X,X ′

we have |(F + F ′) − (X +X ′)| ≤ |F −X| + |F ′ −X ′| ,

and so
⌈⌈
(F + F ′) − (X +X ′)

⌉⌉∗ ≤ ddF −Xee∗ +
⌈⌈
F ′ −X ′

⌉⌉∗
.

Since the right-hand side can be made as small as one pleases by the choice
of X,X ′ , so can the left-hand side. This says that F + F ′ is integrable,

inasmuch as X+X ′ is an elementary integrand. The same argument applies
to the other combinations:

|(rF ) − (rX)| ≤ ([brc + 1) · |F −X| ;

|(F ∨ F ′) − (X ∨X ′)| ≤ |F −X| + |F ′ −X ′| ;

|(F ∧ F ′) − (X ∧X ′)| ≤ |F −X| + |F ′ −X ′| ;

||F | − |X|| ≤ |F −X| ; |F ∧ 1 −X ∧ 1| ≤ |F −X| ;

|(F · F ′) − (X ·X ′)| ≤ |F | · |F ′ −X ′| + |X ′| · |F −X|
≤ ‖F‖∞ · |F ′ −X ′| + ‖X ′‖∞ · |F −X| .

We apply dd ee∗ to these inequalities and obtain
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dd(rF ) − (rX)ee∗ ≤ ([|r|] + 1)ddF −Xee∗ ;
⌈⌈
(F ∨ F ′) − (X ∨X ′)

⌉⌉∗ ≤ ddF −Xee∗ +
⌈⌈
F ′ −X ′

⌉⌉∗
;

⌈⌈
(F ∧ F ′) − (X ∧X ′)

⌉⌉∗ ≤ ddF −Xee∗ +
⌈⌈
F ′ −X ′

⌉⌉∗
;

dd|F | − |X|ee∗ ≤ ddF −Xee∗ ; ddF ∧ 1 −X ∧ 1ee∗ ≤ ddF −Xee∗ ;
⌈⌈
(F · F ′) − (X ·X ′)

⌉⌉∗ ≤ ‖F‖∞ ·
⌈⌈
F ′ −X ′

⌉⌉∗
+ ‖X ′‖∞ · ddF −Xee∗ .

Given an ε > 0, we may choose elementary integrands X,X ′ so that the

right-hand sides are less than ε . This is possible because the processes F, F ′

are integrable and shows that the processes rF, F ∨ F ′ . . . are integrable as

well, inasmuch as the processes rX,X ∨ X ′ . . . appearing on the left are
elementary.

The last case, that of the product, is marginally more complicated than
the others. Given ε > 0, we first choose X ′ elementary so that

⌈⌈
F ′ −X ′

⌉⌉∗ ≤ ε

2(1 + ‖F‖∞)
,

using the fact that the process F is bounded. Then we choose X elementary so that

ddF −Xee∗ ≤ ε

2(1 + ‖X ′‖∞)
.

Then again ddF · F ′ −X ·X ′ ee∗ ≤ ε , showing that F · F ′ is integrable,
inasmuch as the product X ·X ′ is an elementary integrand.

Permanence Under Pointwise Limits of Sequences

The algebraic and order permanence properties of L1[dd ee∗] are thus as good
as one might hope for, to wit as good as in the case of the Lebesgue integral.

Let us now turn to the permanence properties concerning limits. The first

result is plain from theorem 3.2.10.

Theorem 3.2.22 L1[dd ee∗] is complete in dd ee∗-mean. Every mean Cauchy

sequence
(
Fn
)

has a subsequence that converges pointwise dd ee∗-a.e. to a mean
limit of

(
Fn
)
.

The existence of an a.e. convergent subsequence of a mean-convergent se-

quence
(
Fn
)

is frequently very helpful in identifying the limit, as we shall
presently see. We know from ordinary integration theory that there is, in

general, no hope that the sequence
(
Fn
)

itself converges almost everywhere.

Theorem 3.2.23 (The Monotone Convergence Theorem) Let
(
Fn
)

be a mo-
notone sequence of integrable processes with limr→0 supn ddrFn ee

∗
= 0 .

(For p > 0 and dd ee∗ = dd ee∗
Z−p this reads simply supn ddFn ee

∗
Z−p < ∞ .)

Then
(
Fn
)

converges to its pointwise limit in mean.
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Proof. As
(
Fn($)

)
is monotone it has a limit F ($) at all points $ of the

base space, possibly ±∞ . Let us assume first that the sequence
(
Fn
)

is

increasing. We start by showing that
(
Fn
)

is mean-Cauchy. Indeed, assume
it were not. There would then exist an ε > 0 and a subsequence

(
Fnk

)

with ddFnk+1
−Fnk

ee∗ > ε . There would further exist positive elementary
integrands Xn with

⌈⌈
(Fnk+1

−Fnk
) −Xk

⌉⌉∗
< 2−k. (∗)

Let |r| ≤ 1 and K < L ∈ N . Then

⌈⌈
r

L∑

k=1

Xk

⌉⌉∗
≤
⌈⌈
r

L∑

k=1

(
(Fnk+1

−Fnk
) −Xk

)⌉⌉∗
+
⌈⌈
r

L∑

k=1

(Fnk+1
−Fnk

)
⌉⌉∗

≤
⌈⌈
r

K∑

k=1

(
(Fnk+1

−Fnk
) −Xk

)⌉⌉∗
+ 2−K+

⌈⌈
rFn

L+1

⌉⌉∗
+ ddrFn1

ee∗.

Given ε > 0 we first fix K ∈ N so large that 2−K < ε/4. Then we find rε
so that the other three terms are smaller than ε/4 each, for |r| ≤ rε . By

assumption, rε can be so chosen independently of L . That is to say,

sup
L

⌈⌈
r
∑L
k=1Xk

⌉⌉∗
−−→r→0 0 .

Property (M) of the mean (see page 91) now implies that ddXk ee∗ → 0.
Thanks to (∗), ddFnk+1

−Fnk
ee∗ −−−→k→∞ 0, which is the desired contradiction.

Now that we know that
(
Fn
)

is Cauchy we employ theorem 3.2.10: there

is a mean-limit F ′ and a subsequence2 (Fnk
) so that Fnk

($) converges to
F ′($) as k → ∞ , for all $ outside some negligible set N . For all $ , though,

Fn($) −−−→n→∞ F ($). Thus

F ($) = lim
n→∞

Fn($) = lim
k→∞

Fnk
($) = F ′($) for $ /∈ N :

F is equal almost surely to the mean-limit F ′ and thus is a mean-limit itself.
If
(
Fn
)

is decreasing rather than increasing,
(
− Fn

)
increases pointwise –

and by the above in mean – to −F : again Fn → F in mean.

Theorem 3.2.24 (The Dominated Convergence Theorem or DCT) Let
(
Fn
)

be a sequence of integrable processes. Assume both
(i)
(
Fn
)

converges pointwise dd ee∗-almost everywhere to a process F ; and

(ii) there exists a process G ∈ F[dd ee∗] with |Fn| ≤ G for all indices n ∈ N .

Then
(
Fn
)

converges to F in dd ee∗-mean, and consequently F is integrable.

The Dominated Convergence Theorem is central. Most other results in inte-
gration theory follow from it. It is false without some domination condition

like (ii), as is well known from ordinary integration theory.

2 Not the same as in the previous argument, which was, after all, shown not to exist.
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Proof. As in the proof of the Monotone Convergence Theorem we begin by
showing that the sequence

(
Fn
)

is Cauchy. To this end consider the positive

process

GN = sup{|Fn − Fm| : m,n ≥ N} = lim
K→∞

K∨

m,n=N

|Fn − Fm| ≤ 2G .

Thanks to theorem 3.2.21 and the MCT, GN is integrable. Moreover,(
GN ($)

)
converges decreasingly to zero at all points $ at which

(
Fn($)

)

converges, that is to say, almost everywhere. Hence ddGN ee∗ → 0. Now

ddFn − Fm ee∗ ≤ ddGN ee∗ for m,n ≥ N , so
(
Fn
)

is Cauchy in mean. Due to
theorem 3.2.22 the sequence has a mean limit F ′ and a subsequence

(
Fnk

)

that converges pointwise a.e. to F ′ . Since
(
Fnk

)
also converges to F a.e.,

we have F = F ′ a.e. Thus ddFn − F ee∗ = ddFn − F ′ ee∗ −−−→n→∞ 0. Now apply

proposition 3.2.20.

Integrable Sets

Definition 3.2.25 A set is integrable if its indicator function is integrable. 1

Proposition 3.2.26 The union and relative complement of two integrable sets
are integrable. The intersection of a countable family of integrable sets is

integrable. The union of a countable family of integrable sets is integrable
provided that it is contained in an integrable set C .

Proof. For ease of reading we use the same symbol for a set and its indicator

function.1 For instance, A1 ∪ A2 = A1 ∨ A2 in the sense that the indicator

function on the left is the pointwise maximum of the two indicator functions
on the right.

Let A1, A2, . . . be a countable family of integrable sets. Then

A1 ∪A2 = A1 ∨A2 ,

A1\A2 = A1 − (A1 ∧A2) ,

∞⋂

n=1

An =
∞∧

n=1

An = lim
N→∞

N∧

n=1

An ,

and

∞⋃

n=1

An = C −
∞∧

n=1

(C − An) ,

in the sense that the set on the left has the indicator function on the right,
which is integrable by theorem 3.2.24.

A collection of subsets of a set that is closed under taking finite unions, relative
differences, and countable intersections is called a δ-ring. Proposition 3.2.26

can thus be read as saying that the integrable sets form a δ-ring.
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Proposition 3.2.27 Let F be an integrable process. (i) The sets [F > r] ,
[F ≥ r] , [F < −r] , and [F ≤ −r] are integrable, whenever r ∈ R is strictly

positive. (ii) F is the limit a.e. and in mean of a sequence (Fn) of integrable
step processes with |Fn| ≤ |F | .
Proof. For the first claim, note that the set 1

[F > 1] = lim
n→∞

1 ∧
(
n(F − F ∧ 1)

)

is integrable. Namely, the processes Fn = 1 ∧
(
n(F − F ∧ 1)

)
are integrable

and are dominated by |F | ; by the Dominated Convergence Theorem, their
limit is integrable. This limit is 0 at any point $ of the base space where

F ($) ≤ 1 and 1 at any point $ where F ($) > 1; in other words, it is the
(indicator function of the) set [F > 1], which is therefore integrable. Note

that here we use for the first (and only) time the fact that E is closed under
chopping. The set [F > r] equals [F/r > 1] and is therefore integrable as

well. Next, [F ≥ r] =
⋂
n>1/r[F > r − 1/n] , [F < −r] = [−F > r] , and

[F ≤ −r] = [−F ≥ r] .
For the next claim, let Fn be the step process over integrable sets 1

Fn =

22n∑

k=1

k2−n ·
[
k2−n < F ≤ (k + 1)2−n

]

+
22n∑

k=1

−k2−n ·
[
−k2−n > F ≥ −(k + 1)2−n

]
.

By (i), the sets
[
k2−n < F ≤ (k + 1)2−n

]
=
[
k2−n < F

]
\
[
(k + 1)2−n < F

]

are integrable if k 6= 0. Thus Fn , being a linear combination of integrable

processes, is integrable. Now
(
Fn
)

converges pointwise to F and is domi-

nated by |F | , and the claim follows.

Notation 3.2.28 The integral of an integrable set A is written
∫
A dZ

or
∫
A
dZ . Let F ∈ L1[Z−p] . With an integrable set A being a bounded

(idempotent) process, the product A · F = 1A·F is integrable; its integral is
variously written ∫

A

F dZ or

∫
A · F dZ .

Exercise 3.2.29 Let (Fn) be a sequence of bounded integrable processes, all
vanishing off the same integrable set A and converging uniformly to F . Then F is
integrable.

Exercise 3.2.30 In the stochastic case there exists a countable collection of
dd ee∗-integrable sets that covers the whole space, for example, {[[0, k]] : k ∈ N} .
We say that the mean is σ-finite. In consequence, any collection M of mutually
disjoint non-negligible dd ee∗-integrable sets is at most countable.
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3.3 Countable Additivity in p-Mean

The development so far rested on the assumption (IC-p) on page 89 that our

Lp-integrator be continuous in Lp-mean along increasing sequences of E ,
or σ-additive in p-mean. This assumption is, on the face of it, rather

stronger than mere right-continuity in probability, and was needed to establish
properties (iv) and (v) of Daniell’s mean in theorem 3.1.6 on page 90. We

show in this section that continuity in Lp-mean along increasing sequences

is actually equivalent with right-continuity in probability, in the presence of
the boundedness condition (B-p). First the case p = 0:

Lemma 3.3.1 An L0-integrator is σ-additive in probability.

Proof. It is to be shown that for any decreasing sequence
(
X(k)

)∞
k=1

of

elementary integrands with pointwise infimum zero, limk

∫
X(k) dZ = 0 in

probability, under the assumptions (B-0) that Z is a bounded linear map from
E to L0 and (RC-0) that it is right-continuous in measure (exercise 3.1.5).

As so often before, the argument is very nearly the same as in standard
integration theory. Let us fix representations 1, 3

X(k)
s (ω) = f

(k)
0 (ω) · [0, 0]s +

N(k)∑

n=1

f (k)
n (ω) ·

(
t(k)n , t

(k)
n+1

]
s

as in equation (2.1.1) on page 46. Clearly
∫
f

(k)
0 · [[0]] dZ = f

(k)
0 · Z0 −−−→

k→∞ 0 :

we may as well assume that f
(k)
0 = 0. Scaling reduces the situation to the

case that
∣∣X(k)

∣∣ ≤ 1 for all k ∈ N . It eases the argument further to assume

that the partitions {t(k)1 , . . . , t
(k)
N(k)} become finer as k increases.

Let then ε > 0 be given. Let U be an instant past which the X (k) all
vanish. The continuity condition (B-0) provides a δ > 0 such that 1

ddδ · [[0, U ]]eeZ−0 < ε/3 . (∗)

Next let us define instants u
(k)
n < v

(k)
n as follows: for k = 1 we set u

(1)
n = t

(1)
n

and choose v
(1)
n ∈ (t

(1)
n , t

(1)
n+1) so that

ddZu − Zt ee0 < 3−1−n−1ε for u(1)
n ≤ t < u ≤ v(1)

n ; 1 ≤ n ≤ N(1) .

The right-continuity of Z makes this possible. The intervals [u
(1)
n , v

(1)
n ] are

clearly mutually disjoint. We continue by induction. Suppose that u
(j)
n

and v
(j)
n have been found for 1 ≤ j < k and 1 ≤ n ≤ N(j), and let t

(k)
n be one

3 [0, 0]s is the indicator function of {0} evaluated at s, etc.
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of the partition points for X(k) . If t
(k)
n lies in one of the intervals previously

constructed or is a left endpoint of one of them, say t
(k)
n ∈ [u

(j)
m , v

(j)
m ), then

we set u
(k)
n = u

(j)
m and v

(k)
n = v

(j)
m ; in the opposite case we set u

(k)
n = t

(k)
n

and choose v
(k)
n ∈ (t

(k)
n , t

(k)
n+1) so that

ddZu − Zt ee0 < 3−k−n−1ε for u(k)
n ≤ t < u ≤ v(k)

n ; 1 ≤ n ≤ N(k) .

The right-continuity in probability of Z makes this possible. This being done

we set

N̊ (k) def=

N(k)⋃

n=1

(u(k)
n , v(k)

n ) ⊂ N (k) def=

N(k)⋃

n=1

(u(k)
n , v(k)

n ] k = 1, 2, . . . .

Both N̊ (k) and N (k) are finite unions of mutually disjoint intervals and
increase with k . Furthermore

N(k)∑

n=1

⌈⌈
Z
v
′(k)
n

− Z
u
′(k)
n

⌉⌉
0
< ε/3 , for any u(k)

n ≤ u′(k)n ≤ v′(k)n ≤ v(k)
n . (∗∗)

We shall estimate separately the integrals of the elementary integrands in the
sum

X(k) = X(k) ·
(
N (k) × Ω) + X(k) ·

(
1 −

(
N (k) × Ω

))
.

∫
X(k) ·N (k) dZ =

N(k)∑

n=1

f (k)
n ·

∫ N(k)⋃

m=1

((t(k)n , t
(k)
n+1]] ∩ ((u(k)

m , v(k)
m ]] dZ

=

N(k)∑

n=1

f (k)
n ·

∫
((t(k)n ∨ u(k)

n , t
(k)
n+1 ∧ v(k)

n ]] dZ

=

N(k)∑

n=1

f (k)
n ·

(
Z
t
(k)
n+1
∧v(k)

n
− Z

t
(k)
n ∨u(k)

n

)
.

Since
∣∣f (k)
n

∣∣ ≤ 1, inequality (∗∗) yields

⌈⌈∫
X(k) ·N (k) dZ

⌉⌉
0
≤ ε/3 . (∗∗∗)

Let us next estimate the remaining summand X ′(k) = X(k) ·
(
(1−N (k))×Ω

)
.

We start on this by estimating the process

X(k) ·
(
(1 − N̊ (k)) × Ω

)
,

which evidently majorizes X ′(k) . Since every partition point of X(k) lies
either inside one of the intervals (u

(k)
n , v

(k)
n ) that make up N (k) or is a left

endpoint of one of them, the paths of X(k) ·
(
(1 − N̊ (k)) × Ω

)
are upper
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semicontinuous (see page 376). That is to say, for every ω ∈ Ω and α > 0,
the set

Cα(ω) =
{
s ∈ R+ : X(k)

s (ω) ·
(
1 − N̊ (k)

)
≥ α

}

is a finite union of closed intervals and is thus compact. These sets shrink

as k increases and have void intersection. For every ω ∈ Ω there is therefore

an index K(ω) such that Cα(ω) = ∅ for all k ≥ K(ω). We conclude that
the maximal function

(
X ′(k)

)?
U

= sup
0≤s≤U

X ′(k)s ≤ sup
0≤s≤U

X(k) ·
(
(1 − N̊ (k)) × Ω

)

decreases pointwise to zero, a fortiori in measure. Let then K be so large
that for k ≥ K the set

B def=
[(
X ′(k)

)?
U
> δ
]

has P[B] < ε/3 .

The dZ-integrals of X ′(k) and X ′(k)∧δ agree pathwise outside B . Measured
with dd ee

0
they differ thus by at most ε/3. Since X ′(k) ∧ δ ≤ δ · [[0, U ]],

inequality (∗) yields

⌈⌈∫
X ′(k) ∧ δ dZ

⌉⌉
0
≤ ε/3 , and thus

⌈⌈∫
X ′(k) dZ

⌉⌉
0
≤ 2ε/3 , k ≥ K .

In view of (∗∗∗) we get dd
∫
X(k) dZ ee

0
≤ ε for k ≥ K .

Proposition 3.3.2 An Lp-integrator is σ-additive in p-mean, 0 ≤ p <∞ .

Proof. For p = 0 this was done in lemma 3.3.1 above, so we need to consider
only the case p > 0. Part (ii) of the Stone–Weierstraß theorem A.2.2 provides

a locally compact Hausdorff space B̂ and a map j : B → B̂ with dense image
such that every X ∈ E is of the form X̂◦j for some unique continuous function

X̂ on B̂ . X̂ is called the Gelfand transform of X . The map X 7→ X̂ is an
algebraic and order isomorphism of E onto an algebra and vector lattice Ê
closed under chopping of continuous bounded functions of compact support

on B̂ (X̂ has support in [̂X 6=0] ∈ Ê ). The Gelfand transform
∫̂

, defined by

∫̂
X̂ def=

∫
X dZ , X ∈ E .

is plainly a vector measure on Ê with values in Lp that satisfies (B-p). (IC-p)

is also satisfied, thanks to Dini’s theorem A.2.1. For if the sequence
(
X̂(n)

)

in Ê increases pointwise to the continuous (!) function X̂ ∈ Ê , then the

convergence is uniform and (B-p) implies that
∫̂
X̂(n) →

∫̂
X̂ in p-mean.

Daniell’s procedure of the preceding pages provides an integral extension of∫̂
for which the Dominated Convergence Theorem holds.
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Let us now consider an increasing sequence
(
X(n)

)
in E+ that increases

pointwise on B to X ∈ E . The extensions X̂(n) will increase on B̂ to some
function Ĥ . While Ĥ does not necessarily equal the extension X̂ (!), it is

clearly less than or equal to it. By the Dominated Convergence Theorem

for the integral extension of
∫̂

,
∫
X(n) dZ =

∫̂
X̂(n) converges in p-mean

to an element f of Lp . Now Z is certainly an L0-integrator and thus∫
X(n) dZ →

∫
X dZ in measure (lemma 3.3.1). Thus f =

∫
X dZ , and∫

X(n) dZ →
∫
X dZ in p-mean. This very argument is repeated in slightly

more generality in corollary A.2.7 on page 370.

Exercise 3.3.3 Assume that for every t ≥ 0, At is an algebra or vector lattice
closed under chopping of Ft-adapted bounded random variables that contains
the constants and generates Ft . Let E0 denote the collection of all elementary
integrands X that have Xt ∈ At for all t ≥ 0. Assume further that the right-
continuous adapted process Z satisfies

Zt
0

Ip
def= sup

n‚‚‚
Z
X dZ

‚‚‚
p

: X ∈ E0, |X| ≤ 1
o
<∞

for some p > 0 and all t ≥ 0. Then Z is an Lp-integrator, and Zt
0

Ip = Zt
Ip

for all t .

Exercise 3.3.4 Let 0 < p < ∞ . An L0-integrator Z is a local Lp-integrator iff
there are arbitrarily large stopping times T such that { R [[0, T ]] ·X dZ : |X| ≤ 1}
is bounded in Lp .

The Integration Theory of Vectors of Integrators

We have mentioned before that often whole vectors Z = (Z1, Z2, . . . , Zd)

of integrators drive a stochastic differential equation. It is time to consider
their integration theory. An obvious way is to regard every component Zη

as an Lp-integrator, to declare X = (X1, X2, . . . , Xd) Z-integrable if Xη is
Zη−p-integrable for every η ∈ {1, . . . , d} , and to define

∫
X dZ def=

∫
Xη dZ

η =
∑

1≤η≤d

∫
Xη dZ

η , (3.3.1)

simply extending the definition (2.2.2). Let us take another point of view,

one that leads to better constants in estimates and provides a guide to
the integration theory of random measures (section 3.10). Denote by H

the discrete space {1, . . . , d} and by B̌ the set H × B equipped with
its elementary integrands Ě def= C00(H) ⊗ E . Now read a d-tuple Z =

(Z1, Z2, . . . , Zd) of processes on B not as a vector-valued function on B

but rather as a scalar function (η,$) 7→ Zη($) on the d-fold product B̌ .

In this interpretation X 7→
∫

X dZ is a vector measure Ě → Lp(P), and the

extension theory of the previous sections applies. In particular, the Daniell
mean is defined as

ddF ee∗Z−p def= inf
H∈Ě↑,
H≥|F |

sup
X∈Ě,

|X|≤H

⌈⌈∫
X dZ

⌉⌉
p

(3.3.2)
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on functions F : B̌ → R . It is a fine exercise toward checking one’s
understanding of Daniell’s procedure to show that

∫
. dZ satisfies (IC-p),

that therefore ‖ ‖∗
Z−p is a mean satisfying

⌈⌈∫
X dZ

⌉⌉
p
≤ ‖X ‖∗Z−p , (3.3.3)

and that not only the integration theory developed so far but its continu-

ation in the subsequent sections applies mutatis perpauculis mutandis. In
particular, inequality (3.3.3) will imply that there is a unique extension

∫
. dZ : L1[dd ee∗Z−p] → Lp

satisfying the same inequality. That extension is actually given by equa-
tion (3.3.1). For more along these lines see section 3.10.

3.4 Measurability

Measurability describes the local structure of the integrable processes. Lusin

observed that Lebesgue integrable functions on the line are uniformly con-

tinuous on arbitrarily large sets. It is rather intuitive to use this behavior to
define measurability. It turns out to be efficient as well.

As before, dd ee∗ is an arbitrary mean on the algebra and vector lattice
closed under chopping E of bounded functions that live on the ambient set B .

In order to be able to speak about the uniform continuity of a function on a
set A ⊂ B , the ambient space B is equipped with the E-uniformity, the

smallest uniformity with respect to which the functions of E are all uniformly
continuous. The reader not yet conversant with uniformities may wish to read

page 373 up to lemma A.2.16 on page 375 and to note the following: to say
that a real-valued function on A ⊂ B is E-uniformly continuous is the same

as saying that it agrees with the restriction to A of a function in the uniform
closure of E ⊕ R or that it is, on A , the uniform limit of functions in E ⊕ R .

To say that a numerical function on A ⊂ B is E-uniformly continuous is the
same as saying that it is, on A , the uniform limit of functions in E ⊕R , with

respect to the arctan metric.
By way of motivation of definition 3.4.2 we make the following observation,

whose proof is left to the reader:

Observation 3.4.1 Let F : B → R be (E , dd ee∗)-integrable and ε > 0 . There

exists a set U ∈ E↑+ with ddU ee∗ ≤ ε on whose complement F is the uniform
limit of elementary integrands and thus is uniformly continuous.

Definition 3.4.2 Let A be a dd ee∗-integrable set. A process 4 F almost
everywhere defined on A is called

⌈⌈ ⌉⌉∗
-measurable on A if for every ε > 0

4 “Process” shall mean any
˚̊ ˇ̌∗

-a.e. defined function on the ambient space that has values
in some uniform space.
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there is a dd ee∗-integrable subset A0 of A with1 ddA\A0ee∗ < ε on which F
is E-uniformly continuous. A process F is called

⌈⌈ ⌉⌉∗
-measurable if it is

measurable on every integrable set.

Unless there is need to stress that this definition refers to the mean dd ee∗ ,
we shall simply talk about measurability. If we want to make the point

that dd ee∗ is Daniell’s mean dd ee∗
Z−p , we shall talk about Z−p-measurability

(this is actually independent of p – see corollary 3.6.11 on page 128).

This definition is quite intuitive, describing as it does a considerable degree

of smoothness. It says that F is measurable if it is on arbitrarily large sets
as smooth as an elementary integrand, in other words, that it is “largely as

smooth as an elementary integrand.” It is also quite workable in that it

admits fast proofs of the permanence properties. We start with a tiny result
that will however facilitate the arguments greatly.

Lemma 3.4.3 Let A be an integrable set and
(
Fn
)

a sequence of processes

that are measurable on A . For every ε > 0 there exists an integrable subset
A0 of A with ddA\A0ee∗ ≤ ε such that every one of the Fn is uniformly

continuous on A0 .

Proof. Let A1 ⊂ A be integrable with ddA\A1ee∗ < ε · 2−1 and so that,

on A1 , F1 is uniformly continuous. Next let A2 ⊂ A1 be integrable with
ddA1\A2ee∗ < ε·2−2 and so that, on A2 , F2 is uniformly continuous. Continue

by induction, and set A0 =
⋂∞
n=1An . Then A0 is integrable due to proposi-

tion 3.2.26,

ddA\A0ee∗ =
⌈⌈

(A\A1) ∪
⋃

n>1

(An\An−1)
⌉⌉∗

≤
∑

ε · 2−n = ε ,

by the countable subadditivity of dd ee∗ , and every Fn is uniformly continuous

on A0 , inasmuch as it is so on the larger set An .

Permanence Under Limits of Sequences

Theorem 3.4.4 (Egoroff’s Theorem) Let
(
Fn
)

be a sequence of dd ee∗-measur-
able processes with values in a metric space (S, ρ) , and assume that

(
Fn
)

con-

verges dd ee∗-almost everywhere to a process F . Then F is dd ee∗-measurable.

Moreover, for every integrable set A and ε > 0 there is an integrable
subset A0 of A with ddA\A0ee∗ < ε on which

(
Fn
)

converges uniformly to

F – we shall describe this behavior by saying “
(
Fn
)

converges uniformly
on arbitrarily large sets,” or even simply by “

(
Fn
)

converges largely

uniformly.”

Proof. Let an integrable set A and an ε > 0 be given. There is an integrable
set A1 ⊂ A with ddA\A1ee∗ < ε/2 on which every one of the Fn is uniformly

continuous. Then ρ(Fm, Fn) is uniformly continuous on A1 , and therefore
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is, on A1 , the uniform limit of a sequence in E , and thus A1·ρ(Fm, Fn) is
integrable for every m,n ∈ N (exercise 3.2.29). Therefore

A1 ∩
[
ρ(Fm, Fn) >

1

r

]

is an integrable set for r = 1, 2, . . ., and then so is the set (see proposi-
tion 3.2.26)

Brp
def= A1 ∩

⋃

m,n≥p

[
ρ(Fm, Fn) >

1

r

]
.

As p increases, Brp decreases, and the intersection
⋂
pB

r
p is contained

in the negligible set of points where
(
Fn
)

does not converge. Thus
limp→∞ ddBrpee

∗
= 0. There is a natural number p(r) such that ddBr

p(r) ee
∗
<

2−r−1ε . Set
B def=

⋃

r

Brp(r) and A0
def= A1\B .

It is evident that ddA1\A0 ee∗ = ddB ee∗ < ε/2 and thus ddA \A0 ee∗ < ε . It
is left to be shown that

(
Fn
)

converges uniformly on A0 . The limit F is

then clearly also uniformly continuous there. To this end, let δ > 0 be given.
We let N = p(r), where r is chosen so that 1/r < δ . Now if $ is any

point in A0 and m,n ≥ N , then $ is not in the “bad set” Brp(r) ; therefore

ρ
(
Fn($), Fm($)

)
≤ 1/r < δ , and thus ρ

(
F ($), Fn($)

)
≤ δ for all $ ∈ A0

and n ≥ N .

Corollary 3.4.5 A numerical process 4 F is dd ee∗-measurable if and only if it
is dd ee∗-almost everywhere the limit of a sequence of elementary integrands.

Proof. The condition is sufficient by Egoroff’s theorem. Toward its necessity

we must assume that the mean is σ-finite, in the sense that there exists a
countable collection of dd ee∗-integrable subsets Bn that exhaust the ambient

set. The Bn can and will be chosen increasing with n . In the case of

the stochastic integral take Bn = [[0, n]]. Then find, for every integer n , a
dd ee∗-integrable subset Gn of Bn with ddBn \Gn ee∗ < 2−n and an elementary

integrand Xn that differs from F uniformly by less than 2−n on Gn . The
sequence

(
Xn

)
converges to F in every point of G =

⋃
N

⋂
n≥N Gn , a set of

dd ee∗-negligible complement.

Permanence Under Algebraic and Order Operations

Theorem 3.4.6 (i) Suppose that F1, . . . , FN are dd ee∗-measurable processes 4

with values in complete uniform spaces (S1, u1), · · · , (SN , uN) , and φ is a con-

tinuous map from the product S1 × . . .×SN to another uniform space (S, u) .
Then the composition φ(F1, . . . , FN ) is dd ee∗-measurable. (ii) Algebraic and

order combinations of measurable processes are measurable.

Exercise 3.4.7 The conclusion (i) stays if φ is a Baire function.
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Proof. (i) Let an integrable set A and an ε > 0 be given. There is an
integrable subset A0 of A with ddA− A0 ee∗ < ε on which every one of the

Fn is uniformly continuous. By lemma A.2.16 (iv) the sets Fn(A0) ⊂ Sn are
relatively compact, and by exercise A.2.15 φ is uniformly continuous on the

compact product Π of their closures. Thus φ(F1, . . . , FN) : A0 → Π → S is
uniformly continuous as the composition of uniformly continuous maps.

(ii) Let F1, F2 be measurable. Inasmuch as + : R2 → R is continuous,

F1+F2 is measurable. The same argument applies with + replaced by ·,∧,∨ ,
etc.

Exercise 3.4.8 (Localization Principle) The notion of measurability is local:
(i) A process F dd ee∗-measurable on the dd ee∗-integrable set A is dd ee∗-measurable
on every integrable subset of A . (ii) A process F dd ee∗-measurable on the
dd ee∗-integrable sets A1, A2 is measurable on their union. (iii) If the process F
is dd ee∗-measurable on the dd ee∗-integrable sets A1, A2, . . . , then it is measurable on
every dd ee∗-integrable subset of their union

S
nAn .

Exercise 3.4.9 (i) Let D be any collection of bounded functions whose linear
span is dense in L1[dd ee∗] . Replacing the E-uniformity on B by the D-uniformity
does not change the notion of measurability. In the case of the stochastic integral,
therefore, a real-valued process is measurable if and only if it equals on arbitrarily
large sets a continuous adapted process (take D = L).

(ii) The notion of measurability of F : B → S also does not change if the
uniformity on S is replaced with another one that has the same topology, provided
both uniformities are complete (apply theorem 3.4.6 to the identity map S → S ).

In particular, a process that is measurable as a numerical function and happens
to take only real values is measurable as a real-valued function.

The Integrability Criterion

Let us now show that the notion of measurability captures exactly the “local

smoothness” of the integrable processes:

Theorem 3.4.10 A numerical process F is dd ee∗-integrable if and only if it is

dd ee∗-measurable and finite in dd ee∗-mean.

Proof. An integrable process is finite for the mean (exercise 3.2.15) and,
being the pointwise a.e. limit of a sequence of elementary integrands (theo-

rem 3.2.22), is measurable (theorem 3.4.4). The two conditions are therefore

necessary.

To establish the sufficiency let C be a maximal collection of mutually dis-

joint non-negligible integrable sets on which F is uniformly continuous. Due
to the stipulated σ-finiteness of our mean there exists a countable collec-

tion {Bk} of integrable sets that cover the base space, and C is countable:
C = {A1, A2, . . .} (see exercise 3.2.30). Now the complement of C def=

⋃
nAn

is negligible; if it were not, then one of the integrable sets Bk \C would not
be negligible and would contain a non-negligible integrable subset on which F

is uniformly continuous – this would contradict the maximality of C . The
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processes Fn = F ·(⋃k≤nAk) are integrable, converge a.e. to F , and are dom-

inated by |F | ∈ F[dd ee∗] . Thanks to the Dominated Convergence Theorem,

F is integrable.

Measurable Sets

Definition 3.4.11 A set is measurable if its indicator function is measur-

able1 – we write “measurable” instead of “dd ee∗-measurable,” etc.

Since sets are but idempotent functions, it is easy to see how their measura-
bility interacts with that of arbitrary functions:

Theorem 3.4.12 (i) A set M is measurable if and only if its intersection with

every integrable set A is integrable. The measurable sets form a σ-algebra.
(ii) If F is a measurable process, then the sets [F > r] , [F ≥ r] , [F < r] ,

and [F ≤ r] are measurable for any number r , and F is almost everywhere
the pointwise limit of a sequence (Fn) of step processes with measurable steps.

(iii) A numerical process F is measurable if and only if the sets [F > d]
are measurable for every dyadic rational d .

Proof. These are standard arguments. (i) if M ∩ A is integrable, then it

is measurable on A . The condition is thus sufficient. Conversely, if M is
measurable and A integrable, then M ∩A is measurable and has finite mean;

so it is integrable (3.4.10). For the second claim let A1, A2, . . . be a countable
family of measurable sets.1

Then
(
A1

)c
= 1 − A1 ,

∞⋂

n=1

An =
∞∧

n=1

An = lim
N→∞

N∧

n=1

An,

and

∞⋃

n=1

An =

∞∨

n=1

An = lim
N→∞

N∨

n=1

An,

in the sense that the set on the left has the indicator function on the right,
which is measurable.

(ii) For the first claim, note that the process

lim
n→∞

1 ∧
(
n(F − F ∧ 1)

)

is measurable, in view of the permanence properties. It vanishes at any
point $ where F ($) ≤ 1 and equals 1 at any point $ where F ($) > 1; in

other words, this limit is the (indicator function of the) set [F > 1], which
is therefore measurable. The set [F > r] equals [F/r > 1] when r > 0 and

is thus measurable as well. [F > 0] =
⋃∞
n=1[F > 1/n] is measurable. Next,

[F ≥ r] =
⋂
n>1/r[F > r − 1/n], [F < −r] = [−F > r], and [F ≤ −r] =

[−F ≥ r]. Finally, when r ≤ 0, then [F > r]=[−F ≥ −r]c, etc.
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For the next claim, let Fn be the step process over measurable sets 1

Fn =

22n∑

k=−22n

k2−n ·
[
k2−n < F ≤ (k + 1)2−n

]
. (∗)

The sets [k2−n < F ≤ (k + 1)2−n] = [k2−n < F ] ∩ [(k + 1)2−n < F ]c are
measurable, and the claim follows by inspection.

(iii) The necessity follows from the previous result. So does the sufficiency:
The sets appearing in (∗) are then measurable, and F is as well, being the

limit of linear combinations of measurable processes.

3.5 Predictable and Previsible Processes

The Borel functions on the line are measurable for every measure. They
form the smallest class that contains the elementary functions and has the

usual permanence properties for measurability: closure under algebraic and
order combinations, and under pointwise limits of sequences – and therein

lies their virtue. Namely, they lend themselves to this argument: a property
of functions that holds for the elementary ones and persists under limits of

sequences, etc., holds for Borel functions. For instance, if two measures µ, ν

satisfy µ(φ) ≤ ν(φ) for step functions φ , then the same inequality is satisfied
on Borel functions φ – observe that it makes no sense in general to state this

inequality for integrable functions, inasmuch as a µ-integrable function may
not even be ν-measurable. But the Borel functions also form a large class in

the sense that every function measurable for some measure µ is µ-a.e. equal
to a Borel function, and that takes the sting out of the previous observation:

on that Borel function µ and ν can be compared.
It is the purpose of this section to identify and analyze the stochastic

analog of the Borel functions.

Predictable Processes

The Borel functions on the line are the sequential closure 5 of the step func-
tions or elementary integrands e . The analogous notion for processes is this:

Definition 3.5.1 The sequential closure (in R
B

!) of the elementary integrands

E is the collection of predictable processes and is denoted by P . The
σ-algebra of sets in P is also denoted by P . If there is need to indicate the

filtration, we write P[F.] .

An elementary integrand X is prototypically predictable in the sense that its

value Xt at any time t is measurable on some strictly earlier σ-algebra Fs :
at time s the value Xt can be foretold. This explains the choice of the word

“predictable.”

5 See pages 391–393.
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P is of course also the name of the σ-algebra generated by the idempotents
(sets6) in E . These are the finite unions of elementary stochastic intervals of

the form ((S, T ]]. This again is the difference of [[0, T ]] and [[0, S]]. Thus P
also agrees with the σ-algebra spanned by the family of stochastic intervals{
[[0, T ]] : T an elementary stopping time

}
.

Egoroff’s theorem 3.4.4 implies that a predictable process is measurable

for any mean dd ee∗ . Conversely, any dd ee∗-measurable process F coincides
dd ee∗-almost everywhere with some predictable process. Indeed, there is a

sequence
(
X(n)

)
of elementary integrands that converges dd ee∗-a.e. to F (see

corollary 3.4.5); the predictable process lim infX (n) qualifies.

The next proposition provides a stock-in-trade of predictable processes.

Proposition 3.5.2 (i) Any left-open right-closed stochastic interval ((S, T ]],
S ≤ T , is predictable. In fact, whenever f is a random variable measurable

on FS , then f · ((S, T ]] is predictable 6; if it is Z−p-integrable, then its integral
is as expected – see exercise 2.1.14:

f ·
(
ZT − ZS

)
∈
∫
f · ((S, T ]] dZ . (3.5.1)

(ii) A left-continuous adapted process X is predictable. The continuous

adapted processes generate P .

Proof. (i) Let T (n) be the stopping times of exercise 1.3.20:

T (n) def=

∞∑

k=0

k + 1

n
·
[ k
n
< T ≤ k + 1

n

]
+ ∞·[T = ∞] , n ∈ N.

Recall that
(
T (n)

)
decreases to T . Next let f (m) be FS-measurable simple

functions with |f (m)| ≤ |f | that converge pointwise to f . Set 6

X(m,n) def= f (m) · ((S(n) ∧m,T (n) ∧m]]

= f (m)·[S(n) < m] · ((S(n) ∧m,T (n) ∧m]] .

Since f (m) ∈ FS ⊂ FS(n) (exercise 1.3.16),

f (m)·[S(n) ≤ m] · [S(n) ∧m ≤ t] =

{
f (m) · [S(n) ≤ m] ∈ Fm ⊂ Ft , t ≥ m,

f (m) · [S(n) ≤ t ] ∈ Ft , t < m,

and f (m) · [S(n) ≤ m] is measurable on FS(n)∧m . By exercise 2.1.5, X(m,n)

is an elementary integrand. Therefore

f · ((S, T ]] = lim
m→∞

lim
n→∞

X(m,n)

6 In accordance with convention A.1.5 on page 364, sets are identified with their (idempo-
tent) indicator functions. A stochastic interval ((S,T ]], for instance, has at the instant s

the value ((S,T ]]s = [S < s ≤ T ] =
n

1 if S(ω) < s ≤ T (ω),
0 elsewhere.
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is predictable. If Z is an Lp-integrator, then the integral of X(m,n) is
f (m) ·

(
ZT (n)∧m−ZS(n)∧m

)
(ibidem). Now |X(m,n)| ≤ ‖f (m)‖∞·[[0,m]], so the

Dominated Convergence Theorem in conjunction with the right-continuity of
Z gives6

f (m)·
(
ZT∧m − ZS∧m

)
∈
∫
f (m) · ((S ∧m,T ∧m]] dZ

as n→ ∞ . The integrands are dominated by |f | · ((S, T ]] ; so if this process

is Z−p-integrable, then a second application of the Dominated Convergence
Theorem produces (3.5.1) as m → ∞ .

(ii) To start with assume that X is continuous. Thanks to corollary 1.3.12
the random times T0 = 0,

Tnk+1 = inf{t :
∣∣X −XTn

k

∣∣?
t
≥ 2−n}

are all stopping times. The process 6

X0 · [[0]] +

∞∑

k=0

XTn
k
· ((Tnk , Tnk+1]]

is predictable and uniformly as close as 2−n to X . Hence X is predictable.
Now to the case that X is merely left-continuous and adapted. Replacing

X by −k ∨ X ∧ k , k ∈ N , and taking the limit we may assume that X is
bounded. Let φ(n) be a positive continuous function with support in [0, 1/n]

and Lebesgue integral 1. Since the path of X is Lebesgue measurable and
bounded, the convolution

X
(n)
t

def=

∫ +∞

−∞
Xs · φ(n)(t− s) ds =

∫ t

t−1/n

Xs · φ(n)(t− s) ds

exists (set Xs = 0 for s < 0). Every X(n) is an adapted process with

continuous paths and is therefore predictable. The sequence
(
X(n)

)
converges

pointwise to X , by the left-continuity of this process. Hence X is predictable.

Since in particular every elementary integrand can be approximated in this
way by continuous adapted processes, the latter generate P .

Exercise 3.5.3 F. and its right-continuous version F.+ have the same predicta-
bles.

Exercise 3.5.4 If Z is predictable and T a stopping time, then the stopped
process ZT is predictable. The variation process of a right-continuous predictable
process of finite variation is predictable.

Exercise 3.5.5 Suppose G is Z−0-integrable; let S, T be two stopping times; and
let f ∈ L0(FS). Then f ·((S, T ]] ·G is Z−0-integrable and

Z
f ·((S, T ]] ·G dZ

.
= ḟ ·

Z
((S, T ]] ·G dZ . (3.5.2)
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Previsible Processes

For the remainder of the chapter we resurrect our hitherto unused standing
assumption 2.2.12 that the measured filtration (Ω,F.,P) satisfies the natural

conditions.

One should respect a process that tries to be predictable and nearly suc-
ceeds:

Definition 3.5.6 A process X is called previsible with P if there exists a

predictable process XP that cannot be distinguished from X with P . The
collection of previsible processes is denoted by PP , and so is the collection of

sets in PP .

A previsible process is measurable for any of the Daniell means associated

with an integrator. This follows from exercise 3.2.5 and uses the regularity
of the filtration.

Exercise 3.5.7 (i) PP is sequentially closed and the idempotent functions (sets)
in PP form a σ-algebra. (ii) In the presence of the natural conditions a measurable
previsible process is predictable.

Exercise 3.5.8 Redo exercise 3.5.4 for previsible processes.

Predictable Stopping Times

On the half-line any singleton {t} is integrable for any measure dz , since it

is a compact Borel set. Its dz-measure is ∆zt = zt − zt− . The stochastic
analog of a singleton is the graph of a random time, and the stochastic analog

of the Borels are the predictable sets. It is natural to ask when the graph

of a random time T is a predictable set and, if so, what the dZ-integral
of its graph [[T ]] is. The answer is given in theorem 3.5.13 in terms of the

predictability of T :

Definition 3.5.9 A random time T is called predictable if there exists a
sequence of stopping times Tn ≤ T that are strictly less than T on [T > 0]

and increase to T everywhere; the sequence
(
Tn
)

is said to predict or to
announce T .

A predictable time is a stopping time (exercise 1.3.15). Before showing that
it is precisely the predictable stopping times that answer our question it is

expedient to develop their properties.

Exercise 3.5.10 (i) Instants are predictable. If T is any stopping time, then T +ε
is predictable, as long as ε > 0. The infimum of a finite number of predictable times
and the supremum of a countable number of predictable times are predictable.

(ii) For any A ∈ F0 the reduced time 0A is predictable; if S is predictable,
then so is its reduction SA , in particular S[S>0] . If S, T are stopping times,
S predictable, then the reduction S[S≤T ] is predictable.

Exercise 3.5.11 Let S, T be predictable stopping times. Then all stochastic
intervals that have S, T, 0, or ∞ as endpoints are predictable sets. In particular,
[[0, T )), the graph [[T ]] , and [[T,∞)) are predictable.
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Lemma 3.5.12 (i) A random time T nearly equal to a predictable stopping
time S is itself a predictable stopping time; the σ-algebras FS and FT agree.

(ii) Let T be a stopping time, and assume that there exists a sequence (Tn)
of stopping times that are almost surely less than T , almost surely strictly so

on [T > 0] , and that increase almost surely to T . Then T is predictable.
(iii) The limit S of a decreasing sequence

(
Sn
)

of predictable stopping times is

a predictable stopping time provided
(
Sn
)

is almost surely ultimately constant.

Proof. We employ – for the first time in this context – the natural conditions.

(i) Suppose that S is announced by (Sn) and that [S 6= T ] is nearly

empty. Then, due to the regularity of the filtration, the random variables 6

Tn
def= Sn·[S = T ] +

(
0 ∨ (T − 1/n) ∧ n

)
·[S 6= T ]

are stopping times. The Tn evidently increase to T , strictly so on [T > 0]. If

A ∈ FT , then A∩ [S ≤ t] nearly equals A∩ [T ≤ t] ∈ Ft , so A∩ [S ≤ t] ∈ Ft
by regularity. This says that A belongs to FS .

(ii) Replacing Tn by
∨
m≤n Tm we may assume that (Tn) increases every-

where. T∞ def= supTn is a stopping time (exercise 1.3.15) nearly equal to T
(exercise 1.3.27). It suffices therefore to show that T∞ is predictable. In other

words, we may assume that (Tn) increases everywhere to T , almost surely
strictly so on [T > 0]. The set N def= [T > 0] ∩⋃n[T = Tn] is nearly empty,

and the chopped reductions TnNc ∧n increase strictly to TNc on
[
TNc > 0

]
:

TNc is predictable. T , being nearly equal to TNc , is predictable as well.

(iii) To say that
(
Sn(ω)

)
is ultimately constant means of course that for

every ω ∈ Ω there is an N(ω) such that S(ω) = Sn(ω) for all n ≥ N(ω). To
start with assume that S1 is bounded, say S1 ≤ k . For every n let S ′n be a

stopping time less than or equal to Sn , strictly less than Sn where Sn > 0,
and having

P
[
S′n < Sn − 2−n

]
< 2−n−1 .

Such exist as Sn is predictable. Since F. is right-continuous, the random vari-
ables S′′n

def= infν≥n S′ν are stopping times (exercise 1.3.30). Clearly S ′′n < S

almost surely on [S > 0], namely, at all points ω ∈ [S > 0] where Sn(ω)
is ultimately constant. Since P

[
S′′n < S

]
≤ 2−n ,

(
S′′n
)

increases almost

surely to S . By (ii) S is predictable. In the general case we know now
that S ∧ k = infn Sn ∧ k is predictable. Then so is the pointwise supremum

S =
∨
k S ∧ k (exercise 1.3.15).

Theorem 3.5.13 (i) Let B ⊂ B be previsible and ε > 0 . There is a

predictable stopping time T whose graph is contained in B and such that
P
[
πΩ[B]

]
< P[T <∞] + ε .

(ii) A random time is predictable if and only if its graph is previsible.
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Proof. (i) Let BP be a predictable set that cannot be distinguished from B .
Theorem A.5.14 on page 438 provides a predictable stopping time S whose

graph lies inside BP and satisfies P
[
πΩ[BP]

]
< P[S < ∞] + ε (see figure A.17

on page 436). The projection of [[S]] \ B is nearly empty and by regularity

belongs to F0 . The reduction of S to its complement is a predictable stopping
time that meets the description.

(ii) The necessity of the condition was shown in exercise 3.5.11. Assume
then that the graph [[T ]] of the random time T is a previsible set. There

are predictable stopping times Sk whose graphs are contained in that of T
and so that P[T 6= Sk] ≤ 1/k . Replacing Sk by infκ≤k Sκ we may assume

the Sk to be decreasing. They are clearly ultimately constant. Thanks to
lemma 3.5.12 their infimum S is predictable. The set [S 6= T ] is evidently

nearly empty; so in view of lemma 3.5.12 (ii) T is predictable.

The Strict Past of a Stopping Time The question at the beginning of the
section is half resolved: the stochastic analog of a singleton {t} qua integrand

has been identified as the graph of a predictable time T . We have no analog
yet of the fact that the measure of {t} is ∆zt = zt − zt− . Of course in the

stochastic case the right question to ask is this: for which random variables f

is the process f ·[[T ]] previsible, and what is its integral? Theorem 3.5.14 gives
the answer in terms of the strict past of T . This is simply the σ-algebra

FT− generated by F0 and the collection
{
A ∩ [t < T ] : t ∈ R+, A ∈ Ft

}
.

A generator is “an event that occurs and is observable at some instant t

strictly prior to T .” A stopping time is evidently measurable on its strict

past.

Theorem 3.5.14 Let T be a stopping time, f a real-valued random variable,

and Z an L0-integrator. Then f · [[T ]] is a previsible process 6 if and only
if both f · [T < ∞] is measurable on the strict past of T and the reduction

T[f 6=0] is predictable; and in this case

f · ∆ZT ∈
∫
f · [[T ]] dZ . (3.5.3)

Before proving this theorem it is expedient to investigate the strict past of
stopping times.

Lemma 3.5.15 (i) If S ≤ T , then FS− ⊂ FT− ⊂ FT ; and if in addition
S < T on [T > 0] , then FS ⊂ FT− .

(ii) Let Tn be stopping times increasing to T . Then FT− =
∨FTn− . If

the Tn announce T , then FT− =
∨FTn

.

(iii) If X is a previsible process and T any stopping time, then XT is
measurable on FT− .

(iv) If T is a predictable stopping time and A ∈ FT− , then the reduction

TA is predictable.
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Proof. (i) A generator A ∩ [t < S] of FS− can be written as the intersection
of
(
A∩ [t < S]

)
with [t < T ] and belongs to FT− inasmuch as [t < S] ∈ Ft .

A generator A ∩ [t < T ] of FT− belongs to FT since

(A ∩ [t < T ]) ∩ [T ≤ u] =

{
∅ ∈ Fu for u ≤ t

A ∩ [T ≤ u] ∩ [T ≤ t]c ∈ Fu for u > t.

Assume that S < T on [T > 0], and let A ∈ FS . Then A ∩ [T > 0] =
A ∩⋃q∈Q+

[S < q] ∩ [q < T ] belongs to FT− , and so does A ∩ [T = 0] ∈ F0 .

This proves the second claim of (i).

(ii) A generator A ∩ [t < T ] =
⋃
nA ∩ [t < Tn] clearly lies in

∨
n FTn− . If

the Tn announce T , then by (i) FT−⊂
∨
n FTn−⊂

∨
nFTn

⊂FT−.

(iii) Assume first that X is of the form X = A× (s, t] with A ∈ Fs . Then
XT = A ∩ [s < T ≤ t] =

(
A ∩ [s < T ]

)
\
(
Ω ∩ [t < T ]

)
∈ FT−. By linearity,

XT ∈ FT− for all X ∈ E . The processes X with XT ∈ FT− evidently form a
sequentially closed family, so every predictable process has this property. An

evanescent process clearly has it as well, so every previsible process has it.

(iv) Let
(
Tn
)

be a sequence announcing T . Since A ∈ ∨FTn , there are

sets An ∈ ⋃FTn with P
[∣∣A − An

∣∣] < 2−n−1 . Taking a subsequence, we
may assume that An ∈ FTn . Then AN

def=
⋂
n>N A

n ∈ FT , and TnAn ∧ n

announces TAN
. This sequence of predictable stopping times is ultimately

constant and decreases almost surely to TA , so TA is predictable.

Proof of Theorem 3.5.14. If X def= f ·[[T ]] is previsible,6 then XT = f ·[T <∞]
is measurable on FT− (lemma 3.5.15 (iii)), and T[f 6=0] is predictable since it

has previsible graph [X 6= 0] (theorem 3.5.13). The conditions listed are thus
necessary.

To show their sufficiency we replace first of all f by f · [T < ∞] , which
does not change X . We may thus assume that f is measurable on FT− ,

and that T = T[f 6=0] is predictable. If f is a set in FT− , then X is the
graph of a predictable stopping time (ibidem) and thus is predictable (exer-

cise 3.5.11). If f is a step function over FT− , a linear combination of sets,
then X is predictable as a linear combination of predictable processes. The

usual sequential closure argument shows that X is predictable in general.

It is left to be shown that equation (3.5.3) holds. We fix a sequence
(
Tn
)

announcing T and an L0-integrator Z . Since f is measurable on the span
of the FTn , there are FTn-measurable step functions fn that converge

in probability to f . Taking a subsequence we can arrange things so that
fn → f almost surely. The processes Xn def= fn · ((Tn, T ]], previsible by pro-

position 3.5.2, converge to X = f · [[T ]] except possibly on the evanescent set
R+ × [fn 6→ f ] , so the limit is previsible. To establish equation (3.5.3) we

note that fm · ((Tn, T ]] is Z−0-integrable for m ≤ n (exercise 3.5.5) with

fm · (ZT − ZTn) ∈
∫
fm · ((Tn, T ]] dZ .
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We take n → ∞ and get fm · ∆ZT ∈
∫
fm·[[T ]] dZ . Now, as m → ∞ , the

left-hand side converges almost surely to f ·∆ZT . If the |fm| are uniformly

bounded, say by M , then fm·[[T ]] converges to Z−0-a.e., being dominated
by M ·[[T ]] . Then fm·[[T ]] converges to f ·[[T ]] in Z−0-mean, thanks to the

Dominated Convergence Theorem, and (3.5.3) holds. We leave to the reader
the task of extending this argument to the case that f is almost surely finite

(replace M by sup |fm| and use corollary 3.6.10 to show that sup |fm|·[[T ]]
is finite in Z−0-mean).

Corollary 3.5.16 A right-continuous previsible process X with finite maximal

process is locally bounded.

Proof. Let t < ∞ and ε > 0 be given. By the choice of λ > 0 we can

arrange things so that T λ = inf{t : |Xt| ≥ λ} has P[T λ < t] < ε/2. The
graph of T λ is the intersection of the previsible sets [|X| ≥ λ] and [[0, T λ]] .

Due to theorem 3.5.13, T λ is predictable: there is a stopping time S < T λ

with P[S < T λ ∧ t] < ε/2. Then P[S < t] < ε and |XS| is bounded by λ .

Accessible Stopping Times

For an application in section 4.4 let us introduce stopping times that are
“partly predictable” and those that are “nowhere predictable:”

Definition 3.5.17 A stopping time T is accessible on a set A ∈ FT

of strictly positive measure if there exists a predictable stopping time S that

agrees with T on A – clearly T is then accessible on the larger set [S = T ] in
FT ∩FS . If there is a countable cover of Ω by sets on which T is accessible,

then T is simply called accessible. On the other hand, if T agrees with no
predictable stopping time on any set of strictly positive probability, then T is

called totally inaccessible.

For example, in a realistic model for atomic decay, the first time T a Geiger

counter detects a decay should be totally inaccessible: there is no circum-
stance in which the decay is foreseeable.

Given a stopping time T , let A be a maximal collection of mutually disjoint
sets on which T is accessible. Since the sets in A have strictly positive

measure, there are at most countably many of them, say A = {A1, A2, . . .} .
Set A def=

⋃
An and I def= Ac . Then clearly the reduction TA is accessible and

TI is totally inaccessible:

Proposition 3.5.18 Any stopping time T is the infimum of two stopping

times TA, TI having disjoint graphs, with TA accessible – wherefore [[TA]] is
contained in the union of countably many previsible graphs – and TI totally

inaccessible.

Exercise 3.5.19 Let V ∈ D be previsible, and let λ ≥ 0. (i) Then

TλV = inf{t : |Vt| ≥ λ} and T λ∆V = inf{t : ∆Vt ≥ λ}
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are predictable stopping times. (ii) There exists a sequence {Tn} of predictable
stopping times with disjoint graphs such that [∆V 6= 0] ⊂ Sn[[Tn]] .

Exercise 3.5.20 If M is a uniformly integrable martingale and T a predictable
stopping time, then MT− ∈ E[M∞|FT−] and thus E[∆MT |FT−]

.
= 0.

Exercise 3.5.21 For deterministic instants t , Ft− is the σ-algebra generated

by {Fs : s < t}. The σ-algebras Ft− make up the left-continuous version F.−
of F. . Its predictables and previsibles coincide with those of F. .

3.6 Special Properties of Daniell’s Mean

In this section a probability P , an exponent p ≥ 0, and an Lp(P)-integrator Z

are fixed. The mean is Daniell’s mean dd ee∗
Z−p , computed with respect to P .

As usual, mention of P is suppressed in the notation. Recall that we of-

ten use the words Z−p-integrable, Z−p-a.e., Z−p-measurable, etc., instead of
dd ee∗

Z−p-integrable, dd ee∗
Z−p-a.e., dd ee∗

Z−p-measurable, etc.

Maximality

Proposition 3.6.1 dd ee∗
Z−p is maximal. That is to say, if dd ee∗ is any

mean less than or equal to dd ee∗
Z−p on positive elementary integrands, then

the inequality ddF ee∗ ≤ ddF ee∗
Z−p holds for all processes F .

Proof. Suppose that ddF ee∗
Z−p < a . There exists an H ∈ E↑+ , limit of an

increasing sequence of positive elementary integrands X (n) , with |F | ≤ H

and ddHee∗
Z−p < a. Then

ddF ee∗ ≤ ddH ee∗ = sup
n

⌈⌈
X(n)

⌉⌉∗
≤ sup

n

⌈⌈
X(n)

⌉⌉∗
Z−p

= ddH ee∗Z−p < a .

Exercise 3.6.2 ‖ ‖∗
Z−p

and ‖ ‖∗
Z−[α]

are maximal as well.

Exercise 3.6.3 Suppose that Z is an Lp-integrator, p ≥ 1, and X 7→
R
X dZ

has been extended in some way to a vector lattice L of processes such that the
Dominated Convergence Theorem holds. Then there exists a mean dd ee∗ such that
the integral is the extension by dd ee∗-continuity of the elementary integral, at least
on the dd ee∗-closure of E in L .

Exercise 3.6.4 If dd ee∗ is any mean, then

ddF ee∗∗ def= sup{ddF ee′ : dd ee′ a mean with dd ee′ ≤ dd ee∗ on E+ }

defines a mean dd ee∗∗ , evidently a maximal one. It is given by Daniell’s up-and-
down procedure:

ddF ee∗∗ =


sup{ddXee∗ : X ∈ E+} if F ∈ E↑

+

inf{ddHee∗∗ : |F | ≤ H ∈ E↑
+} for arbitrary F .

(3.6.1)

Exercise 3.6.3 says that an integral extension featuring the Dominated Con-
vergence Theorem can be had essentially only by using a mean that controls

the elementary integral. Other examples can be found in definition (4.2.9)
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and exercise 4.5.18: Daniell’s procedure is not so ad hoc as it may seem at
first. Exercise 3.6.4 implies that we might have also defined Daniell’s mean

as the maximal mean that agrees with the semivariation on E+ . That would
have left us, of course, with the onus to show that there exists at least one

such mean.
It seems at this point, though, that Daniell’s mean is the worst one to

employ, whichever way it is constructed. Namely, the larger the mean, the
smaller evidently the collection of integrable functions. In order to integrate

as large a collection as possible of processes we should try to find as small a
mean as possible that still controls the elementary integral. This can be done

in various non-canonical and uninteresting ways. We prefer to develop some
nice and useful properties that are direct consequences of the maximality of

Daniell’s mean.

Continuity Along Increasing Sequences

It is well known that the outer measure µ∗ associated with a measure µ

satisfies 0≤An ↑ A =⇒ µ∗(An) ↑ µ∗(A), making it a capacity. The Daniell
mean has the same property:

Proposition 3.6.5 Let dd ee∗ be a maximal mean on E . For any increasing

sequence
(
F (n)

)
of positive numerical processes,

⌈⌈
supF (n)

⌉⌉∗
= sup

n

⌈⌈
F (n)

⌉⌉∗
.

Proof. We start with an observation, which might be called upper regularity:
for every positive integrable process F and every ε > 0 there exists a process

H ∈ E↑+ with H > F and ddH − F ee∗ ≤ ε . Indeed, there exists an X ∈ E+

with ddF −X ee∗ < ε/2; equation (3.6.1) provides an Hε ∈ E↑+ with |F−X| ≤
Hε and ddHε ee∗ < ε/2; and evidently H def= X +Hε meets the description.

Now to the proof proper. Only the inequality
⌈⌈

supF (n)
⌉⌉∗

≤ sup
n

⌈⌈
F (n)

⌉⌉∗
(?)

needs to be shown, the reverse inequality being obvious from the solidity

of dd ee∗ . To start with, assume that the F (n) are dd ee∗-integrable. Let

ε > 0. Using the upper regularity choose for every n an H (n) ∈ E↑+ with

F (n) ≤ H(n) and ddH(n) − F (n) ee∗ < ε/2n , and set F = supF (n) and

H
(N)

= supn≤N H
(n) . Then F ≤ H def= supN H

(N) ∈ E↑+ .

Now H
(N)

= supn≤N
(
F (n) + (H(n) − F (n))

)

≤ F (N) +
∑
n≤NH

(n) − F (n)

and so
⌈⌈
H

(N)
⌉⌉∗

≤ supN

⌈⌈
F (N)

⌉⌉∗
+ ε .
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Now dd ee∗ is continuous along the increasing sequence
(
H

(N))
of E↑+ , so

ddF ee∗ ≤ ddH ee∗ = supN

⌈⌈
H

(N)
⌉⌉∗

≤ supN

⌈⌈
F (N)

⌉⌉∗
+ ε ,

which in view of the arbitraryness of ε implies that ddF ee∗ ≤ supn ddF (n) ee∗ .
Next assume that the F (n) are merely dd ee∗-measurable. Then

F (n) def=
(
F (n) ∧ n

)
·[[0, n]]

is dd ee∗-integrable (theorem 3.4.10). Since supF (n) = supF (n) , the first part

of the proof gives ddsupF (n) ee∗ = ddsupF (n) ee∗ ≤ sup ddF (n) ee∗ .
Now if the F (n) are arbitrary positive R-valued processes, choose for every

n, k ∈ N a process H(n,k) ∈ E↑+ with F (n) ≤ H(n,k) and

⌈⌈
H(n,k)

⌉⌉∗
≤
⌈⌈
F (n)

⌉⌉∗
+ 1/k .

This is possible by the very definition of the Daniell mean; if ddF (n) ee∗ = ∞ ,
then H(n,k) def= ∞ qualifies. Set

F
(N)

= inf
n≥N

inf
k
H(n,k) , N ∈ N .

The F
(n)

are dd ee∗-measurable, satisfy ddF (n) ee∗ = ddF (n) ee∗ , and increase

with n , whence the desired inequality (?):

⌈⌈
supF (n)

⌉⌉∗
≤
⌈⌈

supF
(n)
⌉⌉∗

= sup
⌈⌈
F

(n)
⌉⌉∗

= sup
⌈⌈
F (n)

⌉⌉∗
.

Predictable Envelopes

A subset A of the line is contained in a Borel set Ã whose measure equals

the outer measure of A . A similar statement holds for the Daniell mean:

Proposition 3.6.6 Let dd ee∗ be a maximal mean on E .
(i) If F is a dd ee∗-negligible process, then there is a predictable process

F̃ ≥ |F | that is also dd ee∗-negligible.
(ii) If F is a dd ee∗-measurable process, then there exist predictable processes

F
˜

and F̃ that differ dd ee∗-negligibly and sandwich F : F
˜
≤ F ≤ F̃ .

(iii) Let F be a non-negative process. There exists a predictable process
F̃ ≥ F such that ddrF̃ ee∗ = ddrF ee∗ for all r ∈ R and such that every

dd ee∗-measurable process bigger than or equal to F is dd ee∗-a.e. bigger than

or equal to F̃ . If F is a set,7 then F̃ can be chosen to be a set as well.

If F is finite for dd ee∗ , then F̃ is dd ee∗-integrable. F̃ is called a predictable⌈⌈ ⌉⌉∗
-envelope of F .

7 In accordance with convention A.1.5 on page 364, sets are identified with their (idempo-
tent) indicator functions.



126 3 Extension of the Integral

Proof. (i) For every n ∈ N there is an H (n) ∈ E↑+ satisfying both |F | ≤ H(n)

and ddH(n) ee∗ ≤ 1/n (see equation (3.6.1)). F̃ def= infnH
(n) meets the de-

scription.

(ii) To start with, assume that F is dd ee∗-integrable. Let (X(n))

be a sequence of elementary integrands converging dd ee∗-almost every-
where to F . The process Y = (lim infX(n) − F ) ∨ 0 is dd ee∗-negligible.

F
˜

def= lim infX(n) − Ỹ is less than or equal to F and differs dd ee∗-negligibly

from F . F̃ is constructed similarly. Next assume that F is positive and let

F (n) = (n∧F )·[[0, n]]. Then F
˜

def= lim supF (n)

˜
and F̃ def= lim inf F̃ (n) qualify.

Finally, if F is arbitrary, write it as the difference of two positive measurable

processes: F = F+ − F− , and set F
˜

= F−
˜

− F̃+ and F̃ = F̃+ − F−
˜

.

(iii) To start with, assume that F is finite for dd ee∗ . For every q ∈ Q+

and k ∈ N there is an H(q,k) ∈ E↑+ with H(q,k) ≥ F and

⌈⌈
q ·H(q,k)

⌉⌉∗
≤ ddq · F ee∗ + 2−k .

(If ddq · F ee∗ = ∞ , then H(q,k) = ∞ clearly qualifies.) The predictable

process F̂ def=
∧
q,kH

(q,k) is greater than or equal to F and has ddqF̂ ee∗ =

ddqF ee∗ for all positive rationals q ; since F̂ is evidently finite for dd ee∗ , it is

dd ee∗-integrable, and the previous equality extends by continuity to all positive

reals. Next let {Xα} be a maximal collection of non-negative predictable and
dd ee∗-non-negligible processes with the property that

F +
∑
αXα ≤ F̂ .

Such a collection is necessarily countable (theorem 3.2.23). It is easy to see

that

F̃ def= F̂ −∑αXα

meets the description. For if H ≥ F is a dd ee∗-measurable process, then

H ∧ F̃ is integrable; the envelope H̃∧F̃ of part (ii) can be chosen to be

smaller than F̃ ; the positive process F̃ − H̃∧F̃ is both predictable and

dd ee∗-integrable; if it were not dd ee∗-negligible, it could be adjoined to {Xα} ,

which would contradict the maximality of this family; thus F̃ − H̃∧F̃ and

F̃ − H ∧ F̃ are dd ee∗-negligible, or, in other words, H ≥ F̃ dd ee∗-almost
everywhere.

If F is not finite for dd ee∗ , then let F̃ (n) be an envelope for F ∧(n · [[0, n]]) .

This can evidently be arranged so that F̃ (n) increases with n . Set F̃ =

supn F̃
(n) . If H ≥ F is dd ee∗-measurable, then H ≥ F̃ (n) dd ee∗-a.e.,

and consequently H ≥ F̃ dd ee∗-a.e. It follows from equation (3.6.1) that

ddF ee∗ = dd F̃ ee∗ .
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To see the homogeneity let r > 0 and let r̃F be an envelope for rF . Since
r−1 · r̃F ≥ F , we have r̃F ≥ rF̃ dd ee∗-a.e. and

ddrF ee∗ =
⌈⌈
r̃F
⌉⌉∗

≥
⌈⌈
rF̃
⌉⌉∗

≥ ddrF ee∗ ,

whence equality throughout. Finally, if F is a set with envelope F̃ , then

[F̃ ≥ 1] is a smaller envelope and a set.

We apply this now in particular to the Daniell mean of an L0-integrator Z .

Corollary 3.6.7 Let A be a subset of Ω , not necessarily measurable. If

B def= [0,∞)× A is Z−0-negligible, then the whole path of Z nearly vanishes

on A .

Proof. Let B̃ be a predictable Z−0-envelope of B and C its complement.

Since the natural conditions are in force, the debut T of C is a stopping time
(corollary A.5.12). Replace B̃ by B̃ \ ((T,∞)). This does not disturb T , but

has the effect that now the graph of T separates B̃ from its complement C .
Now fix an instant t < ∞ and an ε > 0 and set T ε = inf{s : |Zs| ≥ ε} .
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Figure 3.10

The stochastic interval [[0, T ∧ T ε ∧ t]] intersects C in a predictable subset of

the graph of T , which is therefore the graph of a predictable stopping time S
(theorem 3.5.13). The rest, [[0, T ∧ T ε ∧ t]] \ C ⊂ B̃ , is Z−0-negligible. The

random variable ZT∧T ε∧t is a member of the class
∫

[[0, T ∧ T ε ∧ t]] dZ =∫
[[S]] dZ (exercise 3.5.5), which also contains ∆ZS (theorem 3.5.14). Now

∆ZS = 0 on A , so we conclude that, on A , ZT ε∧t = ZT∧T ε∧t
.
= 0. Since

|ZT ε | ≥ ε on [T ε ≤ t] (proposition 1.3.11), we must conclude that A∩[T ε ≤ t]
is negligible. This holds for all ε > 0 and t <∞ , so A∩[Z?∞ > 0] is negligible.

As [Z?∞ > 0] =
⋃
n[Z

?
n > 0] ∈ A∞σ , A∩ [Z?∞ > 0] is actually nearly empty.

Exercise 3.6.8 Let X ≥ 0 be predictable. Then gXF = X eF Z−p-a.e.
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Exercise 3.6.9 Let eB be a predictable Z−0-envelope of B ⊂ B . Any two
Z−0-measurable processes X,X ′ that agree Z−0-almost everywhere on B agree

Z−0-almost everywhere on eB .

Regularity

Here is an analog of the well-known fact that the measure of a Lebesgue

integrable set is the supremum of the Lebesgue measures of the compact sets

contained in it (exercise A.3.14). The role of the compact sets is taken by
the collection P00 of predictable processes that are bounded and vanish after

some instant.

Corollary 3.6.10 For any Z−p-measurable process F ,

ddF ee∗Z−p = sup

{⌈⌈∫
Y dZ

⌉⌉
p

: Y ∈ P00, |Y | ≤ |F |
}
.

Proof. Since dd
∫
Y dZ ee

p
≤ ddY ee∗

Z−p ≤ ddF ee∗
Z−p , one inequality is obvious.

For the other, the solidity of dd ee∗
Z−p and proposition 3.6.6 allow us to assume

that F is positive and predictable: if necessary, we replace F by |F |
˜

. To start

with, assume that F is Z−p-integrable and let ε > 0. There are an X ∈ E+

with ddF −X ee∗
Z−p < ε/3 and a Y ′ ∈ E with |Y ′| ≤ X such that

⌈⌈∫
Y ′ dZ

⌉⌉
p
> ddX ee∗Z−p − ε/3 .

The process Y def= (−F ) ∨ Y ′ ∧ F belongs to P00 , |Y ′ − Y | ≤
∣∣F −X

∣∣ , and

⌈⌈∫
Y dZ

⌉⌉
Lp

≥
⌈⌈∫

Y ′ dZ
⌉⌉
Lp

− ε/3 ≥ ddX ee∗Z−p − 2ε/3 ≥ ddF ee∗Z−p − ε .

Since |Y | ≤ F and ε > 0 was arbitrary, the claim is proved in the case

that F is Z−p-integrable. If F is merely Z−p-measurable, we apply proposi-
tion 3.6.5. The F (n) def=

(
|F | ∧n

)
·[[0, n]] increase to |F | . If ddF ee∗

Z−p > a , then

ddF (n) ee∗
Z−p > a for large n , and the argument above produces a Y ∈ P00

with |Y | ≤ F (n) ≤ F and dd
∫
Y dZ ee

p
> a .

Corollary 3.6.11 (i) A process F is Z−p-negligible if and only if it is
Z−0-negligible, and is Z−p-measurable if and only if it is Z−0-measurable.

(ii) Let F ≥ 0 be any process and F̃ predictable. Then F̃ is a predictable

Z−p-envelope of F if and only if it is a predictable Z−0-envelope.

Proof. (i) By the countable subadditivity of dd ee∗
Z−p and dd ee∗

Z−0 it suffices to

prove the first claim under the additional assumption that |F | is majorized
by an elementary integrand, say |F | ≤ n·[[0, n]]. The infimum of a predictable

Z−p-envelope and a predictable Z−0-envelope is a predictable envelope in the
sense both of dd ee∗

Z−p and dd ee∗
Z−0 and is integrable in both senses, with the
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same integral. So if ddF ee∗
Z−0 = 0, then ddF ee∗

Z−p = 0. In view of coroll-
ary 3.4.5, Z−p-measurability is determined entirely by the Z−p-negligible sets:

the Z−p-measurable and Z−0-measurable real-valued processes are the same.
We leave part (ii) to the reader.

Definition 3.6.12 In view of corollary 3.6.11 we shall talk henceforth

about Z-negligible and Z-measurable processes, and about predictable
Z-envelopes.
Exercise 3.6.13 Let Z be an Lp-integrator, T a stopping time, and G a process. 6

Then
ddG · [[0, T ]]ee∗Z−p = ddGee∗ZT−p .

Consequently, G is ZT−p-integrable if and only if G · [[0, T ]] is Z−p-integrable, and
in that case Z

G dZT =

Z
G · [[0, T ]] dZ .

Exercise 3.6.14 Let Z,Z ′ be L0-integrators. If F is both Z−0-integrable
(Z−0-negligible, Z−0-measurable) and Z ′−0-integrable (Z ′−0-negligible, Z ′−0-measur-
able), then it is (Z+Z ′)−0-integrable ((Z+Z ′)−0-negligible, (Z+Z ′)−0-measurable).

Exercise 3.6.15 Suppose Z is a local Lp-integrator. According to proposi-
tion 2.1.9, Z is an L0-integrator, and the notions of negligibility and measurability
for Z have been defined in section 3.2. On the other hand, given the definition of a
local Lp-integrator one might want to define negligibility and measurability locally.
No matter:

Let (Tn) be a sequence of stopping times that increase without bound and
reduce Z to Lp-integrators. A process is Z-negligible or Z-measurable if and only
if it is ZTn -negligible or ZTn -measurable, respectively, for every n ∈ N .

Exercise 3.6.16 The Daniell mean is also minimal in this sense: if dd ee∗ is a mean
such that ddX ee∗

Z−p
≤ ddX ee∗ for all elementary integrands X , then ddF ee∗

Z−p
≤ ddF ee∗

for all predictable F .

Exercise 3.6.17 A process X is Z−0-integrable if and only if for every ε > 0
and α there is an X ′ ∈ E with ‖X −X ′‖∗

Z−[α]
< ε .

Exercise 3.6.18 Let Z be an Lp-integrator, 0 ≤ p < ∞ . There exists a positive
σ-additive measure µ on P that has the same negligible sets as dd ee∗

Z−p
. If p ≥ 1,

then µ can be chosen so that |µ(X)| ≤ ddX ee∗
Z−p

. Such a measure is called a control

measure for Z .

Exercise 3.6.19 Everything said so far in this chapter remains true mutatis

mutandis if Lp(P) is replaced by the closure L1(‖ ‖∗) of the step function over F∞

under a mean ‖ ‖∗ that has the same negligible sets as P .

Stability Under Change of Measure

Let Z be an L0(P)-integrator and P′ a measure on F∞ absolutely continuous

with respect to P . Since the injection of L0(P) into L0(P′) is bounded, Z is
an L0(P′)-integrator (proposition 2.1.9). How do the integrals compare?

Proposition 3.6.20 A Z−0;P-negligible (-measurable, -integrable) process
is Z−0;P′-negligible (-measurable, -integrable). The stochastic integral of a

Z−0;P-integrable process does not depend on the choice of the probability P
within its equivalence class.
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Proof. For simplicity of reading let us write dd ee for dd ee
Z−0;P , dd ee′ for

dd ee
Z−0;P′ , and dd ee′∗

Z−0 for the Daniell mean formed with dd ee′ . Exer-

cise A.8.12 on page 450 furnishes an increasing right-continuous function

Φ : (0, 1] → (0, 1] with Φ(r) −−→r→0 0 such that

ddf ee′ ≤ Φ
(
ddf ee

)
, f ∈ L0(P) .

The monotonicity of Φ causes the same inequality to hold on E↑+ :

ddHee′∗Z−0 = sup
{⌈⌈∫

X dZ
⌉⌉′

: X ∈ E , |X| ≤ H
}

≤ sup
{

Φ
(⌈⌈∫

X dZ
⌉⌉)

: X ∈ E , |X| ≤ H
}
≤ Φ

(
ddHee∗Z−0

)

for H ∈ E↑+ ; the right-continuity of Φ allows its extension to all processes F :

ddFee′∗Z−0 = inf
{
ddHee′Z−0 : H ∈ E↑+ , H ≥ |F |

}

≤ inf
{

Φ
(
ddHee∗Z−0

)
: H ∈ E↑+ , H ≥ |F |

}
= Φ

(
ddF ee∗Z−0

)
.

Since Φ(r) −−→r→0 0, a dd ee∗
Z−0-negligible process is dd ee′∗

Z−0-negligible, and a

dd ee∗
Z−0-Cauchy sequence is dd ee′∗

Z−0-Cauchy. A process that is negligible,

integrable, or measurable in the sense dd ee∗
Z−0 is thus negligible, integrable,

or measurable, respectively, in the sense dd ee′∗
Z−0 .

Exercise 3.6.21 For the conclusion that Z is an L0(P′)-integrator and that a
Z−0;P-negligible (-measurable) process is Z−0;P′-negligible (-measurable) it suffices
to know that P′ is locally absolutely continuous with respect to P .

Exercise 3.6.22 Modify the proof of proposition 3.6.20 to show in conjunction
with exercise 3.2.16 that, whichever gauge on Lp is used to do Daniell’s extension
with – even if it is not subadditive – , the resulting stochastic integral will be the
same.

3.7 The Indefinite Integral

Again a probability P , an exponent p ≥ 0, and an Lp(P)-integrator Z are

fixed, and the filtration satisfies the natural conditions.

For motivation consider a measure dz on R+ . The indefinite integral of a
function g against dz is commonly defined as the function t 7→

∫ t
0
gs dzs . For

this to make sense it suffices that g be locally integrable, i.e., dz-integrable on
every bounded set. For instance, the exponential function is locally Lebesgue

integrable but not integrable, and yet is of tremendous use. We seek the
stochastic equivalent of the notions of local integrability and of the indefinite

integral.
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The stochastic analog of a bounded interval [0, t] ⊂ R+ is a finite stochastic
interval [[0, T ]]. What should it mean to say “G is Z−p-integrable on the

stochastic interval [[0, T ]]”? It is tempting to answer “the process G · [[0, T ]] is
Z−p-integrable.6” This would not be adequate, though. Namely, if Z is not

an Lp-integrator, merely a local one, then dd ee∗
Z−p may fail to be finite on

elementary integrands and so may be no mean; it may make no sense to talk

about Z−p-integrable processes. Yet in some suitable sense, we feel, there
ought to be many. We take our clue from the classical formula

∫ t

0

g dz def=

∫
g · 1[0,t] dz =

∫
g dzt ,

where zt is the stopped distribution function s 7→ zts
def= zt∧s . This observa-

tion leads directly to the following definition:

Definition 3.7.1 Let Z be a local Lp-integrator, 0 ≤ p < ∞ . The process G
is Z−p-integrable on the stochastic interval [[0, T ]] if T reduces Z to an

Lp-integrator and G is ZT−p-integrable. In this case we write

∫ T

0

G dZ =

∫ T ]]

[[0

G dZ def=

∫
G dZT .

If S is another stopping time, then

∫ T

S+

G dZ =

∫ T ]]

((S

G dZ def=

∫
G · ((S,∞)) dZT . (3.7.1)

The expressions in the middle are designed to indicate that the endpoint [[T ]]
is included in the interval of integration and [[S]] is not, just as it should be

when one integrates on the line against a measure that charges points. We
will however usually employ the notation on the left with the understanding

that the endpoints are always included in the domain of integration, unless
the contrary is explicitly indicated, as in (3.7.1). An exception is the point ∞ ,

which is never included in the domain of integration, so that
∫∞
S

and
∫∞−
S

mean the same thing. Below we also consider cases where the left endpoint

[[S]] is included in the domain of integration and the right endpoint [[T ]] is

not. For (3.7.1) to make sense we must assume of course that ZT is an
Lp-integrator.

Exercise 3.7.2 If G is Z−p-integrable on ((S(i), T (i)]] , i = 1, 2, then it is
Z−p-integrable on the union ((S(1) ∧ S(2), T (1) ∨ T (2)]] .

Definition 3.7.3 Let Z be a local Lp-integrator, 0 ≤ p <∞ . The process G is
locally Z−p-integrable if it is Z−p-integrable on arbitrarily large stochastic

intervals, that is to say, if for every ε > 0 and t < ∞ there is a stopping
time T with P[T < t] < ε that reduces Z to an Lp-integrator such that G is

ZT−p-integrable.
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Here is yet another indication of the flexibility of L0-integrators:

Proposition 3.7.4 Let Z be a local L0-integrator. A locally Z−0-integrable

process is Z−0-integrable on every almost surely finite stochastic interval.

Proof. The stochastic interval [[0, U ]] is called almost surely finite, of course,

if P[U = ∞] = 0. We know from proposition 2.1.9 that Z is an L0-integrator.
Thanks to exercise 3.6.13 it suffices to show that G′ def= G · [[0, U ]] is

Z−0-integrable. Let ε > 0. There exists a stopping time T with P[T < U ] < ε
so that G and then G′ are ZT−0-integrable.6 Then G′′ def= G′ · [[0, T ]] =

G · [[0, U ∧ T ]] is Z−0-integrable (ibidem). The difference G′′′ = G′ − G′′ is
Z-measurable and vanishes off the stochastic interval I def= ((T, U ]] , whose pro-

jection on Ω has measure less than ε , and so ddG′′′ ee∗
Z−0 ≤ ε (exercise 3.1.2).

In other words, G′ differs arbitrarily little (by less than ε) in dd ee∗
Z−0-mean

from a Z−0-integrable process (G′′ ). It is thus Z−0-integrable itself (proposi-
tion 3.2.20).

The Indefinite Integral

Let Z be a local Lp-integrator, 0 ≤ p < ∞ , and G a locally Z−p-integrable

process. Then Z is an L0-integrator and G is Z−0-integrable on every finite
deterministic interval [[0, t]] (proposition 3.7.4). It is tempting to define the

indefinite integral as the function t 7→
∫
G dZt . This is for every t a class in

L0 (definition 3.2.14). We can be a little more precise: since
∫
X dZt ∈ Ft

when X ∈ E , the limit
∫
G dZt of such elementary integrals can be viewed

as an equivalence class of Ft-measurable random variables. It is desirable to
have for the indefinite integral a process rather than a mere slew of classes.

This is possible of course by the simple expedient of selecting from every class∫
G dZt ⊂ L0(Ft,P) a random variable measurable on Ft . Let us do that

and temporarily call the process so obtained G∗Z :

(G∗Z)t ∈
∫
G dZt and (G∗Z)t ∈ Ft ∀ t . (3.7.2)

This is not really satisfactory, though, since two different people will in general
come up with wildly differing modifications G∗Z . Fortunately, this deficiency

is easily repaired using the following observation:

Lemma 3.7.5 Suppose that Z is an L0-integrator and that G is locally
Z−0-integrable. Then any process G∗Z satisfying (3.7.2) is an L0-integrator

and consequently has an adapted modification that is right-continuous with
left limits. If G∗Z is such a version, then

(G∗Z)T ∈
∫ T

0

G dZ (3.7.3)

for any stopping time T for which the integral on the right exists – in partic-

ular for all almost surely finite stopping times T .
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Proof. It is immediate from the Dominated Convergence Theorem that G∗Z
is right-continuous in probability. For if tn ↓ t , then (G∗Z)tn − (G∗Z)t ∈∫
G · ((t, tn]] dZ → 0 dd ee

L0 -mean. To see that the L0-boundedness condition
(B-0) of definition 2.1.7 is satisfied as well, take an elementary integrand X

as in (2.1.1), to wit,6

X = f0 · [[0]] +
N∑

n=1

fn · ((tn, tn+1]] , fn ∈ Ftn simple.

Then

∫
X d(G∗Z) = f0 · (G∗Z)0 +

∑

n

fn ·
(
(G∗Z)tn+1

− (G∗Z)tn
)

∈ ḟ0 · Ġ0Ż0 +
∑

n

ḟn ·
∫ tn+1

tn+

G dZ

by exercise 3.5.5: = ḟ0Ġ0 · Ż0 +

∫ ∑

n

fn · ((tn, tn+1]] ·G dZ

=

∫
X ·G dZ . (3.7.4)

Multiply with λ > 0 and measure both sides with dd ee
L0 to obtain

⌈⌈∫
λX d(G∗Z)

⌉⌉
L0

=
⌈⌈∫

λX ·G dZ
⌉⌉
L0

≤ ddλX ·Gee∗Z−0 ≤ ddλ ·Gee∗Zt−0

for all X ∈ E with |X| ≤ 1. The right-hand side tends to zero as λ → 0:
(B-0) is satisfied, and G∗Z indeed is an L0-integrator.

Theorem 2.3.4 in conjunction with the natural conditions now furnishes
the desired right-continuous modification with left limits. Henceforth G∗Z
denotes such a version.

To prove equation (3.7.3) we start with the case that T is an elementary

stopping time; it is then nothing but (3.7.4) applied to X = [[0, T ]]. For a

general stopping time T we employ once again the stopping times T (n) of
exercise 1.3.20. For any k they take only finitely many values less than k

and decrease to T . In taking the limit as n→ ∞ in

(G∗Z)T (n)∧k ∈
∫ T (n)∧k

0

G dZ ,

the left-hand side converges to (G∗Z)T∧k by right-continuity, the right-hand

side to6
∫ T∧k
0

G dZ=
∫
G · [[0, T ∧ k]] dZ by the Dominated Convergence The-

orem. Now take k → ∞ and use the domination
∣∣G · [[0, T ∧ k]]

∣∣≤
∣∣G · [[0, T ]]

∣∣
to arrive at (G∗Z)T

.
=
∫
G · [[0, T ]] dZ. In view of exercise 3.6.13, this is

equation (3.7.3).
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Any two modifications produced by lemma 3.7.5 are of course indistinguish-
able. This observation leads directly to the following:

Definition 3.7.6 Let Z be an L0-integrator and G a locally Z−0-integrable

process. The indefinite integral is a process G∗Z that is right-continuous
with left limits and adapted to FP

.+ and that satisfies

(G∗Z)t ∈
∫ t

0

G dZ def=

∫
G dZt ∀ t ∈ [0,∞) .

It is unique up to indistinguishability. If G is Z−0-integrable, it is understood

that G∗Z is chosen so as to have almost surely a finite limit at infinity as
well.

So far it was necessary to distinguish between random variables and their
classes when talking about the stochastic integral, because the latter is by

its very definition an equivalence class modulo negligible functions. Hence-
forth we shall do this: when we meet an L0-integrator Z and a lo-

cally Z−0-integrable process G we shall pick once and for all an indefi-
nite integral G∗Z ; then

∫ T
S+

G dZ will denote the specific random variable

(G∗Z)T−(G∗Z)S , etc. Two people doing this will not come up with precisely

the same random variables
∫ T
S+

G dZ , but with nearly the same ones, since in
fact the whole paths of their versions of G∗Z nearly agree. If G happens to

be Z−0-integrable, then
∫
G dZ is the almost surely defined random variable

(G∗Z)∞.

Vectors of integrators Z = (Z1, Z2, . . . , Zd) appear naturally as drivers of

stochastic differentiable equations (pages 8 and 56). The gentle reader recalls
from page 109 that the integral extension

L1[dd ee∗Z−p] 3 X 7→
∫

X dZ

of the elementary integral Ě 3 X 7→
∫

X dZ

is given by (X1, . . . , Xd) = X 7→∑d
η=1

∫
Xη dZ

η .

Therefore X∗Z def=
∑d
η=1Xη∗Zη

is reasonable notation for the indefinite integral of X against dZ ; the right-

hand side is a càdlàg process unique up to indistinguishability and satisfies
(X∗Z)T ∈

∫ T
0

X dZ ∀ T ∈ T . Henceforth
∫ T
0

XdZ means the random

variable (X∗Z)T .

Exercise 3.7.7 Define Z
Ip and show that Z

Ip = sup { X∗Z
Ip : X ∈ Ed1 } .

Exercise 3.7.8 Suppose we are faced with a whole collection P of probabilities, the
filtration F. is right-continuous, and Z is an L0(P)-integrator for every P ∈ P . Let
G be a predictable process that is locally Z−0;P-integrable for every P ∈ P . There
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is a right-continuous process G∗Z with left limits, adapted to the P-regularization
FP
. def=

T
P∈P

FP
. , that is an indefinite integral in the sense of L0(P) for every P ∈ P .

Exercise 3.7.9 If M is a right-continuous local martingale and G is locally
M−1-integrable (see corollary 2.5.29), then G∗M is a local martingale.

Integration Theory of the Indefinite Integral

If a measure dy on [0,∞) has a density with respect to the measure dz , say

dyt = gt dzt , then a function f is dy-negligible (-integrable, -measurable) if
and only if the product fg is dz-negligible (-integrable, -measurable). The

corresponding statements are true in the stochastic case:

Theorem 3.7.10 Let Z be an Lp-integrator, p ∈ [0,∞) , and G a
Z−p-integrable process. Then for all processes F

ddF ee∗(G∗Z)−p = ddF ·Gee∗Z−p and G∗Z Ip = ddGee∗Z−p . (3.7.5)

Therefore a process F is (G∗Z)−p-negligible (-integrable, -measurable) if and

only if F ·G is Z−p-negligible (-integrable, -measurable). If F is locally
(G∗Z)−p-integrable, then

F∗(G∗Z) = (FG)∗Z ,

in particular

∫
F d(G∗Z)

.
=

∫
F ·G dZ

when F is (G∗Z)−p-integrable.

Proof. Let Y = G∗Z denote the indefinite integral. The family of bounded
processes X with

∫
X dY =

∫
XG dZ contains E (equation (3.7.4) on

page 133) and is closed under pointwise limits of bounded sequences. It
contains therefore the family Pb of all bounded predictable processes. The

assignment F 7→ ddFGee∗
Z−p is easily seen to be a mean: properties (i) and

(iii) of definition 3.2.1 on page 94 are trivially satisfied, (ii) follows from pro-

position 3.6.5, (iv) from the Dominated Convergence Theorem, and (v) from
exercise 3.2.15. If F is predictable, then, due to corollary 3.6.10,

ddF ee∗Y−p = sup
{⌈⌈∫

X dY
⌉⌉
p

: X ∈ Pb , |X| ≤ |F |
}

= sup
{⌈⌈∫

XG dZ
⌉⌉
p

: X ∈ Pb , |X| ≤ |F |
}

= sup
{⌈⌈∫

X ′ dZ
⌉⌉
p

: X ′ ∈ Pb , |X ′| ≤ |FG|
}

= ddFGee∗Z−p .
The maximality of Daniell’s mean (proposition 3.6.1 on page 123) gives

ddFGee∗
Z−p ≤ ddF ee∗

Y−p for all F . For the converse inequality let F̃ be a
predictable Y−p-envelope of F ≥ 0 (proposition 3.6.6). Then

ddF ee∗Y−p =
⌈⌈
F̃
⌉⌉∗
Y−p

=
⌈⌈
F̃G

⌉⌉∗
Z−p

≥ ddFGee∗Z−p .
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This proves equation (3.7.5). The second claim is evident from this identity.
The equality of the integrals in the last line holds for elementary integrands

(equation (3.7.4)) and extends to Y−p-integrable processes by approximation
in mean: if E 3 X(n) → F in dd ee∗

Y−p-mean, then E 3 X(n) · G → F · G in

dd ee∗
Z−p-mean and so

∫
F dY

.
= lim

∫
X(n) dY

.
= lim

∫
X(n) ·G dZ

.
=

∫
F ·G dZ

in the topology of Lp . We apply this to the processes 6 F ·[[0, t]] and find

that F∗(G∗Z) and (FG)∗Z are modifications of each other. Being right-
continuous and adapted, they are indistinguishable (exercise 1.3.28).

Corollary 3.7.11 Let G(n) and G be locally Z−0-integrable processes, Tk finite
stopping times increasing to ∞ , and assume that

⌈⌈
G−G(n)

⌉⌉∗
ZTk−0

−−−→n→∞ 0

for every k ∈ N . Then the paths of G(n)∗Z converge to the paths of G∗Z uni-

formly on bounded intervals, in probability. There are a subsequence
(
G(nk)

)

and a nearly empty set N outside which the path of G(nk)∗Z converges uni-

formly on bounded intervals to the path of G∗Z .

Proof. By lemma 2.3.2 and equation (3.7.5),

δ
(n)
k (λ) def= P

[(
G∗Z −G(n)∗Z

)?
Tk
> λ

]
= P

[(
(G−G(n))∗Z

)?
Tk
> λ

]

≤ λ−1
(
(G−G(n))∗Z

)Tk

I0
=
⌈⌈
λ−1

(
G−G(n)

)⌉⌉∗
ZTk−0

−−−→n→∞ 0 .

We take a subsequence
(
G(nk)

)
so that δ

(nk)
k (2−k) ≤ 2−k and set

N def= lim sup
k

[(
G∗Z −G(nk)∗Z

)?
Tk
> 2−k

]
.

This set belongs to A∞σ and by the Borel–Cantelli lemma is negligible: it is

nearly empty. If ω /∈ N , then the path
(
G(nk)∗Z

)
.(ω) converges evidently

to the path (G∗Z).(ω) uniformly on every one of the intervals [0, Tk(ω)] .

If X ∈ E , then X∗Z jumps precisely where Z jumps. Therefore:

Corollary 3.7.12 If Z has continuous paths, then every indefinite integral

G∗Z has a modification with continuous paths – which will then of course be
chosen.

Corollary 3.7.13 Let A be a subset of Ω , not necessarily measurable, and
assume the paths of the locally Z−0-integrable process G vanish almost surely

on A . Then the paths of G∗Z also vanish almost surely, in fact nearly, on A .
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Proof. The set [0,∞) × A ⊂ B is by equation (3.7.5) (G∗Z)-negligible.
Corollary 3.6.7 says that the paths of G∗Z nearly vanish on A .

Exercise 3.7.14 If G is Z−0-integrable, then G∗Z
[α]

= ‖G‖∗
Z−[α]

for α > 0.

Exercise 3.7.15 For any locally Z−0-integrable G and any almost surely finite

stopping time T the processes G∗ZT and (G∗Z)
T

are indistinguishable.

Exercise 3.7.16 (P.–A. Meyer) Let Z,Z ′ be L0-integrators and X,X ′ processes
that are integrable for both. Let Ω0 be a subset of Ω and T : Ω → R+ a time,
neither of them necessarily measurable. If X = X ′ and Z = Z′ up to and including
(excluding) time T on Ω0 , then X∗Z = X ′∗Z′ up to and including (excluding)
time T on Ω0 , except possibly on an evanescent set.

A General Integrability Criterion

Theorem 3.7.17 Let Z be an L0-integrator, T an almost surely finite stopping
time, and X a Z-measurable process. If X?

T is almost surely finite, then X

is Z−0-integrable on [[0, T ]].

This says – to put it plainly if a bit too strongly – that any reasonable

process is Z−0-integrable. The assumptions concerning the integrand are
often easy to check: X is usually given as a construct using algebraic and

order combinations and limits of processes known to be Z-measurable, so the
splendid permanence properties of measurability will make it obvious that

X is Z-measurable; frequently it is also evident from inspection that the
maximal process X? is almost surely finite at any instant, and thus at any

almost surely finite stopping time. In cases where the checks are that easy we
shall not carry them out in detail but simply write down the integral without

fear. That is the point of this theorem.

Proof. Let ε > 0. Since
[
X?
T ≤ K

]
↑ Ω almost surely as K ↑ ∞ , and since

outer measure P∗ is continuous along increasing sequences, there is a number
K with P∗

[
X∗T ≤ K

]
> 1 − ε . Write X ′ = X · [[0, T ]] and1

X ′ = X ′ ·
[
|X| ≤ K

]
+X ′ ·

[
|X| > K

]
= X(1) +X(2) .

Now ZT is a global L0-integrator, and so X(1) is ZT−0-integrable, even

Z−0-integrable (exercise 3.6.13). As to X (2) , it is Z-measurable and its

entire path vanishes on the set
[
X?
T ≤ K

]
. If Y is a process in P00 with

|Y | ≤ |X(2)| , then its entire path also vanishes on this set, and thanks to co-

rollary 3.7.13 so does the path of Y ∗Z , at least almost surely. In particular,∫
Y dZ = 0 almost surely on

[
X?
T ≤ K

]
. Thus B def=

[ ∫
Y dZ 6= 0

]
is a

measurable set almost surely disjoint from
[
X?
T ≤ K

]
. Hence P[B] ≤ ε and

dd
∫
Y dZ ee

0
≤ ε . Corollary 3.6.10 shows that ddX (2) ee∗

Z−0 ≤ ε . That is, X ′

differs from the Z−0-integrable process X (1) arbitrarily little in Z−0-mean and
therefore is Z−0-integrable itself. That is to say, X is indeed Z−0-integrable

on [[0, T ]].
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Exercise 3.7.18 Suppose that F is a process whose paths all vanish outside a set
Ω0 ⊂ Ω with P∗(Ω0) < ε . Then ddF ee∗

Z−0
< ε .

Exercise 3.7.19 If Z is previsible and T ∈ T , then the stopped process ZT is
previsible. If Z is a previsible integrator and X a Z−0-integrable process, then
X∗Z is previsible.

Exercise 3.7.20 Let Z be an L0-integrator and S, T two stopping times. (i) If
G is a process Z−0-integrable on ((S, T ]] and f ∈ L0(FS ,P), then the process f ·G
is Z−0-integrable on ((S, T ]]

and

Z T

S+

f ·G dZ = f ·
Z T

S+

G dZ ∈ FT a.s.

Also, for f ∈ L0(F0,P),

Z 0

0

f dZ =

Z 0]]

[[0

f dZ = f · Z0 .

(ii) If G is Z−0-integrable on [[0, T ]], S is predictable, and f is measurable on the
strict past of S and almost surely finite, then f ·G is Z−0-integrable on [[S,T ]], and

Z T

S

f ·G dZ = f ·
Z T

S

G dZ . (3.7.6)

(iii) Let (Sk) be a sequence of finite stopping times that increases to ∞ and fk
almost surely finite random variables measurable on FSk . Then G def=

P
k fk ·

((Sk, Sk+1]] is locally Z−0-integrable, and its indefinite integral is given by

(G∗Z)t
.
=
P
kfk ·

“
ZtSk+1

− ZtSk

”
=
P
kfk ·

“
Z
Sk+1
t − Z

Sk
t

”
.

Exercise 3.7.21 Suppose Z is an Lp-integrator for some p ∈ [0,∞), and X,X(n)

are previsible processes Z−p-integrable on [[0, T ]] and such that |X (n)−X|?T −−−→n→∞ 0

in probability. Then X is Z−p-integrable on [[0, T ]], and |X (n)∗Z −X∗Z|?T −−−→n→∞ 0
in Lp-mean (cf. [91]).

Approximation of the Integral via Partitions

The Lebesgue integral of a càglàd integrand, being a Riemann integral, can
be approximated via partitions. So can the stochastic integral:

Definition 3.7.22 A stochastic partition or random partition of the

stochastic interval [[0,∞)) is a finite or countable collection

S = {0 = S0 ≤ S1 ≤ S2 ≤ . . . ≤ S∞ ≤ ∞}

of stopping times. S is assumed to contain the stopping time S∞ def= supk Sk
– which is no assumption at all when S is finite or S∞ = ∞ . It simplifies

the notation in some formulas to set S∞+1
def= ∞ . We say that the random

partition T = {0 = T0 ≤ T1 ≤ T2 ≤ . . . ≤ T∞ ≤ ∞} refines S if
⋃

{[[S]] : S ∈ S} ⊆
⋃

{[[T ]] : T ∈ T } .

The mesh of S is the (non-adapted) process mesh[S] that at $ = (ω, s) ∈ B

has the value

inf
{
ρ
(
S(ω), S′(ω)

)
: S ≤ S′ in S , S(ω) < s ≤ S′(ω)

}
.



3.7 The Indefinite Integral 139

Here ρ is the arctan metric on R+ (see item A.1.2 on page 363). With the
random partition S and the process Z ∈ D goes the S-scalæfication

ZS def=
∑

0≤k≤∞
ZSk

·[[Sk, Sk+1))
def=

∑

0≤k<∞
ZSk

·[[Sk, Sk+1)) + ZS∞ · [[S∞,∞)) ,

defined so as to produce again a process ZS ∈ D .

The left-continuous version of the scalæfication of X ∈ D evidently is

XS.− =
∑

0≤k≤∞
XSk

·((Sk, Sk+1]]

with indefinite dZ-integral

(
XS.−∗Z

)
t
=
∑

0≤k≤∞
XSk

·
(
Z
Sk+1

t − ZSk
t

)
=

∫ t

0

XS.− dZ . (3.7.7)

Theorem 3.7.23 Let Sn = {0 = Sn0 ≤ Sn1 ≤ Sn2 ≤ . . . ≤ ∞} be a sequence

of random partitions of B such that mesh[Sn] −−−→n→∞ 0 except possibly on an
evanescent set.8 Assume that Z is an Lp-integrator for some p ∈ [0,∞) ,

that X ∈ D, and that the maximal process of X.− ∈ L is Z−p-integrable
on every interval [[0, u]] – recall from theorem 3.7.17 that this is automatic

when p = 0. The indefinite integrals XS
n

.− ∗Z of (3.7.7) then approximate the
indefinite integral X.−∗Z uniformly in p-mean, in the sense that for every

instant u <∞ ⌈⌈
|X.−∗Z −XS

n

.− ∗Z|?u
⌉⌉
p
−−−→n→∞ 0 . (3.7.8)

Proof. Due to the left-continuity of X.− , we evidently have

XS
n

.− −−−→n→∞ X.− pointwise on B. (3.7.9)

Also |XSn

.− −X.−| · [[0, u]] ≤ 2|X.−|?u · [[0, u]] ∈ L1[dd ee∗Z−p] ,

so the Dominated Convergence Theorem gives dd|XSn

.− −X.−|·[[0, u]]ee
∗
Z−p−−−→n→∞ 0.

An application of the maximal theorem 2.3.6 on page 63 leads to
∥∥∥
∣∣XSn

.− ∗Z −X.−∗Z
∣∣?
u

∥∥∥
p
≤ C?(2.3.5)p · (XS

n

.− −X.−)∗Zu
Ip

by theorem 3.7.10: ≤ C?p ·
∥∥∥|XSn

.− −X.−| · [[0, u]]
∥∥∥
∗

Z−p
−−−→n→∞ 0 .

This proves the claim for p > 0. The case p = 0 is similar.

Note that equation (3.7.8) does not permit us to conclude that the approxi-
mants XS

n

.− ∗Z converge to X.−∗Z almost surely; for that, one has to choose

the partitions Sn so that the convergence in equation (3.7.9) becomes uni-
form (theorem 3.7.26); even sup$∈B mesh[Sn]($) −−−→n→∞ 0 does not guaran-

tee that.

8 A partition S is assumed to contain S∞
def= sup

k<∞
Sk , and defining S∞+1

def= ∞ simplifies
some formulas.
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Exercise 3.7.24 For every X ∈ D and (Sn) there exists a subsequence (Snk)

that depends on Z and is impossible to find in practice, so that XSnk
.− ∗Z → X.−∗Z

almost surely uniformly on bounded intervals.

Exercise 3.7.25 Any two stochastic partitions have a common refinement.

Pathwise Computation of the Indefinite Integral

The discussion of chapter 1, in particular theorem 1.2.8 on page 17, seems to

destroy any hope that
∫
GdZ can be understood pathwise, not even when

both the integrand G and the integrator Z are nice and continuous, say. On

the other hand, there are indications that the path of the indefinite integral

G∗Z is determined to a large extent by the paths of G and Z alone: this
is certainly true if G is elementary, and corollary 3.7.11 seems to say that

this is still so almost surely if G is any integrable process; and exercise 3.7.16
seems to say the same thing in a different way.

There is, in fact, an algorithm implementable on an (ideal) computer that
takes the paths s 7→ Xs(ω) and s 7→ Zs(ω) and computes from them an

approximate path s 7→ Y
(δ)
s (ω) of the indefinite integral X.−∗Z . If the

parameter δ > 0 is taken through a sequence (δn) that converges to zero
sufficiently fast, the approximate paths Y (δn)

. (ω) converge uniformly on every

finite stochastic interval to the path (X.−∗Z).(ω) of the indefinite integral.
Moreover, the rate of convergence can be estimated.

This applies only to certain integrands, so let us be precise about the
data. The filtration is assumed right-continuous. P is a fixed probability

on F∞ , and Z is a right-continuous L0(P)-integrator. As to the integrand, it
equals the left-continuous version X.− of some real-valued càdlàg adapted

process X ; its value at time 0 is 0. The integrand might be the left-

continuous version of a continuous function of some integrator, for a typical
example. Such a process is adapted and left-continuous, hence predictable

(proposition 3.5.2). Since its maximal function is finite at any instant, it
is locally Z−0-integrable (theorem 3.7.17). Here is the typical approximate

Y (δ) to the indefinite integral Y = X.−∗Z : fix a threshold δ > 0. Set

S0
def= 0 and Y

(δ)
0

def= 0; then proceed recursively with

Sk+1
def= inf

{
t > Sk :

∣∣Xt −XSk

∣∣ > δ
}

(3.7.10)

and Y
(δ)
t

def= YSk
+XSk

· (Zt − ZSk
) for Sk < t ≤ Sk+1

by induction: =
k∑

κ=1

XSκ
·
(
ZtSκ+1

− ZtSκ

)
. (3.7.11)

In other words, the prescription is this: wait until the change in the integrand

warrants a new computation, then do a linear approximation – the scheme
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above is an adaptive Riemann-sum scheme. 9 Another way of looking at
it is to note that (3.7.10) defines a stochastic partition S = Sδ and that by

equation (3.7.7) the process Y (δ)
. is but the indefinite dZ-integral of XS.− .

The algorithm (3.7.10)–(3.7.11) converges pathwise provided δ is taken

through a sequence (δn) that converges sufficiently quickly to zero:

Theorem 3.7.26 Choose numbers δn > 0 so that

∞∑

n=1

nδn · Zn I0 <∞ (3.7.12)

(Zn is Z stopped at the instant n). If X is any adapted càdlàg process,

then X.− is locally Z−0-integrable; and for nearly all ω ∈ Ω the approxi-
mates Y (δn)

. (ω) of (3.7.11) converge to the indefinite integral (X.−∗Z).(ω)

uniformly on any finite interval, as n→ ∞ .

Remarks 3.7.27 (i) The sequence (δn) depends only on the integrator sizes
of the stopped processes Zn . For instance, if Z Ip < ∞ for some p > 0,

then the choice δn
def= n−q will do as long as q > 1 + 1 ∨ 1/p .

The algorithm (3.7.10)–(3.7.11) can be viewed as a black box – not hard

to write as a program on a computer once the numbers δn are fixed – that
takes two inputs and yields one output. One of the inputs is a path Z.(ω) of

any integrator Z satisfying inequality (3.7.12); the other is a path X.(ω) of
any X ∈ D . Its output is the path (X.−∗Z).(ω) of the indefinite integral –

where the algorithm does not converge have the box produce the zero path.
(ii) Suppose we are not sure which probability P is pertinent and are faced

with a whole collection P of them. If the size of the integrator Z is bounded
independently of P ∈ P in the sense that

f(λ) def= sup
P∈P

λ·Z Ip[P]
−−−→
λ→0 0 , (3.7.13)

then we choose δn so that
∑
n f(nδn) < ∞ . The proof of theorem 3.7.26

shows that the set where the algorithm (3.7.11) does not converge belongs
to A∞σ and is negligible for all P ∈ P simultaneously, and that the limit is

X.−∗Z , understood as an indefinite integral in the sense L0(P) for all P ∈ P .

(iii) Assume (3.7.13). By representing (X,Z) on canonical path space D2

(item 2.3.11), we can produce a universal integral. This is a bilinear map

D × D → D , adapted to the canonical filtrations and written as a binary
operation .−⊕∗ , such that X.−∗Z is but the composition X.−⊕∗Z of (X,Z)

with this operation. We leave the details as an exercise.

9 This is of course what one should do when computing the Riemann integral
R θ
η f(x)dx

for a continuous integrand f that for lack of smoothness does not lend itself to a simplex
method or any other method whose error control involves derivatives: chopping the x-axis
into lots of little pieces as one is ordinarily taught in calculus merely incurs round-off errors
when f is constant or varies slowly over long stretches.
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(iv) The theorem also shows that the problem about the “meaning in
mean” of the stochastic differential equation (1.1.5) raised on page 6 is really

no problem at all: the stochastic integral appearing in (1.1.5) can be read
as a pathwise10 integral, provided we do not insist on understanding it as a

Lebesgue–Stieltjes integral but rather as defined by the limit of the algorithm
(3.7.11) – which surely meets everyone’s intuitive needs for an integral 11 –

and provided the integrand b(X) belongs to L .
(v) Another way of putting this point is this. Suppose we are, as is the case

in the context of stochastic differential equations, only interested in stochastic
integrals of integrands in L ; such are on ((0,∞)) the left-continuous versions

X.− of càdlàg processes X ∈ D . Then the limit of the algorithm (3.7.11)
serves as a perfectly intuitive definition of the integral. From this point of

view one might say that the definition 2.1.7 on page 49 of an integrator serves

merely to identify the conditions 12 under which this limit exists and defines
an integral with decent limit properties. It would be interesting to have a

proof of this that does not invoke the whole machinery developed so far.

Proof of Theorem 3.7.26. Since the filtration is right-continuous, one sees

recursively that the Sk are stopping times (exercise 1.3.30). They increase
strictly with k and their limit is ∞ . For on the set

[
supk Sk <∞

]
X must

have an oscillatory discontinuity or be unbounded, which is ruled out by the
assumption that X ∈ D : this set is void. The key to all further arguments

is the observation that Y (δ) is nothing but the indefinite integral of 6

XS.− =

∞∑

k=0

XSk
· ((Sk, Sk+1]] ,

with S denoting the partition {0 = S0 ≤ S1 ≤ · · ·} . This is a predictable

process (see proposition 3.5.2), and in view of exercise 3.7.20

Y (δ) = XS.−∗Z .

The very construction of the stopping times Sk is such that X.− and XS.−
differ uniformly by less than δ . The indefinite integral X.−∗Z may not exist

in the sense Z−p if p > 0, but it does exist in the sense Z−0, since the
maximal process of an X.− ∈ L is finite at any finite instant t (use theo-

rem 3.7.17). There is an immediate estimate of the difference X.−∗Z − Y (δ) .
Namely, let U be any finite stopping time. If X.−·[[0, U ]] is Z−p-integrable

for some p ∈ [0,∞), then the maximal difference of the indefinite integral
X.−∗Z from Y (δ) can be estimated as follows:

P
[∣∣X.−∗Z − Y (δ)

∣∣?
U
> λ

]
= P

[∣∣∣(X.− −XS.−)∗Z
∣∣∣
?

U
> λ

]

10 That is, computed separately for every single path t 7→ (Xt(ω), Zt(ω)), ω ∈ Ω.
11 See, however, pages 168–171 and 310 for further discussion of this point.
12 They are (RC-0) and (B-p), ibidem.
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by lemma 2.3.2: ≤ 1

λ
· (X.− −XS.−)∗ZU

Ip

using (3.7.5) twice: ≤ δ

λ
· ZU

Ip
. (3.7.14)

At p = 0 inequality (3.7.14) has the consequence

P
[∣∣X.−∗Z − Y (δn)

∣∣?
u
> 1/n

]
≤ nδn · Zn I0 , n ≥ u .

Since the right-hand side is summable over n by virtue of the choice (3.7.12)

of the δn , the Borel-Cantelli lemma yields at any instant u

P
[
lim sup
n→∞

∣∣X.−∗Z − Y (δn)
∣∣?
u
> 0

]
= 0 .

Remark 3.7.28 The proof shows that the particular definition of the Sk
in equation (3.7.10) is not important. What is needed is that X.− differ
from XSk

by less than δ on ((Sk, Sk+1]] and of course that limk Sk = ∞ ;

and (3.7.10) is one way to obtain such Sk . We might, for instance, be con-
fronted with several L0-integrators Z1, . . . , Zd and left-continuous integrands

X1.−, . . . , Xd.− . In that case we set S0 = 0 and continue recursively by

Sk+1 = inf
{
t > Sk : sup

1≤η≤d

∣∣Xηt −XηSk

∣∣ > δ
}

and choose the δn so that supη
∑∞
n=1 nδn · (Zη)n I0 < ∞ . Equa-

tion (3.7.10) then defines a black box that computes the integrals Xη
.−∗Zη

pathwise simultaneously for all η ∈ {1, . . . , d} , and thus computes X.−∗Z =∑
ηXη.−∗Zη .

Exercise 3.7.29 Suppose Z is a global L0-integrator and the δn are chosen so thatP
n nδn · Z

I0 is finite. If X.− ∈ L is Z−0-integrable, then the approximate path

Y (δn)
. (ω) of (3.7.11) converges to the path of the indefinite integral (X.−∗Z).(ω)

uniformly on [0,∞), for almost all ω ∈ Ω.

Exercise 3.7.30 We know from theorem 2.3.6 that ‖Z?∞‖
p
≤ C

?(2.3.5)
p Z

Ip .

This can be used to establish the following strong version of the weak-type inequal-
ity (3.7.14), which is useful only when Z is Ip-bounded on [[0, U ]]:

‚‚‚
˛̨
˛X.−∗Z − Y (δ)

˛̨
˛
?

U

‚‚‚
p
≤ δC?p · ZU

Ip , 0 < p <∞.

Exercise 3.7.31 The rate at which the algorithm (3.7.11) converges as δ → 0 does
not depend on the integrand X.− and depends on the integrator Z only through
the function λ 7→ λZ

Ip . Suppose Z is an Lp-integrator for some p > 0, let U be
a stopping time, and suppose X.− is a priori known to be Z−p-integrable on [[0, U ]].
(i) With δ as in (3.7.11) derive the confidence estimate

P

»
sup

0≤s≤U

|X.−∗Z − Y (δ)|s > λ

–
≤
»
δ

λ

–p∧1

· ZU
Ip .

How must δ be chosen, if with probability 0.9 the error is to be less than 0.05
units?



144 3 Extension of the Integral

(ii) If the integrand X.− varies furiously, then the loop (3.7.10)–(3.7.11) inside
our black box is run through very often, even when δ is moderately large, and
round-off errors accumulate. It may even occur that the stopping times Sk follow
each other so fast that the physical implementation of the loop cannot keep up. It
is desirable to have an estimate of the number N(U) of calculations needed before a
given ultimate time U of interest is reached. Now, rather frequently the integrand
X.− comes as follows: there are an Lq-integrator X ′ and a Lipschitz function13

Φ such that X.− is the left-continuous version of Φ(X ′). In that case there is a
simple estimate for N(U): with cq = 1 for q ≥ 2 and cq ≤ 2.00075 for 0 < q < 2,

P[N(U) > K] ≤ cq

 
L X ′U

Iq

δ
√
K

!q
.

Exercise 3.7.32 Let Z be an L0-integrator. (i) If Z has continuous paths
and X is Z−0-integrable, then X∗Z has continuous paths. (ii) If X is the uniform
limit of elementary integrands, then ∆(X∗Z) = X · ∆Z . (iii) If X ∈ L , then
∆(X∗Z) = X · ∆Z . (See proposition 3.8.21 for a more general statement.)

Integrators of Finite Variation

Suppose our L0-integrator Z is a process V of finite variation. Surely our

faith in the merit of the stochastic integral would increase if in this case it were
the same as the ordinary Lebesgue–Stieltjes integral computed path-by-path.

In other words, we hope that for all instants t

(
X∗V

)
t
(ω) = LS−

∫ t

0

Xs(ω) dVs(ω) , (3.7.15)

at least almost surely. Since both sides of the equation are right-continuous
and adapted, X∗Z would then in fact be indistinguishable from the indefinite

Lebesgue–Stieltjes integral.

There is of course no hope that equation (3.7.15) will be true for all

integrands X . The left-hand side is only defined if X is locally V−0-integrable

and thus “somewhat non-anticipating.” And it also may happen that the left-
hand side is defined but the right-hand side is not. The obstacle is that for

the Lebesgue–Stieltjes integral on the right to exist in the usual sense it is
necessary that the upper integral 6

∫ ∗ ∣∣Xs(ω)
∣∣ · [0, t]s

∣∣dVs(ω)
∣∣ be finite; and

for the equality itself the random variable ω 7→ LS−
∫ t
0
Xs(ω) dVs(ω) must be

measurable on Ft . The best we can hope for is that the class of integrands X

for which equation (3.7.15) holds be rather large. Indeed it is:

Proposition 3.7.33 Both sides of equation (3.7.15) are defined and agree

almost surely in the following cases:

(i) X is previsible and the right-hand side exists a.s.

(ii) V is increasing and X is locally V−0-integrable.

13 |Φ(x)− Φ(x′)| ≤ L|x− x′| for x, x′ ∈ R. The smallest such L is the Lipschitz constant
of Φ.
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Proof. (i) Equation (3.7.15) is true by definition if X is an elementary in-
tegrand. The class of processes X such that LS−

∫ t
0
Xs dVs belongs to the

class of the stochastic integral
∫ t
0
X dV and is thus almost surely equal to

(X∗V )t is evidently a vector space closed under limits of bounded monotone
sequences. So, thanks to the monotone class theorem A.3.4, equation (3.7.15)

holds for all bounded predictable X , and then evidently for all bounded pre-
visible X . To say that LS−

∫ t
0
Xs(ω) dVs(ω) exists almost surely implies that

LS−
∫ t
0
|X|s(ω) |dVs|(ω) is finite almost surely. Then evidently |X| is finite

for the mean dd ee∗
V−0 , so by the Dominated Convergence Theorem −n∨X∧n

converges in dd ee∗
V−0-mean to X , and the dV -integrals of this sequence con-

verge to both the right-hand side and the left-hand side of equation (3.7.15),

which thus agree.

(ii) We split X into its positive and negative parts and prove the claim for
them separately. In other words, we may assume X ≥ 0. We sandwich X

between two predictable processes X
˜

≤ X ≤ X̃ with ddX̃ −X
˜
ee∗
V−0 = 0, as

in proposition 3.6.6. Part (i) implies that
∫∞
[0

(X̃s(ω)−X
˜ s

(ω))∧n dVs(ω) = 0

∀n and then
∫∞
[0
X̃s(ω) − X

˜ s
(ω) dVs(ω) = 0 for almost all ω ∈ Ω. Neither

(
X∗V

)
t

nor LS−
∫ t
0
Xs dVs change but negligibly if X is replaced by X̃ :

we may assume that X ≥ 0 is predictable. Equation (3.7.15) holds then for
X ∧ n , and by the Monotone Convergence Theorem for X .

Exercise 3.7.34 The conclusion continues to hold if X is (E , dd ee∗)-integrable for
the mean

F 7→ ddF ee∗ def=
llZ ∗

|Fs| · [0, t] |dVs|
mm∗
L0(P)

.

Exercise 3.7.35 Let V be an adapted process of integrable variation V . Let µ

denote the σ-additive measure X 7→ E[
R
X d V ] on E . Its usual Daniell upper

integral (page 396)

F 7→
Z ∗

F dµ = inf
nX

µ(X(n)) : X(n) ∈ E ,
X

X(n) ≥ F
o

gives rise to the usual Daniell mean F 7→ ‖F ‖∗
µ

def=
R ∗ |F |dµ , which majorizes

dd ee∗
V−1

and so gives rise to fewer integrable processes.

If X is integrable for the mean ‖ ‖∗
µ
, then X is V−1-integrable (but not

necessarily vice versa); its path t 7→ Xt(ω) is a.s. integrable for the scalar measure
dV (ω) on the line; the pathwise integral LS–

R
X dV is integrable and is a member

of the class
R
X dV .

3.8 Functions of Integrators

Consider the classical formula f(t) − f(s) =

∫ t

s

f ′(σ) dσ . (3.8.1)

The equation Φ(ZT ) − Φ(ZS) =

∫ T

S+

Φ′(Z) dZ



146 3 Extension of the Integral

suggests itself as an appealing analog when Z is a stochastic integrator and
Φ a differentiable function. Alas, life is not that easy. Equation (3.8.1)

remains true if dσ is replaced by an arbitrary measure µ on the line provided
that provisions for jumps are made; yet the assumption that the distribution

function of µ have finite variation is crucial to the usual argument. This is not
at our disposal in the stochastic case, as the example of theorem 1.2.8 shows.

What can be said? We take our clue from the following consideration: if
we want a representation of Φ(Zt) in a “Generalized Fundamental Theorem

of Stochastic Calculus” similar to equation (3.8.1), then Φ(Z) must be an
integrator (cf. lemma 3.7.5). So we ask for which Φ this is the case. It turns

out that Φ(Z) is rather easily seen to be an L0-integrator if Φ is convex. We
show this next.

For the applications later results in higher dimension are needed. Accord-

ingly, let D be a convex open subset of Rd and let

Z = (Z1, . . . , Zd)

be a vector of L0-integrators. We follow the custom of denoting partial
derivatives by subscripts that follow a semicolon:

Φ;η
def=

∂Φ

∂xη
, Φ;ηθ

def=
∂2Φ

∂xη∂xθ
, etc.,

and use the Einstein convention: if an index appears twice in a formula,
once as a subscript and once as a superscript, then summation over this index

is implied. For instance, Φ;ηG
η stands for the sum

∑
η Φ;ηG

η . Recall the
convention that X0− = 0 for X ∈ D .

Theorem 3.8.1 Assume that Φ : D → R is continuously differentiable

and convex, and that the paths both of the L0-integrator Z. and of its
left-continuous version Z.− stay in D at all times. Then Φ(Z) is an

L0-integrator. There exists an adapted right-continuous increasing process
A = A[Φ; Z] with A0 = 0 such that nearly

Φ(Z) = Φ(Z0) + Φ;η(Z).−∗Zη + A[Φ; Z] , (3.8.2)

i.e., Φ(Zt) = Φ(Z0) +
∑

1≤η≤d

∫ t

0+

Φ;η(Z.−) dZη + At ∀ t ≥ 0 .

Like every increasing process, A is the sum of a continuous increasing process

C = C[Φ; Z] that vanishes at t = 0 and an increasing pure jump process
J = J [Φ; Z] , both adapted (see theorem 2.4.4). J is given at t ≥ 0 by

Jt =
∑

0<s≤t

(
Φ(Zs) − Φ(Zs−) − Φ;η(Zs−) · ∆Zηs

)
, (3.8.3)

the sum on the right being a sum of positive terms.
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Proof. In view of theorem 3.7.17, the processes Φ;η(Z).− are Z−0-integrable.
Since Φ is convex,

Φ(z2) − Φ(z1) − Φ;η(z1)(z
η
2 − z

η
1 )

is non-negative for any two points z1, z2 ∈ D . Consider now a stochastic
partition8 S = {0 = S0 ≤ S1 ≤ S2 ≤ . . . ≤ ∞} and let 0 ≤ t <∞ . Set

ASt
def= Φ(Zt) − Φ(Z0) −

∑

0≤k≤∞
Φ;η(ZSk∧t) · (Zη

Sk+1∧t − Z
η
Sk∧t) (3.8.4)

=
∑

0≤k≤∞

(
Φ(ZSk+1∧t) − Φ(ZSk∧t) − Φ;η(ZSk∧t) · (Zη

Sk+1∧t − Z
η
Sk∧t)

)
.

On the interval of integration, which does not contain the point t = 0,

Φ;η(Z) = Φ;η(Z.−).+ . Thus the sum on the top line of this equation con-

verges to the stochastic integral
∫ t
0+

Φ;η(Z).− dZ
η as the partition S is taken

through a sequence whose mesh goes to zero (theorem 3.7.23), and so ASt
converges to

At
def= Φ(Zt) − Φ(Z0) −

∫ t

0+

Φ;η(Z.−) dZη .

In fact, the convergence is uniform in t on bounded intervals, in measure.
The second line of (3.8.4) shows that At increases with t . We can and

shall choose a modification of A that has right-continuous and increasing
paths. Exercise 3.7.32 on page 144 identifies the jump part of A as ∆As =

∆Φ(Z)s − Φ;η(Z)s− · ∆Zηs , s > 0 . The terms on the right are positive and
have a finite sum over s ≤ t since At < ∞ ; this observation identifies the

jump part of A as stated.

Remarks 3.8.2 (i) If Φ is, instead, the difference of two convex functions of
class C1 , then the theorem remains valid, except that the processes A,C, J

are now of finite variation, with the expression for J converging absolutely.

(ii) It would be incorrect to write

Jt =
∑

0<s≤t

(
Φ(Zs) − Φ(Zs−)

)
−
∑

0<s≤t
Φ;η(Zs−) · ∆Zηs ,

on the grounds that neither sum on the right converges in general by itself.

Exercise 3.8.3 Suppose Z is continuous. Set ∇η|z| def= ∂|z|/∂zη = zη/|z| for
z 6= 0, with ∇|z| def= 0 at z = 0. There exists an increasing process L so that

|Z|t = |Z0| +
Z t

0

∇η|Zs| dZη + Lt .

If d = 1, then L is known as the local time of Z at zero.
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Square Bracket and Square Function of an Integrator

A most important process arises by taking d = 1 and Φ(z) = z2 . In this case

the process Φ(Z0) + A[Φ;Z] of equation (3.8.2) is denoted by [Z,Z] and is
called the square bracket or square variation of Z . It is thus defined by

Z2 = 2Z.−∗Z + [Z,Z] or Z2
t = 2

∫ t

0+

Z.− dZ + [Z,Z]t , t ≥ 0 .

Note that the jump Z2
0 is subsumed in [Z,Z] . For the simple function

Φ(z) = z2 , equation (3.8.4) reduces to ASt =
∑

0≤k≤∞
(
ZtSk+1

− ZtSk

)2
, so

that [Z,Z]t is the limit in measure of

Z2
0 +

∑
0≤k≤∞

(
ZtSk+1

− ZtSk

)2
,

taken as the random partition S = {0 = S0 ≤ S1 ≤ S2 ≤ . . . ≤ ∞} of [[0,∞))
runs through a sequence whose mesh tends to zero. By equation (3.8.3), the

jump part of [Z,Z] is simply

j[Z,Z]t = Z2
0 +

∑
0<s≤t

(∆Zs)
2

=
∑

0≤s≤t
(∆Zs)

2
.

Its continuous part is c[Z,Z] , the continuous bracket. Note that we make
the convention [Z,Z]0 = j[Z,Z]0 = Z2

0 and c[Z,Z]0 = 0. Homogeneity

mandates considering the square roots of these quantities. We set

S[Z] =
√

[Z,Z] and σ[Z] =
√
c[Z,Z]

and call these processes the square function and the continuous square

function of Z , respectively. Evidently

σ[Z] ≤ S[Z] and

√
j[Z,Z] ≤ S[Z] .

The proof of theorem 3.8.1 exhibits ST [Z] as the limit in measure of the

square roots

√
Z2

0 + AST =
(
Z2

0 +
∑

0≤k≤∞
(ZTSk+1

− ZTSk
)2
)1/2

, (3.8.5)

taken as the random partition S = {0 = S0 ≤ S1 ≤ S2 ≤ . . . ≤ ∞} runs

through a sequence whose mesh tends to zero. For an estimate of the speed
of the convergence see exercise 3.8.14.

Theorem 3.8.4 (The Size of the Square Function) At all stopping times T

for all exponents p > 0 ‖ST [Z]‖Lp ≤ Kp · ZT Ip . (3.8.6)

Also, for p = 0, ‖ST [Z]‖[α] ≤ K0 · ZT
[ακ0]

. (3.8.7)
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The universal constants Kp, κ0 are bounded by the Khintchine constants of
theorem A.8.26 on page 455: K (3.8.6)

p ≤ K(A.8.9)
p when p is strictly positive;

and for p = 0 , K(3.8.7)

0 ≤ K(A.8.9)

0 and κ(3.8.7)

0 ≥ κ(A.8.9)

0 .

Proof. In equation (3.8.5) set X(0) def= [[0]] = [[S0]] and X(k+1) def= ((Sk, Sk+1]]

for k = 0, 1, . . .∞ . Then

Z2
0 + AST =

∑

0≤k≤∞

(∫
X(k) dZT

)2

;

and since
∑
k |X(k)| ≤ 1, corollary 3.1.7 on page 94 results in

∥∥∥
√
Z2

0 + AST

∥∥∥
Lp

≤ K(A.8.5)
p · ZT Ip , p > 0,

and
∥∥∥
√
Z2

0 +AST

∥∥∥
[α]

≤ K
(A.8.6)
0 · ZT

[ακ0]
, p = 0.

As the partition is taken through a sequence whose mesh tends to zero, Fatou’s

lemma produces the inequalities of the statement and exercise A.8.29 the

estimates of the constants. True, corollary 3.1.7 was proved for elementary
integrands X(k) only – for lack of others at the time – but the reader will

have no problem seeing that it holds for integrable X (k) as well.

Remark 3.8.5 Consider a standard Wiener process W . The variation

lim
S

∑

k

∣∣WSk+1
−WSk

∣∣ ,

taken over partitions S = {Sk} of any interval, however small, is infinite
(theorem 1.2.8). The proof above shows that the limit exists and is finite,

provided the absolute value of the differences is replaced with their squares.
This explains the name square variation. Proposition 3.8.16 on page 153

makes the identification [W,W ]t = limS
∑
k |WSk+1

−WSk
|2 = t.

Exercise 3.8.6 The square function of a previsible integrator is previsible.

Exercise 3.8.7 For p > 0 and Z−p-integrable X ,

ddσ∞[X∗Z]ee
Lp ≤ ddS∞[X∗Z]ee

Lp ≤ Kp∧1
p · ddXee∗Z−p

and
llq

j[Z,Z]
mm

≤ Kp∧1
p · ddXee∗Z−p .

Exercise 3.8.8 Let Z = (Z1, . . . , Zd) be L0-integrators and T ∈ T . Then

for p ∈ (0,∞)
‚‚‚
“ dX

η=1

[Zη , Zη]T

”1/2‚‚‚
Lp

≤ K(3.8.6)
p · Z

T

Ip ;

and for p = 0
‚‚‚
“ dX

η=1

[Zη, Zη ]T

”1/2‚‚‚
[α]

≤ K
(3.8.7)
0 · Z

T

[ακ
(3.8.7)
0

]
.
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The Square Bracket of Two Integrators

This process associated with two integrators Y, Z is obtained by taking in

theorem 3.8.1 the function Φ(y, z) = y · z of two variables, which is the
difference of two convex smooth functions:

y · z =
1

2

(
(y + z)2 − (y2 + z2)

)
,

and thus remark 3.8.2 (i) applies. The process Y0Z0 + A[Φ; (Y, Z)] of finite
variation that arises in this case is denoted by [Y, Z] and is called the square

bracket of Y and Z . It is thus defined by

Y Z = Y.−∗Z + Z.−∗Y + [Y, Z] (3.8.8)

or, equivalently, by

Yt·Zt =

∫ t

0+

Y.− dZ +

∫ t

0+

Z.− dY + [Y, Z]t , t ≥ 0 .

For an algorithm computing [Y, Z] see exercise 3.8.14. By equation (3.8.3)
the jump part of [Y, Z] is simply

j[Y, Z]t = Y0Z0 +
∑

0<s≤t
(∆Ys · ∆Zs) =

∑

0≤s≤t
(∆Ys · ∆Zs) .

Its continuous part is denoted by c[Y, Z] and vanishes at t = 0. Both [Y, Z]

and c[Y, Z] are evidently linear in either argument, and so is their difference
j[Y, Z] . All three brackets have the structure of positive semidefinite inner

products, so the usual Cauchy–Schwarz inequality holds. In fact, there is a

slight generalization:

Theorem 3.8.9 (Kunita–Watanabe) For any two L0-integrators Y, Z there
exists a nearly empty set N such that for all ω ∈ Ω0

def= Ω \N and any two

processes U, V with Borel measurable paths
∫ ∞

0

|UV | d [Y, Z] ≤
(∫ ∞

0

U2 d[Y, Y ]
)1/2

·
(∫ ∞

0

V 2 d[Z,Z]
)1/2

,

∫ ∞

0

|UV | d c[Y, Z] ≤
(∫ ∞

0

U2 dc[Y, Y ]
)1/2

·
(∫ ∞

0

V 2 dc[Z,Z]
)1/2

,

∫ ∞

0

|UV | d j[Y, Z] ≤
(∫ ∞

0

U2 dj[Y, Y ]
)1/2

·
(∫ ∞

0

V 2 dj[Z,Z]
)1/2

.

Proof. Consider the polynomial

p(λ) def= A+ 2Bλ+ Cλ2

def= ([Y, Y ]t − [Y, Y ]s) + 2([Y, Z]t − [Y, Z]s)λ+ ([Z,Z]t − [Z,Z]s)λ
2

= [Y + λZ, Y + λZ]t − [Y + λZ, Y + λZ]s . (∗)
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There is a set Ω0 ∈ F∞ of full measure P[Ω0] = 1 on which for all rational
λ and all rational pairs s ≤ t the equality (∗) obtains and thus p(λ) is

positive. The description shows that its complement N belongs to A∞σ . By
right-continuity, etc., (∗) is true and p(λ) ≥ 0 for all real λ , all pairs s ≤ t ,

and all ω ∈ Ω0 .
Henceforth an ω ∈ Ω0 is fixed. The positivity of p(λ) gives B2 ≤ AC ,

which implies that

|[Y, Z]ti − [Y, Z]ti−1
| ≤ ([Y, Y ]ti − [Y, Y ]ti−1

)1/2 · ([Z,Z]ti − [Z,Z]ti−1
)1/2

for any partition {. . . ti−1 ≤ ti . . .} . For any ri, si ∈ R we get therefore

∑

i

risi · ([Y, Z]ti − [Y, Z]ti−1
) ≤

∑

i

|risi||([Y, Z]ti − [Y, Z]ti−1
)|

≤
∑

i

|ri|([Y, Y ]ti − [Y, Y ]ti−1
)1/2 · |si|([Z,Z]ti − [Z,Z]ti−1

)1/2 .

Schwarz’s inequality applied to the right-hand side yields
∫ ∞

0

uv d[Y, Z] ≤
(∫ ∞

0

u2 d[Y, Y ]
)1/2

·
(∫ ∞

0

v2 d[Z,Z]
)1/2

(∗∗)

at ω for the special functions u =
∑
ri·(ti−1, ti] and v =

∑
si·(ti−1, ti] on

the half-line. The collection of processes for which the inequality (∗∗) holds
is evidently closed under taking limits of convergent sequences, so it holds for

all Borel functions (theorem A.3.4). Replacing u by |u| and v by |v|h , where
h is a Borel version of the Radon–Nikodym derivative d[Y, Z]/d [Y, Z] ,

produces
∫ ∞

0

|uv| d [Y, Z] ≤
(∫ ∞

0

u2 d[Y, Y ]
)1/2

·
(∫ ∞

0

v2 d[Z,Z]
)1/2

.

The proof of the other two inequalities is identical to this one.

Exercise 3.8.10 (Kunita–Watanabe) (i) Except possibly on an evanescent set

S[Y + Z] ≤ S[Y ] + S[Z] and |S[Y ] − S[Z]| ≤ S[Y − Z] ;

σ[Y + Z] ≤ σ[Y ] + σ[Z] and |σ[Y ] − σ[Z]| ≤ σ[Y − Z] .

Consequently, ‖|σ[Y ] − σ[Z]|?T ‖Lp ≤ ‖|S[Y ] − S[Z]|?T ‖Lp ≤ K
(3.8.6)
p (Y − Z)T

Ip

for all p > 0 and all stopping times T .
(ii) For any stopping time T and 1/r = 1/p+ 1/q > 0,

‚‚‚ [Y,Z]
T

‚‚‚
Lr

≤ ‖ST [Y ]‖
Lp · ‖ST [Z]‖

Lq ,

‚‚‚ c[Y,Z]
T

‚‚‚
Lr

≤ ‖σT [Y ]‖
Lp · ‖σT [Z]‖

Lq ,

‚‚‚ j[Y,Z]
T

‚‚‚
Lr

≤
‚‚‚
q
j[Y, Y ]T

‚‚‚
Lp

·
‚‚‚
q
j[Z,Z]T

‚‚‚
Lq

.
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Exercise 3.8.11 Let M,N be local martingales. There are arbitrarily large
stopping times T such that

E[MT ·NT ] = E[[M,N ]T ] and E[M?2
T ] ≤ 2E[[M,M ]T ] .

Exercise 3.8.12 Let V be an L0-integrator whose paths have finite variation, and
let V = cV + jV be its decomposition into a continuous and a pure jump process
(theorem 2.4.4). Then σ[V ] = [cV, cV ] = 0 and, since ∆V0 = V0 ,

[V, V ]t = [jV, jV ]t =
X

0≤s≤t

(∆Vs)
2 .

Also, c[Z, V ] = 0, [Z,V ]t = j[Z,V ]t =
X

0≤s<t

∆Zs∆Vs

and ZT · VT − ZS · VS =

Z T

S+

Z dV +

Z T

S+

V.− dZ

for any other L0-integrator Z and any two stopping times S ≤ T .

Exercise 3.8.13 A continuous local martingale of finite variation is nearly
constant.

Exercise 3.8.14 Let Y, Z be Lp-integrators, p > 0, and S = {0 = S0 ≤ S1 ≤ · · ·}
a stochastic partition8 with S∞ = ∞ . Then for any stopping time T

ll
sup
s≤T

˛̨
˛ [Y,Z]s −

“
Y0Z0 +

X

0<k<∞

(Y
Sk+1
s − Y Sk

s )(Z
Sk+1
s − ZSk

s )
”˛̨
˛
mm
Lp

≤ C?(2.3.5)p

“ll
(Y − Y S).− · ((0, T ]]

mm∗
Z−p

+
ll

(Z − ZS).− · ((0, T ]]
mm∗
Y−p

”
.

In particular, if S is chosen so that on its intervals both Y and Z vary by less than
δ , then

ll
sup
s≤T

˛̨
˛ [Y,Z]s −

“
Y0Z0 +

X

0<k<∞

(Y
Sk+1
s − Y Sk

s )(Z
Sk+1
s − ZSk

s )
”˛̨
˛
mm
Lp

≤ C?p

„
δZT

Ip + δY T
Ip

«
.

If δ runs through a sequence (δn) with
P

n δnZ
n

Ip + δnY
n

Ip < ∞ , then
the sums of equation (3.8.5) nearly converge to the square bracket uniformly on
bounded time-intervals.

Exercise 3.8.15 A complex-valued process Z = X + iY is an Lp-integrator if
its real and imaginary parts are, and the size of Z shall be the size of the vector

(X,Y ). We define the square function S[Z] as [Z,Z]1/2 = ([X,X] + [Y, Y ])
1/2

.
Using exercise 3.8.8 reprove the square function estimates of theorem 3.8.4:

‖ST [Z]‖
p
≤ Kp · ZT

Ip (3.8.9)

and ‖ST [Z]‖
[α]

≤ K0 · ZT
[ακ0]

and show that for two complex integrators Z,Z ′

Zt·Z′
t =

Z t

0+

Z.− dZ′ +

Z t

0+

Z′
.− dZ + [Z,Z′]t , (3.8.10)
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with the stochastic integral and bracket being defined so as to be complex-linear in
either of their two arguments.

Proposition 3.8.16 (i) A standard Wiener process W has bracket [W,W ]t = t.

(ii) A standard d-dimensional Wiener process W = (W 1, . . . ,W d) has
bracket

[W η,W θ]t = δηθ · t .
Proof. (i) By exercise 2.5.4, W 2

t − t is a continuous martingale on the nat-

ural filtration of W . So is W 2
t − [W,W ]t = 2

∫ t
0
W dW , because for Tn

= n ∧ inf{t : |Wt| ≥ n}−−−→n→∞ ∞ the stopped process (W∗W )Tn is the indefi-

nite integral in the sense L2 of the bounded integrand6W · [[0, Tn]]
)

against
the L2-integrator W . Then their difference [W,W ]t− t is a local martingale

as well. Since this continuous process has finite variation, it equals the value 0
that it has at time 0 (exercise 3.8.13).

(ii) If η 6= θ , then W η and W θ are independent martingales on the natural
filtrations F.[W η] and F.[W θ] , respectively. It is trivial to check that then

W η · W θ is a martingale on the filtration t 7→ Ft[W η] ∨ Ft[W θ] . Since
[W η,W θ] = W η ·W θ −W η∗W θ −W θ∗W η is a continuous local martingale

of finite variation, it must vanish.

Definition 3.8.17 We shall say that two paths X.(ω) and X.(ω′) of the contin-
uous integrator X describe the same arc in Rn if there is an increasing invertible
continuous function t 7→ t′ from [0,∞) onto itself so that Xt(ω) = Xt′(ω

′) ∀ t.
We shall also say that X.(ω) and X.(ω′) describe the same arc via t 7→ t′ .

Exercise 3.8.18 (i) Suppose F is a d× n-matrix of uniformly continuous functions
on Rn . There exist a version of F (X)∗X and a nearly empty set after the removal
of which the following holds: whenever X.(ω) and X.(ω′) describe the same arc in
Rn via t 7→ t′ then (F (X)∗X).(ω) and (F (X)∗X).(ω

′) describe the same arc in

Rd , also via t 7→ t′ .
(ii) Let W be a standard d-dimensional Wiener process. There is a nearly empty

set after removal of which any two paths W.(ω) = W.(ω′) describing the same arc
actually agree: Wt(ω) = Wt(ω

′) for all t .

The Square Bracket of an Indefinite Integral

Proposition 3.8.19 Let Y, Z be L0-integrators, T a stopping time, and X a
locally Z−0-integrable process. Then

(i) [Y, Z]T = [Y T , ZT ] = [Y, ZT ] almost surely, and

(ii) [Y,X∗Z] = X∗[Y, Z] up to indistinguishability.

Here X∗[Y, Z] is understood as an indefinite Lebesgue–Stieltjes integral.

Proof. (i) For the first equality write

[Y, Z]T = (Y Z)T − (Y.−∗Z)T − (Z.−∗Y )T

by exercise 3.7.15: = Y TZT − Y.−∗ZT − Z.−∗Y T

by exercise 3.7.16: = Y TZT − Y T.−∗ZT − ZT.−∗Y T = [Y T , ZT ] .
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The second equality of (i) follows from the computation

[Y − Y T , ZT ] = (Y − Y T ) · ZT − (Y.− − Y T.−)∗ZT − ZT.−∗(Y − Y T ) = 0 .

(ii) Equality (i) applied to the stopping times T ∧ t yields
[
Y, [[0, T ]]∗Z

]

= [[0, T ]]∗[Y, Z]. Taking differences gives
[
Y, ((S, T ]]∗Z

]
= ((S, T ]]∗[Y, Z]

for stopping times S ≤ T . Taking linear combinations shows that (ii)

holds for elementary integrands X . Let LZ denote the class of locally
Z−0-integrable predictable processes X that meet the following description:

for any L0-integrator Y there is a nearly empty set outside which the indef-
inite Lebesgue–Stieltjes integral X∗[Y, Z] exists and agrees with [Y,X∗Z] .

This is a vector space containing E . Let X (n) be an increasing sequence in

LZ+ , and assume that its pointwise limit is locally Z−0-integrable. From the
inequality of Kunita–Watanabe

∫ t

0

X(n) d [Y, Z] ≤ St[Y ] ·
(∫ t

0

X(n)2 d[Z,Z]

)1/2

.

Since X(n) ∈ LZ , the random variable on the far right equals St
[
X(n)∗Z

]
.

Exercise 3.7.14 allows this estimate of its size: for all α > 0

∥∥∥St
[
X(n)∗Z

]∥∥∥
[α]

≤ K0 ·
∥∥∥X(n)

∥∥∥
∗

Zt−[ακ0]
≤ K0 · ‖X‖∗Zt−[ακ0]

<∞ .

Thus

∫ t

0

X(n) d [Y, Z] ≤ K0 · St[Y ] · ‖X‖∗Zt−[ακ0]
< ∞ . (∗)

Hence supn
∫ t
0
X(n) d [Y, Z] < ∞ almost surely for all t , and the indefinite

Lebesgue–Stieltjes integral X∗[Y, Z] exists except possibly on a nearly empty

set. Moreover, X∗[Y, Z] = limX(n)∗[Y, Z] up to indistinguishability.

Exercise 3.7.14 can be put to further use:

∣∣[Y,X∗Z] − [Y,X(n)∗Z]
∣∣?
t

=
∣∣[Y,

(
X −X(n)

)
∗Z]
∣∣?
t

by 3.8.9: ≤ St[Y ] · St
[(
X −X(n)

)
∗Z
]

and
∥∥∥St
[(
X −X(n)

)
∗Z
]∥∥∥

[α]
≤ K0 ·

(
X −X(n)

)
∗Zt

[ακ0]

= K0 ·
∥∥∥X −X(n)

∥∥∥
∗

Zt−[ακ0]
.

We replace X(n) by a subsequence such that ‖X −X(n) ‖∗
Zn−[2−n]

< 2−n ; the

Borel–Cantelli lemma then allows us to conclude that Sn
[(
X−X(n)

)
∗Z
]
→ 0

almost surely, so that

X∗[Y, Z] = limX(n)∗[Y, Z] = lim
n→∞

[Y,X(n)∗Z] = [Y,X∗Z]
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uniformly on bounded time-intervals, except on a nearly empty set. Ap-
plying this to X(n) − X(1) or X(1) − X(n) shows that LZ is closed un-

der pointwise convergent monotone sequences X (n) whose limits are locally
Z−0-integrable. The Monotone Class Theorem A.3.5 then implies that LZ

contains all bounded predictable processes, and the usual truncation argu-
ment shows that it contains in fact all predictable locally Z−0-integrable

processes X .
If X is also Z−0-negligible, then thanks to (∗)

∫
X d [Y, Z] is evanes-

cent. If X is Z−0-negligible but not predictable, we apply this remark to a
predictable envelope of |X| and conclude again that

∫
X d [Y, Z] is evanes-

cent. The general case is done by sandwiching X between predictable lower
and upper envelopes (page 125).

Exercise 3.8.20 Let Y,Z be L0-integrators. For any stopping time T and any
locally Z−0-integrable process X

c[Y,Z]T = c[Y T , ZT ] = c[Y,ZT ] and [Y,Z]jT = j[Y T , ZT ] = j[Y,ZT ] ;

also c[Y,X∗Z] = X∗c[Y,Z] and j[Y,X∗Z] = X∗j[Y,Z] .

Application: The Jump of an Indefinite Integral

Proposition 3.8.21 Let Z be an L0-integrator and X a Z−0-integrable process.

There exists a nearly empty set N ⊂ Ω such that for all ω 6∈ N

∆(X∗Z)t(ω) = Xt(ω) · ∆Zt(ω) , 0 ≤ t <∞ .

In other words, ∆(X∗Z) is indistinguishable from X · ∆Z .

Proof. If X is elementary, then the claim is obvious by inspection. In the
general case we find a sequence

(
X(n)

)
of elementary integrands converging

in Z−0-mean to X and so that their indefinite integrals nearly converge
uniformly on bounded intervals to X∗Z (corollary 3.7.11). The path of

∆(X∗Z) is thus nearly given by

∆(X∗Z) = lim
n→∞

X(n) · ∆Z .

It is left to be shown that the path on the right is nearly equal to the path

of X · ∆Z :

lim
n→∞

X(n) · ∆Z = X · ∆Z . (?)

Since sup
0≤t<u

∣∣∣Xt · ∆Zt −X
(n)
t · ∆Zt

∣∣∣ ≤
(∑

t<u

|X −X(n)|2t · (∆Zt)2
)1/2

=
(∫ u−

0

|X −X(n)|2 dj[Z,Z]
)1/2

≤
(∫ u−

0

|X −X(n)|2 d[Z,Z]
)1/2
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by proposition 3.8.19: = Su−[(X −X(n))∗Z] ,
∥∥∥ sup

0≤t<u

∣∣∣Xt·∆Zt−X(n)
t ·∆Zt

∣∣∣
∥∥∥

[α]
≤
∥∥∥Su−[(X −X(n))∗Z]

∥∥∥
[α]

by theorem 3.8.4: ≤ K0 · (X −X(n))∗Z
[ακ0]

by lemma 3.7.5: ≤ K0 ·
∥∥∥X −X(n)

∥∥∥
∗

Z−[ακ0]
.

If we insist that ‖X −X(n)‖∗
Z−[2−nκ0]

< 2−n/K0 , as we may by taking a
subsequence, then the previous inequality turns into

P
[

sup
0≤t<u

∣∣∣Xt · ∆Zt −X
(n)
t · ∆Zt

∣∣∣ > 2−n
]
< 2−n ,

and the Borel–Cantelli lemma implies that
[
lim sup
n→∞

sup
0≤t<u

∣∣∣Xt · ∆Zt −X
(n)
t · ∆Zt

∣∣∣ > 0

]
∈ Fu

is negligible. Equation (?) thus holds nearly.

Proposition 3.8.22 Let Y, Z be L0-integrators, with Y previsible. At any

finite stopping time T ,∫ T

0

∆Y dZ =
∑

0≤s≤T
∆Ys·∆Zs , (3.8.11)

the sum nearly converging absolutely. Consequently

YT ·ZT = Y0·Z0 +

∫ T

0+

Y dZ +

∫ T

0+

Z.− dY + c[Y, Z]T

=

∫ T

0

Y dZ +

∫ T

0

Z.− dY + c[Y, Z]T .

Proof. The integral on the left exists since ∆Y is previsible and has finite

maximal function ∆Y?T ≤ 2Y ?T (lemma 2.3.2 and theorem 3.7.17). Let ε > 0
and define S′0 = 0, S′n+1 = inf{t > S′n : |∆Yt| ≥ ε} . Next fix an instant t

and let Sn be the reduction of S′n to [S′n ≤ t] ∈ FS′
n− . Since the graph

of S′n+1 is the intersection of the previsible sets ((S ′n, S
′
n+1]] and [|∆Y| ≥ ε] ,

the S′n are predictable stopping times (theorem 3.5.13). Thanks to lem-
ma 3.5.15 (iv), so are the Sn . Also, the Sn have disjoint graphs. Thanks to

theorem 3.5.14,6

∫ t

0

⋃

n

[[Sn]] · ∆Y dZ =
∑

n

∫ t

0

[[Sn]] · ∆Y dZ =
∑

n

∆YSn
· ∆ZSn

.

We take the limit as ε→ 0 and arrive at the claim, at least at the instant t .

We apply this to the stopped process ZT and let t → ∞ : equation (3.8.11)
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holds in general. The absolute convergence of the sum follows from the
inequality of Kunita–Watanabe.

The second claim follows from the definition (3.8.8) of the continuous and

pure jump square brackets by

YT ·ZT =

∫ T

0

Y.− dZ +

∫ T

0

Z.− dY + c[Y, Z]T +
∑

0≤s≤T
∆Ys·∆Zs .

Corollary 3.8.23 Let V be a right-continuous previsible process of integrable
total variation. For any bounded martingale M and stopping times S ≤ T

E[MTVT −MSVS ] = E
[∫ T

S+

M.− dV
]
. (3.8.12)

Proof. Let T ′ ≤ T be a bounded stopping time such that V is bounded
on [[0, T ′]] (corollary 3.5.16). Since by exercise 3.8.12 c[M,V ] = 0, proposi-

tion 3.8.22 gives

MT ′VT ′ =

∫ T ′

0+

M.− dV +

∫ T ′

S

V dM .

The term on the far right has expectation E[VSMS ] . Now take T ′ ↑ T .

It is shown in proposition 4.3.2 on page 222 that equation (3.8.12) actually
characterizes the predictable processes among the right-continuous processes

of finite variation.

Exercise 3.8.24 (i) A previsible local martingale of finite variation is constant.
(ii) The bracket [V,M ] of a previsible process V of finite variation and a local

martingale M is a local martingale of finite variation.

Exercise 3.8.25 (i) Let Z be an L0-integrator, T a random time, and f a random
variable. If f ·[[T ]] is Z−0-integrable, then

R
f ·[[T ]] dZ = f · ∆ZT .

(ii) Let Y,Z be L0-integrators and assume that Y is Z-measurable. Then for
any almost surely finite stopping time T

YT ·ZT = Y0·Z0 +

Z T

0+

Y dZ +

Z T

0+

Z.− dY + c[Y,Z]T .

3.9 Itô’s Formula

Itô’s formula is the stochastic analog of the Fundamental Theorem of Calcu-

lus. It identifies the increasing process A[Φ; Z] of theorem 3.8.1 in terms of
the second derivatives of Φ and the square brackets of Z . Namely,

Theorem 3.9.1 (Itô) Let D ⊂ Rd be open and let Φ : D → R be a twice
continuously differentiable function. Let Z = (Zη)η=1...d be a d-vector of

L0-integrators such that the paths of both Z and its left-continuous ver-
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sion Z.− stay in D at all times. Then Φ(Z) is an L0-integrator, and for
any nearly finite stopping time T

Φ(ZT ) = Φ(Z0) +

∫ T

0+

Φ;η(Z.−) dZη

+

∫ 1

0

(1−λ)

∫ T

0+

Φ;ηθ

(
Z.− + λ∆Z

)
d[Zη, Zθ] dλ (3.9.1)

= Φ(Z0) +

∫ T

0+

Φ;η(Z.−) dZη +
1

2

∫ T

0+

Φ;ηθ(Z.−) dc[Zη, Zθ]

+
∑

0<s≤T

(
Φ(Zs) − Φ(Zs−) − Φ;η(Zs−) · ∆Zηs

)
, (3.9.2)

the last sum nearly converging absolutely. 14 It is often convenient to write

equation (3.9.2) in its differential form: in obvious notation

dΦ(Z) = Φ;η(Z.−)dZη +
1

2
Φ;ηθ(Z.−)dc[Zη, Zθ] +

(
∆Φ(Z)−Φ;η(Z.−)∆Zη

)
.

Proof. That Φ ◦ Z is an L0-integrator is evident from (3.9.2) in conjunction

with lemma 3.7.5. The d[Zη, Zθ]-integral in (3.9.1) has to be read as a
pathwise Lebesgue–Stieltjes integral, of course, since its integrand is not in

general previsible. Note also that the two expressions (3.9.1) and (3.9.2) for
Φ(ZT ) agree. Namely, since the continuous part dc[Zη, Zθ] of the square

bracket does not charge the instants t – at most countable in number –
where ∆Zt 6= 0,

∫ 1

0

(1−λ)

∫ T

0+

Φ;ηθ

(
Z.− + λ∆Z

)
dc[Zη, Zθ] dλ

=

∫ 1

0

(1−λ)

∫ T

0+

Φ;ηθ

(
Z.−

)
dc[Zη, Zθ] dλ =

1

2

∫ T

0+

Φ;ηθ

(
Z.−

)
dc[Zη, Zθ] .

This leaves

∫ 1

0

(1−λ)

∫ T

0+

Φ;ηθ

(
Z.− + λ∆Z

)
dj[Zη, Zθ] dλ

=
∑

0<s≤T

∫ 1

0

(1−λ)Φ;ηθ

(
Zs− + λ∆Zs

)
∆Zηs∆Zθs dλ ,

the jump part, which by Taylor’s formula of order two (A.2.42) equals the
sum in (3.9.2).

To start on the proof proper observe that any linear combination of two
functions in C2(D) (see proposition A.2.11 on page 372) that satisfy equa-

tion (3.9.2) again satisfies this equation: such functions form a vector space
I . We leave it as an exercise in bookkeeping to show that I is also closed

14 Subscripts after semicolons denote partial derivatives, e.g., Φ;η
def=

∂Φ
∂xη , Φ;ηθ

def=
∂2Φ

∂xη∂xθ .
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under multiplication, so that it is actually an algebra. Since every coordinate
function z 7→ zη is evidently a member of I , every polynomial belongs to I .

By proposition A.2.11 on page 372 there exists a sequence of polynomials
Pk that converges to Φ uniformly on compact subsets of D , and such that

every first and second partial of Pk also converges to the corresponding first
or second partial of Φ, uniformly on every compact subset of D . Now observe

this: the image of the path Z.(ω) on [0, t] has compact closure Γ(ω) in D ,
for every ω ∈ Ω and t > 0 – this is immediate from the fact that the path is

càdlàg and the assumption that it and its left-continuous version stay in D at
all times t . Since (Pk);η → Φ;η uniformly on Γ(ω), the maximal process Gη
of the process supk |(Pk);η(Z)| is finite at (t, ω), and this holds for all t <∞ ,
all ω ∈ Ω, and η = 1, . . . , d (see convention 2.3.5). By theorem 3.7.17 on

page 137, the previsible processes Gη.− are therefore Zη-integrable in the

sense L0 and can serve as “the dominators” in the DCT: according to the
latter Φ;η(Z.−) = lim(Pk);η(Z.−) in dd ee∗

Zη−0-mean

and

∫ t

0

(Pk);η(Z.−) dZη −−−→k→∞

∫ t

0

Φ;η(Z.−) dZη in measure. (∗)

Clearly (Pk);ηθ
(
Z.− + λ∆Z

)−−−→
k→∞ Φ;ηθ

(
Z.− + λ∆Z

)
(∗∗)

uniformly up to time t . Now equation (3.9.1) is known to hold with Pk
replacing Φ. The facts (∗) and (∗∗) allow us to take the limit as k → ∞ and
to conclude that (3.9.1) persists on Φ. Finally, càdlàg processes that nearly

agree at any instant t nearly agree at any nearly finite stopping time T :
(3.9.1) is established.

The Doléans–Dade Exponential

Here is a computation showing how Itô’s theorem can be used to solve a
stochastic differential equation.

Proposition 3.9.2 Let Z be an L0-integrator. There exists a unique right-

continuous process E = E [Z] with E0 = 1 satisfying dE = E.− dZ on [[0,∞)),

that is to say Et = 1 +

∫ t

0

E.− dZ for t ≥ 0

or, equivalently, E = 1 + E.−∗Z . (3.9.3)

It is given by Et[Z] = eZt−Z0−c[Z,Z]t/2 ·
∏

0<s≤t

(
1 + ∆Zs

)
e−∆Zs (3.9.4)

and is called the Doléans–Dade, or stochastic, exponential of Z .

Proof. There is no loss of generality in assuming that Z0 = 0; neither E nor

the right-hand side ′E of equation (3.9.4) change if Z is replaced by Z −Z0 .

Set T1
def= inf{t : ′Et ≤ 0} = inf{t : ∆Zt ≤ −1} ,

Z def= ZT1− = (Z−∆ZT1
)T1 , “the process Z stopped just before T1,”

and Lt
def=

Zt − c[Z, Z]t/2 +
∑

0<s≤t
(
ln(1+∆Zs) − ∆Zs

)
.
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Since
∣∣ ln(1+u)−u| ≤ 2u2 for |u| < 1/2 and

∑
0<s≤t

∣∣∆Zs
∣∣2 <∞ , the sum on

the right converges absolutely, exhibiting L as an L0-integrator. Therefore
so is E def= e

L . A straightforward application of Itô’s formula shows that
E = ′E T1− satisfies E = 1+ E.−∗Z . A simple calculation of jumps invoking
proposition 3.8.21 then reveals that ′E satisfies ′E T1 = 1 + ′E T1

.− ∗ZT1 .

Next set T2
def= inf{t > T1 : ∆Zt ≤ −1} ,

Z def= ZT2− − ZT1

and Lt
def=

Zt − c[Z, Z]t/2 +
∑

0<s≤t

(
ln(1+∆Zs) − ∆Zs

)
.

The same argument as above shows that E
def= e

L = 1+E.−∗Z . Now clearly
′E = ET1

· E on [[T1, T2)), from which we conclude that ′E satisfies (3.9.3) on

[[0, T2)), and by proposition 3.8.21 even on [[0, T2]] . We continue by induction
and see that the right-hand side ′E of (3.9.4) solves (3.9.3).

Exercise 3.9.3 Finish the proof by establishing the uniqueness and use the latter
to show that E [Z] · E [Z ′] = E [Z + Z′ + [Z,Z′]] for any two L0-integrators Z,Z ′ .

Exercise 3.9.4 The solution of dX = X.− dZ , X0 = x , is X = x · E [Z] .

Corollary 3.9.5 (Lévy’s Characterization of a Standard Wiener Process)

Assume that M = (M1, . . . ,Md) is a d-vector of local martingales on some
measured filtration (F.,P) and that M has the same bracket as a standard

d-dimensional Wiener process: M η
0 = 0 and [Mη,Mθ]t = δηθ · t for

η, θ = 1 . . . d . Then M is a standard d-dimensional Wiener process.

In fact, for any finite stopping time T , N. def= MT+. − MT is a standard
Wiener process on G. def= FT+. and is independent of FT .

Proof. We do the case d = 1. The generalization to d > 1 is trivial (see

example A.3.31 and proposition 3.8.16). Note first that (N0)
2 = (∆N0)

2 =
[N,N ]0 = 0, so that N0 = 0. Since [N,N ]t = [M,M ]T+t − [M,M ]T = t

and therefore j[N,N ] = 0, N is continuous. Thanks to Doob’s optional
stopping theorem 2.5.22, it is locally a bounded martingale on G. . Now let

Γ denote the vector space of all functions γ : [0,∞) → R of compact support
that have a continuous derivative γ̇ . We view γ ∈ Γ as the cumulative

distribution function of the measure dγt = γ̇tdt . Since γ has finite variation,
[N, γ] = 0; since N0γ0 = Nuγu = 0 when u lies to the right of the support

of γ̇ ,
∫∞
0
N dγ = −

∫∞
0
γ dN . Proposition 3.9.2 exhibits

ei
R∞
0
N dγ+

R∞
0
γ2

s ds/2 = e−(iγ∗N)∞−[iγ∗N,iγ∗N ]∞/2

as the value at ∞ of a bounded G-martingale with expectation 1.

Thus E
[
ei
R∞
0
M dγ ·A

]
= e−

R∞
0
γ2

s ds/2 · E[A] (∗)
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for any A ∈ G0 = FT . Now the measures dγ , γ ∈ Γ, form the dual of the
space C : equation (∗) simply says that that N. is independent of FT and

that the characteristic function of the law of N is

γ 7→ e−
R

t

0
γ2

s ds/2 .

The same calculation shows that this function is also the characteristic func-
tion of Wiener measure W (proposition 3.8.16). The law of N is thus W
(exercise A.3.35).

Additional Exercises

Exercise 3.9.6 (Wiener Processes with Covariance) (i) Let W be a standard
n-dimensional Wiener process as in 3.9.5 and U a constant d×n-matrix. Then 15

W ′ def= UW = (UηνW
ν) is a d-vector of Wiener processes with covariance matrix

B = (Bηθ) defined by

E[W ′η
t ·W ′θ

t ] = E[W ′η,W ′θ]t = tBηθ def= t(UUT )ηθ = t
P

νU
η
νU

θ
ν .

(ii) Conversely, suppose that W ′ is a d-vector of continuous local martingales
that vanishes at 0 and has square function [W ′,W ′]t = tB , B constant and
(necessarily) symmetric and positive semidefinite. There exist an n ∈ N and
a d×n-matrix U such that Bηθ =

Pn
ν=1 U

η
νU

θ
ν . Then there exists a standard

n-dimensional Wiener process W so that W ′ = UW .
(iii) The integrator size of W ′ can be estimated by W ′t

Ip ≈
√
t ‖B‖ for

p > 0, where ‖B‖ is the operator size of B : `∞ → `1 , ‖B‖ def= sup{ζηζθBηθ :
|ζ|`∞ ≤ 1} .

Exercise 3.9.7 A standard Wiener process W starts over at any finite stopping
time T ; in fact, the process t 7→ WT+t − WT is again a standard Wiener process
and is independent of FT [W ] .

Exercise 3.9.8 Let M be a continuous martingale on the right-continuous
filtration F. and assume that M0 = 0 and [M,M ]t −−−→t→∞ ∞ almost surely. Set

Tλ = inf{t : [M,M ]t ≥ λ} and T λ+ = inf{t : [M,M ]t > λ} .
Then Wλ

def= MTλ+ is a continuous martingale on the filtration Gλ def= FTλ+ with
W0 = 0 and [W,W ]λ = λ and consequently is a standard Wiener process on G. .
Furthermore, if X is G-predictable, then X[M,M] is F-predictable; if X is also
W−p-integrable, 0 ≤ p <∞ , then X[M,M] is M−p-integrable and

Z
Xλ dWλ =

Z
X[M,M]t dMt .

Conversely, if X is predictable on F. , then XT . is predictable on G. ; and if X is
M−p-integrable, then XT . is W−p-integrable and

Z
Xt dMt =

Z
XTλ dWλ .

Definition 3.9.9 Let X be an n-dimensional continuous integrator on the mea-
sured filtration (Ω,F.,P), T a stopping time, and H = {x : 〈ξ|x〉 = a} a hyperplane

15 Einstein’s convention, adopted, implies summation over the same indices in opposite
positions.
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in Rn with equation 〈ξ|x〉 = a. We call H transparent for the path X.(ω) at the
time T if the following holds: if XT (ω) ∈ H , then T± def= inf{t > T : 〈ξ|X〉><a} = T
at ω . This expresses the idea that immediately after T the path X.(ω) can be found
strictly on both sides of H , “or oscillates between the two strict sides of H .” In the
opposite case, when the path X.(ω) stays on one side of H for a strictly positive
length of time, we call H opaque for the path.

Exercise 3.9.10 Suppose that X is a continuous martingale under P ∈ P such
that ξµξν [X

µ,Xν ]t increases strictly to ∞ as t→ ∞ , for every non-zero ξ ∈ Rn .
(i) For any hyperplane H and finite stopping time T with XT ∈ H , the paths

for which H is opaque form a P-nearly empty set.
(ii) Let S be a finite stopping time such that XS depends continuously on the

path (in the topology of uniform convergence on compacta), and H a hyperplane
with equation 〈ξ|x〉 = a and not containing XS . Then the stopping times

T def= inf{t > S : Xt ∈ H} and T± def= inf{t > T : 〈ξ|Xt〉><a}
P-nearly are finite, agree, and are continuous.

Girsanov Theorems

Girsanov theorems are results to the effect that the sum of a standard Wiener

process and a suitably smooth and small process of finite variation, a “slightly
shifted Wiener process,” is again a standard Wiener process, provided the

original probability P is replaced with a properly chosen locally equivalent
probability P′ .

We approach this subject by investigating how much a martingale under
P′ ≈. P deviates from being a P-martingale. We assume that the filtration

satisfies the natural conditions under either of P,P′ and then under both
(exercise 1.3.42). The restrictions Pt,P

′
t of P,P′ to Ft being by definition

mutually absolutely continuous at finite times t , there are Radon–Nikodym
derivatives (theorem A.3.22): P′t = G′tPt and Pt = GtP

′
t. Then G′ is

a P-martingale, and G is a P′-martingale. G,G′ can be chosen right-
continuous (proposition 2.5.13), strictly positive, and so that G · G′ ≡ 1.

They have expectations E[G′t] = E′[Gt] = 1, 0 ≤ t < ∞ . Here E′ denotes

the expectation with respect to P′ , of course. P′ is absolutely continuous
with respect to P on F∞ if and only if G′ is uniformly P-integrable (see

exercises 2.5.2 and 2.5.14).

Lemma 3.9.11 (Girsanov–Meyer) Suppose M ′ is a local P′-martingale. Then
M ′G′ is a local P-martingale, and

M ′ =
(
M ′0 −G.−∗[M ′, G′]

)
+
(
G.−∗(M ′G′) − (M ′G).−∗G′

)
. (3.9.5)

Reversing the roles of P,P′ gives this information: if M is a local P-martingale,

then M −G.−∗[M,G′] = M +G′.−∗[M,G]

= M0 +G′.−∗(MG) − (MG′).−∗G , (3.9.6)

every one of the processes in (3.9.6) being a local P′-martingale.
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The point, which will be used below and again in the proof of proposi-
tion 4.4.1, is that the first summand in (3.9.5) is a process of finite variation

and the second a local P-martingale, being as it is the difference of indefinite
integrals against two local P-martingales.

Proof. Two easy manipulations show that G,G′ are martingales with respect
to P′,P , respectively, and that a process N ′ is a P′-martingale if and only if

the product N ′G′ is a P-martingale. Localization exhibits M ′G′ as a local
P-martingale.

Now M ′G′ = G′.−∗M ′ +M ′.−∗G′ + [G′,M ′]

gives G.−∗(M ′G′) = ((0,∞))∗M ′ + (GM ′).−∗G′ +G.−∗[G′,M ′] ,

and exercise 3.7.9 produces the claim after sorting terms. The second equality

in (3.9.6) is the same as equation (3.9.5) with the roles of P , P′ reversed and
the finite variation process shifted to the other side. Inasmuch as GG′ = 1,

we have 0 = G.−∗G′+G′.−∗G+[G,G′] , whence 0 = G.−∗[G′,M ]+G′.−∗[G,M ]
for continuous M , which gives the first equality.

Now to approach the classical Girsanov results concerning Wiener process,

consider a standard d-dimensional Wiener process W = (W 1, . . . ,W d) on
the measured filtration (F.,P) and let h = (h1, . . . , hd) be a locally bounded

F.-previsible process. Then clearly the indefinite integral

M def= h∗W def=
∑d
η=1 h

η∗W η

is a continuous locally bounded local martingale and so is its Doléans–Dade

exponential (see proposition 3.9.2)

G′t
def= exp

(
Mt − 1/2

∫ t

0

|h|2s ds
)

= 1 +

∫ t

0

G′s dMs .

G′ is a strictly positive supermartingale and is a martingale if and only if
E[G′t] = 1 for all t > 0 (exercise 2.5.23 (iv)). Its reciprocal G def= 1/G′ is an

L0-integrator (exercise 2.5.32 and theorem 3.9.1).

Exercise 3.9.12 (i) If there is a locally Lebesgue square integrable function
η : [0,∞) → R so that |h|t ≤ ηt ∀ t , then G′ is a square integrable martingale; in

fact, then clearly E[G′2
t ] ≤ exp(

R t
0
η2
s ds). (ii) If it can merely be ascertained that

the quantity

E
h
exp

“ 1

2

Z t

0

|h|2s ds
”i

= E
ˆ
exp ([M,M ]t/2)

˜
(3.9.7)

is finite at all instants t , then G′ is still a martingale. Equation (3.9.7) is known
as Novikov’s condition. The condition E[exp ([M,M ]t/b)] < ∞ for some b > 2
and all t ≥ 0 will not do in general.
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After these preliminaries consider the “shifted Wiener process”

W ′ def= W + H , where H.
def=

∫ .

0

hs ds = [M,W ]. .

Assume for the moment that G′ is a uniformly integrable martingale, so that

there is a limit G′∞ in mean and almost surely (2.5.14). Then P′ def= G′∞P
defines a probability absolutely continuous with respect to P and locally

equivalent to P . Now H equals G∗[G′,W ] and thus W ′ is a vector of local
P′-martingales – see equation (3.9.6) in the Girsanov–Meyer lemma 3.9.11.

Clearly W ′ vanishes at time 0 and has the same bracket as a standard Wiener
process. Due to Lévy’s characterization 3.9.5, W ′ is itself a standard Wiener

process under P′ . The requirement of uniform integrability will be satisfied
for instance when G′ is L2(P)-bounded, which in turn is guaranteed by part

(i) of exercise 3.9.12 when the function η is Lebesgue square integrable. To

summarize:

Proposition 3.9.13 (Girsanov — the Basic Result) Assume that G′ is uni-

formly integrable. Then P′ def= G′∞P is absolutely continuous with respect to

P on F∞ and W ′ is a standard Wiener process under P′ .
In particular, if there is a Lebesgue square integrable function η on [0,∞)

such that |ht(ω)| ≤ ηt for all t and all ω ∈ Ω , then G′ is uniformly integrable
and moreover P and P′ are mutually absolutely continuous on F∞ .

Example 3.9.14 The assumption of uniform integrability in proposition 3.9.13

is rather restrictive. The simple shift W ′t = Wt + t is not covered. Let us
work out this simple one-dimensional example in order to see what might

and might not be expected under less severe restrictions. Since here h ≡ 1,
we have G′t = exp(Wt − t/2), which is a square integrable – but not square

bounded, not even uniformly integrable – martingale. Nevertheless there is,
for every instant t , a probability P′t on Ft equivalent with the restriction Pt
of P to Ft , to wit, P′t

def= G′tPt . The pairs (Ft,P′t) form a consistent family
of probabilities in the sense that for s < t the restriction of P′t to Fs equals

P′s . There is therefore a unique measure P′ on the algebra A∞ def=
⋃
tFt of

sets, the projective limit, defined unequivocally by

P′[A] def= P′s[A] if A ∈ A∞ belongs to Fs .
= P′t[A] if A also belongs to Ft .

Things are looking up. Here is a damper, 16 though: P′ cannot be ab-
solutely continuous with respect to P . Namely, since limt→∞Wt/t = 0

P-almost surely, the set [limt→∞Wt/t = −1] is P-negligible; yet this set
has P′-measure 1, since it coincides with the set [limtW

′
t/t = 0]. Mutatis

16 This point is occasionally overlooked in the literature.
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mutandis we see that P is not absolutely continuous with respect to P′ either.
In fact, these two measures are disjoint.

The situation is actually even worse. Namely, in the previous argument
the σ-additivity of P′ was used, but this is by no means assured. 16 Roughly,

Σ-additivity requires that the ambient space be “not too sparse,” a feature Ω
may miss. Assume for example that the underlying set Ω is the path space C

with the P-negligible Borel set {ω : lim sup |ωt/t| > 0} removed, Wt is of
course evaluation: Wt(ω.) = ωt , and P is Wiener measure W restricted to

Ω. The set function P′ is additive on A∞ but cannot be σ-additive. If it
were, it would have a unique extension to the σ-algebra generated by A∞ ,

which is the Borel σ-algebra on Ω; t 7→ ωt + t would be a standard Wiener
process under P′ with P′

[
{ω : lim(ωt+t)/t = 0}

]
= 1, yet Ω does not contain

a single path ω with lim(ωt + t)/t = 0!

On the positive side, the discussion suggests that if Ω is the full path
space C , then P′ might in fact be σ-additive as the projective limit of

tight probabilities (see theorem A.7.1 (v)). As long as we are content with
having P′ absolutely continuous with respect to P merely locally, there ought

to be some “non-sparseness” or “fullness” condition on Ω that permits a
satisfactory conclusion even for somewhat large h .

Let us approach the Girsanov problem again, with example 3.9.14 in mind.
Now the collection T′ of stopping times T with E[G′T ] = 1 is increas-

ingly directed (exercise 2.5.23 (iv)), and therefore A def=
⋃
T∈T′ FT is an al-

gebra of sets. On it we define unequivocally the additive measure P′ by

P′[A] def= E[G′SA] if A ∈ A belongs to FS , S ∈ T . Due to the optional stop-
ping theorem 2.5.22, this definition is consistent. It looks more general than

it is, however:

Exercise 3.9.15 In the presence of the natural conditions A generates F∞ , and
for P′ to be σ-additive G′ must be a martingale.

Now one might be willing to forgo the σ-additivity of P′ on F∞ given as

it is that it holds on “arbitrarily large” σ-subalgebras FT , T ∈ T . But
probabilists like to think in terms of σ-additive measures, and without the

σ-additivity some of the cherished facts about a Wiener process W ′ , such
as limt→∞W ′t/t = 0 a.s., for example, are lost. We shall therefore have

to assume that G′ is a martingale, for instance by requiring the Novikov
condition (3.9.7) on h .

Let us now go after the “non-sparseness” or “fullness” of (Ω,F.) mentioned
above. One can formulate a technical condition essentially to the effect that

each of the Ft contain lots of compact sets; we will go a different route and

give a definition17 that merely spells out the properties we need, and then
provide a plethora of permanence properties ensuring that this definition is

usually met.

17 As far as I know first used in Ikeda–Watanabe [39, page 176].
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Definition 3.9.16 (i) The filtration (Ω,F.) is full if whenever (Ft,Pt) is a
consistent family of probabilities (see page 164) on F. , then there exists a

σ-additive probability P on F∞ whose restriction to Ft is Pt , t ≥ 0 .
(ii) The measured filtration (Ω,F.,P) is full if whenever (Ft,Pt) is a

consistent family of probabilities with Pt � P on Ft ,18 t < ∞ , then there
exists a σ-additive probability P on F∞ whose restriction to Ft is Pt ,
t ≥ 0 . The measured filtration (Ω,F.,P) is full if every one of the measured
filtrations (Ω,F.,P) , P ∈ P , is full.

Proposition 3.9.17 (The Prime Examples) Fix a polish space (P, ρ) . The

cartesian product P [0,∞) equipped with its basic filtration is full. The path
spaces DP and CP equipped with their basic filtrations are full.

When making a stochastic model for some physical phenomenon, financial

phenomenon, etc., one usually has to begin by producing a filtered mea-
sured space that carries a model for the drivers of the stochastic behav-

ior – in this book this happens for instance when Wiener process is con-
structed to drive Brownian motion (page 11), or when Lévy processes are

constructed (page 267), or when a Markov process is associated with a semi-

group (page 351). In these instances the naturally appearing ambient space
Ω is a path space DP or C d equipped with its basic full filtration. Thereafter

though, in order to facilitate the stochastic analysis, one wishes to discard
inconsequential sets from Ω and to go to the natural enlargement. At this

point one hopes that fullness has permanence properties good enough to sur-
vive these operations. Indeed it has:

Proposition 3.9.18 (i) Suppose that (Ω,F.) is full, and let N ∈ A∞σ . Set

Ω′ def= Ω\N , and let F ′. denote the filtration induced on Ω′ , that is to say,
F ′t def= {A ∩ Ω′ : A ∈ Ft} . Then (Ω′,F ′.) is full. Similarly, if the measured

filtration (Ω,F.,P) is full and a P-nearly empty set N is removed from Ω ,

then the measured filtration induced on Ω′ def= Ω\N is full. (ii) If the measured
filtration (Ω,F.,P) is full, then so is its natural enlargement. In particular,

the natural filtration on canonical path space is full.

Proof. (i) Let (F ′t,P′t) be a consistent family of σ-additive probabilities, with
additive projective limit P′ on the algebra A′∞ def=

⋃
t F ′t . For t ≥ 0 and

A ∈ Ft set Pt[A] def= P′t[A∩Ω′] . Then (Ft,Pt) is easily seen to be a consistent
family of σ-additive probabilities. Since F. is full there is a σ-additive

probability P that coincides with Pt on Ft , t ≥ 0. Now let A′∞ 3 A′n ↓ ∅ .
It is to be shown that P′[A′n] → 0; any of the usual extension procedures will

then provide the required σ-additive P′ on F ′. that agrees with P′t on F ′t ,
t ≥ 0. Now there are An ∈ A∞ such that A′n = An ∩Ω′ ; they can be chosen
to decrease as n increases, by replacing An with

⋂
ν≤nAν if necessary. Then

there are Nn ∈ A∞ with union N ; they can be chosen to increase with n .

18 I.e., a P-negligible set belonging to Ft (!) is Pt-negligible.
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There is an increasing sequence of instants tn so that both Nn ∈ Ftn and
An ∈ Ftn , n ∈ N . Now, since

⋂
nAn ⊆ N ,

limP′[A′n] = lim P′tn [A′n] = lim P′tn [An ∩ Ω′] = lim Ptn [An]

= lim P[An] = P
[⋂

An
]
≤ P[N ] = lim P[Nn] (3.9.8)

= lim Ptn [Nn] = lim P′tn [Nn ∩ Ω′] = lim P′tn [∅] = 0 .

The proof of the second statement of (i) is left as an exercise.

(ii) It is easy to see that (Ω,F.+) is full when (Ω,F.) is, so we may assume

that F. is right-continuous and only need to worry about the regularization.
Let then (Ω,F.,P) be a full measured filtration and (FP

t ,Pt) a consistent

family of σ-additive probabilities on FP
. , with additive projective limit P on

AP
∞

def=
⋃
tFP

t and Pt � P on FP
t , P ∈ P, t ≥ 0. The restrictions P0

t of
Pt to Ft have a σ-additive extension P0 to F∞ that vanishes on P-nearly

empty sets, P ∈ P , and thus is defined and σ-additive on FP
∞ . On AP

∞ , P0

coincides with P , which is therefore σ-additive.

Imagine, for example, that we started off by representing a number of proces-
ses, among them perhaps a standard Wiener process W and a few Poisson

point processes, canonically on the Skorohod path space: Ω = Dn . Having
proved that the ω ∈ Ω where the path W.(ω) is anywhere differentiable form

a nearly empty set, we may simply throw them away; the remainder is still
full. Similarly we may then toss out the ω where the Wiener paths violate

the law of the iterated logarithm, the paths where the approximation scheme
3.7.26 for some stochastic integral fails to converge, etc. What we cannot

throw away without risking complications are sets like [Wt(.)/t −−−→t→∞ 0] that

depend on the tail–σ-algebra of W ; they may be negligible but may well
not be nearly empty. With a modicum of precaution we have the Girsanov

theorem in its most frequently stated form:

Theorem 3.9.19 (Girsanov’s Theorem) Assume that W = (W 1, . . . ,W d) is

a standard Wiener process on the full measured filtration (Ω,F.,P) , and let
h = (h1, . . . , hd) be a locally bounded previsible process. If the Doléans–Dade

exponential G′ of the local martingale M def= h∗W is a martingale, then there
is a unique σ-additive probability P′ on F∞ so that P′ = G′tP on Ft at all

finite instants t , and

W ′ def= W + [M,W ] = W +

∫ .

0

hs ds

is a standard Wiener process under P′ .

Warning 3.9.20 In order to ensure a plentiful supply of stopping times (see ex-
ercise 1.3.30 and items A.5.10–A.5.21) and the existence of modifications with

regular paths (section 2.3) and of cross sections (pages 436–440), most every
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author requires right off the bat that the underlying filtration F. satisfy the
so-called usual conditions, which say that F. is right-continuous and that

every Ft contains every negligible set of F∞ (!). This is achieved by making
the basic filtration right-continuous and by throwing into F0 all subsets of

negligible sets in F∞ . If the enlargement is effected this way, then theo-
rem 3.9.19 fails, even when Ω is the full path space C and the shift is as

simple as h ≡ 1, i.e., W ′t = Wt+t , as witness example 3.9.14. In other words,
the usual enlargement of a full measured filtration may well not be full. If

the enlargement is effected by adding into F0 only the nearly empty sets, 19

then all of the benefits mentioned persist and theorem 3.9.19 turns true.

We hope the reader will at this point forgive the painstaking (unusual but
natural) way we chose to regularize a measured filtration.

The Stratonovich Integral

Let us revisit the algorithm (3.7.11) on page 140 for the pathwise approxima-

tion of the integral
∫ T
0
X.− dZ . Given a threshold δ we would define stopping

times Sk , k = 0, 1, . . ., partitioning ((0, T ]] such that on Ik def= ((Sk, Sk+1]] the
integrand X.− did not change by more than δ . On each of the intervals Ik we

would approximate the integral by the value of the right-continuous process
X at the left endpoint Sk multiplied with the change ZTSk+1

−ZTSk
of ZT over

Ik . Then we would approximate the integral over ((0, T ]] by the sum over k
of these local approximations. We said in remarks 3.7.27 (iii)–(iv) that the

limit of these approximations as δ → 0 would serve as a perfectly intuitive
definition of the integral, if integrands in L were all we had to contend with

– definition 2.1.7 identifies the condition under which the limit exists.
Now the practical reader who remembers the trapezoidal rule from calculus

might at this point offer the following suggestion. Since from the definition
(3.7.10) of Sk+1 we know the value of X at that time already, a better local

approximation to X than its value at the left endpoint might be the average

1/2
(
XSk

+XSk+1

)
= XSk

+ 1/2
(
XSk+1

−XSk

)

of its values at the two endpoints. He would accordingly propose to define∫ T
0+
X dZ as

lim
δ→0

∑

0≤k≤∞

XSk
+XSk+1

2
·
(
ZTSk+1

− ZTSk

)

= lim
δ→0

∑

0≤k≤∞
XSk

(
ZTSk+1

−ZTSk

)
+

1

2
lim
δ→0

∑

0≤k≤∞

(
XSk+1

−XSk

)(
ZTSk+1

−ZTSk

)
.

The merit of writing it as in the second line above is that the two limits are
actually known: the first one equals the Itô integral

∫ T
0+
X dZ , thanks to

19 Think of them as the sets whose negligibility can be detected before the expiration of
time.
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theorem 3.7.26, and the second limit is [X,ZT ]T − [X,ZT ]0 – at least when
X is an L0-integrator (page 150). Our practical reader would be lead to the

following notion:

Definition 3.9.21 Let X,Z be two L0-integrators and T a finite stopping time.

The Stratonovich integral is defined by

∫ T

0

X δZ def= X0Z0 +
1

2
lim

∑

0≤k≤∞

(
XSk

+XSk+1

)(
ZTSk+1

− ZTSk

)
, (3.9.9)

the limit being taken as the partition 8 S = {0=S0 ≤ S1 ≤ S2 ≤ . . . ≤ S∞=∞}
runs through a sequence whose mesh goes to zero. It can be computed in terms

of the Itô integral as

∫ T

0

X δZ = X0Z0 +

∫ T

0

X.− dZ +
1

2

(
[X,Z]T − [X,Z]0

)
. (3.9.10)

X◦Z denotes the corresponding indefinite integral t 7→
∫ t
0
X δZ :

X◦Z = X0Z0 +X.−∗Z + 1/2
(
[X,Z] − [X,Z]0

)
.

Remarks 3.9.22 (i) The Itô and Stratonovich integrals not only apply to

different classes of integrands, they also give different results when they
happen to apply to the same integrand. For instance, when both X and Z

are continuous L0-integrators, then X◦Z = X∗Z + 1/2[X,Z] . In particular,
(W◦W )t = (W∗W )t + t/2 (proposition 3.8.16).

(ii) Which of the two integrals to use? The answer depends entirely on
the purpose. Engineers and other applied scientists generally prefer the

Stratonovich integral when the driver Z is continuous. This is partly due to
the appeal of the “trapezoidal” definition (3.9.9) and partly to the simplicity

of the formula governing coordinate transformations (theorem 3.9.24 below).
The ultimate criterion is, of course, which integral better models the physical

situation. It is claimed that the Stratonovich integral generally does. Even
in pure mathematics – if there is such a thing – the Stratonovich integral

is indispensable when it comes to coordinate-free constructions of Brownian
motion on Riemannian manifolds, say.

(iii) So why not stick to Stratonovich’s integral and forget Itô’s? Well, the
Dominated Convergence Theorem does not hold for Stratonovich’s integral,

so there are hardly any limit results that one can prove without resorting
to equation (3.9.10), which connects it with Itô’s. In fact, when it comes to

a computation of a Stratonovich integral, it is generally turned into an Itô

integral via (3.9.10), which is then evaluated.

(iv) An algorithm for the pathwise computation of the Stratonovich in-
tegral X◦Z is available just as for the Itô integral. We describe it in

case both X and Z are Lp-integrators for some p > 0, leaving the
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case p = 0 to the reader. Fix a threshold δ > 0. There is a partition
S = {0 = S0 ≤ S1 ≤ · · ·} with S∞ def= supk<∞ Sk = ∞ on whose intervals

[[Sk, Sk+1)) both X and Z vary by less than δ . For example, the recursive
definition Sk+1

def= inf{t > Sk : |Xt − XSk
| ∨ |Zt − ZSk

| > δ} produces one.

The approximate

Y
(δ)
t

def=
∑ XSk

t +X
Sk+1

t

2
·
(
Z
Sk+1

t − ZSk
t

)

=
∑

XSk
(Z

Sk+1

t − ZSk
t ) +

1

2

(
X0Z0 +

∑

0<k<∞
(X

Sk+1

t −XSk
t )(Z

Sk+1

t − ZSk
t )
)

has, by exercise 3.8.14,
⌈⌈∣∣(X◦Z) − Y (δ)

∣∣?
t

⌉⌉
Lp

≤ 2C?(2.3.5)p

(
δZt Ip + δXt

Ip

)
.

Thus, if δ runs through a sequence (δn) with
∑
n δnZ

n
Ip + δnX

n
Ip <∞ ,

then Y (δ) −−−→n→∞ X◦Z nearly, uniformly on bounded intervals.

Practically, Stratonovich’s integral is useful only when the integrator is a

continuous L0-integrator, so we shall assume this for the remainder of this
subsection.

Given a partition S and a continuous L0-integrator Z , let Z
S

denote the
continuous process that agrees in the points Sk of S with Z and is linear in

between. It is clearly not adapted in general: knowledge of ZSk+1
is contained

in the definition of Zt for t ∈ ((Sk, Sk+1]] . Nevertheless, the piecewise linear

process Z
S

of finite variation is easy to visualize, and the approximate Y
(δ)
t

above is nothing but the Lebesgue–Stieltjes integral
∫ t
0
X
S
dZ
S

, at least

at the points t = Sk , k = 1, 2, . . .. In other words, the approximation
scheme above can be seen as an approximation of the Stratonovich integral

by Lebesgue–Stieltjes integrals that are measurably parametrized by ω ∈ Ω.

Exercise 3.9.23 X · Z = X◦Z + Z◦X , and so δ(XZ) = XδZ + ZδX . Also,
X ◦ (Y ◦ Z) = (XY ) ◦ Z .

Consider a differentiable curve t 7→ ζt = (ζ1
t , . . . , ζ

d
t ) in Rd and a smooth

function Φ : Rd → R . The Fundamental Theorem of Calculus says that

Φ(ζt) = Φ(ζ0) +

∫ t

0

Φ;η(ζs) dζ
η
s .

It is perhaps the main virtue of the Stratonovich integral that a similarly

simple formula holds for it:

Theorem 3.9.24 Let D ⊂ Rd be open and convex, and let Φ : D → R be

a twice continuously differentiable function. Let Z = (Zη)dη=1 be a d-vector
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of continuous L0-integrators and assume that the path of Z stays in D at
all times. Then Φ(Z) is an L0-integrator, and for any almost surely finite

stopping time T 14

Φ(ZT ) = Φ(Z0) +

∫ T

0+

Φ;η(Z) δZη . (3.9.11)

Proof. Recall our convention that X0− = 0 for X ∈ D . Itô’s formula gives

Φ;η(Z) = Φ;η(Z0) + Φ;ηθ(Z)
~
∗Zθ + 1/2 Φ;ηθι(Z)∗c[Zθ, Zι] ,

so by exercise 3.8.12 and proposition 3.8.19

c
[
Φ;η(Z), Zη

]
= c
[
Φ;ηθ(Z)∗Zθ, Zη

]
= Φ;ηθ(Z)∗c[Zη, Zθ] .

Equation (3.9.10) produces

∫ T

0+

Φ;η(Z)δZη =

∫ T

0+

Φ;η(Z) dZη + 1/2

∫ T

0+

Φ;ηθ(Z) dc[Zη, Zθ] ,

thus Φ(ZT ) = Φ(Z0) +

∫ T

0+

Φ;η(Z) dZη + 1/2

∫ T

0+

Φ;ηθ(Z) dc[Zη, Zθ] ,

i.e., Φ(ZT ) = Φ(Z0) +

∫ T

0+

Φ;η(Z)δZη .

For this argument to work Φ must be thrice continuously differentiable. In
the general case we find a sequence of smooth functions Φn that converge

to Φ uniformly on compacta together with their first and second derivatives,
use the penultimate equation above, and apply the Dominated Convergence

Theorem.

3.10 Random Measures

Very loosely speaking, a random measure is what one gets if the index η in
a vector Z = (Zη) of integrators is allowed to vary over a continuous set,

the “auxiliary space,” instead of the finite index set {1, . . . , d} . Visualize
for instance a drum pelted randomly by grains of sand (see [107]). At any

surface element dη and during any interval ds there is some random noise

β(dη, ds) acting on the surface; a suitable model for the noise β together with
the appropriate differential equation should describe the effect of the action.

We won’t go into such a model here but only provide the mathematics to do
so, since the integration theory of random measures is such a straightforward

extension of the stochastic analysis above. The reader may look at this section
as an overview or summary of the material offered so far, done through a slight

generalization.
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Figure 3.11 Going from a discrete to a continuous auxiliary space

Let us then fix an auxiliary space H ; this is to be a separable metrizable

locally compact space 20 equipped with its natural class E [H] def= C00(H) of
elementary integrands and its Borel σ-algebra B•(H). This and the ambient

measured filtration (Ω,F.,P) with accompanying base space B give rise to
the auxiliary base space

B̌ def= H × B with typical point η̌ = (η,$) = (η, s, ω) ,

which is naturally equipped with the algebra of elementary functions

Ě def= E [H] ⊗ E [F.] =
{

(η,$) 7→
∑

i

hi(η)Xi($) : hi ∈ E [H] , Xi ∈ E
}
.

Ě is evidently self-confined, and its natural topology is the topology of con-

fined uniform convergence (see item A.2.5 on page 370). Its confined uniform
closure is a self-confined algebra and vector lattice closed under chopping (see

exercise A.2.6). The sequential closure of Ě is denoted by P̌ and consists of
the predictable random functions. One further bit of notation: for any

stopping time T ,

[[[0, T ]]] def= H×[[0, T ]] = {(η, s, ω) : 0 ≤ s ≤ T (ω)} .
The essence of a function F of finite variation is the measure dF that

goes with it. The essence of an integrator Z = (Z1, Z2, . . . , Zd) is the vector

measure dZ , which maps an elementary integrand X = X̌ = (Xη)η=1...d

to the random variable
∫

X dZ ; the vector Z of cumulative distribution

functions is really but a tool in the investigation of dZ . Viewing matters this
way leads to a straightforward generalization of the notion of an integrator:

a random measure with auxiliary space H should be a non-anticipating
continuous linear and σ-additive map ζ from Ě to Lp . Such a map will

have an elementary indefinite integral 6

(X̌∗ζ)t def= ζ
(
[[[0, t]]] · X̌

)
, X̌ ∈ Ě , t ≥ 0 .

It is convenient to replace the requirement of σ-additivity by a weaker condi-

tion, which is easier to check yet implies it, just as was done for integrators in
definition 2.1.7, (RC-0), and proposition 3.3.2, and to employ this definition:

20 For most of the analysis below it would suffice to have H Suslin, and to take for E[H]
a self-confined algebra or vector lattice closed under chopping of bounded Borel functions
that generates the Borels – see [93].
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Definition 3.10.1 Let 0 ≤ p < ∞ . An Lp-random measure with auxiliary
space H is a linear map ζ : Ě → Lp having the following properties:

(i) ζ maps order-bounded sets of Ě to topologically bounded sets 21 in Lp .
(ii) The indefinite integral X̌∗ζ of any X̌ ∈ Ě is right-continuous in

probability and adapted and satisfies

(
[[[0, T ]]] · X̌

)
∗ζ =

(
X̌∗ζ

)T
, T ∈ T . (3.10.1)

A few comments and amplifications are in order. If the probability P must be

specified, we talk about an Lp(P)-random measure. If p = 0, we also speak
simply of a random measure instead of an L0-random measure.

The continuity condition (i) means that

for every order interval 6 [−Y̌ , Y̌ ] def=
{
X̌ ∈ Ě :

∣∣X̌
∣∣ ≤ Y̌

}

its image ζ
(
[−Y̌ , Y̌ ]

)
is bounded21 in Lp .

The integrator size of ζ is then naturally measured by the quantities 6

ζh,t Ip
def= sup

{⌈⌈∫
X̌ dζ

⌉⌉
p

: X̌ ∈ Ě , |X̌(η,$)| ≤ h(η) · 1[[0,t]]($)
}
,

where h ∈ E+[H] and t ≥ 0.

If λζh,∞ Ip
−−→
λ→0 0 for all h ∈ E+[H] ,

then ζ is reasonably called a global Lp-random measure.

If λζ1,t
Ip

−−→
λ→0 0 at all t ,

then ζ is spatially bounded.

Equation (3.10.1) means that ζ is non-anticipating and generalizes with

a little algebra to (X·X̌)∗ζ = X∗(X̌∗ζ) for X ∈ E , X̌ ∈ Ě . This in
conjunction with the continuity (i) shows that X̌∗ζ is an Lp-integrator for

every X̌ ∈ Ě and is σ-additive in Lp-mean (proposition 3.3.2).
An L0-random measure ζ is locally an Lp-random measure or is a

local Lp-random measure if there are arbitrarily large stopping times T
so that the stopped random measure

ζT def= [[[0, T ]]]·ζ : X̌ 7→ ζ
(
[[[0, T ]]]X̌

)

has ([[[0, T ]]]λζ)h,∞ Ip
−−→
λ→0 0

for all h ∈ E+[H] . (This extends the notion for integrators – see exer-
cise 3.3.4.) A random measure ζ vanishes at zero if (X̌∗ζ)0 = 0 for every

elementary integrand X̌ ∈ Ě .

21 This amounts to saying that ζ is continuous from Ě to the target space, Ě being given
the topology of confined uniform convergence (see item A.2.5 on page 370).
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σ-Additivity

For the integration theory of a random measure its σ-additivity is indispens-

able, of course. It comes from the following result, which is the analog of
proposition 3.3.2 and has a somewhat technical proof.

Lemma 3.10.2 An Lp-random measure is σ-additive in p-mean, 0 ≤ p <∞ .

Proof. We shall use on two occasions the Gelfand transform ζ̂ (see coroll-

ary A.2.7 on page 370). It is a linear map from a space C00

(̂̌B
)
, ̂̌B locally

compact, to Lp that maps order-bounded sets to bounded sets and there-
fore has the usual Daniell extension featuring the Dominated Convergence

Theorem (pages 88–105). 22

First the case 1 ≤ p < ∞ . Let g be any element of the dual Lp
′

of

Lp . Then θ(X̌) def= 〈g|ζ(X̌)〉 defines a scalar measure θ of finite variation
on Ě that is marginally σ-additive on E . Indeed, for every H ∈ E [H] the

functional E 3 X 7→ θ(H⊗X) = 〈g|
∫
X d(H∗ζ)〉 is σ-additive on the grounds

that H∗ζ is an Lp-integrator. By corollary A.2.8, θ = 〈g|ζ〉 is σ-additive

on Ě . As this holds for any g in the dual of Lp , ζ is σ-additive in the weak
topology σ(Lp, Lp

′
). Due to corollary A.2.7, ζ is σ-additive in p-mean.

Now to the case 0 ≤ p < 1. It is to be shown that ζ(X̌n) → 0 in Lp(P)

whenever Ě 3 X̌n ↓ 0 (exercise 3.1.5). There is a function Ȟ ∈ Ě that
equals 1 on [X̌1 > 0]. The random measure ζ ′ : X̌ → ζ(Ȟ · X̌) has domain

Ě ′ def= Ě + R , algebra of bounded functions containing the constants. On the
X̌n both ζ and ζ ′ agree. According to exercise 4.1.8 on page 195 and proposi-

tion 4.1.12 on page 206, there is a probability P′ ≈ P so that ζ ′ : Ě ′ → L2(P′)
is bounded. From proposition 3.3.2 and the first part of the proof we know

now that ζ ′ and then ζ is σ-additive in the topology of L2(P′). Therefore
ζ(X̌n) → 0 in L0(P) = L0(P′): ζ is σ-additive in P-probability. We invoke

corollary A.2.7 again to produce the σ-additivity of ζ in Lp(P).

The extension theory of a random measure is entirely straightforward. We
sketch here an overview, leaving most details to the reader – no novel argu-

ment is required, simply apply sections 3.1–3.6 mutatis perpauculis mutandis.
Suppose then that ζ is an Lp-random measure for some p ∈ [0,∞). In

view of definition 3.10.1 and lemma 3.10.2, ζ is an Lp-valued linear map on
a self-confined algebra of bounded functions, is continuous in the topology

of confined uniform convergence, and is σ-additive. Thus there exists an
extension of ζ that satisfies the Dominated Convergence Theorem. It is

obtained by the utterly straightforward construction and application of the

Daniell mean

F̌ 7→
⌈⌈
F̌
⌉⌉∗
ζ−p

def= inf
Ȟ∈Ě↑,

Ȟ≥|F̌ |

sup
X̌∈Ě,

|X̌|≤Ȟ

⌈⌈∫
X̌ dζ

⌉⌉
Lp

22 To be utterly precise, bζ is a linear map on b̌E ⊂ C00(čB ) that maps order-bounded sets
to bounded sets, but it is easily seen to have an extension to C00 with the same property.
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on (B̌, Ě) and is written in integral notation as

F̌ 7→
∫
F̌ dζ =

∫

B̌

F (η, s) ζ(dη, ds) , F̌ ∈ L1[ζ−p] .

Here L1[ζ−p] def= L1[dd ee∗
ζ−p] , the closure of Ě under dd ee∗

ζ−p , is the collection

of ζ−p-integrable random functions. On it the DCT holds. For every
F̌ ∈ L1[ζ−p] the process F̌∗ζ , whose value at t is variously written as

F̌∗ζ(t) =

∫
[[[0, t]]]F̌ dζ =

∫ t

0

F̌ (η, s) ζ(dη, ds) ,

is an Lp-integrator (of classes) and thus has a nearly unique càdlàg represen-

tative, which is chosen for F̌∗ζ ; and for all bounded predictable X
∫
X d

(
F̌∗ζ

)
=

∫
X · F̌ dζ

or X∗(F̌∗ζ) = (X · F̌ )∗ζ . (3.10.2)

Hence F̌∗ζ
Z−p = ddF̌ ee∗ζ−p = ddF̌ eeL1[ζ−p]

and
∥∥∥|F̌∗ζ|?∞

∥∥∥
Lp

≤ C?(2.3.5)p · ddF̌ee∗ζ−p . (3.10.3)

A random function F̌ is of course defined to be ζ−p-measurable 23 if it is
“largely as smooth as an elementary integrand from Ě ” (see definition 3.4.2).

Egoroff’s Theorem holds. A function F̌ in the algebra and vector lattice of
measurable functions, which is sequentially closed and generated by its idem-

potents, is ζ−p-integrable if and only if ddλF̌ ee∗
ζ−p −−−→λ→0 0. The predictable

random functions P̌ def= Ěσ provide upper and largest lower envelopes, and

dd ee∗
ζ−p is regular in the sense of corollary 3.6.10 on page 128. And so on.

If ζ is merely a local Lp-random measure, then X̌∗ζ is a local Lp-integrator

for every bounded predictable X̌ ∈ P̌ def= Ěσ .

Law and Canonical Representation

For motivation consider first an integrator Z = (Z1, . . . , Zd). Its essence is

the random measure dZ ; yet its law was defined as the image of the perti-
nent probability P under the “vector of cumulative distribution functions”

considered as a map Φ from Ω to the path space Dd . In the case of a
general random measure ζ there is no such thing as the “collection of cumu-

lative distribution functions.” But in the former case there is another way
of looking at Φ. Let hη denote the indicator function of the singleton set

{η} ⊂ H = {1, . . . , d} . The collection H def= {hη : {η} ⊂ H} has the property
that its linear span is dense in (in fact is all of) E [H] , and we might as well

interpret Φ as the map that sends ω ∈ Ω to the vector
(
(h∗Z).(ω) : h ∈ H

)

of indefinite integrals.

23 This notion does not depend on p; see corollary 3.6.11 on page 128.
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This can be emulated in the case of a random measure. Namely, let
H ⊂ E [H] be a collection of functions whose linear span is dense in E [H] ,

in the topology of confined uniform convergence. Such H can be chosen
countable, due to the σ-compactness of H , and most often will be. For every

h ∈ H pick a càdlàg version of the indefinite integral h∗ζ (theorem 2.3.4 on
page 62). The map

ζH : ω 7→
(
(h∗ζ).(ω) : h ∈ H

)

sends Ω into the set DRH of càdlàg paths having values in RH . In case
H is countable RH equals `0 , the Fréchet space of scalar sequences, and

then DRH = D`0 is polish under the Skorohod topology (theorem A.7.1 on
page 445); the map ζH is measurable if DRH is equipped with the Borel

σ-algebra for the Skorohod topology; and the law ζH[P] is a tight proba-

bility on DRH .
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Figure 3.12 The canonical representation

Remark 3.10.3 Two different people will generally pick different càdlàg versions
of the integrators (h∗ζ). , h ∈ H . This will affect the map ζH only in a nearly
empty set and thus will not change the law. More disturbing is this observation:
two different people will generally pick different sets H ∈ E [H] with dense linear
span, and that will affect both ζH and the law. If H is discrete, there is a canonical
choice of H : take all singletons. 7 One might think of the choice H = E [H] in the
general case, but that has the disadvantage that now path space DRH is not polish
in general and the law cannot be ascertained to be tight. To see why it is desirable
to have the path space polish, consider a Wiener random measure β (see defini-
tion 3.10.5). Then if β is realized canonically on a polish path space, whose basic
filtration is full (theorem A.7.1), we have a chance at Girsanov’s theorem (the-
orem 3.10.8).24 We shall therefore do as above and simply state which choice of H
enters the definition of the law.

For fixed (Ω,F.,P), H , H countable, and ζ , we have now an ad hoc map ζH

from Ω toDRH and have declared the law of ζ to be the image of P under

this map. This is of course justified only if “the map ζH of ζ is detailed
enough” to capture the essence of ζ . Let us see that it does. To this end

some notation. For h ∈ H let πh denote the projection of `0 = RH onto

its hth component and πh. the projection of a path in DRH onto its hth

component. Then ζh. (ω) def= πh. ◦ ζH (ω) is the h-component of ζH(ω). This

24 The measured filtration appearing in the construction of a Wiener random measure on
page 177, is it by any chance full? I do not know.
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is a scalar càdlàg path. The basic filtration on 0Ω def= DRH is denoted by
0F0

. , with elementary integrands 0E def= E [0F0
. ] . Its counterpart on the given

probability space is the basic filtration F0
. [ζ] of ζ , defined as the filtration

generated by the càdlàg processes h∗ζ , h ∈ H . A simple sequential closure

argument shows that a function f on Ω is measurable on F 0
t [ζ] if and only

if it is of the form f = f ◦ ζH , f ∈ 0F0
t . Indeed, the collection of functions

f of this form is closed under pointwise limits of sequences and contains the
functions ω 7→ (h∗ζ)s(ω), h ∈ H , s ≤ t , which generate F0

t [ζ] . Also, if

f = f ◦ζH = f ′ ◦ζH , then [f 6= f ′] is negligible for the law ζH[P] of ζ . With
ζH : Ω → 0Ω there go the maps

I×ζH : B → 0B def= R+ × 0Ω ,

which does (s, ω) 7→ (s, ζH(ω)) ,

and I×I×ζH : B̌ → 0B̌ def= H × [0,∞)× Ω = H × 0B ,

which does (η, s, ω) 7→ (η, s, ζH(ω)) .

It is easily seen that a process X is F0
. [ζ]-predictable if and only if it is of

the form X = X ◦ I×ζH , where X is 0F0
. -predictable, and that a random

function F̌ is predictable if and only if it is of the form F̌ = F̌ ◦ I×I×ζH with

F̌ 0F0
. -predictable. With these notations in place consider an elementary

function X̌ =
∑

i h
iXi ∈ Ě [0F0

. ] . Then X̌ def= X̌ ◦ I×I×ζH ∈ Ě
[
F0
. [ζ]

]
and

0ζ
(
X̌
)(
ζH(ω)

)
def=
∑
i

(
Xi∗πhi

.
)(
ζH(ω)

)

with Xi def= Xi ◦ I×ζH : =
∑
iX

i∗(hi∗ζ)(ω) = X̌∗ζ(ω)

for nearly every ω ∈ Ω. From this it is evident that

0ζ
(
X̌
)

def=
∑
iX

i∗ζhi

defines a random measure 0ζ on 0Ě that mirrors ζ in this sense:

0ζ(X̌) = ζ
(
X̌ ◦ I×I×ζH

)
, X̌ ∈ 0Ě .

0ζ is defined on a full filtration. We call it the canonical representation

of the random measure ζ – despite the arbitrariness in the choice of H .

Exercise 3.10.4 The regularization of the right-continuous version of the basic
filtration F0

. [ζ] is called the natural filtration of ζ and is denoted by F.[ζ] . Every
indefinite integral F̌∗ζ , F̌ ∈ L1[ζ−p] , is adapted to it.

Example: Wiener Random Measure

Compare the following construction with exercise 1.2.16 on page 20. On the
auxiliary space H let ν be a positive Radon measure, and on Ȟ def= H×[0,∞)

let µ denote the product of ν and Lebesgue measure λ . Let {φn} be
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an orthonormal basis of L2(µ) and ξn independent Gaussians distributed
N(0, 1) and defined on some measured space (Ω,F ,P). The map U : φn 7→ ξn
extends to a linear isometry of L2(µ) into L2(P) that takes orthogonal
elements of L2(µ) to independent random variables in L2(P); U(f) has

distribution N(0, ‖f‖2
L2(µ)) for f ∈ L2(µ). The restriction of U to relatively

compact Borel subsets7 of Ȟ is an L2(P)-valued set function, and aficionados

of the Riesz representation theorem may wish to write the value of U at
f ∈ L2(µ) as

U(f) =

∫
f(η, s) U(dη, ds) .

We shall now equip Ω with a suitable filtration F0
. . To this end fix

a countable subset H ⊂ E [H] whose linear span is dense in E [H] in the
topology of confined uniform convergence (item A.2.5). For h ∈ H set

Uht
def=

∫
h(η)1[0,t](s) U(dη, ds) , t ≥ 0 .

This produces a countable number of Wiener processes. By theorem 1.2.2 (ii)
we can arrange things so that after removal of a nearly empty set every one

of the Uh. , h ∈ H , has continuous paths. (If we want, we can employ Gram–
Schmid and have the Uh. standard and independent.) We now let F0

t be the

σ-algebra generated by the random variables Uhs , h ∈ H, s ≤ t , to obtain
the sought-after filtration F0

. . It is left to the reader to check that, for every

relatively compact Borel set B ⊂ H × [0, t] , U(B) differs negligibly from
some set in F0

t [Hint: use the Hardy mean (3.10.4) below].

To construct the Wiener random measure β we take for the elementary
functions E [H] the step functions over the relatively compact Borels of H

instead of C00[H] ; this eases visualization a little. With that, an elementary
integrand X̌ ∈ E [H] ⊗ E [F.] can be written as a finite sum

X̌(η, s;ω) =
∑

ı hı(η) ·Xı(s, ω) , hı ∈ E [H] , Xı ∈ E [F.] ,

or as X̌(η, s, ω) =
∑

i fi(ω) ·Ri(η, s) ,

where the Ri are mutually disjoint rectangles of Ȟ = H × [0,∞) and fi
is a simple function measurable on the σ-algebra that goes with the left
edge25 of Ri . In fact, things can clearly be arranged so that the Ri all are

rectangles of the form Bi× (ti−1, ti] , where the Bi are from a fixed partition
of H into disjoint relatively compact Borels and the ti are from a fixed

partition 0 ≤ t1 < . . . < tN < +∞ of [0,∞). For such X̌ define now

β(X̌)(ω) =

∫
X̌(η, s, ω) U(dη, ds;ω)

=
∑
i fi(ω) U(Ri)(ω) .

25 Meaning the left endpoint of the projection of Ri on [0,∞).
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The first line asks us to apply, for every fixed ω ∈ Ω, the L2(P)-valued
measure U to the integrand (η, s) 7→ X̌(η, s;ω), showing that the definition

does not depend on the particular representation of X̌ , and implying the
linearity26 of β . The second line allows for an easy check that β is an

L2-random measure. Namely, consider

E
[(
β(X̌)

)2]
=
∑

i,jE
[
fifj ·U(Ri)·U(Rj)

]
. (∗)

Now if the left edge25 of Ri is strictly less than the left edge of Rj , then even

the right edge of Ri is less than the left edge of Rj , and the random variables
fifj , U(Ri), U(Rj) are independent. Since the latter two have mean zero, the

expectation E[fifj·U(Ri)·U(Rj)] vanishes. It does so even if Ri and Rj have
the same left edge25 and i 6= j . Indeed, then Ri and Rj are disjoint, again

fifj , U(Ri), U(Rj) are independent, and the previous argument applies. The
cross-terms in (∗) thus vanish so that

E
[(
β(X̌)

)2]
=
∑
i E
[
f2
i

(
U(Ri)

)2]
=
∑
i E
[
f2
i

]
· E
[(
U(Ri)

)2]

=
∑
i E
[
f2
i

]
· µ(Ri) = E

[∫
X̌2(η, s; .)µ(dη, ds)

]
.

Therefore F 7→ ‖F‖H∗β−2 def=
(∫ ∗

F 2
t (η, s, ω) µ(dη, ds)P(dω)

)1/2

(3.10.4)

is a mean majorizing the linear map β : Ě → L2 , the Hardy mean. From this
it is obvious that β has an extension to all previsible X̌ with ‖X̌ ‖H∗

β−2 <∞ ,

an extension reasonably denoted by X̌ 7→
∫
X̌ dβ . β evidently meets the

following description and shows that there are instances of it:

Definition 3.10.5 A random measure β with auxiliary space H is a Wiener

random measure if h∗β, h′∗β are independent Wiener processes whenever
the functions h, h′ ∈ E [H] def= C00[H] have disjoint support.

Here are a few features of Wiener random measure. Their proofs are left as
exercises.

Theorem 3.10.6 (The Structure of Wiener Random Measures) (i) The
integral extension of β has the property that h∗β , h′∗β are independent Wiener
processes whenever h, h′ are disjoint relatively compact Borel sets. Thus the set
function ν : B 7→ [B∗β,B∗β]1 is a positive σ-additive measure on B•[H], called
the intensity rate of β . For h, h′ ∈ L2(ν), h∗β and h′∗β are Wiener processes
with [h∗β, h′∗β]t = t ·

R
h(η)h′(η)ν(dη); if h and h′ are orthogonal in the Hilbert

space L2(ν), then h∗β, h′∗β are independent.

(ii) The Daniell mean ‖ ‖∗
β−2

and the Hardy mean ‖ ‖H∗

β−2
agree on elemen-

tary integrands and therefore on P̌ . Consequently, L1[β−2] is the Hilbert space
L2(ν×λ×P), and the map X̌ 7→

R
X̌ dβ is an isometry of L1[β−2] onto a closed

26 As a map into classes modulo negligible functions.
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subspace of L2[P] (its range is the subspace of all functions with expectation zero; see
theorem 3.10.9). For X̌ ∈ L1[β−2],

R
X̌ dβ is normal with mean zero and standard

deviation ‖X̌ ‖H∗

β−2
.

(iii) β is an Lp-random measure for all p < ∞. It is continuous in the sense
that X̌∗β has a nearly continuous version, for all X̌ ∈ P̌b . It is spatially bounded
if and only if ν(H) is finite. For H = {1, . . . , d} and ν counting measure,β is a
standard d-dimensional Wiener process.

Theorem 3.10.7 (Lévy Characterization of a Wiener Random Measure)
Suppose β is a local martingale random measure such that, for every h ∈ E [H],
[h∗β, h∗β]t/t is a constant, and [h∗β, h′∗β]t = 0 if h, h′ ∈ E [H] have disjoint
support. Then β is a Wiener random measure whose intensity rate is given by
ν(h) = E[(h∗β)21 ] = [h∗β, h∗β]1 .

Theorem 3.10.8 (The Girsanov Theorem for Wiener Random Measure)
Assume the measured filtration (Ω,F.,P) is full, and β is a Wiener random measure
on (Ω,F.,P) with intensity rate ν . Suppose Ȟ is a predictable random function
such that the Doléans–Dade exponential G′ of Ȟ∗β is a martingale. Then there
is a unique σ-additive probability P′ on F∞ so that P′ = G′

tP on Ft at all finite
instants t, and

β′(dη, ds) def= β(dη, ds) + Ȟs(η)ν(dη)ds

is under P′ a Wiener random measure with intensity rate ν .

Theorem 3.10.9 (Martingale Representation for Wiener Random Mea-
sure) Every function f ∈ L2(F∞[β],P) is the sum of the constant Ef and a
random variable of the form

R
X̌ dβ , X̌ ∈ L1[β−2]. Thus every square integrable

(F.[β],P)-martingale M. has the form

Mt = M0 +

Z t

0

X̌(η, s) β(dη, ds) , X̌·[[[0, t]]] ∈ L1[β−2] , t ≥ 0 .

For more on this interesting random measure see corollary 4.2.16 on page 219.

Example: The Jump Measure of an Integrator

Given a vector Z = (Z1, Z2, . . . , Zd) of L0-integrators let us define, for any
function that is measurable on B•(Rd∗)×P 27 – a predictable random function

– and any stopping time T , the number
∫ T

0

Hs(y;ω) Z(dy, ds;ω) def=
∑

0≤s≤T (ω)

Hs

(
∆Zs(ω);ω

)
,

or, suppressing mention of ω as usual,

∫ T

0

Hs(y) Z(dy, ds) =
∑

0≤s≤T
Hs(∆Zs) . (3.10.5)

The sum will in general diverge. However, if H is the sure function

h0(y) def= |y|2 ∧ 1 ,

27 It is customary to denote by Rd∗ the punctured d-space: Rd∗
def= Rd\{0}. We identify

functions on Rd∗ with functions on Rd that vanish at the origin. The generic point of the
auxiliary space H = Rd∗ is denoted by y = (yη) in this subsection.
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then the sum will converge absolutely, since

|h0(∆Zs)| ≤
∑

1≤η≤d
|∆Zηs |2 =

∑

η

∆[Zη, Zη]s .

If H is a bounded predictable random function that is majorized in absolute

value by a multiple of h0 , then the sum (3.10.5) will exist wherever T is finite.
Let us call such a function a Hunt function. Their collection clearly forms

a vector lattice and algebra of predictable random functions. The integral
notation in equation (3.10.5) is justified by the observation that the map

H 7→
∑

0≤s≤t
Hs(∆Zs)

is, ω for ω , a positive σ-additive linear functional on the Hunt functions; in

fact, it is a sum of point masses supported by the points (∆Zs, s) ∈ Rd∗×[0,∞)
at the countable number of instants s at which the path Z.(ω) jumps:

Z =
∑

0≤s≤∞
∆Zs 6=0

δ(∆Zs,s) .

This ω-dependent measure Z is called the jump measure of Z . With

H def= Rd∗ , the map X̌ 7→
∫
X̌(y, s) Z(dy, ds) is clearly a random measure.

We identify it with Z . It integrates a priori more than the elementary

integrands Ě def= C00[Rd∗] ⊗ E , to wit, any Hunt function whose carrier is
bounded in time. For a Hunt function H the indefinite integral H∗Z
is defined by

(
H∗Z

)
t
=

∫

[[[0,t]]]

Hs(y) Z(dy, ds) , where [[[0, t]]] def= Rd∗ × [[0, t]]

is the cartesian product of punctured d-space with the stochastic interval
[[0, t]]. Clearly H∗Z is an adapted28 process of finite variation |H|∗Z and

has bounded jumps. It is therefore a local Lp-integrator for all p > 0

(exercise 4.3.8). Indeed, let St =
∑

η[Z
η, Zη]t ; at the stopping times

Tn = inf{t : St ≥ n}, which tend to infinity, H∗Z Tn =
(
|H|∗Z

)
Tn is

bounded by n+ ‖H‖∞ . This fact explains the prominence of the Hunt func-

tions. For any q ≥ 2 and all t <∞ ,

∫ t]]]

[[[0

|y|q Z(dy, ds) ≤
( ∑

1≤η≤d

j[Zη, Zη]t

)q/2
≤
( ∑

1≤η≤d
St[Z

η]
)q

is nearly finite; if the components Zη of Z are Lq-integrators, then this

random variable is evidently integrable. The next result is left as an ecercise.

28 Extend exercise 1.3.21 (iii) on page 31 slightly so as to cover random Hunt functions H .
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Proposition 3.10.10 Formula (3.9.2) can be rewritten in terms of Z as15

Φ(ZT ) = Φ(Z0) +

∫ T

0+

Φ;η(Z.−) dZη +
1

2

∫ T

0+

Φ;ηθ(Z.−) dc[Zη, Zθ](3.10.6)

+

∫ T

0

(
Φ(Zs− + y)−Φ(Zs−)−Φ;η(Zs−) · yη

)
Z(dy, ds)

= Φ(Z0) +

∫ T

0+

Φ;η(Z.−) dZη +
1

2

∫ T

0+

Φ;ηθ(Z.−) d[Zη, Zθ]

+

∫ T

0+

R3
Φ(Zs−,y) Z(dy, ds) , (3.10.7)

where

R3
Φ(z,y) = Φ(z + y) − Φ(z) − Φ;η(z)yη − 1

2
Φ;ηθ(z)yηyθ

=

∫ 1

0

(1 − λ)2

2
Φ′;ηθι(z + λy)yηyθyι dλ ,

or, when Φ is n-times continuously differentiable:

R3
Φ(z,y) =

n−1∑

ν=3

1

ν!
Φ;η1...ην

(z)yη1 · · · yην

+

∫ 1

0

(1−λ)n−1

(n− 1)!
Φη1...ηn

(z1+λy)yη1 · · ·yηn dλ .

Exercise 3.10.11 h′
0 : y 7→

R
[|ζ|≤1]

|ei〈ζ|y〉 − 1 |2 dζ defines another prototypical

sure Hunt function in the sense that h′
0/h0 is both bounded and bounded away

from zero.

Exercise 3.10.12 Let H,H ′ be previsible Hunt functions and T a stopping time.

Then (i) [H∗Z ,H ′∗Z ] = HH ′∗Z .

(ii) For any bounded predictable process X the product XH is a Hunt function and
Z

[[[0,T ]]]

XsHs(y) Z(dy, ds) =

Z

[[0,T ]]

Xs d(H∗Z)s .

In fact, this equality holds whenever either side exists.

(iii) ∆(H∗Z)t = Ht(∆Zt) , t ≥ 0 ,

and (H ′ ∗ 
H∗

Z

)
T

=

Z

[[[0,T ]]]

H ′
s(Hs(y)) Z(dy, ds)

as long as merely |H ′
s(y)| ≤ const · |y|. For any bounded predictable process X

(iv)

Z

[[[0,T ]]]

Hs(y) X∗Z(dy, ds) =

Z

[[[0,T ]]]

Hs(Xs·y) Z(dy, ds) ,

and if X = X2 is a set, then27 X∗Z = X · Z .
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Strict Random Measures and Point Processes

The jump measure Z of an integrator Z actually is a strict random measure
in this sense:

Definition 3.10.13 Let ζ : Ω → M∗
[
Ȟ] be a family of σ-additive measures on

Ȟ def= H × [0,∞) , one for every ω ∈ Ω . If the ordinary integral

X̌ 7→
∫

Ȟ

X̌(η, s;ω) ζ(dη, ds;ω) , X̌ ∈ Ě ,

computed ω–by–ω , is a random measure, then the linear map of the previous
line is identified with ζ and is called a strict random measure.

These are the random measures treated in [49] and [52]. The Wiener random

measure of page 179 is in some sense as far from being strict as one can get.
The definitions presented here follow [8]. Kurtz and Protter [60] call our ran-

dom measures “standard semimartingale random measures” and investigate

even more general objects.

Exercise 3.10.14 If ζ is a strict random measure, then F̌∗ζ can be computed
ω–by–ω when the random function F̌ ∈ L1[ζ−p] is predictable (meaning that F̌
belongs to the sequential closure P̌ def= Ěσ of Ě , the collection of functions measur-
able on B∗(H) ⊗ P ). There is a nearly empty set outside which all the indefinite
integrals (integrators) F̌∗ζ can be chosen to be simultaneously càdlàg. Also the
maps P̌ 3 X̌ 7→ X̌∗ζ(ω) are linear at every ω ∈ Ω – not merely as maps from P̌
to classes of measurable functions.

Exercise 3.10.15 An integrator is a random measure whose auxiliary space is a
singleton, but it is a strict random measure only if it has finite variation.

Example 3.10.16 (Sure Random Measures) Let µ be a positive Radon
measure on Ȟ def= H × [0,∞). The formula ζ(X̌)(ω) def=

R
Ȟ
X̌(η, s, ω)µ(dη, ds)

defines a simple strict random measure ζ . In particular, when µ is the product
of a Radon measure ν on H with Lebesgue measure ds then this reads

ζ(X̌)(ω) =

Z ∞

0

Z

H

X̌(η, s, ω) ν(dη)ds . (3.10.8)

Actually, the jump measure Z of an integrator Z is even more special.
Namely, its value on a set Ǎ ⊂ B̌ is an integer, the number of jumps whose

size lies in Ǎ . More specifically, Z(. ;ω) is the sum of point masses on Ȟ :

Definition 3.10.17 A positive strict random measure ζ is called a point
process if ζ(dη̌ ;ω) is, for every ω ∈ Ω , the sum of point masses δη̌ . We call

the point process ζ simple if almost surely ζ
(
H × {t}

)
≤ 1 at all instants t

– this means that supp ζ ∩
(
H × {t}

)
contains at most one point. A simple

point process clearly is described entirely by the random point set supp ζ ,
whence the name.

Exercise 3.10.18 For a simple point process ζ and F̌ ∈ P̌ ∩ L1[ζ−p]

∆(F̌∗ζ)t =

Z

H×{t}

F̌ (η, s) ζ(dη, ds) and [F̌∗ζ, F̌∗ζ] = F̌ 2∗ζ .
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Example: Poisson Point Processes

Suppose again that we are given on our separable metrizable locally com-

pact auxiliary space H a positive Radon measure ν . Let B̌ ∈ B•(Ȟ) with
ν×λ(B̌) < ∞ and set µ def= B̌·(ν×λ). Next let N be a random variable dis-

tributed Poisson with mean |µ| def= µ(1) = ν×λ(B̌) and let Yi , i = 0, 1, 2, . . .,
be random variables with values in Ȟ that have distribution µ/|µ| . They

and N are chosen to form an independent family and live on some probabil-
ity space (Ωµ,Fµ,Pµ). We use these data to define a point process πµ as

follows: for F̌ : Ȟ → R set

πµ(F̌ ) def=

N∑

ν=0

F̌ (Yν) =
N∑

ν=0

δYν
(F̌ ) . (3.10.9)

In other words, pick independently N points from Ȟ according to the

distribution µ/|µ| , and let πµ be the sum of the δ-masses at these points.

To check the distribution of πµ , let Ǎk ⊂ Ȟ be mutually disjoint and let
us show that πµ(Ǎ1), . . . , π

µ(ǍK) are independent and Poisson with means

µ(Ǎ1), . . . , µ(ǍK), respectively. It is convenient to set Ǎ0
def=
(⋃K

k=1 Ǎk
)c

and pk
def= Pµ[Y0 ∈ Ǎk] = µ(Ǎk)/|µ| . Fix natural numbers n0, . . . , nK and

set n = n0 + · · · + nK . The event
[
πµ(Ǎ0) = n0, . . . , π

µ(ǍK) = nK
]

occurs precisely when of the first n points Yν n0 fall into Ǎ0 , n1 fall into
Ǎ1 , . . ., and nK fall into ǍK , and has (multinomial) probability

(
n

n0 · · ·nK

)
pn0
0 · · · pnK

K

of occurring given that N = n . Therefore

Pµ
[
πµ(Ǎ0) = n0, . . . , π

µ(ǍK) = nK
]

= Pµ
[
N = n, πµ(Ǎ0) = n0, . . . , π

µ(ǍK) = nK
]

by independence: = e
−|µ| |µ|n

n!
·
(

n

n0 · · ·nK

)
pn0
0 · · · pnK

K

= e−µ(Ǎ0) |µ(Ǎ0)|n0

n0!
· · · e−µ(ǍK) |µ(ǍK)|nK

nK !

=
K∏

k=0

e−µ(Ǎk) |µ(Ǎk)|nk

nk!
.

Summing over n0 produces

Pµ
[
πµ(Ǎ1) = n1, . . . , π

µ(ǍK) = nK
]

=
K∏

k=1

e−µ(Ǎk) |µ(Ǎk)|nk

nk!
,
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showing that the random variables πµ(Ǎ1), . . . , π
µ(ǍK) are independent

Poisson random variables with means µ(Ǎ1), . . . , µ(ǍK), respectively.

To finish the construction we cover Ȟ by countably many mutually disjoint

relatively compact Borel sets Bk , set µk def= Bk(ν×λ), and denote by πk

the corresponding Poisson random measures just constructed, which live

on probability spaces (Ωk,Fk,Pk). Then we equip the cartesian product
Ω def=

∏
k Ωk with the product σ-algebra F def=

⊗
k Fk , on which the natural

probability is of course the product P def=
∏
k Pk . It is left as an exercise in

bookkeeping to show that π def=
∑

k π
k meets the following description:

Definition 3.10.19 A point process π with auxiliary space H is called a
Poisson point process if, for any two disjoint relatively compact Borel sets

B,B′ ⊂ H, the processes B∗π,B′∗π are independent and Poisson.

Theorem 3.10.20 (Structure of Poisson Point Processes) ν : B 7→ E[(B∗π)1 ]
is a positive σ-additive measure on B•[H] , called the intensity rate. When-

ever h ∈ L1(ν) , the indefinite integral h∗π is a process with independent sta-

tionary increments, is an Lp-integrator for all p > 0 , and has square bracket
[h∗π, h∗π] = h2∗π . If h, h′ ∈ L1(ν) have disjoint carriers, then h∗π, h′∗π
are independent. Furthermore,

π̂(X̌) def=

∫
X̌s(η) ν(dη)ds

defines a strict random measure π̂ , called the compensator of π . Also,
π̃ def= π−π̂ is a strict martingale random measure, called compensated Pois-

son point process. The π, π̂, π̃ are Lp-random measures for all p > 0 .

The Girsanov Theorem for Poisson Point Processes

Let π be a Poisson point process with intensity rate ν on H and intensity

π̂ = ν × λ on Ȟ def= H × [0,∞). A predictable transformation of H is a

map Γ : B̌ → B̌ of the form

(
η, s, ω

)
7→
(
γ(η, s;ω), s, ω

)
,

where γ : B̌ → H is predictable, i.e., P̌/B•(H)-measurable. Then Γ is
clearly P̌/P̌-measurable. Let us fix such Γ, and assume the following:

(i) The given measured filtration (F.,P) is full (see definition 3.9.16).

(ii) Γ is invertible and Γ−1 is P̌/P̌-measurable.

(iii) γ[ν] � ν , with bounded Radon–Nikodym derivative Ď def=
dγ[ν]

dν
∈ P̌ .

(iv) Y̌ def= Ď − 1 is a “Hunt function:” sups,ω
∫
Y̌ 2(η, s, ω) ν(dη) <∞ .

Then M def= Y̌ ∗π̃ is a martingale, and is a local Lp-integrator for all p > 0

on the grounds that its jumps are bounded (corollary 4.4.3). Consider the
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stochastic exponential G′ def= 1 + G′.−∗M = 1 + (G′.−Y̌ )∗π̃ of M . Since
∆M ≥ −1, we have G′ ≥ 0.

Now E
[
[G′, G′]t

]
= E

[
1 +

(
G′2.−∗[M,M ]

)
t

]

= E
[
1 +

(
(G′.−Y̌ )2∗π

)
t

]
= E

[
1 +

(
(G′.−Y̌ )2∗π̂

)
t

]

≤ E
[
1 +

∫ t

0

G′2.−(s)

∫

H

Y̌ 2(η, s) ν(dη) ds
]
,

and so E
[
G′?2t

]
≤ const

(
1 + const

∫ t

0

E
[
G′?2s

]
ds
)
.

By Gronwall’s lemma A.2.35, G′ is a square integrable martingale, and the

fullness provides a probability P′ on F∞ whose restriction to the Ft is G′tP .
Let us now compute the compensator π̂′ of π with respect to P′ . For

Ȟ ∈ P̌b vanishing after t we have

E′
[
(Ȟ∗π̂′)t

]
= E′

[
(Ȟ∗π)t

]
= E

[
G′t · (Ȟ∗π)t

]

= E
[(

(G′.−Ȟ)∗π
)
t

]
+ E

[(
(Ȟ∗π).−∗G′

)
t

]
+ E

[
[G′, Ȟ∗π]t

]

= E
[(

(G′.−Ȟ)∗π̂
)
t

]
+ 0 + E

[
G′.−∗[Y̌ ∗π̃, Ȟ∗π̃]t

]

by 3.10.18: = E
[(

(G′.−Ȟ)∗π̂
)
t

]
+ E

[(
G′.−Y̌ Ȟ∗π

)
t

]

as 1 + Y̌ = Ď : = E
[(
G′.−ĎȞ∗π̂

)
t

]
= E

[(
G′.−∗(ĎȞ∗π̂)

)
t

]

= E
[
G′t · (ĎȞ∗π̂)t

]
= E′

[
(ĎȞ∗π̂)t

]
;

so E′
[
(Ȟ∗π̂′)t

]
= E′

[(
Ȟ∗(Ďπ̂)

)
t

]
.

Therefore π̂′ = Ďπ̂ = Γ[π̂] , i.e., Γ̂−1[π]
′
= Γ−1[π̂′] = π̂ .

In other words, replacing Ȟ by Ȟ ◦ Γ−1 ∈ P̌ gives

E′
[
(Ȟ∗Γ−1[π])t

]
= E′

[(
(Ȟ ◦ Γ−1)∗(Ďπ̂)

)
t

]
= E′

[(
Ȟ∗Γ−1[Ďπ̂]

)
t

]

as Γ[bπ] = Ďbπ : = E′
[(
Ȟ∗π̂

)
t

]
, therefore

Theorem 3.10.21 Under the assumptions above the “shifted Poisson point

process” Γ−1[π] is a Poisson point process with respect to P′ , of the same
intensity rate ν that π had under P . Consequently, the law of Γ−1[π] under

P′ agrees with the law of π under P .

Repeated Footnotes: 951 1104 1166 1257 1398 15814 16115 16416 17321 17825 18027
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Control of Integral and Integrator

4.1 Change of Measure — Factorization

Let Z be a global Lp(P)-integrator and 0 ≤ p < q < ∞ . There is a
probability P′ equivalent with P such that Z is a global Lq(P′)-integrator;

moreover, there is sufficient control over the change of measure from P to
P′ to turn estimates with respect to P′ into estimates with respect to the

original and presumably intrinsically relevant probability P . In fact, all of this
remains true for a whole vector Z of Lp-integrators. This is of great practical

interest, since it is so much easier to compute and estimate in Hilbert space

L2(P′), say, than in Lp(P), which is not even locally convex when 0 ≤ p < 1.
When q ≤ 2 or when Z is previsible, the universal constants that

govern the change of measure are independent of the length of Z , and
that fact permits an easy extension of all of this to random measures

(see corollary 4.1.14).
These facts are the goal of the present section.

A Simple Case

Here is a result that goes some way in this direction and is rather easily

established (pages 188–190). It is due to Dellacherie [18] and the author [6],
and, in conjunction with the Doob–Meyer decomposition of section 4.3 and

the Girsanov–Meyer lemma 3.9.11, suffices to show that an L0-integrator is
a semimartingale (proposition 4.4.1).

Proposition 4.1.1 Let Z be a global L0-integrator on (Ω,F.,P) . There

exists a probability P′ equivalent with P on F∞ such that Z is a global
L1(P′)-integrator. Moreover, let α0 ∈ (0, 1) have Z

[α0]
> 0 ; the law P′

can be chosen so that

Z I1[P′]
≤

3 Z
[α0/2]

1 − α0

and so that the Radon–Nikodym derivative g def= dP/dP′ satisfies

‖g‖[α;P] ≤
16α0 · Z

[α/8]

α · Z
[α0/2]

∀ α > 0 , (4.1.1)

187



188 4 Control of Integral and Integrator

which implies ‖f‖[α;P] ≤
(

32α0 · Z
[α/16]

Z
[α0/2]

· α2

)1/r

· ‖f‖Lr(P′) (4.1.2)

for any α ∈ (0, 1) , r ∈ (0,∞) , and f ∈ F∞ .

A remark about the utility of inequality (4.1.2) is in order. To fix ideas assume
that f is a function computed from Z , for instance, the value at some time T

of the solution of a stochastic differential equation driven by Z . First, it is
rather easier to establish the existence and possibly uniqueness of the solution

computing in the Banach space L1(P′) than in L0(P) – but generally still not
as easy as in Hilbert space L2(P′). Second, it is generally very much easier

to estimate the size of f in Lr(P′) for r > 1, where Hölder and Minkowski
inequalities are available, than in the non-locally convex space L0(P). Yet it

is the original measure P , which presumably models a physical or economical
system and reflects the “true” probability of events, with respect to which

one wants to obtain a relevant estimate of the size of f . Inequality (4.1.2)
does that.

Apart from elevating the exponent from 0 to merely 1, there is another
shortcoming of proposition 4.1.1. While it is quite easy to extend it to cover

several integrators simultaneously, the constants of inequality (4.1.1) and

(4.1.2) will increase linearly with their number. This prevents an application
to a random measure, which can be viewed as an infinity of infinitesimal

integrators (page 173). The most general theorem, which overcomes these
problems and is in some sense best possible, is theorem 4.1.2 below.

Proof of Proposition 4.1.1. This result follows from part (ii) of theorem 4.1.2,
whose detailed proof takes 20 pages. The reader not daunted by the prospect

of wading through them might still wish to read the following short proof of
proposition 4.1.1, since it shares the strategy and major elements with the

proof of theorem 4.1.2 and yields in its less general setup better constants.
The first step is the following claim: For every α in (0, 1) there exists a

function kα

with 0 ≤ kα ≤ 1 and E
[
kα
]
≥ 1 − α

and such that the measure µα = kα · P satisfies

Eµα

[∣∣∣
∫
X dZ

∣∣∣
]
≤ 3 Z

[α/2]
· ‖X‖E (4.1.3)

for X ∈ E . Here Eµα [f ] def=
∫
f dµα , of course. To see this fix an α in (0, 1)

and set T def= inf{t : |Zt| > Z
[α/2]

}. Now P
[∣∣∣
∫

[[0, T ]] dZ
∣∣∣ ≥ Z

[α/2]

]
≤ α/2

means that P
[∣∣ZT

∣∣ ≥ Z
[α/2]

]
≤ α/2 and produces

P[T < ∞] ≤ P
[∣∣ZT

∣∣ ≥ Z
[α/2]

]
≤ α/2 .
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The complement G def= [T = ∞] ⊂ [Z?∞ ≤ Z
[α/2]

] has P[G] > 1 − α/2.

Consider now the collection K of measurable functions k with 0 ≤ k ≤ G
and E[k] ≥ 1 − α. K is clearly a convex and weak∗-compact subset of L∞(P)

(see A.2.32). As it contains G , it is not void. For every X in the unit ball
E1 of E define a function hX on K by

hX(k) def= Z
[α/2]

− E
[∫

X dZ · k
]
, k ∈ K .

Since, on G ,
∫
X dZ is a finite linear combination of bounded random

variables, hX is well-defined and real-valued. Every one of the functions hX
is evidently linear and continuous on K , and is non-negative at some point

of K , to wit, at the set

kX
def= G ∩

[∣∣∣
∫
X dZ

∣∣∣ ≤ Z
[α/2]

]
.

Indeed, hX(kX) = Z
[α/2]

− E

[∫
X dZ ·G ∩

[∣∣∣
∫
X dZ

∣∣∣ ≤ Z
[α/2]

]]

≥ Z
[α/2]

− E

[∣∣∣
∫
X dZ

∣∣∣ ·
[∣∣∣
∫
X dZ

∣∣∣ ≤ Z
[α/2]

]]
≥ 0 ;

and, since E[kX ] = P

[
G ∩

[∣∣∣
∫
X dZ

∣∣∣ ≤ Z
[α/2]

]]

≥ 1 − α/2 − P

[∣∣∣
∫
X dZ

∣∣∣ > Z
[α/2]

]
≥ 1 − α ,

kX belongs to K . The collection H def=
{
hX : X ∈ E1

}
is easily seen to be

convex; indeed, shX +(1−s)hY = hsX+(1−s)Y for 0 ≤ s ≤ 1. Thus Ky–Fan’s

minimax theorem A.2.34 applies and provides a common point kα ∈ K at
which every one of these functions is non-negative. This says that

Eµα

[∫
X dZ

]
= E

[
kα ·

∫
X dZ

]
≤ Z

[α/2]
∀X ∈ E1 .

Note the lack of the absolute-sign under the expectation, which distinguishes

this from (4.1.3). Since |Z| is µα-a.s. bounded by Z
[α/2]

, though, part (i)

of lemma 2.5.27 on page 80 applies and produces

Eµα

[∣∣∣
∫
X dZ

∣∣∣
]
≤

√
2
(
Z

[α/2]
+ Z

[α/2]

)
·‖X ‖E ≤ 3 Z

[α/2]
· ‖X ‖E

for all X ∈ E , which is the desired inequality (4.1.3).
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Now to the construction of P′ = g′P . We pick an α0 ∈ (0, 1) with
Z

[α0]
> 0 and set αn

def= α0/2
n and ζn

def= 3 Z
[αn/2]

for n ∈ N . Since

P[kα = 0] ≤ α , the bounded function

g′ def= γ′ ·
∑∞

n=0
2−n·kαn

ζn
(4.1.4)

is P-a.s. strictly positive and bounded, and with the proper choice of

γ′ ∈
(
ζ0
2
,

ζ0
1 − α0

)

it can be made to have P-expectation one. The measure P′ def= g′ · P is then

a probability equivalent with P . Let E′ denote the expectation with respect
to P′ . Inequality (4.1.3) implies that for every X ∈ E1

E′
[∣∣∣
∫
X dZ

∣∣∣
]
≤ γ′ ≤

3 Z
[α0/2]

1 − α0
.

That is to say, Z is a global L1(P′)-integrator of the size claimed. Towards
the estimate (4.1.1) note that for α, λ ∈ (0, 1)

P[kα ≤ λ] = P[1 − kα ≥ 1 − λ] ≤ E[1 − kα]

1 − λ
≤ α

1 − λ
,

and thus P[g ≥ C] = P[g′ ≤ 1/C] ≤ P
[ ∞∑

n=0

2−n kαn

ζn
≤ 1

C γ′

]

for every single n ∈ N: ≤ P
[
kαn

≤ 2n ζn
C γ′

]
≤ P

[
kαn

≤ 2n+1 ζn
C ζ0

]

≤ αn

/(
1 − 2n+1 ζn

C ζ0

)
.

Given α ∈ (0, 1), we choose n so that α/4 < αn ≤ α/2 and pick for C any

number exceeding 16α0ζn/αζ0 , for instance,

C def=
16α0 · Z

[α/8]

α · Z
[α0/2]

.

Then
2n+1 ζn
C ζ0

≤ 2n+1ζnαζ0
16α0ζnζ0

=
α

8αn
≤ 1

2

and therefore P[g ≥ C] ≤ 2αn ≤ α ,

which is inequality (4.1.1). The last inequality (4.1.2) is a simple application

of exercise A.8.17.
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The Main Factorization Theorem

Theorem 4.1.2 (i) Let 0 < p < q < ∞ and Z a d-tuple of global

Lp(P)-integrators. There exists a probability P′ equivalent with P on F∞
with respect to which Z is a global Lq-integrator; furthermore dP′/dP is

bounded, and there exist universal constants D = Dp,q,d and E = Ep,q de-
pending only on the subscripted quantities

such that Z Iq[P′]
≤ Dp,q,d · Z Ip[P]

, (4.1.5)

and such that the Radon–Nikodym derivative g def= dP/dP′ satisfies

‖g‖Lp/(q−p)(P) ≤ Ep,q (4.1.6)

– this inequality has the consequence that for any r > 0 and f ∈ F∞
‖f‖Lr(P) ≤ Ep/qrp,q · ‖f‖Lrq/p(P′) . (4.1.7)

If 0 < p < q ≤ 2 or if Z is previsible, then D does not depend on d .

(ii) Let p = 0 < q < ∞ , and let Z be a d-tuple of global L0(P)-integrators

with modulus of continuity 1 Z
[.] . There exists a probability P′ = P/g

equivalent with P on F∞ , with respect to which Z is a global Lq-integrator;
furthermore, dP′/dP is bounded and there exist universal constants D =

Dq,d[ Z
[.]] and E = E[α],q[ Z

[.]] , depending only on q, d, α ∈ (0, 1) and

the modulus of continuity Z
[.] ,

such that Z Iq[P′]
≤ Dq,d[ Z

[.]] , (4.1.8)

and ‖g‖[α] ≤ E[α],q[ Z
[.]] ∀α ∈ (0, 1) (4.1.9)

– this implies ‖f‖[α+β;P] ≤
(
E[α],q[ Z

[.]]
/
β
)1/r

· ‖f‖Lr(P′) (4.1.10)

for any f ∈ F∞ , r > 0 , and α, β ∈ (0, 1) . Again, in the range q ≤ 2 or
when Z is previsible the constant D does not depend on d .

Estimates independent of the length d of Z are used in the control of random
measures – see corollary 4.1.14 and theorem 4.5.25.

The proof of theorem 4.1.2 varies with the range of p and of q > p , and

will provide various estimates 2 for the constants D and E . The implication
(4.1.6) =⇒ (4.1.7) results from a straightforward application of Hölder’s

inequality and is left to the reader:

Exercise 4.1.3 (i) Let µ be a positive σ-additive measure and p < q < ∞ .

The condition 1/g ≤ C has the effect that ‖f ‖
Lr(µ/g)

≤ C1/r‖f ‖
Lr(µ)

for all

1 Z
[α]

def= sup
˘‚‚R

X dZ
‚‚
[α;P]

: X ∈ Ed1
¯

for 0 < α < 1; see page 56.
2 See inequalities (4.1.6), (4.1.34), (4.1.35), (4.1.40), and (4.1.41).
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measurable functions f and all r > 0. The condition ‖g‖
Lp/(q−p)(µ)

≤ c has the

effect that for all measurable functions f that vanish on [g = 0] and all r > 0

‖f ‖Lr(µ) ≤ c1/r · ‖f ‖Lrq/p(dµ/g) .

(ii) In the same vein prove that (4.1.9) implies (4.1.10).
(iii) L1[Z−q; P′] ⊂ L1[Z−p; P] , the injection being continuous.

The remainder of this section, which ends on page 209, is devoted to a detailed
proof of this theorem. For both parts (i) and (ii) we shall employ several times

the following

Criterion 4.1.4 (Rosenthal) Let E be a normed linear space with norm ‖ ‖
E

,
µ a positive σ-finite measure, 0 < p < q < ∞ , and I : E → Lp(µ) a linear

map. For any constant C > 0 the following are equivalent:

(i) There exists a measurable function g ≥ 0 with ‖g‖
Lp/(q−p)(µ)

≤ 1 such
that for all x ∈ E (∫

|Ix|q dµ
g

)1/q

≤ C · ‖x‖E . (4.1.11)

(ii) For any finite collection {x1, . . . , xn} ⊂ E

∥∥∥
( n∑

ν=1

|Ixν |q
)1/q ∥∥∥

Lp(µ)
≤ C ·

( n∑

ν=1

‖xν ‖qE
)1/q

. (4.1.12)

(iii) For every measure space (T, T , τ≥0) and q-integrable f : T → E

∥∥∥‖If ‖Lq(τ)

∥∥∥
Lp(µ)

≤ C ·
∥∥‖f ‖E

∥∥
Lq(τ)

. (4.1.13)

The smallest constant C satisfying any and then all of (4.1.11), (4.1.12), and

(4.1.13) is the p−q-factorization constant of I and will be denoted by

ηp,q(I) .

It may well be infinite, of course. Its name

�

�

�

�����	��


����	��


�
comes from the following way of looking
at (i): the map I has been “factored as”

I = D◦I , where I : E → Lq(µ) is defined
by I(x) = I(x) · g−1/q and D : Lq(µ) →
Lp(µ) is the “diagonal map” f 7→ f · g1/q .
The number ηp,q(I) is simply the opera-

tor (quasi)norm of I – the operator (quasi)norm of D is ‖g‖1/q

Lp/(q−p)(µ)
≤ 1.

Thus, if ηp,q(I) is finite, we also say that I factorizes through Lq .

We are of course primarily interested in the case when I is the stochastic
integral X 7→

∫
X dZ , and the question arises whether µ/g is a probability

when µ is. It won’t be automatically but can be made into one:
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Exercise 4.1.5 Assume in criterion 4.1.4 that µ is a probability P and ηp,q(I) <∞.
Then there is a probability P′ equivalent with P such that I is continuous as a map
into Lq(P′):

‖I ‖q;P′ ≤ ηp,q(I) ,

and such that g′ def= dP′/dP is bounded and g def= dP/dP′ = g′−1 satisfies

‖g‖Lp/(q−p)(P) ≤ 2(p∨(q−p))/p , (4.1.14)

and therefore ‖f‖Lr(P) ≤ 2(p∨(q−p))/rq‖f‖Lrq/p(P′) ≤ 21/r‖f‖Lrq/p(P′) (4.1.15)

for all measurable functions f and exponents r > 0.

Exercise 4.1.6 (i) ηp,q(I) depends isotonically on q . (ii) For any two maps
I, I′ : E → Lp(µ), we have ηp,q(I + I′) ≤ ηp,q(I) + ηp,q(I′).

Proof of Criterion 4.1.4. If (i) holds, then
∫
|Ix|q dµg ≤ Cq · ‖x‖q

E
for all

x ∈ E , and consequently for any finite subcollection {x1, . . . , xn} of E ,

n∑

ν=1

∫
|Ixν |q

dµ

g
≤ Cq ·

n∑

ν=1

‖xν‖qE

and
∥∥∥
( n∑

ν=1

|Ixν |q
)1/q∥∥∥

Lq(dµ/g)
≤ C ·

( n∑

ν=1

‖xν‖qE
)1/q

.

Inequality (4.1.11) implies that Ix vanishes µ-almost surely on [g = 0], so
exercise 4.1.3 applies with r = p and c = 1, giving

∥∥∥
( n∑

ν=1

|Ixν |q
)1/q ∥∥∥

Lp(µ)
≤
∥∥∥
( n∑

ν=1

|Ixν |q
)1/q∥∥∥

Lq(dµ/g)
.

This together with the previous inequality results in (4.1.12).
The reverse implication (ii)⇒(i) is a bit more difficult to prove. To start

with, consider the following collection of measurable functions:

K =
{
k ≥ 0 : ‖k‖

Lq/(q−p)(µ)
≤ 1

}
.

Since 1 < q/(q − p) < ∞ , this convex set is weakly compact. Next let us
define a host H of numerical functions on K , one for every finite collection

{x1, . . . , xn} ⊂ E , by

k 7→ hx1,...,xn
(k) def= Cq ·

n∑

ν=1

‖xν ‖qE −
∫ ∗ n∑

ν=1

|Ixν |q ·
1

kq/p
dµ . (∗)

The idea is to show that there is a point k ∈ K at which every one of

these functions is non-negative. Given that, we set g = kq/p and are done:
‖k‖

Lq/(q−p)(µ)
≤ 1 translates into ‖g‖

Lp/(q−p)(µ)
≤ 1, and hx(k) ≥ 0 is in-

equality (4.1.11). To prove the existence of the common point k of positivity

we start with a few observations.
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a) An h = hx1,...,xn
∈ H may take the value −∞ on K , but never +∞ .

b) Every function h ∈ H is concave – simply observe the minus sign in front

of the integral in (∗) and note that k 7→ 1/kq/p is convex.
c) Every function h = hx1,...,xn

∈ H is upper semicontinuous (see page 376)

in the weak topology σ(Lq/(q−p), Lq/p). To see this note that the subset
[hx1,...,xn

≥ r] of K is convex, so it is weakly closed if and only if it is norm-

closed (theorem A.2.25). In other words, it suffices to show that hx1,...,xn
is

upper semicontinuous in the norm topology of Lq/(q−p) or, equivalently, that

k 7→
∫ n∑

ν=1

|Ixν |q ·
1

kq/p
dµ

is lower semicontinuous in the norm topology of Lq/(q−p) . Now
∫

|Ixν |q · k−q/p dµ = sup
ε>0

∫ (
ε−1 ∧ |Ixν |q

)
· (ε ∨ |k|)−q/p dµ ,

and the map that sends k to the integral on the right is norm-continuous
on Lq/(q−p) , as a straightforward application of the Dominated Convergence

Theorem shows. The characterization of semicontinuity in A.2.19 gives c).
d) For every one of the functions h = hx1,...,xn

∈ H there is a point

kx1,...,xn
∈ K (depending on h !) at which it is non-negative. Indeed,

kx1,...,xn
=
(∫ ( ∑

1≤ν≤n
|Ixν |q

)p/q
dµ
)(p−q)/q

·
( ∑

1≤ν≤n
|Ixν |q

)p(q−p)/4

meets the description: raising this function to the power q/(q − p) and

integrating gives 1; hence kx1,...,xn
belongs to K . Next,

k−q/px1,...,xn
=
(∫ ( ∑

1≤ν≤n
|Ixν |q

)p/q
dµ
)(q−p)/p

·
( ∑

1≤ν≤n
|Ixν |q

)(p−q)/q
;

thus

∑

1≤ν≤n
|Ixν |q·k−q/px1,...,xn

=
(∫ ( ∑

1≤ν≤n
|Ixν |q

)p/q
dµ
)(q−p)/p

·
( ∑

1≤ν≤n
|Ixν |q

)p/q
,

and therefore

hx1,...,xn
(kx1,...,xn

) = Cq ·
∑

1≤ν≤n
‖xν ‖qE −

(∫ ( ∑

1≤ν≤n
|Ixν |q

)p/q
dµ
)q/p

.

Thanks to inequality (4.1.12), this number is non-negative.
e) Finally, observe that the collection H of concave upper semicontinuous

functions defined in (∗) is convex. Indeed, for λ, λ′ ≥ 0 with sum λ+λ′ = 1,

λ · hx1,...,xn
+ λ′ · hx′

1,...,x
′
n′ = hλ1/qx1,...,λ1/qxn,λ′1/qx′

1,...,λ
′1/qx′

n′
.
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Ky–Fan’s minimax theorem A.2.34 now guarantees the existence of the de-
sired common point of positivity for all of the functions in H .

The equivalence of (ii) with (iii) is left as an easy excercise.

Proof for p > 0

Proof of Theorem 4.1.2 (i) for  < p < q ≤ . We have to show that ηp,q(I)

is finite when I : Ed → Lp(P) is the stochastic integral X 7→
∫

X dZ , in
fact, that ηp,q(I) ≤ Dp,q,d · Z Ip[P]

with Dp,q,d finite. Note that the domain

Ed of the stochastic integral is the set of step functions over an algebra of

sets. Therefore the following deep theorem from Banach space theory applies
and provides in conjunction with exercises 4.1.6 and 4.1.5 for 0 < p < q ≤ 2

the estimates

D
(4.1.5)
p,q,d < 3 · 81/p and Ep,q ≤ 2(p∨(q−p))/p . (4.1.16)

Theorem 4.1.7 Let B be a set, A an algebra of subsets of B , and let E
be the collection of step functions over A . E is naturally equipped with the

sup-norm ‖x‖E def= sup{|x($)| : $ ∈ B} , x ∈ E .
Let µ be a σ-finite measure on some other space, let 0 < p < 2 , and let

I : E → Lp(µ) be a continuous linear map of size

‖I ‖p def= sup
{
‖Ix‖Lp(µ) : ‖x‖E ≤ 1

}
.

There exist a constant Cp and a measurable function g ≥ 0 with

‖g‖Lp/(2−p)(µ) ≤ 1

such that
(∫

|Ix|2 dµ
g

)1/2

≤ Cp·‖I‖p·‖x‖E

for all x ∈ E . The universal constant Cp can be estimated in terms of the
Khintchine constants of theorem A.8.26:

Cp ≤
((

21/3 + 2−2/3
)
20∨(1−p)/pK(A.8.5)

p K
(A.8.5)
1

)3/2

≤
(
2
√

2
)1/p+ 1∨ 1/p

< 23(2+p)/2p < 3 · 81/p .

(4.1.17)

Exercise 4.1.8 The theorem persists if K is a compact space and I is a
continuous linear map from C(K) to Lp(µ), or if E is an algebra of bounded
functions containing the constants and I : E → Lp(µ) is a bounded linear map.

Theorem 4.1.7 was first proved by Rosenthal [95] in the range 1 ≤ p < q ≤ 2
and was extended to the range 0 < p < q ≤ 2 by Maurey [66] and Schwartz

[67]. The remainder of this subsection is devoted to its proof. The next two
lemmas, in fact the whole drift of the following argument, are from Pisier’s

paper [84]. We start by addressing the special case of theorem 4.1.7 in which E
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is `∞(k), i.e., Rk equipped with the sup-norm. Note that `∞(k) meets
the description of E in theorem 4.1.7: with B = {1, . . . , k} , `∞(k) consists

exactly of the step functions over the algebra A of all subsets of B . This case
is prototypical; once theorem 4.1.7 is established for it, the general version is

not far away (page 202).
If I : `∞(k) → Lp(µ) is continuous, then ηp,2(I) is rather readily seen to

be finite. In fact, a straightforward computation, whose details are left to the
reader, shows that whenever the domain of I : E → Lp(µ) is k-dimensional

(k < ∞),

∥∥∥
(∑

ν

|Ixν |2
)1/2∥∥∥

Lp(µ)
≤ k1/p+1/2‖I‖p ·

(∑

ν

‖xν‖2
`∞(k)

) 1
2

,

which reads ηp,2(I) ≤ k1/p+1/2 · ‖I‖p < ∞ . (4.1.18)

Thus there is factorization in the sense of criterion 4.1.4 if I : `∞(k) → Lp(µ)

is continuous. In order to parlay this result into theorem 4.1.7 in all its

generality, an estimate of ηp,2(I) better than (4.1.18) is needed, namely, one
that is independent of the dimension k . The proof below of such an estimate

uses the Bernoulli random variables εν that were employed in the proof of
Khintchine’s inequality (A.8.4) and, in fact, uses this very inequality twice.

Let us recall their definition:
We fix a natural number n – it is the number of vectors xν ∈ `∞(k)

that appear in inequality (4.1.12) – and denote by T n the n-fold product
of two-point sets {1,−1} . Its elements are n-tuples t = (t1, t2, . . . , tn) with

tν = ±1. εν : t 7→ tν is the νth coordinate function. The natural measure
on Tn is the product τ of uniform measure on {1,−1} , so that τ({t}) = 2−n

for t ∈ Tn . Tn is a compact abelian group and τ is its normalized Haar
measure. There will be occasion to employ convolution on this group.

The εν , ν = 1 . . . n, are independent and form an orthonormal set in L2(τ),
which is far from being a basis: since the σ-algebra T n on Tn is generated

by 2n atoms, the dimension of L2(τ) is 2n . Here is a convenient extension

to a basis for this Hilbert space: for any subset A of {1, . . . , n} set

wA =
∏

ν∈A
εν , with w∅ = 1 .

It is plain upon inspection that the wA are characters3 of the group Tn and

form an orthonormal basis of L2(τ), the Walsh basis.
Consider now the Banach space L2(τ, `∞) of `∞(k)-valued functions f

on Tn having

‖f ‖L2(τ,`∞)
def=
(∫

‖f(t)‖2

`∞(k) τ(dt)
)1/2

< ∞ .

3 A map χ from a group into the circle {z ∈ C : |z| = 1} is a character if it is multiplicative:
χ(st) = χ(s)χ(t), with χ(1) = 1.
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Its dual can be identified isometrically with the Banach space L2(τ, `1) of
`1(k)-valued functions f∗ on Tn for which

‖f∗‖L2(τ,`1)
def=
(∫

‖f∗(t)‖2

`1 τ(dt)
)1/2

<∞ ,

under the pairing 〈f |f∗〉 =

∫
〈f(t)|f∗(t)〉 τ(dt) .

Both spaces have finite dimension k2n . L2(τ, `∞) is the direct sum of the

subspaces

E(`∞) def=
{ n∑

ν=1

xν · εν : xν ∈ `∞(k)
}

and

W (`∞) def=
{∑

xA · wA : A ⊂ {1, . . . , n} , |A| 6= 1 , xA ∈ `∞(k)
}
.

|A| is, of course, the cardinality of the set A ⊂ {1, . . . , n} , and w∅ = 1. It is

convenient to denote the corresponding projections of L2(τ, `∞) onto E(`∞)
and W (`∞) by E and W , respectively. Here is a little information about

the geometry of these subspaces, used below to estimate the right-hand side
of inequality (4.1.12) on page 192:

Lemma 4.1.9 Let x1, . . . , xn ∈ `∞(k) . There is a function f ∈ L2(τ, `∞(k))

of the form f =

n∑

ν=1

xν εν +
∑

|A|6=1

xAwA

such that ‖f‖L2(τ,`∞) ≤ K
(A.8.5)
1 ·

( n∑

ν=1

‖xν‖2
`∞

)1/2

. (4.1.19)

Proof. Set f ε =
∑
ν xνεν , and let a denote the norm of the class of f ε in

the quotient L2(τ, `∞)/W (`∞):

a = inf
{
‖f ε + w‖L2(τ,`∞) : w ∈W (`∞)

}
.

Since L2
(
τ, `∞(k)

)
is finite-dimensional, there is a function of the form

f = f ε + w, w ∈ W (`∞), with ‖f ‖
L2(τ,`∞)

= a . This is the function

promised by the statement.
To prove inequality (4.1.19), let Ba denote the open ball of radius a about

zero in L2(τ, `∞). Since the open convex set

C def= Ba −
(
f +W (`∞)

)
= {g − (f + w) : g ∈ Ba , w ∈ W (`∞)}

does not contain the origin, there is a linear functional f ∗ in the dual L2(τ, `1)

of L2(τ, `∞) that is negative on C , and without loss of generality f ∗ can be
chosen to have norm 1:∫

‖f∗(t)‖2

`1 τ(dt) = 1 . (4.1.20)

Since 〈g|f∗〉 ≤ 〈f + w|f∗〉 ∀g ∈ Ba(0) , ∀w ∈W (`∞) ,
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it is evident that 〈w|f∗〉 = 0 for all w ∈W (`∞), so that f∗ is of the form

f∗ =

n∑

ν=1

x∗ν εν , x∗ν ∈ `1(k) .

Also, since

(1 − ε)a = ‖(1 − ε)f ‖L2(τ,`∞) ≤ 〈f |f∗〉 ≤ ‖f ‖L2(τ,`∞) = a ∀ ε > 0 ,

we must have

a = 〈f |f∗〉 =

∫
〈f(t)|f∗(t)〉 τ(dt) =

n∑

ν=1

〈xν |x∗ν〉

≤
n∑

ν=1

‖xν‖`∞‖x∗ν‖`1 ≤
( n∑

ν=1

‖xν‖2
`∞

)1/2

·
( n∑

ν=1

‖x∗ν‖
2
`1

)1/2

.

Now
( n∑

ν=1

‖x∗ν‖
2
`1

)1/2

=
( n∑

ν=1

( k∑

κ=1

|x∗κν |
)2)1/2

≤
k∑

κ=1

( n∑

ν=1

|x∗κν |2
)1/2

≤ K
(A.8.5)
1 ·

∫ k∑

κ=1

∣∣∣
∑

ν

x∗κν εν(t)
∣∣∣ τ(dt)

= K1 ·
∫ ∥∥∥

n∑

ν=1

x∗νεν(t)
∥∥∥
`1(k)

τ(dt)

≤ K1 ·
(∫ ∥∥∥

∑

ν

x∗νεν(t)
∥∥∥

2

`1(k)
τ(dt)

)1/2

by equation (4.1.20): = K1 · ‖f∗‖L2(τ,`1) = K1 ,

and we get the desired inequality

‖f‖L2(τ,`∞) = a ≤ K
(A.8.5)
1 ·

( n∑

ν=1

‖xν‖2
`∞

)1/2

.

We return to the continuous map I : `∞(k) → Lp(µ). We want to estimate

the smallest constant ηp,2(I) such that for any n and x1, . . . , xn ∈ `∞(k)

∥∥∥
( n∑

ν=1

|Ixν |2
)1/2∥∥∥

Lp(µ)
≤ ηp,2(I) ·

( n∑

ν=1

‖xν ‖2
`∞(k)

)1/2

.

Lemma 4.1.10 Let x1, . . . , xn ∈ `∞(k) be given, and let f ∈ L2(τ, `∞) be any
function with Ef =

∑n
ν=1 xν εν , i.e.,

f =
n∑

ν=1

xν εν +
∑

A⊂{1,...,n} ,|A|6=1

xA wA , xA ∈ `∞(k) .
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For any δ ∈ [0, 1] we have

∥∥∥
( n∑

ν=1

|Ixν |2
)1/2∥∥∥

Lp(µ)
≤ 20∨(1−p)/pK(A.8.5)

p (4.1.21)

×
[
‖I‖p/

√
δ + ηp,2(I) · δ

]
· ‖f‖L2(`∞) .

Proof. For θ ∈ [−1, 1] set

ψθ
def=

n∏

ν=1

(1 + θεν) =
∑

A⊂{1,...,n}
θ|A|wA .

Then ψθ ≥ 0,
∫
|ψθ(t)| τ(dt) =

∫
ψθ(t) τ(dt) = 1, and

∫
wA(t)ψθ(t) τ(dt) =

θ|A| . The function

φδ
def=

1

2
√
δ

(
ψ√δ − ψ−

√
δ

)

is easily seen to have the following properties:
∫

|φδ(t)| τ(dt) ≤ 1/
√
δ ,

∫
wA(t)φδ(t) τ(dt) =

{
0 if |A| is even,√
δ |A|−1 if |A| is odd.

(4.1.22)

For the proof proper of the lemma we analyze the convolution

f?φδ(t) =

∫
f(st)φδ(s) τ(ds)

of f with this function. For definiteness’ sake write

f =
n∑

ν=1

xν εν +
∑

|A|6=1

xAwA = Ef +Wf .

As the wA are characters,3 including the εν = w{ν} , (4.1.22) gives

wA?φδ(t) =

∫
wA(st)φδ(s) τ(ds) = wA(t) ·

{
0 if |A| is even,√
δ |A|−1 if |A| is odd;

thus f?φδ =
n∑

ν=1

xνεν +
∑

3≤|A| odd
xA

√
δ |A|−1wA = Ef +Wf?φδ ,

whence Ef = f?φδ −Wf?φδ and IEf = If?φδ − IWf?φδ .

Here If denotes the function t 7→ If(t) from T to Lp(µ), etc. Therefore

∥∥∥
( n∑

ν=1

|Ixν |2
)1/2∥∥∥

Lp(µ)
=
∥∥∥‖IEf ‖L2(τ)

∥∥∥
Lp(µ)

.
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Theorem A.8.26 permits the following estimate of the right-hand side:
∥∥∥‖IEf‖L2(τ)

∥∥∥
Lp(µ)

≤ Kp ·
∥∥∥‖IEf‖Lp(τ)

∥∥∥
Lp(µ)

≤ 20∨(1−p)/pKp ·
[∥∥∥‖If?φδ‖Lp(τ)

∥∥∥
Lp(µ)

+
∥∥∥‖IWf?φδ‖Lp(τ)

∥∥∥
Lp(µ)

]

≤ 20∨(1−p)/pKp ·
[∥∥∥‖If?φδ‖Lp(µ)

∥∥∥
L2(τ)

+
∥∥∥‖IWf?φδ‖L2(τ)

∥∥∥
Lp(µ)

]

≤ 20∨(1−p)/pKp ·
[
‖I‖p · ‖f?φδ‖L2(τ,`∞) +

∥∥∥‖IWf?φδ‖L2(τ)

∥∥∥
Lp(µ)

]

= 20∨(1−p)/pKp · [Q1 +Qs] . (4.1.23)

The first term Q1 can be bounded using Jensen’s inequality for the mea-
sure φδ(s)τ(ds):
∫

‖(f?φδ)(t)‖2

`∞ τ(dt) =

∫ ∥∥∥
∫
f(st)φδ(s) τ(ds)

∥∥∥
2

`∞
τ(dt)

by A.3.28: ≤
∫ (∫

‖f(st)‖`∞ |φδ(s)| τ(ds)
)2

τ(dt)

≤ δ−1

∫ (∫
‖f(st)‖`∞ |φδ(s)|

√
δ τ(ds)

)2

τ(dt)

≤ δ−1

∫ ∫
‖f(st)‖2

`∞ |φδ(s)|
√
δ τ(ds) τ(dt)

= δ−1

∫
‖f(t)‖2

`∞ τ(dt)

∫
|φδ(s)|

√
δ τ(ds)

≤ δ−1

∫
‖f(t)‖2

`∞ τ(dt) ,

so that ‖f?φδ‖L2(τ,`∞) ≤
1√
δ
· ‖f‖L2(τ,`∞) . (4.1.24)

The function Wf?φδ in the second term Q2 of inequality (4.1.23) has the

form

(Wf?φδ)(t) =
∑

3≤|A| odd
xA

√
δ |A|−1wA(t) .

Thus ‖IWf?φδ‖2
L2(τ) =

∫ ( ∑

3≤|A| odd
IxA

√
δ |A|−1wA(t)

)2

τ(dt)

=
∑

3≤|A| odd
(IxA)2 · δ|A|−1

≤ δ2 ·
∑

A⊂{1,...,n}
(IxA)2 = δ2 · ‖If‖2

L2(τ) ,
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and therefore, from inequality (4.1.13),
∥∥∥‖IWf?φδ‖L2(τ)

∥∥∥
Lp(µ)

≤ δ · ηp,2(I) · ‖f‖2
L2(τ) .

Putting this and (4.1.24) into (4.1.23) yields inequality (4.1.21).

If for the function f of lemma 4.1.10 we choose the one provided by lem-

ma 4.1.9, then inequality (4.1.21) turns into

∥∥∥
( n∑

ν=1

|Ixν |2
)1/2∥∥∥

Lp(µ)
≤ 20∨(1−p)/pKpK1

×
[‖I‖

p√
δ

+ ηp,2(I) · δ
]
·
( n∑

ν=1

‖xν‖2
`∞

)1/2

.

Since this inequality is true for all finite collections {x1, . . . , xn} ⊂ E , it

implies

ηp,2(I) ≤ 20∨(1−p)/pKpK1

[ ‖I ‖
p√
δ

+ ηp,2(I) · δ
]
. (∗)

The function δ 7→ ‖I ‖p√
δ

+ ηp,2(I) · δ takes its minimum at

δ =
(
‖I ‖p

/
(2ηp,2)

)2/3

< 1 ,

where its value is
(
21/3 + 2−2/3

)
‖I ‖2/3

p
η
1/3
p,2 . Therefore (∗) gives

ηp,2(I) ≤
(
21/3 + 2−2/3

)
20∨(1−p)/pKpK1 · ‖I‖2/3

p η
1/3
p,2 ,

and so ηp,2(I) ≤
((

21/3 + 2−2/3
)
20∨(1−p)/pKpK1

)3/2

· ‖I‖p

by (A.8.9): ≤
(
2·20∨(1−p)/p 21/p− 1/2 21/2

)3/2

· ‖I‖p

=
(
21∨1/p 21/p

)3/2

· ‖I‖p =
(
2
√

2
)1/p+ 1∨1/p

· ‖I‖p :

Corollary 4.1.11 A linear map I : `∞(k) → Lp(µ) is factorizable with

ηp,2(I) ≤ Cp · ‖I‖p , (4.1.25)

where Cp ≤
((

21/3 + 2−2/3
)
20∨(1−p)/pKpK1

)3/2

≤
(
2
√

2
)1/p+1∨1/p

< 23(2+p)/2p .

Theorem 4.1.7, including the estimate (4.1.17) for Cp , is thus true when

E = `∞(k).
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Proof of Theorem 4.1.7. Given {x1, . . . , xn} ⊂ E , there is a finite subal-
gebra A′ of A , generated by finitely many atoms, say {A1, . . . , Ak} , such

that every xν is a step function over A′ : xν =
∑
κAκx

κ
ν . The linear map

I ′ : `∞(k) → Lp(µ) that takes the κth standard basis vector of `∞(k)

to IAκ has ‖I ′ ‖
p
≤ ‖I ‖

p
and takes (xκν)1≤κ≤k ∈ `∞(k) to Ixν . Since

‖(xκν)1≤κ≤k ‖`∞(k)
= ‖xν ‖E , inequality (4.1.25) in corollary 4.1.11 gives

∥∥∥
( n∑

ν=1

|Ixν |2
)1/2∥∥∥

Lp(µ)
≤ C(4.1.25)

p · ‖I ‖p ·
( n∑

ν=1

‖xν ‖2
E

)1/2

,

and another application of Rosenthal’s criterion 4.1.4 yields the theorem.

Proof of Theorem 4.1.2 for  < p ≤  < q < ∞. Theorem 4.1.7 does not
extend to exponents q > 2 in general – it is due to the special nature of

the stochastic integral, the “closeness of the arguments of I to its values”
expressed for instance by exercise 2.1.14, that theorem 4.1.2 can be extended

to q > 2. If Z is previsible, then “the values of I are very close to the
arguments,” and the factorization constant does not even depend on the

length d of the vector Z .

We start off by having what we know so far produce a probability P′ = P/g
with ‖g‖

Lp/(2−p)(P)
≤ Ep,2 for which Z is an L2-integrator of size

Z I2[P′]
≤ D

(4.1.5)
p,2 · Z Ip[P]

. (4.1.26)

Then Z has a Doob–Meyer decomposition Z = Ẑ + Z̃ with respect to P′

(see theorem 4.3.1 on page 221) whose components have sizes

Ẑ I2[P′]
≤ 2 Z I2[P′]

and Z̃ I2[P′]
≤ 2 Z I2[P′]

, (4.1.27)

respectively. We shall estimate separately the factorization constants of the
stochastic integrals driven by Ẑ and by Z̃ and then apply exercise 4.1.6.

Our first claim is this: if I : Ed → Lp is the stochastic integral driven by

a d-tuple V of finite variation processes, then, for 0 < p < q <∞ ,

ηp,q(I) ≤
∥∥∥
∑

1≤θ≤d
V θ ∞

∥∥∥
Lp
. (4.1.28)

Since the right-hand side equals V Ip when V is previsible, this together
with (4.1.27) and (4.1.26) will result in

ηp,q

(∫
. dẐ

)
≤ 2 Z I2[P′]

≤ 2D
(4.1.5)
p,2 · Z Ip[P]

(4.1.29)

for 0 < p < q < ∞ . To prove equation (4.1.28), let X1, . . . ,Xn be a finite
collection of elementary integrands in Ed . Then

∑

ν

∣∣∣
∫

Xν dV
∣∣∣
q

≤
∑

ν

∣∣∣‖Xν ‖Ed

∑

1≤θ≤d
V θ ∞

∣∣∣
q

.
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Applying the Lp-mean to the qth root gives
∥∥∥
(∑

ν

∣∣∣
∫

Xν dV
∣∣∣
q)1/q ∥∥∥

Lp
≤
∥∥∥
∑

1≤θ≤d
V θ ∞

∥∥∥
Lp

·
( n∑

ν=1

‖Xν ‖qEd

)1/q

,

which is equation (4.1.28).
Now to the martingale part. With Xν as above set

Mν def= Xν∗Z̃ , ν = 1, . . . , n ,

and for ~m = (m1, . . . ,mn) set

Φ(~m) def= Q2/q(~m) , where Q(~m) def=

n∑

ν=1

∣∣mν
∣∣q .

Then Φ′µ(~m) = 2Q
2−q

q (~m) ·
∣∣mµ

∣∣q−1
sgn(mµ)

and Φ′′µν(~m) = 2(q − 1)Q
2−q

q (~m) ·
∣∣mµ

∣∣q−2

+ 2(2 − q)Q
2−2q

q (~m) ·
∣∣mµ

∣∣q−1
sgn(mµ)

∣∣mν
∣∣q−1

sgn(mν) (∗)

≤ 2(q − 1)Q
2−q

q (~m) ·
∣∣mµ

∣∣q−2
,

on the grounds that the µν-matrix in (∗) is negative semidefinite for q > 2.
Our interest in Φ derives from the fact that criterion 4.1.4 asks us to estimate

the expectation of Φ( ~M∞). With Mµ
λ

def= (1 − λ)Mµ
.− + λMµ for short, Itô’s

formula results in the inequality

Φ( ~M∞) ≤ Φ( ~M0) + 2

∫ ∞

0+

Q
2−q

q ( ~M.−) ·
∣∣Mµ

.−
∣∣q−1

sgn(Mµ
.−) dMµ

+ 2(q − 1)

∫ 1

0

(1 − λ) dλ

∫ ∞

0+

Q
2−q

q
(
~Mλ

)
·
∑

µ

∣∣Mµ
λ

∣∣q−2
d[Mµ,Mµ] ,

≤ 2

∫ ∞

0+

Q
2−q

q ( ~M.−) ·
∣∣Mµ

.−
∣∣q−1

sgn(Mµ
.−) dMµ

+ 2(q − 1)

∫ 1

0

(1 − λ) dλ

∫ ∞

0

Q
2−q

q
(
~Mλ

)
·
∑

µ

∣∣Mµ
λ

∣∣q−2
d[Mµ,Mµ] .

Now [Mµ,Mµ] =
∑

1≤η,θ≤d
Xµ
ηX

µ
θ ∗[Z̃η, Z̃θ] , (4.1.30)

whence4 E′
[
Φ( ~M∞)

]
≤ 2(q−1)

∫ 1

0

(1−λ)×

× E′
[∫ ∞

0

Q
2−q

q
(
~Mλ

)
Xµ
ηX

µ
θ d[Z̃

η, Z̃θ]

]
dλ . (4.1.31)

4 Einstein’s convention, adopted, implies summation over the same indices in opposite
positions.
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Consider first the case that d = 1, writing Z̃,Xµ for the scalar processes
Z̃1,X

µ
1 . Then Xµ

ηX
µ
θ d[Z̃

η, Z̃θ] = (Xµ )
2
d[Z̃, Z̃] ≤ ‖Xµ ‖2

E d[Z̃, Z̃] , and

using Hölder’s inequality with conjugate exponents q/2 and q/(q− 2) in the
sum over µ turns (4.1.31) into

E′
[
Φ( ~M∞)

]
≤ 2(q−1)

∫ 1

0

(1−λ) (4.1.32)

E′
[∫ ∞

0

Q
2−q

q
(
~Mλ

)(∑

µ

∣∣Mµ
λ

∣∣q
) q−2

q

×
(∑

µ

‖Xµ‖qE
)2/q

d[Z̃, Z̃]

]
dλ

= 2(q−1)

∫ 1

0

(1−λ) dλ
(∑

µ

‖Xµ‖qE
)2/q

E′
[
[Z̃, Z̃]∞

]

= (q−1)
∥∥∥Z̃∞

∥∥∥
2

L2(P′)

(∑

µ

‖Xµ‖qE
)2/q

= (q−1) Z̃
2

I2[P′]

(∑

µ

‖Xµ‖qE
)2/q

.

Taking the square root results in

η2,q

(∫
. dZ̃

)
≤
√
q − 1 Z̃ I2[P′]

≤ 2
√
q − 1D

(4.1.5)
p,2 · Z Ip[P]

. (4.1.33)

Now if Z and with it the [Z̃η, Z̃θ] are previsible, then the same inequal-
ity holds. To see this we pick an increasing previsible process V so that

d[Z̃η, Z̃θ] � dV , for instance the sum of the variations [Z̃η, Z̃θ] , and let

Gηθ be the previsible Radon–Nikodym derivative of d[Z̃η, Z̃θ] with respect

to dV . According to lemma A.2.21 b), there is a Borel measurable function γ
from the space G of d× d-matrices to the unit box `∞1 (d) such that

sup{xηxθGηθ : x ∈ `∞1 } = γη(G)γθ(G)Gηθ , G ∈ G .

We compose this map γ with the G-valued process
(
Gηθ

)d
η,θ=1

and obtain a

previsible process Y with |Y | ≤ 1. Let us write M = Y ∗Z̃ . Then

E′[[M,M ]∞] ≤ Z̃
2

I2[P′]

and in (4.1.30) d[Mµ,Mµ] ≤ ‖Xµ‖2
Ed · d[M,M ] .
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We can continue as in inequality (4.1.32), replacing [Z̃, Z̃] by [M,M ] , and
arrive again at (4.1.33). Putting this inequality together with (4.1.29) into

inequalities (4.1.26) and (4.1.27) gives

ηp,q

(∫
. dZ

)
≤ 2(

√
q−1 + 1)Dp,2 Z Ip[P]

or Dp,q,d ≤ 2(1 +
√
q−1)Dp,2 ≤ 3·21+3/p·(1 +

√
q−1) (4.1.34)

if d = 1 or if Z is previsible. We leave it to the reader to show that in general

Dp,q,d ≤
√
d ·Dp,2 . (4.1.35)

Let P′′ = P/g′ be the probability provided by exercise 4.1.5. It is not hard

to see with Hölder’s inequality that the estimates ‖g‖
Lp/(2−p)(P)

< 22/p and

‖g‖
L2/(q−2)(P′) < 2q/2 lead to

Ep,q ≤ 4q/p for 0 < p ≤ 2 < q .

Proof of Theorem 4.1.2 (i) Only the case 2 < p < q < ∞ has not yet been

covered. It is not too interesting in the first place and can easily be reduced
to the previous case by considering Z an L2-integrator. We leave this to the

reader.

Proof for p = 0

If Z is a single L0-integrator, then proposition 4.1.1 together with a suitable

analog of exercise 4.1.6 provides a proof of theorem 4.1.2 when p = 0. This
then can be extended rather simply to the case of finitely many integrators,

except that the corresponding constants deteriorate with their number. This

makes the argument inapplicable to random measures, which can be thought
of as an infinity of infinitesimal integrators (page 173). So we go a different

route.

Proof of Theorem 4.1.2 (ii) for  < q < . Maurey [66] and Schwartz [67]
have shown that the conclusion of theorem 4.1.2 (ii) holds for any continuous

linear map I : E → L0(P), provided the exponent q is strictly less than one. 5

In this subsection we extract the pertinent arguments from their immense
work. Later we can then prove the general case 0 < q < ∞ by applying

theorem 4.1.2 (i) to the stochastic integral regarded as an Lq(P′)-integrator
for a probability P′ ≈ P produced here. For the arguments we need the

information on symmetric stable laws and on the stable type of a map or
space that is provided in exercise A.8.31.

The role of theorem 4.1.7 in the proof of theorem 4.1.2 is played for p = 0
by the following result, reminiscent of proposition 4.1.1:

5 Theorem 4.1.7 for 0 < p < 1 is also first proved in their work.
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Proposition 4.1.12 Let E be a normed space, (Ω,F ,P) a probability space,
I : E → L0(P) a continuous linear map, and let 0 < q < 1 .

(i) For every α ∈ (0, 1) there is a number C[α],q[‖I ‖[.]] < ∞ , depending
only on the modulus of continuity ‖I ‖

[.] , α , and q , such that for every

finite subset {x1, . . . , xn} of E∥∥∥
( n∑

ν=1

|I(xν)|q
)1/q ∥∥∥

[α]
≤ C[α],q[‖I ‖[.]] ·

( n∑

ν=1

‖xν ‖qE
)1/q

. (4.1.36)

(ii) There exists, for every α ∈ (0, 1) , a positive function kα ≤ 1 satisfying

E[kα] ≥ 1−α such that for all x ∈ E
(∫

|I(x)|q kαdP
)1/q

≤ C[α],q[‖I ‖[.]] · ‖x‖E .

(iii) There exists a probability P′ = P/g equivalent with P on F such that

I is continuous as a map into Lq(P′) :

∀x ∈ E ‖I(x)‖Lq(P′) ≤ Dq[‖I‖[.]] · ‖x‖E (4.1.37)

and ∀α ∈ (0, 1) ‖g‖[α;P] ≤ E[α][‖I‖[.]] . (4.1.38)

Proof. (i) Let 0 < p < q and let (γ
(q)
ν ) be a sequence of independent q-stable

random variables, all defined on a probability space (X,X , dx) (see exer-

cise A.8.31). In view of lemma A.8.33 (ii) we have, for every ω ∈ Ω,
(∑

ν

|I(xν)(ω)|q
)1/q

≤ B
(A.8.12)
[β],q ·

∥∥∥
∑

ν

I(xν)(ω)γ(q)
ν

∥∥∥
[β;dx]

,

and therefore

∥∥∥
(∑

ν

|I(xν)|q
)1/q∥∥∥

[α;P]
≤ B[β],q ·

∥∥∥
∥∥∥
∑

ν

I(xν)γ
(q)
ν

∥∥∥
[β;dx]

∥∥∥
[α;P]

by A.8.16 with 0 < δ < αβ : ≤ B[β],q ·
∥∥∥
∥∥∥I
(∑

ν

xνγ
(q)
ν

)∥∥∥
[δ;P]

∥∥∥
[αβ−δ;dx]

≤ B[β],q · ‖I‖[δ] ·
∥∥∥
∥∥∥
∑

ν

xνγ
(q)
ν

∥∥∥
E

∥∥∥
[αβ−δ;dx]

by exercise A.8.15: ≤
B[β],q · ‖I‖[δ]

(αβ − δ)1/p
·
∥∥∥
∥∥∥
∑

ν

xνγ
(q)
ν

∥∥∥
E

∥∥∥
Lp(dx)

by definition A.8.34: ≤
B[β],q · ‖I‖[δ]

· Tp,q(E)

(αβ − δ)1/p
·
(∑

ν

‖xν‖qE
)1/q

.

Due to proposition A.8.39, the quantity C[α],q[‖I ‖[.]]
(4.1.36) is finite. Namely,

C[α],q[‖I‖[.]] ≤ inf
0<β<1
0<δ<αβ
0<p<q

B
(A.8.12)
[β],q · Tp,q(E) · ‖I‖

[δ]

(αβ − δ)1/p
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with δ = α/4: ≤
B[1/2],q · Tq/2,q(E)‖I‖

[α/4]

(α/4)2/q
. (4.1.39)

Exercise 4.1.13 C[α],.8,‖I ‖[.]
≤ 218 ‖I ‖

[α/8]
/
√
α .

(ii) Following the proof of theorem 4.1.7 we would now like to apply

Rosenthal’s criterion 4.1.4 to produce kα . It does not apply as stated, but
there is an easy extension of the proof, due to Nikisin and used once before

in proposition 4.1.1, that yields the claim. Namely, inequality (4.1.36) can be
read as follows: for every random variable of the form

φ = φx1,...,xn
def=

n∑

ν=1

|I(xν)|q , n ∈ N , xν ∈ E ,

on Ω there is the set

kx1,...,xn

def=

[
|φx1,...,xn

|1/q ≤ C[α],q[‖I ‖[.]] ·
( n∑

ν=1

‖xν ‖E
)1/q

]

of measure P
[
kx1,...,xn

]
≥ 1 − α so that

E[φx1,...,xn
· kx1,...,xn

] ≤ C[α],q[‖I ‖[.]] ·
n∑

ν=1

‖xν ‖qE .

Let K be the collection of positive random variables k ≤ 1 on Ω satisfying
E[k] ≥ 1− α . K is evidently convex and σ(L∞, L1)-compact. The functions

k 7→ E[φx1,...,xn
· k] are lower semicontinuous as the suprema of integrals

against chopped functions. Therefore the functions

hx1,...,xn
: k 7→ C[α],q[‖I ‖[.]]

q ·
n∑

ν=1

‖xν ‖qE − E
[
φx1,...,xn

· k
]

are upper semicontinuous on K , each one having a point of positivity

kx1,...,xn
∈ K. Their collection clearly forms a convex cone H . Ky–Fan’s

minimax theorem A.2.34 furnishes a common point kα ∈ K of positivity,

and this function evidently answers the second claim.
(iii) We pick an α0 ∈ (0, 1) with C[α0],q[‖I ‖[.]] > 0 and set αn = α0/2

n ,

ζn = C[αn],q[‖I ‖[.]]
q , and P′ = g′P with

g′ = γ′
∞∑

n=0

2−n
kαn

ζn
, where γ′ ∈

(
ζ0
2
,

ζ0
1 − α0

)

is chosen so as to make P′ a probability. Then we proceed literally as in

equation (4.1.4) on page 190 to estimate

‖I(x)‖Lq(P′) ≤
(

2

1 − α0

)1/q

C[α0],q[‖I‖[.]] · ‖x‖E

and ‖g‖[α;P] ≤
16α0C

q
[α/4],q[‖I‖[.]]

αCq[α0],q
[‖I‖

[.]]
.
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This gives in the present range 0 < q < 1 the estimates

D
(4.1.8)
q,d [ Z

[.]] ≤ D(4.1.37)
q [‖I‖[.]] ≤

(
2

1 − α0

)1/q

C[α0],q[‖I‖[.]]

and E
(4.1.9)
[α],q ≤ E

(4.1.38)
[α],q [‖I‖[.]] ≤

16α0C
q
[α/4],q[‖I‖[.]]

αCq[α0],q
[‖I‖

[.]]
(4.1.40)

by (4.1.39): ≤ 16
α2

0 · ‖I‖
q

[α/16]

α2 · ‖I‖q
[α0/4]

.

Proof of Theorem 4.1.2 (ii) for  < q < ∞. Let 0 < p < 1. We know now
that there is a probability P′ = P/g with respect to which Z is a global

Lp-integrator. Its size and that of g are controlled by the inequalities

Z Ip[P′]
≤ D

(4.1.8)
p,d [ Z

[.]] and ‖g‖[α] ≤ E
(4.1.9)
[α],p [ Z

[.]] .

By part (i) of theorem 4.1.2 there exists a probability P′′ = P′/g′ with respect

to which Z is an Lq-integrator of size

Z Iq[P′′]
≤ D

(4.1.5)
p,q,d ·Dp,d[ Z

[.]] .

The Radon–Nikodym derivative dP/dP′′ = g′g satisfies by A.8.17 with f = g′

and r = p/(q − p), and by inequalities (4.1.16) and (4.1.40)

E
(4.1.9)
[α],q ≤ 2

p∨(q−p)
p ·‖g‖

q
p

[α/2]·
( 2

α

) q−p
p

(4.1.41)

≤ 2
p∨(q−p)

p ·
(

16α0C
q
[α/4],q[‖I‖[.]]

αCq[α0],q
[‖I‖

[.]]

) q
p

·
( 2

α

) q−p
p

.

The following corollary makes a good exercise to test our understanding of

the flow of arguments above; it is also needed in chapter 5.

Corollary 4.1.14 (Factorization for Random Measures) (i) Let ζ be a spa-

tially bounded global Lp(P)-random measure, where 0 < p < 2 . There exists

a probability P′ equivalent with P on F∞ with respect to which ζ is a spa-
tially bounded global L2-random measure; furthermore, dP′/dP is bounded

and there exist universal constants Dp and Ep depending only on p such
that

ζ I2[P′]
≤ Dp · ζ Ip[P]

, Dp = D
(4.1.5)
p,2,d ,

and such that the Radon–Nikodym derivative g def= dP/dP′ is bounded away

from zero and satisfies

‖g‖Lp/(2−p)(P) ≤ Ep , Ep = E
(4.1.6)
p,2 ,

which has the consequence that for any r > 0 and f ∈ F∞
‖f‖Lr(P) ≤ Ep/2rp · ‖f‖L2r/p[P′] .
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(ii) Let ζ be a spatially bounded global L0(P)-random measure with modulus
of continuity6 ζ

[.] . There exists a probability P′ = P/g equivalent with P

on F∞ with respect to which ζ is a global L2-integrator; furthermore, there
exist universal constants D[ ζ

[.]] and E = E[α][ ζ [.]] , depending only on

α ∈ (0, 1) and the modulus of continuity ζ
[.] ,

such that ζ Iq [P′]
≤ D[ ζ

[.]] , D = D
(4.1.8)
2,d ,

and ‖g‖[α] ≤ E[α][ ζ [.]] ∀α ∈ (0, 1) , E = E
(4.1.9)
[α],2 [ ζ

[.]] ,

– this implies ‖f‖[α+β;P] ≤
(
E[α][ ζ [.]]

/
β
)1/r

‖f‖Lr(P′)

for any f ∈ F∞ , r > 0 and α, β ∈ (0, 1) .

(iii) When ζ is previsible, the exponent 2 can be replaced by any q <∞ .

4.2 Martingale Inequalities

Exercise 3.8.12 shows that the square bracket of an integrator of finite varia-

tion is just the sum of the squares of the jumps, a quantity of modest interest.
For a martingale integrator M , though, the picture is entirely different: the

size of the square function controls the size of the martingale, even of its
integrator norm. In fact, in the range 1 ≤ p < ∞ the quantities M Ip ,

‖M?
∞ ‖

Lp , and ‖S∞[M ]‖
Lp are all equivalent in the sense that there are

universal constants Cp such that

M Ip ≤ Cp·‖M?
∞‖Lp , ‖M?

∞‖Lp ≤ Cp·‖S∞[M ]‖Lp ,

and ‖S∞[M ]‖Lp ≤ Cp· M Ip (4.2.1)

for all martingales M . These and related inequalities are proved in this

section.

Fefferman’s Inequality

The Kq-seminorms are auxiliary seminorms on Lq-integrators, defined for
2 ≤ q ≤ ∞ . They appear in Fefferman’s famed inequality (4.2.2), and

they simplify the proof of inequality (4.2.1) and other inequalities of interest.
Towards their definition let us introduce, for every L0-integrator Z , the class

K[Z] of all g ∈ L2[F∞] having the property that

E
[
[Z,Z]∞ − [Z,Z]T−

∣∣ FT
]
≤ E

[
g2
∣∣ FT

]

at all stopping times T . K[Z] is used to define the seminorm ‖Z ‖Kq by

‖Z ‖Kq = inf
{
‖g‖Lq : g ∈ K[Z]

}
, 2 ≤ q ≤ ∞.

6 ζ
[α]

def= sup
˘‚‚R

X̌ dζ
‚‚
[α;P]

: X̌ ∈ Ě , |X̌| ≤ 1
¯

for 0 < α < 1; see page 56.
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As usual, this number is ∞ if K[Z] is void. When q = ∞ it is customary to
write ‖Z ‖K∞ = ‖Z ‖

BMO
and to say Z has bounded mean oscillation if

this number is finite. We collect now a few properties of the seminorm ‖ ‖Kq .

Exercise 4.2.1 ‖Z ‖
Kq≤‖S∞[Z]‖

Lq . d[Z,Z]≤d[Z ′, Z′] implies ‖Z ‖
Kq≤‖Z′‖

Kq .

Lemma 4.2.2 Let Z be an L0-integrator and I ≥ 0 an adapted increasing

right-continuous process. Then, for 1 ≤ p < 2 ,

E
[∫ ∞

0

I d[Z,Z]
]
≤ inf

{
E[I∞ · g2] : g ∈ K[Z]

}

≤
(

E[Ip/(2−p)∞ ]
)(2−p)/p

· ‖Z‖2
Kp′ .

Proof. With the usual understanding that [Z,Z]0− = 0 = I0− , integration by
parts gives

∫ ∞

0

I d[Z,Z] =

∫ ∞

0

(
[Z,Z]∞ − [Z,Z].−

)
dI

=

∫ ∞

0

(
[Z,Z]∞ − [Z,Z]Tλ−

)
· [Tλ <∞] dλ ,

where T λ = inf{t : It ≥ λ} are the stopping times appearing in the change-
of-variable theorem 2.4.7. Since [T λ <∞] ∈ FTλ ,

E
[∫ ∞

0

I d[Z,Z]
]

= E
[∫ ∞

0

E
[

[Z,Z]∞ − [Z,Z]Tλ−
∣∣ FTλ

]
· [Tλ <∞] dλ

]

≤ inf
{

E
[∫ ∞

0

g2 · [Tλ <∞] dλ
]

: g ∈ K[Z]
}

≤ inf
{

E
[
g2 ·

∫ ∞

0

[I∞ > λ] dλ
]

: g ∈ K[Z]
}

= inf
{
E
[
I∞ · g2

]
: g ∈ K[Z]

}

≤
(
E
[
Ip/(2−p)∞

])(2−p)/p
· ‖Z‖2

Kp′ .

The last inequality comes from an application of Hölder’s inequality with
conjugate exponents p/(2 − p) and p′/2.

On an L2-bounded martingale M the norm ‖M ‖Kq can be rewritten in a

useful way:

Lemma 4.2.3 For any stopping time T

E
[

[M,M ]∞ − [M,M ]T−
∣∣ FT

]
= E

[
(M∞ −MT−)2

∣∣ FT
]
,

and consequently K[M ] equals the collection
{
g ∈ F∞ : E

[
(M∞ −MT−)2

∣∣ FT
]
≤ E

[
g2
∣∣ FT

]
∀ stopping times T

}
.
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Proof. Let U ≥ T be a bounded stopping time such that (MU −MT ).− is
bounded. By proposition 3.8.19

(MU −MT )2 = 2(MU −MT ).−∗(MU −MT ) + [M,M ]U − [M,M ]T ,

and so

[M,M ]U − [M,M ]T− = (MU −MT )2 + (∆MT )2

− 2

∫ U

T+

(M −MT ).− d(M −MT ) .

The integral is the value at U of a martingale that vanishes at T , so its
conditional expectation on FT vanishes (theorem 2.5.22). Consequently,

E
[

[M,M ]U − [M,M ]T−
∣∣ FT

]
= E

[
(MU −MT )2 + (∆MT )2

∣∣ FT
]

=E
[

(MU −MT− − ∆MT )2 + (∆MT )2
∣∣ FT

]

=E
[

(MU −MT−)2 − 2(MU −MT−)∆MT + 2(∆MT )2
∣∣ FT

]

=E
[

(MU −MT−)2
∣∣ FT

]
.

Now U can be chosen arbitrarily large. As U → ∞ , [M,M ]U → [M,M ]∞
and M2

U →M2
∞ in L1-mean, whence the claim.

Since |M∞ −MT−| ≤ 2M?
∞ , the following consequence is immediate:

Corollary 4.2.4 For any martingale M , 2M ?
∞ ∈ Kq[M ] and consequently

‖M ‖Kq ≤ 2 ‖M?
∞ ‖Lq , 2 ≤ q <∞ .

Lemma 4.2.5 Let I,D be positive bounded right-continuous adapted processes,
with I increasing, D decreasing, and such that I·D is still increasing. Then

for any bounded martingale N with |N∞| ≤ D∞ and any q ∈ [2,∞)

2I∞·D∞ ∈ K[I.−∗N ] and thus ‖I.−∗N ‖Kq ≤ 2 ‖I∞ ·D∞ ‖Lq .

Proof. Let T be a stopping time. The stochastic integral in the quantity

Q def= E
[ (

(I.−∗N)∞ − (I.−∗N)T−
)2 ∣∣ FT

]

that must be estimated is the limit of

IT−·∆NT +
∞∑

k=0

ISk
·(NT

Sk+1
−NT

Sk
)

as the partition S = {T = S0 ≤ S1 ≤ S2 ≤ . . .} runs through a sequence

(Sn) whose mesh tends to zero. (See theorem 3.7.23 and proposition 3.8.21.)
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If we square this and take the expectation, the usual cancellation occurs, and

Q ≤ lim
S

E
[
(IT−·∆NT )2 +

∑

0≤k
I2
Sk
·(NT 2

Sk+1
−NT 2

Sk
)
∣∣ FT

]

≤ lim
S

E
[
(IT−·∆NT )2 +

∑

0≤k
I2
Sk+1

·NT 2
Sk+1

−
∑

0≤k
I2
Sk
·NT 2

Sk

∣∣ FT
]

= E
[
I2
T−·(NT −NT−)2 + I2

∞·N2
∞ − I2

T ·N2
T

∣∣ FT
]

≤ E
[
I2
T− ·

(
N2
T − 2NTNT− +N2

T−
)

+ I2
∞·N2

∞ − I2
T−·N2

T

∣∣ FT
]

≤ E
[
I2
T− ·

(
2|NT ||NT−| + |N2

T−|
)

+ I2
∞·N2

∞
∣∣ FT

]

results. Now |NT | ≤ DT ≤ DT− and |NT−| ≤ DT− , so we continue

Q ≤ E
[
3I2
T−·D2

T− + I2
∞·D2

∞
∣∣ FT

]
≤ 4 · E

[
I2
∞ ·D2

∞
∣∣ FT

]
.

This says, in view of lemma 4.2.3, that 2I∞·D∞ ∈ K[I.−∗N ] .

Exercise 4.2.6 The conclusion persists for unbounded I and D .

Theorem 4.2.7 (Fefferman’s Inequality) For any two L0-integrators Y, Z

and 1 ≤ p ≤ 2

E
[

[Y, Z] ∞
]
≤
√

2/p · ‖S∞[Y ]‖Lp · ‖Z ‖Kp′ . (4.2.2)

Proof. Let us abbreviate S = S[Y ] . The mean value theorem produces

Spt − Sps =
(
S2
t

)p/2 −
(
S2
s

)p/2
= (p/2)σp/2 −1 ·

(
S2
t − S2

s

)
,

where σ is a point between S2
s and S2

t . Since p ≤ 2, we have

p/2 − 1 ≤ 0

and (S2
t )
p/2 −1 ≤ σp/2 −1 ;

thus (p/2) · Sp−2
t ·

(
S2
t − S2

s

)
≤ Spt − Sps ,

and by the same token (p/2) · Sp−2
0 ≤ Sp0 .

We read this as a statement about the measures d(Sp) and d(S2):

Sp−2 · d(S2) ≤ (2/p) d(Sp)

(exercise 4.2.9). In conjunction with the theorem 3.8.9 of Kunita–Watanabe,
this yields the estimate

[Y, Z] ∞ =

∫ ∞

0

Sp/2 −1 · S1− p/2 d [Y, Z]

≤
(∫ ∞

0

Sp−2 · d(S2)
)1/2

·
(∫ ∞

0

S2−p d[Z,Z]
)1/2

≤
√

2/p ·
(∫ ∞

0

d(Sp)
)1/2

·
(∫ ∞

0

S2−p d[Z,Z]
)1/2

.
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Upon taking the expectation and applying the Cauchy–Schwarz inequality,

E[ [Y, Z] ∞] ≤
√

2/p ·
(
E[Sp∞]

)1/2 ·
(

E
[∫ ∞

0

S2−p d[Z,Z]
])1/2

follows. From lemma 4.2.2 with I = S2−p ,

E[ [Y, Z] ∞] ≤
√

2/p · (E[Sp∞])
1/2 ·

((
E
[
Sp∞
])(2−p)/p · ‖Z‖2

Kp′

)1/2

=
√

2/p · ‖S∞‖Lp · ‖Z‖Kp′ .

From corollary 4.2.4 and Doob’s maximal theorem 2.5.19, the following con-

sequence is immediate:

Corollary 4.2.8 Let Z be an L0-integrator and M a martingale. Then

E
[

[Z,M ] ∞
]
≤ 2
√

2/p · ‖S∞[Z]‖Lp · ‖M?
∞‖Lp′

≤ 2
√

2p · ‖S∞[Z]‖Lp · ‖M∞‖Lp′ .
1 ≤ p ≤ 2

Exercise 4.2.9 Let y, z, f : [0,∞) → [0,∞) be right-continuous with left limits,
y and z increasing. If f0 · y0 ≤ z0 and ft · (yt − ys) ≤ zt − zs ∀ s < t , then

f · dy ≤ dz .

Exercise 4.2.10 Let M,N be two locally square integrable martingales. Then

E[ [M,N ]
∞

] ≤
√

2 · E[S∞[M ]] · ‖N ‖BMO .

This was Fefferman’s original result, enabling him to show that the martingales N
with ‖N ‖

BMO
<∞ form the dual of the subspace of martingales in I1 .

Exercise 4.2.11 For any local martingale M and 1 ≤ p ≤ 2,

M
Ip ≤ Cp · ‖S∞[M ]‖

Lp (4.2.3)

with C2 = 1 and Cp ≤ 2
√

2p .

The Burkholder–Davis–Gundy Inequalities

Theorem 4.2.12 Let 1 ≤ p < ∞ and M a local martingale. Then

‖M?
∞‖Lp ≤ Cp · ‖S∞[M ]‖Lp (4.2.4)

and ‖S∞[M ]‖Lp ≤ Cp · ‖M?
∞‖Lp . (4.2.5)

The arguments below provide the following bounds for the constants Cp :

C(4.2.4)
p ≤





√
10p , 1 ≤ p < 2,
2 , p = 2,√
e/2 p , 2 < p <∞

; C(4.2.5)
p ≤





6/
√
p , 1 ≤ p ≤ 2,

1 , p = 2,√
2p , 2 ≤ p <∞.

(4.2.6)
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Proof of (4.2.4) for  ≤ p <∞. Let K > 0 and set T = inf{t : |Mt| > K} .
Itô’s formula gives

|MT |p = |M0|p + p

∫ T

0+

|M.−|p−1 sgnM.− dM

+ p(p− 1)

∫ 1

0

(1−λ)

∫ T

0+

∣∣(1−λ)M.− + λM
∣∣p−2

d[M,M ] dλ

≤ p

∫ T

0+

|M.−|p−1 sgnM.− dM +
p(p− 1)

2

∫ T

0

|M |?(p−2) d[M,M ] .

If ‖S∞[M ]‖
Lp = ∞ , there is nothing to prove. And in the opposite case,

M?
T ≤ K + ST [M ] belongs to Lp , and MT is a global Lp-integrator (theo-

rem 2.5.30). The stochastic integral on the left in the last line above has a

bounded integrand and is the value at T of a martingale vanishing at zero
(exercise 3.7.9), and thus has expectation zero. Applying Doob’s maximal

theorem 2.5.19 and Hölder’s inequality with conjugate exponents p/(p − 2)
and p/2, we get

E
[
|MT |?p

]
≤ pp

(p−1)p
· E
[
|MT |p

]

≤ pp · p(p−1)

(p−1)p · 2 · E
[∫ T

0

|M |?(p−2) d[M,M ]
]

≤ p2 · pp−1

2 · (p− 1)p−1
· E
[
M

?(p−2)
T ·

(
ST [M ]

)2]
(4.2.7)

≤ p2

2

(
1 +

1

p− 1

)p−1

·
(

E[M?p
T ]
)(p−2)/p(

E
[
(ST [M ])p

])2/p

< ∞ .

Division by E
[
M?p
T

]1− 2/p
and taking the square root results in

‖M?
T ‖Lp ≤ p ·

√(
1 +

1

p− 1

)p−1/
2 · ‖ST [M ]‖Lp ≤ p

√
e/2 · ‖ST [M ]‖Lp .

Now we let K and with it T increase without bound.

Exercise 4.2.13 For 2 ≤ q <∞ , ‖M ‖Kq/2 ≤
‚‚M?

∞

‚‚
Lq ≤

p
e/2 q · ‖M ‖Kq .

Proof of (4.2.4) for  ≤ p ≤ . Doob’s maximal theorem 2.5.19 and exer-

cise 4.2.11 produce

‖M?
∞ ‖Lp ≤ p′ · ‖M∞ ‖Lp ≤ p′C(4.2.3)

p · ‖S∞[M ]‖Lp .

This applies only for p > 1, though, and the estimate p′ 2
√

2p of the constant

has a pole at p = 1. So we must argue differently for the general case. We use
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the maximal theorem for integrators 2.3.6: an application of exercise 4.2.11
gives

‖M?
∞ ‖Lp ≤ C?(2.3.5)p C(4.2.3)

p · ‖S∞[M ]‖Lp ≤ 6.7 · 21/p√p · ‖S∞[M ]‖Lp .

The constant is a factor of 4 larger than the
√

10p of the statement. We
borrow the latter value from Garsia [35].

Proof of (4.2.5) for  ≤ p ≤ . By homogeneity we may assume that

‖M?
∞‖

Lp=1. Then, using Hölder’s inequality with conjugate exponents 2/p
and 2/(2 − p),

E[ (S∞[M ])p] = E
[(
M?(p−2)
∞ · [M,M ]∞

)p/2
·M?p(2−p)/2
∞

]

≤
(

E
[
M?(p−2)
∞ · [M,M ]∞

])p/2
,

‖S∞[M ]‖2

Lp ≤ E
[
M?(p−2)
∞ · [M,M ]∞

]
.i.e.,

With [M,M ]∞ = M2
∞ − 2

∫ ∞

0

M.− dM

≤M?2
∞ − 2

∫ ∞

0

M.− dM ,

this turns into ‖S∞[M ]‖2

Lp ≤ 1 + 2 ·
∣∣∣E
[
M?(p−2)
∞ ·

∫ ∞

0

M.− dM
]∣∣∣ .

Now let N be the martingale that has N∞ = M
?(p−2)
∞ . We employ lem-

ma 4.2.5 with I = M? and D = M∗(p−2) . The previous inequality can be
continued as

‖S∞[M ]‖2

Lp ≤ 1 + 2 ·
∣∣∣E
[
N∞ ·M.−∗M∞

]∣∣∣

= 1 + 2 ·
∣∣∣E
[
[M,M.−∗N ]∞

]∣∣∣

by theorem 4.2.7: ≤ 1 + 2
√

2/p · ‖S∞[M ]‖Lp · ‖M.−∗N‖Kp′

by exercise 4.2.1: ≤ 1 + 2
√

2/p · ‖S∞[M ]‖Lp ·
∥∥M?

.−∗N
∥∥
Kp′

by lemma 4.2.5: ≤ 1 + 4
√

2/p · ‖S∞[M ]‖Lp ·
∥∥∥M?(p−1)
∞

∥∥∥
Lp′

= 1 + 4
√

2/p · ‖S∞[M ]‖Lp .

Completing the square we get

‖S∞[M ]‖Lp ≤
√

1 + 8/p+
√

8/p < 6/
√
p .

If M
?(p−2)
∞ is not bounded, then taking the supremum over bounded martin-

gales N with N∞ ≤M
?(p−2)
∞ achieves the same thing.



216 4 Control of Integral and Integrator

Proof of (4.2.5) for  ≤ p <∞. Set S = S[M ] . An easy argument as in the
proof of theorem 4.2.7 gives

d(Sp) ≤ p

2
·Sp−2 d(S2) =

p

2
·Sp−2 d[M,M ] ,

and thus E[Sp∞] ≤ p

2
· E
[∫ ∞

0

Sp−2 d[M,M ]
]
.

Lemma 4.2.2 and corollary 4.2.4 allow us to continue with

E[Sp∞] ≤ 2p · E
[
Sp−2
∞ ·M?2

∞
]
≤ 2p ·

(
E[Sp∞]

)(p−2)/p ·
(
E[M?p

∞ ]
)2/p

.

We divide by E
[
Sp∞
]1−2/p

, take the square root, and arrive at

‖S∞[M ]‖Lp ≤
√

2p · ‖M?
∞ ‖Lp .

Here is an interesting little application of the Burkholder–Davis–Gundy in-

equalities:

Exercise 4.2.14 (A Strong Law of Large Numbers) In a generalization of ex-
ercise 2.5.17 on page 75 prove the following: let F1, F2, . . . be a sequence of random
variables that have bounded qth moments for some fixed q > 1: ‖Fν ‖Lq ≤ σq , all
having the same expectation p . Assume that the conditional expectation of Fn+1

given F1, F2, . . . , Fn equals p as well, for n = 1, 2, 3, . . . . [To paraphrase: knowledge
of previous executions of the experiment may influence the law of its current replica
only to the extent that the expectation does not change and the qth moments do
not increase overly much.] Then

lim
n→∞

1

n

nX

ν=1

Fν = p almost surely.

The Hardy Mean

The following observation will throw some light on the merit of inequal-

ity (4.2.4). Proposition 3.8.19 gives [X∗M,X∗M ] = X2∗[M,M ] for elemen-
tary integrands X . Inequality (4.2.4) applied to the local martingale X∗M
therefore yields

∥∥∥
∫
X dM

∥∥∥
Lp

≤ Cp·
(∫ (∫ ∞

0

X2 d[M,M ]
)p/2

dP
)1/p

(4.2.8)

for 1 ≤ p <∞. The corresponding assignment

F 7→ ‖F‖H∗M−p def=
(∫ ∗(∫ ∗

F 2
t (ω) d[M,M ]t(ω)

)p/2
P(dω)

)1/p

(4.2.9)

is a pathwise mean in the sense that it computes first for every single path

t 7→ Ft(ω) separately a quantity, (
∫ ∗
F 2
t (ω) d[M,M ]t(ω))

1/2
in this case,
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and then applies a p-mean to the resulting random variable. It is called the
Hardy mean. It controls the integral in the sense that

∥∥∥
∫
X dM

∥∥∥
Lp

≤ C(4.2.4)
p · ‖X ‖H∗M−p

for elementary integrands X , and it can therefore be used to extend the

elementary integral just as well as Daniell’s mean can. It offers “pathwise”
or “ω–by–ω” control of the integrand, and such is of paramount importance

for the solution of stochastic differential equations – for more on this see
sections 4.5 and 5.2.

The Hardy mean is the favorite mean of most authors who treat stochastic

integration for martingale integrators and exponents p ≥ 1.

How do the Hardy mean and Daniell’s mean compare? The minimality of

Daniell’s mean on previsible processes (exercises 3.6.16 and 3.5.7(ii)) gives

‖F ‖∗M−p ≤ C(4.2.4)
p · ‖F ‖H∗M−p (4.2.10)

for 1 ≤ p < ∞ and all previsible F . In fact, if M is continuous, so that

S[M ] agrees with the previsible square function s[M ] , then inequality (4.2.10)
extends to all p > 0 (exercise 4.3.20). On the other hand, proposition 3.8.19

and equation (3.7.5) produce for all elementary integrands X

(∫ (∫ ∞

0

X2 d[M,M ]
)p/2

dP
)1/p

≤ K(3.8.6)
p · X∗M Ip = Kp · ‖X ‖∗M−p ,

which due to proposition 3.6.1 results in the converse of inequality (4.2.10):

‖F ‖H∗M−p ≤ Kp · ‖F ‖∗M−p
for 0 < p < ∞ and for all functions F on the ambient space. In view of
the integrability criterion 3.4.10, both ‖ ‖∗

M−p and ‖ ‖H∗
M−p have the same

previsible integrable processes:

P ∩ L1[dd ee∗M−p] = P ∩ L1[‖ ‖H∗M−p] and dd ee∗M−p ≈ ‖ ‖H∗M−p
on this space for 1 ≤ p < ∞ , and even for 0 < p < ∞ if M happens to

be continuous. Here is an instance where ‖ ‖H∗
M−p is nevertheless preferable:

Suppose that M is continuous; then so is [M,M ] , and ‖ ‖H∗
M−p annihilates

the graph of any random time – Daniell’s mean ‖ ‖∗
M−p may well fail to do

so. Now a well-measurable process differs from a predictable one only on
the graphs of countably many stopping times (exercise A.5.18). Thus a well-

measurable process is ‖ ‖H∗
M−p-measurable, and all well-measurable processes

with finite mean are integrable if the mean ‖ ‖H∗
M−p is employed. For another

instance see the proof of theorem 4.2.15.
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Martingale Representation on Wiener Space

Consider an Lp-integrator Z . The definite integral X 7→
∫

X dZ is a map
from L1[Z−p] to Lp . One might reasonably ask what its kernel and range are.

Not much can be said when Z is arbitrary; but if it is a Wiener process and
p > 1, then there is a complete answer (see also theorem 4.6.10 on page 261):

Theorem 4.2.15 Assume that W = (W 1, . . . ,W d) is a standard d-dimensional
Wiener process on its natural filtration F.[W ] , and let 1 < p < ∞ .

Then for every f ∈ Lp(F∞[W ]) there is a unique W−p-integrable vector
X = (X1, . . . , Xd) of previsible processes so that

f = E[f ] +

∫ ∞

0

X dW .

Put slightly differently, the martingale M f
.

def= E[f |F.[W ]] has the representation

Mf
t = E[f ] +

∫ t

0

X dW .

Proof (Si–Jian Lin). Denote by H the discrete space {1, . . . , d} and by B̌

the set H ×B equipped with its elementary integrands Ě def= C(H)⊗ E . As

on page 109, a d-vector of processes on B is identified with a function on B̌ .

According to theorem 2.5.19 and exercise 4.2.18, the stochastic integral

X 7→
∫

X dW =
d∑

η=1

∫ ∞

0

Xη dW η

is up to a constant an isometry of P ∩ L1[‖ ‖∗
W−p] onto a subspace of

Lp(F∞[W ]) . Namely, for 1 < p <∞ and with M def= X∗W
∥∥∥
∫

X dW
∥∥∥
p

= ‖M∞‖p

by theorems 2.5.19 and 4.2.12: ∼ ‖M ?
∞‖p ∼ ‖S∞[M ]‖p = ‖X‖H∗W−p

by definition (4.2.9): ∼ ‖X‖∗W−p .

The image of L1[‖ ‖∗
W−p] under the stochastic integral is thus a complete and

therefore closed subspace S ⊂
{
f ∈ Lp(F∞[W ]) : E[f ] = 0

}
. Since bounded

pointwise convergence implies mean convergence in Lp , the subspace Sb(C)

of bounded functions in the complexification of R ⊕ S forms a bounded

monotone class. According to exercise A.3.5, it suffices to show that Sb(C)
contains a complex multiplicative class M that generates F∞[W ] . Sb(C)

will then contain all bounded F∞[W ]-measurable random variables and its
closure all of LpC . We take for M the multiples of random variables of the

form
exp (iφ∗W∞ ) = e

i
R∞
0

P
η
φη(s) dW η

s ,
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the φη being bounded Borel and vanishing past some instant each. M is
clearly closed under multiplication and complex conjugation and contains the

constants. To see that it is contained in Sb(C), consider the Doléans–Dade
exponential

Et = 1 +

∫ t

0

iEs
∑

η

φη(s) dW η
s = 1 +

(
E ∗i(φ∗W )

)
t

by (3.9.4): = exp
(
iφ∗Wt + 1/2

∫ t

0

|φ(s)|2 ds
)

of iφ∗W . Clearly E∞ = exp
(
iφ∗W∞ + c

)
belongs to Sb(C), and so does

the scalar multiple exp
(
iφ∗W∞

)
. To see that the σ-algebra F generated

by M contains F∞[W ] , differentiate exp
(
iτ
∫

φ dW
)

at τ = 0 to conclude
that

∫
φ dW ∈ F . Then take φη = [0, t] for η = 1, . . . , d to see that Wt ∈ F

for all t . We leave to the reader the following straightforward generalization
from finite auxiliary space to continuous auxiliary space:

Corollary 4.2.16 (Generalization to Wiener Random Measure) Let β be
a Wiener random measure with intensity rate ν on the auxiliary space H , as in
definition 3.10.5. The filtration F. is the one generated by β (ibidem).

(i) For 0 < p <∞, the Daniell mean and the Hardy mean

F̌ 7→ ‖F ‖H∗
β−p

def=
“Z ∗ “Z ∗

F̌ 2
s (η;ω) ν(dη)ds

”p/2
P(dω)

”1/p

agree on the previsibles F̌ ∈ P̌ def= B•(H) ⊗ P , up to a multiplicative constant.
(ii) For every f ∈ Lp(F∞), 1 < p < ∞, there is a β−p-integrable predictable

random function X̌ , unique up to indistinguishability, so that

f = E[f ] +

Z

B̌

X̌(η, s) β(dη, ds) .

Additional Exercises

Exercise 4.2.17 ‖M ‖
Kq ≤ ‖S∞[M ]‖

Lq ≤
p
q/2 · ‖M ‖

Kq for 2 ≤ q ≤ ∞ .

Exercise 4.2.18 Let 1 ≤ p <∞ and M a local martingale. Then
‚‚M?

∞

‚‚
Lp ≤ Cp · M

Ip , (4.2.11)

M
Ip ≤ Cp · ‖S∞[M ]‖

Lp , (4.2.12)

and
‚‚(X∗M)?T

‚‚
Lp ≤ C(4.2.4)

p ·
‚‚‚
“Z T

0

X2 d[M,M ]
”1/2‚‚‚

Lp

for any previsible X and stopping time T , with

C(4.2.11)
p ≤

8
><
>:

C(4.2.4)
p ·K(3.8.6)

p ≤ 21/p
p

5p ≤ 5 for 1 ≤ p ≤ 1.3,

p′ = p/(p−1) ≤ 5 for 1.3 ≤ p ≤ 2,

p′ = p/(p−1) ≤ 2 for 2 ≤ p <∞,
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and C(4.2.12)
p ≤ C(4.2.3)

p ∧ C(4.2.4)
p ≤

8
<
:

2
p

2p for 1 ≤ p < 2,

1 for p = 2,p
e/2 · p for 2 < p <∞.

Inequality (4.2.6) permits an estimate of the constant A
(2.5.6)
p :

A(2.5.6)
p ≤ C(4.2.4)

p · C(4.2.5)
p · p′ ≤

8
<
:

19p′ for 1 < p < 2,

1 for p = 2,√
ep3/2p′ ∨ 19p for 2 < p <∞.

Exercise 4.2.19 Let p, q, r > 1 with 1/r = 1/q + 1/p and M an Lp-bounded
martingale. If X is previsible and its maximal function is measurable and finite in
Lq-mean, then X is M−p-integrable.

Exercise 4.2.20 A standard Wiener process W is an Lp-integrator for all p <∞ ,
of size W t

Ip ≤ p
p
et/2 for p > 2 and W t

Ip ≤
√
t for 0 < p ≤ 2.

Exercise 4.2.21 Let T c+ = inf{t : |Wt| > c} and T c = inf{t : |Wt| ≥ c} ,

where W is a standard Wiener process and c ≥ 0. Then E[T c+] = E[T c] = c2 .

Exercise 4.2.22 (Martingale Representation in General) For 1 ≤ p < ∞
let Hp

0 denote the Banach space of P-martingales M on F. that have M0 = 0 and
that are global Lp-integrators. The Hardy space Hp

0 carries the integrator norm
M 7→ M

Ip ∼ ‖S∞[M ]‖
p

(see inequality (4.2.1)). A closed linear subspace S of
Hp

0 is called stable if it is closed under stopping (M∈S =⇒ MT∈S ∀T∈T). The

stable span A‖ of a set A ⊂ Hp
0 is defined as the smallest closed stable subspace

containing A . It contains with every finite collection M = {M 1, . . . ,Mn} ⊂ A ,
considered as a random measure having auxiliary space {1, . . . , n} , and with every

X = (Xi) ∈ L1[M−p] , the indefinite integral X∗M =
P

iXi∗M i ; in fact, A‖ is
the closure of the collection of all such indefinite integrals.

If A is finite, say A = {M1, . . . ,Mn} , and a) [M i,M j ] = 0 for i 6= j or b) M
is previsible or b’) the [M i,M j ] are previsible or c) p = 2 or d) n = 1, then the
set {X∗M : X ∈ L1[M−p]} of indefinite integrals is closed in Hp

0 and therefore

equals A‖ ; in other words, then every martingale in A‖ has a representation as an
indefinite integral against the M i .

Exercise 4.2.23 (Characterization of A‖ ) The dual Hp∗
0 of Hp

0 equals Hp′
0

when the conjugate exponent p′ is finite and equals BMO0 when p = 1 and
then p′ = ∞ ; the pairing is (M,M ′) 7→ 〈M |M ′〉 def= E[M∞ · M ′

∞] in both cases
(M ∈ Hp

0,M
′ ∈ Hp∗

0 ). A martingale M ′ in Hp∗
0 is called strongly perpendicular

to M ∈ Hp
0 , denoted M⊥⊥M ′ , if [M,M ′] is a (then automatically uniformly

integrable) martingale. M ′ is strongly perpendicular to all M ∈ A ⊂ Hp
0 if and

only if it is perpendicular to every martingale in A‖ . The collection of all such
martingales M ′ ∈ Hp∗

0 is denoted by A⊥⊥ . It is a stable subspace of Hp∗
0 , and

(A⊥⊥)⊥⊥ = A‖ .

Exercise 4.2.24 (Continuation: Martingale Measures) Let G′ def= 1 + M ′ ,
with A⊥⊥ 3M ′ > −1. Then P′ def= G′P is a probability, eqivalent with P and equal
to P on F0 , for which every element of A‖ is a martingale. For this reason such
P′ is called a martingale measure for A . The set M[A] of martingale measures
for A is evidently convex and contains P . A⊥⊥ contains no bounded martingale
other than zero if and only if P is an extremal point of M[A] .

Assume now M = {M1, . . . ,Mn} ⊂ Hp
0 has bounded jumps, and M i⊥⊥M j for

i 6= j . Then every martingale M ∈ Hp
0 has a representation M = X∗M with

X ∈ L1[M−p] if and only if P is an extremal point of M[M ] .
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4.3 The Doob–Meyer Decomposition

Throughout the remainder of the chapter the probability P is fixed, and the

filtration (F.,P) satisfies the natural conditions. As usual, mention of P is
suppressed in the notation.

In this section we address the question of finding a canonical decomposition
for an Lp-integrator Z . The classes in which the constituents of Z are sought

are the finite variation processes and the local martingales. The next result
is about as good as one might expect. Its estimates hold only in the range

1 ≤ p < ∞ .

Theorem 4.3.1 An adapted process Z is a local L1-integrator if and only if it

is the sum of a right-continuous previsible process Ẑ of finite variation and
a local martingale Z̃ that vanishes at time zero. The decomposition

Z = Ẑ + Z̃

is unique up to indistinguishability and is termed the Doob–Meyer decom-
position of Z . If Z has continuous paths, then so do Ẑ and Z̃ . For

1 ≤ p < ∞ there are universal constants Ĉp and C̃p such that

Ẑ Ip ≤ Ĉp · Z Ip and Z̃ Ip ≤ C̃p · Z Ip . (4.3.1)

The size of the martingale part Z̃ is actually controlled by the square function

of Z alone:
Z̃ Ip ≤ C̃ ′p · ‖S∞[Z]‖Lp . (4.3.2)

The previsible finite variation part Ẑ is also called the compensator or
dual previsible projection of Z , and the local martingale part Z̃ is called

its compensatrix or “Z compensated.”

The proof below (see page 227 ff.) furnishes the estimates

C̃
′(4.3.2)
p ≤





2
√

2p < 4 for 1 ≤ p < 2,

2 for p = 2,
C

(4.2.5)
p′ ≤ 6/

√
p′ for 2 < p <∞,

C̃(4.3.1)
p ≤





4 for 1 ≤ p < 2,

2 for p = 2,
6p for 2 < p <∞,

(4.3.3)

Ĉ(4.3.1)
p ≤





1 for p = 1,

5 for 1 < p < 2,
2 for p = 2,

6p for 2 < p <∞.

In the range 0 ≤ p < 1, a weaker statement is true: an Lp-integrator

is the sum of a local martingale and a process of finite variation; but the
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decomposition is neither canonical nor unique, and the sizes of the summands
cannot in general be estimated. These matters are taken up below (sec-

tion 4.4). Processes that do have a Doob–Meyer decomposition are known in
the literature also as processes of class D.

Doléans–Dade Measures and Processes

The main idea in the construction of the Doob–Meyer decomposition 4.3.1 of
a local L1-integrator Z is to analyze its Doléans-Dade measure µZ . This

is defined on all bounded previsible and locally Z−1-integrable processes X
by

µZ(X) = E
[∫

X dZ
]

and is evidently a σ-finite σ-additive measure on the previsibles P that van-
ishes on evanescent processes. Suppose it were known that every measure µ

on P with these properties has a predictable representation in the form

µ(X) = E
[∫

X dV µ
]
, X ∈ Pb ,

where V µ is a right-continuous predictable process of finite variation –
such V µ is known as a Doléans–Dade process for µ . Then we would

simply set Ẑ def= V µZ and Z̃ def= Z − Ẑ . Inasmuch as

E
[∫

X dZ̃
]

= E
[∫

X dZ
]
− E

[∫
X dV µZ

]
= 0

on (many) previsibles X ∈ Pb , the difference Z̃ would be a (local) martingale

and Z = Ẑ+ Z̃ would be a Doob–Meyer decomposition of Z : the battle plan
is laid out.7

It is convenient to investigate first the case when µ is totally finite:

Proposition 4.3.2 Let µ be a σ-additive measure of bounded variation on the
σ-algebra P of predictable sets and assume that µ vanishes on evanescent sets

in P . There exists a right-continuous predictable process V µ of integrable
total variation V µ ∞ , unique up to indistinguishability, such that for all

bounded previsible processes X

µ(X) = E
[∫ ∞

0

X dV µ
]
. (4.3.4)

Proof. Let us start with a little argument showing that if such a Doléans–
Dade process V µ exists, then it is unique. To this end fix t and g ∈ L∞(Ft),
and let Mg be the bounded right-continuous martingale whose value at any
instant s is Mg

s = E[g|Fs] (example 2.5.2). Let M g
.− be the left-continuous

7 There are other ways to establish theorem 4.3.1. This particular construction, via the
correspondence Z → µZ and µ → V µ , is however used several times in section 4.5.
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version of Mg and in (4.3.4) set X = M g
0 ·[[0]]+Mg

.−·((0, t]]. Then from coroll-
ary 3.8.23

µ(X) = E[Mg
0V

µ
0 ] + E

[∫ t

0+

Mg
.− dV

µ
]

= E[gV µt ] .

In other words, V µt is a Radon–Nikodym derivative of the measure

µt : g 7→ µ
(
Mg

0 ·[[0]] +Mg
.−·((0, t]]

)
, g ∈ L∞(Ft) ,

with respect to P , both µt and P being regarded as measures on Ft . This
determines V µt up to a modification. Since V µ is also right-continuous, it is

unique up to indistinguishability (exercise 1.3.28).

For the existence we reduce first of all the situation to the case that µ is
positive, by splitting µ into its positive and negative parts. We want to show

that then there exists an increasing right-continuous predictable process I
with E[I∞] < ∞ that satisfies (4.3.4) for all X ∈ Pb . To do that we stand

the uniqueness argument above on its head and define the random variable
It ∈ L1

+(Ft,P) as the Radon–Nikodym derivative of the measure µt on Ft
with respect to P . Such a derivative does exist: µt is clearly additive. And
if (gn) is a sequence in L∞(Ft) that decreases pointwise P-a.s. to zero, then(
Mgn

)
decreases pointwise, and thanks to Doob’s maximal lemma 2.5.18,

infn
(
Mgn

.−
)

is zero except on an evanescent set. Consequently,

lim
n→∞

µt(gn) = lim
n→∞

µ
(
Mg

0 ·[[0]] +Mgn
.− · ((0, t]]

)
= 0 .

This shows at the same time that µt is σ-additive and that it is absolutely

continuous with respect to the restriction of P to Ft . The Radon–Nikodym
theorem A.3.22 provides a derivative It = dµt/dP ∈ L1

+(Ft,P). In other

words, It is defined by the equation

µ
(
Mg

0 ·[[0]] +Mg
.− · ((0, t]]

)
= E[Mg

t · It] , g ∈ L∞(F∞) .

Taking differences in this equation results in

µ
(
Mg

.− · ((s, t]]
)

= E
[
Mg
t It −Mg

s Is
]

= E
[
g · (It − Is)

]
(4.3.5)

= E
[∫

g·((s, t]] dI
]

for 0 ≤ s < t ≤ ∞ . Taking g = [Is > It] we see that I is increasing. Namely,
the left-hand side of equation (4.3.5) is then positive and the right-hand side

negative, so that both must vanish. This says that It ≥ Is a.s. Taking
tn ↓ s and g = [infn Itn > Is] we see similarly that I is right-continuous in

L1-mean. I is thus a global L1-integrator, and we may and shall replace it
by its right-continuous modification (theorem 2.3.4). Another look at (4.3.5)

reveals that µ equals the Doléans–Dade measure of I , at least on processes
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of the form g · ((s, t]], g ∈ Fs . These processes generate the predictables, and
so µ = µI on all of P . In particular,

E[MtIt −M0I0 ] = µ
(
M.−·((0, t]]

)
= E

[∫ t

0+

M.− dI
]

for bounded martingales M . Taking differences turns this into

E
[∫

g · ((t,∞)) dI
]

= E
[∫

Mg
.− · ((t,∞)) dI

]

for all bounded random variables g with attached right-continuous martin-
gales Mg

t = E[g|Ft] . Now Mg
.− · ((t,∞)) is the predictable projection of

((t,∞)) ·g (corollary A.5.15 on page 439), so the assumption on I can be read
as

E
[∫

X dI
]

= E
[∫

XP,P dI
]
, (∗)

at least for X of the form ((t,∞)) · g . Now such X generate the measurable

σ-algebra on B , and the bounded monotone class theorem implies that (∗)
holds for all bounded measurable processes X (ibidem).

On the way to proving that I is predictable another observation is useful:

at a predictable time S the jump ∆IS is measurable on FS− :

∆IS ∈ FS− . (∗∗)

To see this, let f be a bounded FS-measurable function and set g def= f −
E[f |FS−] and Mg

t
def= E[g|Ft] . Then Mg is a bounded martingale that

vanishes at any time strictly prior to S and is constant after S . Thus
Mg·[[0, S]] = Mg·[[S]] has predictable projection M g

.−[[S]] = 0 and

E
[
f ·
(
∆IS − E[∆IS |FS−]

)]
= E[g∆IS ] = E

[∫
Mg[[0, S]] dI

]
= 0 .

This is true for all f ∈ FS , so ∆IS = E[∆IS |FS−] .

Now let a ≥ 0 and let P be a previsible subset of [∆I > a] , chosen so

that E[
∫
P dI ] is maximal. We want to show that N def= [∆I > a] \ P is

evanescent. Suppose it were not. Then

0 < E
[∫

N dI
]

= E
[∫

NP,P dI
]
,

so that NP,P could not be evanescent. According to the predictable sec-

tion theorem A.5.14, there would exist a predictable stopping time S with
[[S]] ⊂

[
NP,P > 0

]
and P[S <∞] > 0. Then

0 < E
[
NP,PS [S <∞]

]
= E

[
NS [S <∞]

]
.
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Now either NS = 0 or ∆IS > a. The predictable8 reduction S′ def= S[∆IS>a]

still would have E
[
NS′ [S′ <∞]

]
> 0, and consequently

E
[∫

N ∩ [[S′]] dI
]
> 0 .

Then P0
def= [[S′]] \ P would be a previsible non-evanescent subset of N with

E[
∫
P0 dI] > 0, in contradiction to the maximality of P .

That is to say, [∆I > a] = P is previsible, for all a ≥ 0: ∆I is previsible.

Then so is I = I− + ∆I ; and since this process is right-continuous, it is even

predictable.

Exercise 4.3.3 A right-continuous increasing process I ∈ D is previsible if and
only if its jumps occur only at predictable stopping times and if, in addition, the
jump ∆IT at a stopping time T is measurable on the strict past FT− of T .

Exercise 4.3.4 Let V = cV + jV be the decomposition of the càdlàg predictable
finite variation process V into continuous and jump parts (see exercise 2.4.6). Then

the sparse set [∆V 6= 0] = [∆jV 6= 0] is previsible and is, in fact, the disjoint union
of the graphs of countably many predictable stopping times [use theorem A.5.14].

Exercise 4.3.5 A supermartingale Zt that is right-continuous in probability and
has E[Zt] −−−→t→∞ 0 is called a potential. A potential Z is of class D if and only if the
random variables {ZT : T an a.s. finite stopping time } are uniformly integrable.

Proof of Theorem 4.3.1: Necessity, Uniqueness, and Existence

Since a local martingale is a local L1-integrator (corollary 2.5.29) and a

predictable process of finite variation has locally bounded variation (exer-
cise 3.5.4 and corollary 3.5.16) and is therefore a local Lp-integrator for every

p > 0 (proposition 2.4.1), a process having a Doob–Meyer decomposition is
necessarily a local L1-integrator.

Next the uniqueness. Suppose that Z = Ẑ + Z̃ = Ẑ ′ + Z̃ ′ are two Doob–
Meyer decompositions of Z . Then M def= Z̃ − Z̃ ′ = Ẑ − Ẑ ′ is a predictable

local martingale of finite variation that vanishes at zero. We know from
exercise 3.8.24 (i) that M is evanescent.

Let us make here an observation to be used in the existence proof. Suppose

that Z stops at the time T : Z = ZT . Then Z = Ẑ+Z̃ and Z =
(
Ẑ
)T

+
(
Z̃
)T

are both Doob–Meyer decompositions of Z , so they coincide. That is to
say, if Z has a Doob–Meyer decomposition at all, then its predictable finite

variation and martingale parts also stop at time T . Doing a little algebra one
deduces from this that if Z vanishes strictly before time S , i.e., on [[0, S)), and

is constant after time T , i.e., on [[T,∞)), then the parts of its Doob–Meyer
decomposition, should it have any, show the same behavior.

Now to the existence. Let (Tn) be a sequence of stopping times that
reduce Z to global L1-integrators and increase to infinity. If we can produce

Doob–Meyer decompositions

ZTn+1 − ZTn = V n +Mn

8 See (∗∗) and lemma 3.5.15 (iv).
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for the global L1-integrators on the left, then Z =
∑

n V
n+
∑

nM
n will be a

Doob–Meyer decomposition for Z – note that at every point $ ∈ B this is a

finite sum. In other words, we may assume that Z is a global L1-integrator.

Consider then its Doléans–Dade measure µ :

µ(X) = E
[∫

X dZ
]
, X ∈ Pb ,

and let Ẑ be the predictable process V µ of finite variation provided by pro-
position 4.3.2. From

E
[∫

X d(Z − Ẑ)
]

= 0

it follows that Z̃ def= Z − Ẑ is a martingale. Z = Ẑ + Z̃ is the sought-after
Doob–Meyer decomposition.

Exercise 4.3.6 Let T > 0 be a predictable stopping time and Z a global

L1-integrator with Doob–Meyer decomposition Z = bZ + eZ . Then the jump ∆ bZT
equals E

ˆ
∆ZT |FT−

˜
. The predictable finite variation and martingale parts of any

continuous local L1-integrator are again continuous. In the general case
‚‚‚S∞[ bZ]

‚‚‚
Lq

≤
p
q/2 · ‖S∞[Z]‖

Lq , 2 ≤ q <∞ .

Exercise 4.3.7 If I and J are increasing processes with µI ≤ µJ – which we also

write dI ≤ dJ , see page 406 – then dbI ≤ d bJ and bI ≤ bJ .

Exercise 4.3.8 A local L1-integrator with bounded jumps is a local Lq-integrator
for any q ∈ (0,∞) (see corollary 4.4.3 on page 234 for much more).

Exercise 4.3.9 Let Z be a local L1-integrator. There are arbitrarily large stopping
times U such that Z agrees on the right-open interval [[0, U)) with a process that
is a global Lq-integrator for all q ∈ (0,∞).

Exercise 4.3.10 Let X be a bounded previsible process. The Doob–Meyer

decomposition of X∗Z is X∗Z = X∗ bZ +X∗ eZ .

Exercise 4.3.11 Let µ, V µ be as in proposition 4.3.2 and let D be a bounded
previsible process. The Doléans–Dade process of the measure D · µ is D∗V µ .

Exercise 4.3.12 Let V,V ′ be previsible positive increasing processes with as-
sociated Doléans–Dade measures µV , µV ′ on P . The following are equivalent: (i)
for almost every ω ∈ Ω the measure dVt(ω) is absolutely continuous with re-
spect to dV ′

t (ω) on B•(R+); (ii) µV is absolutely continuous with respect to µV ′ ;
and (iii) there exists a previsible process G such that µV = G·µV ′ . In this case
dVt(ω) = Gt(ω)·dV ′

t (ω) on R+ , for almost all ω ∈ Ω.

Exercise 4.3.13 Let V be an adapted right-continuous process of integrable total
variation V and with V0 = 0, and let µ = µV be its Doléans–Dade measure.

We know from proposition 2.4.1 that V
Ip ≤ ‖ V

∞
‖
Lp , 0 < p < ∞ . If V is

previsible, then the variation process V is indistinguishable from the Doléans–

Dade process of µ , and equality obtains in this inequality: for 0 < p <∞

‖Y ‖V−p =
‚‚‚
Z
Y d V

‚‚‚
Lp

and V
Ip =

‚‚‚ V
∞

‚‚‚
Lp

.
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Exercise 4.3.14 (Fundamental Theorem of Local Martingales [75]) A local
martingale M is the sum of a finite variation process and a locally square integrable
local martingale (for more see corollary 4.4.3 and proposition 4.4.1).

Exercise 4.3.15 (Emery) For 0 < p < ∞ , 0 < q < ∞ , and 1
r

= 1
p

+ 1
q

there

are universal constants Cp,q such that for every global Lq-integrator and previsible
integrand X with measurable maximal function X?

∞

X∗Z
Ir ≤ Cp,q ·

‚‚X?
∞

‚‚
Lp · Z

Iq .

Proof of Theorem 4.3.1: The Inequalities

Let Z = Ẑ + Z̃ be the Doob–Meyer decomposition of Z . We may assume
that Z is a global Lp-integrator, else there is nothing to prove. If p = 1,

then

Ẑ I1 = sup
{

E
[∫

X dZ
]

: X ∈ E1

}
≤ Z I1 ,

so inequality (4.3.1) holds with Ĉ1 = 1.

For p 6= 1 we go after the martingale term instead. Since Z̃ vanishes
at time zero, it suffices to estimate the size of (X∗Z̃)∞ for X ∈ E1 with

X0 = 0. Let then M be a martingale with ‖M∞ ‖
p′ ≤ 1. Let T be a

stopping time such that (X∗Z̃.−)T and MT
.− are bounded and [Ẑ,M ]T is a

martingale (exercise 3.8.24 (ii)). Then the first two terms on the right of

(X∗Z̃T )MT = X∗Z̃.−∗MT + (XM.−)∗Z̃T +X∗[Z̃,M ]T

are martingales and vanish at zero. Further, X∗[Z̃,M ]T and X∗[Z,M ]T

differ by the martingale X∗[Ẑ,M ]T . Therefore

E
[
(X∗Z̃)TMT

]
= E

[∫ T

0+

X d[Z,M ]
]
≤ E

[
[Z,M ] ∞

]
.

Now X∗Z̃ is constant after some instant. Taking the supremum over T and
X ∈ E1 thus gives

Z̃ Ip ≤ sup
{

E
[

[Z,M ] ∞

]
: ‖M∞ ‖Lp′ ≤ 1

}
. (∗)

If 1 < p < 2, we continue this inequality using corollary 4.2.8:

Z̃ Ip ≤ 2
√

2p ‖S∞[Z]‖Lp ≤ 2
√

2pK(3.8.6)
p Z Ip ≤ 4 Z Ip .

If 2 ≤ p , we continue at (∗) instead with an application of exercise 3.8.10:

Z̃ Ip ≤ ‖S∞[Z]‖Lp · sup
{
‖S∞[M ]‖Lp′ : ‖M∞‖Lp′ ≤ 1

}
(∗∗)

≤ ‖S∞[Z]‖Lp · C(4.2.5)
p′ · sup

{
‖M?
∞‖Lp′ : ‖M∞‖Lp′ ≤ 1

}

by 2.5.19: ≤ ‖S∞[Z]‖Lp · Cp′ · p

by 3.8.4: ≤ pC
(4.2.5)
p′ Z Ip ≤ 6p Z Ip .
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For p = 2 use ‖S∞[M ]‖
Lp′ ≤ 1 at (∗∗) instead. This proves the stated

inequalities for Z̃ ; the ones for Ẑ follow by subtraction. Theorem 4.3.1 is
proved in its entirety.

Remark 4.3.16 The main ingredient in the proof of proposition 4.3.2 and thus
of theorem 4.3.1 was the fact that an increasing process I that satisfies

E
[
MtIt

]
= E

[∫ t

0

M.− dI
]

(∗)

for all bounded martingales M is previsible. It was Paul–André Meyer who
called increasing processes with (∗) natural and then proceeded to show

that they are previsible [70], [71]. At first sight there is actually something
unnatural about all this [72, page 111]. Namely, while the interest in previsi-

ble processes as integrands is perfectly natural in view of our experience with
Borel functions, of which they are the stochastic analogs, it may not be alto-

gether obvious what good there is in having integrators previsible. In answer

let us remark first that the previsibility of Ẑ enters essentially into the proof
of the estimates (4.3.1)–(4.3.2). Furthermore, it will lead to previsible path-

wise control of integrators, which permits a controlled analysis of stochastic
differential equations driven by integrators with jumps (section 4.5).

The Previsible Square Function

If Z is an Lp-integrator with p ≥ 2, then [Z,Z] is an L1-integrator and
therefore has a Doob–Meyer decomposition

[Z,Z] = [̂Z,Z] + [̃Z,Z] .

Its previsible finite variation part [̂Z,Z] is called the previsible or oblique
bracket or angle bracket and is denoted by 〈Z,Z〉 . Note that 〈Z,Z〉0 =

[Z,Z]0 = Z2
0 . The square root s[Z] def=

√
〈Z,Z〉 is called the previsible

square function of Z . The processes 〈Z,Z〉 and s[Z] evidently can be

defined unequivocally also in case Z is merely a local L2-integrator. If Z is
continuous, then clearly 〈Z,Z〉 = [Z,Z] and s[Z] = S[Z] .

Let Y, Z be local L2-integrators. According to the inequality of Kunita–
Watanabe (theorem 3.8.9), [Y, Z] is a local L1-integrator and has a Doob–

Meyer decomposition

[Y, Z] = [̂Y, Z] + [̃Y, Z]

with [̂Y, Z]0 = [Y, Z]0 = Y0·Z0 .

Its previsible finite variation part [̂Y, Z] is called the previsible or oblique
bracket or angle bracket and is denoted by 〈Y, Z〉 . Clearly if either of Y, Z

is continuous, then 〈Y, Z〉 = [Y, Z] .
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Exercise 4.3.17 The previsible bracket has the same general properties as [., .] :
(i) The theorem of Kunita–Watanabe holds for it: for any two local L2-integrators

Y, Z there exists a set Ω0 ∈ F∞ of full measure P[Ω0] = 1 such that for all ω ∈ Ω0

and any two B•(R) ⊗F∞-measurable processes U, V
Z ∞

0

|UV | d 〈Y,Z〉 ≤
“Z ∞

0

U2 d〈Y, Y 〉
”1/2

·
“Z ∞

0

V 2 d〈Z,Z〉
”1/2

.

(ii) s[Y + Z] ≤ s[Y ] + s[Z] , except possibly on an evanescent set.
(iii) For any stopping time T and p, q, r > 0 with 1/r = 1/p+ 1/q

‚‚‚ 〈Y,Z〉
T

‚‚‚
Lr

≤ ‖sT [Z]‖
Lp · ‖sT [Y ]‖

Lq

(iv) Let Z1, Z2 be local L2-integrators and X1,X2 processes integrable for both.
Then

〈X1∗Z1,X2∗Z2〉 = (X1 ·X2)∗〈Z1, Z2〉 .

Exercise 4.3.18 With respect to the previsible bracket the martingales M
with M0 = 0 and the previsible finite variation processes V are perpendicular:
〈M,V 〉 = 0. If Z is a local L2-integrator with Doob–Meyer decomposition Z =
bZ + eZ , then

〈Z,Z〉 = 〈 bZ, bZ〉 + 〈 eZ, eZ〉 .
For 0 < p ≤ 2 the previsible square function s[M ] can be used as a control
for the integrator size of a local martingale M much as the square function

S[M ] controls it in the range 1 ≤ p <∞ (theorem 4.2.12). Namely,

Proposition 4.3.19 For a locally L2-integrable martingale M and 0 < p ≤ 2

‖M?
∞‖Lp ≤ Cp · ‖s∞[M ]‖Lp , (4.3.6)

with universal constants

C
(4.3.6)
2 ≤ 2

and C(4.3.6)
p ≤ 4

√
2/p , p 6= 2 .

Exercise 4.3.20 For a continuous local martingale M the Burkholder–Davis–
Gundy inequality (4.2.4) extends to all p ∈ (0,∞) and implies

M t

Ip ≤ Cp ·
‚‚‚s∞[M t]

‚‚‚
Lp

(4.3.7)

for all t, with C(4.3.7)
p ≤

(
C(4.3.6)
p for 0 < p ≤ 2

C(4.2.4)
p for 1 ≤ p <∞.

Proof of Proposition 4.3.19. First the case p = 2: thanks to Doob’s maximal

theorem 2.5.19 and exercise 3.8.11

E
[
M?2
T

]
≤ 4 E

[
M2
T

]
= 4 E

[
[M,M ]T

]
= 4 E

[
〈M,M〉T

]

for arbitrarily large stopping times T . Upon letting T → ∞ we get

E
[
M?2
∞
]
≤ 4 E

[
〈M,M〉∞

]
.
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Now the case p < 2. By reduction to arbitrarily large stopping times we
may assume that M is a global L2-integrator. Let s = s[M ] . Literally as

in the proof of Fefferman’s inequality 4.2.7 one shows that sp−2 · d(s2) ≤
(2/p) d(sp) and so ∫ T

0

sp−2 d〈M,M〉 ≤ (2/p) · spt . (∗)

Next let ε > 0 and define s = s[M ]+ ε and M = s(p−2)/2∗M . From the first
part of the proof

E
[
M

?2

t

]
≤ 4 · E

[
M

2

t

]
= 4 · E

[
〈M,M〉t

]
= 4 · E

[∫ T

0

sp−2 d〈M,M〉
]

by (∗): ≤ 4 · E
[∫ T

0

sp−2 d〈M,M〉
]
≤ (8/p) · E

[
spt
]
. (∗∗)

Next observe that for t ≥ 0

Mt =

∫ T

0

s(2−p)/2 dM = s
(2−p)/2
t ·M t −

∫ t

0+

M.− ds
(2−p)/2

≤ 2 · s(2−p)/2t ·M?

t .

The same inequality holds for −M , and since the process on the previous
line increases with t ,

M?
t ≤ 2 · s(2−p)/2t ·M?

t .

From this, using Hölder’s inequality with conjugate exponents 2/(2−p) and
2/p and inequality (∗∗),

E
[
M?p
t

]
≤ 2p · E

[
s
p(2−p)/2
t ·M?p

t

]
≤ 2p ·

(
E
[
spt
])(2−p)/2

·
(
E
[
M

?2

t

])p/2

≤ 2p(8/p)p/2 ·
(

E
[
spt
])(2−p)/2

·
(

E
[
spt
])p/2 −−→ε→0

(
4
√

2/p
)p

· E
[
spt

]
.

We take the pth root and get ‖M?
t ‖Lp ≤ 4

√
2/p · ‖st[M ]‖

Lp .

Exercise 4.3.21 Suppose that Z is a global L1-integrator with Doob–Meyer de-

composition Z = bZ+ eZ . Here is an a priori Lp-mean estimate of the compensator bZ
for 1 ≤ p <∞ : let Pb denote the bounded previsible processes and set

‖Z‖∧p def= sup
n

E
hZ

X dZ
i

: X ∈ Pb ,
‚‚X?

∞

‚‚
Lp′ ≤ 1

o
.

Then ‖Z‖∧p ≤
‚‚‚ bZ

∞

‚‚‚
Lp

= bZ
Ip ≤ p · ‖Z‖∧p .

Exercise 4.3.22 Let I be a positive increasing process with Doob–Meyer decom-

position I = bI + eI . In this case there is a better estimate of bC(4.3.1)
p and eC(4.3.1)

p

than inequality (4.3.3) provides. Namely, for 1 ≤ p <∞ ,

bI
Ip =

‚‚‚ bI∞
‚‚‚
Lp

≤ p · I
Ip and eI

Ip ≤ (p+ 1) · I
Ip .
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Exercise 4.3.23 Suppose that Z is a continuous Lp-integrator. Then S[ eZ] = S[Z]
and inequality (4.3.3) can be improved to

eCp ≤
(
C(4.2.3)
p K(3.8.6)

p ≤ 21+ 1/p√p ≤ 4 for 0 < p < 1,

C(4.2.4)
p ≤

p
e/2 p for 2 < p <∞.

The Doob–Meyer Decomposition of a Random Measure

Let ζ be a random measure with auxiliary space H and elementary inte-
grands Ě (see section 3.10). There is a straightforward generalization of

theorem 4.3.1 to ζ .

Theorem 4.3.24 Suppose ζ is a local L1-random measure. There exist a

unique previsible strict random measure ζ̂ and a unique local martingale
random measure ζ̃ that vanishes at zero, both local L1-random measures, so

that
ζ = ζ̂ + ζ̃ .

In fact, there exist an increasing predictable process V and Radon measures

ν$ = νs,ω on H , one for every $ = (s, ω) ∈ B and usually written νs = νζs ,

so that ζ̂ has the disintegration
∫

B̌

Ȟs(η) ζ̂(dη, ds) =

∫ ∞

0

∫

H

Ȟs(η) νs(dη) dVs , (4.3.8)

which is valid for every Ȟ ∈ P̌ . We call ζ̂ the intensity or intensity
measure or compensator of ζ , and νs its intensity rate. ζ̃ is the

compensated random measure. For 1 ≤ p < ∞ and all h ∈ E+[H]
and t ≥ 0 we have the estimates (see definition 3.10.1)

ζ̂t,h Ip ≤ Ĉ(4.3.1)
p ζt,h Ip and ζ̃t,h Ip ≤ C̃(4.3.1)

p ζt,h Ip .

Proof. Regard the measure θ : Ȟ 7→ E[
∫
Ȟ dζ ] , Ȟ ∈ P̌ , as a σ-finite scalar

measure on the product B̌ def= H ×B equipped with C00(H)⊗E . According
to corollary A.3.42 on page 418 there is a disintegration θ =

∫
B
ν$ µ(d$),

where µ is a positive σ-additive measure on E and, for every $ ∈ B , ν$ a
Radon measure on H , so that

∫

H×B

Ȟ(η,$) θ(dη, d$) =

∫

B

∫

H

Ȟ(η,$)ν$(dη) µ(d$)

for all θ-integrable functions Ȟ ∈ P̌ . Since µ clearly annihilates evanescent
sets, it has a Doléans–Dade process V µ . We simply define ζ̂ by

∫
Ȟs(η, ω) ζ̂(dη, ds;ω) =

∫ ∫
Ȟs(η, ω) ν(s,ω)(dη) dV

µ
s (ω) , ω ∈ Ω ,

set ζ̃ def= ζ − ζ̂ , and leave verifying the properties claimed to the reader.
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If ζ is the jump measure Z of an integrator Z , then ζ̂ = ̂Z is called
the jump intensity of Z and νs = νZ

s the jump intensity rate. In this

case both ζ̂ = ̂Z and ζ̃ = ̃Z are strict random measures. We say that Z

has continuous jump intensity ̂Z if Ŷ. def=
∫
[[[0,.]]] |y2| ∧ 1 ̂Z(dy, ds) has

continuous paths.

Proposition 4.3.25 The following are equivalent: (i) Z has continuous jump
intensity; (ii) the jumps of Z , if any, occur only at totally inaccessible

stopping times; (iii) H∗̂Z has continuous paths for every previsible Hunt
function H .

Definition 4.3.26 A process with these properties, in other words, a process

that has negligible jumps at any predictable stopping time is called quasi-left-
continuous. A random measure ζ is quasi-left-continuous if and only if all

of its indefinite integrals X̌∗ζ are, X̌ ∈ Ě .

Proof. (i) =⇒ (ii) Let S be a predictable stopping time. If ∆ZS is
non-negligible, then clearly neither is the jump ∆YS = |∆ZS|2 ∧ 1 of the

increasing process Yt
def=
∫
[[[0,t]]]

|y|2 ∧ 1 Z(dy, ds). Since ∆YS ≥ 0, then

∆ŶS = E
[
∆YS|FS−

]
is not negligible either (see exercise 4.3.6) and Z does

not have continuous jump intensity. The other implications are even simpler
to see.

Exercise 4.3.27 If Z consists of local L1-integrators, then (bZ, c[Zη, Zθ],cZ) is
called the characteristic triple of Z . The expectation of any random variable of
the form Φ(Zt) can be expressed in terms of the characteristic triple.

4.4 Semimartingales

A process Z is called a semimartingale if it can be written as the sum of

a process V of finite variation and a local martingale M . A semimartingale
is clearly an L0-integrator (proposition 2.4.1, corollary 2.5.29, and proposi-

tion 2.1.9). It is shown in proposition 4.4.1 below that the converse is also
true: an L0-integrator is a semimartingale. Stochastic integration in some

generality was first developed for semimartingales Z = V + M . It was an
amalgam of integration with respect to a finite variation process V , known

forever, and of integration with respect to a square integrable martingale,
known since Courrège [16] and Kunita–Watanabe [59] generalized Itô’s pro-

cedure. A succinct account can be found in [74]. Here is a rough description:
the dZ-integral of a process F is defined as

∫
F dV +

∫
F dM , the first

summand being understood as a pathwise Lebesgue–Stieltjes integral, and
the second as the extension of the elementary M -integral under the Hardy

mean of definition (4.2.9). A problem with this approach is that the decom-
position Z = V + M is not unique, so that the results of any calculation

have to be proven independent of it. There is a very simple example which
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shows that the class of processes F that can be so integrated depends on the
decomposition (example 4.4.4 on page 234).

Integrators Are Semimartingales

Proposition 4.4.1 An L0-integrator Z is a semimartingale; in fact, there is a
decomposition Z = V +M with |∆M| ≤ 1 .

Proof. Recall that Zn is Z stopped at n . nZ def= Zn+1 − Zn is a global
L0(P)-integrator that vanishes on [[0, n]], n = 0, 1, . . .. According to propo-

sition 4.1.1 or theorem 4.1.2, there is a probability nP equivalent with P on
F∞ such that nZ is a global L1(nP)-integrator, which then has a Doob–Meyer

decomposition nZ = n̂Z+ ñZ with respect to nP . Due to lemma 3.9.11, ñZ is

the sum of a finite variation process and a local P-martingale. Clearly then
so is nZ , say nZ = nV + nM . Both nV and nM vanish on [[0, n]] and are

constant after time n+1. The (ultimately constant) sum Z =
∑

nV +
∑

nM
exhibits Z as a P-semimartingale.

We prove the second claim “locally” and leave its “globalization” as an
exercise. Let then an instant t > 0 and an ε > 0 be given. There exists

a stopping time T1 with P[T1 < t] < ε/3 such that ZT1 is the sum of a

finite variation process V (1) and a martingale M (1) . Now corollary 2.5.29
provides a stopping time T2 with P[T2 < t] < ε/3 and such that the stopped

martingale M (1)T2 is the sum of a process V (2) of finite variation and a
global L2-integrator Z(2) . Z(2) has a Doob–Meyer decomposition Z(2) =

Ẑ(2) + Z̃(2) whose constituents are global L2-integrators. The following little
lemma 4.4.2 furnishes a stopping time T3 with P[T3 < t] < ε/3 and such

that Z̃(2)T3 = V (3) +M , where V 3 is a process of finite variation and M a
martingale whose jumps are uniformly bounded by 1. Then T = T1∧T2∧T3

has P[T < t] < ε , and

ZT = V +M , where V =
(
V (3) + Ẑ(2)T + V (2)T + V (1)T

)

is a process of finite variation: ZT meets the description of the statement.

Lemma 4.4.2 Any L2-bounded martingale M can be written as a sum

M = V +M ′, where V is a right-continuous process with integrable total
variation V ∞ and M ′ a locally square integrable globally I1-bounded mar-

tingale whose jumps are uniformly bounded by 1 .

Proof. Define the finite variation process V ′ by

V ′t =
∑{

∆Ms : s ≤ t, |∆Ms| ≥ 1/2
}
, t ≤ ∞ .

This sum converges a.s. absolutely, since by theorem 3.8.4

V ′ ∞ =
∑{|∆Ms| : |∆Ms| > 1/2

}

≤ 2 ·∑s<∞
(
∆Ms

)2 ≤ 1/2 · [M,M ]∞
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is integrable. V ′ is thus a global L1-integrator, and so is Z = M − V ′ , a
process whose jumps are uniformly bounded by 1/2. Z has a Doob–Meyer

decomposition Z = Ẑ + Z̃ . By exercise 4.3.6 the jump of Ẑ is uniformly
bounded by 1/2, and therefore by subtraction |∆Z̃| ≤ 1. The desired

decomposition is M =
(
Ẑ + V ′

)
+ Z̃ : M ′ = Z̃ is reduced to a uniformly

bounded martingale by the stopping times inf{t : |M ′|t ≥ K} , which can be

made arbitrarily large by the choice of K (lemma 2.5.18). V ′ has integrable
total variation as remarked above, and clearly so does Ẑ (inequality (4.3.1)

and exercise 4.3.13).

Corollary 4.4.3 Let p > 0 . An L0-integrator Z is a local Lp-integrator if and
only if |∆Z|?T ∈ Lp at arbitrarily large stopping times T or, equivalently, if

and only if its square function S[Z] is a local Lp-integrator. In particular,
an L0-integrator with bounded jumps is a local Lp-integrator for all p <∞ .

Proof. Note first that |∆Z|?t is in fact measurable on Ft (corollary A.5.13).

Next write Z = V + M with |∆M| < 1. By the choice of K we can
make the time T def= inf{t : V

t
∨M?

t > K} ∧K arbitrarily large. Clearly

M?
T < K + 1, so MT is an Lp-integrator for all p < ∞ (theorem 2.5.30).

Since ∆ V ≤ 1 + |∆Z| , we have V
T
≤ K + 1 + |∆Z|?K ∈ Lp , so that V T

is an Lp-integrator as well (proposition 2.4.1).

Example 4.4.4 (S. J. Lin) Let N be a Poisson process that jumps at the times
T1, T2, . . . by 1. It is an increasing process that at time Tn has the value n , so it is a

local Lq-integrator for all q <∞ and has a Doob–Meyer decomposition N = bN+ eN ;

in fact bNt = t . Considered as a semimartingale, there are two representations of

the form N = V +M : N = N + 0 and N = bN + eN .
Now let Ht = ((0, T1]]t/t . This predictable process is pathwise Lebesgue–

Stieltjes–integrable against N , with integral 1/T1 . So the disciple choosing the
decomposition N = N + 0 has no problem with the definition of the integralR
H dN . A person viewing N as the semimartingale bN + eN – which is a very

natural thing to do9 – and attempting to integrate H with d bNt and with d eNt and

then to add the results will fail, however, since
R
Ht(ω) d bNt(ω) =

R
Ht(ω) dt = ∞

for all ω ∈ Ω. In other words, the class of processes integrable for a semimartingale
Z depends in general on its representation Z = V +M if such an ad hoc integration
scheme is used.

We leave to the reader the following mitigating fact: if there exists some repre-
sentation Z = V +M such that the previsible process F is pathwise dV -integrable
and is dM -integrable in the sense of the Hardy mean of definition (4.2.9), then F
is Z−0-integrable in the sense of chapter 3, and the integrals coincide.

Various Decompositions of an Integrator

While there is nothing unique about the finite variation and martingale parts
in the decomposition Z = V +M of an L0-integrator, there are in fact some

canonical parts and decompositions, all related to the location and size of its

9 See remark 4.3.16 on page 228.
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jumps. Consider first the increasing L0-integrator Y def= h0∗Z , where h0 is
the prototypical sure Hunt function y 7→ |y|2∧1 (page 180). Clearly Y and Z

jump at exactly the same times (by different amounts, of course). According
to corollary 4.4.3, Y is a local L2-integrator and therefore has a Doob–Meyer

decomposition Y = Ŷ + Ỹ , whose only use at present is to produce the sparse
previsible set P def= [∆Ŷ 6= 0] (see exercise 4.3.4). Let us set

pZ def= P∗Z and qZ def= Z − pZ = (1 − P )∗Z . (4.4.1)

By exercise 3.10.12 (iv) we have qZ
= (1−P ) · Z , and this random measure

has continuous previsible part ̂qZ = (1 − P ) · ̂Z . In other words, qZ has
continuous jump intensity. Thanks to proposition 4.3.25, ∆qZS = 0 at all

predictable stopping times S :

Proposition 4.4.5 Every L0-integrator Z has a unique decomposition

Z = pZ + qZ

with the following properties: there exists a previsible set P , a union of the

graphs of countably many predictable stopping times, such that pZ = P∗pZ 10;
and qZ jumps at totally inaccessible stopping times only, which is to say that
qZ is quasi-left-continuous. For 0 < p <∞, the maps Z 7→ pZ and Z 7→ qZ
are linear contractive projections on Ip .
Proof. If Z = pZ + qZ = Z = pZ ′ + qZ ′ , then pZ − pZ ′ = qZ ′ − qZ is

supported by a sparse previsible set yet jumps at no predictable stopping time,
so must vanish. This proves the uniqueness. The linearity and contractivity

follow from this and the construction (4.4.1) of pZ and qZ , which is therefore
canonical.

Exercise 4.4.6 Every random measure ζ has a unique decomposition ζ = pζ + qζ
with the following properties: there exists a previsible set P , a union of the graphs
of countably many predictable stopping times, such that pζ = (H×P ) · ζ 10,11; and
qζ jumps at totally inaccessible stopping times only, in the sense that Ȟ∗qζ does
for all Ȟ ∈ P̌ . For 0 < p <∞ , the maps ζ 7→ pζ and ζ 7→ qζ are linear contractive
projections on the space of Lp-random measures.

Proposition 4.4.7 (The Continuous Martingale Part of an Integrator) An

L0-integrator Z has a canonical decomposition

Z = c̃Z + rZ ,

where c̃Z is a continuous local martingale with c̃Z0 = 0 and with continuous
bracket [c̃Z, c̃Z] = c[Z,Z] and where the remainder rZ has continuous bracket
c[rZ, rZ] = 0 . There are universal constants Cp such that at all instants t

c̃Zt Ip ≤ Cp Zt Ip and rZt Ip ≤ Cp Zt Ip , 0 < p <∞ . (4.4.2)

10 We might paraphrase this by saying “dpZ is supported by a sparse previsible set.”
11 This is to mean of course that Ȟ∗pζ = (Ȟ · (H×P ))∗ζ for all Ȟ ∈ P̌ .
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Exercise 4.4.8 Z and qZ have the same continuous martingale part. Taking the
continuous martingale part is stable under stopping: c̃(ZT ) = (c̃Z)T at all T ∈ T .
Consequently (4.4.2) persists if t is replaced by a stopping time T .

Exercise 4.4.9 Every random measure ζ has a canonical decomposition as
ζ = c̃ζ + rζ, given by Ȟ∗c̃ζ = c̃(Ȟ∗ζ) and Ȟ∗rζ = r(Ȟ∗ζ). The maps ζ 7→ c̃ζ
and ζ 7→ rζ are linear contractive projections on the space of Lp-random measures,
for 0 < p <∞ .

Proof of 4.4.7. First the uniqueness. If also Z = c̃Z ′+ rZ ′ , then c̃Z − c̃Z ′ is a

continuous martingale whose continuous bracket vanishes, since it is that of
rZ ′ − rZ ; thus c̃Z − c̃Z ′ must be constant, in fact, since c̃Z0 = c̃Z ′0 , it must

vanish.

Next the inequalities:

c̃Zt Ip ≤ C(4.3.7)
p

⌈⌈
St[

c̃Z]
⌉⌉
p

= Cpddσt[Z]eep ≤ CpddSt[Z]eep

≤ CpK
(3.8.6)
p Zt Ip .

Now to the existence. There is a sequence (T i) of bounded stopping times

with disjoint graphs so that every jump of Z occurs at one of them (exer-
cise 1.3.21). Every T i can be decomposed as the infimum of an accessible

stopping time T iA and a totally inaccessible stopping time T iI (see page 122).
For every i let (Si,j) be a sequence of predictable stopping times so that

[[T iA]] ⊂ ⋃
j [[S

i,j]] , and let ∆ denote the union of the graphs of the Si,j .
This is a previsible set, and ∆∗Z is an integrator whose jumps occur only

on ∆ (proposition 3.8.21) and whose continuous square function vanishes.
The jumps of Z ′ def= Z − ∆∗Z = (1 − ∆)∗Z occur at the totally inaccessible

times T iI .
Assume now for the moment that Z is an L2-integrator; then clearly so is

Z ′ . Fix an i and set J i def= ∆Z ′
T i

I
· [[T i,∞)). This is an L2-integrator of total

variation |∆Z ′
T i

I

| ∈ L2 and has a Doob–Meyer decomposition J i = Ĵ i + J̃ i .

The previsible part Ĵ i is continuous: if [∆Ĵ i > 0] were non-evanescent, it
would contain the non-evanescent graph of a previsible stopping time (theo-

rem A.5.14), at which the jump of Z ′ could not vanish (exercise 4.3.6),
which is impossible due to the total inaccessibility of the jump times of Z ′ .
Therefore J̃ i has exactly the same single jump as J i , namely ∆Z ′

T i
I

at T iI .

Now at all instants t∥∥∥
∣∣∣
∑

I<i≤J
J̃ i
∣∣∣
?

t

∥∥∥
L2

≤ 2
∥∥∥St
[ ∑

I<i≤J
J̃ i
]∥∥∥
L2

= 2
(
E
[ ∑

I<i≤J
|∆Z ′T i

I
|2
])1/2

≤ 2
(
E
[ ∑

I<i≤J
|∆ZT i |2

])1/2
−−−−−−−−→I<J ; I,J→∞ 0 .

The sum M def=
∑

i J̃
i therefore converges uniformly almost surely and in L2

and defines a martingale M that has exactly the same jumps as Z ′ . Then

Z ′′ def= Z ′ −M = Z − (1 − ∆)∗Z −M
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is a continuous L2-integrator whose square function is c[Z,Z] . Its martingale
part evidently meets the description of c̃Z .

Now if Z is merely an L0(P)-integrator, we fix a t and find a probability
P′ ≈ P on Ft with respect to which Zt is an L2-integrator. We then write Zt

as c̃Z ′t + rZ ′t , where c̃Z ′t is the canonical P′-martingale part of Zt . Thanks
to the Girsanov–Meyer lemma 3.9.11, whose notations we employ here again,

c̃Z ′t =
(

c̃Z ′t0 −G.−∗[c̃Z ′t, G′]
)

+
(
G.−∗(c̃Z ′tG′) − (c̃Z ′tG).−∗G′

)

is the sum of two continuous processes, of which the first has finite variation

and the second is a local P-martingale, which we call c̃Zt . Clearly c̃Zt is
the canonical local P-martingale part of the stopped process Z t . We can

do this for arbitrarily large times t . From the uniqueness, established first,
we see that the sequence

(
c̃Zn
)

is ultimately constant, except possibly on an

evanescent set. Clearly c̃Z def= limn→∞ c̃Zn is the desired canonical continuous

martingale part of Z . Now rZ is of course defined as the difference Z − c̃Z .

In view of exercise 4.4.8 we now have a canonical decomposition

Z = p
Z + c̃Z + rZ

of an L0-integrator Z , with the linear projections

Z 7→ p
Z , Z 7→ c̃Z , and Z 7→ rZ

continuous from I0 to I0 and contractive from Ip to Ip for all p > 0.

Exercise 4.4.10 rZ can be decomposed further. Set

s̃
Zt

def=

Z

[[[0,t]]]

y · [|y| ≤ 1] dfrZ =

Z

[[[0,t]]]

y · [|y| ≤ 1] dfZ ,

l
Zt

def=

Z

[[[0,t]]]

y · [|y| > 1] drZ =

Z

[[[0,t]]]

y · [|y| > 1] dfZ ,

and v̂
Z def=

r
Z − s̃

Z − l
Z .

Then s̃Z is a martingale with zero continuous part but jumps bounded by 1, the
small jump martingale part; lZ is a finite variation process without a continuous
part and constant between its jumps, which are of size at least 1 and occur at
discrete times, the large jump part; and v̂Z is a continuous finite variation process.
The projections rZ 7→ s̃Z , rZ 7→ lZ , and rZ 7→ v̂Z are not even linear, much less
continuous in Ip . From this obtain a decomposition

Z = (lpZ + s̃p
Z) + (c̃Z) + (v̂Z + s̃

Z + l
Z) (4.4.3)

and describe its ingredients.
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4.5 Previsible Control of Integrators

A general Lp-integrator’s integral is controlled by Daniell’s mean; if the

integrator happens to be a martingale M and p ≥ 1, then its integral can

be controlled pathwise by the finite variation process [M,M ] (see defini-
tion (4.2.9) on page 216). For the solution of stochastic differential equations

it is desirable to have such pathwise control of the integral not only for
general integrators instead of merely for martingales but also by a previsible

increasing process instead of [M,M ] , and for a whole vector of integrators
simultaneously. Here is what we can accomplish in this regard – see also

theorem 4.5.25 concerning random measures:

Theorem 4.5.1 Let Z be a d-tuple of local Lq-integrators, where 2 ≤ q <∞.
Fix a (small) α > 0 . There exists a strictly increasing previsible process

Λ=Λ〈q〉[Z] such that for every p∈[2, q] , every stopping time T , and every
d-tuple X = (X1, . . . , Xd) of previsible processes

‖|X∗Z|?T ‖Lp ≤ C�p · max
ρ=1�,p�

∥∥∥
(∫ T

0

|X|ρs dΛs
)1/ρ∥∥∥

Lp
, (4.5.1)

with |X | def= |X |∞ = max
1≤η≤d

∣∣Xη

∣∣ and universal constant C�p ≤ 9.5p .

Here 1� = 1�[Z] def=

{
2 if Z is a martingale

1 otherwise,

and p� = p�[Z] def=





1 if Z is continuous and has finite variation
2 if Z is continuous and Z̃ 6= 0

p if Z has jumps.

Furthermore, the previsible controller Λ can be estimated by

E
[
Λ
〈q〉
T [Z]

]
≤ αE[T ] + 3

(
ZT

Iq ∨ ZT q

Iq

)
(4.5.2)

and Λ
〈q〉
T [Z] ≥ αT at all stopping times T .

Remark 4.5.2 The controller Λ constructed in the proof below satisfies the
four inequalities

α · dt ≤ dΛt ; (4.5.3)

and |Xη|s d Ẑη
s
≤ |X|s dΛs ,

d
∣∣XηXθ∗〈Zη, Zθ〉

∣∣?
s
≤ |X|2s dΛs ,

∫

Rd
∗

|〈X|y〉|q ̂Z(dy, ds) ≤ |X|qs dΛs ,

for all previsible X , and is in fact the smallest increasing process doing so.
This makes it somewhat canonical (when α is fixed) and justifies naming it

THE previsible controller of Z .
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The imposition of inequality (4.5.3) above is somewhat artificial. Its
purpose is to ensure that Λ is strictly increasing and that the predictable

(see exercise 3.5.19) stopping times

Tλ def= inf{t : Λt ≥ λ} and T λ+ def= inf{t : Λt > λ} (4.5.4)

agree and are bounded (by λ/α); in most naturally occurring situations one
of the drivers Zη is time, and then this inequality is automatically satis-

fied. The collection T . = {T λ : λ > 0} will henceforth simply be called
THE time transformation for Z (or for Λ). The process Λ〈q〉[Z] or the

parameter λ , its value, is occasionally referred to as the intrinsic time. It

and the time transformation T . are the main tools in the existence, unique-
ness, and stability proofs for stochastic differential equations driven by Z in

chapter 5.
The proof of theorem 4.5.1 will show that if Z is quasi-left-continuous,

then Λ is continuous. This happens in particular when Z is a Lévy process
(see section 4.6 below) or is the solution of a differential equation driven by

a Lévy process (exercise 5.2.17 and page 349). If Λ is continuous, then the
time transformation λ 7→ T λ is evidently strictly increasing without bound.

Exercise 4.5.3 Suppose that inequality (4.5.1) holds whenever X ∈ Pd is
bounded and T reduces Z to a global Lp-integrator. Then it holds in the generality
stated.

Controlling a Single Integrator

The remainder of the section up to page 249 is devoted to the proof of theo-

rem 4.5.1. We start with the case d = 1; in other words, Z is a single
integrator Z .

The main tools are the higher order brackets Z [ρ] defined for all t

by12 Z
[1]
t

def= Zt , Z
[2]
t

def= [Z,Z]t = c[Z,Z]t +

∫

[[[0,t]]]

y2 Z(dy, ds) ,

Z
[ρ]
t

def=
∑

0≤s≤t
(∆Zs)

ρ =

∫

[[[0,t]]]

yρ Z(dy, ds) , for ρ = 3, 4, . . . ,

and Z [ρ]
t

def=
∑

0≤s≤t

∣∣∆Zs
∣∣ρ =

∫

[[[0,t]]]

|y|ρ Z(dy, ds) ,

defined for any real ρ > 2 and satisfying

Z [ρ] 1/ρ

t
≤
( ∑

0≤s≤t
|∆Zs|2

)1/2

≤ St[Z] . (4.5.5)

For integer ρ , Z [ρ] is the variation process of Z [ρ] . Observe now that

equation (3.10.7) can be rewritten in terms of the Z [ρ] as follows:

12 [[[0, t]]] is the product Rd∗× [[0, t]] of auxiliary space Rd∗ with the stochastic interval [[0, t]].
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Lemma 4.5.4 For an n-times continuously differentiable function Φ on R
and any stopping time T

Φ(ZT ) = Φ(Z0) +

n−1∑

ν=1

1

ν!

∫ T

0+

Φ(ν)(Z.−) dZ [ν]

+

∫ 1

0

(1−λ)n−1

(n− 1)!

∫ T

0+

Φ(n)
(
Z.− + λ∆Z

)
dZ [n] dλ .

Let us apply lemma 4.5.4 to the function Φ(z) = |z|p , with 1 < p < ∞ . If
n is a natural number strictly less than p , then Φ is n-times continuously

differentiable. With ε = p− n we find, using item A.2.43 on page 388,

|Zt|p = |Z0|p +
n−1∑

ν=1

( p
ν

)∫ t

0+

|Z|p−ν.− · (sgnZ.−)ν dZ [ν]

+

∫ 1

0

n(1 − λ)n−1

∫ t

0+

( p
n

)∣∣Z.− + λ∆Z
∣∣ε( sgn

(
Z.− + λ∆Z

))n
dZ [n] dλ .

Writing |Z0|p as
∫
[[0]]
d Z [p] produces this useful estimate:

Corollary 4.5.5 For every L0-integrator Z , stopping time T , and p > 1 let
n = bpc be the largest integer less than or equal to p and set ε def= p− n < 1 .

Then |Z|pT ≤ p

∫ T

0

|Z|p−1
.− · sgnZ.− dZ +

n−1∑

ν=2

( p
ν

)∫ T

0

|Z|p−ν.− d Z [ν]

+

∫ 1

0

n(1 − λ)n−1

∫ T

0+

( p
n

)(∣∣Z
∣∣
.− + λ

∣∣∆Z
∣∣)ε d Z [n] dλ . (4.5.6)

Proof. This is clear when p > bpc . In the case that p is an integer, apply

this to a sequence of pn > p that decrease to p and take the limit.

Now thanks to inequality (4.5.5) and theorem 3.8.4, Z [ρ] is locally inte-
grable and therefore has a Doob–Meyer decomposition when ρ is any real

number between 2 and q . We use this observation to define positive increas-
ing previsible processes Z〈ρ〉 as follows: Z〈1〉 = Ẑ ; and for ρ ∈ [2, q] ,

Z〈ρ〉 is the previsible part in the Doob–Meyer decomposition of Z [ρ] . For

instance, Z〈2〉 = 〈Z,Z〉 . In summary

Z〈1〉 def= Ẑ , Z〈2〉 def= 〈Z,Z〉 , and Z〈ρ〉 def= Ẑ [ρ] for 2 ≤ ρ ≤ q .

Exercise 4.5.6 (X∗Z)
〈ρ〉

= |X|ρ∗Z〈ρ〉 for X ∈ Pb and ρ ∈ {1} ∪ [2, q] .

In the following keep in mind that Z〈ρ〉 = 0 for ρ > 2 if Z is continuous, and
Z〈ρ〉 = 0 for ρ > 1 if in addition Z has no martingale component, i.e., if Z is a

continuous finite variation process. The desired previsible controller Λ〈q〉[Z]
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will be constructed from the processes Z〈ρ〉 , which we call the previsible
higher order brackets. On the way to the construction and estimate three

auxiliary results are needed:

Lemma 4.5.7 For 2 ≤ ρ < σ < τ ≤ q , we have both Z〈σ〉 ≤ Z〈ρ〉 ∨ Z〈τ〉

and
(
Z〈σ〉

)1/σ ≤
(
Z〈ρ〉

)1/ρ ∨
(
Z〈τ〉

)1/τ
, except possibly on an evanescent set.

Also, ∥∥∥
(
Z
〈σ〉
T

)1/σ ∥∥∥
Lp

≤
∥∥∥
(
Z
〈ρ〉
T

)1/ρ∥∥∥
Lp

∨
∥∥∥
(
Z
〈τ〉
T

)1/τ ∥∥∥
Lp

(4.5.7)

for any stopping time T and p ∈ (0,∞) – the right-hand side is finite for
sure if ZT is Iq-bounded and p ≤ q .

Proof. A little exercise in calculus furnishes the equality

inf
λ>0

Aλρ−σ + Bλτ−σ = C ·A τ−σ
τ−ρB

σ−ρ
τ−ρ , (4.5.8)

with C =
(σ − ρ

τ − σ

) ρ−σ
τ−ρ

+
(σ − ρ

τ − σ

) τ−σ
τ−ρ

.

The choice A = B = 1 and λ =
∣∣∆Zs

∣∣ gives

C ·
∣∣∆Zs

∣∣σ ≤
∣∣∆Zs

∣∣ρ +
∣∣∆Zs

∣∣τ , 0 ≤ s <∞ ,

which says C · d Z [σ] ≤ d Z [ρ] + d Z [τ ]

and implies C · dZ〈σ〉 ≤ dZ〈ρ〉 + dZ〈τ〉 (4.5.9)

and C · Z〈σ〉 ≤ Z〈ρ〉 + Z〈τ〉 ,

except possibly on an evanescent set. Homogeneity produces

C · λσZ〈σ〉 ≤ λρZ〈ρ〉 + λτZ〈τ〉 , λ > 0 .

By changing Z〈σ〉 on an evanescent set we can arrange things so that this

inequality holds at all points of the base space B and for all λ > 0. Equa-

tion (4.5.8) implies

C · Z〈σ〉 ≤ C ·
(
Z〈ρ〉

) τ−σ
τ−ρ ·

(
Z〈τ〉

)σ−ρ
τ−ρ ,

i.e., Z〈σ〉 ≤
(
Z〈ρ〉

) τ−σ
τ−ρ ·

(
Z〈τ〉

)σ−ρ
τ−ρ

and
(
Z〈σ〉

)1/σ ≤
(
Z〈ρ〉1/ρ

) ρ(τ−σ)
σ(τ−ρ) ·

(
Z〈τ〉1/τ

) τ(σ−ρ)
σ(τ−ρ) . (∗)

The two exponents eρ and eτ on the right-hand side sum to 1, in either of
the previous two inequalities, and this produces the first two inequalities of

lemma 4.5.7; the third one follows from Hölder’s inequality applied to the pth

power of (∗) with conjugate exponents 1/(peρ) and 1/(peτ ).

Exercise 4.5.8 Let µ〈ρ〉 denote the Doléans–Dade measure of Z〈ρ〉 . Then
µ〈σ〉 ≤ µ〈ρ〉 ∨ µ〈τ〉 whenever 2 ≤ ρ < σ < τ ≤ q .
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Lemma 4.5.9 At any stopping time T and for all X ∈ Pb and all p ∈ [2, q]

∥∥∥
∣∣X∗Z

∣∣?
T

∥∥∥
Lp

≤ C�p · max
ρ=1�,2,p�

∥∥∥
(∫ T

0

|X|ρ dZ〈ρ〉
)1/ρ∥∥∥

Lp
, (4.5.10)

≤ C�p · max
ρ=1�,2,q�

∥∥∥
(∫ T

0

|X|ρ dZ〈ρ〉
)1/ρ∥∥∥

Lp
, (4.5.11)

with universal constant C�p ≤ 9.5p .

Proof. Let n = bpc be the largest integer less than or equal to p , set ε = p−n

and ζ = ζ[Z] def= max
ρ=1,...,n,p

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp

(4.5.12)

by inequality (4.5.7): = max
ρ=1,2,p

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp

= max
ρ=1�,2,p�

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp

≤ max
ρ=1�,2,q�

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp
. (4.5.13)

The last equality follows from the fact that Z〈ρ〉 = 0 for ρ > 2 if Z is
continuous and for ρ = 1 if it is a martingale, and the previous inequality

follows again from (4.5.7). Applying the expectation to inequality (4.5.6) on

page 240 produces

E[|Z|p∞] ≤ pE
[∫ ∞

0

|Z|p−1
.− · sgnZ.− dZ

]
+
n−1∑

ν=2

( p
ν

)
E
[∫ ∞

0

|Z|p−ν.− d Z [ν]
]

+

∫ 1

0

n(1 − λ)n−1
( p
n

)
E
[∫ ∞

0+

(∣∣Z
∣∣
.− + λ

∣∣∆Z
∣∣)ε d Z [n]

]
dλ .

≤
n−1∑

ν=1

( p
ν

)
E
[∫ ∞

0

∣∣Z
∣∣p−ν
.− dZ〈ν〉

]

+

∫ 1

0

n(1 − λ)n−1
( p
n

)
E
[∫ ∞

0+

(∣∣Z
∣∣
.− + λ

∣∣∆Z
∣∣)ε d Z [n]

]
dλ

= Q1 +Q2 . (4.5.14)

Let us estimate the expectations in the first quantity Q1 :

E
[∫ ∞

0

|Z|p−ν.− dZ〈ν〉
]
≤ E

[
|Z?∞|p−ν · Z〈ν〉∞

]

using Hölder’s inequality: ≤ ‖Z∗∞‖p−νLp ·
∥∥∥
(
Z〈ν〉∞

)1/ν∥∥∥
ν

Lp

by definition (4.5.12): ≤ ‖Z?∞‖p−νLp · ζν .

Therefore Q1 ≤
n−1∑

ν=1

( p
ν

)
‖Z?∞‖p−νLp · ζν . (4.5.15)
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To treat Q2 we assume to start with that ζ = 1. This implies that the
measure X 7→ E[

∫
X d Z [p] ] on measurable processes X has total mass

E
[∫

1 d Z [p]
]

= E
[
Z〈p〉∞

]
=
∥∥∥
(
Z〈p〉∞

)1/p∥∥∥
p

Lp
≤ ζp = 1

and makes Jensen’s inequality A.3.25 applicable to the concave function
R+ 3 z 7→ zε in (∗) below:

E
[∫ ∞

0+

(
|Z|.− + λ|∆Z|

)ε
d Z [n]

]

= E
[∫ ∞

0+

(
|Z|.−|∆Z|−1 + λ

)ε
d Z [p]

]
(∗)

≤
(
E
[∫ ∞

0+

|Z|.−|∆Z−1 d Z [p]
]

+ λE
[∫ ∞

0+

d Z [p]
])ε

=
(
E
[∫ ∞

0+

|Z|.− d Z [p−1]
]

+ λE
[
Z〈p〉∞

])ε

≤
(
E
[
Z?∞Z

〈p−1〉
∞

]
+ λ

)ε

by Hölder: ≤
(
‖Z?∞‖Lp ·

∥∥∥
∣∣Z〈p−1〉
∞

∣∣1/(p−1)
∥∥∥
p−1

Lp
+ λ

)ε

as ζ = 1: ≤
(
‖Z?∞‖Lp · ζp−1 + λ

)ε
=
(
‖Z?∞‖Lp + λζ

)ε · ζn .

We now put this and inequality (4.5.15) into inequality (4.5.14) and obtain

E[|Z|p∞] ≤
n−1∑

ν=1

( p
ν

)
‖Z?∞‖p−νLp · ζν

+

∫ 1

0

n(1 − λ)n−1
( p
n

)(
‖Z?∞‖Lp + λζ

)ε · ζn dλ

by A.2.43: =
(
‖Z?∞‖Lp + ζ

)p − ‖Z?∞‖pLp ,

which we rewrite as

‖Z∞ ‖pLp + ‖Z?∞ ‖pLp ≤
(
‖Z?∞ ‖Lp + ζ[Z]

)p
. (4.5.16)

If ζ[Z] 6= 1, we obtain ζ[ρZ] = 1 and with it inequality (4.5.16) for a suitable

multiple ρZ of Z ; division by ρp produces that inequality for the given Z .

We leave it to the reader to convince herself with the aid of theorem 2.3.6

that (4.5.10) and (4.5.11) hold, with C�p ≤ 4p . Since this constant increases
exponentially with p rather than linearly, we go a different, more labor-

intensive route:
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If Z is a positive increasing process I , then I = I? and (4.5.16) gives

21/p · ‖I?∞‖Lp ≤ ‖I?∞‖Lp + ζ[I] ,

i.e., ‖I?∞‖Lp ≤
(
21/p − 1

)−1

· ζ[I] . (4.5.17)

It is easy to see that
(
21/p−1

)−1 ≤ p/ ln 2 ≤ 3p/2. If I instead is predictable

and has finite variation, then inequality (4.5.17) still obtains. Namely, there
is a previsible process D of absolute value 1 such that D∗I is increasing.

We can choose for D the Radon–Nikodym derivative of the Doléans–Dade

measure of I with respect to that of I . Since I 〈ρ〉 = I
〈ρ〉

for all ρ and
therefore ζ[I] = ζ[ I ] , we arrive again at inequality (4.5.17):

‖I?∞ ‖Lp ≤
∥∥∥ I

?

∞

∥∥∥
Lp

≤ (3p/2) ζ[ I ] = (3p/2) ζ[I] . (4.5.18)

Next consider the case that Z is a q-integrable martingale M . Doob’s

maximal theorem 2.5.19, rewritten as

(
(1/p′)p + 1) · ‖M?

∞‖pLp ≤ ‖M∞‖pLp + ‖M?
∞‖pLp ,

turns (4.5.16) into

(
(1/p′)p + 1

)1/p · ‖M?
∞‖Lp ≤ ‖M?

∞‖Lp + ζ[M ] ,

which reads ‖M?
∞‖Lp ≤

((
(1/p′)p + 1

)1/p − 1
)−1

· ζ[M ] . (4.5.19)

We leave as an exercise the estimate
((

(1/p′)p+1
)1/p−1

)−1 ≤ 5p for p > 2.

Let us return to the general Lp-integrator Z . Let Z = Ẑ + Z̃ be its
Doob–Meyer decomposition. Due to lemma 4.5.10 below, ζ[Ẑ] ≤ ζ[Z] and

ζ[Z̃] ≤ 2ζ[Z] . Consequently,

‖Z?∞‖Lp ≤
∥∥∥Ẑ?∞

∥∥∥
Lp

+
∥∥∥Z̃?∞

∥∥∥
Lp

by (4.5.18) and (4.5.19): ≤ (3p/2 + 2 · 5p) ζ[Z] ≤ 12p · ζ[Z] .

The number 12 can be replaced by 9.5 if slightly more fastidious estimates

are used. In view of the definition (4.5.12) of ζ and the bound (4.5.13) for it
we have arrived at

‖Z?∞ ‖Lp ≤ 9.5p max
ρ=1,2,p�

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp

≤ 9.5p max
ρ=1,2,q�

∥∥∥
(
Z〈ρ〉∞

)1/ρ∥∥∥
Lp
.

Inequality (4.5.10) follows from an application of this and exercise 4.5.6 to

X∗ZT∧Tn , for which the quantities ζ , etc., are finite if Tn reduces Z to
a global Lq-integrator, and letting Tn ↑ ∞ . This establishes (4.5.10) and

(4.5.11).
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Lemma 4.5.10 Let Z = Ẑ+ Z̃ be the Doob–Meyer decomposition of Z . Then

Ẑ〈ρ〉 ≤ Z〈ρ〉 and Z̃〈ρ〉 ≤ 2ρZ〈ρ〉 , ρ ∈ {1} ∪ [2, q] .

Proof. First the case ρ = 1. Since Ẑ [1]=Ẑ is previsible, Ẑ〈1〉= Ẑ =Z〈1〉 .

Next let 2 ≤ ρ ≤ q . Then Ẑ [ρ]
t

=
∑
s≤t
∣∣∆Ẑs

∣∣ρ is increasing and
predictable on the grounds (cf. 4.3.3) that it jumps only at predictable

stopping times S and there has the jump (see exercise 4.3.6)

∆ Ẑ [ρ]
S

=
∣∣∆ẐS

∣∣ρ =
∣∣E[∆ZS |FS−]

∣∣ρ ,

which is measurable on the strict past FS− . Now this jump is by Jensen’s

inequality (A.3.10) less than

E
[
|∆ZS|ρ

∣∣FS−
]

= E
[
∆ Z [ρ]

S

∣∣FS−
]

= ∆Z
〈ρ〉
S .

That is to say, the predictable increasing process Ẑ〈ρ〉 = Ẑ [ρ] , which has

no continuous part, jumps only at predictable times S and there by less than
the predictable increasing process Z〈ρ〉 . Consequently (see exercise 4.3.7)

dẐ〈ρ〉 ≤ dZ〈ρ〉 and the first inequality is established.

Now to the martingale part. Clearly Z̃〈1〉 = 0. At ρ = 2 we observe
that [Z,Z] and [Z̃, Z̃] + [Ẑ, Ẑ] differ by the local martingale 2[Ẑ, Z̃] – see

exercise 3.8.24(iii) – and therefore

Z̃〈2〉 = [̂Z̃, Z̃] ≤ [̂Z,Z] = 〈Z,Z〉 = Z〈2〉 .

If ρ > 2, then
∣∣∆Z̃s

∣∣ρ ≤ 2ρ−1
(∣∣∆Zs

∣∣ρ +
∣∣∆Ẑs

∣∣ρ) ,

which reads d Z̃ [ρ] ≤ 2ρ−1
(
d Z [ρ] + d Ẑ [ρ]

)

by part 1: ≤ 2ρ−1
(
d Z [ρ] + dZ〈ρ〉

)
.

The predictable parts of the Doob–Meyer decomposition are thus related by

Z̃〈ρ〉 ≤ 2ρ−1
(
Z〈ρ〉 + Z〈ρ〉

)
= 2ρZ〈ρ〉 .

Proof of Theorem 4.5.1 for a Single Integrator. While lemma 4.5.9 affords

pathwise and solid control of the indefinite integral by previsible processes of
finite variation, it is still bothersome to have to contend with two or three

different previsible processes Z〈ρ〉 . Fortunately it is possible to reduce their
number to only one. Namely, for each of the Z〈ρ〉 , ρ = 1�, 2, q� , let µ〈ρ〉

denote its Doléans–Dade measure. To this collection add (artificially) the
measure µ〈0〉 def= α · dt × P . Since the measures on P form a vector lattice

(page 406), there is a least upper bound ν def= µ〈0〉 ∨ µ〈1〉 ∨ µ〈2〉 ∨ µ〈q�〉 . If Z
is a martingale, then µ〈1〉 = 0, so that ν = µ〈0〉 ∨µ〈1�〉 ∨µ〈2〉 ∨µ〈q�〉 , always.

Let Λ〈q〉[Z] denote the Doléans–Dade process of ν . It provides the pathwise
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and solid control of the indefinite integral X∗Z promised in theorem 4.5.1.
Indeed, since by exercise 4.5.8

dZ〈ρ〉 ≤ dΛ〈q〉[Z] , ρ ∈ {1�, 2, p�, q�} ,

each of the Z〈ρ〉 in (4.5.10) and (4.5.11) can be replaced by Λ〈q〉[Z] without

disturbing the inequalities; with exercise A.8.5, inequality (4.5.1) is then
immediate from (4.5.10).

Except for inequality (4.5.2), which we save for later, the proof of theo-

rem 4.5.1 is complete in the case d = 1.

Exercise 4.5.11 Assume that Z is a continuous integrator. Then Z is a local
Lq-integrator for any q > 0. Then Λ = Λ〈q〉 = Λ〈2〉 is a controller for [Z,Z] . Next
let f be a function with two continuous derivatives, both bounded by L . Then Λ
also controls f(Z). In fact for all T ∈ T , X ∈ P , and p ∈ [2, q]

‚‚ |X∗f(Z)|?T
‚‚
Lp ≤ (C�

p + 1)L · max
ρ=1,2

‚‚‚
“Z T

0

|X |ρs dΛs
”1/ρ‚‚‚

Lp
.

Previsible Control of Vectors of Integrators

A stochastic differential equation frequently is driven by not one or two but

by a whole slew Z = (Z1, Z2, . . . , Zd) of integrators – see equation (1.1.9)
on page 8 or equation (5.1.3) on page 271, and page 56. Its solution requires

a single previsible control for all the Zη simultaneously. This can of course
simply be had by adding the Λ〈q〉[Zη] ; but that introduces their number d

into the estimates, sacrificing sharpness of estimates and rendering them
inapplicable to random measures. So we shall go a different if slightly more

labor-intensive route.

We are after control of Z as expressed in inequality (4.5.1); the problem
is to find and estimate a suitable previsible controller Λ = Λ〈q〉[Z] as in

the scalar case. The idea is simple. Write X = |X | · X ′ , where X ′ is a
vector field of previsible processes with |X ′s|(ω) def= supη |X ′ηs(ω)| ≤ 1 for all

(s, ω) ∈ B . Then X∗Z = |X |∗(X ′∗Z), and so in view of inequality (4.5.11)

‖X∗Z?
T ‖Lp ≤ C�p · max

ρ=1�,2,q�

∥∥∥
(∫ T

0

|X |ρ d(X ′∗Z)〈ρ〉
)1/ρ∥∥∥

Lp

whenever 2 ≤ p ≤ q . It turns out that there are increasing previsible
processes Z〈ρ〉 , ρ = 1�, 2, q� , that satisfy

d(X ′∗Z)〈ρ〉 ≤ dZ〈ρ〉

simultaneously for all predictable X ′ = (X ′1, . . . , X
′
d) with |X ′| ≤ 1. Then

‖|X∗Z|?T ‖Lp ≤ C�p · max
ρ=1�,2,q�

∥∥∥
(∫ T

0

|X |ρ dZ〈ρ〉
)1/ρ∥∥∥

Lp
. (4.5.20)
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The Z〈ρ〉 can take the role of the Z〈ρ〉 in lemma 4.5.9. They can in fact be
chosen to be of the form Z〈ρ〉 = ρX∗Z〈ρ〉 with ρX predictable and having

|ρX| ≤ 1; this latter fact will lead to the estimate (4.5.2).

1) To find Z〈1〉 we look at the Doob–Meyer decomposition Z = Ẑ + Z̃ ,

in obvious notation. Clearly

d(X ′∗Z)〈1〉 =
∑
ηX
′
η dẐ

η ≤∑η

∣∣X ′η
∣∣ d Ẑη ≤ dZ〈1〉 (4.5.21)

for all X ′ ∈ Pd having |X ′| ≤ 1, provided that we define

Z〈1〉 def=
∑

1≤η≤d
Ẑη .

To estimate the size of this controller let Gη be a previsible Radon–Nikodym

derivative of the Doléans–Dade measure of Ẑη with respect to that of Ẑη .
These are previsible processes of absolute value 1, which we assemble into a

d-tuple to make up the vector field X . Then

E
[
Z〈1〉∞

]
= E

[∫
X dZ

]
≤ X∗Ẑ I1

by inequality (4.3.1): ≤ X∗Z I1 ≤ Z I1 . (4.5.22)

Exercise 4.5.12 Assume Z is a global Lq-integrator. Then the Doléans–Dade
measure of Z〈1〉 is the maximum in the vector lattice M∗[P] (see page 406) of the
Doléans–Dade measures of the processes {X ′∗Z : X ′ ∈ Ed, |X ′| ≤ 1} .

2) To find next the previsible controller Z〈2〉 , consider the equality

d(X ′∗Z)〈2〉 =
∑

1≤η,θ≤d
X ′ηX

′
θ d〈Zη, Zθ〉 .

Let µη,θ be the Doléans–Dade measure of the previsible bracket 〈Zη, Zθ〉 .
There exists a positive σ-additive measure µ on the previsibles with respect

to which every one of the µη,θ is absolutely continuous, for instance, the sum
of their variations. Let Gη,θ be a previsible Radon–Nikodym derivative of

µη,θ with respect to µ , and V the Doléans–Dade process of µ . Then

〈Zη, Zθ〉 = Gη,θ∗V .

On the product of the vector space G of d× d-matrices g with the unit ball

(box) of `∞(d) define the function Φ by Φ(g, y) def=
∑

η,θ yηyθ g
η,θ and the

function σ by σ(g) def= sup{Φ(g, y) : y ∈ `∞1 } . This is a continuous function

of g ∈ G , so the process σ(G) is previsible. The previous equality gives

dX ′∗Z〈2〉 =
∑

η,θ

X ′ηX
′
θG

η,θ dV ≤ σ(G) dV = dZ〈2〉 ,

for all X ′ ∈ Pd with |X ′| ≤ 1, provided we define

Z〈2〉 def= σ(G)∗V .
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To estimate the size of Z〈2〉 , we use the Borel function γ : G → `∞1 with
σ(g) = Φ

(
g, γ(g)

)
that is provided by lemma A.2.21 (b). Since X def= γ ◦ G

is a previsible vector field with |X | ≤ 1,

E
[
Z〈2〉∞

]
= E

[∫ ∞

0

σ(G) dV
]

=

∫
σ(G) dµ

=

∫ ∑

η,θ

2Xη
2XθG

η,θ dµ = E
[∫ ∞

0

∑

η,θ

2Xη
2Xθ d〈Zη, Zθ〉

]

= E[〈X∗Z, X∗Z〉∞] = E
[
[X∗Z, X∗Z]∞

]
(4.5.23)

= E
[(
S∞[X∗Z]

)2] ≤ X∗Z 2

I2 ≤ Z
2

I2 . (4.5.24)

Exercise 4.5.13 Assume Z is a global Lq-integrator, q ≥ 2. Then the Doléans–
Dade measure of Z〈2〉 is the maximum in the vector lattice M∗[P] of the Doléans–
Dade measures of the brackets {[X ′∗Z,X ′∗Z] : X ′ ∈ Ed, |X ′| ≤ 1} .

q) To find a useful previsible controller Z〈q〉 now that Z〈1〉 and

Z〈2〉 have been identified, we employ the Doob–Meyer decomposition of the
jump measure Z from page 232. According to it,

E
[∫ ∞

0

|X|q d X ′∗Z [q]
]

= E
[∫

Rd
∗×[[0,∞))

|Xs|q
∣∣〈X ′s|y〉

∣∣q Z(dy, ds)
]

= E
[∫

[[0,∞))

|Xs|q
∫

Rd
∗

∣∣〈X ′s|y〉
∣∣q νs(dy) dVs

]
.

Now the process σ〈q〉 defined by

σ〈q〉s = sup
|x′|≤1

∫ ∣∣〈x′|y〉
∣∣q νs(dy) = sup

|x′|≤1

∥∥x′
∥∥q
Lq(νs)

is previsible, inasmuch as it suffices to extend the supremum over x′ ∈ `∞1 (d)
with rational components. Therefore

E
[∫ ∞

0

|X|q d(X ′∗Z)〈q〉
]

= E
[∫ ∞

0

|X|qs
∫

Rd
∗

∣∣〈X ′s|y〉
∣∣q νs(dy) dVs

]

≤ E
[∫ ∞

0

|X|q σ〈q〉s dVs

]
.

From this inequality we read off the fact that d(X ′∗Z)〈q〉 ≤ dZ〈q〉 for all
X ′ ∈ Pd with |X ′ | ≤ 1, provided we define

Z〈q〉 def= σ〈q〉∗V .

To estimate Z〈q〉 observe that the supremum in the definition of σ〈q〉 is
assumed in one of the 2d extreme points (corners) of `∞1 (d), on the grounds

that the function

x 7→ φ$(x) def=

∫ ∣∣〈x|y〉
∣∣q ν$(dy)
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is convex.13 Enumerate the corners: c1, c2, . . . and consider the previsible
sets Pk

def= {$ : φ$(ck) = σ($)} and P ′k
def= Pk \ ⋃i<k Pi , k = 1, . . . , 2d .

The vector field qX which on P ′k has the value ck clearly satisfies

Z〈q〉 = qX∗Z〈q〉 .

Thanks to inequality (4.5.5) and theorem 3.8.4,

E
[
Z〈q〉∞

]
= E

[
(qX∗Z)〈q〉∞

]
= E

[
qX∗Z [q]

∞

]

by 3.8.21: = E
[∑

s<∞
|〈qXs|∆Zs〉|q

]
= E

[∫

B̌

|〈qXs|y〉|q Z(dy, ds)
]

(4.5.25)

≤ E
[
Sq∞[qX∗Z]

]
≤ qX∗Z q

Iq ≤ Z
q

Iq . (4.5.26)

Proof of Theorem 4.5.1. We now define the desired previsible controller
Λ〈q〉[Z] as before to be the Doléans–Dade process of the supremum of µ〈0〉

and the Doléans–Dade measures of Z〈1〉 , Z〈2〉 , and Z〈q〉 and continue as in
the proof of theorem 4.5.1 on page 245, replacing Z〈ρ〉 by Z〈ρ〉 for ρ = 1, 2, q .

To establish the estimate (4.5.2) of Λ〈q〉[Z] observe that

Λ
〈q〉
T [Z] ≤ α · T + Z

〈1〉
T + Z

〈2〉
T + Z

〈q〉
T ,

so that E
[
Λ
〈q〉
T [Z]

]
≤ α · E[T ] + E

[
Z
〈1〉
T

]
+ E

[
Z
〈2〉
T

]
+ E

[
Z
〈q〉
T

]

by (4.5.22), (4.5.24), and (4.5.26): ≤ α · E[T ] + ZT
I1 + Z

2

I2 + ZT q

Iq

≤ α · E[T ] + ZT
Iq + ZT 2

Iq + ZT q

Iq

≤ α · E[T ] + 3
(

Z Iq ∨ Z
q

Iq

)
.

Exercise 4.5.14 Assume Z is a global Lq-integrator, q > 2. Then the Doléans–
Dade measure of Z〈q〉 is the maximum in the vector lattice M∗[P] of the Doléans–
Dade measures of the processes {|Ȟ|q∗Z : Ȟ(y, s) def= 〈X ′

s|y〉 , X ′ ∈ Ed, |X ′| ≤ 1} .

Exercise 4.5.15 Repeat exercise 4.5.11 for a slew Z of continuous integrators:
let Λ be its previsible controller as constructed above. Then Λ is a controller for
the slew [Zη, Zθ] , η, θ = 1, . . . , d . Next let f be a function with continuous first
and second partial derivatives: 14

|f;η(x)uη| ≤ L · |u|p and |f;ηθuηuθ| ≤ L · |u|2p , u ∈ Rd .

Then Λ also controls f(Z). In fact, for all T ∈ T and X ∈ P
‚‚ |X∗f(Z)|?T

‚‚
Lp ≤ (C�

p + 1)L · max
ρ=1,2

‚‚‚
“Z T

0

|X |ρs dΛs
”1/ρ‚‚‚

Lp
.

13 Recall that $ = (s, ω). Thus ν$ is νs with ω in evidence.
14 Subscripts after semicolons denote partial derivatives, e.g., Φ;η

def=
∂Φ
∂xη , Φ;ηθ

def=
∂2Φ

∂xη∂xθ .
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Exercise 4.5.16 If Z is quasi-left-continuous (pZ = 0), then Λ〈q〉[Z] is contin-

uous. Conversely, if Λ〈q〉[Z] is continuous, then the jump of X∗Z at any predictable
stopping time is negligible, for every X ∈ Pd .

Exercise 4.5.17 Inequality (4.5.1) extends to 0 < p ≤ 2 with

C�
p ≤ 20∨(1−p)/p(1 + C(4.3.6)

p ) .

Exercise 4.5.18 In the case d = 1 and when Z is an Lp-integrator (not merely a
local one) then the functional ‖ ‖�

p−Z
on processes F : B → R defined by

‖F ‖�p−Z def= C�
p · max

ρ=1�,p�

‚‚‚
“Z ∗

|F |ρ dΛ
”1/ρ‚‚‚

∗

Lp

is a mean on E that majorizes the elementary dZ-integral in the sense of Lp .
If Z is a continuous local martingale, then 1� = p� = 2, the constant C�

p can
be estimated by 7p/6, and ‖ ‖�

p−Z
is an extension to p > 2 of the Hardy mean of

definition (4.2.9).

Exercise 4.5.19 For a d-dimensional Wiener process W and q ≥ 2,

Λ
〈q〉
t [W ]= W

t 2

I2=d·t .
Exercise 4.5.20 Suppose Z is continuous and use the previsible controller
Λ of remark 4.5.2 on page 238 to define the time transformation (4.5.4). Let
0 ≤ gη ∈ FTκ , and 1 ≤ η, θ, ι ≤ d . (i) For ` = 0, 1, . . . there are constants

C` ≤ `!(C�
p)
` such that,

for κ < µ < κ+1,
‚‚‚gη · |Zη − ZηT

κ |?`
Tµ

‚‚‚
Lp

≤ C` (µ−κ)`/2 · ‖g‖Lp (4.5.27)

and
‚‚‚
Z Tµ

Tκ

|gι| · |Zι−ZιTκ |?`
s
d [Zη , Zθ]

s

‚‚‚
Lp

≤ C`
`/2 + 1

(µ−κ)`/2+1·‖g‖Lp . (4.5.28)

(ii) For ` = 0, 1, . . . there are polynomials P` such that for any µ > κ
‚‚‚gη · |Zη − ZηT

κ |?`
Tµ

‚‚‚
Lp

≤ P`(
√
µ−κ) . (4.5.29)

Exercise 4.5.21 (Emery) Let Y,A be positive, adapted, increasing, and right-
continuous processes, with A also previsible. If E[YT ] ≤ E[AT ] for all finite stopping
times T , then for all y, a ≥ 0

P[Y∞ ≥ y, A∞ ≤ a] ≤ E[A∞ ∧ a]/y ; (4.5.30)

in particular, [Y∞ = ∞] ⊆ [A∞ = ∞] P-almost surely. (4.5.31)

Exercise 4.5.22 (Yor) Let Y,A be positive random variables satisfying the
inequality P[Y ≥ y, A ≤ a] ≤ E[A ∧ a]/y for y, a > 0. Next let φ,ψ : R+ → R+ be
càglàd increasing functions, and set

Φ(x) def= φ(x) + x

Z ∞

(x

dφ(x)

x
.

Then E[φ(Y ) · ψ(
1

A
)] ≤ E

h
(Φ(A)+φ(A)) · ψ(

1

A
) +

Z ∞

1
A

Φ(
1

y
) dψ(y)

i
. (4.5.32)

In particular, for 0 ≤ α < β < 1,

E[Y β/Aα] ≤
“ 2

(1 − β)(β − α)

”
· E[Aβ−α] (4.5.33)

and E[Y β ] ≤ 2 − β

1 − β
· E[Aβ ] . (4.5.34)
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Exercise 4.5.23 From the previsible controller Λ of the Lq-integrator Z define

A def= C�
q · (Λ1/1� ∨ Λ

1/q�)

and show that E
h
|Z|?pβT /ApαT

i
≤ 2

(1 − β)(β − α)
· E
h
A
p(β−α)
T

i

for all finite stopping times T , all p ≤ q , and all 0 ≤ α < β < 1. Use this to
estimate from below Λ at the first time Z leaves the ball of a given radius r about
its starting point Z0 . Deduce that the first time a Wiener process leaves an open
ball about the origin has moments of all (positive and negative) orders.

Previsible Control of Random Measures

Our definition 3.10.1 of a random measure was a straightforward generaliza-
tion of a d-tuple of integrators; we would simply replace the auxiliary space

{1, . . . , d} of indices by a locally compact space H , and regard a random
measure as an H-tuple of (infinitesimal) integrators. This view has already

paid off in a simple proof of the Doob–Meyer decomposition 4.3.24 for random
measures. It does so again in a straightforward generalization of the control

theorem 4.5.1 to random measures. On the way we need a small technical
result, from which the desired control follows with but a little soft analysis:

Exercise 4.5.24 Let Z be a global Lq-integrator of length d , view it as a column
vector, let C : `1(d) → `1(′d) be a contractive linear map, and set ′Z def= CZ .
Then ′Z = C[Z ] . Next, let µ be the Doléans–Dade measure for any one of the

previsible controllers Z〈1〉,Z〈2〉,Z〈q〉,Λ〈q〉[Z] and ′µ the Doléans–Dade measure for
the corresponding controller of ′Z . Then ′µ ≤ µ .

Theorem 4.5.25 (Revesz [93]) Let q ≥ 2 and suppose ζ is a spatially bounded

Lq-random measure with auxiliary space H . There exist a previsible increas-
ing process Λ = Λ〈q〉[ζ] and a universal constant C�p that control ζ in the

following sense: for every X̌ ∈ P̌ , every stopping time T , and every p ∈ [2, q]

∥∥∥(X̌∗ζ)?T
∥∥∥
Lp

≤ C�p · max
ρ=1�,p�

∥∥∥
(∫ ∗

[[0, T ]]·|X̌s |ρ∞ dΛs

)1/ρ∥∥∥
∗

Lp
. (4.5.35)

Here |X̌s |∞ def= supη∈H |X̌(η, s)| is P-analytic and hence universally P-mea-

surable. The meaning of 1�, p� is mutatis mutandis as in theorem 4.5.1 on
page 238. Part of the claim is that the left-hand side makes sense, i.e., that

[[[0, T ]]]·X̌ is ζ−p-integrable, whenever the right-hand side is finite.

Proof. Denote by K the paving of H by compacta. Let (Kν) be a sequence
in K whose interiors cover H , cover each Kν by a finite collection Bν of

balls of radius less than 1/ν , and let Pn denote the collection of atoms of the
algebra of sets generated by B1∪. . .∪Bn . This yields a sequence (P n) of par-

titions of H into mutually disjoint Borel subsets such that P n refines Pn−1

and such that B•(H) is generated by
⋃
n P

n . Suppose Pn has dn members

Bn1 , . . . , B
n
dn

. Then Zni
def= Bni ∗ζ defines a vector Zn of Lq-integrators of
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length dn , of integrator size less than ζ Iq , and controllable by a previsible

increasing process Λn def= Λ〈q〉[Zn] . Collapsing Pn to Pn−1 gives rise to a

contractive linear map Cnn−1 : `1(dn) → `1(dn−1) in an obvious way. By
exercise 4.5.24, the Doléans–Dade measures of the Λn increase with n . They

have a least upper bound µ in the order-complete vector lattice M∗[P] , and
the Doléans–Dade process Λ of µ will satisfy the description.

To see that it does, let Ě ′ denote the collection of functions of the form∑
hi ⊗ Xi , with hi step functions over the algebra generated by

⋃
Pn

and Xi ∈ P00 . It is evident that (4.5.35) is satisfied when X̌ ∈ Ě ′ , with

C�p = C
�(4.5.1)
p . Since both sides depend continuously on their arguments in

the topology of confined uniform convergence, the inequality will stay even
for X̌ in the confined uniform closure of Ě ′ = Ě ′00 , which contains C00[H]⊗P
and is both an algebra and a vector lattice (theorem A.2.2). Since the right-
hand side is not a mean in its argument X̌ , in view of the appearance of the

sup-norm | |∞ , it is not possible to extend to X̌ ∈ P̌ by the usual sequential
closure argument and we have to go a more circuitous route.

To begin with, let us show that |X̌ |∞ is measurable on the universal
completion P∗ whenever X̌ ∈ P̌ . Indeed, for any a ∈ R , [|X̌ |∞ > a]

is the projection on B of the K × P-analytic (see A.5.3) set [|X̌| > a] of
B•[H]⊗P , and is therefore P-analytic (proposition A.5.4) and P∗-measurable

(apply theorem A.5.9 to every outer measure on P ). Hence |X̌ |∞ ∈ P∗ . In
fact, this argument shows that |X̌ |∞ is measurable for any mean on P that

is continuous along arbitrary increasing sequences, since such a mean is a
P-capacity. In particular (see proposition 3.6.5 or equation (A.3.2)), | X̌ |∞
is measurable for the mean ‖ ‖� that is defined on F : B → R by

‖F ‖� def= C�p · max
ρ=1�,p�

∥∥∥
(∫ ∗

|F |ρ dΛ
)1/ρ∥∥∥

∗

Lp
.

Next let g ∈ Lp
′

be an element of the unit ball of the Banach-space dual
Lp

′
of Lp , and define θ on P̌00 by θ(X̌) def= E[g · ζ(X̌)] . This is a σ-additive

measure of finite variation: θ (|X̌ |) ≤ ‖X̌ ‖
ζ−p . There is a P̌-measurable

Radon–Nikodym derivative Ǧ = dθ/d θ with |Ǧ | = 1. Also, θ has a

disintegration (see corollary A.3.42), so that

θ(X̌) =

∫

B

∫

H

X̌(η,$)Ǧ(η,$)ν$(dη) µ(d$) ≤
∥∥ |X̌ |∞

∥∥� . (4.5.36)

The equality in (4.5.36) holds for all X̌ ∈ P̌ ∩ L1(θ) (ibidem), while the

inequality so far is known only for X̌ ∈ Ě ′00 . Now there exists a sequence
(Ǧn) in Ě ′ that converges in ‖ ‖∗

θ
-mean to Ǧ = 1/Ǧ and has |Ǧn | ≤ 1.

Replacing X̌ by X̌ · Ǧn in (4.5.36) and taking the limit produces

θ (X̌) =

∫

B

∫

H

X̌(η,$)ν$(dη) µ(d$) ≤
∥∥ |X̌ |∞

∥∥� , X̌ ∈ Ě ′00 .
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In particular, when X̌ does not depend on η ∈ H , X̌ = 1H ⊗ X with
X ∈ P00 , say, then this inequality, in view of ν$(H) = 1, results in

∫

B

X($) µ(d$) ≤
∥∥|X|∞

∥∥� = ‖X‖� ,

and by exercise 3.6.16 in:

∫ ∗
|X($)| µ(d$) ≤ ‖X‖� ∀X ∈ P∗ .

Thus for X ′ ∈ P with |X ′| ≤ 1 and X̌ ∈ P̌ ∩ L1[ζ] we have

E
[
g ·
∫
X ′ d(X̌∗ζ)

]
= θ(X ′ · X̌) ≤ θ

(
|X ′ · X̌|

)

=

∫

B

∫

H

|X ′(η,$)| |X̌(η,$)|ν$(dη) µ(d$)

as
˛̨
X̌′

˛̨
≤ 1: ≤

∫

B

∫

H

|X̌(η,$)|ν$(dη) µ(d$)

as ν$(H) = 1: ≤
∫ ∗

B

|X̌|∞($) µ(d$) ≤
∥∥|X̌|∞

∥∥� .

Taking the supremum over g ∈ Lp
′

1 and X ′ ∈ E ′1 gives

X̌∗ζ Ip ≤
∥∥|X̌|∞

∥∥�

and, finally,
∥∥∥(X̌∗ζ)?∞

∥∥∥
Lp

≤ C?(2.3.5)p ·
∥∥|X̌|∞

∥∥� .

This inequality was established under the assumption that X̌ ∈ P̌ is

ζ−p-integrable. It is left to be shown that this is the case whenever the
right-hand side is finite. Now by corollary 3.6.10, ‖X̌ ‖∗

ζ−p is the supremum

of ‖
∫
Y̌ dζ ‖

Lp , taken over Y̌ ∈ L1[ζ−p] with |Y̌ | ≤ |cX| . Such Y̌ have

‖ Y̌ ‖� ≤ ‖X̌ ‖� , whence ‖X̌ ‖∗
ζ−p ≤ ‖X̌ ‖� <∞ .

Now replace X̌ by [[[0, T ]]] · X̌ to obtain inequality (4.5.35).

Project 4.5.26 Make a theory of time transformations.

4.6 Lévy Processes

Let (Ω,F.,P) be a measured filtration and Z. an adapted Rd-valued process

that is right-continuous in probability. Z. is a Lévy process on F. if it has
independent identically distributed and stationary increments and Z0 = 0.

To say that the increments of Z are independent means that for any 0 ≤ s < t
the increment Zt−Zs is independent of Fs ; to say that the increments of Z

are stationary and identically distributed means that the increments Zt−Zs

and Zt′ − Zs′ have the same law whenever the elapsed times t−s and t′−s′
are the same. If the filtration is not specified, a Lévy process Z is understood
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to be a Lévy process on its own basic filtration F 0
. [Z] . Here are a few simple

observations:

Exercise 4.6.1 A Lévy process Z on F. is a Lévy process both on its basic
filtration F0

. [Z] and on the natural enlargement of F. . At any instant s , Fs and
F0

∞[Z − Zs] are independent. At any F.-stopping time T , Z ′
. def= ZT+. − ZT is

independent of FT ; in fact Z′
. is a Lévy process.

Exercise 4.6.2 If Z. and Z′
. are Rd-valued Lévy processes on the measured

filtration (Ω,F.,P), then so is any linear combination αZ + βZ ′ with constant

coefficients. If Z(n) are Lévy processes on (Ω,F.,P) and |Z(n) − Z|?t −−−→n→∞ 0 in
probability at all instants t , then Z is a Lévy process.

Exercise 4.6.3 If the Lévy process Z is an L1-integrator, then the previsible part
bZ. of its Doob–Meyer decomposition has bZt = A · t , with A = E[Z1] ; thus then

both bZ and eZ are Lévy processes.

We now have sufficiently many tools at our disposal to analyze this important
class of processes. The idea is to look at them as integrators. The stochastic

calculus developed so far eases their analysis considerably, and, on the other
hand, Lévy processes provide fine examples of various applications and serve

to illuminate some of the previously developed notions.
In view of exercise 4.6.1 we may and do assume the natural conditions.

Let us denote the inner product on Rd variously by juxtaposition or by
〈 | 〉 : for ζ ∈ Rd ,

ζZt = 〈ζ|Zt〉 =

d∑

η=1

ζηZ
η
t .

It is convenient to start by analyzing the characteristic functions of the
distributions µt of the Zt . For ζ ∈ Rd and s, t ≥ 0

µ̂s+t(ζ) def= E
[
ei〈ζ|Zs+t〉

]
= E

[
ei〈ζ|Zs+t−Zs〉ei〈ζ|Zs〉

]

= E
[
E
[
ei〈ζ|Zs+t−Zs〉∣∣F0

s [Z]
]
· ei〈ζ|Zs〉

]

by independence: = E
[
ei〈ζ|Zs+t−Zs〉

]
E
[
ei〈ζ|Zs〉

]

by stationarity: = E
[
ei〈ζ|Zt〉

]
E
[
ei〈ζ|Zs〉

]
= µ̂s(ζ) · µ̂t (ζ) . (4.6.1)

From (A.3.16), µs+t = µs?µt .

That is to say, {µt : t ≥ 0} is a convolution semigroup. Equation (4.6.1)

says that t 7→ µ̂t (ζ) is multiplicative. As this function is evidently right-
continuous in t , it is of the form µ̂t (ζ) = et·ψ(ζ) for some number ψ(ζ) ∈ C :

µ̂t (ζ) = E
[
ei〈ζ|Zt〉

]
= et·ψ(ζ) , 0 ≤ t <∞ .

But then t 7→ µ̂t (ζ) is even continuous, so by the Continuity Theorem A.4.3

the convolution semigroup {µt : 0 ≤ t} is weakly continuous.
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Since µ̂t (ζ) depends continuously on ζ , so does ψ ; and since µ̂t is
bounded, the real part of ψ(ζ) is negative. Also evidently ψ(0) = 0. Equa-

tion (4.6.1) generalizes immediately to

E
[
ei〈ζ|Zt−Zs〉∣∣Fs

]
= e(t−s)·ψ(ζ) ,

or, equivalently, E
[
ei〈ζ|Zt〉A

]
= e(t−s)·ψ(ζ)E

[
ei〈ζ|Zs〉A

]
(4.6.2)

for 0 ≤ s ≤ t and A ∈ Fs . Consider now the process Mζ that is defined by

ei〈ζ|Zt〉 = Mζ
t + ψ(ζ)

∫ t

0

ei〈ζ|Zs〉 ds (4.6.3)

– read the integral as the Bochner integral of a right-continuous L1(P)-valued
curve. Mζ is a martingale. Indeed, for 0 ≤ s < t and A ∈ Fs , repeated

applications of (4.6.2) and Fubini’s theorem A.3.18 give

E
[(
Mζ
t −Mζ

s

)
·A
]
=E
[
ei〈ζ|Zs〉A

](
e(t−s)·ψ(ζ)−1−ψ(ζ)

∫ t

s

e(τ−s)·ψ(ζ) dτ
)
=0 .

Since |Mζ
t | ≤ 1 + t|ψ(ζ)| , the real and imaginary parts of these martingales

are Lp-integrators of (stopped) sizes less than C
(2.5.6)
p

(
1+t|ψ(ζ)|

)
, for p > 1,

t <∞ , and ζ ∈ Rd , and the processes ei〈ζ|Z〉 are Lp-integrators of (stopped)

sizes
ei〈ζ|Z

t〉
Ip ≤ 2C(2.5.6)

p

(
1 + 2t|ψ(ζ)|

)
. (4.6.4)

Suppose X ∈ E1 vanishes after time t and let γI be the Gaussian density

of mean 0 and variance I on Rd (see definition A.3.50). Integrating the
inequality ∥∥∥γI(ζ)

∫
X d

(
ei〈ζ|Z〉

)∥∥∥
p
≤ C

(4.6.4)
t γI(ζ)

over |ζ| ≤ 1 gives, with the help of Jensen’s inequality A.3.28 and exer-

cise A.3.51,

∥∥∥
∫
X d

(
e−|Z|

2/2
)∥∥∥

p
≤ C

(4.6.4)
t

∫

[|ζ|≤1]

γI(ζ) dζ ≤ Ct

and shows that e−|Z|
2/2 is an Lp-integrator. Due to Ito’s theorem, |Z|2 is an

L0-integrator. Now |Z|2 and the ei〈ζ|Z〉 , ζ ∈ Rd , have càdlàg modifications
that are bounded on bounded intervals and adapted to the natural enlarge-

ment F.[Z] (theorem 2.3.4) and that nearly agree with |Z|2 and ei〈ζ|Z〉 ,
respectively, at all rational instants and for all ζ ∈ Qd . Now inasmuch as

on any bounded subset of Rd the usual topology agrees with the topology
generated by the functions z 7→ ei〈ζ|z〉 , ζ ∈ Qd , the limit Z ′t

def= limQ3q↓tZq

exists at all instants t and defines a càdlàg version Z ′ of Z . We rename this
version Z and arrive at the following situation: we may, and therefore shall,

henceforth assume that a Lévy process is càdlàg.
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Lemma 4.6.4 (i) Z is an L0-integrator. (ii) For any bounded continuous
function F : [0,∞) → Rd whose components have finite variation and com-

pact support

E
[
ei
R∞
0
〈Z|dF 〉

]
= e

R∞
0
ψ(−Fs) ds

. (4.6.5)

(iii) The logcharacteristic function ψZ
def= ψ : ζ 7→ t−1 ln

(
µ̂t (ζ)

)
there-

fore determines the law of Z .

Proof. (i) The stopping times T n def= inf{t : |Z |
t
≥ n} increase without

bound, since Z ∈ D . For |ζ | < 1/n , the process ei〈ζ|Z〉. [[0, Tn))+ [[Tn,∞)) is

an L0-integrator whose values lie in a disk of radius 1 about 1 ∈ C . Applying

the main branch of the logarithm produces i〈ζ|Z〉 · [[0, T n)). By Itô’s theo-
rem 3.9.1 this is an L0-integrator for all such ζ . Then so is Z · [[0, T n)). Since

Tn ↑ ∞ , Z is a local L0-integrator. The claim follows from proposition 2.1.9
on page 52.

(ii) Assume for the moment that F is a left-continuous step function with

steps at 0 = s0 < s1 < · · · < sK , and let t > 0. Then, with σk = sk ∧ t ,

E
[
ei
R t

0
〈F |dZ〉

]
= E

[
e
i
P

1≤k≤K
〈Fsk−1

|Zσk
−Zσk−1

〉]

=

K∏

k=1

E
[
e
i〈Fsk−1

|Zσk
−Zσk−1

〉]

=
K∏

k=1

e
ψ(Fsk−1

)(σk−σk−1)
= e

R
t

0
ψ(Fs) ds

.

Now the class of bounded functions F : [0,∞) → Rd for which the equality

E
[
ei
R

t

0
〈F |dZ〉

]
= e

R t

0
ψ(Fs) ds

(t ≥ 0)

holds is closed under pointwise limits of dominated sequences. This follows
from the Dominated Convergence Theorem, applied to the stochastic integral

with respect to dZ and to the ordinary Lebesgue integral with respect to ds .
So this class contains all bounded Rd-valued Borel functions on the half-line.

We apply the previous equality to a continuous function F of finite variation
and compact support. Then

∫∞
0

〈Z|dF 〉 =
∫∞
0

〈−F |dZ〉 and (4.6.5) follows.

(iii) The functions Dd 3 ζ. 7→ ei
R∞
0
〈ζ|dF 〉 , where F : [0,∞) → Rd is con-

tinuously differentiable and has compact support, say, form a multiplicative
class M that generates a σ-algebra F on path space Dd . Any two measures

that agree on M agree on F .

Exercise 4.6.5 (The Zero-One Law) The regularization of the basic filtration
F0
. [Z] is right-continuous and thus equals F.[Z] .
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The Lévy–Khintchine Formula

This formula – equation (4.6.12) on page 259 – is a description of the logchar-

acteristic function ψ . We approach it by analyzing the jump measure Z of Z

(see page 180). The finite variation process

V ζ def=
[
e
i〈ζ|Z〉

, e
−i〈ζ|Z〉

]

has continuous part cV ζ =
c[
e
i〈ζ|Z〉

, e
−i〈ζ|Z〉

]
= c[〈ζ|Z〉, 〈ζ|Z〉] (4.6.6)

and jump part jV ζ
t =

∑
s≤t

∣∣∣∆ei〈ζ|Z〉s

∣∣∣
2

=
∑
s≤t

∣∣∣ei〈ζ|∆Zs〉 − 1
∣∣∣
2

=

∫

[[[0,t]]]

∣∣∣ei〈ζ|y〉 − 1
∣∣∣
2

Z(dy, ds) . (4.6.7)

Taking the Lp-norm, 1 < p <∞, in (4.6.7) results in

∥∥∥jV ζ
t

∥∥∥
Lp

≤ 2K(3.8.9)
p C(4.6.4)

p

(
1 + 2t|ψ(ζ)|

)
.

By A.3.29,
∥∥∥
∫

[|ζ|≤1]

jV ζ
t dζ

∥∥∥
Lp

≤
∫

[|ζ|≤1]

∥∥∥jV ζ
t

∥∥∥
Lp
dζ <∞ .

Setting h′0(y) def=

∫

[|ζ|≤1]

∣∣∣ei〈ζ|y〉 − 1
∣∣∣
2

dζ ,

we obtain
(
h′0∗Z

)
t Ip

<∞ , ∀ t <∞, ∀ p <∞ .

That is to say, h′0∗Z is an Lp-integrator for all p . Now h′0 is a prototypical
Hunt function (see exercise 3.10.11). From this we read off the next result.

Lemma 4.6.6 The indefinite integral H∗Z is an Lp-integrator, for every
previsible Hunt function H and every p ∈ (0,∞) .

Now fix a sure and time-independent Hunt function h : Rd → R . Then the

indefinite integral h∗Z has increment

(h∗Z)t − (h∗Z)s =
∑

s<σ≤t
h(∆Zσ) =

∑

σ≤t
h
(
∆[Z − Zs]σ

)
, s < t ,

which in view of exercises 1.3.21 and 4.6.1 is Ft-measurable and independent

of Fs ; and h∗Z is clearly stationary. Now exercise 4.6.3 says that ĥ∗Z =
h∗̂Z has at the instant t the value

(
ĥ∗Z

)
t
= ν(h) · t , with ν(h) def= E[Jh1 ] .

Clearly ν(h) depends linearly and increasingly on h : ν is a Radon mea-
sure on punctured d-space Rd∗

def= Rd \ {0} and integrates the Hunt function

h0 : y 7→ |y|2 ∧ 1. An easy consequence of this is the following:
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Lemma 4.6.7 For any sure and time-independent Hunt function h on Rd ,
h∗Z is a Lévy process. The previsible part ̂Z of Z has the form

̂Z(dy, ds) = ν(dy) × ds , (4.6.8)

where ν , the Lévy measure of Z , is a measure on punctured d-space that

integrates h0 . Consequently, the jumps of Z , if any, occur only at totally
inaccessible stopping times; that is to say, Z is quasi-left-continuous (see

proposition 4.3.25).

In the terms of page 231, equation (4.6.8) says that the jump intensity measure

̂Z has the disintegration15

∫

[[[0,∞)))

hs(dy) ̂Z(dy, ds) =

∫ ∞

0

∫

Rd
∗

hs(y) ν(dy) ds ,

with the jump intensity rate ν independent of $ ∈ B . Therefore

(H∗̂Z)t =

∫ t

0

∫

Rd
∗

Hs(y) ν(y) ds

for any random Hunt function H . Next, since e
i〈ζ|Z〉 · e−i〈ζ|Z〉 = 1, equa-

tion (3.8.10) gives

−dV ζ = e
i〈ζ|Z〉
− de

−i〈ζ|Z〉
+ e
−i〈ζ|Z〉
− de

i〈ζ|Z〉

by (4.6.3): = e
i〈ζ|Z〉
− dM−ζ + e

−i〈ζ|Z〉
− dMζ

+ ψ(−ζ) dt + ψ(ζ) dt ,

whence V̂ ζ
t = −t ·

(
ψ(−ζ) + ψ(ζ)

)
.

From (4.6.7) ĵV ζ
t = t ·

∫ ∣∣∣eiζy − 1
∣∣∣
2

ν(dy) .

By (4.6.6) c
[
〈ζ|Z〉, 〈ζ|Z〉

]
= ĉV ζ = V̂ ζ − ĵV ζ = t · g(ζ) ,

where the constant g(ζ) must be of the form ζηζθB
ηθ , in view of the bilin-

earity of ζ 7→ c
[
〈ζ|Z〉, 〈ζ|Z〉

]
. To summarize:

Lemma 4.6.8 There is a constant symmetric positive semidefinite matrix B

with c
[
〈ζ|Z〉, 〈ζ|Z〉

]
t
=

∑

1≤η,θ≤d
ζηζθB

ηθ · t ,

which is to say, c[Zη, Zθ] = Bηθ · t . (4.6.9)

Consequently the continuous martingale part c̃Z of Z (proposition 4.4.7) is

a Wiener process with covariance matrix B (exercise 3.9.6).

15 [[[0,∞))) def= Rd∗ × [[0,∞)) and [[[0, t]]] def= Rd∗ × [[0, t]].
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We are now in position to establish the renowned Lévy–Khintchine formula.

Since e
i〈ζ|Zt〉 − 1 =

∫ t

0+

ie
i〈ζ|Z〉
−s d〈ζ|Z〉s

− 1/2

∫ t

0+

e
i〈ζ|Z〉
−s ζηζθd

c[Zη, Zθ]s

+
∑

0<s≤t
e
i〈ζ|Z〉
−s

(
e
i〈ζ|∆Zs〉 − 1 − i〈ζ|∆Zs〉

)
,

(
e
−i〈ζ|Z〉
.− ∗ei〈ζ|Z〉

)
t
=
(
i〈ζ|Z〉t −

∫ t

0

∫
i〈ζ|y〉 · [|y| > 1] Z(dy, ds)

)

− 1/2ζηζθ
c[Zη, Zθ]t

+

∫ t

0

∫ (
ei〈ζ|y〉−1−i〈ζ|y〉 [|y| ≤ 1]

)
Z(dy, ds) ,

the integrand of the previous line being a Hunt function. Now from (4.6.3)

Martt + t ψ(ζ) = i〈ζ|sZt〉 −
t

2
ζηζθB

ηθ

+ t

∫ (
ei〈ζ|y〉−1−i〈ζ|y〉 [|y| ≤ 1]

)
ν(dy) ,

where sZt
def=
(
Zt −

∫ t

0

∫
y · [|y| > 1] Z(dy, ds)

)
. (4.6.10)

Taking previsible parts of this L2-integrator results in

t · ψ(ζ) = i〈ζ|ŝZt〉 −
t

2
· ζηζθBηθ

+ t ·
∫ (

ei〈ζ|y〉−1−i〈ζ|y〉 [|y| ≤ 1]
)
ν(dy) .

Now three of the last four terms are of the form t · const . Then so must be
the fourth; that is to say,

ŝZt = tA (4.6.11)

for some constant vector A . We have finally arrived at the promised descrip-
tion of ψ :

Theorem 4.6.9 (The Lévy–Khintchine Formula) There are a vector A ∈ Rd,
a constant positive semidefinite matrix B , and on punctured d-space Rd

∗ a

positive measure ν that integrates h0 : y 7→ |y|2 ∧ 1 , such that

ψ(ζ) = i〈ζ|A〉− 1

2
ζηζθB

ηθ+

∫ (
ei〈ζ|y〉−1−i〈ζ|y〉 [|y| ≤ 1]

)
ν(dy) . (4.6.12)

(A, B, ν) is called the characteristic triple of the Lévy process Z . Ac-

cording to lemma 4.6.4, it determines the law of Z .
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We now embark on a little calculation that forms the basis for the next two
results. Let F = (Fη)η=1...d : [0,∞) → Rd be a right-continuous function

whose components have finite variation and vanish after some fixed time, and
let h be a Borel function of relatively compact carrier on Rd

∗ × [0,∞). Set

M = −F ∗c̃Z , i.e., Mt
def= −

∫ t

0

〈Fs|dc̃Zs〉 ,

which is a continuous martingale with square function

vt
def= [M,M ]t = c[M,M ]t =

∫ t

0

FηsFθsB
ηθ ds , (4.6.13)

and set15 V def= h∗Z , i.e., Vt =

∫

[[[0,t]]]

hs(y) Z(dy, ds) .

Since the carrier [h 6= 0] is relatively compact, there is an ε > 0 such that
hs(y) = 0 for |y| < ε . Therefore V is a finite variation process without

continuous component and is constant between its jumps

∆Vs = hs(∆Zs) , (4.6.14)

which have size at least ε > 0. We compute:

Et
def= exp (iMt + vt/2 + iVt)

by Itô: = 1 + i

∫ t

0

Es− dMs + i2/2

∫ t

0

Es− d
c[M,M ]s

+ 1/2

∫ t

0

Es− dvs

+ i

∫

[[0,T ]]

Es− dVs +
∑

0<s≤t
Es −Es− − iEs−∆Vs

by (4.6.13): = 1 + i

∫ t

0

Es− dMs

and (4.6.14): + i
∑

0<s≤t
Es−∆Vs +

∑

0<s≤t
Es−

(
ei∆Vs − 1 − i∆Vs

)

= 1 + i

∫ t

0

Es− dMs +
∑

0<s≤t
Es−

(
ei∆Vs − 1

)
.

Thus Et = 1 − i

∫ t

0

Es− 〈F |dc̃Z〉 +

∫

[[[0,t]]]

Es−·
(
eihs(y)−1

)
Z(dy, ds) . (4.6.15)
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The Martingale Representation Theorem

The martingale representation theorem 4.2.15 for Wiener processes extends

to Levy processes. It comes as a first application of equation (4.6.15): take

t = ∞ and multiply (4.6.15) by the complex constant

exp
(
−v∞/2 − i

∫

[[[0,∞)))

hs(y) ̂Z(dy, ds)
)

to obtain exp
(
i
(∫ ∞

0

〈c̃Z|dF 〉 +

∫

[[[0,∞)))

hs(y) ̃Z(dy, ds)
))

(4.6.16)

= c+

∫ ∞

0

〈Xs|dc̃Zs〉 +

∫

[[[0,∞)))

Hs(y) ̃Z(dy, ds) , (4.6.17)

where c is a constant, X is some bounded previsible Rd-valued process that

vanishes after some instant, and H : [[[0,∞))) → R is some bounded previsible
random function that vanishes on [|y| < ε] for some ε > 0. Now observe

that the exponentials in (4.6.16), with F and h as specified above, form a
multiplicative class16 M of bounded F0

∞[Z]-measurable random variables

on Ω. As F and h vary, the random variables

∫ ∞

0

〈c̃Z|dF 〉 +

∫

[[[0,∞)))

hs(y) ̃Z(dy, ds)

form a vector space Γ that generates precisely the same σ-algebra as M = eiΓ

(page 410); it is nearly evident that this σ-algebra is F 0
∞[Z] . The point of

these observations is this: M is a multiplicative class that generates F 0
∞[Z]

and consists of stochastic integrals of the form appearing in (4.6.17).

Theorem 4.6.10 Suppose Z is a Lévy process. Every random variable

F ∈ L2
(
F0
∞[Z]

)
is the sum of the constant c = E[F ] and a stochastic integral

of the form ∫ ∞

0

〈Xs|dc̃Zs〉 +

∫

[[[0,∞)))

Hs(y) ̃Z(dy, ds) , (4.6.18)

where X = (Xη)η=1...d is a vector of predictable processes and H a pre-
dictable random function on [[[0,∞))) = Rd

∗ × [[0,∞)), with the pair (X, H)

satisfying

‖X, H ‖∗2 def=
(

E
[∫ ∗

XηsXθsB
ηθ ds+

∫ ∗
|H|2s(y) ν(dy) ds

])1/2

<∞ .

Proof. Let us denote by cM and jM the martingales whose limits at infinity
appear as the second and third entries of equation (4.6.17), by M their sum,

16 A multiplicative class is by (our) definition closed under complex conjugation. The
complex-conjugate Xη equals Xη , of course, when Xη is real.
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and let us compute E[|M |2∞] : since [cM, jM ] = 0,

E[|M |2∞] = E
[
[M,M ]∞

]
= E

[
[cM, cM ]∞ + [jM, jM ]∞

]

by 4.6.7 (iii): = E

[
c
[
cM, cM ]∞ +

∫

[[[0,∞)))

|H|2s(y)Z(dy, ds)

]

as c
Z

= ν × λ: = E

[∫
XηsXθsB

ηθ ds+

∫
|H|2s(dy) ν(dy)ds

]

=
(
‖X, H‖∗2

)2
.

Now the vector space of previsible pairs (X, H) with ‖X, H ‖∗
2
< ∞ is

evidently complete – it is simply the cartesian product of two L2-spaces –
and the linear map U that associates with every pair (X, H) the stochastic

integral (4.6.18) is an isometry of that set into L2
C

(
F0
∞[Z]

)
; its image I is

therefore a closed subspace of L2
C

(
F0
∞[Z]

)
and contains the multiplicative

class M , which generates F0
∞[Z] . We conclude with exercise A.3.5 on

page 393 that I contains all bounded complex-valued F 0
∞[Z]-measurable

functions and, as it is closed, is all of L2
C

(
F0
∞[Z]

)
. The restriction of U to

real integrands will exhaust all of L2
R

(
F0
∞[Z]

)
.

Corollary 4.6.11 For H ∈ L2(ν×λ) , H∗̃Z is a square integrable martingale.

Project 4.6.12 [93] Extend theorem 4.6.10 to exponents p other than 2 .

The Characteristic Function of the Jump Measure, in fact of the pair
(c̃Z, Z), can be computed from equation (4.6.15). We take the expectation:

et
def= E[Et] = 1 + E

[∫

[[[0,t]]]

Es−·
(
eihs(y)−1

)
Z(dy, ds)

]

as cZ = ν × λ: = 1 +

∫ t

0

es

∫

Rd
∗

(
eihs(y)−1

)
ν(dy) ds ,

whence e′t = et·φt with φt =

∫

Rd
∗

(
eiht(y)−1

)
ν(dy) ,

and so et = e
R t

0
φs ds = exp

(∫ t

0

∫

Rd
∗

(
eihs(y)−1

)
ν(dy) ds

)
.

Evaluating this at t = ∞ and multiplying with exp
(
−v∞/2

)
gives

E
[
exp

(
i

∫
c̃Z dF + i

∫
hs(y)Z(dy, ds)

)]

= exp
(−1

2

∫
FηsFθsB

ηθ ds
)
× exp

(∫ ∫ (
eihs(y)−1

)
ν(dy) ds

)
. (4.6.19)
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In order to illuminate this equation, let V denote the cartesian product of the
path space C d with the space M. def= M.(Rd∗ × [0,∞)

)
of Radon measures

on Rd∗ × [0,∞), the former given the topology of uniform convergence on
compacta and the latter the weak∗ topology σ

(
M., C00(Rd∗ × [0,∞))

)
(see

A.2.32). We equip V with the product of these two locally convex topologies,
which is metrizable and locally convex and, in fact, Fréchet. For every pair

(F , h), where F is a vector of distribution functions on [0,∞) that vanish
ultimately and h : Rd∗ × [0,∞) → R is continuous and of compact support,

consider the function

γF ,h : (z, µ) 7→
∫ ∞

0

〈z|dF 〉 +

∫

Rd
∗×[0,∞)

hs(y) µ(dy, ds) .

The γF ,h are evidently continuous linear functionals on V , and their collec-

tion forms a vector space 17 Γ that generates the Borels on V . If we consider
the pair (c̃Z, Z) as a V-valued random variable, then equation (4.6.19) sim-

ply says that the law L of this random variable has the characteristic function
L̂Γ(γF ,h) given by the right-hand side of equation (4.6.19). Now this is the

product of the characteristic function of the law of c̃Z with that of Z . We
conclude that the Wiener process c̃Z and the random measure Z are inde-

pendent. The same argument gives

Proposition 4.6.13 Suppose Z(1), . . . ,Z(K) are Rd-valued Lévy proces-

ses on (Ω,F.,P) . If the brackets [Z(k)η, Z(l)θ] are evanescent whenever
1 ≤ k 6= l ≤ K and 1 ≤ η, θ ≤ d , then the Z(1), . . . ,Z(K) are independent.

Proof. Denote by (A(k), B(k), ν(k)) the characteristic triple of Z(k) and by
L(k) its law on V , and define Z =

∑
k Z(k) . This is a Lévy process, whose

characteristic triple shall be denoted by (A, B, ν). Since by assumption no
two of the Z(k) ever jump at the same time, we have

∑

s≤t
Hs(∆Zs) =

∑

k

∑

s≤t
Hs(∆Z(k)

s )

for any Hunt function H, which signifies that Z =
∑
k Z(k)

and implies that ν =
∑
kν

(k) .

From (4.6.9) B =
∑
kB

(k) ,

since c
[
Z(k),Z(l)

]
= 0. Let F (k) : [0,∞) → Rd , 1 ≤ k, l ≤ K , be right-

continuous functions whose components have finite variation and vanish after
some fixed time, and let h(k) be Borel functions of relatively compact carrier

on Rd∗ × [0,∞). Set

M = −
∑

1≤k≤K
F (k)∗c̃Z(k) ,

17 In fact, Γ is the whole dual V∗ of V (see exercise A.2.33).
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which is a continuous martingale with square function

vt
def= [M,M ]t = c[M,M ]t =

∑
k

∫ t

0

F
(k)
ηs F

(k)
θs B

(k)ηθ
ds ,

and set V =
∑
kh

(k)∗
Z(k) , i.e., Vt =

∑
k

∫

[[[0,t]]]

h(k)
s (y) 

Z(k)(dy, ds) .

A straightforward repetition of the computation leading to equation (4.6.15)
on page 260 produces

Et
def= exp (iMt + vt/2 + iVt)

= 1 − i

∫ t

0

Es− dMs +
∑
k

∫

[[[0,t]]]

Es−·
(
eih

(k)
s (y)−1

)

Z(k)(dy, ds)

and et
def= E[Et] = 1 + E

[∑
k

∫

[[[0,t]]]

Es−·
(
eih

(k)
s (y)−1

)

Z(k)(dy, ds)

]

= 1 +

∫ t

0

esφs ds with φs =
∑

k

∫

Rd
∗

(
eih

(k)
s (y)−1

)
ν(k)(dy) ,

whence et = e
R t

0
φs ds = exp

(∑
k

∫ t

0

∫

Rd
∗

(
eih

(k)
s (y)−1

)
ν(k)(dy) ds

)
.

Evaluating this at t = ∞ and dividing by exp(v∞/2) gives

E
[
exp

(
i
∑

k

(∫
c̃Z(k) dF (k) +

∫
h(k)
s (y)

Z(k)(dy, ds)
))]

=
∏

k

exp
(−1

2

∫
F (k)
ηs F

(k)
θs B

(k)ηθ ds
)
× exp

(∫ ∫ (
eih

(k)
s (y)−1

)
ν(k)(dy) ds

)

=
∏

k

L̂(k)(γF (k),h(k)

) : (4.6.20)

the characteristic function of the k-tuple
(
(c̃Z(k), 

Z(k))
)
1≤k≤K is the product

of the characteristic functions of the components. Now apply A.3.36.

Exercise 4.6.14 (i) Suppose A(k) are mutually disjoint relatively compact Borel

subsets of Rd∗ × [0,∞). Applying equation (4.6.20) with h(k) def= α(k)A(k) , show that

the random variables Z(A(k)) are independent Poisson with means (ν×λ)(A(k)).
In other words, the jump measure of our Lévy process is a Poisson point process on
Rd∗ with intensity rate ν , in the sense of definition 3.10.19 on page 185.

(ii) Suppose next that h(k) : Rd∗ → R are time-independent sure Hunt functions

with disjoint carriers. Then the indefinite integrals Z(k) def= h(k)∗fZ are independent

Lévy processes with characteristic triples (0, 0, h(k)ν) .

Exercise 4.6.15 If ζ is a Poisson point process with intensity rate ν and
f ∈ L1(ν), then f∗ζ is a Lévy process with values in R and with characteristic
triple (

R
f [|f | ≤ 1]dν, 0, f [ν]).
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Canonical Components of a Lévy Process

Since our Lévy process Z with characteristic triple (A, B, ν) is quasi-left-
continuous, the sparsely and previsibly supported part pZ of proposition 4.4.5

vanishes and the decomposition (4.4.3) of exercise 4.4.10 boils down to

Z = v̂Z + c̃Z + s̃Z + lZ . (4.6.21)

The following table shows the features of the various parts.

Part Given by Char. Triple Prev. Control

v̂Zt tA = ŝZt , see (4.6.10) (A, 0, 0) via (4.6.22)

c̃Zt σW , see lemma 4.6.8 (0, B, 0) via (4.6.23)

s̃Zt

∫
y · [|y| ≤ 1]×[[0, t]] ̃Z(dy, ds) (0, 0, sν) via (4.6.24)

lZt

∫
y · [|y| > 1]×[[0, t]] Z(dy, ds) (0, 0, lν) via (4.6.29)

To discuss the items in this table it is convenient to introduce some notation.

We write | | for the sup-norm | |∞ on vectors or sequences and | |
1

for the
`1-norm: |x |

1
=
∑
η |xη | . Furthermore we write

sν(dy) def= [|y| ≤ 1] ν(dy) for the small-jump intensity rate,

lν(dy) def= [|y| > 1] ν(dy) for the large-jump intensity rate,

and |µ|ρ def= sup
|x′|≤1

(∫ ∣∣〈x′|y〉
∣∣ρ µ(dy)

)1/ρ

, 0 < ρ <∞ ,

for any positive measure µ on Rd∗ . Now the previsible controllers Z〈ρ〉 of

inequality (4.5.20) on page 246 are given in terms of the characteristic triple
(A, B, ν) by

Z
〈ρ〉
t = t·





sup
|x′|≤1

(
〈x′|A〉 +

∫
〈x′|y〉 · [|y| > 1] ν(dy)

)
≤ |A|1 + |lν|11 , ρ = 1,

sup
|x′|≤1

(
x′ηx

′
θB

ηθ +

∫ ∣∣〈x′|y〉
∣∣2 ν(dy)

)
≤ |B| + |ν|22 , ρ = 2,

sup
|x′|≤1

(∫ ∣∣〈x′|y〉
∣∣ρ ν(dy)

)
= |ν|ρρ , ρ > 2,

provided of course that Z is a local Lq-integrator for some q ≥ 2 and ρ ≤ q .
Here |B| def= sup{x′ηx′θBηθ : |x′ |∞ ≤ 1} . Now the first three Lévy processes
v̂Z , c̃Z , and s̃Z all have bounded jumps and thus are Lq-integrators for all
q <∞ . Inequality (4.5.20) and the second column of the table above therefore

result in the following inequalities: for any previsible X , 2 ≤ p ≤ q < ∞ ,
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and instant t
∥∥∥X∗v̂Z?

t

∥∥∥
Lp

≤
(
|A|1 + |lν|1

)∥∥∥
∫ t

0

|X|s ds
∥∥∥
Lp
, (4.6.22)

∥∥∥X∗c̃Z?
t

∥∥∥
Lp

≤ C�(4.5.11)p · |B| ·
∥∥∥
(∫ t

0

|X|2s ds
)1/2∥∥∥

Lp
, (4.6.23)

and
∥∥∥X∗s̃Z?

t

∥∥∥
Lp

≤ C�p · max
ρ=2,q

|sν|ρ ·
∥∥∥
(∫ t

0

|X|ρs ds
)1/ρ∥∥∥

Lp
. (4.6.24)

Lastly, let us estimate the large-jump part lZ , first for 0 < p ≤ 1. To this

end let X be previsible and set Y def= X∗lZ . Then

|Y ?t |
p ≤

∑

s≤t

(
|Ys−| + |∆Ys|

)p − |Ys−|p

as p ≤ 1: ≤
∑

s≤t
|∆Ys|p =

∑

s≤t

∣∣∣〈Xs|∆lZs〉
∣∣∣
p

=

∫

[[[0,t]]]

|〈Xs|y〉|p · [|y| > 1] Z(dy, ds) .

Hence
∥∥∥X∗lZ?

t

∥∥∥
Lp

≤ |lν|p ·
(∫ ∫ t

0

|X|ps ds dP
)1/p

for 0 < p ≤ 1 . (4.6.25)

This inequality of course says nothing at all unless every linear functional

x′ on Rd has pth moments with respect to lν , so that |lν|p is finite. Let
us next address the case that |lν|p < ∞ for some p ∈ [1, 2]. Then lZ is an

Lp-integrator with Doob–Meyer decomposition

lZ = t ·
∫

y lν(dy) +

∫

[[[0,t]]]

y · [|y| > 1] ̃Z(dy, ds) .

With Y def= X∗lZ, a little computation produces

∥∥∥Ŷ ?t
∥∥∥
Lp

≤ |lν|p ·
(∫ ∫

|X|ps ds dP
)1/p

, (4.6.26)

and theorem 4.2.12 gives

∥∥∥Ỹ ?t
∥∥∥
Lp

≤ C(4.2.4)
p ·

∥∥∥St[Ỹ ]
∥∥∥
Lp

= Cp ·
∥∥∥
(∑

s≤t

∣∣∣〈Xs|∆l̃Zs〉
∣∣∣
2)1/2∥∥∥

Lp

≤ Cp ·
∥∥∥
(∑

s≤t

∣∣∣〈Xs|∆l̃Zs〉
∣∣∣
p)1/p∥∥∥

Lp

= Cp ·
(
E
[∫

[[[0,t]]]

|〈Xs|y〉|p · [|y| > 1] Z(dy, ds)
])1/p

≤ Cp |lν|p ·
(∫ ∫ t

0

|X|ps ds dP
)1/p

. (4.6.27)
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Putting (4.6.26) and (4.6.27) together yields, for 1 ≤ p ≤ 2,

∥∥∥X∗lZ?
t

∥∥∥
Lp

≤ 2p−1Cp |lν|p ·
(∫ ∫ t

0

|X|ps ds dP
)1/p

. (4.6.28)

If p ≥ 2 and |lν|p < ∞ , then we use inequality (4.6.26) to estimate the

predictable finite variation part l̂Z , and inequality (4.5.20) for the martingale

part l̃Z . Writing down the resulting inequality together with (4.6.25) and

(4.6.28) gives

∥∥∥X∗lZ?
t

∥∥∥
Lp

≤





Cp · |lν|p ·
∥∥∥
(∫ t

0

|X|ps ds
)1/p∥∥∥

Lp
for 0 < p ≤ 2,

Cp · max
ρ=2,q

|lν|ρ ·
∥∥∥
(∫ t

0

|X |ρs ds
)1/ρ∥∥∥

Lp
for 2 ≤ p ≤ q,

(4.6.29)

where Cp =





1 for 0 < p ≤ 1,

C(4.2.4)
p + 1 for 1 < p ≤ 2,

C�(4.5.11) for 2 ≤ p.

We leave to the reader the proof of the necessity part and the estimation of
the universal constants C

(ρ)
p (t) in the following proposition – the sufficiency

has been established above.

Proposition 4.6.16 Let Z be a Lévy process with characteristic triple

t = (A, B, ν) and let 0 < q < ∞ . Then Z is an Lq-integrator if and only if
its Lévy measure ν has qth moments away from zero:

|lν|q def= sup
|x′|≤1

(∫ ∣∣〈x′|y〉
∣∣q · [|y| > 1] ν(dy)

)1/q

<∞ .

If so, then there is the following estimate for the stochastic integral of a
previsible integrand X with respect to Z : for any stopping time T and any

p ∈ (0, q)

‖|X∗Z|?T ‖Lp ≤ max
ρ=1�,2,p�

C(ρ)
p (t) ·

∥∥∥
(∫ T

0

|Xs|ρ ds
)1/ρ∥∥∥

Lp
. (4.6.30)

Construction of Lévy Processes

Do Lévy processes exist? For all we know so far we could have been investi-

gating the void situation in the previous 11 pages.

Theorem 4.6.17 Let (A, B, ν) be a triple having the properties spelled out in

theorem 4.6.9 on page 259. There exist a probability space (Ω,F ,P) and on it
a Lévy process Z with characteristic triple (A, B, ν) ; any two such processes

have the same law.
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Proof. The uniqueness of the law has been shown in lemma 4.6.4. We prove
the existence piecemeal.

First the continuous martingale part c̃Z . By exercise 3.9.6 on page 161,
there is a probability space (c̃Ω, c̃F , c̃P) on which there lives a d-dimensional

Wiener process with covariance matrix B . This Lévy process is clearly a
good candidate for the continuous martingale part c̃Z of the prospective

Lévy process Z .
Next, the idea leading to the “jump part” j

Z def= s̃Z + lZ is this: we con-

struct the jump measure Z and, roughly (!), write j
Zt as

∫
[[[0,t]]]

y Z(dy, ds).
Exercise 4.6.14 (i) shows that Z should be a Poisson point process with inten-

sity rate ν on Rd∗ . The construction following definition (3.10.9) on page 184
provides such a Poisson point process π . The proof of the theorem will be

finished once the following facts have been established – they are left as an

exercise in bookkeeping:

Exercise 4.6.18 π has intensity ν×λ and is independent of c̃Z .

k
Zt

def=

Z

[[0,t]]

y · [2k < |y| ≤ 2k+1] π(dy, ds) , k ∈ Z ,

has independent stationary increments and is continuous in q-mean for all q < ∞;

it is an Lq-integrator, càdlàg after suitable modification. The sum

s̃
Z def=

X
k<0

fkZ
converges in the Iq-norm and is a martingale and a Lévy process with characteristic

triple (0, 0, sν), càdlàg after modification. Since the set [1 < |y|] is ν-integrable,

π([1 < |y|] × [0, t]) <∞ a.s. Now as π is a sum of point masses, this implies that

l
Zt

def=

Z

[[0,t]]

y · [1 < |y|] π(dy, ds) =
X

0≤k

k
Zt

is almost surely a finite sum of points in Rd∗ and defines a Lévy process lZ with

characteristic triple (0, 0, lν). Finally, setting v̂Zt
def= A · t,

Zt
def=

v̂
Zt + c̃

Zt + s̃
Zt + l

Zt

is a Lévy process with the given characteristic triple (A, B, ν), written in its
canonical decomposition (4.6.21).

Exercise 4.6.19 For d = 1 and ν = δ1 the point mass at 1 ∈ R , Zt is a Poisson

process and has Doob–Meyer decomposition Zt = t+ eZt .

Feller Semigroup and Generator

We continue to consider the Lévy process Z in Rd with convolution semi-
group µ. of distributions. We employ them to define bounded linear

operators18

φ 7→ Ttφ (y) def= E
[
φ(z+Zt)

]
=

∫

Rn

φ(y+z) µt(dz) =
(
*µt?φ

)
(y) . (4.6.31)

18 *φ(x) def= φ(−x) and *µ(φ) def= µ(*φ) define the reflections through the origin *φ and *µ.
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They are easily seen to form a conservative Feller semigroup on C0(Rd)
(see exercise A.9.4). Here are a few straightforward observations. T. is

translation-invariant or commutes with translation. This means the
following: for any a ∈ Rd and φ ∈ C(Rd) define the translate φa by

φa(x) = φ(x − a); then Tt(φa) = (Ttφ)a .

The dissipative generator A def= dTt/dt|t=0 of T. obeys the positive max-
imum principle (see item A.9.8) and is again translation-invariant: for

φ ∈ dom(A) we have φa ∈ dom(A) and Aφa = (Aφ)a . Let us compute A .
For instance, on a function φ in Schwartz space 19 S , Itô’s formula (3.10.6)

gives4

φ(Zz
t ) = φ(z) +

∫ t

0+

φ;η(Z
z
s−) dsZηs +

1

2

∫ t

0+

φ;ηθ(Z
z
.−) dc[Zη, Zθ]s

+

∫ t

0

(
φ(Zz

s− + y)−φ(Zz
s−)−φ;η(Z

z
s−) · yη[|y| ≤ 1]

)
Z(dy, ds)

= Martt +

∫ t

0

Aηφ;η(Z
z
s ) ds+

1

2

∫ t

0

Bηθφ;ηθ(Z
z
s ) ds

+

∫ t

0

∫

Rd
∗

(
φ(Zz

s + y)−φ(Zz
s )−φ;η(Z

z
s ) · yη[|y| ≤ 1]

)
ν(dy) ds .

Here Zz
.

def= z + Z. , and part of the jump-measure integral was shifted into
the first term using definition (4.6.10). The second equality comes from

the identifications (4.6.11), (4.6.8), and (4.6.9). Since φ is bounded, the
martingale part Mart. is an integrable martingale; so taking the expectation

is permissible, and differentiating the result in t at t = 0 yields 4

Aφ(z) = Aηφ;η(z) +
1

2
Bηθφ;ηθ(z) (4.6.32)

+

∫ (
φ(z+y)−φ(z)−φ;η(z) yη[|y| ≤ 1]

)
ν(dy) .

Example 4.6.20 Suppose the Lévy measure ν has finite mass, |ν| def= ν(1) <∞,

and, with A def= A −
∫

y [|y| ≤ 1] ν(dy) ,

set4 Dφ(z) def= Aη
∂φ(z)

∂zη
+
Bηθ

2

∂2φ(z)

∂zη∂zθ

and J φ(z) def=

∫ (
φ(z+y)−φ(z)

)
ν(dy) = *ν?φ (z) − |ν|φ(z) .

Then evidently A = D + J . (4.6.33)

19 S = {φ ∈ C∞
b (Rn) : supx |x|k · |φ(x)| <∞ ∀ k ∈ N}.
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In the case that ν is atomic, J is but a linear combination of difference
operators, and in the general case we view it as a “continuous superposition”

of difference operators. Now J is also a bounded linear operator on C0(Rn),
and so

TJt = etJ def=
∑

(tJ )k/k!

is a contractive, in fact Feller, semigroup. With ν0 def= δ0 and νk def= νk−1?ν

denoting the k-fold convolution of ν with itself, it can be written

TJt φ = e
−t|ν|

∞∑

k=0

tk *νk?φ

k!
.

If D = 0, then the characteristic triple is (0, 0, ν), with ν(1) < ∞ . A Lévy

process with such a special characteristic triple is a compound Poisson
process. In the even more special case that D = 0 and ν is the Dirac

measure δa at a , the Lévy process is the Poisson process with jump a .
Then equation (4.6.33) reads Aφ(z) = φ(z + a) − φ(z) and integrates to

Ttφ(z) = e−t
∑

k≥0

tkφ(z + ka)

k!
.

D can be exponentiated explicitely as well: with γtB denoting the Gaussian

with covariance matrix B from definition A.3.50 on page 420, we have

TDt φ(z) =

∫
φ(z + At+ y)γtB(dy) = *γtB?φ−At (z) .

In general, the operators D and J commute on Schwartz space, which is a
core for either operator, and then so do the corresponding semigroups. Hence

TAt [φ] = TJt
[
TDt [φ]

]
= TDt

[
TJt [φ]

]
, φ ∈ C0(Rd) .

Exercise 4.6.21 (A Special Case of the Hille–Yosida Theorem) Let
(A, B, ν) be a triple having the properties spelled out in theorem 4.6.9 on page 259.
Then the operator A on S defined in equation (4.6.32) from this triple is conserva-
tive and dissipative on C0(Rd). A is closable and T. is the unique Feller semigroup
on C0(Rd) with generator A , which has S for a core.

Repeated Footnotes: 1963 2034 23510 23912 24914 25815 26116 26818
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Stochastic Differential Equations

We shall now solve the stochastic differential equation of section 1.1, which
served as the motivation for the stochastic integration theory developed so

far.

5.1 Introduction

The stochastic differential equation (1.1.9) reads 1

Xt = Ct +

∫ t

0

Fη[X] dZη . (5.1.1)

The previous chapters were devoted to giving a meaning to the dZη-integrals

and to providing the tools to handle them. As it stands, though, the equation
above still does not make sense; for the solution, if any, will be a right-

continuous adapted process – but then so will the Fη[X] , and we cannot

in general integrate right-continuous integrands. What does make sense in
general is the equation

Xt = Ct +

∫ t

0

Fη[X]s− dZ
η
s (5.1.2)

or, equivalently, X = C + Fη[X].−∗Zη = C + F [X].−∗Z (5.1.3)

in the notation of definition 3.7.6, and with F [X].− denoting the left-
continuous version of the matrix

F [X] =
(
Fη[X]

)
η=1...d

=
(
F νη [X]

)ν=1...n

η=1...d
.

In (5.1.3) now the integrands are left-continuous, and therefore previsible,

and thus are integrable if not too big (theorem 3.7.17).

The intuition behind equation (5.1.2) is that Xt = (Xν
t )ν=1...n is a vector

in Rn representing the state at time t of some system whose evolution is

1 Einstein’s convention is adopted throughout; it implies summation over the same indices
in opposite positions, for instance, the η in (5.1.1).

271
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driven by a collection Z =
{
Zη : 1 ≤ η ≤ d

}
of scalar integrators. The Fη

are the coupling coefficients, which describe the effect of the background

noises Zη on the change of X . C = (Cν)ν=1...n is the initial condition. Z1 is
typically time, so that F1[X]t− dZ1

t = F1[X]t− dt represents the systematic

drift of the system.

First Assumptions on the Data and Definition of Solution

The ingredients X,C, Fη, Z
η of equation (5.1.2) are for now as general as

possible, just so the equation makes sense. It is well to state their nature
precisely:

(i) Z1, . . . , Zd are L0-integrators. This is the very least one must assume
to give meaning to the integrals in (5.1.2). It is no restriction to assume that

Zη0 = 0, and we shall in fact do so. Namely, by convention Fη[X]0− = 0, so
that Zη and Zη − Zη0 has the same effect in driving X .

(ii) The coupling coefficients Fη are random vector fields. This means

that each of them associates with every n-vector of processes 2 X ∈ Dn an-
other n-vector Fη[X] ∈ Dn . Most frequently they are markovian; that is to

say, there are ordinary vector fields fη :Rn → Rn such that Fη is simply the
composition with fη : Fη[X]t = fη(Xt) = fη ◦Xt. It is, however, not neces-

sary, and indeed would be insufficient for the stability theory, to assume that

the correspondences X 7→ Fη[X] are always markovian. Other coefficients
arising naturally are of the form X 7→ Aη ·X , where Aη is a bounded matrix-

valued process2 in Dn×n . Genuinely non-markovian coefficients also arise in
context with approximation schemes (see equation (5.4.29) on page 323.)

Below, Lipschitz conditions will be placed on F that will ensure automat-

ically that the Fη are non-anticipating in the sense that at all stopping
times T

Fη[X]T = Fη[X
T ]T . (5.1.4)

To paraphrase: “at any time T the value of the coupling coefficient is de-
termined by the history of its argument up to that time.” It is sometimes

convenient to require that Fη[0] = 0 for 1 ≤ η ≤ d . This is no loss of
generality. Namely, X solves equation (5.1.3):

X = C + Fη[X].−∗Zη = C + F [X].−∗Z (5.1.5)

iff it solves X = 0C + 0Fη[X].−∗Zη = 0C + 0F [X].−∗Z , (5.1.6)

where 0C def= C + F [0].−∗Z is the adjusted initial condition and where 0F [X]
def= F [X].− − F [0].− is the adjusted coupling coefficient, which vanishes at

X = 0. Note that 0C will not, in general, be constant in time, even if C is.

2 Recall that D is the vector space of all càdlàg adapted processes and Dn is its n-fold
product, identified with the càdlàg Rn-valued processes.



5.1 Introduction 273

(iii) C ∈ Dn . In other words, C is an n-vector of adapted right-continuous
processes with left limits. We shall refer to C as the initial condition,

despite the fact that it need not be constant in time. The reason for this
generality is that in the stability theory of the system (5.1.2) time-dependent

additive random inputs C appear automatically – see equation (5.2.32) on
page 293. Also, in the form (5.1.6) the random input 0C is time-dependent

even if the C in the original equation is not.
(iv) X solves the stochastic differential equation on the stochastic

interval [[0, T ]] if the stopped process XT belongs to Dn and3

XT = CT + F [X].−∗ZT

or, equivalently, if XT = 0CT + 0F [X].−∗ZT ;

we also say that X solves the equation up to time T , or that X is a

strong solution on [[0, T ]]. In view of theorem 3.7.17 on page 137, there
is no question that the indefinite integrals on the right-hand side exist, at

least in the sense L0 . Clearly, if X solves our equation on both [[0, T1]] and
[[0, T2]] , then it also solves it on the union [[0, T1 ∨ T2]] . The supremum of the

(classes of the) stopping times T so that X solves our equation on [[0, T ]] is
called the lifetime of the solution X and is denoted by ζ[X] . If ζ[X] = ∞ ,

then X is a (strong) global solution.
As announced in chapter 1, stochastic differential equations will be solved

using Picard’s iterative scheme. There is an analog of Euler’s method that
rests on compactness and works when the coupling coefficients are merely

continuous. But the solution exists only in a weak sense (section 5.5), and
to extract uniqueness in the presence of some positivity is a formidable task

(ibidem, [104]).

We next work out an elementary example. Both the results and most of
the arguments explained here will be used in the stochastic case later on.

Example: The Ordinary Differential Equation (ODE)

Let us recall how Picard’s scheme, which was sketched on pages 1 and 5, works

in the deterministic case, when there is only one driving term, time. The
stochastic differential equation (5.1.2) is handled along the same lines; in fact,

we shall refer below, in the stochastic case, to the arguments described here
without carrying them out again. A few slightly advanced classical results

are developed here in detail, for use in the approximation of Stratonovich
equations (see page 321 ff.).

The ordinary differential equation corresponding to (5.1.2) is

xt = ct +

∫ t

0

f(xs) ds . (5.1.7)

3 If X is only defined on [[0, T ]], then XT shall mean that extension of X which is constant
on [[T,∞)).
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To paraphrase: “time drives the state in the direction of the vector field f .”

To solve it one defines for every path x. : [0,∞) → Rn the path u[x.]. by

u[x.]t = ct +

∫ t

0

f(xs) ds , t ≥ 0 .

Equation (5.1.7) asks for a fixed point of the map u . Picard’s method of

finding it is to design a complete norm ‖ ‖ on the space of paths with respect
to which u is strictly contractive. This means that there is a γ < 1 such

that for any two paths x′. , x.
∥∥u[x′.] − u[x.]

∥∥ ≤ γ ·
∥∥x′. − x.

∥∥ .
Such a norm is called a Picard norm for u or for (5.1.7), and the least γ

satisfying the previous inequality is the contractivity modulus of u for that
norm. The map u will then have a fixed point, solution of equation (5.1.7) –

see page 275 for how this comes about.

The strict contractivity of u usually derives from the assumption that the
vector field f on Rn is Lipschitz; that is to say, that there is a constant

L < ∞, the Lipschitz constant of f , such that 4

∣∣f(x′t) − f(xt)
∣∣ ≤ L ·

∣∣x′t − xt
∣∣ ∀ t ≥ 0 . (5.1.8)

For a path x. define as usual its maximal path |x|?. by |x|?t = sups≤t |xs| ,
t ≥ 0. Then inequality (5.1.8) has the consequence that for all t

∣∣f(x′.) − f(x.)
∣∣?
t
≤ L ·

∣∣x′. − x.
∣∣?
t
. (5.1.9)

If this is satisfied, then

‖x. ‖ = ‖x. ‖M def= sup
t>0

e−Mt · |x|?t = sup
t>0

e−Mt · |x|t (5.1.10)

is a clever choice of the Picard norm sought, just as long as M is chosen

strictly greater than L . Namely, inequality (5.1.9) implies
∣∣f(x′) − f(x)

∣∣?
t
≤ LeMt · e−Mt

∣∣x′ − x
∣∣?
t
≤ LeMt ·

∥∥x′. − x.
∥∥
M
. (5.1.11)

Therefore, multiplying the ensuing inequality

∣∣∣u[x′.]t − u[x.]t

∣∣∣ ≤
∣∣∣
∫ t

0

f(x′s) − f(xs) ds
∣∣∣ ≤

∫ t

0

∣∣f(x′) − f(x)
∣∣?
s
ds

≤ L·
∥∥x′. − x.

∥∥
M
·
∫ t

0

eMs ds ≤ L

M
·
∥∥x′. − x.

∥∥
M

· eMt

by e−Mt and taking the supremum over t results in

∥∥u[x′.] − u[x.]
∥∥
M

≤ γ ·
∥∥x′. − x.

∥∥
M
, (5.1.12)

4 | | denotes the absolute value on R and also any of the usual and equivalent `p-norms
| |p on Rk , Rn , Rk×n , etc., whenever p does not matter.
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with γ def= L/M < 1. Thus u is indeed strictly contractive for ‖ ‖
M

.
The strict contractivity implies that u has a unique fixed point. Let us

review how this comes about. One picks an arbitrary starting path x(0)
. ,

for instance x(0)
. ≡ 0, and defines the Picard iterates by x(n+1)

.
def= u[x(n)

. ]. ,

n = 0, 1, . . .. A simple induction on inequality (5.1.12) yields
∥∥∥x(n+1)

. − x(n)
.

∥∥∥
M

≤ γn ·
∥∥∥u[x(0)

. ] − x(0)
.

∥∥∥
M

and
∞∑

n=1

∥∥∥x(n+1)
. − x(n)

.

∥∥∥
M

≤ γ

1 − γ
·
∥∥∥u[x(0)

. ] − x(0)
.

∥∥∥
M
. (5.1.13)

Provided that
∥∥∥u[x(0)

. ] − x(0)
.

∥∥∥
M
<∞ , (5.1.14)

the collapsing sum x. def= x(1)
. +

∞∑

n=1

(
x(n+1)
. − x(n)

.

)
= lim
n→∞

x(n)
. (5.1.15)

converges in the Banach space sM of paths y. : [0,∞) → Rn that have
‖y.‖M < ∞. Since u[x.] = limn u[x(n)] = limn x

(n+1) = x, the limit x. is

a fixed point of u . If x′. is any other fixed point in sM , then ‖x′. − x.‖
≤ ‖u[x′.] − u[x.]‖ ≤ γ · ‖x′. − x.‖ implies that ‖x′. − x. ‖ = 0: inside sM ,

x. is the only solution of equation (5.1.7). There is a priori the possibility
that there exists another solution in some space larger than sM ; generally

some other but related reasoning is needed to rule this out.

Exercise 5.1.1 The norm ‖ ‖ used above is by no means the only one that

does the job. Setting instead ‖x. ‖ def=
R∞

0
|x|?t ·Me−Mt dt , with M > L , defines a

complete norm on continuous paths, and u is strictly contractive for it.

Let us discuss six consequences of the argument above — they concern

only the action of u on the Banach space sM and can be used literally or
minutely modified in the general stochastic case later on.

5.1.2 General Coupling Coefficients To show the strict contractivity of u ,
only the consequence (5.1.9) of the Lipschitz condition (5.1.8) was used.

Suppose that f is a map that associates with every path x. another one,
but not necessarily by the simple expedient of evaluating a vector field at the

values xt . For instance, f(x.). could be the path t 7→ φ(t, xt), where φ is a
measurable function on R+×Rn with values in Rn , or it could be convolution

with a fixed function, or even the composition of such maps. As long as in-
equality (5.1.9) is satisfied and u[0] belongs to sM , our arguments all apply

and produce a unique solution in sM .

5.1.3 The Range of u Inequality (5.1.14) states that u maps at least one –
and then every – element of sM into sM . This is another requirement on

the system equation (5.1.7). In the present simple sure case it means that
‖c. +

∫ .
0
f(0) ds‖

M
< ∞ and is satisfied if c. ∈ sM and f(0). ∈ sM , since

‖
∫ .
0
f(0)s ds‖M ≤ ‖f(0).‖M/M .
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5.1.4 Growth Control The arguments in (5.1.12)–(5.1.15) produce an a priori
estimate on the growth of the solution x. in terms of the initial condition

and u[0] . Namely, if the choice x(0)
. = 0 is made, then equation (5.1.15) in

conjunction with inequality (5.1.13) gives

‖x.‖M ≤
∥∥∥x(1)

.

∥∥∥
M

+
γ

1−γ ·
∥∥∥x(1)

.

∥∥∥
M

=
1

1−γ ·
∥∥∥c.+

∫ .

0

f(0)s ds
∥∥∥
M
. (5.1.16)

The very structure of the norm ‖ ‖
M

shows that |xt| grows at most expo-

nentially with time t .

5.1.5 Speed of Convergence The choice x(0)
. ≡ 0 for the zeroth iterate is

popular but not always the most cunning. Namely, equation (5.1.15) in

conjunction with inequality (5.1.13) also gives
∥∥∥x. − x(1)

.

∥∥∥
M

≤ γ

1 − γ
·
∥∥∥x(1)

. − x(0)
.

∥∥∥
M

and
∥∥∥x. − x(0)

.

∥∥∥
M

≤ 1

1 − γ
·
∥∥∥x(1)

. − x(0)
.

∥∥∥
M
.

We learn from this that if x(0)
. and the first iterate x(1)

. do not differ much,

then both are already good approximations of the solution x. . This innocent
remark can be parlayed into various schemes for the pathwise solution of a

stochastic differential equation (section 5.4). For the choice x(0)
. = c. the

second line produces an estimate of the deviation of the solution from the

initial condition:

‖x. − c. ‖M ≤ 1

1−γ ·
∥∥∥
∫ .

0

f(c)s ds
∥∥∥
M

≤ 1

M(1−γ)
· ‖f(c).‖M . (5.1.17)

5.1.6 Stability Suppose f ′ is a second vector field on Rn that has the

same Lipschitz constant L as f , and c′. is a second initial condition. If
the corresponding map u′ maps 0 to sM , then the differential equation

x′t = c′t +
∫ t
0
f ′(x′s) ds has a unique solution x′. in sM . The difference

δ.
def= x′.−x. is easily seen to satisfy the differential equation

δt = (c′−c)t +

∫ t

0

g(δs) ds ,

where g : δ 7→ f ′(δ+ x)− f(x) has Lipschitz constant L . Inequality (5.1.16)

results in the estimates
∥∥x′.−x.

∥∥
M

≤ 1

1−γ
∥∥∥(c′−c). +

∫ .

0

f ′(xs)−f(xs) ds
∥∥∥
M
, (5.1.18)

and
∥∥x.−x′.

∥∥
M

≤ 1

1−γ
∥∥∥(c−c′). +

∫ .

0

f(x′s)−f ′(x′s) ds
∥∥∥
M
,

reversing roles. Both exhibit neatly the dependence of the solution x on
the ingredients c, f of the differential equation. It depends, in particular,

Lipschitz-continuously on the initial condition c .
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5.1.7 Differentiability in Parameters If initial condition and coupling coeffi-
cient of equation (5.1.7) depend differentiably on a parameter u that ranges

over an open subset U ⊂ Rk , then so does the solution. We sketch a proof
of this, using the notation and terminology of definition A.2.45 on page 388.

The arguments carry over to the stochastic case (section 5.3), and some of
the results developed here will be used there.

Formally differentiating the equation x[u]t = c[u]t +
∫ t
0
f(u, x[u]s) ds gives

Dx[u]t =
(
Dc[u]t+

∫ t

0

D1f(u, x[u]s)ds
)
+

∫ t

0

D2f(u, x[u]s)·Dx[u]sds . (5.1.19)

This is a linear differential equation for an n× k-matrix-valued path Dx[u]. .
It is a matter of a smidgen of bookkeeping to see that the remainder

Rx[v;u]s
def= x[v]s − x[u]s −Dx[u]s·(v−u)

satisfies the linear differential equation

Rx[v;u]t =
(
Rc[v;u]t +

∫ t

0

Rf
(
u, x[u]s; v, x[v]s

)
ds
)

(5.1.20)

+

∫ t

0

D2f
(
u, x[u]s

)
·Rx[v;u]s ds .

At this point we should show that 5
∣∣Rx[v;u]t

∣∣ = o(|v−u|) as v → u ; but the

much stronger conclusion

‖Rx[v;u].‖M = o(|v−u|) (5.1.21)

seems to be in reach. Namely, if we can show that both

‖Rc[v;u].‖ = o(|v−u|) (5.1.22)

and ‖Rf(u, x[u].; v, x[v].)‖ = o(|v−u|) ,

then (5.1.21) will follow immediately upon applying (5.1.16) to (5.1.20). Now

(5.1.22) will hold if we simply require that v 7→ c[v]. , considered as a map
from U to sM , be uniformly differentiable; and this will for instance be the

case if the family {c[ . ]t : t ≥ 0} is uniformly equidifferentiable.
Let us then require that f : U × Rn → Rn be continuously dif-

ferentiable with bounded derivative Df = (D1f,D2f). Then the com-
mon coupling coefficient D2f(u, x) of (5.1.19) and (5.1.20) is bounded by

L def= supu,x D2f(u, x)
Rk×n→Rn (see exercise A.2.46 (iii)), and for every

M > L the solutions x[u]. , u ∈ U , lie in a common ball of sM . One

hopes of course that the coupling coefficient

F : U × sM → sM , F : (u, x.) 7→ f(u, x.)

5 For o( . ) and O( . ) see definition A.2.44 on page 388.
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is differentiable. Alas, it is not, in general. We leave it to the reader (i) to
fashion a counterexample and (ii) to establish that F is weakly differentiable

from U × sM to sM , uniformly on every ball [Hint: see example A.2.48
on page 389]. When this is done a first application of inequality (5.1.18)

shows that u → x[u]. is Lipschitz from U to sM , and a second one that
Rx[v;u]t = o(|v−u|) on any ball of U : the solution Dx[u]. of (5.1.19) really

is the derivative of v 7→ x[v]. at u . This argument generalizes without too
much ado to the stochastic case (see section 5.3 on page 298).

ODE: Flows and Actions

In the discussion of higher order approximation schemes for stochastic dif-
ferential equations on page 321 ff. we need a few classical results concerning

flows on Rn that are driven by different vector fields. They appear here in
the form of propositions whose proofs are mostly left as exercises. We as-

sume that the vector fields f, g : Rn → Rn appearing below are at least once
differentiable with bounded and Lipschitz-continuous partial derivatives.

For every x ∈ Rn let ξ. = ξf. (x) = ξ[x, . ; f ] denote the unique solution of
dXt = f(Xt) dt , X0 = x , and extend to negative times t via ξft (x) def= ξ−f−t (x).

Then

d ξft (x)

dt
= f

(
ξft (x)

)
∀ t ∈ (−∞,+∞) , with ξf0 (x) = x . (5.1.23)

This is the flow generated by f on Rn . Namely,

Proposition 5.1.8 (i) For every t ∈ R , ξft : x 7→ ξft (x) is a Lipschitz-
continuous map from Rn to Rn , and t 7→ ξft is a group under composition;

i.e., for all s, t ∈ R
ξft+s = ξft ◦ ξfs .

(ii) In fact, every one of the maps ξft : Rn → Rn is differentiable, and

the n×n-matrix
(
Dξft [x]

)µ
ν

def= ∂ξfµt (x)
/
∂xν of partial derivatives satisfies the

following linear differential equation, obtained by formal differentiation of

(5.1.23) in x :6

dDξft [x]

dt
= Df

(
ξft (x)

)
·Dξft [x] , Dξf0 [x] = In . (5.1.24)

Consider now two vector fields f and g . Their Lie bracket is the vector

field7

[f, g](x) def= Df(x) · g(x)−Dg(x) · f(x) ,

or1 [f, g]µ def= fµ;νg
ν − gµ;νf

ν , µ = 1, . . . , n .

6 In is the identity matrix on Rn .
7 Subscripts after semicolons denote partial derivatives, e.g., f;ν def=

∂f
∂xν , f;µν def=

∂2f
∂xν∂xµ .

Einstein’s convention is in force: summation over repeated indices in opposite positions is
implied.
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The fields f, g are said to commute if [f, g] = 0. Their flows ξf , ξg are
said to commute if

ξgt ◦ ξfs = ξfs ◦ ξgt , s, t ∈ R .

Proposition 5.1.9 The flows generated by f, g commute if and only if f, g do.

Proof. We shall prove only the harder implication, the sufficiency, which is
needed in theorem 5.4.23 on page 326. Assume then that [f, g] = 0. The

Rn-valued path

∆t
def= Dξft (x) · g(x)− g

(
ξft (x)

)
, t ≥ 0 ,

satisfies
d∆t

dt
= Df

(
ξft (x)

)
·Dξft (x) · g(x)−Dg

(
ξft (x)

)
· f
(
ξft (x)

)

as [f, g] = 0: = Df
(
ξft (x)

)
·Dξft (x) · g(x)−Df

(
ξft (x)

)
· g
(
ξft (x)

)

= Df
(
ξft (x)

)
· ∆t .

Since ∆0 = 0, the unique global solution of this linear equation is ∆. ≡ 0,

whence Dξft (x) · g(x) = g
(
ξft (x)

)
∀ t ∈ R . (∗)

Fix a t and set ∆′s
def= ξgs

(
ξft (x)

)
− ξft

(
ξgs (x)

)
, s ≥ 0 .

Then
d∆′s
ds

= g
(
ξgs
(
ξft (x)

))
−Dξft

(
ξgs (x)

)
· g
(
ξgs (x)

)

by (∗): = g
(
ξgs
(
ξft (x)

))
− g
(
ξft
(
ξgs (x)

))
,

and so |∆′s| ≤
∫ s

0

∣∣∣g
(
ξgσ
(
ξft (x)

))
− g
(
ξft
(
ξgσ(x)

))∣∣∣ dσ

≤ L ·
∫ s

0

|∆′σ| dσ .

By lemma A.2.35 ∆′. ≡ 0 : the flows ξf and ξg commute.

Now let f1, . . . , fd be vector fields on Rn that have bounded and Lipschitz

partial derivatives and that commute with each other; and let ξf1 , . . . , ξfd be

their associated flows. For any z = (z1, . . . , zd) ∈ Rd let

Ξf [ . , z] : Rn → Rn

denote the composition in any order (see proposition 5.1.9) of ξf1z1 , . . . , ξ
fd

zd .

Proposition 5.1.10 (i) Ξf is a differentiable action of Rd on Rn in the
sense that the maps Ξf [ . , z] : Rn → Rn are differentiable and

Ξf [ . , z + z′] = Ξf [ . , z] ◦ Ξf [ . , z′] , z, z′ ∈ Rd .

Ξf solves the initial value problem Ξf [x, 0] = x ,

∂ Ξf [x, z]

∂zθ
= fθ

(
Ξf [x, z]

)
, θ = 1, . . . , d .
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(ii) For a given z ∈ Rd let z. : [0, τ ] → Rd be any continuous and piecewise
continuously differentiable curve that connects the origin with z : z0 = 0 and

zτ = z . Then Ξf [x, z.] is the unique (see item 5.1.2) solution of the initial
value problem1

x. = x+

∫ .

0

fη(xσ)
dzησ
dσ

dσ , (5.1.25)

and consequently Ξf [x, z] equals the value xτ at τ of that solution.
In particular, for fixed z ∈ Rd set τ def= |z| , zσ

def= σz/τ , and f def= fη z
η/τ .

Then Ξf [x, z] is the value xτ at τ of the solution x. of the ordinary initial
value problem dxσ = f(xσ) dσ , x0 = x : Ξf [x, z] = ξ[x, τ ; f ] .

ODE: Approximation

Picard’s method constructs the solution x. of equation (5.1.7),

xt = c+

∫ t

0

f(xs) ds , (5.1.26)

as an iterated limit. Namely, every Picard iterate x(n)
. is a limit, by virtue

of being an integral, and x. is the limit of the x(n)
. . As we have seen, this

fact does not complicate questions of existence, uniqueness, and stability
of the solution. It does, however, render nearly impossible the numerical

computation of x. .

There is of course a plethora of approximation schemes that overcome this
conundrum, from Euler’s method of little straight steps to complex multistep

methods of high accuracy. We give here a common description of most single-
step methods. This is meant to lay down a foundation for the generalization

in section 5.4 to the stochastic case, and to provide the classical results needed
there. We assume for simplicity’s sake that the initial condition is a constant

c ∈ Rn .
A single-step method is a procedure that from a threshold or step

size δ and from the coefficient 8 f produces both a partition 0 = t0 < t1 < . . .
of time and a function

(x, t) 7→ ξ′[x, t] = ξ′[x, t; f ]

that has the following purpose: when the approximate solution x′t has been

constructed for 0 ≤ t ≤ tk , then ξ′ is used to extend it to [0, tk+1] via

x′t
def= ξ′[x′tk , t− tk] for tk ≤ t ≤ tk+1 . (5.1.27)

(ξ′ is typically evaluated only once per step, to compute the next point x′tk+1
.)

If the approximation scheme at hand satisfies this description, then we talk
about the method ξ′ . If the tk are set in advance, usually by tk

def= δ · k ,

8 If the coupling coefficient depends explicitely on time, apply the time rectification of
example 5.2.6.
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then it is a non-adaptive method ; if the next time tk+1 is determined from
δ , the situation at time tk , and its outlook ξ′[xtk , t− tk] at that time, then

the method ξ′ is adaptive. For instance, Euler’s method of little straight
steps is defined by ξ′[x, t] = x+ f(x)t ; it can be made adaptive by defining

the stop for the next iteration as

tk+1
def= inf{t > tk : |ξ′[x′tk , t− tk] − x′tk | ≥ δ} :

“proceed to the next calculation only when the increment is large enough to
warrant a new computation.”

For the remainder of this short discussion of numerical approximation a
non-adaptive single-step method ξ′ is fixed. We shall say that ξ′ has local

order r on the coupling coefficient f if there exists a constant m such that 4,9

for t ≥ 0
∣∣ξ′[c, t; f ]− ξ[c, t; f ]

∣∣ ≤ (|c|+1) × (mt)re
mt

. (5.1.28)

The smallest such m will be denoted by m[f ] = m[f ; ξ′] . If ξ′ has local

order r on all coefficients of class 10 C∞b , then it is simply said to have
local order r . Inequality (5.1.28) will then usually hold on all coefficients of

class Ckb provided that k is sufficiently large.
We say that ξ′ is of global order r > 0 on f if the difference of the exact

solution x. = ξ[c, . ; f ] of (5.1.26) from its approximate x′. , made for the
threshold δ via (5.1.27), satisfies an estimate ‖x′. − x. ‖m = (|c|+1) · O(δr)

for some constant m = m[f ; ξ′] . This amounts to saying that there exists a
constant b = b[f, ξ′] such that

∣∣x′t − ξ[c, t; f ]
∣∣ ≤ b·(|c|+1) × δremt

for all sufficiently small δ > 0, all t ≥ 0, and all c ∈ Rn . Euler’s method for

example is locally of order 2 on f ∈ C2
b , and therefore is globally of order 1

according to the following criterion, whose proof is left to the reader:

Criterion 5.1.11 (i) Suppose that the growth of ξ′ is limited by the inequality

|ξ′[c, t]| ≤ C′ · (|c|+1) eM
′t , with C′,M ′ constants. If |ξ′[c, t; f ] − ξ[c, t; f ]| =

(|c|+1) · O(tr) as t → 0, then ξ′ has local order r . The usual Runge–Kutta and
Taylor methods meet this description.

(ii) If the second-order mixed partials of ξ′ are bounded on Rn × [0, 1], say by
the constant L′ <∞, then, for δ ≤ 1,

|ξ′[c′, . ] − ξ′[c, . ]|?
δ
≤ eL

′δ · |c′−c| .
(iii) If ξ′ satisfies this inequality and has local order r , then it has global or-

der r−1.

9 This definition is not entirely standard – see however criterion 5.1.11 (i). In the present
formulation, though, the notion is best used in, and generalized to, stochastic equations.
10 A function f is of class Ck if it has continuous partial derivatives of order 1, . . . , k . It
is of class Ckb if it and these partials are bounded. One also writes f ∈ Ckb ; f is of class

C∞
b if it is of class Ckb for all k ∈ N.
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Note 5.1.12 Scaling provides a cheap way to produce new single-step meth-
ods from old. Here is how. With the substitutions s def= ασ and yσ

def= xασ ,

equation (5.1.26) turns into

yτ = c+

∫ τ

0

αf(yσ) dσ .

Now |yτ − ξ′[c, τ ;αf ]| ≤ (|c|+1) × (m[αf ]τ)r e
m[αf ]τ

begets |xt − ξ′[c, t/α;αf ]| ≤ (|c|+1) ×
(
m[αf ]

α
· t
)r

× e
m[αf ]

α ·t
.

That is to say, ξ′α : (c, t; f) 7→ ξ′[c, t/α;αf ] is another single-step method of

local order r + 1 and constant m[αf ]/α . If this constant is strictly smaller
than m[f ] , then the new method ξ′α is clearly preferable to ξ′ .

It is easily seen that Taylor methods and Runge–Kutta methods are in

fact scale-invariant in the sense that ξ′α = ξ′ for all α > 0. The constant
m[f ; ξ′] due to its minimality then equals the infimum over α of the constants

m[αf ]/α , and this evidently has the following effect whenever the method ξ ′

has local order r on f :

If ξ′ is scale-invariant, then m[αf ; ξ′] = m[f ; ξ′]
/
α for all α > 0 .

5.2 Existence and Uniqueness of the Solution

We shall in principle repeat the arguments of pages 274–281 to solve and

estimate the general stochastic differential equation (5.1.2), which we recall
here:1

X = C + Fη[X].−∗Zη , or X = C + F [X].−∗Z . (5.2.1)

To solve this equation we consider of course the map U from the vector space

Dn of càdlàg adapted Rn-valued processes to itself that is given by

U[X] def= C + F [X].−∗Z .

The problem (5.2.1) amounts to asking for a fixed point of U . As in the ex-
ample of the previous section, its solution lies in designing complete norms 11

with respect to which U is strictly contractive, Picard norms.

Henceforth the minimal assumptions (i)–(iii) of page 272 are in effect.
In addition we will require throughout this and the next three sections that

Z = (Z1, . . . , Zd) is a local Lq(P)-integrator for some 12 q ≥ 2 – except when
this stipulation is explicitely rescinded on occasion.

11 They are actually seminorms that vanish on evanescent processes, but we shall follow
established custom and gloss over this point (see exercise A.2.31 on page 381).
12 This requirement can of course always be satisfied provided we are willing to trade the
given probability P for a suitable equivalent probability P′ and to argue only up to some
finite stopping time (see theorem 4.1.2). Estimates with respect to P′ can be turned into
estimates with respect to P.
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The Picard Norms

We will usually have selected a suitable exponent p ∈ [2, q] , and with it a
norm ‖ ‖∗

Lp on random variables. To simplify the notation let us write

∣∣F ν
∣∣
∞

def= sup
1≤η≤d

|F νη | , and
∣∣F
∣∣
∞p

def=
( ∑

1≤ν≤n

∣∣F ν
∣∣p
∞

)1/p

(5.2.2)

for the size of a d-tuple F = (F1, . . . , Fd) of n-vectors. Recall also that the
maximal process of a vector X ∈ Dn is the vector composed of the maximal

functions of its components13.

In the ordinary differential equation of page 274 both driver and controller
were the same, to wit, time. In the presence of several drivers a common

controller should be found and used to clock a common time transformation.
The strictly increasing previsible controller Λ = Λ〈q〉[Z] of theorem 4.5.1 and

the associated continuous time transformation T . by predictable stopping
times

Tλ def= inf{t : Λt ≥ λ} (5.2.3)

of remark 4.5.2 come to mind. 14 Since Λt ≥ α · t , the T λ are bounded, so

that a negligible set in FTλ is nearly empty. Since Λt < ∞ ∀ t , the T λ

increase without bound as λ→ ∞ .

We use the time transformation and (5.2.2) to define, for any p ∈ [2, q]
and any M ≥ 1, functionals

p,M
and

?

p,M
, the Picard norms11

on vectors2 X = (X1, . . . , Xn) ∈ Dn

by X
p,M

def= sup
λ>0

e−Mλ ·
∥∥∥
∣∣XTλ−

∣∣
p

∥∥∥
∗

Lp(P)
,

which is less than X
?

p,M
def= sup

λ>0
e−Mλ ·

∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
∗

Lp(P)
. (5.2.4)

Then we set Sn
p,M

def=
{
X ∈ Dn : X

p,M
<∞

}
,

which clearly contains S?n
p,M

def=
{
X ∈ Dn : X

?

p,M
<∞

}
.

For the meaning of ‖ ‖∗
Lp(P)

see item A.8.21 on page 452; it is used instead of

‖ ‖
Lp(P)

to avoid worries about finiteness and measurability of its argument.

Definition (5.2.4) is a straighforward generalization of (5.1.10).

The next lemma illuminates the role of the functionals (5.2.4) in the control
of the driver Z :

13 X? def= (|X1|?, . . . |Xn|?) has size |X|?p ≤ |X?|p ≤ n1/p · |X|?p .
14 This is disingenuous; Λ and T . were of course specifically designed for the problem at
hand.
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Lemma 5.2.1 (i)
p,M

and
?

p,M
are seminorms on Sn

p,M and S?n
p,M ,

respectively. S?n
p,M is complete under

?

p,M
. A process X has Picard

norm11 X
?

p,M
= 0 if and only if it is evanescent.

(ii) X
?

p,M
increases as p increases and as M decreases and

X
?

p,M
= sup

{
X

?

p◦,M◦ : p◦ < p,M◦ > M
}
, X ∈ Dn .

(iii) On any d-tuple F = (F1, . . . , Fd) of adapted càdlàg Rn-valued proces-
ses

F.−∗Z
?

p,M
≤ C

�(4.5.1)
p

M1/p�
(5.2.5)

Proof. Parts (i) and (ii) are quite straightforward and are left to the reader.
(iii) Pick a µ > 0 and let S be a stopping time that is strictly prior to T µ

on [Tµ > 0]. Fix a ν ∈ {1, . . . , n} . With that, theorem 4.5.1 gives

∥∥∥
(
F ν
.−∗Z

)?
S

∥∥∥
∗

Lp
≤ C�(4.5.1)p · max

ρ=1�,p�

∥∥∥
(∫ S

0

∣∣F ν
s−
∣∣ρ
∞ dΛs

)1/ρ∥∥∥
∗

Lp(P)

by theorem 2.4.7: ≤ C�p · max
ρ

∥∥∥
(∫

[Tλ≤S]

∣∣F ν
Tλ−

∣∣ρ
∞ dλ

)1/ρ∥∥∥
∗

Lp(P)

(!) ≤ C�p · max
ρ

∥∥∥
(∫

[λ≤µ]

∣∣F ν
Tλ−

∣∣ρ
∞ dλ

)1/ρ∥∥∥
∗

Lp(P)
. (!)

The previsibility of the controller Λ is used in an essential way at (!) . Namely,
Tλ ≤ Tµ does not in general imply λ ≤ µ – in fact, λ could exceed µ by as

much as the jump of Λ at T µ . However, T λ < Tµ does imply λ < µ , and we
produce this inequality by calculating only up to a stopping time S strictly

prior to T µ . That such exist arbitrarily close to T µ is due to the previsibility
of Λ, which implies the predictability of T µ (exercise 3.5.19). We use this

now: letting the S above run through a sequence announcing T µ yields

∥∥∥
(
F ν
.−∗Z

)?
Tµ−

∥∥∥
∗

Lp(P)
≤ C�p · max

ρ=1�,p�

∥∥∥
(∫ µ

0

∣∣F ν
Tλ−

∣∣ρ
∞ dλ

)1/ρ∥∥∥
∗

Lp(P)
. (5.2.6)

Applying the `p-norm | |p to these n-vectors and using Fubini produces

∥∥∥
∣∣∣
(
F.−∗Z

)?
Tµ−

∣∣∣
p

∥∥∥
∗

Lp(P)
≤ C�p · max

ρ

∥∥∥
∣∣∣
(∫ µ

0

∣∣FTλ−
∣∣ρ
∞ dλ

)1/ρ∣∣∣
p

∥∥∥
∗

Lp(P)

by exercise A.3.29: ≤ C�p · max
ρ

(∫ µ

0

∥∥∥
∣∣FTλ−

∣∣
∞p

∥∥∥
∗ρ

Lp(P)
dλ
)1/ρ

by definition (5.2.4): ≤ C�p · max
ρ

(∫ µ

0

|F |∞
ρ

p,M
· eMλρ dλ

)1/ρ

= C�p · |F |∞ p,M
· max

ρ

(∫ µ

0

eMλρ dλ
)1/ρ
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with a little calculus: < C�p · |F |∞ p,M
· max
ρ=1�,p�

eMµ

(Mρ)1/ρ

since M ≥ 1 ≤ ρ1/ρ : ≤ C�p e
Mµ

M1/p�
· |F |∞ p,M

.

Multiplying this by e−Mµ and taking the supremum over µ > 0 results in
inequality (5.2.5).

Note here that the use of a sequence announcing T µ provides information

only about the left-continuous version of
(
F.−∗Z

)?
at Tµ ; this explains why

we chose to define X
p,M

and X
?

p,M
using the left-continuous versions

X.− and X?
.− rather than X. and X?

. itself. However, if Z is quasi-left-
continuous and therefore Λ is continuous (exercise 4.5.16) and T . strictly

increasing,15 then we can define
p,M

and
?

p,M
using X?

. itself, with in-
equality (5.2.5) persisting. In fact, the computation leading to this inequality

then simplifies a little, since we can take S = T µ to start with.

Here are further useful facts about the functionals
p,M

and
?

p,M
:

Exercise 5.2.2 Let ∆η ∈ L with |∆η| ≤ δ ∈ R+ . Then ∆η∗Zη ?

p,M
≤ δC�

p/eM .

Exercise 5.2.3 Let p ∈ [2, q] and M > 0. The seminorm

X 7→ X
.
p,M

def=
“ X

1≤ν≤n

Z ∞

0

‚‚Xν?
Tλ−

‚‚∗p
Lp Me−Mλdλ

”1/p

is complete on S
.
p,M

def=
n
X ∈ D

n : X
.
p,M

<∞
o

and satisfies the following analog of inequality (5.2.5):

F.−∗Z .
p,M

≤ C�(4.5.1)
p

“ 1

M1/p
∨ p

M

”
· |F |∞ .

p,M
.

Furthermore, p 7→ X
.
p,M

is increasing, M 7→ X
.
p,M

is decreasing, and

X
.
p,M′ ≤

“ M ′

M ′ −Mp

”1/p

X
?

p,M
for M ′ > Mp ,

and X
?

p,M
≤ X

.
p,M′ for M ′ ≤Mp .

The seminorms
.
p,M

are just as good as the
?

p,M
for the development.

Lipschitz Conditions

As above in section 5.1 on ODEs, Lipschitz conditions on the coupling coeffi-

cient F are needed to solve (5.2.1) with Picard’s scheme. A rather restrictive

15 This happens for instance when Z is a Lévy process or the solution of a stochastic
differential equation driven by a Lévy process (see exercise 5.2.17).
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one is this strong Lipschitz condition: there exists a constant L < ∞
such that for any two X,Y ∈ Dn

∣∣(F [Y ] − F [X]
)
.−
∣∣
∞p ≤ L ·

∣∣Y −X
∣∣
p

(5.2.7)

up to evanescence. It clearly implies the slightly weaker Lipschitz condition
∣∣(F [Y ] − F [X]

)
.−
∣∣
∞p ≤ L ·

∣∣(Y −X
)?∣∣

p
, (5.2.8)

which is to say that at any finite stopping time T almost surely
(∑

ν

sup
η

∣∣(F νη [Y ]−F νη [X]
)
T−
∣∣p
)

1/p ≤ L ·
(∑

ν

sup
s≤T

|Y ν−Xν |ps
)

1/p
.

These conditions are independent of p in the sense that if one of them holds for
one exponent p ∈ (0,∞], then it holds for any other, except that the Lipschitz
constant may change with p. Inequality (5.2.8) implies the following rather
much weaker p-mean Lipschitz condition:

∥∥∥
∣∣(F [Y ] − F [X]

)
T−
∣∣
∞p

∥∥∥
Lp(P)

≤ L ·
∥∥∥
∣∣(Y−X

)?
t

∣∣
p

∥∥∥
Lp(P)

, (5.2.9)

which in turn implies that at any predictable stopping time T

∥∥∥
∣∣(F [Y ] − F [X]

)
T−
∣∣
∞p

∥∥∥
Lp(P)

≤ L ·
∥∥∥
∣∣(Y−X

)?
T−
∣∣
p

∥∥∥
Lp(P)

, (5.2.10)

in particular for the stopping times T λ of the time transformation (5.2.3)
∥∥∥
∣∣(F [Y ]−F [X]

)
Tλ−

∣∣
∞p

∥∥∥
Lp(P)

≤ L ·
∥∥∥
∣∣(Y−X

)?
Tλ−

∣∣
p

∥∥∥
Lp(P)

, (5.2.11)

whenever X,Y ∈ Dn . Inequality (5.2.10) can be had simply by applying

(5.2.9) to a sequence that announces T and taking the limit. Finally, mul-
tiplying (5.2.11) with e−Mλ and taking the supremum over λ > 0 results

in ∣∣F [Y ]−F [X]
∣∣
∞ p,M

≤ L · X − Y
?

p,M
(5.2.12)

for X,Y ∈ Dn . This is the form in which any Lipschitz condition will enter
the existence, uniqueness, and stability proofs below. If it is satisfied, we say

that F is Lipschitz in the Picard norm. 11 See remark 5.2.20 on page 294
for an example of a coupling coefficient that is Lipschitz in the Picard norm

without being Lipschitz in the sense of inequality (5.2.8).
The adjusted coupling coefficient 0F of equation (5.1.6) shares any or all

of these Lipschitz conditions with F , and any of them guarantees the non-
anticipating nature (5.1.4) of F and of 0F , at least at the stopping times

entering their definition.
Here are a few examples of coupling coefficients that are strongly Lipschitz

in the sense of inequality (5.2.7) and therefore also in the weaker senses of
(5.2.8)–(5.2.12). The verifications are quite straightforward and are left to

the reader.
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Example 5.2.4 Suppose the Fη are markovian, that is to say, are of the form
Fη[X] = fη ◦X , with fη : Rn → Rn vector fields. If the fη are Lipschitz,

meaning that4 ∣∣fη(x) − fη(y)
∣∣ ≤ Lη · |x− y | (5.2.13)

for some constants Lη and all x, y ∈ Rn , then F is Lipschitz in the sense of
(5.2.7). This will be the case in particular when the partial derivatives 16 fµη;ν
exist and are bounded for every η, ν, µ . Most Lipschitz coupling coefficients
appearing at present in physical models, financial models, etc., are of this

description. They are used when only the current state Xt of X influences
its evolution, when information of how it got there is irrelevant. Markovian

coefficients are also called autonomous.

Example 5.2.5 In a slight generalization, we call Fη an instantaneous

coupling coefficient if there exists a Borel vector field fη : [0,∞)×Rn → Rn

so that Fη[X]s = fη(s,Xs) for s ∈ [0,∞) and X ∈ Dn . If fη is equi-

Lipschitz in its spacial arguments, meaning that 4

sup
s

∣∣fη(s, x)− fη(s, y)
∣∣ ≤ Lη · |x− y |

for some constants Lη and all x, y ∈ Rn , then F is strongly Lipschitz in the
sense of (5.2.7). A markovian coupling coefficient clearly is instantaneous.

Example 5.2.6 (Time Rectification of Instantaneous Equations) The two

previous examples are actually not too far apart. Suppose the instantaneous

coefficients (s, x) 7→ fη(s, x) happen to be Lipschitz in all of their arguments,
which is to say ∣∣fη(s, x)− fη(t, y)

∣∣ ≤ Lη · |(s, x) − (t, y)| . (5.2.14)

Then we expand the driver by giving it the zeroth component Z0
t = t and

set Z` def= (Z0, Z1, . . . , Zd) ,

expand the state space from Rn to Rn+1 = (−∞,∞) × Rn,

setting X` def= (X0, X1, . . . , Xn) ,

expand the initial state to

C` def= (0, C1, . . . , Cn) ,

and consider the expanded and now markovian differential equation




X0

X1

...
Xn


 =




C0

C1

...
Cn


+




1 0 · · · 0

0 f1
1 (X`).− · · · f1

d (X`).−
...

...
. . .

...
0 fn1 (X`).− · · · fnd (X`).−


 ∗




Z0

Z1

...
Zd




or X` = C` + f`(X`).− ∗ Z` ,

16 Subscripts after semicolons denote partial derivatives, e.g., fη;ν def=
∂fη

∂xν , fη;µν def=
∂2fη

∂xν∂xµ .
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in obvious notation. The first line of this equation simply reads X0
t = t ; the

others combine to the original equation Xt = Ct +
∑d
η=1

∫ t
0
fη(s,Xs) dZ

η
s .

In this way it is possible to generalize very cheaply results about marko-
vian stochastic differential equations to instantaneous stochastic differential

equations, at least in the presence of inequality (5.2.14).

Example 5.2.7 We call F an autologous coupling coefficient if there exists

an adapted map17 f : Dn → Dn so that F [X].(ω) = f
[
X.(ω)

]
for nearly

all ω ∈ Ω. We say that such f is Lipschitz with constant L if 4 for any two

paths x., y. ∈ Dn and all t ≥ 0
∣∣f
[
x.
]
− f

[
y.
]∣∣
t− ≤ L · |x. − y. |?t . (5.2.15)

In this case the coupling coefficient F is evidently strongly Lipschitz, and

thus is Lipschitz in any of the Picard norms as well. Autologous 18 coupling

coefficients might be used to model the influence of the whole past of a path
of X. on its future evolution. Instantaneous autologous coupling coefficients

are evidently autonomous.

Example 5.2.8 A particular instance of an autologous Lipschitz coupling

coefficient is this: let v = (vνµ) be an n×n-matrix of deterministic càdlàg
functions on the half-line that have uniformly bounded total variation, and

let v act by convolution:

F ν [X]t(ω) def=

∫ ∞

−∞

∑
µX

µ
t−s(ω) dvνµs =

∫ t

0

∑
µX

µ
t−s(ω) dvνµs .

(As usual we think Xs = vs = 0 for s < 0.) Such autologous Lipschitz

coupling coefficients could model systematic influences of the past of X on
its evolution that abate as time elapses. Technical stock analysts who believe

in trends might use such coupling coefficients to model the evolution of stock
prices.

Example 5.2.9 We call F a randomly autologous coupling coefficient
if there exists a function f : Ω × Dn → Dn , adapted to F. ⊗ F.[Dn] , such

that F [X].(ω) = f
[
ω,X.(ω)

]
for nearly all ω ∈ Ω. We say that such f is

Lipschitz with constant L if 4 for any two paths x., y. ∈ Dn and all t ≥ 0
∣∣f
[
ω, x.

]
− f

[
ω, y.

]∣∣
t− ≤ L · |x. − y. |?t (5.2.16)

at nearly every ω ∈ Ω. In this case the coupling coefficient F is evidently
strongly Lipschitz, and thus is Lipschitz in any of the Picard norms as well.

Here are several examples of randomly autologous coupling coefficients:

17 See item 2.3.8. We may equip path space with its canonical or its natural filtration, ad

libitum; consistency behooves, however.
18 To the choice of word: if at the time of the operation the patient’s own blood is used,
usually collected previously on many occasions, then one talks of an autologous blood
supply.
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Example 5.2.10 Let D = (Dν
µ) be an n× n-matrix of uniformly bounded

adapted càdlàg processes. Then X 7→∑
µD

ν
µX

µ is Lipschitz in the sense of

(5.2.7). Such coupling coefficients appear automatically in the stability theory
of stochastic differential equations, even of those that start out with marko-

vian coefficients (see section 5.3 on page 298). They would generally be used
to model random influences that the past of X has on its future evolution.

Example 5.2.11 Let V = (V νµ ) be a matrix of adapted càdlàg processes that

have bounded total variation. Define F by

F ν [X]t(ω) def=

∫ t

0

∑
µX

µ
s (ω) dV νµs(ω) .

Such F is evidently randomly autologous and might again be used to model
random influences that the past of X has on its future evolution.

Example 5.2.12 We call F an endogenous coupling coefficient if there

exists an adapted function17 f : Dd × Dn → Dn so that

F [X].(ω) = f
[
Z.(ω), X.(ω)

]

for nearly all ω ∈ Ω. We say that such f is Lipschitz with constant L if 4

for any two paths x., y. ∈ Dn and all z. ∈ Dd and t ≥ 0

∣∣f
[
z., x.

]
− f

[
z., y.

]∣∣
t− ≤ L · |x. − y. |?t . (5.2.17)

In this case the coupling coefficient F is evidently strongly Lipschitz, and

thus is Lipschitz also in any of the Picard norms. Autologous coupling
coefficients are evidently endogenous. Conversely, simply adding the equation

Zη = δηθ∗Zθ to (5.2.1) turns that equation into an autologous equation for

the vector (X,Z) ∈ Dn+d . Equations with endogenous coefficients can be
solved numerically by an algorithm (see theorem 5.4.5 on page 316).

Example 5.2.13 (Permanence Properties) If F, F ′ are strongly Lipschitz
coupling coefficients with d = 1, then so is their composition. If the

F1, F2, . . . each are strongly Lipschitz with d = 1, then the finite collection
F def= (F1, . . . , Fd) is strongly Lipschitz.

Existence and Uniqueness of the Solution

Let us now observe how our Picard norms 11 (5.2.4) and the Lipschitz condi-
tion (5.2.12) cooperate to produce a solution of equation (5.2.1), which we

recall as X = C + Fη[X].−∗Zη ; (5.2.18)

i.e., how they furnish a fixed point of

U : X 7→ C + F [X].−∗Z .

We are of course after the contractivity of U .
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To establish it consider two elements X,Y in S?n
p,M and estimate:

U[Y ] − U[X]
?

p,M
= (F [Y ] − F [X]).−∗Z

?

p,M

by inequality (5.2.5): ≤ C�p
M1/p�

·
∣∣F [Y ] − F [X]

∣∣
∞ p,M

by inequality (5.2.12): ≤ LC�p
M1/p�

· Y −X
?

p,M
. (5.2.19)

Thus U is strictly contractive provided M is sufficiently large, say

M > M�p,L
def=
(
C�p L

)p�
. (5.2.20)

U then has modulus of contractivity

γ = γp,M,L
def=
(
M�p,L/M

)1/p�
(5.2.21)

strictly less than 1. The arguments of items 5.1.3–5.1.5, adapted to the
present situation, show that S?n

p,M contains a unique fixed point X of U

provided 0C def= C+F [0].−∗Z ∈ S?n
p,M , (5.2.22)

which is the same as saying that U[0] ∈ S?n
p,M ;

and then they even furnish a priori estimates of the size of the solution X

and its deviation from the initial condition, namely,

X
?

p,M
≤ 1

1 − γ
· 0C

?

p,M
, (5.2.23)

and X − C
?

p,M
≤ 1

1 − γ
· F [C].−∗Z

?

p,M
(5.2.24)

by inequality (5.2.5): ≤ C�p
(1−γ)M1/p�

· F [C]
?

p,M
. (5.2.25)

Alternatively, by solving equation (5.2.21) for M we may specify a modulus

of contractivity γ ∈ (0, 1) in advance:

if we set ML:γ
def= (10qL/γ)q , (5.2.26)

then ML:γ ≥M
�(5.2.20)
p,L /γp

�
,

and (5.2.5) turns into F.−∗Z
?

p,M
≤ γ

L
· |F |∞ p,M

(5.2.27)

≤ γ

L
· |F |∞

?

p,M
,

and (5.2.19) into U[Y ] − U[X]
?

p,M
≤ γ · Y −X

?

p,M

for all p ∈ [2, q] and all M ≥ML:γ simultaneously. To summarize:
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Proposition 5.2.14 In addition to the minimal assumptions (ii)–(iii) on
page 272 assume that Z is a local Lq-integrator for some q ≥ 2 and that F

satisfies19 the Picard norm Lipschitz condition (5.2.12) for some p ∈ [2, q]

and some M > M
�(5.2.20)
p,L . If

0C def= C + F [0].−∗Z belongs to S?n
p,M , (5.2.28)

then S?n
p,M contains one and only one strong global solution X of the stoch-

astic differential equation (5.2.18).

We are now in position to establish a rather general existence and uniqueness
theorem for stochastic differential equations, without assuming more about

Z than that it be an L0-integrator:

Theorem 5.2.15 Under the minimal assumptions (i)–(iii) on page 272 and
the strong Lipschitz condition (5.2.8) there exists a strong global solution X

of equation (5.2.18), and up to indistinguishability only one.

Proof. Note first that (5.2.8) for some p > 0 implies (5.2.8) and then (5.2.10)
for any probability equivalent with P and for any p ∈ (0,∞), in particular for

p = 2, except that the Lipschitz L constant may change as p is altered. Let
U be a finite stopping time. There is a probability P′ equivalent to the given

probability P such that the 2+d stopped processes |C?U |2 ,
∣∣(F [0].−∗Z

)
?U
∣∣
2 ,

and ZηU , η = 1 . . . d , are global L2(P′)-integrators. Namely, all of these

processes are global L0-integrators (proposition 2.4.1 and proposition 2.1.9),
and theorem 4.1.2 provides P′ . According to proposition 3.6.20, if X satisfies

X = CU + F [X].−∗ZU (5.2.29)

in the sense of the stochastic integral with respect to P , it satisfies the
same equation in the sense of the stochastic integral with respect to P′ ,
and vice versa: as long as we want to solve the stopped equation (5.2.29)
we might as well assume that |C?U |2 ,

∣∣(F [0].−∗Z
)
?U
∣∣
2 , and ZU are global

L2-integrators. Then condition (5.2.22) is clearly satisfied, whatever M > 0
(lemma 5.2.1 (iii)). We apply inequality (5.2.19) with p = q = 2 and

M > M
�(5.2.20)
2,L to make U strictly contractive and see that there is a solution

of (5.2.29). Suppose there are two solutions X,X ′ . Then we can choose
P′ so that in addition the difference X − X ′ , which stops after time U ,

is a global L2(P′)-integrator as well and thus belongs to S?n
2,M(P′). Since

the strictly contractive map U has at most one fixed point, we must have

X −X ′
?

2,M
= 0, which means that X and X ′ are indistinguishable. Let

XU denote the unique solution of equation (5.2.29). We let U run through

a sequence (Un) increasing to ∞ and set X = limXUn . This is clearly a
global strong solution of equation (5.1.5), and up to indistinguishability the

only one.

19 This is guaranteed by any of the inequalities (5.2.7)–(5.2.11). For (5.2.12) to make sense
and to hold, F needs to be defined only on X,Y ∈ Sn

p,M . See also remark 5.2.20.
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Exercise 5.2.16 Suppose Z is a quasi-left-continuous Lp-integrator for some
p ≥ 2. Then its previsible controller Λ is continuous and can be chosen strictly
increasing; the time transformation T

.
is then continuous and strictly increasing as

well. Then the Picard iterates X(n) for equation (5.2.18) converge to the solution X
in the sense that for all λ <∞‚‚‚ |X(n) −X|?

Tλ

‚‚‚
Lp(P)

−−−→n→∞ 0 .

(i) Conclude from this that if both C and Z are local martingales, then so is X .
(ii) Use factorization to extend the previous statement to p ≥ 1. (iii) Suppose
the Tλ are chosen bounded as they can be, and both C and Z are p-integrable
martingales. Then XTλ is a p-integrable martingale on {FTλ : λ ≥ 0} .

Exercise 5.2.17 We say Z is surely controlled if there exists a right-continuous
increasing sure (deterministic) function η : R+ → R+ with η0 = 0 so that

dΛ〈q〉[Z] ≤ dη . In this case the stopping times T λ of equation (5.2.3) are surely
bounded from below by the instants

tλ def= inf{t : ηt ≥ λ} −−−→λ→∞ ∞ ,

which can be viewed as a deterministic time transform; and if 0C is a surely
controlled Lq-integrator and 0F is Lipschitz, then the unique solution of theo-
rem 5.2.15 is a surely controlled Lq-integrator as well.

An example of a surely controlled integrator is a Lévy process, in particu-
lar a Wiener process. Its previsible controller is of the form Λt = C · t , with

C = supρ,p≤q C
(ρ)(4.6.30)
p . Here T λ = λ/C .

Exercise 5.2.18 (i) Let W be a standard scalar Wiener process. Exercises 5.2.16
and 5.2.17 together show that the Doléans–Dade exponential of any multiple of W
is a martingale. Deduce the following estimates: for m ∈ R , p > 1, and t ≥ 0

‖Et[mW ]‖
Lp = e

m2(p−1)t/2
and

‚‚‚e|mW |?t
‚‚‚
Lp

≤ 2p′ · em
2pt/2

,

p′ def= p/(p−1) being the conjugate of p . (ii) Next let Zt = (t,W 2
t , . . . ,W

d
t ), where

W is a d−1-dimensional standard Wiener process. There are constants B ′,M ′

depending only on d , m ∈ R , p > 1, r > 1 so that
‚‚‚ |Z?|rt · em|Z?|t

‚‚‚
Lp

≤ B′ · tr/2eM′t , (5.2.30)

‖Et[mW ]‖
Lp = e

m2(p−1)t/2
, and

‚‚‚e|mW |?t
‚‚‚
Lp

≤ 2p′ · em
2pt/2

.

Exercise 5.2.19 The autologous coefficients fη of example 5.2.7 form a locally
Lipschitz family if (5.2.17) is satisfied at least on bounded paths: for every n ∈ N
there exists a constant Ln so that

˛̨
fη[x.] − fη[y.]

˛̨
.− ≤ Ln · |x. − y. |?

whenever the paths x., y. satisfy4 |x|?∞ ≤ n and |y|?∞ ≤ n . For instance, markovian
coupling coefficients that are continuously differentiable evidently form a locally
Lipschitz family. Given such fη , set nfη[x] def= fη[

nx] , where nx is the path x stopped

just before the first time T n its length exceeds n : nx def= (x − ∆Tnx)
Tn

. Let nX
denote the unique solution of the Lipschitz system

X = C + nfη [X].−∗Zη and set nT def= inf{t : lXt ≥ n}
for l > n . On [[0, nT )), lX and nX agree. Set ζ def= sup nT . There is a unique limit
X of nX on [[0, ζ)). It solves X = C + fη [X].−∗Zη there, and ζ is its lifetime.
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Stability

The solution of the stochastic differential equation (5.2.31) depends of course
on the initial condition C , the coupling coefficient F , and on the driver Z .

How?
We follow the lead provided by item 5.1.6 and consider the difference

∆ def= X ′ −X

of the solutions to the two equations

X = C + Fη[X].−∗Zη (5.2.31)

and X ′ = C ′ + F ′η[X
′].−∗Z ′η .

∆ satisfies itself a stochastic differential equation, namely,

∆ = D + Gη[∆].−∗Z ′η , (5.2.32)

with initial condition

D = (C ′ − C) +
(
F ′η[X].−∗Z ′η − Fη[X].−∗Zη

)

= (C ′ − C) + (F ′η[X] − Fη[X]).−∗Z ′η + Fη[X].−∗(Z ′η − Zη)

and coupling coefficients

∆ 7→ Gη[∆] def= F ′η[∆ +X] − Fη[X] .

To answer our question, how?, we study the size of the difference ∆ in terms

of the differences of the initial conditions, the coupling coefficients, and the
drivers. This is rather easy in the following frequent situation: both Z and

Z ′ are local Lq-integrators for some12 q ≥ 2, and the seminorms
?

p,M
are

defined via (5.2.3) and (5.2.4) from a previsible controller Λ common 20 to

both Z and Z ′ ; and for some fixed γ < 1 and M ≥M
(5.2.26)
L:γ , F ′ and with it

G satisfies the Lipschitz condition (5.2.12) on page 286, with constant L . In
this situation inequality (5.2.23) on page 290 immediately gives the following

estimate of ∆:

∆
?

p,M
≤ 1

1−γ · (C ′−C)+
(
F ′[X].−∗Z ′−F [X].−∗Z

) ?

p,M

=
1

1−γ · (C ′−C)+(F ′[X]−F [X]).−∗Z ′+F [X].−∗(Z ′−Z)
?

p,M
,

which with (5.2.27) implies

X ′−X ?

p,M
≤ 1

1−γ ·
(

(C ′−C)
?

p,M
+
γ

L
·
∣∣F ′[X]−F [X]

∣∣
∞ p,M

+ F [X].−∗(Z ′−Z)
?

p,M

)
. (5.2.33)

20 Take, for instance, for Λ the sum of the canonical controllers of the two integrators.
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This inequality exhibits plainly how the solution X depends on the ingredi-
ents C,F ,Z of the stochastic differential equation (5.2.31). We shall make re-

peated use of it, to produce an algorithm for the pathwise solution of (5.2.31)
in section 5.4, and to study the differentiability of the solution in parameters

in section 5.3. Very frequently only the initial condition and coupling coeffi-
cient are perturbed, Z = Z ′ staying unaltered. In this special case (5.2.33)

becomes

X ′−X ?

p,M
≤ 1

1−γ ·
(

(C ′−C)
?

p,M
+
γ

L
·
∣∣F ′[X]−F [X]

∣∣
∞ p,M

)
(5.2.34)

or, with the roles of X,X ′ reversed,

X ′−X ?

p,M
≤ 1

1−γ ·
(

(C ′−C)
?

p,M
+
γ

L
·
∣∣F ′[X ′]−F [X ′]

∣∣
∞ p,M

)
. (5.2.35)

Remark 5.2.20 In the case F = F ′ and Z = Z ′ , (5.2.34) boils down to

X ′ −X
?

p,M
≤ 1

1−γ · (C ′ − C)
?

p,M
. (5.2.36)

Assume for example that Z,Z are two Lq-integrators and Λ a common
controller.20 Consider the equations F = X + Hη[F ].−∗Zη , η = 1, . . . d ,

Hη Lipschitz. The map that associates with X the unique solution Fη[X]
is according to (5.2.36) a Lipschitz coupling coefficient in the weak sense of

inequality (5.2.12) on page 286. To paraphrase: “the solution of a Lipschitz

stochastic differential equation is a Lipschitz coupling coefficient in its initial
value and as such can function in another stochastic differential equation.”

In fact, this Picard-norm Lipschitz coupling coefficient is even differentiable,
provided the Hη are (exercise 5.3.7).

Exercise 5.2.21 If F [0] = 0, then C
?

p,M
≤ 2 · X

?

p,M
.

Lipschitz and Pathwise Continuous Versions Consider the situation that the

initial condition C and the coupling coefficient F depend on a parameter u
that ranges over an open subset U of some seminormed space (E, ‖ ‖

E
).

Then the solution of equation (5.2.18) will depend on u as well: in obvious
notation

X[u] = C[u] + F
[
u,X[u]

]
.−∗Z . (5.2.37)

A cheap consequence of the stability results above is the following observation,
which is used on several occasions in the sequel. Suppose that the initial

condition and coupling coefficient in (5.2.37) are jointly Lipschitz, in the sense
that there exists a constant L such that for all u, v ∈ U and all X ∈ S?n

p,M

(where 2 ≤ p ≤ q and M > M
(5.2.20)
p,L )

C[v]− C[u]
?

p,M
≤ L · ‖v − u‖E (5.2.38)

and |F [v, Y ] − F [u,X]|∞
?

p,M
≤ L ·

(
‖v − u‖E + Y −X

?

p,M

)
;

hence |F [v,X]− F [u,X]|∞
?

p,M
≤ L · ‖v − u‖E . (5.2.39)



5.2 Existence and Uniqueness of the Solution 295

Then inequality (5.2.34) implies the Lipschitz dependence of X[u] on u ∈ U :

Proposition 5.2.22 In the presence of (5.2.38) and (5.2.39) we have for all
u, v ∈ U

X[v]−X[u]
?

p,M
≤ L+ γ

1−γ · ‖v − u‖E . (5.2.40)

Corollary 5.2.23 Assume that the parameter domain U is finite-dimensional,
Z is a local Lp-integrator for some p strictly larger than dimU , and for all

u, v ∈ U 4

X[v]−X[u]
?

p,M
≤ const · |v − u| . (5.2.41)

Then the solution processes X.[u] can be chosen in such a way that for every

ω ∈ Ω the map u 7→ X.[u](ω) from U to Dn is continuous.21

Proof. For fixed t and λ the Lipschitz condition (5.2.41) gives

∥∥∥ sup
s≤Tλ

∥∥X[v] −X[u]
∥∥
s

∥∥∥
Lp

≤ const · eMλ · |v − u| ,

which implies E
[
sup
s≤t

∣∣X[v] −X[u]
∣∣p
s
·[t < T λ]

]
≤ const · |v − u|p .

According to Kolmogorov’s lemma A.2.37 on page 384, there is a negligible
subset Nλ of [t < T λ] ∈ Ft outside which the maps u 7→ X[u]t.(ω) from

U to paths in Dn stopped at t are, after modification, all continuous in the
topology of uniform convergence. We let λ run through a sequence (λn) that

increases without bound. We then either throw away the nearly empty set⋃
nNλ(n) or set X[u]. = 0 there.

In particular, when Z is continuous it is a local Lq-integrator for all q <∞ ,
and u 7→ X.[u](ω) can be had continuous for every ω ∈ Ω.

If Z is merely an L0-integrator, then a change of measure as in the proof

of theorem 5.2.15 allows the same conclusion, except that we need Lipschitz
conditions that do not change with the measure:

Theorem 5.2.24 In (5.2.37) assume that C and F are Lipschitz in the finite-

dimensional parameter u in the sense that for all u, v ∈ U and all X ∈ Dn

both4
∣∣C[v] − C[u]

∣∣? ≤ L · |v − u|
and sup

η

∣∣Fη[v,X]− Fη[u,X]
∣∣ ≤ L · |v − u| ,

nearly. Then the solutions X.[u] of (5.2.37) can be chosen in such a way that

for every ω ∈ Ω the map u 7→ X.[u](ω) from U to Dn is continuous.21

21 The pertinent topolgy on path spaces is the topology of uniform convergence on
compacta.
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Differential Equations Driven by Random Measures

By definition 3.10.1 on page 173, a random measure ζ is but an “H-tuple
of integrators,” H being the auxiliary space. Instead of

∫ ∑
η FηsdZ

η
s or∫ ∫

η
FηsdZ

dη
s we write

∫
F (η, s) ζ(dη, ds), but that is in spirit the sum total

of the difference. Looking at a random measure this way, as “a long vector
of tiny integrators” as it were, has already paid nicely (see theorem 4.3.24

and theorem 4.5.25). We shall now see that stochastic differential equations

driven by random measures can be handled just like the ones driven by slews
of integrators that we have treated so far. In fact, the following is but a

somewhat repetitious reprise of the arguments developed above. It simplifies
things a little to assume that ζ is spatially bounded.

From this point of view the stochastic differential equation driven by ζ is

Xt = Ct +

∫ t

0

F [η,X.]s− ζ(dη, ds)

or, equivalently, X = C + F [ . , X.].−∗ζ , (5.2.42)

with F : H × Dn → Dn suitable.

We expect to solve (5.2.42) under the strong Lipschitz condition (5.2.8) on

page 286, which reads here as follows: at any stopping time T
∣∣(F [ . , Y ] − F [ . , X]

)
T

∣∣
∞p ≤ L ·

∣∣(Y −X
)?
t

∣∣
p

a.s.,

where
∣∣F [ . , X]s

∣∣
∞ is the n-vector

(
sup

∣∣F ν [η,X]s
∣∣ : η ∈ H

)n
ν=1

,
∣∣F [ . , X]?.

∣∣
∞ its (vector-valued) maximal process,

and
∣∣F [ . , X]?.

∣∣
∞p

def=
(∑

ν

∣∣F ν [ . , X]?.
∣∣p
∞

)1/p

the length of the latter.

As a matter of fact, if ζ is an Lq-integrator and 2 ≤ p ≤ q , then the

following rather much weaker “p-mean Lipschitz condition,” analog of in-
equality (5.2.10), should suffice: for any X,Y ∈ Dn and any predictable

stopping time T
∥∥∥
∣∣F [ . , Y ]T− − F [ . , X]T−

∣∣
∞p

∥∥∥
Lp

≤ L ·
∥∥∥
∣∣(Y −X

)?
T−
∣∣
p

∥∥∥
Lp
.

Assume this then and let Λ = Λ〈q〉[ζ] be the previsible controller provided by

theorem 4.5.25 on page 251. With it goes the time transformation (5.2.3),
and with the help of the latter we define the seminorms

p,M
and

?

p,M

as in definition (5.2.4) on page 283. It is a simple matter of shifting the η
from a subscript on F to an argument in F , to see that lemma 5.2.1 persists.

Using definition (5.2.26) on page 290, we have for any γ ∈ (0, 1)

F.−∗ζ
?

p,M
≤ γ

L
· |F |∞

?

p,M
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and U[Y ] − U[X]
?

p,M
≤ γ · Y −X

?

p,M
,

where of course U[X]t
def= Ct +

∫ t

0

F [η,X]s− ζ(dη, ds)

and M > ML:γ
def= (10qL/γ)q ∨ 1 .

We see that as long as S?n
p,M contains 0C def= C+F [ . , 0].−∗ζ it contains a

unique solution of equation (5.2.42). If ζ is merely an L0-random measure,

then we reduce as in theorem 5.2.15 the situation to the previous one by
invoking a factorization, this time using corollary 4.1.14 on page 208:

Proposition 5.2.25 Equation (5.2.42) has a unique global solution.

The stability inequality (5.2.34) for the difference ∆ def= X ′−X of the solutions

of two stochastic differential equations

X ′ = C ′ + F ′[ . , X ′].−∗ζ ′

and X = C + F [ . , X].−∗ζ ,
which satisfies ∆ = D + G[ . ,∆].−∗ζ ′

with D = (C ′ − C) + (F ′[ . , X]− F [ . , X]).−∗ζ ′

+ F [ . , X].−∗(ζ ′ − ζ)

and G[ . ,∆] = F ′[ . ,∆ +X] − F ′[ . , X] ,

persists mutatis mutandis. Assuming that both F and F ′ are Lipschitz with

constant L , that
?

p,M
is defined from a previsible controller Λ common

to both ζ and ζ ′ ,22 and that M has been chosen strictly larger 23 than

M
�(5.2.20)
p,L , the analog of inequality (5.2.23) results in these estimates of ∆:

∆
?

p,M
≤ 1

1−γ · (C ′−C) +
(
F ′[ . , X].−∗ζ ′ − F [ . , X].−∗ζ

) ?

p,M

≤ 1

1−γ ·
(

(C ′−C)
?

p,M
+
γ

L
·
∣∣F ′[ . , X]−F [ . , X]

∣∣
∞ p,M

+ F [ . , X].−∗(ζ ′−ζ)
?

p,M

)
.

This inequality shows neatly how the solution X depends on the ingredients
C,F, ζ of the equation. Additional assumptions, such as that ζ ′ = ζ or that

both ζ = ζ ′ and C ′ = C simplify these inequalities in the manner of the
inequalities (5.2.34)–(5.2.36) on page 294.

22 Take, for instance, Λt def= Λ
〈q〉
t [ζ] + Λ

〈q〉
t [ζ′] + εt, 0 < ε � 1.

23 The point being that p and M must be chosen so that U is strictly contractive on
S?n
p,M .
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The Classical SDE

The “classical” stochastic differential equation is the markovian equation

X = C + f(X)∗Z or Xt = C +

∫ t

0

fη(X)s dZ
η
s , t ≥ 0 ,

where the initial condition C is constant in time, f = (f0, f1, . . . , fd) are
(at least measurable) vector fields on the state space Rn of X , and the

driver Z is the d+1-tuple Zt = (t,W 1
t , . . . ,W

d
t ), W being a standard Wiener

process on a filtration to which both W and the solution are adapted. The

classical SDE thus takes the form

Xt = C +

∫ t

0

f0(Xs) ds+
∑d
η=1

∫ t

0

fη(Xs) dW
η
s . (5.2.43)

In this case the controller is simply Λt = d · t (exercise 4.5.19) and thus the

time transformation is simply T λ = λ/d . The Picard norms of a process X
become simply

X
?

p,M
= sup

t>0
e−Mdt ·

∥∥∥
∣∣X?

t

∣∣
p

∥∥∥
∗

Lp(P)
.

If the coupling coefficient f is Lipschitz, then the solution of (5.2.43) grows
at most exponentially in the sense that ‖

∣∣X?
t

∣∣
p
‖
Lp(P)

≤ Const · eMd t . The

stability estimates, etc., translate similarly.

5.3 Stability: Differentiability in Parameters

We consider here the situation that the initial condition C and the coupling
coefficient F depend on a parameter u that ranges over an open subset U

of some seminormed space (E, ‖ ‖
E

). Then the solution of equation (5.2.18)
will depend on u as well: in obvious notation

X[u] = C[u] + F
[
u,X[u]

]
.−∗Z . (5.3.1)

We have seen in item 5.1.7 that in the case of an ordinary differential equation

the solution depends differentiably on the initial condition and the coupling
coefficient. This encourages the hope that our X[u] , too, will depend differ-

entiably on u when both C[u] and F [u, . ] do. This is true, and the goal of
this section is to prove several versions of this fact.

Throughout the section the minimal assumptions (i)–(iii) of page 272
are in effect. In addition we will require that Z = (Z1, . . . , Zd) is a local

Lq(P)-integrator for some 12 q strictly larger than  – except when this
is explicitely rescinded on occasion. This requirement provides us with the

previsible controller Λ〈q〉[Z] , with the time transformation (5.2.3), and the
Picard norms11 ?

p,M
of (5.2.4). We also have settled on a modulus of
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contractivity γ ∈ (0, 1) to our liking. The coupling coefficients F [u, . ] are
assumed to be Lipschitz in the sense of inequality (5.2.12) on page 286:

∣∣F [u, Y ]−F [u,X]
∣∣
∞ p,M

≤ L · X − Y
?

p,M
, (5.3.2)

with Lipschitz constant L independent of the parameter u and of

p ∈ (2, q] , and M ≥ M
(5.2.26)
L:γ . (5.3.3)

Then any stochastic differential equation driven by Z and satisfying the

Picard-norm Lipschitz condition (5.3.2) and equation (5.2.28) has its solution
in S?

p,M , whatever such p and M . In particular, X[u] ∈ S?n
p,M for all u ∈ U

and all (p,M), as in (5.3.3).

For the notation and terminology concerning differentiation refer to defi-
nitions A.2.45 on page 388 and A.2.49 on page 390.

Example 5.3.1 Consider first the case that U is an open convex subset

of Rk and the coupling coefficient F of (5.3.1) is markovian (see examp-
le 5.2.4): Fη[u,X] = fη(u,X). Suppose the fη : U × Rn → Rn have a

continuous bounded derivative Dfη = (D1fη, D2fη). Then just as in examp-
le A.2.48 on page 389, Fη is not necessarily Fréchet differentiable as a map

from U×S?n
p,M to S?n

p,M . It is, however, weakly uniformly differentiable, and
the partial D2Fη[u,X] is the continuous linear operator from S?n

p,M to itself

that operates on a ξ ∈ S?n
p,M by applying the n×n-matrix D2fη(u,X) to the

vector ξ ∈ Rn : for $ ∈ B

(
D2Fη[u,X($)]·ξ

)
($) = D2fη

(
u,X($)

)
·ξ($) .

The operator norm of D2Fη[u,X] is bounded by supu,x |Dfη(u, x)|1 , inde-
pendently of u ∈ U and p , where |D|1 def=

∑
ν,κ |Dν

κ| on matrices D .

Example 5.3.2 The previous example has an extension to autologous coupling

coefficients. Suppose the adapted map 17 f : U ×Dn → Dn has a continuous
bounded Fréchet derivative. Let us make this precise: at any point (u, x.) in

U × Dn there exists a linear map Df [u, x.] : E × Dn → Dn such that for
all t

∣∣Df [u, x.]
∣∣?
t

def= sup
{∣∣∣Df [u, x.]·

(
ξ

Ξ.

)∣∣∣
?

t
: ‖ξ‖E + |Ξ|?t ≤ 1

}
≤ L < ∞

and
∣∣Df [v, y.] −Df [u, x.]

∣∣?
t
→ 0 as ‖v−u‖E + |y.−x.|?t → 0 ,

with L independent of (u, x.), and such that

Rf [u, x.; v, y.] def= f [v, y.] − f [u, x.] −Df [u, x.]·
(
v−u
y.−x.

)
has

|Rf [u, x.; v, y.]|?t = o
(
‖v−u‖E + |y.−x.|?t

)
.
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According to Taylor’s formula of order one (see lemma A.2.42), we have 24

Rf [u, x.; v, y.] =

∫ 1

0

(
Df [uσ, xσ. ] −Df [u, x.]

)
dσ ·

(
v−u
y.−x.

)
,

where uσ def= u+ σ(v−u) and xσ.
def= x. + σ(y.−x.) .

Now the coupling coefficient F corresponding to f is defined at X ∈ Dn by

F [u,X].(ω) def= f [u,X.(ω)]

and has weak derivative DF [u,X] :

(
ξ

Ξ

)
7→ Df [u,X]·

(
ξ

Ξ.

)
, Ξ ∈ S?n

p,M .

Indeed, for 1/p◦ = 1/p+ 1/r and M◦ = M +R ,

RF [u,X; v, Y ]
?

p◦,M◦ ≤
∫ 1

0

Df [uσ, Xσ] −Df [u,X]
?

r,R
dσ

×
(
‖v−u‖E + Y −X

?

p,M

)

= o
(
‖v−u‖E + Y −X

?

p,M

)

on the grounds that
∣∣Df [uσ, Xσ] −Df [u,X]

∣∣?
Tλ− → 0

as ‖v−u‖
E

+ Y−X ?

p,M
→ 0, pointwise and boundedly for every λ , σ ,

and ω ∈ Ω: the weak uniform differentiability follows.

Exercise 5.3.3 Extend this to randomly autologous coefficients f [ω,u, x.] : As-
sume that the family {f [ω, u, x.] : ω ∈ Ω} of autologous coefficients is equidifferen-
tiable and has supω |Df [ω,u, x.]|?t ≤ L . Show that then F [u,X].(ω) def= f [ω, u,X.(ω)]
is weakly differentiable on S?n

p,M with

DF [u,X] :

„
ξ

Ξ

«
7→ Df [ω, u,X(ω)]·

„
ξ

Ξ.(ω)

«
.

Example 5.3.4 Example 5.2.8 exhibits a coupling coefficient S?n
p,M → S?n

p,M

that is linear and bounded for all (p,M) and ipso facto uniformly Fréchet
differentiable. We leave to the reader the chore of finding the conditions

that make examples 5.2.10–5.2.11 weakly differentiable. Suppose the maps
(u,X) 7→ F [u,X], G[u,X] are both weakly differentiable as functions from

U × S?n
p,M to S?n

p,M . Then so is (u,X) 7→ F
[
u,G[u,X]

]
.

Example 5.3.5 Let T be an adapted partition of [0,∞)× Dn. The

scalæfication map x. 7→ xT. is a differentiable autologous Lipschitz coupling
coefficient. If F is another, then the coupling coefficient F ′ of equation (5.4.7)

on page 312, defined by F ′ : Y 7→ F [Y T ]T , is yet another.

24 To see this, reduce to the scalar case by applying a continuous linear functional.
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The Derivative of the Solution

Let us then stipulate for the remainder of this section that in the stochastic
differential equation (5.3.1) the initial condition u 7→ C[u] is weakly differen-

tiable as a map from U to S?n
p,M , and that the coupling coefficients

Fη : U × S?n
p,M → Sn

p,M , Fη : (u,X) 7→ Fη[u,X] ,

are weakly differentiable as well. What is needed at this point is a candidate

DX[u] for the derivative of v 7→ X[v] at u ∈ U . In order to get an idea what

it might be, let us assume that X is in fact weakly differentiable. With

v = u+ τξ , ‖ξ‖E = 1 , τ = ‖v − u‖E ,

this can be written as

X[v] = X[u] + τDX[u]·ξ + RX[u; v] , (5.3.4)

where RX[u; v]
p◦,M◦ = o(τ) for p◦<p , M◦>M .

On the other hand,

X[v] = X[u] + C[v] − C[u] +
{
F
[
v,X[v]

]
− F

[
u,X[u]

]}
.−∗Z

= X[u] +DC[u]·(v − u) + RC[u; v]

+

{
DF

[
u,X[u]

]
·
(

v − u
X[v] −X[u]

)}
.−∗Z

+RF [u,X[u]; v,X[v]].−∗Z ,

which translates to

X[v] = X[u]+τDC[u]·ξ+τ
{
DF

[
u,X[u]

]
·
(

ξ
DX[u]·ξ

)}
.−∗Z (5.3.5)

+ RC +RF.−∗Z + (D2F ·RX).−∗Z . (5.3.6)

In the previous line the arguments [ . ] of RC , RX , and RF are omitted
from the display. In view of inequality (5.2.5) the entries in line (5.3.6) are

o(τ), as is the last term in (5.3.4). Thus both equations (5.3.4) and (5.3.5) for
X[v] are of the form X[u] + const · τ + o(τ) when measured in the pertinent

Picard norm, which here is
?

p◦,M◦ . Clearly,25 then, the coefficient of τ on
both sides must be the same. We arrive at

DX[u]·ξ = DC[u]·ξ+
(
D1F

[
u,X[u]

]
·ξ
)
.−∗Z

+
{
D2F

[
u,X[u]

]
· (DX[u]·ξ)

}
.−∗Z . (5.3.7)

25 To enhance the clarity apply a linear functional that is bounded in the pertinent norm,
thus reducing this to the case of real-valued functions. The Hahn–Banach theorem A.2.25
provides the generality stated.
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For every fixed u ∈ U and ξ ∈ E we see here a linear stochastic differential
equation for a process 2 DX[u]·ξ ∈ Dn , whose initial condition is the sum

DC[u]·ξ +
(
D1F

[
u,X[u]

]
·ξ
)
.−∗Z and whose coupling coefficient is given by

Ξ 7→ D2F
[
u,X[u]

]
·Ξ, which by exercise A.2.50 (c) has a Lipschitz constant

less than L . Its solution depends linearly on ξ , lies in S?n
p,M for all pairs

(p,M) as in (5.3.3), and there it has size (see inequality (5.2.23) on page 290)

DX[u]·ξ ?

p,M
≤ 1

1 − γ

(
DC[u]·ξ ?

p,M
+
γ

L
· D1F

[
u,X[u]

]
·ξ ?

p,M

)

≤ const · ‖ξ‖E < ∞ .

Thus if X[ . ] is differentiable, then its derivative DX[u] must be given by

(5.3.7). Therefore DX[u] is henceforth defined as the linear map from E to
S?
p,M that sends ξ to the unique solution of (5.3.7). It is necessarily our

candidate for the derivative of X[ . ] at u , and it does in fact do the job:

Theorem 5.3.6 If v 7→ C[v] and the (v,X) 7→ Fη[v,X] , η = 1, . . . , d ,
are weakly (equi)differentiable maps into S?n

p,M , then v 7→ X[v] ∈ S?n
p,M is

weakly (equi)differentiable, and its derivative at a point u ∈ U is the linear
map DX[u] defined by (5.3.7).

Proof. It has to be shown that, for every p◦ ∈ [2, p) and M◦ > M ,

RX[u; v] def= X[v] −X[u] −DX[u]·(v−u)

has RX[u; v]
?

p◦,M◦ = o(‖v−u‖E) .

Now it is a simple matter of comparing equalities (5.3.4) and (5.3.5) to see
that, in view of (5.3.7), RX[u; v] satisfies the stochastic differential equation

RX[u; v] = RC[u; v] + RF [u,X[u]; v,X[v]].−∗Z
+
{
D2F

[
u,X[u]

]
·RX[u; v]

}
.−∗Z ,

whose Lipschitz constant is L. According to (5.2.23) on page 290, therefore,

RX[u; v]
?

p◦,M◦ ≤ 1

1−γ · RC[u; v] +RF [u,X[u]; v,X[v]].−∗Z
?

p◦,M◦ .

Since RC[u; v]
p◦,M◦ = o

(
‖v−u‖

E
) as v → u , all that needs showing is

RF [u,X[u]; v,X[v]].−∗Z
?

p◦,M◦ = o
(
‖v−u‖E) as v → u ,

and this follows via inequality (5.2.5) on page 284 from

RFη[u,X[u]; v,X[v]]
p◦,M◦ = o

(
‖v−u‖E + X[v]−X[u]

?

p,M

)

by A.2.50 (c) and (5.2.40): = o
(
‖v−u‖E) as v → u , η = 1, . . . d .
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If C,F are weakly uniformly differentiable, then the estimates above are
independent of u , and X[u] is in fact uniformly differentiable in u .

Exercise 5.3.7 Taking E def= S?n
p,M , show that the coupling coefficient of re-

mark 5.2.20 is differentiable.

Pathwise Differentiability

Consider now the difference D def= DX[v] − DX[u] of the derivatives at two
different points u, v of the parameter domain U , applied to an element

ξ of E1 .26 According to equation (5.3.7) and inequality (5.2.34), D satisfies
the estimate

D·ξ ?

p,M
≤ 1

1−γ ·
(

(DC[v]−DC[u])·ξ ?

p,M

+
γ

L
·
∣∣(DF [v,X[v]]−DF

[
u,X[u]

]
)·ξ
∣∣
∞

?

p,M

+
γ

L
·
(
D2F [v,X[v]]−D2F

[
u,X[u]

])
·DX[u]·ξ ?

p,M

)
.

Let us now assume that v 7→ DC[v] and (v, Y ) 7→ DF [v, Y ] are Lipschitz
with constant L′ , in the sense that for all pairs (p,M) as in (5.3.3), and all

ξ ∈ E1
26

(DC[v]−DC[u])·ξ ?

p,M
≤ L′ · ‖v−u‖E ·‖ξ‖E (5.3.8)

and
(
DF [v,X[u]]−DF

[
u,X[u]

])
·ξ ?

p,M
≤ L′ · ‖v−u‖E ·‖ξ‖E . (5.3.9)

Then an application of proposition 5.2.22 on page 295 produces
∥∥DX[v] −DX[u]

∥∥ ≤ const · ‖v − u‖E , (5.3.10)

where
∥∥ ∥∥ denotes the operator norm on DX[u] : E → S?n

p,M .

Let us specialize to the situation that E = Rk . Then, by letting ξ

run through the usual basis, we see that DX[u] can be identified with an

n×k-matrix-valued process in Dn×k . At this juncture it is necessary to
assume that27 q > p > k . Corollary 5.2.23 then puts us in the following

situation:

5.3.8 For every ω ∈ Ω , u 7→ DX[u].(ω) is a continuous map 21 from U to

Dn×k .

Consider now a curve γ : [0, 1] → U that is piecewise 28 of class10 C1 . Then

the integral ∫

γ

DX[u] dτ def=

∫ 1

0

DX[γ(τ)] · γ′(τ) dτ

26 E1 is the unit ball of E .
27 See however theorem 5.3.10 below.
28 That is to say, there exists a càglàd function γ ′ : [0, 1] → E with finitely many

discontinuities so that γ(t) =
R t
0 γ

′(τ) dτ ∈ U ∀ t ∈ [0, 1].
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can be understood in two ways: as the Riemann integral 29 of the piecewise
continuous curve t 7→ DX[γ(τ)] ·γ ′(τ) in S?n

p,M , yielding an element of S?n
p,M

that is unique up to evanescence; or else as the Riemann integral of the
piecewise continuous curve τ 7→ DX[γ(τ)].(ω) · γ′(τ), one for every ω ∈ Ω,

and yielding for every ω ∈ Ω an element of path space Dn . Looking at
Riemann sums that approximate the integrals will convince the reader that

the integral understood in the latter sense is but one of the (many nearly
equal) processes that constitute the integral of the former sense, which by the

Fundamental Theorem of Calculus equals X[γ(1)]. −X[γ(0)].. In particular,
if γ is a closed curve, then the integral in the first sense is evanescent; and

this implies that for nearly every ω ∈ Ω the Riemann integral in the second
sense, ∮

γ

DX[u].(ω) dτ (∗)

is the zero path in Dn .
Now let Γ denote the collection of all closed polygonal paths in U ⊆ Rk

whose corners are rational points. Clearly Γ is countable. For every γ ∈ Γ
the set of ω ∈ Ω where the integral (∗) is non-zero is nearly empty, and so is

the union of these sets. Let us remove it from Ω. That puts us in the position
that

∮
γ
DX[u](ω) dτ = 0 for all γ ∈ Γ and all ω ∈ Ω. Now for every curve

that is piecewise28 of class C1 there is a sequence of curves γn ∈ Γ such

that both γn(τ) → γn(τ) and γ′n(τ) → γ′n(τ) uniformly in τ ∈ [0, 1]. From

this it is plain that the integral (∗) vanishes for every closed curve γ that is
piecewise of class C1 , on every ω ∈ Ω.

To bring all of this to fruition, let us pick in every component U0 of U a
base point u0 and set, for every ω ∈ Ω,

X[u].(ω) def=

∫

γ

DX[γ(τ)].(ω) · γ′(τ) dτ ,

where γ is some C1-path joining u0 to u ∈ U0 . This element of Dn does

not depend on γ , and X[u]. is one of the (many nearly equal) solutions of
our stochastic differential equation (5.3.1). The upshot:

Proposition 5.3.9 Assume that the initial condition and the coupling coef-

ficients of equation (5.3.1) on page 298 have weak derivatives DC[u] and
DFη[u,X] in S?n

p,M that are Lipschitz in their argument u , in the sense

of (5.3.8) and (5.3.9), respectively. Assume further that Z is a local
Lq-integrator for some q > dimU . Then there exists a particular solution

X[u].(ω) that is, for nearly every ω ∈ Ω , differentiable as a map from U to
path space21 Dn .

Using theorem 5.2.24 on page 295, it suffices to assume that Z is an

L0-integrator when F is an autologous coupling coefficient:

29 See exercise A.3.16 on page 401.
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Theorem 5.3.10 Suppose that the Fη are differentiable in the sense of examp-
le 5.3.2, their derivatives being Lipschitz in u ∈ U ⊆ Rk . Then there exists

a particular solution X[u].(ω) that is, for every ω ∈ Ω , differentiable as a
map from U to path space Dn .17

Higher Order Derivatives

Again let (E, ‖ ‖
E

) and (S, ‖ ‖
S
) be seminormed spaces and let U ⊆ E be

open and convex. To paraphrase definition A.2.49, a function F : U → S is

differentiable at u ∈ U if “it can be approximated at u by an affine function
strictly better than linearly.” We can paraphrase Taylor’s formula A.2.42

similarly: a function on U ⊆ Rk with continuous derivatives up to order l at
u “can be approximated at u by a polynomial of degree l to an order strictly

better than l .” In fact, Taylor’s formula is the main merit of having higher
order differentiability. It is convenient to use this behavior as the definition of

differentiability to higher orders. It essentially agrees with the usual recursive
definition (exercise 5.3.18 on page 310).

Definition 5.3.11 Let ‖ ‖◦
S

≤ ‖ ‖
S

be a seminorm on S that satisfies

‖x‖
S

= 0 ⇔ ‖x‖◦
S

= 0 ∀x ∈ S . The map F : U → S is l-times
∥∥ ∥∥◦

S
-weakly

differentiable at u ∈ U if there exist continuous symmetric λ-forms 30

DλF [u] :E ⊗ · · · ⊗ E︸ ︷︷ ︸
λ factors

→ S , λ = 1, . . . , l ,

such that F [v] =
∑

0≤λ≤l

1

λ!
DλF [u]·(v − u)⊗λ +RlF [u; v] , (5.3.11)

where
∥∥∥RlF [u; v]

∥∥∥
◦

S
= o
(
‖v − u‖lE

)
as v → u .

DλF [u] is the λth derivative of F at u ; and the first sum on the right

in (5.3.11) is the Taylor polynomial of degree l of F at u , denoted
T lF [u] : v 7→ T lF [u](v) . If

sup
{‖RlF [u; v]‖◦

S

δl
: u, v ∈ U , ‖v − u‖E < δ

}
−−→
δ→0 0 ,

then F is l-times
∥∥ ∥∥◦

S
-weakly uniformly differentiable. If the target

space of F is S?n
p,M , we say that F is l-times weakly (uniformly) differentiable

provided it is l-times
?

p◦,M◦-weakly (uniformly) differentiable in the sense

above for every Picard norm 11 ?

p◦,M◦ with p◦ < p and M◦ > M .

30 A λ-form on E is a function D of λ arguments in E that is linear in each of its arguments
separately. It is symmetric if it equals its symmetrization, which at (ξ1, · · · , ξλ) ∈ Eλ

has the value 1
λ!

P
D·ξπ1 ⊗ · · · ⊗ ξπλ , the sum being taken over all permutations π of

{1, · · · , λ}.
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In (5.3.11) we write DλF [u]·ξ1⊗· · ·⊗ ξλ for the value of the form DλF [u] at
the argument (ξ1, . . . , ξλ) and abbreviate this to DλF [u]·ξ⊗λ if ξ1 = · · · = ξλ
= ξ. For λ = 0, D0F [u]·(v−u)⊗0 stands as usual for the constant F [u] ∈ S .
DλF [u]·ξ1⊗· · ·⊗ ξλ can be constructed from the values DλF [u]·ξ⊗λ , ξ ∈ E :

it is the coefficient of τ1 · · · τλ in DλF [u]·(τ1ξ1 + · · · + τλξλ)
⊗λ/λ! . To say

that DλF [u] is continuous means that
∥∥∥DλF [u]

∥∥∥ def= sup
{∥∥∥DλF [u]·ξ1⊗ · · ·⊗ξλ

∥∥∥
S

: ‖ξ1‖E ≤ 1, . . . , ‖ξλ‖E ≤ 1
}

≤ λλ/2 sup
{∥∥∥DλF [u]·ξ⊗λ

∥∥∥
S

: ‖ξ‖E ≤ 1
}

(5.3.12)

is finite (inequality (5.3.12) is left to the reader to prove). DλF [u] does
not depend on l ; indeed, the last l − λ terms of the sum in (5.3.11) are

o
(
‖v − u‖λ

E

)
if measured with ‖ ‖◦

S
. In particular, D1F is the weak deriva-

tive DF of definition A.2.49.

Example 5.3.12 — Trouble Consider a function f : R → R that has l con-
tinuous bounded derivatives, vis. f(x) = cosx . One hopes that composition

with f , which takes φ to F [φ] def= f ◦φ , might define an l-times weakly 31 dif-
ferentiable map from Lp(P) to itself. Alas, it does not. Indeed, if it did, then

DλF [φ]·ψ⊗λ would have to be multiplication of the λth derivative f (λ)(φ)
with ψλ . For ψ ∈ Lp this product can be expected to lie in Lp/λ , but not

generally in Lp . However:
If f : Rn → Rn has continuous bounded partial derivatives of all orders

λ ≤ l , then F : φ→ F [φ] def= f ◦φ is weakly differentiable as a map from LpRn

to L
p/λ
Rn , for 1 ≤ λ ≤ l , and1

DλF [φ]·ψ1 ⊗ · · · ⊗ ψλ =
∂λf(φ)

∂xνλ · · ·∂xν1 × ψν11 · · ·ψνλ

λ .

These observations lead to a more modest notion of higher order differentia-
bility, which, though technical and useful only for functions that take values

in Lp or in S?n
p,M , has the merit of being pertinent to the problem at hand:

Definition 5.3.13 (i) A map F : U → S?n
p,M has l tiered weak derivatives

if for every λ ≤ l it is λ-times weakly differentiable as a map from U to

S?n
p/λ,Mλ .
(ii) A parameter-dependent coupling coefficient F : U × S?n

p,M → S?n
p,M

with l tiered weak derivatives has l bounded tiered weak derivatives if

DλFη[u,X] ·
(
ξ1
Ξ1

)
⊗ · · · ⊗

(
ξλ
Ξλ

)
?

p/λ,Mλ
≤ C

∏

1≤j≤λ

(∥∥ξj
∥∥
E

+ Ξj
?

p/ij ,Mij

)

for some constant C whenever i1, . . . , iλ ∈ N have i1 + · · ·+ iλ ≤ λ .

31 That F is not Fréchet differentiable, not even when l = 1, we know from example A.2.48.
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Example 5.3.14 The markovian parameter-dependent coupling coefficient
(u,X) 7→ F [u,X] def= f(u,X) of example 5.3.1 on page 299 has l bounded

tiered weak derivatives provided the function f has bounded continuous
derivatives of all orders ≤ l . This is immediate from Taylor’s formula A.2.42.

Example 5.3.15 Example 5.3.2 on page 299 has an extension as well. As-

sume that the map f : U × Dn → Dn has l continuous bounded Fréchet
derivatives. This is to mean that for every t < ∞ the restriction of f to

U × Dnt , Dnt the Banach space of paths stopped at t and equipped with
the topology of uniform convergence, is l-times continuously Fréchet differ-

entiable, with the norm of the λth derivative being bounded in t . Then
F [u,X].(ω) def= f [u,X.(ω)] again defines a parameter-dependent coupling co-

efficient that is l-times weakly uniformly differentiable with bounded tiered

derivatives.

Theorem 5.3.16 Assume that in equation (5.3.1) on page 298 the initial value
C[u] has l tiered weak derivatives on U and that the coupling coefficients

Fη[u,X] have l bounded tiered weak derivatives.

Then the solution X[u] has l tiered weak derivatives on U as well, and
DX l[u] is given by equation (5.3.18) below.

Proof. By theorem 5.3.6 on page 302 this is true when l = 1 – a good start
for an induction. In order to get an idea what the derivatives DλX[u] might

be when 1 < λ ≤ l , let us assume that X does in fact have l tiered weak
derivatives. With

v = u+ τξ , ‖ξ‖E = 1 , τ = ‖v − u‖E ,

we write this as

X[v] −X[u] =
∑

1≤λ≤l

τλ

λ!
DλX[u]·ξ⊗λ + RlX[u; v] , (5.3.13)

where5 RlX[u; v]
p◦/l,M◦l

= o(τ l) for p◦<p , M◦>M .

On the other hand,

X[v] −X[u] = C[v] − C[u] +
{
F [v,X[v]]− F

[
u,X[u]

]}
.−∗Z

=
∑

1≤λ≤l

τλ

λ!
DλC[u]·ξ⊗λ + RlC[u; v]

+
∑

1≤λ≤l

1

λ!

{
DλF

[
u,X[u]

]
·
(

v − u
X[v] −X[u]

)⊗λ}

.−∗Z

+ RlF [u,X[u]; v,X[v]].−∗Z (5.3.14)
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=
∑

1≤λ≤l

τλ

λ!
DλC[u]·ξ⊗λ + RlC[u; v] (5.3.15)

+
∑

1≤λ≤l

1

λ!

{
DλF

[
u,X[u]

]
·∆λ[τ ]

}
.−∗Z

+ RlF [u,X[u]; v,X[v]].−∗Z , (5.3.16)

where by the multinomial formula 32

∆λ[τ ] def=

(
v − u

X[v] −X[u]

)⊗λ
=




τξ∑
1≤ρ≤l

τρDρX[u]·ξ⊗ρ

ρ!
+ RlX[u; v]



⊗λ

=
∑

λ0+···+λl+1=λ

( λ

λ0 . . . λl+1

)
× τλ0+1λ1+···+lλl

1! · · · l! ×

×
(
ξ

0

)⊗λ0

⊗
(

0
D1X[u]·ξ⊗1

)⊗λ1

⊗ · · · ⊗
(

0
DlX[u]·ξ⊗l

)⊗λl

⊗
(

0
RlX[u; v]

)⊗λl+1

and where

RlC
p◦/l,M◦l

= o(τ l) = RlF
p◦/l,M◦l

for p◦<p , M◦>M

(the arguments of RlC and RlF are not displayed). Line (5.3.13), and lines

(5.3.15)–(5.3.16) together, each are of the form “a polynomial in τ plus terms
that are o(τ l)” when measured in the pertinent Picard norm, which here is

p◦/l,M◦l . Clearly,25 then, the coefficient of τ l in the two polynomials must

be the same:32

DlX[u]·ξ⊗l
l!

=
DlC[u] · ξ⊗l

l!
+

{ ∑

1≤λ≤l

1

λ!
DλF

[
u,X[u]

]

·
∑

λ0+λ1+···+λl=λ

λ0+1λ1+···+lλl=l

( λ

λ0 . . . λl

)
× 1

1! · · · l! × (5.3.17)

×
(
ξ
0

)⊗λ0

⊗
(

0

D1X[u]·ξ⊗1

)⊗λ1

⊗ · · · ⊗
(

0

DlX[u]·ξ⊗l
)⊗λl

}

.−∗Z .

The term DlX[u]·ξ⊗l occurs precisely once on the right-hand side, namely
when λl = 1 and then λ = 1. Therefore the previous equation can be

rewritten as a stochastic differential equation for DlX[u]·ξ⊗l :
DlX[u]·ξ⊗l =

(
DlC[u]·ξ⊗l + (Cl[u]·ξ⊗l).−∗Z

)

+
(
D2F

[
u,X[u]

]
·DlX[u]·ξ⊗l

)
.−∗Z , (5.3.18)

32 Use ( ξ
D

) = ( ξ
0
)+( 0

D
). It is understood that a term of the form (· · ·)⊗0 is to be omitted.
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where D2F is the partial derivative in the X-direction (see A.2.50) and

Cl[u]·ξ⊗l def=
∑

1≤λ≤l

DλF
[
u,X[u]

]

λ!
·
∑

λ0+λ1+···+λl−1=λ

λ0+1λ1+···+(l−1)λl−1=l

( λ

λ0 . . . λl−1

)
× 1

1! · · · (l−1)!
×

×
(
ξ
0

)⊗λ0

⊗
(

0

D1X[u]·ξ⊗1

)⊗λ1

⊗ · · · ⊗
(

0

Dl−1X[u]·ξ⊗(l−1)

)⊗λl−1

.

Now by induction hypothesis, DiX·ξ⊗i stays bounded in S?n
p/i,Mi as ξ ranges

over the unit ball of E and 1 ≤ i ≤ l − 1. Therefore DλF
[
u,X[u]

]

applied to any of the summands stays bounded in S?n
p/l,Ml , and then so does

Cl[u]·ξ⊗l . Since the coupling coefficient of (5.3.18) has Lipschitz constant L ,
we conclude that DlX[u]·ξ⊗l , defined by (5.3.18), stays bounded in S?n

p/l,Ml

as ξ ranges over E1 .

There is a little problem here, in that (5.3.18) defines DlX[u] as an
l-homogeneous map on E , but not immediately as a l-linear map on

⊗
lE .

To overcome this observe that C[u]·ξ⊗l is in an obvious fashion the value at

ξ⊗l of an l-linear map

~ξ⊗l def= ξ1 ⊗ · · · ⊗ ξl 7→ C[u]·~ξ⊗l .

Replacing every ξ⊗l in (5.3.18) by ~ξ⊗l produces a stochastic differential

equation for an n-vector DlX[u]·~ξ⊗l ∈ S?n
p/l,Ml , whose solution defines an

l-linear form that at ~ξ⊗l = ξ⊗l agrees with the DlX[u] of equation (5.3.18).
The lth derivative DlX[u] is redefined as the symmetrization 30 of this l-form.

It clearly satisfies equation (5.3.18) and is the only symmetric l-linear map

that does.

It is left to be shown that for l > 1 the difference Rl[u; v] of X[v]−X[u]

and the Taylor polynomial T lX[u](τξ) is o(τ l) if measured in S?n
p◦/l,M◦l . Now

by induction hypothesis, Rl−1[u; v] = DlX[u](v−u)⊗l/l!+Rl[u; v] is o(τ l−1);

hence clearly so is Rl[u; v] . Subtracting the defining equations (5.3.17) for
l = 1, 2, . . . from (5.3.13) and (5.3.15)–(5.3.16) leaves us with this equation

for the remainder RlX[u; v] :

RlX[u; v] = RlC[u; v] +
∑

1≤λ≤l

1

λ!

{
DλF

[
u,X[u]

]
·∆λ

[τ ]
}
.−∗Z

+ RlF [u,X[u]; v,X[v]].−∗Z , (5.3.19)

where

∆
λ
[τ ] def=

∑

λ0+λ1+···+λl=λ

λ0+1λ1+···+lλl>l

( λ

λ0 . . . λl

)
× τλ0+1λ1+···+lλl

1! · · · l! ×
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×
(
ξ
0

)⊗λ0

⊗
(

0

D1X[u]·ξ⊗1

)⊗λ1

⊗ · · · ⊗
(

0

DlX[u]·ξ⊗l
)⊗λl

+
∑

λ0+λ1+···+λl+1=λ

λl+1>0

( λ

λ0 . . . λl+1

)
× τλ0+1λ1+···+lλl

1! · · · l! ×

×
(
ξ

0

)⊗λ0

⊗
(

0
D1X[u]·ξ⊗1

)⊗λ1

⊗ · · · ⊗
(

0
DlX[u]·ξ⊗l

)⊗λl

⊗
(

0
RlX[u; v]

)⊗λl+1

.

The terms in the first sum all are o(τ l). So are all of the terms of the second

sum, except the one that arises when λl+1 = 1 and λ0 + 1λ1 + · · · + lλl = 0

and then λ = 1. That term is

(
0

RlX[u; v]/l!

)
. Lastly, RlF [u,X[u]; v,X[v]]

is easily seen to be o(τ l) as well. Therefore equation (5.3.19) boils down to
a stochastic differential equation for RlX[u; v] :

RlX[u; v] =
{
RlC[u; v] + o(τ l).−∗Z

}
+
(
D2F

[
u,X[u]

]
·RlX[u; v]

)
.− ∗Z .

According to inequalities (5.2.23) on page 290 and (5.2.5) on page 284, we

have RlX[u; v] = o(‖u−v‖l
E

), as desired.

Exercise 5.3.17 If in addition C and F are weakly uniformly differentiable, then
so is X .

Exercise 5.3.18 Suppose F : U → S is l-times weakly uniformly differentiable
with bounded derivatives:

sup
λ≤l , u∈U

‚‚‚DλF [u]
‚‚‚ <∞ (see inequality (5.3.12)).

Then, for λ < l , DλF is weakly uniformly differentiable, and its derivative is
Dλ+1F .

Problem 5.3.19 Generalize the pathwise differentiability result 5.3.9 to higher
order derivatives.

5.4 Pathwise Computation of the Solution

We return to the stochastic differential equation (5.1.3), driven by a vector

Z of integrators:

X = C + Fη[X].−∗Zη = C + F [X].−∗Z .

Under mild conditions on the coupling coefficients Fη there exists an al-
gorithm that computes the path X.(ω) of the solution from the input paths

C.(ω),Z.(ω). It is a slight variant of the well-known adaptive 33 Euler–Peano

33 Adaptive: the step size is not fixed in advance but is adapted to the situation at every
step – see page 281.
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scheme of little straight steps, a variant in which the next computation is car-
ried out not after a fixed time has elapsed but when the effect of the noise Z

has changed by a fixed threshold – compare this with exercise 3.7.24. There
exists an algorithm that takes the n+d paths t 7→ Cνt (ω) and t 7→ Zηt (ω) and

computes from them a path t 7→ δXt(ω), which, when δ is taken through a
summable sequence, converges ω–by–ω uniformly on bounded time-intervals

to the path t 7→ Xt(ω) of the exact solution, irrespective of P ∈ P[Z] . This
is shown in theorems 5.4.2 and 5.4.5 below.

The Case of Markovian Coupling Coefficients

One cannot of course expect such an algorithm to exist unless the coupling
coefficients Fη are endogenous. This is certainly guaranteed when the cou-

pling coefficients are markovian 8, case treated first. That is to say, we assume
here that there are ordinary vector fields fη : Rn → Rn such that

Fη[X]t = fη ◦Xt ; and |fη(y) − fη(x)| ≤ L · |y − x| (5.4.1)

ensures the Lipschitz condition (5.2.8) and with it the existence of a unique
solution of equation (5.2.1), which takes the following form: 1

Xt = Ct +

∫ t

0

fη(X)s− dZ
η
s . (5.4.2)

The adaptive 33 Euler–Peano algorithm computing the approximate X ′ for
a fixed threshold34 δ > 0 works as follows: define T0

def= 0, X ′0
def= C0 and

continue recursively: when the stopping times T0 ≤ T1 ≤ . . . ≤ Tk and the
function X ′ : [[0, Tk]] → R have been defined so that X ′Tk

∈ FTk
, then set1

0Ξ′t
def= Ct − CTk

+ fη
(
X ′Tk

)
·
(
Zηt − ZηTk

)
(5.4.3)

and Tk+1
def= inf

{
t > Tk :

∣∣0Ξ′t
∣∣ > δ

}
, (5.4.4)

and extend X ′: X ′t
def= X ′Tk

+ 0Ξ′t for Tk ≤ t ≤ Tk+1 . (5.4.5)

In other words, the prescription is to wait after time Tk not until some fixed

time has elapsed but until random input plus effect of the drivers together
have changed sufficiently to warrant a new computation; then extend X ′

“linearly” to the interval that just passed, and start over. It is obvious how
to write a little loop for a computer that will compute the path X ′.(ω) of

the Euler–Peano approximate X ′.(ω) as it receives the input paths C.(ω)
and Z.(ω). The scheme (5.4.5) expresses quite intuitively the meaning of the

differential equation dX = f(X) dZ . If one can show that it converges, one

should be satisfied that the limit is for all intents and purposes a solution of
the differential equation (5.4.2).

34 Visualize δ as a step size on the dependent variables’ axis.
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One can, and it is. An easy induction shows that 1,35

for t < T∞ def= sup
k<∞

Tk

we have X ′t = Ct +
∞∑

k=0

fη
(
X ′Tk

)
·
(
ZηTk+1∧t − ZηTk∧t

)

by 3.5.2: = Ct +

∫ t

0

∑

0≤k<∞
fη
(
X ′Tk

)
· ((Tk, Tk+1]] dZ

η (5.4.6)

and exhibits X ′ : [[0, T∞)) → R as an adapted process that is right-continuous
with left limits on [[0, T∞)) – but for all we know so far not necessarily at T∞ .

On the way to proving that the Euler–Peano approximate X ′ is close to
the exact solution X , the first order of business is to show that T∞ = ∞ . In

order to do this recall the scalæfication of processes in definition 3.7.22 that
is attached to the random partition 36 T def= {0 = T0 ≤ T1 ≤ . . . ≤ T∞ ≤ ∞} :

for Y ∈ Dn, Y T def=
∑

0≤k≤∞
YTk

· [[Tk, Tk+1)) ∈ Dn .

Attach now a new coupling coefficient F ′ to F and the partition T by

F ′η[Y ] def= Fη[Y
T ]T for Y ∈ Dn and η = 1, . . . , d, (5.4.7)

and consider the stochastic differential equation 1

Y = C + F ′η[Y ].−∗Zη , (5.4.8)

which reads35 Yt = Ct +

∫ t

0

∑

0≤k≤∞
fη
(
YTk

)
· ((Tk, Tk+1]] dZ

η (5.4.9)

in the present markovian case. The coupling coefficient F ′ evidently satisfies

the Lipschitz condition (5.2.8) with Lipschitz constant L from (5.4.1). There
is therefore a unique global solution Y to equation (5.4.8), and a comparison

of (5.4.9) with equation (5.4.6) reveals that X ′ = Y on [[0, T∞)). On the
set [T∞ < ∞] , Y ∈ Dn has almost surely no oscillatory discontinuity, but

X ′ surely does, since the values of this process at Tk and Tk+1 differ by
at least δ , yet supk |X ′|Tk

is bounded by |Y |?T∞ < ∞ . The set [T∞ < ∞]

is therefore negligible, even nearly empty, and thus the Tk increase without

bound, nearly.

35 In accordance with convention A.1.5 on page 364, sets are identified with their (idem-
potent) indicator functions. A stochastic interval ((S,T ]], for instance, has at the instant s

the value ((S,T ]]s = [S < s ≤ T ] =
n

1 if S(ω) < s ≤ T (ω)
0 elsewhere

.
36 A partition T is assumed to contain T∞ def= sup

k<∞
Tk , and the convention T∞+1

def= ∞
simplifies formulas.
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We now run Picard’s iterative scheme, starting with the scalæfication 35

X(0) def= X ′T =
∞∑

k=0

X ′Tk
· [[Tk, Tk+1)) .

Then X(1) def= U[X(0)] = C + fη(X
(0)).−∗Zη

in view of (5.4.6) equals X ′ and differs from X(0) by less than δ uniformly

on B . Therefore X(0) and X(1) differ by less than δ in any of the norms
?

p,M
. The argument of item 5.1.5 immediately provides the estimate (i)

below. (Another way to arrive at inequality (5.4.10) is to observe that, on the
solution X ′ of (5.4.8), the Fη and F ′η differ by less than δ·L , and to invoke

inequality (5.2.35).)

Proposition 5.4.1 Assume that Z is a local Lq-integrator for some q ≥ 2 and

that equation (5.4.2) with markovian coupling coefficients as in (5.4.1) has
its exact global solution X inside S?n

p,M for some23 p ∈ [2, q] and some23

M > M
�(5.2.20)
p,L . Then, with γ def= M

�(5.2.20)
p,L

/
M ,

(i) X −X ′
?

p,M
≤ γ

1−γ · δ ; (5.4.10)

(ii) and
∣∣X −X(n)

∣∣?
t
−−−→n→∞ 0 almost surely

at any nearly finite stopping time T , whenever the X (n) are the Euler–Peano
approximates constructed via (5.4.5) from a summable sequence of thresholds

δn > 0. In other words, for nearly every ω ∈ Ω we have X
(n)
t −−−→n→∞ Xt ,

uniformly in t ∈ [0, T (ω)] .

Statement (ii) does not change if P is replaced with an equivalent probability
P′ in the manner of the proof of theorem 5.2.15; thus it holds without

assuming more about Z than that it be an L0-integrator:

Theorem 5.4.2 Let X denote the strong global solution of the markovian

system (5.4.1), (5.4.2), driven by the L0-integrator Z . Fix any summable
sequence of strictly positive reals δn and let X(n) be defined as the Euler–

Peano approximates of (5.4.5) for δ = δn . Then X(n) −−−→n→∞ X uniformly
on bounded time-intervals, nearly.

Proof of Proposition 5.4.1 (ii). This is a standard application of the Borel–

Cantelli lemma. Namely, suppose that T is one of the T λ , say T = Tµ .
Then

X −X(n) ?

p,M
≤ δn · γ

1−γ

implies
∥∥∥|X −X(n)|?Tµ−

∥∥∥
Lp

≤ δn · e
Mµγ

1−γ ,

and P
[
|X −X(n)|?Tµ− >

√
δn

]
≤
(δn × eMµγ√

δn(1−γ)

)p
= const · δp/2n ,
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which is summable over n , since p ≥ 2. Therefore

P
[
lim sup

n
|X −X(n)|?Tµ− > 0

]
= 0 .

For arbitrary almost surely finite T , the set [lim supn |X −X(n)|?t > 0] is
therefore almost surely a subset of [T ≥ T µ] and is negligible since T µ can

be made arbitrarily large by the choice of µ .

Remark 5.4.3 In the adaptive 33 Euler–Peano algorithm (5.4.5) on page 311,

any stochastic partition T can replace the specific partition (5.4.4), as long
as36 T∞ = ∞ and the quantity 0Ξ′t does not change by more than δ

over its intervals. Suppose for instance that C is constant and the fη are
bounded, say4 |fη(x)| ≤ K. Then the partition defined recursively by 0 = T0 ,

Tk+1
def= inf{t > Tk :

∑
η|Z

η
t − ZηTk

| > δ/K} will do.

The Case of Endogenous Coupling Coefficients

For any algorithm similar to (5.4.5) and intended to apply in more general

situations than the markovian one treated above, the coupling coefficients
Fη still must be special. Namely, given any input path (x., z.), Fη must

return an output path. That is to say, the Fη must be endogenous Lipschitz
coefficients as in example 5.2.12 on page 289. If they are, then in terms of

the fη the system (5.1.5) reads

Xt = Ct+
∑

η

∫ t

0

fη[Z., X.]s− dZ
η
s (5.4.11)

or, equivalently, X = C+
∑

η

fη[Z., X.].−∗Zη = C+f [Z., X.].−∗Z . (5.4.12)

The adaptive 33 Euler–Peano algorithm (5.4.5) needs to be changed a little.
Again we fix a strictly positive threshold δ , set T0

def= 0, X ′0
def= C0 , and

continue recursively: when the stopping times T0 ≤ T1 ≤ . . . ≤ Tk and
the function X ′ : [[0, Tk]] → R have been defined so that X ′Tk

∈ FTk
, then

set1 ,3

0ft
def= sup

η,ν

∣∣fνη [ZTk , X ′Tk ]t − fνη [ZTk , X ′Tk ]Tk

∣∣ , t ≥ Tk ;

0Ξ′t
def= Ct − CTk

+ fη
[
ZTk , X ′Tk

]
Tk

·
(
Zηt − ZηTk

)
,t ≥ Tk ;

and Tk+1
def= inf{t > Tk : 0ft > δ or |0Ξ′t| > δ} ;

and then extend X ′:X ′t
def= X ′Tk

+ 0Ξ′t for Tk ≤ t ≤ Tk+1 . (5.4.13)

The spirit is that of (5.4.5), the stopping times Tk are possibly “a bit closer

together than there,” to make sure that f [Z, X ′]. does not vary too much
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on the intervals of the partition 36 T def= {T0 ≤ T1 ≤ . . . ≤ ∞} . An induction
shows as before that

for t < T∞ def= sup
k<∞

Tk

we have X ′t = Ct +

∞∑

k=0

fη
[
Z, X ′

]
Tk

·
(
ZηTk+1∧t − ZηTk∧t

)

= Ct +

∫ t

0

F ′η[Z, X
′].−dZ

η ,

where the “T -scalæfied” coupling coefficient F ′η is defined as in (5.4.7), for
the present partition T of course. This exhibits X ′ : [[0, T∞)) → R as an

adapted process that is right-continuous with left limits on [[0, T∞)) – but for
all we know so far not necessarily at T∞ . Again we consider the stochastic

differential equation (5.4.8):

Y = C + F ′η[Y ].−∗Zη

and see that X ′ agrees with its unique global solution Y on [[0, T∞)). As in

the markovian case we conclude from this that X ′ has no oscillatory disconti-
nuities. Clearly fη[Z

T , X ′T ] , which agrees with fη[Z
T , Y T ] on [[0, T∞)), has

no oscillatory discontinuities either. On the other hand, the very definition
of T∞ implies that one or the other of these processes surely must have a

discontinuity on [T∞ < ∞] . This set therefore is negligible, and T∞ = ∞
almost surely.

Let us define X(0) def= X ′T and X(1) def= U
[
X(0)

]
. Then

X
(1)
t = Ct +

∫ t

0

fη
[
Z, X(0)

]
.− dZ

η

and X ′t = Ct +

∫ t

0

fη
[
Z, X(0)

]T
.− dZ

η

differ by less than δC�p
/
eM when measured with the norm

?

p,M
(see ex-

ercise 5.2.2). X ′ and X(0) differ uniformly, and therefore in
?

p,M
, by less

than δ . Therefore

X(1) −X(0) ?

p,M
≤ δ + δC�p

/
eM ,

and in view of item 5.1.4 on page 276 the approximate X (1) differs little from
the exact solution X of (5.2.1); in fact,

X −X(1) ?

p,M
≤ δ · M + C�p/e

M −M�
,

and so X −X ′
?

p,M
≤ δ · M + 2C�p/e

M −M�
. (5.4.14)
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We have recovered proposition 5.4.1 in the present non-markovian setting:

Proposition 5.4.4 Assume that Z is a local Lq-integrator for some q ≥ 2 ,
and pick a p ∈ [2, q] and an M > M

�(5.2.20)
p,L , L being the Lipschitz constant

of the endogenous coefficient f . Then the global solution X of the Lipschitz
system (5.4.11) lies in S?n

p,M , and the Euler–Peano approximate X ′ defined

in equation (5.4.13) satisfies inequality (5.4.14).
Even if Z is merely an L0-integrator, this implies as in theorem 5.4.2 the

Theorem 5.4.5 Fix any summable sequence of strictly positive reals δn and

let X(n) be the Euler–Peano approximates of (5.4.13) for δ = δn . Then
at any almost surely finite stopping time T and for almost all ω ∈ Ω the

sequence X
(n)
t (ω) converges to the exact solution Xt(ω) of the Lipschitz

system (5.4.11) with endogenous coefficients, uniformly for t ∈ [0, T (ω)] .

Corollary 5.4.6 Let Z,Z ′ be L0-integrators and X,X ′ solutions of the

Lipschitz systems

X = C + f [Z., X.].−∗Z and X ′ = C ′ + f [Z., X ′.].−∗Z ′

with endogenous coefficients, respectively. Let Ω0 be a subset of Ω and

T : Ω → R+ a time, neither of them necessarily measurable. If C = C ′ and

Z = Z ′ up to and including (excluding) time T on Ω0 , then X = X ′ up to
and including (excluding) time T on Ω0 , except possibly on an evanescent

set.

The Universal Solution

Consider again the endogenous system (5.4.12), reproduced here as

X = C + f [X.,Z.].−∗Z . (5.4.15)

In view of Items 2.3.8–2.3.11, the solution can be computed on canonical

path space. Here is how. Identify the process Rt
def= (Ct,Zt) : Ω → Rn+d

with a representation R of (Ω,F.) on the canonical path space Ω def= Dn+d

equipped with its natural filtration F .
def= F.[Dn+d] . For consistency’s sake

let us denote the evaluation processes on Ω by Z and C ; to be precise,

Zt(c., z.)
def= zt and Ct(c., z.)

def= ct . We contemplate the stochastic differen-
tial equation

X = C + f [X.,Z.].−∗Z (5.4.16)

or – see (2.3.10) Xt(c., z.) = ct +

∫ t

0

fη[X., z.]s− dz
η
s .

We produce a particularly pleasant solution X of equation (5.4.16) by apply-

ing the Euler–Peano scheme (5.4.13) to it, with δ = 2−n . The corresponding
Euler–Peano approximate X

n
in (5.4.13) is clearly adapted to the natural fil-

tration F.[Dn+d] on path space. Next we set X def= limX
n

where this limit
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exists and X def= 0 elsewhere. Note that no probability enters the definition
of X . Yet the process X we arrive at solves the stochastic differential equa-

tion (5.4.16) in the sense of any of the probabilities in P[Z] . According to
equation (2.3.11), Xt

def= Xt ◦ R = Xt(C.,Z.) solves (5.4.15) in the sense of

any of the probabilities in P[Z] .

Summary 5.4.7 The process X is càdlàg and adapted to F [Dd+n] , and it

solves (5.4.16). Considered as a map from Dd+n to Dn , it is adapted to
the filtrations F.[Dn+d] and F0

.+[Dn] on these spaces. Since the solution X

of (5.4.15) is given by Xt = Xt(C.,Z.) , no matter which of the P ∈ P[Z]
prevails at the moment, X deserves the name universal solution.

A Non-Adaptive Scheme

It is natural to ask whether perhaps the stopping times Tk in the Euler–
Peano scheme on page 311 can be chosen in advance, without the employ

of an “infimum–detector” as in definition (5.4.4). In other words, we ask

whether there is a non-adaptive scheme 33 doing the same job.
Consider again the markovian differential equation (5.4.2) on page 311:

Xt = Ct +

∫ t

0

fη(Xs−) dZηs (5.4.17)

for a vector X ∈ Rn . We assume here without loss of generality that
f(0) = 0, replacing C with 0C def= C + f(0)∗Z if necessary (see page 272).

This has the effect that the Lipschitz condition (5.2.13):

|fη(y) − fη(x)| ≤ L · |y − x| implies |f(x)| ≤ L · |x| . (5.4.18)

To simplify life a little, let us also assume that Z is quasi-left-continuous.

Then the intrinsic time Λ, and with it the time transformation T . , can and
will be chosen strictly increasing and continuous (see remark 4.5.2).

Remark 5.4.8 Let us see what can be said if we simply define the Tk as
usual in calculus by Tk

def= kδ , k = 0, 1, . . ., δ > 0 being the step size. Let us

denote by T = T (δ) the (sure) partition so obtained. Then the Euler–Peano
approximate X ′ of (5.4.5) or (5.4.6), defined by X ′0

def= C0 and recursively for

t ∈ ((Tk, Tk+1]] by1

X ′t
def= X ′Tk

+
(
Ct − CTk

)
+ fη

(
X ′Tk

)
·
(
Zηt − ZηTk

)
, (5.4.19)

is again the solution of the stochastic differential equation (5.4.8). Namely,

X ′ = C + F ′η[X
′].−∗Zη ,

with F ′η as in (5.4.7), to wit,

F ′η[Y ] def= Fη[Y
T ]T =

∑

0≤k<∞
fη(YTk

)·[[Tk, Tk+1)) .
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The stability estimate (5.2.34) on page 294 says that

X ′ −X
?

p,M
≤ γ

L(1−γ)
·
∣∣F ′[X]−F [X]

∣∣
∞ p,M

(5.4.20)

for any choice of γ ∈ (0, 1) and any M > M
(5.2.26)
L:γ . A straightforward

application of the Dominated Convergence Theorem to the right-hand side of
(5.4.20) shows that X ′ −X

?

p,M
→ 0 as δ → 0. Thus X ′ is an approximate

solution, and the path of X ′ , which is an algebraic construct of the path of
(C,Z), converges uniformly on bounded time-intervals to the path of the

exact solution X as δ → 0, in probability.
However, the Dominated Convergence Theorem provides no control of

the speed of the convergence, and this line of argument cannot rule out
the possibility that convergence X ′.(ω) −−→δ→0 X.(ω) may obtain for no single

course-of-history ω ∈ Ω. True, by exercise A.8.1 (iv) there exists some
sequence (δn) along which convergence occurs almost surely, but it cannot

generally be specified in advance.

A small refinement of the argument in remark 5.4.8 does however result in
the desired approximation scheme. The idea is to use equal spacing on the

intrinsic time λ rather than the external time t (see, however, example 5.4.10
below). Accordingly, fix a step size δ > 0 and set

λk
def= kδ and Tk = T

(δ)
k

def= Tλk , k = 0, 1, . . . . (5.4.21)

This produces a stochastic partition T = T (δ) whose mesh tends to zero
as δ → 0. For our purpose it is convenient to estimate the right-hand side of

(5.2.35), which reads

X ′−X ?

p,M
≤ γ

L(1−γ)
· F [X ′] − F ′[X ′]

p,M
.

Namely, ∆t
def= F [X ′]t−F ′[X ′]t = f(X ′t)−f(X ′Tt )

equals1 f
(
X ′Tk

+ fη(X
′
Tk

)·(Zηt −ZηTk
)
)
− f(X ′Tk

)

for Tk ≤ t < Tk+1, and there satisfies the estimate 35

∣∣∆ν
t

∣∣ ≤ L ·
∣∣fνη (X ′Tk

)·(Zηt −ZηTk
)
∣∣ , ν = 1, . . . , n ,

≤ L ·
∣∣{fν(X ′Tk

)((Tk, Tk+1]]
}
∗Z
∣∣?
t
.

Thus
∣∣∆ν

t

∣∣ ≤ L ·∑0≤k[[Tk, Tk+1))t ·
∣∣fν(X ′Tk

)((Tk, Tk+1]]∗Z
∣∣?
t

for all t ≥ 0 and, since the time transformation is strictly increasing,
∥∥∆ν

Tµ−
∥∥
Lp ≤ L ·∑k[kδ < µ ≤ (k+1)δ] ×

×
∥∥∥
∣∣fν(X ′Tk

)((Tk, Tk+1]]∗Z
∣∣?
Tµ−

∥∥∥
Lp
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(which is a sum with only one non-vanishing term)

by (4.5.1) and 2.4.7: ≤ LC�p ·
∑
k[kδ < µ ≤ (k+1)δ] ×

× max
ρ=1�,p�

∥∥∥
(∫ µ

kδ

∣∣fν(X ′Tk
)
∣∣ρ
∞dλ

)1/ρ∥∥∥
Lp

for δ < 1: ≤ LC�p ·
∑
k[kδ < µ ≤ (k+1)δ] · δ1/p�

∥∥∥
∣∣fν(X ′Tk

)
∣∣
∞

∥∥∥
Lp
.

Therefore, applying | |p, Fubini’s theorem, and inequality (5.4.18),

‖∆Tµ−‖Lp ≤ δ1/p
� · L2C�p ·

∥∥X ′?Tk

∥∥
Lp ≤ δ1/p

� · L2C�p ·
∥∥X ′?Tµ

∥∥
Lp .

Multiplying by e−Mµ , taking the supremum over µ , and using (5.2.23) results
in inequality (5.4.22) below:

Theorem 5.4.9 Suppose that Z is a quasi-left-continuous local Lq(P)-integrator

for some q ≥ 2 , let p ∈ [2, q] , 0 < γ < 1 , and suppose that the markovian
stochastic differential equation (5.4.17) of Lipschitz constant L has its unique

global solution in S?n
p,M , M = M

(5.2.26)
L:γ . Then the non-adaptive Euler–Peano

approximate X ′ defined in equation (5.4.19) for δ > 0 satisfies

X ′ −X
?

p,M
≤ δ1/p

� ·
C�pLγ · 0C

?

p,M

(1 − γ)2
. (5.4.22)

Consequently, if δ runs through a sequence δn such that
∑
n δ

1/p�
n conver-

ges, then the corresponding non-adaptive Euler–Peano approximates converge

uniformly on bounded time-intervals to the exact solution, nearly.

Example 5.4.10 Suppose Z is a Lévy process whose Lévy measure has
qth moments away from zero and therefore is an Lq-integrator (see pro-

position 4.6.16 on page 267). Then its previsible controller is a multiple of

time (ibidem), and T λ = cλ for some constant c . In that case the classical
subdivision into equal time-intervals coincides with the intrinsic one above,

and we get the pathwise convergence of the classical Euler–Peano approxi-

mates (5.4.19) under the condition
∑
n δ

1/p�
n <∞ . If in particular Z has no

jumps and so is a Wiener process, or if p = 2 was chosen, then p� = 2, which
implies that square-root summability of the sequence of step sizes suffices for

pathwise convergence of the non-adaptive Euler–Peano approximates.

Remark 5.4.11 So why not forget the adaptive algorithm (5.4.3)–(5.4.5) and
use the non-adaptive scheme (5.4.19) exclusively?

Well, the former algorithm has order 37 1 (see (5.4.10)), while the latter
has only order 1/2 – or worse if there are jumps, see (5.4.22). (It should be

37 Roughly speaking, an approximation scheme is of order r if its global error is bounded
by a multiple of the rth power of the step size. For precise definitions see pages 281 and
324.
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pointed out in all fairness that the expected number of computations needed
to reach a given final time grows as 1/δ2 in the first algorithm and as 1/δ in

the second, when a Wiener process is driving. In other words, the adaptive
Euler algorithm essentially has order 1/2 as well.)

Next, the algorithm (5.4.19) above can (so far) only be shown to make sense
and to converge when the driver Z is at least an L2-integrator. A reduction

of the general case to this one by factorization does not seem to offer any
practical prospects. Namely, change to another probability in P[Z] alters

the time transformation and with it the algorithm: there is no universality
property as in summary 5.4.7.

Third, there is the generalization of the adaptive algorithm to general en-
dogenous coupling coefficients (theorem 5.4.5), but not to my knowledge of

the non-adaptive one.

The Stratonovich Equation

In this subsection we assume that the drivers Zη are continuous and the
coupling coefficients markovian. 8 On page 271 the original ill-put stochastic

differential equation (5.1.1) was replaced by the Itô equation (5.1.2), so as
to have its integrands previsible and therefore integrable in the Itô sense.

Another approach is to read (5.1.1) as a Stratonovich equation: 38

X = C + fη(X)◦Zη def= C + fη(X)∗Zη +
1

2

[
fη(X), Zη

]
. (5.4.23)

Now, in the presence of sufficient smoothness of f , there is by Itô’s formula
a continuous finite variation process V such that 38 ,16

fη(X) = fη;ν(X)∗Xν + V .

Hence
[
fη(X), Zη

]
= fη;ν(X)∗

[
Xν , Zη

]
= fη;ν(X)fνθ (X)∗

[
Zθ, Zη

]
,

which exhibits the Stratonovich equation (5.4.23) as equivalent with the Itô

equation

X = C + fη(X)∗Zη +

(
fη;νf

ν
θ

)
(X)

2
∗
[
Zθ, Zη

]
: (5.4.24)

X solves (5.4.23) if and only if it solves (5.4.24). Since the Stratonovich

integral has no decent limit properties, the existence and uniqueness of solu-
tions to equation (5.4.23) cannot be established by a contractivity argument.

Instead we must read it as the Itô equation (5.4.24); Lipschitz conditions on
both the fη and the fη;νf

ν
θ will then produce a unique global solution.

38 Recall that X,C, fη take values in Rn . For example, f = {fν} = {fνη }. The indices
η, θ, ι usually run from 1 to d and the indices µ, ν, ρ . . . from 1 to n. Einstein’s convention,
adopted, implies summation over the same indices in opposite positions.
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Exercise 5.4.12 (Coordinate Invariance of the Stratonovich Equation)
Let Φ : Rn → Rn be invertible and twice continuously differentiable. Set
fΦ
η (y) def= Φ(fη(Φ−1(y))) . Then Y def= Φ(X) is the unique solution of

Y = Φ(C) + fΦ
η (Y )◦Zη ,

if and only if X is the solution of equation (5.4.23). In other words, the Stratonovich
equation behaves like an ordinary differential equation under coordinate transfor-
mations – the Itô equation generally does not. This feature, together with theo-
rem 3.9.24 and application 5.4.25, makes the Stratonovich integral very attractive
in modeling.

Higher Order Approximation: Obstructions

Approximation schemes of global order 1/2 as offered in theorem 5.4.9 seem

unsatisfactory. From ordinary differential equations we are after all accus-
tomed to Taylor or Runge–Kutta schemes of arbitrarily high order. 37 Let us

discuss what might be expected in the stochastic case, at the example of the
Stratonovich equation (5.4.23) and its equivalent (5.4.24), reproduced here as

X = C + f(X)◦Z (5.4.25)

or38 X = C + fη(X)∗Zη +

(
fη;νf

ν
θ

)
(X)

2
∗
[
Zθ, Zη

]
(5.4.26)

or, equivalently, X = U[X] def= C + F ι(X)∗Zι , (5.4.27)

where F ι
def= fη and Z

ι
def= Zη when ι = η ∈ {1, . . . , d}

and F ι
def= fη;νf

ν
θ and Z

ι
def= [Zη, Zθ] when ι = ηθ ∈ {11, . . . , dd} .

In order to simplify and to fix ideas we work with the following

Assumption 5.4.13 The initial condition C ∈ F0 is constant in time. Z is
continuous with Z0 = 0 – then Z0 = 0 . The markovian8 coupling coeffi-

cient F is differentiable and Lipschitz.

We are then sure that there is a unique solution X of (5.4.27), which also

solves (5.4.25) and lies in S?n
p,M for any p ≥ 2 and M > M

�(5.2.20)
p,L (see

proposition 5.2.14).

We want to compare the effect of various step sizes δ > 0 on the accuracy
of a given non-adaptive approximation scheme. For every δ > 0 picked, Tk
shall denote the intrinsically δ-spaced stopping times of equation (5.4.21):
Tk

def= T kδ .

Surprisingly much – of, alas, a disappointing nature – can be derived from
a rather general discussion of single-step approximation methods. We start

with the following “metaobservation:” A straightforward 39 generalization of

a classical single-step scheme as described on page 280 will result in a method
of the following description:

39 and, as it turns out, a bit naive – see notes 5.4.33.
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Condition 5.4.14 The method provides a function Ξ′ : Rn × Rd → Rn ,

(x, z) 7→ Ξ′[x, z] = Ξ′[x, z; f ] ,

whose role is this: when after k steps the method has constructed an approx-

imate solution X ′t for times t up to the k th stopping time Tk , then Ξ′ is
employed to extend X ′ up to the next time Tk+1 via

X ′t
def= Ξ′[X ′Tk

,Zt − ZTk ] for Tk ≤ t ≤ Tk+1 . (5.4.28)

Z−ZTk is the upcoming stretch of the driver. The function Ξ′ is specific for

the method at hand, and is constructed from the coupling coefficient f and
possibly (in Taylor methods) from a number of its derivatives.

If the approximation scheme meets this description, then we talk about the
method Ξ′ .

In an adaptive33 scheme, Ξ′ might also enter the definition of the next stop-
ping time Tk+1 – see for instance (5.4.4). The function Ξ′ should be rea-

sonably simple; the more complex Ξ′ is to evaluate the poorer a choice it
is, evidently, for an approximation scheme, unless greatly enhanced accuracy

pays for the complexity. In the usual single-step methods Ξ′[x, z; f ] is an
algebraic expression in various derivatives of f evaluated at algebraic expres-

sions made from x and z .

Examples 5.4.15 In the Euler–Peano method of theorem 5.4.9

Ξ′[x,z;f ] = x+fη(x)z
η .

The classical improved Euler or Heun method generalizes to 1

Ξ′[x,z;f ] def= x+
fη(x) + fη(x+ fθ(x)z

θ)

2
zη .

The straightforward39 generalization of the Taylor method of order 2 is given by

Ξ′[x,z;f ] def= x+ fη(x)z
η + (fη;νf

ν
θ )(x)zηzθ/2 .

The classical Runge–Kutta method of global order 4 has the obvious generalization

k1
def= fη(x)z

η , k2
def= fη(x+ k1/2)z

η , k3
def= fη(x+ k2/2)z

η , k4
def= fη(x+ k3/2)z

η

and Ξ′[x,z;f ] def= x+
k1 + 2k2 + 2k3 + k4

6
.

The methods Ξ′ in this example have a structure in common that is most
easily discussed in terms of the following notion. Let us say that the map

Φ : Rn × Rd → Rn is polynomially bounded in z if there is a polynomial P
so that

|Φ[x, z]| ≤ P (|z|) , (x, z) ∈ Rn × Rd .

The functions polynomially bounded in z evidently form an algebra BP
that is closed under composition: Ψ

[
Φ[ . , . ], .

]
∈ BP for Φ,Ψ ∈ BP . The
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functions Φ ∈ BP ∩ Ck whose first k partials belong to BP as well form
the class PUk . This is easily seen to form again an algebra closed under

composition. For simplicity’s sake assume now that f is of class 10 C∞b .
Then in the examples above, and in fact in all straightforward extensions of

the classical single step methods, Ξ′[ . , . ; f ] has all of its partial derivatives
in BP∞ . For the following discussion only this much is needed:

Condition 5.4.16 Ξ′ has partial derivatives of orders 1 and 2 in BP .

Now, from definition (5.4.28) on page 322 and theorem 3.9.24 on page 170 we

get Ξ′[x, 0] = x and40

Ξ′[XTk
,Z−ZTk ] = XTk

+ Ξ′;η[XTk
,Z−ZTk ]◦Zη on [[Tk, Tk+1]] ,

so that X ′ can be viewed as the solution of the Stratonovich equation

X ′ = C + F ′η[X
′]◦Zη , (5.4.29)

with Itô equivalent (compare with equation (5.4.27) on page 321)

X ′ = U′[X ′] def= C + F ′ι[X
′]∗Zι , (5.4.30)

where35 F ′ι = F ′η
def=
∑

k[[Tk, Tk+1)) · Ξ′;η[X ′Tk
,Z−ZTk ] when ι = η

and F ′ι
def=
∑
k[[Tk, Tk+1)) ·

{
Ξ′;ηνΞ

′ν
;θ

}
[X ′Tk

,Z−ZTk ] for ι = ηθ .

Note that F ′ is generally not markovian, in view of the explicit presence of

Z − ZTk in Ξ′;η[x,Z−ZTk ] .

Exercise 5.4.17 (i) Condition 5.4.16 ensures that F ′ satisfies the Lipschitz
condition (5.2.11). Therefore both maps U of (5.4.27) and U′ of (5.4.30) will
be strictly contractive in S?n

p,M for all p ≥ 2 and suitably large M = M(p).
(ii) Furthermore, there exist constants D′, L′,M ′ such that for 0 ≤ κ < λ

‚‚‚|Ξ′[C,Z.−Z
Tκ

;f ]|?
Tλ

‚‚‚
Lp

≤ D′ · ‖C‖Lp · eM
′(λ−κ)

(5.4.31)

and
‚‚‚|Ξ′[C′,Z.−Z

Tκ

] − Ξ′[C,Z.−Z
Tκ

]|?
Tλ

‚‚‚
Lp

≤
‚‚C′−C

‚‚
Lp · eL

′(λ−κ)
. (5.4.32)

Recall that we are after a method Ξ′ of order strictly larger than 1/2. That

is to say, we want it to produce an estimate of the form X ′ − X = o(
√
δ)

for the difference of the exact solution X = Ξ[C,Z; f ] of (5.4.25) from its

Ξ′-approximate X ′ made with step size δ via (5.4.28). The question arises
how to measure this difference. We opt 41 for a generalization of the classical

notions of order from page 281, replacing time t with intrinsic time λ :

40 We write Ξ′
;η

def= ∂Ξ′/∂zη and Ξ′
;ην

def= ∂Ξ′
;η/∂x

ν , etc.38
41 There are less stringent notions; see notes 5.4.33.



324 5 Stochastic Differential Equations

Definition 5.4.18 We say that Ξ′ has local order r on the coupling coeffi-
cient f if there exists a constant M such that 4 for all λ > κ ≥ 0 and all

C ∈ Lp(FTλ)

∥∥∥
∣∣Ξ′[C,Z.−ZTκ

; f ] − Ξ[C,Z.−ZTκ

; f ]
∣∣?
Tλ

∥∥∥
Lp

(5.4.33)

≤ (‖C‖Lp+1) ×
(
M(λ−κ)

)r
e
M(λ−κ)

.

The least such M is denoted by M [f ] . We say Ξ′ has global order r on f

if the difference X ′−X satisfies an estimate

X ′. −X.
?

p,M
= ( C

?

p,M
+ 1) ·O(δr)

for some M = M [f ; Ξ′]. This amounts to the existence of a B = B[f ; Ξ′]

such that
∥∥∥
∣∣X ′ − Ξ[C,Z; f ]

∣∣?
Tλ

∥∥∥
Lp

≤ B·(‖C‖Lp+1) × δreMλ (5.4.34)

for sufficiently small δ > 0 and all λ ≥ 0 and C ∈ Lp(F0) .

Criterion 5.4.19 (Compare with criterion 5.1.11.) Assume condition 5.4.16.

(i) If
‚‚‚ |Ξ′[C,Z.−Z

Tκ

;f ] − Ξ[C,Z.−Z
Tκ

;f ]|?
Tλ

‚‚‚
Lp

= (‖C ‖Lp+1)·O((λ−κ)r) ,
then Ξ′ has local order r on f .

(ii) If Ξ′ has local order r , then it has global order r−1.

Recall again that we are after a method Ξ′ of order strictly larger than 1/2.

In other words, we want it to produce

X ′ −X
?

p,M
= o(

√
δ) (5.4.35)

for some p ≥ 2 and some M . Let us write 0Ξ′(t) def= Ξ′[C,Zt] − C and
0Ξ′;η(t)

def= Ξ′;η[C,Zt] for short.40 According to inequality (5.2.35) on page 294,

(5.4.35) will follow from F [X ′] − F ′[X ′]
p,M

= o(
√
δ) ,

which requires
∥∥fη
(
C + 0Ξ′(t)

)
− 0Ξ′;η(t)

∥∥
Lp

= o(
√
t) . (5.4.36)

It is hard to see how (5.4.35) could hold without (5.4.36); at the same time,

it is also hard to establish that it implies (5.4.36). We will content ourselves
with this much:

Exercise 5.4.20 If Ξ′ is to have order > 1 in all circumstances, in particular
whenever the driver Z is a standard Wiener process, then equation (5.4.36) must
hold.

Letting δ → 0 in (5.4.36) we see that the method Ξ′ must satisfy Ξ′;η[C, 0] =

fη(C). This can be had in all generality only if 40

Ξ′;η[x, 0] = fη(x) ∀ x ∈ Rn . (5.4.37)
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Then5 fη(C + 0Ξ′(t)) = fη(C) + fη;ν(C) 0Ξ′ν(t) +O(|0Ξ′(t)|2)

= fη(C) + fη;ν(C) Ξ′ν;θ [C, 0]Zθt + O(|Zt|2)

by (5.4.37): = fη(C) + fη;ν(C)fνθ (C)Zθt + O(|Zt|2) . (5.4.38)

Also, Ξ′;η[C,Zt] = fη(C) + Ξ′;ηθ[C, 0]Zθt + O(|Zt|2) . (5.4.39)

Equations (5.4.36), (5.4.38), and (5.4.39) imply that for t ≤ T δ

∥∥∥
{(
fη;νf

ν
θ

)
(C) − Ξ′;ηθ[C, 0]

}
Zθt

∥∥∥
Lp

= o(
√
δ) +

∥∥O(|Zt|2)
∥∥
Lp . (5.4.40)

This condition on Ξ′ can be had, of course, if Ξ′ is chosen so that

Mηθ(x)
def=
(
fη;νf

ν
θ

)
(x) − Ξ′;ηθ[x, 0] = 0 ∀ x ∈ Rn , (5.4.41)

and in general only with this choice. Namely, suppose Z is a standard

d-dimensional Wiener process. Then, for k = 0, the size in Lp of the
martingale Mt

def= Mµ
ηθ(x)Z

θ
t at t = δ is, by theorem 2.5.19 and inequal-

ity (4.2.4), bounded below by a multiple of

‖Sδ[M.]‖Lp =
∥∥∥
(∑

θ

∣∣Mµ
ηθ(x)

∣∣2
)1/2∥∥∥

Lp
·
√
δ ,

while
∥∥O(|Zδ|2)

∥∥
Lp ≤ const× δ = o(

√
δ) .

In the presence of equation (5.4.40), therefore,

∥∥∥
(∑

θ

∣∣Mµ
ηθ(x)

∣∣2
)1/2∥∥∥

Lp
≤ o(

√
δ)√
δ

−−→
δ→0 0 .

This implies M. = 0 and with it (5.4.41), i.e., Ξ′;ηθ[x, 0] =
(
fη;νf

ν
θ

)
(x) for

all x ∈ Rn . Notice now that Ξ′;ηθ[x, 0] is symmetric in η, θ . This equality
therefore implies that the Lie brackets [fη, fθ]

def= fη;νf
ν
θ −fθ;νfνη must vanish:

Condition 5.4.21 The vector fields f1, . . . , fd commute.

The following summary of these arguments does not quite deserve to be called

a theorem, since the definition of a method and the choice of the norms

p,M
, etc., are not canonical and (5.4.36) was not established rigorously.

Scholium 5.4.22 We cannot expect a method Ξ′ satisfying conditions 5.4.14

and 5.4.16 to provide approximation in the sense of definition 5.4.18 to an

order strictly better than 1/2 for all drivers and all initial conditions, unless
the coefficient vector fields commute.
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Higher Order Approximation: Results

We seek approximation schemes of an order better than 1/2. We continue
to investigate the Stratonovich equation (5.4.25) under assumption 5.4.13,

adding condition 5.4.21. This condition, forced by scholium 5.4.22, is a severe
restriction on the system (5.4.25). The least one might expect in a just world

is that in its presence there are good approximation schemes. Are there?
In a certain sense, the answer is affirmative and optimal. Namely, from the

change-of-variable formula (3.9.11) on page 171 for the Stratonovich integral,
this much is immediate:

Theorem 5.4.23 Assuming condition 5.4.21, let Ξf be the action of Rd on
Rn generated by f (see proposition 5.1.10 on page 279). Then the solution

of equation (5.4.25) is given by

Xt = Ξf [C,Zt] .

Examples 5.4.24 (i) Let W be a standard Wiener process. The Stratonovich
equation E = 1 + E ◦W has the solution eW , on the grounds that e

.
solves the

corresponding ordinary differential equation et = 1 +
R t
0
es ds .

(ii) The vector fields f1(x) = x and f2(x) = −x/2 on R commute. Their

flows are ξ[x, t; f1] = xet and ξ[x, t; f2] = xe−t/2 , respectively, and so the action

f = (f1, f2) generates is Ξf (x, (z1, z2)) = x×ez1×e−z2/2 . Therefore the solution of

the Itô equation Et = 1+
R t
0

Es dWs , which is the same as the Stratonovich equation

Et = 1+
R t
0

Es δWs−1/2
R t
0

Es ds = 1+
R t
0
f1(Es) δWs+

R t
0
f2(Es) ds , is Et = eWt−t/2 ,

which the reader recognizes from proposition 3.9.2 as the Doléans–Dade exponential
of W .

(iii) The previous example is about linear stochastic differential equations. It has
the following generalization. Suppose A1, . . . , Ad are commuting n× n-matrices.
The vector fields fη(x) def= Aηx then commute. The linear Stratonovich equation

X = C + AηX◦Zη then has the explicit solution Xt = C · eAηZ
η
t . The corre-

sponding Itô equation X = C + AηX∗Zη , equivalent with X = C + AηX◦Zη −
1
2
AηAθX◦[Zη, Zθ] , is solved explicitely by Xt = C · eAηZ

η
t − 1

2
AηAθ [Zη ,Zθ]t

.

Application 5.4.25 (Approximating the Stratonovich Equation by an ODE)
Let us continue the assumptions of theorem 5.4.23. For n ∈ N let Z (n) be

that continuous and piecewise linear process which at the times k/n equals Z ,
k = 1, 2, . . .. Then Z(n) has finite variation but is generally not adapted; the

solution of the ordinary differential equation X
(n)
t = C +

∫ t
0

f
(
X

(n)
s

)
dZ

(n)
s

(which depends of course on the parameter ω ∈ Ω) converges uniformly

on bounded time-intervals to the solution X of the Stratonovich equation
(5.4.25), for every ω ∈ Ω. This is simply because Z

(n)
t (ω) → Zt(ω) uniformly

on bounded intervals and X
(n)
t (ω) = Ξf

[
C,Z

(n)
t (ω)

]
. This feature, together

with theorem 3.9.24 and exercise 5.4.12, makes the Stratonovich integral very

attractive in modeling.

One way of reading theorem 5.4.23 is that (x, z) 7→ Ξf [x, z] is a method of

infinite order: there is no error. Another, that in order to solve the stochastic
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differential equation (5.4.25), one merely needs to solve d ordinary differential
equations, producing Ξf , and then evaluate Ξf at Z . All of this looks very

satisfactory, until one realizes that Ξf is not at all a simple function to
evaluate and that it does not lend itself to run time approximation of X .

5.4.26 A Method of Order r An obvious remedy leaps to the mind: approx-
imate the action Ξf by some less complex function Ξ′ ; then Ξ′[x,Zt] should

be an approximation of Xt . This simple idea can in fact be made to work.
For starters, observe that one needs to solve only one ordinary differential

equation in order to compute Xt(ω) = Ξf [C(ω),Zt(ω)] for any given ω ∈ Ω.
Indeed, by proposition 5.1.10 (iii), Xt(ω) is the value xτt

at τt
def= |Zt(ω)| of

the solution x. to the ODE

x. = C(ω) +

∫ .

0

f(xσ) dσ , where f(x) def=
∑
ηfη(x)Z

η
t (ω)

/
τt . (5.4.42)

Note that knowledge of the whole path of Z is not needed, only of its value

Zt(ω). We may now use any classical method to approximate xτt
= Xt(ω).

Here is a suggestion: given an r , choose a classical method ξ ′ of global
order r , for instance a suitable Runge–Kutta or Taylor method, and use

it with step size δ to produce an approximate solution x′. = x′.[c; δ, f ] to
(5.4.42). According to page 324, to say that the method ξ ′ chosen has global

order r means that there are constants b = b[c; f, ξ ′] and m = m[f ; ξ′] so
that for sufficiently small δ > 0

|xσ − x′σ| ≤ b·δr × emσ , σ ≥ 0 .

Now set b def= sup{b[fηzη; ξ′] : |z| ≤ 1} (5.4.43)

and m def= sup{m[fηz
η; ξ′] : |z| ≤ 1} . (5.4.44)

Then
∣∣Xt(ω) − x′τt

∣∣ ≤ b·δr × emτt . (5.4.45)

Hidden in (5.4.43), (5.4.44) is another assumption on the method ξ ′:

Condition 5.4.27 If ξ′ has global order r on f1, . . . , fd , then the suprema in
equations (5.4.43) and (5.4.44) can be had finite.

(
If, as is often the case,

b[f ; ξ′] and m[f ; ξ′] can be estimated by polynomials in the uniform bounds
of various derivatives of f , then the present condition is easily verified.

)

In order to match (5.4.47) with our general definition 5.4.14 of a single-step
method, let us define the function Ξ′ : Rn × Rd → Rn by

Ξ′[x, z] def= x′τ , (5.4.46)

where τ def= |z| and x′. is the ξ′-approximate to x. = x+
∫ .
0
fη(xσ)z

η/τ dσ.

Then the corresponding Ξ′-approximate for (5.4.25) is

X ′t(ω) = Ξ′[c,Zt(ω)] def= x′τt(ω)

and by (5.4.45) has
∣∣X(ω) −X ′(ω)

∣∣?
t
≤ b·δr × e

m|Z|?t (ω)
(5.4.47)
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when ξ′ is carried out with step size δ . The method Ξ′ is still not very
simple, requiring as it does dτt(ω)/δe iterations of the classical method ξ′

that defines it; but given today’s fast computers, one might be able to live
with this much complexity. Here is another mitigating observation: if one

is interested only in approximating Xt(ω) at one finite time t , then Ξ′ is
actually evaluated only once: it is a one-single-step method.

Suppose now that Z is in particular of the following ubiquitous form:

Condition 5.4.28 Zηt =

{
t for η = 1

W η
t for η = 2, . . . , d,

where W is a standard d−1-dimensional Wiener process.

Then the previsible controller becomes Λt = d·t (exercise 4.5.19), the time
transformation is given by T λ = λ/d , and the Stratonovich equation (5.4.25)

reads

X = C + f(X)◦Z (5.4.48)

or, equivalently, X = C + fη(X)∗Zη ,

where fη
def=




f1 +

1

2

∑

θ>1

fθ;νf
ν
θ for η = 1,

fη for η > 1.

sup
η≥1

∣∣fη(x) − fη(y)
∣∣ ≤ L · |x− y| (5.4.49)

is the requisite Lipschitz condition from 5.4.13, which guarantees the existence
of a unique solution to (5.4.48), which lies in S?n

p,M for any p ≥ 2 and

M > M
�(5.2.20)
p,L . Furthermore, Z is of the form discussed in exercise 5.2.18 (ii)

on page 292, and inequality (5.4.47) together with inequality (5.2.30) leads

to the existence of constants B′ = B′[b, d, p, r] and M ′ = M ′[d,m, p, r] such
that ∥∥ |X ′ −X|?t

∥∥
Lp ≤ δr ·B′eM ′t , t ≥ 0 .

We have established the following result:

Proposition 5.4.29 Suppose that the driver Z satisfies condition 5.4.28, the

coefficients f1, . . . , fd are Lipschitz, and the coefficients f1, . . . , fd commute.
If ξ′ is any classical single-step approximation method of global order r

for ordinary differential equations in Rn (page 280) that satisfies condi-
tion 5.4.27, then the one-single-step method Ξ′ defined from it in (5.4.46) is

again of global order r , in this weak sense: at any fixed time t the difference

of the exact solution Xt = Ξ[C,Zt] of (5.4.25) and its Ξ′-approximate X ′t
made with step size δ can be estimated as follows: there exist constants

B,M,B1,M1 that depend only on d,f , p > 1, ξ′ such that
∣∣X ′t(ω) −Xt(ω))

∣∣ ≤ B·δr × e
M|Zt(ω)| ∀ ω ∈ Ω

and
∥∥|X ′ −X|?t

∥∥
Lp ≤ B1·δr × eM1t . (5.4.50)
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Figure 5.13

has two related shortcomings: the

method Ξ′ computes an approxima-
tion to the value of Xt(ω) only at

the final time t of interest, not to the
whole path X.(ω), and it waits until

that time before commencing the computation – no information from the sig-
nal Z. is processed until the final time t has arrived. In order to approximate

K points on the solution path X. the method Ξ′ has to be run K times,
each time using |ZTk

|/δ iterations of the classical method ξ′ . In the figure

above42 one expects to perform as many calculations as there are dashes, in
order to compute approximations at the K dots.

Exercise 5.4.31 Suppose one wants to compute approximations X ′
kδ at the

K points δ, 2δ, . . . ,Kδ = t via proposition 5.4.29. Then the expected number of
evaluations of ξ′ is N1 ≈ B1(t)/δ

2 ; in terms of the mean error E def= ‖|X ′ −X|?t ‖L2

N1 ≈ C1(t)/E
2/r ,

B1(t), C1(t) being functions of at most exponential growth that depend only on ξ′ .

Figure 5.13 suggests that one should look for a method that at the k + 1th

step uses the previous computations, or at least the previously computed

value X ′Tk
. The simplest thing to do here is evidently to apply the classical

method ξ′ at the kth point to the ordinary differential equation

xτ = X ′Tk
+

∫ τ

Tk

(
f ·(Zt−ZTk

t )
)
(xσ) dσ ,

whose exact solution at τ = 1 is x1 = Ξf [X ′Tk
,Zt−ZTk

t ] , so as to obtain
X ′t

def= x′1 ; apply it in one “giant” step of size 1. In figure 5.13 this propels us

from one dot to the next. This prescription defines a single-step method Ξ′

in the sense of 5.4.14:

Ξ′[x, z; f ] def= ξ′[x, 1; f ·z] ;

and X ′t =Ξ′[X ′Tk
,Zt−ZTk

t ; f ] = ξ′[X ′Tk
, 1; f ·(Zt−ZTk

t )] , Tk ≤ t ≤ Tk+1 ,

is the corresponding approximate as in definition (5.4.28).

Exercise 5.4.32 Continue to consider the Stratonovich equation (5.4.48), as-
suming conditions 5.4.21, 5.4.28, and inequality (5.4.49). Assume that the classical
method ξ′ is scale-invariant (see note 5.1.12) and has local order r + 1 – by cri-
terion 5.1.11 on page 281 it has global order r . Show that then Ξ′ has global
order r/2−1/2 in the sense of (5.4.34), so that, for suitable constants B2 , M2 , the
Ξ′-approximate X ′ satisfies

E def=
‚‚|X ′ −X|?t

‚‚
L2 ≤ B2(t)δ

r/2−1/2 .

Consequently the number N2 = t/δ of evaluations of ξ′ needed as in 5.4.31 is

N2 ≈ C2(t)/E
2/(r−1) .

42 It is highly stylized, not showing the wild gyrations the path Z. will usually perform.
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In order to decrease the error E by a factor of 10r/2 , we have to increase
the expected number of evaluations of the method ξ′ by a factor of 10 in

the procedure of exercise 5.4.31. The number of evaluations increases by a
factor of 10r/r−1 using exercise 5.4.32 with the estimate given there. We see

to our surprise that the procedure of exercise 5.4.31 is better than that of
exercise 5.4.32, at least according to the estimates we were able to establish.

Notes 5.4.33 (i) The adaptive Euler method of theorem 5.4.2 is from [7]. It, its

generalization 5.4.5, and its non-adaptive version 5.4.9 have global order 1/2
in the sense of definition 5.4.18. Protter and Talay show in [92] that the latter

method has order 1 when the driver is a suitable Lévy process, the coupling
coefficients are suitably smooth, and the deviation of the approximate X ′

from the exact solution X is measured by E[g ◦ Xt − g ◦ X ′t] for suitably
(rather) smooth g .

(ii) That the coupling coefficients should commute surely is rare. The
reaction to scholium 5.4.22 nevertheless should not be despair. Rather, we

might distance ourselves from the definition 5.4.14 of a method and possibly
entertain less stringent definitions of order than the one adopted in defini-

tion 5.4.18. We refer the reader to [85] and [86].

5.5 Weak Solutions

Example 5.5.1 (Tanaka) Let W be a standard Wiener process on its own

natural filtration F.[W ] , and consider the stochastic differential equation

X = signX∗W . (5.5.1)

The coupling coefficient signx def=

{
1 for x ≥ 0
−1 for x < 0

is of course more general than the ones contemplated so far; it is, in particular,
not Lipschitz and returns a previsible rather than a left-continuous process

upon being fed X ∈ C . Let us show that (5.5.1) cannot have a strong

solution in the sense of page 273. By way of contradiction assume that
X solves this equation. Then X is a continuous martingale with square

function [X,X]t = Λt
def= t and X0 = 0, so it is a standard Wiener process

(corollary 3.9.5). Then

|X|2 = X2 = 2X∗X + Λ = 2XsignX∗W + Λ ,

and so
1

|X| + ε
∗|X|2 =

2|X|
|X| + ε

∗W +
1

|X| + ε
∗Λ , ε > 0 .

Then W = lim
ε→0

|X|
|X| + ε

∗W = lim
ε→0

1

|X| + ε
∗(|X|2 − Λ)/2

is adapted to the filtration generated by |X| : Ft[X] ⊆ Ft[W ] ⊆ Ft[|X|] ∀ t
– this would make X a Wiener process adapted to the filtration generated by
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its absolute value |X| , what nonsense. Thus (5.5.1) has no strong solution.
Yet it has a solution in some sense: start with a Wiener process X on its own

natural filtration F.[X] , and set W def= signX∗X . Again by corollary 3.9.5,
W is a standard Wiener process on F.[X] (!), and equation (5.5.1) is satisfied.

In fact, there is more than one solution, −X being another one. What is going
on? In short: the natural filtration of the driver W of (5.5.1) was too small

to sustain a solution of (5.5.1).

Example 5.5.1 gives rise to the notion of a weak solution. To set the stage
consider the stochastic differential equation

X = C + fη[X,Z].−∗Zη = C + f [X,Z].−∗Z . (5.5.2)

Here Z is our usual vector of integrators on a measured filtration (F.,P).

The coupling coefficients fη are assumed to be endogenous and to act in a
non-anticipating fashion – see (5.1.4):

fη
[
x., z.

]
t
= fη

[
xt., z

t
.
]
t

∀ x. ∈ Dn, z. ∈ Dd, t ≥ 0 .

Definition 5.5.2 A weak solution Ξ′ of equation (5.5.2) is a filtered prob-
ability space (Ω′,F ′.,P′) together with F ′.-adapted processes C ′,Z ′, X ′ such

that the law of (C ′,Z ′) on Dn+d is the same as that of (C,Z) , and such
that (5.5.2) is satisfied:

X ′ = C ′ + f [X ′,Z ′].−∗Z ′ .

The problem (5.5.2) is said to have a unique weak solution if for any other
weak solution Ξ′′ = (Ω′′,F ′′. ,P′′, C ′′,Z ′′, X ′′) the laws of X ′ and X ′′ agree,

that is to say X ′[P′] = X ′′[P′′] .

Let us fix fη[X,Z].−∗Zη to be the universal integral fη[X,Z].−⊕∗Zη of re-

marks 3.7.27 and represent (C., X.,Z.) on canonical path space D2n+d in
the manner of item 2.3.11. The image of P′ under the representation is then

a probability P′ on D2n+d that is carried by the “universal solution set”

S def=
{
(c., x., z.) : x. = c. +

(
f [x., z.].−⊕∗z

)
.
}

(5.5.3)

and whose projection on the “ (C,Z)-component” Dn+d is the law L of

(C,Z). Doing this to another weak solution Ξ′′ will only change the measure
from P′ to P′′ . The uniqueness problem turns into the question of whether

the solution set S supports different probabilities whose projection on Dn+d

is L . Our equation will have a strong solution precisely if there is an adapted

cross section Dn+d → S . We shall henceforth adopt this picture but write
the evaluation processes as Zt(c., x., z.) = zt , etc., without overbars.

We shall show below that there exist weak solutions to (5.5.2) when Z

is continuous and f is endogenous and continuous and has at most linear

growth (see theorem 5.5.4 on page 333). This is accomplished by generalizing
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to the stochastic case the usual proof involving Peano’s method of little
straight steps. The uniqueness is rather more difficult to treat and has been

established only in much more restricted circumstances – when the driver has
the special form of condition 5.4.28 and the coupling coefficient is markovian

and suitably nondegenerate; below we give two proofs (theorem 5.5.10 and
exercise 5.5.14). For more we refer the reader to the literature ([104], [33],

[53]).

The Size of the Solution

We continue to assume that Z = (Z1, . . . , Zd) is a local Lq-integrator for

some q ≥ 2 and pick a p ∈ [2, q] . For a suitable choice of M (see
(5.2.26)), the arguments of items 5.1.4 and 5.1.5 that led to the inequali-

ties (5.1.16) and (5.1.17) on page 276 provide the a priori estimates (5.2.23)
and (5.2.24) of the size of the solution X . They were established using the

Lipschitz nature of the coupling coefficient F in an essential way. We shall
now prove an a priori growth estimate that assumes no Lipschitz property,

merely linear growth: there exist constants A,B such that up to evanes-
cence

∣∣F [X]
∣∣
∞p ≤ A+ B ·

∣∣X?
∣∣
p
. (5.5.4)

This implies
∣∣F [X]T

∣∣
∞p ≤ A+ B ·

∣∣X?
T

∣∣
p

for all stopping times T , and in particular
∣∣F [X]Tλ−

∣∣
∞p ≤ A+ B ·

∣∣X?
Tλ−

∣∣
p

for the stopping times T λ of the time transformation, which in turn implies
∥∥∥
∣∣F [X]Tλ−

∣∣
∞p

∥∥∥
Lp

≤ A+ B ·
∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
Lp

∀ λ > 0 . (5.5.5)

This last is the form in which the assumption of linear growth enters the ar-

guments. We will discuss this in the context of the general equation (5.2.18)
on page 289:

X = C + Fη[X].−∗Zη . (5.5.6)

Lemma 5.5.3 Assume that X is a solution of (5.5.6), that the coupling

coefficient F satisfies the linear-growth condition (5.5.5), and that 43

∥∥∥
∣∣C?Tλ−

∣∣
p

∥∥∥
Lp
<∞ and

∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
Lp
<∞ (5.5.7)

for all λ > 0 . Then there exists a constant M = Mp;B such that

X
?

p,M
≤ 2
(
A/B + sup

λ>0

∥∥∥
∣∣C?Tλ−

∣∣
p

∥∥∥
Lp

)
. (5.5.8)

43 If (5.5.4) holds, then inequality (5.5.7) can of course always be had provided we are
willing to trade the given probability for a suitable equivalent one and to argue only up to
some finite stopping time (see theorem 4.1.2).
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Proof. Set ∆ def= X − C and let 0 ≤ κ < µ . Let S be a stopping time with
Tκ ≤ S < Tµ on [T κ < Tµ] . Such S exist arbitrarily close to T µ due to the

predictability of that stopping time. Then
∥∥∥
∣∣∣
(
∆−∆Tκ)?

S

∣∣∣
p

∥∥∥
Lp

≤
∥∥∥
∣∣∣
(
((T κ, S]] · F [X].−∗Z

)?
S

∣∣∣
p

∥∥∥
Lp

≤ C�(4.5.1)p ·
∣∣Q
∣∣
p
,

where Qν def= max
ρ=1�,p�

∥∥∥
(∫ S

Tκ

sup
η

∣∣F νη [X]
∣∣ρ
s− dΛs

)1/ρ∥∥∥
Lp

≤ max
ρ=1�,p�

∥∥∥
(∫ µ

κ

sup
η

∣∣F νη [X]
∣∣ρ
Tλ− dλ

)1/ρ∥∥∥
Lp

.

Thus
∣∣Q
∣∣
p
≤ max
ρ=1�,p�

∥∥∥
∣∣∣
(∫ µ

κ

sup
η

∣∣Fη[X]
∣∣ρ
Tλ− dλ

)1/ρ∣∣∣
p

∥∥∥
Lp
,

using A.3.29: ≤ max
ρ=1�,p�

(∫ µ

κ

∥∥∥
∣∣ sup
η

∣∣Fη[X]
∣∣
Tλ−

∣∣
p

∥∥∥
ρ

Lp
dλ
)1/ρ

using (5.5.5): ≤ max
ρ=1�,p�

(∫ µ

κ

(
A+B

∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
Lp

)ρ
dλ
)1/ρ

.

Taking S through a sequence announcing T µ gives

∥∥∥
∣∣∣(∆−∆Tκ

)?Tµ−

∣∣∣
p

∥∥∥
Lp

≤ C�p max
ρ=1�,p�

(∫ µ

κ

(
A+B

∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
Lp

)ρ
dλ
)1/ρ

.

(5.5.9)

For κ = 0, we have T κ = 0, X0 = C0 , and ∆0 = 0, so (5.5.9) implies

∥∥∥
∣∣X?

Tµ−
∣∣
p

∥∥∥
Lp

≤
∥∥∥
∣∣C∗Tµ−

∣∣
p

∥∥∥
Lp

+C�p max
ρ=1�,p�

(∫ µ

0

(
A+B

∥∥∥
∣∣X?

Tλ−
∣∣
p

∥∥∥
Lp

)ρ
dλ
) 1

ρ

.

Gronwall’s lemma in the form of exercise A.2.36 on page 384 now produces

the desired inequality (5.5.8).

Existence of Weak Solutions

Theorem 5.5.4 Assume the driver Z is continuous; the coupling coefficient f

is endogenous (p. 289) and non-anticipating, continuous, 21 and has at most
linear growth; and the initial condition C is constant in time.

Then the stochastic differential equation X = C + f [X,Z]∗Z has a weak
solution.

The proof requires several steps. The continuity of the driver entrains that

the previsible controller Λ = Λ〈q〉[Z] and the solution X of equation (5.5.6)
are continuous as well. Both Λ and the time transformation associated with

it are now strictly increasing and continuous. Also, X?
Tλ− = X?

Tλ for all λ ,

and p� = 2. Using inequality (5.5.8) and carrying out the λ-integral in (5.5.9)
provides the inequality

∥∥∥
∣∣∣
(
X −XTκ)?

Tλ

∣∣∣
p

∥∥∥
Lp

≤ cµ · |κ− λ|1/2 , κ, λ ∈ [0, µ] , |κ− λ| < 1 ,
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where cµ = cµ;A,B is a constant that grows exponentially with µ and depends
only on the indicated quantities µ;A,B . We raise this to the pth power and

obtain

E
[
|XTκ −XTλ |pp

]
≤ cµ · |κ− λ|p/2 . (∗1)

The driver clearly satisfies a similar inequality:

E
[
|ZTκ − ZTλ |pp

]
≤ c′µ · |κ− λ|p/2 . (∗2)

We choose p > 2 and invoke Kolmogorov’s lemma A.2.37 (ii) to establish as

a first step toward the proof of theorem 5.5.4 the

Lemma 5.5.5 Denote by XAB the collection of all those solutions of equa-

tion (5.5.6) whose coupling coefficient satisfies inequality (5.5.5).

(i) For every α < 1 there exists a set Cα of paths in C n+d , compact21

and therefore uniformly equicontinuous on every bounded time-interval, such

that

P
[
(X.,Z.) ∈ Cα

]
> 1 − α , X. ∈ XAB .

(ii) Therefore the set
{
(X.,Z.)[P] : X. ∈ XAB

}
of laws on C n+d is

uniformly tight and thus is relatively compact. 44

Proof. Fix an instant u . There exists a µ > 0 so that ΩΛ def= [Λu ≤ µ]
= [Tµ ≥ u] has P[ΩΛ] > 1− α/2. As in the arguments of pages 14–15 we re-

gard Λ as a P∗-measurable map on [Λu < µ] whose codomain is C [0, u] equip-
ped with the uniform topology. According to the definition 3.4.2 of measura-

bility or Lusin’s theorem, there exists a subset ΩΛ
α ⊂ ΩΛ with P[ΩΛ

α] > 1−α/2
on which Λ is uniformly continuous in the uniformity generated by the (idem-

potent) functions in Fu , a uniformity whose completion is compact. Hence
the collection Λ.(ΩΛ

α) of increasing functions has compact closure CΛ
α in

C [0, u] .

For X. ∈ XAB consider the paths λ 7→ (Xλ,Zλ)
def= (X

Tλ,ZTλ) on [0, µ] .
Kolmogorov’s lemma A.2.37 in conjunction with (∗1) and (∗2) provides a

compact set CABα of continuous paths λ 7→ (xλ, zλ), 0 ≤ λ ≤ µ , such
that the set ΩXα

def=
[
(Xµ

. ,Z
µ
. ) ∈ CABα

]
has P[ΩXα ] > 1 − α/2 simultaneously

for every X. in XAB . Since the paths of CABα are uniformly equicontinu-

ous (exercise A.2.38), the composition map ◦ on CABα × CΛ
α , which sends(

(x., z.), λ.
)

to t 7→ (xλt
, zλt

), is continuous and thus has compact image

Cα
def= CABα ◦ CΛ

α ⊂ C n+d[0, u] . Indeed, let ε > 0. There is a δ > 0 so

that |λ′ − λ| < δ implies |(xλ′ , zλ′) − (xλ, zλ) | < ε/2 for all (x., z.) ∈ CABα
and all λ, λ′ ∈ [0, µ] . If |λ′ − λ | < δ in CΛ

α and |(x′., z′.) − (x., z.) | < ε/2,

44 The pertinent topology on the space of probabilities on path spaces is the topology of
weak convergence of measures; see section A.4.
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then |(x′λ′
t
, z′λ′

t
) − (xλt

, zλt
)|≤ |(x′λ′

t
, z′λ′

t
) − (xλ′

t
, zλ′

t
)| |(xλ′

t
, zλ′

t
) − (xλt

, zλt
)|

< ε+ ε= 2ε; taking the supremum over t ∈ [0, u] yields the claimed continu-
ity. Now on Ωα

def= ΩΛ
α∩ΩXα we have clearly (XΛt

,ZΛt
)= (Xt,Zt), 0 ≤ t ≤ u .

That is to say, (X.,Z.) maps the set Ωα , which has P[Ωα] > 1−α , into the
compact set Cα ⊂ C n+d[0, u] , a set that was manufactured from Z and A,B

alone. Since α < 1 was arbitrary, the set of laws
{
(X.,Z.)[P] : X. ∈ XAB

}

is uniformly tight and thus (proposition A.4.6) is relatively compact. 44

Actually, so far we have shown only that the projections on C n+d[0, u] of

these laws form a relatively weakly compact set, for any instant u . The fact
that they form a relatively compact 44 set of probabilities on C n+d[0,∞) and

are uniformly tight is left as an exercise.

Proof of Theorem 5.5.4. For n ∈ N let S(n) be the partition {k2−n : k ∈ N}
of time, define the coupling coefficient F (n) as the S(n)-scalæfication of f ,
and consider the corresponding stochastic differential equation

X
(n)
t = C +

∫ t

0

F (n)
s [X(n)] dZs = C +

∑

0≤k
f [X(n),Z]k2−n ·

(
Zt−Zk2−n∧t

)
.

It has a unique solution, obtained recursively by X
(n)
0 = C and

X
(n)
t = X

(n)
k2−n + f [X(n)k2−n

. ,Zk2−n

. ]k2−n ·
(
Zt−Zk2−n

)
(5.5.10)

for k2−n ≤ t ≤ (k+1)2−n , k = 0, 1, . . . .

For later use note here that the map Z. 7→ X(n)
. is evidently continuous.21

Also, the linear-growth assumption |f [x, z]t | ≤ A + B · x?t implies that the
F (n) all satisfy the linear-growth condition (5.5.4). The laws L(n) of the

(X(n)
. ,Z.) on path space Cn+d[0,∞) form, in view of lemma 5.5.5, a relatively

compact44 set of probabilities. Extracting a subsequence and renaming it to(
L(n)

)
we may assume that this sequence converges 44 to a probability L′ on

Cn+d[0,∞). We set Ω′ def= Rn×Cn+d[0,∞) and P′ def= C[P]×L′ and equip Ω′

with its canonical filtration F ′ . On it there live the natural processes X ′.,Z ′.
defined by

X ′t
(
(c, x., z.)

)
def= xt and Z ′t

(
(c, x., z.)

)
def= zt , t ≥ 0 ,

and the random variable C ′ : (c, x., z.) 7→ c . If we can show that, under P′ ,
X ′ = C+[X′,Z ′]∗Z ′ , then the theorem will be proved; that (C ′,Z ′.) has the
same distribution under P′ as (C,Z.) has under P , that much is plain.

Let us denote by E′ and E(n) the expectations with respect to P′ and

P(n) def= C[P] × L(n) , respectively. Below we will need to know that Z ′ is a
P′-integrator:

Z ′ Ip[P′]
≤ Z Ip[P]

. (5.5.11)
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To see this let At denote the algebra of bounded continuous functions
f : Ω′ → R that depend only on the values of the path at finitely many in-

stants s prior to t ; such f is the composition of a continuous bounded func-
tion φ on R(2n+d)×k with a vector (c, x., z.) 7→

(
(c, xsi

, zsi
) : 1 ≤ i ≤ k

)
.

Evidently At is an algebra and vector lattice closed under chopping that
generates Ft . To see (5.5.11) consider an elementary integrand X ′ on F ′
whose d components X ′η are as in equation (2.1.1) on page 46, but special
in the sense that the random variables X ′ηs belong to As , at all instants s .

Consider only such X ′ that vanish after time t and are bounded in absolute
value by 1. An inspection of equation (2.2.2) on page 56 shows that, for such

X ′ ,
∫

X ′ dZ ′ is a continuous function on Ω′ . The composition of X ′ with
(X.,Z.) is a previsible process X on (Ω,F) with |X| ≤ [[0, t]], and

E′
[∣∣∣
∫

X ′ dZ ′
∣∣∣
p

∧K
]

= lim E(n)
[∣∣∣
∫

X ′ dZ ′
∣∣∣
p

∧K
]

= lim E
[∣∣∣
∫

X dZ
∣∣∣
p

∧K
]
≤ Zt p

Ip[P]
. (5.5.12)

We take the supremum over K ∈ N and apply exercise 3.3.3 on page 109 to
obtain inequality (5.5.11).

Next let t ≥ 0, α ∈ (0, 1), and ε > 0 be given. There exists a compact 21

subset Cα ∈ F ′t such that P′[Cα] > 1 − α and P(n)[Cα] > 1 − α ∀ n ∈ N .

Then

E′
[∣∣X ′ −

(
C ′ + f [X ′,Z ′]∗Z ′

)∣∣?
t
∧ 1
]

≤ E′
[∣∣∣
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
∧ 1
]

+ E′
[∣∣∣X ′ −

(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]

≤ E′
[∣∣∣
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
∧ 1
]

+
(
E′ − E(m)

)[∣∣∣X ′ −
(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]

+ E(m)
[∣∣∣X ′ −

(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]

Since E(m)
ˆ˛̨
X′ −

`
C′ + f (m)[X′,Z′]∗Z′

´˛̨?
t
∧ 1

˜
= 0:

≤ E′
[∣∣∣
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
∧ 1
]

+
(
E′ − E(m)

)[∣∣∣X ′ −
(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]

+ E(m)
[∣∣∣
(
f (m)[X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
∧ 1
]

≤ 2α+ E′
[∣∣∣
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
·Cα

]
(5.5.13)
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+
(
E − E(m)

)[∣∣∣X ′ −
(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]

(5.5.14)

+ E(m)
[∣∣∣
(
f (m)[X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
· Cα

]
. (5.5.15)

Now the image under f of the compact set Cα is compact, on acount of
the stipulated continuity of f , and thus is uniformly equicontinuous (exer-

cise A.2.38). There is an index N such that |f
(
(x., z.)

)
− f (n)

(
(x., z.)

)
| ≤ ε

for all n ≥ N and all (x., z.) ∈ Cα . Since f is non-anticipating, f.[X.,Z.]

is a continuous adapted process and so is predictable. So is f (n)
. [X.,Z.] .

Therefore |f − f (n) | ≤ ε on the predictable envelope Ĉα of Cα . We conclude

with exercise 3.7.16 on page 137 that
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′ and(

(f [X ′,Z ′] − f (n)[X ′,Z ′]) · Ĉα
)
∗Z ′ agree on Cα . Now the integrand of the

previous indefinite integral is uniformly less than ε , so the maximal inequality

(2.3.5) furnishes the inequality

E′
[∣∣∣
(
f [X ′,Z ′] − f (n)[X ′,Z ′]

)
∗Z ′

∣∣∣
?

t
· Cα

]
≤ ε · C?1 Z ′t I1[P′]

by inequality (5.5.11): ≤ ε · C?1 Zt
I1[P]

.

The term in (5.5.15) can be estimated similarly, so that we arrive at

E′
[∣∣∣X ′ −

(
C ′ + f [X ′,Z ′]∗Z ′

)?
t

∣∣∣ ∧ 1
]
≤ 2α+ 2ε · C?1 Zt

I1[P]

+
(
E − E(m)

)[∣∣∣X ′ −
(
C ′ + f (n)[X ′,Z ′]∗Z ′

)∣∣∣
?

t
∧ 1
]
.

Now the expression inside the brackets
[ ]

of the previous line is a continuous

bounded function on C n+d (see equation (5.5.10)); by the choice of a suffi-
ciently large m ≥ N it can be made arbitrarily small. In view of the arbitrari-

ness of α and ε , this boils down to E′
[∣∣X ′ −

(
C ′+f [X ′,Z ′]∗Z ′

)∣∣?
t
∧ 1
]

= 0.

Problem 5.5.6 Find a generalization to càdlàg drivers Z .

Uniqueness

The known uniqueness results for weak solutions cover mainly what might be

called the “Classical Stochastic Differential Equation”

Xt = x+

∫ t

0

f0(s,Xs) ds+

d∑

η=1

∫ t

0

fη(s,Xs) dW
η
s . (5.5.16)

Here the driver is as in condition 5.4.28. They all require the uniform

ellipticity7 of the symmetric matrix

aµν(t, x) def=
1

2

d∑

η=1

fµη (t, x)fνη (t, x) ,

namely, aµν(t, x)ξµξν ≥ β2 · |ξ|2 ∀ ξ, x ∈ Rn , ∀ t ∈ R+ (5.5.17)
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for some β > 0. We refer the reader to [104] for the most general results.
Here we will deal only with the “Classical Time-Homogeneous Stochastic

Differential Equation”

Xt = x+

∫ t

0

f0(Xs) ds+
d∑

η=1

∫ t

0

fη(Xs) dW
η
s (5.5.18)

under stronger than necessary assumptions on the coefficients fη . We give
two uniqueness proofs, mostly to exhibit the connection that stochastic dif-

ferential equations (SDEs) have with elliptic and parabolic partial differential
equations (PDEs) of order 2.

The uniform ellipticity can of course be had only if the dimension d of W

exceeds the dimension n of the state space; it is really no loss of generality

to assume that n = d . Then the matrix f νη (x) is invertible at all x ∈ Rn ,
with a uniformly bounded inverse named F (x) def= f−1(x).

We shall also assume that the f νη are continuous and bounded. For ease
of thinking let us use the canonical representation of page 331 to shift the

whole situation to the path space C n . Accordingly, the value of Xt at a path
ω = x. ∈ C n is xt . Because of the identity

W η
t =

∑
ν

∫ t

0

F ην (Xs) (dXν
s − fν0 (Xs)ds) , (5.5.19)

W is adapted to the natural filtration on path space. In this situation the

problem becomes this: denoting by P the collection of all probabilities on
C n under which the process Wt of (5.5.19) is a standard Wiener process,

show that P – which we know from theorem 5.5.4 to be non-void – is in fact
a singleton.

There is no loss of generality in assuming that f0 = 0, so that equa-
tion (5.5.18) turns into

Xt = x+
d∑

η=1

∫ t

0

fη(Xs) dW
η
s . (5.5.20)

Exercise 5.5.7 Indeed, one can use Girsanov’s theorem 3.9.19 to show the
following: If the law of any process X satisfying (5.5.20) is unique, then so is
the law of any process X satisfying (5.5.18).

All of the known uniqueness proofs also have in common the need for some

input in the form of hard estimates from Fourier analysis or PDE. The proof
given below may have some little whimsical appeal in that it does not refer

to the martingale problem ([104], [33], and [53]) but uses the existence of
solutions of the Dirichlet problem for its outside input. A second slightly

simpler proof is outlined in exercises 5.5.13–5.5.14.
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5.5.8 The Dirichlet Problem in its form pertinent to the problem at hand is
to find for a given domain B of Rn a continuous function u : B → R with

two continuous derivatives in the interior B̊ that solves the PDE40

Au(x) def=
aµν(x)

2
u;µν(x) = 0 ∀ x ∈ B̊ (5.5.21)

and satisfies the boundary condition

u(x) = g(x) ∀ x ∈ ∂B def= B\B̊ . (5.5.22)

If a is the identity matrix, then this is the classical Dirichlet problem asking

for a function u harmonic inside B , continuous on B , and taking the pre-
scribed value g on the boundary. This problem has a unique solution if B

is a box and g is continuous; it can be constructed with the time-honored
method of separation of variables, which the reader has seen in third-semester

calculus. The solution of the classical problem can be parlayed into a solu-
tion of (5.5.21)–(5.5.22) when the coefficient matrix a(x) is continuous, the

domain B is a box, and the boundary value g is smooth ([36]). For the sake
of accountability we put this result as an assumption on f :

Assumption 5.5.9 The coefficients fµη (x) are continuous and bounded and
(i) the matrix aµν(x) def=

∑
η f

µ
η (x)fνη (x) satisfies the strict ellipticity (5.5.17);

(ii) the Dirichlet problem (5.5.21)–(5.5.22) with smooth boundary data g has
a solution of class C2(B̊) ∩ C0(B) on every box B in Rn whose sides are

perpendicular to the axes.

The connection of our uniqueness quest with the Dirichlet problem is made
through the following observation. Suppose that Xx is a weak solution

of the stochastic differential equation (5.5.20). Let u be a solution of the
Dirichlet problem above, with B being some relatively compact domain in Rn

containing the point x in its interior. By exercise 3.9.10, the first time T at
which Xx hits the boundary of the domain is almost surely finite, and Itô’s

formula gives

u(Xx
T ) = u(Xx

0 ) +

∫ T

0

u;ν(X
x
s ) dXxν

s +
1

2

∫ T

0

u;µν(X
x
s ) d[Xxµ, Xx,ν]s

= u(x) +

∫ T

0

u;ν(X
x
s )fνη (Xx

s ) dW η ,

since Au = 0 and thus u;µν(X
x
s )d[Xxµ, Xxν ]s = 2Au(Xx

s )ds = 0 on [s < T ].

Now u , being continuous on B , is bounded there. This exhibits the right-
hand side as the value at T of a bounded local martingale. Finally, since

u = g on ∂B ,
u(x) = E

[
g(Xx

T )
]
. (5.5.23)

This equality provides two uniqueness statements: the solution u of the

Dirichlet problem, for whose existence we relied on the literature, is unique;
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indeed, the equality expresses u(x) as a construct of the vector fields fη and
the boundary function g . We can also read off the maximum principle: u

takes its maximum and its minimum on the boundary ∂B . The uniqueness of
the solution implies at the same time that the map g 7→ u(x) is linear. Since it

satisfies |u(x)| ≤ sup{|g(x)| : x ∈ ∂B} on the algebra of functions g that are
restrictions to ∂B of smooth functions, an algebra that is uniformly dense in

C
(
∂B
)

by theorem A.2.2 (iii), it has a unique extension to a continuous linear
map on C

(
∂B
)
, a Radon measure. This is called the harmonic measure

for the problem (5.5.21)–(5.5.22) and is denoted by ηx∂B(dσ).

The second uniqueness result concerns any probability P under which X
is a weak solution of equation (5.5.20). Namely, (5.5.23) also says that the

hitting distribution of Xx on the boundary ∂B , by which we mean the law
of the process Xx at the first time T it hits the boundary, or the distribution

λx∂B(dσ) def= Xx
T [P] of the ∂B-valued random variable Xx

T , is determined by
the matrix aµν(x) alone. In fact it is harmonic measure:

λx∂B
def= Xx

T [P] = ηx∂B ∀ P ∈ P .

Look at things this way: varying B but so that x ∈ B̊ will produce lots of
hitting distributions λx∂B that are all images of P under various maps Xx

T

but do actually not depend on P . Any other P′ under which Xx solves
equation (5.5.20) will give rise to exactly the same hitting distributions λx∂B .

Our goal is to parlay this observation into the uniqueness P = P′ :

Theorem 5.5.10 Under assumption 5.5.9, equation (5.5.18) has a unique weak

solution.

Proof. Only the uniqueness is left to be established. Let Hν
`,k be the hy-

perplane in Rn with equation xν = k2−n , ν = 1, . . . , n , 1 ≤ ` ∈ N ,

k ∈ Z . According to exercise 3.9.10 on page 162, we may remove from C n a
P-nearly empty set N such that on the remainder C n\N the stopping times

Sν`,k
def= inf{t : Xt ∈ Hν

`,k} are continuous.21 The random variables XSν
`,k

will
then be continuous as well. Then we may remove a further P-nearly empty

set N ′ such that the stopping times

Sν,ν
′

`,`′,k,k′
def= inf{t > Sν`,k : Xt ∈ Hν′

`′,k′} ,

too, are continuous on Ω def= C n \ (N ∪N ′), and so on. With this in place let
us define for every ` ∈ N the stopping times T `0 = 0,

T `ν
def= inf{t > T `,ν : Xt ∈

⋃
k
Hν
`,k}

and T `k+1
def= inf{T `,ν : T `,ν > T `k} , k = 0, 1, . . . .

T `k+1 is the first time after T `k that the path leaves the smallest box with

sides in the Hν
`,k that contains XT `

k
in its interior. The T `k are continuous
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on Ω, and so are the maps ω 7→ XT `
k
(ω). In this way we obtain for every

` ∈ N and ω = x. ∈ Ω a discrete path x(`)
. : N 3 k 7→ XT `

k
(ω) in `0Rn . The

map ω → x(`)
. is clearly continuous from Ω to `0Rn . Let us identify x(`)

. with

the path x′. ∈ C n that at time T `k has the value x
(`)
k = XT `

k
and is linear

between T `k and T `k+1 . The map x(`)
. 7→ x′. is evidently continuous from `0Rn

to C n . We leave it to the reader to check that for  ≤ ` the times T k agree

on x. and x′. , and that therefore xT 
k

= x′
T 

k
,  ≤ ` , 1 ≤ k < ∞ . The point:

for  ≤ `

x()
. ∈ `0Rn is a continuous function of x(`)

. ∈ `0Rn . (5.5.24)

Next let A(`) denote the algebra of functions on Ω of the form x. 7→ φ(x(`)
. ),

where φ : `0Rn → R is bounded and continuous. Equation (5.5.24) shows that
A() ⊂ A(`) for  ≤ ` . Therefore A def=

⋃
`A(`) is an algebra of bounded

continuous functions on Ω.

Lemma 5.5.11 (i) If x. and x′. are two paths in Ω on which every function
of A agrees, then x. and x′. describe the same arc (see definition 3.8.17).

(ii) In fact, after removal from Ω of another P-nearly empty set A separates
the points of Ω .

Proof. (i) First observe that x0 = x′0 . Otherwise there would exist a con-
tinuous bounded function φ on Rn that separates these two points. The

function x. 7→ φ
(
xT `

0

)
of A would take different values on x. and on x′. .

An induction in k using the same argument shows that xT `
k

= x′
T `

k

for all
`, k ∈ N . Given a t > 0 we now set

t′ def= sup{T `k(x′.) : T `k(x.) ≤ t} .

Clearly x. and x′. describe the same arc via t 7→ t′ .
(ii) Using exercise 3.8.18 we adjust Ω so that whenever ω and ω′ describe

the same arc via t 7→ t′ then, in view of equation (5.5.19), W.(ω) and W.(ω′)
also describe the same arc via t 7→ t′ , which forces t = t′ ∀t : any two paths

of X. on which all the functions of A agree not only describe the same arc,
they are actually identical. It is at this point that the differential equation

(5.5.18) is used, through its consequence (5.5.19).

Since every probability on the polish space C n is tight, the uniqueness

claim is immediate from proposition A.3.12 on page 399 once the following is
established:

Lemma 5.5.12 Any two probabilities in P agree on A .

Proof. Let P,P′ ∈ P , with corresponding expectations E,E′ . We shall prove
by induction in k the following: E and E′ agree on functions in A` of the

form
φ0

(
XT `

0

)
· · ·φk

(
XT `

k

)
, (∗)
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φκ ∈ Cb(Rn). This is clear if k = 0: φ0

(
XT `

0

)
= φ0(x). We preface

the induction step with a remark: XT `
k

is contained in a finite number of

n−1-dimensional “squares” Si of side length 2−` . About each of these there
is a minimal box Bi containing Si in its interior, and XT `

k+1
will lie in the

union
⋃
i ∂B

i of their boundaries. Let uik+1 denote the solution of equa-
tion (5.5.21) on Bi that equals φk+1 on ∂Bi . Then35

φk+1

(
XT `

k+1

)
· Si◦XT `

k
= uik+1

(
XT `

k+1

)
· Si◦XT `

k

= uik+1

(
XT `

k

)
· Si ◦XT `

k
+

∫ T `
k+1

T `
k

uik+1;ν(X) dXν

has the conditional expectation

E
[
φk+1

(
XT `

k+1

)
· Si◦XT `

k
|FT `

k

]
= uik+1

(
XT `

k

)
· Si◦XT `

k
,

whence E
[
φk+1

(
XT `

k+1

)
|FT `

k

]
=
∑
iu
i
k+1

(
XT `

k

)
.

Therefore, after conditioning on FT `
k
,

E
[
φ0

(
XT `

0

)
· · ·φk+1

(
XT `

k+1

)]
= E

[
φ0

(
XT `

0

)
· · ·
(
φk
∑
iu
i
k+1

)(
XT `

k

)]
.

By the same token

E′
[
φ0

(
XT `

0

)
· · ·φk+1

(
XT `

k+1

)]
= E′

[
φ0

(
XT `

0

)
· · ·
(
φk
∑
iu
i
k+1

)(
XT `

k

)]
.

By the induction hypothesis the two right-hand sides agree. The induction is
complete. Since the functions of the form (∗), k ∈ N , form a multiplicative

class generating A , E = E′ on A . The proof of the lemma is complete, and
with it that of theorem 5.5.10.

The next two exercise comprise another proof of the uniqueness theorem.

Exercise 5.5.13 The initial value problem for the differential operator A
is the problem of finding, for every φ ∈ C0(Rn), a function u(t, x) that is twice
continuously differentiable in x and bounded on every strip (0, t′)×Rn and satisfies
the evolution equation u̇ = Au (u̇ denotes the t-partial ∂u/∂t) and the initial
condition u(0, x) = φ(x). Suppose Xx solves equation (5.5.20) under P and u
solves the initial value problem. Then [0, t′] 3 t 7→ u(t′ − t, Xt) is a martingale
under P .

Exercise 5.5.14 Retain assumption 5.5.9 (i) and assume that the initial value
problem of exercise 5.5.13 has a solution in C2 for every φ ∈ C∞

b (Rn) (this holds
if the coefficient matrix a is Hölder continuous, for example). Then again equa-
tion (5.5.18) has a unique weak solution.
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5.6 Stochastic Flows

Consider now the situation that the coupling coefficient F is strongly Lip-

schitz with constant L , and the initial condition a (constant) point x ∈ Rn .
We want to investigate how the solution Xx of

Xx
t = x+

∫ t

0

F [Xx]s− dZs (5.6.1)

depends on x . Considering x as the parameter in U def= Rn and applying
theorem 5.2.24, we may assume that x 7→ Xx

. (ω) is continuous from Rn to

Dn , for every ω ∈ Ω. In particular, the maps Ξt = Ξωt : x 7→ Xx
t (ω),

one for every ω ∈ Ω and every t ≥ 0, map Rn continuously into itself.

They constitute the stochastic flow that comes with (5.6.1). We shall now
consider several special circumstances.

Stochastic Flows with a Continuous Driver

Theorem 5.6.1 Suppose that the driver Z of equation (5.6.1) is continuous.
Then for nearly every ω ∈ Ω all of the Ξωt , t ≥ 0 , are homeomorphisms of

Rn onto itself.

Proof [91]. The hard part is to show that Ξωt is injective. Let us replace F

by F /2L and Z by 2LZ . This does not change the differential equation

(5.6.1) nor the solutions, but has the effect that now L ≤ 1/2. Λ shall
be the previsible controller for the adjusted driver Z . | | denotes the

euclidean norm on Rn and 〈 | 〉 the inner product. Let x, y ∈ Rn and
set ∆ = ∆x,y def= Xx − Xy . According to equation (5.2.32), ∆ satisfies the

stochastic differential equation

∆ = (x− y) +Gη[∆]∗Zη ,
where Gη[∆] def= Fη[∆ +Xy] − Fη[X

y] , η = 1, . . . , d ,

has Gη[0] = 0 and is strongly Lipschitz with constant ≤ 1/2. Clearly

|∆|2 = |x−y|2 + 2
〈
∆∗| ∆

〉
+
∑n
ν=1[∆

ν ,∆ν ]

= |x−y|2 + 2〈∆|Gη[∆]〉∗Zη + 〈Gη[∆]|Gθ[∆]〉∗[Zη, Zθ] ,
and

[
|∆|2, |∆|2

]
= 4〈∆|Gη[∆]〉〈∆|Gθ[∆]〉∗[Zη, Zθ] .

For ε ≥ 0 set |ε∆| def=
√

|∆|2 + ε .

If ε > 0, then Itô’s formula applies to |ε∆|−1 =
(
|∆|2 + ε

)−1/2
and gives

|ε∆|−1 = |ε∆0|−1 + |ε∆|−1∗εY , (5.6.2)

where εY = εY [x, y] def=
εJη∗Zη + εKηθ∗[Zη, Zθ] ,
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εJη = εJη[x, y]
def= − 〈∆|Gη[∆]〉

|∆|2 + ε
,

and εKηθ = εKηθ[x, y]
def= − 〈Gη[∆]|Gθ[∆]〉

2|∆|2 + ε
+

3〈∆|Gη[∆]〉〈∆|Gθ[∆]〉
2(|∆|2 + ε)2

.

In view of exercise 3.9.4 the solution of the linear equation (5.6.2) can be

expressed in terms of the Doléans–Dade exponential E [εY ] as

|ε∆|−1 = |ε∆0|−1 · E [εY ] =
(
|x−y|2+ε

)−1/2 · e
εY−[εY,εY ]/2

.

Now εJη and εKηθ are bounded in absolute value by 1, independently of ε ,

and converge to Jη
def= 0Jη and Kηθ

def= 0Kηθ , respectively, where we have
0Jηθ = 0Kηθ

def= 0 on the (evanescent as we shall see) set [|∆| = 0]. By the

DCT, εY −−→ε→0 Y def= 0Y and [εY, εY ] −−→ε→0 [Y, Y ] as integrators and therefore
uniformly on bounded time-intervals, nearly (see exercise 3.8.10). Therefore

the limit

|∆|−1 = lim
ε→0

|ε∆|−1

exists and |∆|−1 = |x−y|−1 · eY−[Y,Y ]/2
= |x−y|−1 · E [Y ] .

Now Λ[Z] is a controller for Y , so by (5.2.23) and for γ ≤ 10p/
√
M

Y
?

p,M
≤ 1

1 − γ

and
∣∣Xx−Xy

∣∣−1 ?

p,M
≤ |x−y|−1 · 1

1 − γ
.

Clearly, therefore, ∆ is bounded away from zero on any bounded time-

interval, nearly. Note also the obvious fact that Λ[Z] is a previsible controller

for Y , so that |∆|−1 ∈ S?
p,M for all p ≥ 2 and all sufficiently large M =

M(p), say for M > M
�(5.2.20)
p,1 .

We would like to show at this point that the maps (x, y) 7→ Jη[x, y] and

(x, y) 7→ Kηθ[x, y] are Lipschitz from D def=
{
(x, y) ∈ Rn × Rn : x 6= y

}
to

S?n
p,M . By inequality (5.2.5) on page 284 then so are the C n-valued maps

D 3 (x, y) 7→ Y [x, y] and D 3 (x, y) 7→ [Y, Y ] , and another invocation
of Kolmogoroff’s lemma shows that versions can be chosen so that, for all

ω ∈ Ω, D 3 (x, y) 7→ Y.[x, y](ω) and D 3 (x, y) 7→
[
Y [x, y], Y [x, y]

]
.(ω) are

continuous. This then implies that, simultaneously for all (x, y) ∈ D ,

|∆x,y
. (ω)|−1 = |x−y|−1 · eY.[x,y](ω)−

[
Y [x,y],Y [x,y]

]
.

(ω)/2
(5.6.3)

for nearly all ω ∈ Ω, and that |Xx
t −Xy

t | > 0 at all times and all pairs x 6= y ,

except possibly in a nearly empty set.
To this end note that Jη[x, y] and Kηθ[x, y] both are but (inner) products

of factors such as H1
def= Gη[∆

x,y]/|∆x,y| and H2
def= ∆x,y/|∆x,y| , which are
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bounded in absolute value by 1. To show that Jη or Kηθ are Lipschitz from
D to S?n

p,M it evidently suffices to show this for the Hi . Let then (x, y) be

another pair in D and write

∆ def= ∆x,y = Xx −Xy and ∆ def= ∆x,y = Xx −Xy ,

G[∆] def= Fη[∆+Xy]−Fη[Xy] and G[∆] def= Fη[∆+Xy]−Fη[Xy] .

Then
∣∣∣G[∆]

|∆| − G[∆]

|∆|
∣∣∣ =

∣∣∣ |∆| ·G[∆] − |∆| ·G[∆]

|∆||∆|
∣∣∣

=
∣∣∣
(
|∆|−|∆|

)
·G[∆] + |∆|·

(
G[∆]−G[∆]

)
+ |∆|·

(
G[∆]−G[∆]

)

|∆||∆|
∣∣∣

≤
∣∣|∆| − |∆|

∣∣
|∆| +

∣∣G[∆] −G[∆]
∣∣

|∆| +

∣∣|∆| − |∆|
∣∣

|∆|

≤ 2
∣∣∆ − ∆

∣∣
|∆| +

2
∣∣Xy −Xy

∣∣
|∆| ≤ 4

∣∣Xx −Xx
∣∣+
∣∣Xy −Xy

∣∣
|∆|

and therefore

G[∆]

|∆|
− G[∆]

|∆|
?

p,M

≤ 4 |∆|−1 ?

2p,M
2

×
(
Xx−Xx ?

2p,M
2

+ Xy−Xy ?

2p,M
2

)

by (5.2.40): ≤ 4 |x− y|−1
E [Y ]

?

2p,M
2

× (|x− x| + |y − y|) × 1 + γ

1 − γ

≤ const

|x− y| · |(x, y)− (x, y)| .

This shows that H1 is Lipschitz, but only on Dk
def= {(x, y)∈D : |x−y|≥1/k}.

The estimate for H2 is similar but easier. We can conclude now that (5.6.3)
holds for all (x, y) ∈ Dk simultaneously, whence infs≤t |Xx

s −Xy
s | > 0 for all

such pairs, except in a nearly empty set Nk ⊂ Ω. Of course, we then have
infs≤t |Xx

s − Xy
s | > 0 for all x 6= y , except possibly on the nearly empty

set
⋃
k Nk . After removal of this set from Ω we are in the situation that

x 7→ Xx
t (ω) is continuous and injective for all ω ∈ Ω. Ξωt is indeed injective.

To see the surjectivity define

Y x def=

{ ∣∣Xx/|x|2 −X0
∣∣−1

for x 6= 0∣∣X0
∣∣−1

for x = 0.

Then
∣∣Y x − Y y

∣∣ ≤
∣∣Xx/|x|2 −Xy/|y|2∣∣

∣∣Xx/|x|2 −X0
∣∣∣∣Xy/|y|2 −X0

∣∣
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and
∣∣Y x − Y y

∣∣ ?

p,M
≤ 1

(1 − γ)3
· |x||y|

∣∣∣ x|x|2 − y

|y|2
∣∣∣

=
1

(1 − γ)3
· |x− y| .

This shows that x 7→ Xx/|x|2 is continuous at 0 and means that x 7→ Xx
t

can be viewed as an injection of the n-sphere into itself that maps the north

pole (the point at infinity of Rn ) to itself. Such a map is surjective. Indeed,
because of the compactness of Sn it is a homeomorphism onto its image; and

if it did miss as much as a single point, then the image would be contractible,
and then so would be Sn .

Drivers with Small Jumps

Suppose Z is an integrator that has a jump of size −1 at the stopping time T .

By exercise 3.9.4 the solutions of the exponential equation Xx = x+Xx
.−∗Z

will all vanish at and after time T . So we cannot expect the result of theo-

rem 5.6.1 to hold in general. It is shown in [91] that it persists in some cases
where the driver Z has sufficiently small or suitably distributed jumps. Here

is some information that becomes available when the coupling coefficients are
differentiable:

Example 5.6.2 Consider again the stochastic differential equation (5.6.1):

Xt = x+ F [X].−∗Z , x ∈ Rn .

Its driver Z is now an arbitrary L0-integrator. Its unique solution is a
process Xx

. that starts at x : Xx
0 = x . We consider Rn the parameter

domain and assume that F : S?n
p,M → S?n

p,M has a Lipschitz weak derivative

and Z is an Lq-integrator with q > n , or, if Z is merely an L0-integrator,
that F is a differentiable randomly autologous coefficient with a Lipschitz

derivative as in exercise 5.3.3. Then there exists a particular solution Xx
.

such that x 7→ Xx
. (ω) is of class21, 10 C1 for every ω ∈ Ω. In particular,

the maps Ξt : x 7→ Xx
t (ω), which constitute the stochastic flow, each are

differentiable from Rn to itself. One says that the solution is a stochastic

flow of class C .
The differential equation (5.3.7) for DXx reads

DXx
t = I +

∫ t

0

DFη[X
x]DXx

s− dZ
η
s = I +

∫ t

0

dYs DX
x
s− ,

where Ys
def= Fη[X

x].−∗Zη (see exercise 5.6.3). Clearly |∆Y| ≤ L ·∑η |∆Zη| .

Assume henceforth that L · sup
$

∑
η|∆Zη| < 1 .

Then DXx
t (ω) is invertible for all $ = (t, ω) ∈ B (ibidem, mutatis mutan-

dis). From this it is easy to see that every member Ξωt : Rn → Rn of the
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flow is locally a homeomorphism. Since its image is closed, it must be all of
Rn , and Ξωt is a (finite) covering of Rn . Since Rn is simply connected, Ξωt
is a homeomorphism of Rn onto itself. The inverse function theorem now
permits us to conclude that Ξωt is a diffeomorphism for all (t, ω) ∈ B .

This example persists mutatis mutandis when ζ is a spatially bounded
Lq-random measure for some q > n , or when n = 1.

Exercise 5.6.3 Let Y = Y µν be an n× n-matrix of Lq-integrators, q ≥ 2.
Consider Yt(ω) as a linear operator from euclidean space Rn to itself, with operator
norm ‖Y ‖ . Its jump is the matrix

∆Ys def= (∆Y µν s)
µ=1...n
ν=1...n ;

its square function is1 [Y, Y ] = ([Y, Y ])µν def= [Y µρ , Y
ρ
ν ] ,

which by theorems 3.8.4 and 3.8.9 is an Lq/2-integrator. Set

Y t def= − Yt + c[Y, Y ]t +
X

0<s≤t

(I + ∆Ys)
−1(∆Ys)

2 .

(i) Assume that Y is an L0-integrator. Then the solutions of

Dt = I +

Z t

0

Ds− dYs and Dt = I +

Z t

0

dY Ds−

are inverse to each other: DtDt = I ∀ t ≥ 0 .

Here1 (dY D.−)µν def= Dρ
ν.− dY µρ .

(ii) If sup(s,ω)∈B ‖∆Ys(ω)‖<1, then (I+∆Ys)
−1 is bounded. If (I+∆Ys)

−1

is bounded, then

Jt def=
X

0<s≤t

(I + ∆Ys)
−1(∆Ys)

2

is an Lq/2-integrator, and so is Y .

Markovian Stochastic Flows

If the coupling coefficient of (5.6.1) is markovian, that equation becomes

Xx
t = x+

∫ t

0

f(Xx
s−) dZs . (5.6.4)

The fη comprising f are assumed Lipschitz with constant L , and the
driver Z is an arbitrary L0-integrator with Z0 = 0, at least for a while.

Summary 5.4.7 on page 317 provides the universal solution X(x, z.) of

Xt = x+

∫ t

0

f(Xs−) dZs . (5.6.5)

Since at this point we are interested only in constant initial conditions, we

restrict X to Rn × Dd , so that it becomes a map from Rn × Dd to Dn ,
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adapted to the filtrations B•(Rn) ⊗ F.[Dd] and F.[Dn] (see item 2.3.8). Z

is the process representing Z on the path space Rn × Dd : Zt(x, z.) = zt ,

and the assumption Z0 = 0 has the effect that any of the probabilities of
P def= Z[P] ⊂ P[Z] is carried by the set [Z0 = 0] = {(x, z.) : z0 = 0} .

Taking for the parameter domain U of theorem 5.2.24 the space Rn itself,
we see that X can be modified on a P[Z]-nearly empty set in such a way

that both

z. 7→ X.(x, z.) is adapted to F.[Dd] and F.[Dn] ∀ x ∈ Rn (5.6.6)

and x 7→ X.(x, z.) is continuous21 from Rn to Dn ∀ z. ∈ Dd. (5.6.7)

Note that X is a construct made from the coupling coefficient f alone; in par-

ticular, the prevailing probability does not enter its definition. Xx
.

def= X.(x,Z.)

is a solution of (5.6.4), and any other solution that depends continuously on x
differs from Xx

. in a nearly empty set that does not depend on x .

Here is a straightforward observation. Let S be a stopping time and t ≥ 0.
Then

Xx
S+t = Xx

S +

∫ S+t

S

f
(
Xx
σ−
)
d(Zσ − ZS)

= Xx
S +

∫ t

0

f
(
Xx

(S+τ)−
)
d(ZS+τ − ZS) .

This says that the process XS+. satisfies the same differential equation (5.6.4)
as does X. , except that the initial condition is XS and the driver Z. − ZS .

Now upon representing this driver on Dd , every P ∈ P[Z] turns into a
probability in P[Z] , inasmuch as Z. − ZS is a P-integrator. Therefore this

stochastic differential equation is solved by

Xx
S+t = Xt(X

x
S,ZS+. − ZS) . (5.6.8)

Applying this very argument to equation (5.6.5) on Rn × Dd results in

XS+t(x, z.) = Xt

(
XS(x, z.), zS+. − zS

)
. (5.6.9)

For any F.[Dd]-stopping time S , any t ≥ 0, and any x ∈ Rn , this equation
holds a priori only P[Z]-nearly, of course. At a fixed stopping time S we

may assume, by throwing out a P[Z]-nearly empty set, that (5.6.9) holds for
all rational instants t and all rational points x ∈ Rn . Since X is continuous

in its first argument, though, and t 7→ X t(x, z.) is right-continuous, we get

Proposition 5.6.4 The universal solution for equation (5.6.4) satisfies (5.6.6)

and (5.6.7); and for any stopping time S there exists a nearly empty set
outside which equation (5.6.9) holds simultaneously for all x ∈ Rn and all

t ≥ 0 .

Problem 5.6.5 Can (5.6.9) be made to hold identically for all s ≥ 0?
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Markovian Stochastic Flows Driven by a Lévy Process

The situation and notations are the same as in the previous subsection, except
that we now investigate the case that the driver Z is a Lévy process. In this

case the previsible controller Λt[Z] is just a constant multiple of time t
(equation (4.6.30)) and the time transformation T . is also simply a linear

scaling of time. Let us define the positive linear operator Tt on Cb(Rn) by

Ttφ(x) def= E[φ(Xx
t )] = E[φ ◦Xt(x,Z.)] . (5.6.10)

It follows from inequality (5.2.36) that Ttφ is continuous; and it is not too

hard to see with the help of inequality (5.2.25) that Tt maps C0(Rn) into
C0(Rn) when f is bounded. Now fix an F.-stopping time S . Since Z.+S−ZS

is independent of FS and has the same law as Z. (exercise 4.6.1),

E[φ ◦Xt(x,Z.+S − ZS)|FS] = E[φ ◦Xt(x,Z.+S − ZS)]

= E[φ ◦Xt(x,Z.)] = Ttφ(x) ,

whence

E
[
φ ◦Xt(X

x
S ,Z.+S − ZS)|FS

]
= Ttφ ◦Xx

S ,

thanks to exercise A.3.26 on page 408. With equation (5.6.8) this gives

E[φ ◦Xx
S+t|FS] = Ttφ ◦Xx

S (5.6.11)

and, taking the expectation,

Ts+tφ(x) = Ts[Ttφ](x) (5.6.12)

for s, t ∈ R+ and x ∈ Rn . The remainder of this subsection is given over to

a discussion of these two equalities.

5.6.6 (The Markov Property) Taking in (5.6.11) the conditional expectation

under Xx
S (see page 407) gives

E
[
φ ◦Xx

S+t|FS
]

= E
[
φ ◦Xx

S+t|Xx
S

]
◦Xx

S . (5.6.13)

That is to say, as far as the distribution of Xx
S+t is concerned, knowledge

of the whole path up to time S provides no better clue than knowing the

position Xx
S at that time: “the process continually forgets its past.” A process

satisfying (5.6.13) is said to have the strong Markov property. If (5.6.13)
can be ascertained only at deterministic instants S , then the process has

the “plain” Markov property. Equation (5.6.11) is actually stronger than
the strong Markov property, in this sense: the function Ttφ is a common

conditional expectation of φ(Xx
S+t) under Xx

S , one that depends neither
on S nor on x . We leave it to the reader to parlay equation (5.6.11) into

the following. Let F : Dn → R be bounded and measurable on the Baire
σ-algebra for the pointwise topology, that is, on F0

∞[Dn] . Then

E
[
F (Xx

S+.)|FS
]

= E
[
F (Xx

S+.)|Xx
S

]
◦Xx

S . (5.6.14)
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To paraphrase: “in order to predict at time S anything 45 about the future
of Xx

. , knowledge of the whole history FS of the world up to that time is

not more helpful than knowing merely the position Xx
S at that time.”

Exercise 5.6.7 Let us wean the processes Xx , x ∈ Rn , of their provenance,
by representing each on D

n (see items 2.3.8–2.3.11). The image under Xx of
the given probability is a probability on F∞[Dn] , which shall be written Px ; the
corresponding expectation is Ex . The evaluation process (t, x.) 7→ xt will be
written X , as often before. Show the following. (i) Under Px , X starts at x :
Px[X0 = x] = 1. (ii) For F ∈ L∞(F∞[Dn]), x 7→ Ex[F ] is universally measurable.
(iii) For all φ ∈ C0(E), all stopping times S on F.[Dn] , all t ≥ 0, and all x ∈ E we
have Px-almost surely Ex[φ(XS+t)|FS ] = Ttφ◦XS . (iv) X is quasi-left-continuous.

5.6.8 (The Feller Semigroup of the Flow) Equation (5.6.12) says that the
operators Tt form a semigroup under composition: Ts+t = Ts◦Tt for s, t ≥ 0.

Since evidently sup{Ttφ (x) : φ ∈ C0(E) , 0 ≤ φ ≤ 1} = E[1] = 1, we have

Proposition 5.6.9 {Tt}t≥0 forms a conservative Feller semigroup on C0(Rn) .

Let us go after the generator of this semigroup. Itô’s formula applied to Xx
.

and a function φ on Rn of class10 C2
b gives1

φ(Xx
t ) = φ(Xx

0 ) +

∫ t

0

φ;ν(X
x
s−) dXx

s +
1

2

∫ t

0

φ;µν(X
x
s )dc[Xxµ, Xxν]

+
∑

0≤s≤tφ
(
Xx
s− + ∆Xx

s

)
− φ(Xx

s−) − φ;ν(X
x
s−)∆Xxν

s

= φ(x) +

∫ t

0

(
φ;νf

ν
η

)
(Xx

s−) dZηs +
1

2

∫ t

0

(
φ;µνf

µ
η f

ν
θ

)
(Xx

s ) dc[Zη, Zθ]s

+
∑

0≤s≤tφ
(
Xx
s− + fη(X

x
s−)∆Zηs

)
− φ(Xx

s−) −
(
φ;νf

ν
η

)
(Xx

s−)∆Zηs

= φ(x) +

∫ t

0

(
φ;νf

ν
η

)
(Xx

s−)
(
dZηs − yη[|y| > 1] Z(dy, ds)

)

+
1

2

∫ t

0

(
φ;µνf

µ
η f

ν
θ

)
(Xx

s ) dc[Zη, Zθ]s

+

∫ t

0

φ
(
Xx
s−+fη(X

x
s−)yη

)
−φ(Xx

s−)−
(
φ;νf

ν
η

)
(Xx

s−)yη[|y|≤1] Z(dy, ds)

= Martt+φ(x)+

∫ t

0

(
φ;νf

ν
η

)
(Xx

s )Aη ds+
1

2

∫ t

0

(
φ;µνf

µ
η f

ν
θ

)
(Xx

s )Bηθ ds

+

∫ t

0

∫
φ
(
Xx
s+fη(X

x
s )yη

)
−φ(Xx

s )−
(
φ;µf

µ
η

)
(Xx

s )yη[|y|≤1] ν(dy) ds

In the penultimate equality the large jumps were shifted into the first term as

in equation (4.6.32). We take the expectation and differentiate in t at t = 0
to obtain

45 Well, at least anything that depends Baire measurably on the path t 7→ Xx
S+t .
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Proposition 5.6.10 The generator A of {Tt}t≥0 acts on a function φ ∈ C2
0

by1

Aφ(x) = Aηfνη (x)
∂φ

∂xη
(x) +

Bηθ

2
fµη (x)fνθ (x)

∂2φ

∂xη∂xθ
(x)

+

∫ (
φ
(
x+ fη(x)y

η
)
− φ(x) − ∂φ

∂xµ
(x) fµη (x) yη[|y| ≤ 1]

)
ν(dy) .

Differentiating at t 6= 0 gives

dTtφ

dt
= TtAφ = ATtφ ,

where A is the closure of A . Suppose the coefficients f have two continuous
bounded derivatives. Then, by theorem 5.3.16, x 7→ Xx

t is twice continuously

differentiable as a map from Rn to any of the Lp , p < ∞ , and hence
x 7→ Ttφ(x) = E[φ(Xx

t )] is twice continuously differentiable. On this function

A agrees with A :

Corollary 5.6.11 If f ∈ C2
b and φ ∈ C2

0 , then u(t, x) def= E[φ(Xx
t )] is con-

tinuous and twice continuously differentiable in x and satisfies the evolution
equation

du(t, x)

dt
= Au(t, x) .

5.7 Semigroups, Markov Processes, and PDE

We have encountered several occasion where a Feller semigroup arose from a
process (page 268) or a stochastic differential equation (item 5.6.8) and where

a PDE appeared in such contexts (item 5.5.8, exercise 5.5.13, corollary 5.6.11).
This section contains some rudimentary discussions of these connections.

Stochastic Representation of Feller Semigroups

Not only do some processes give rise to Feller semigroups, every Feller semi-
group comes this way:

Definition 5.7.1 A stochastic representation of the conservative Feller
semigroup T. consists of a filtered measurable space

(
Ω,F.

)
together with an

E-valued adapted 46 process X. and a slew {Px} of probabilities on F∞ , one
for every point x ∈ E , satisfying the following description:

(i) for every x ∈ E , X starts at x under Px : Px[X0 = x] = 1 ;
(ii) x 7→ Ex[F ] def=

∫
F dPx is universally measurable, for every F ∈ L∞(F∞) ;

(iii) for all φ ∈ C0(E) , 0 ≤ s < t <∞ , and x ∈ E we have Px-almost surely

Ex[φ(Xt)|Fs ] = Tt−sφ ◦Xs . (5.7.1)

46 Xt is Ft/B∗(E)-measurable for 0 ≤ t <∞ — see page 391.
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5.7.2 Here are some easily verified consequences. (i) With s = 0 equa-
tion (5.7.1) yields

Ex
[
φ(Xt)

]
= Ttφ (x) .

(ii) For any φ ∈ C0(E) and x ∈ E , t 7→ φ(Xt) is a uniformly continuous curve
in the complete seminormed space L2(Px). So is the curve t 7→ Tu−tφ (Xt)

for 0 ≤ t ≤ u . (iii) For any α > 0, x ∈ E , and positive γ ∈ C0(E),

t 7→ Zα,γt
def= e−αt · Uαγ ◦Xt

is a positive bounded Px-supermartingale on
(
Ω,F.

)
. Here U. is the resol-

vent, see page 463.

Theorem 5.7.3 (i) Every conservative Feller semigroup T. has a stochastic
representation. (ii) In fact, there is a stochastic representation

(
Ω,F., X.,P

)

in which F. satisfies the natural conditions 47 with respect to P def= {Px}x∈E
and in which the paths of X. are right-continuous with left limits and stay

in compact subsets of E during any finite interval. Such we call a regular
stochastic representation.

(iii) A regular stochastic representation has these additional properties:
The Strong Markov Property: for any finite F.-stopping time S , number

σ ≥ 0 , bounded Baire function f , and x ∈ E we have Px-almost surely

Ex
[
f(XS+σ)|FS

]
=

∫

E

Tσ(XS, dy) f(y) = EXS
[
f(Xσ)

]
. (5.7.2)

Quasi-Left-Continuity: for any strictly increasing sequence Tn of F.-stopping

times with finite supremum T and all Px ∈ P

limXTn
= XT Px-nearly.

Blumenthal’s Zero-One Law: the P-regularization of the basic filtration

of X. is right-continuous.

Remarks 5.7.4 Equation (5.7.2) has this consequence: 48 under P = Px

EP[f ◦XS+σ|FS] = EP[f ◦XS+σ|XS] ◦XS . (5.7.3)

This says that as far as the distribution of XS+σ is concerned, knowledge
of the whole path up to time S provides no better clue than knowing the

position XS at that time: “the process continually forgets its past.” An
adapted process X on (Ω,F.,P) obeying (5.7.3) for all finite stopping times

S and σ ≥ 0 is said to have the strong Markov property. It has the “plain”
Markov property as long as (5.7.3) can be ascertained for sure times S .

47 See definition 1.3.38 and warning 1.3.39 on page 39.
48 See theorem A.3.24 for the conditional expectation under the map XS . E[f ◦XT |XS]
is a function on the range of XS and is unique up to sets negligible for the law of XS .
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Actually, equation (5.7.2) gives much more than merely the strong Markov
property of X. on

(
Ω,F.,Px

)
for every starting point x . Namely, it says

that the Baire function x′ 7→
∫
Tσ(x

′, dy) f(y) serves as a common member of
every one of the classes 48 Ex

[
f(XS+σ)|XS

]
. Note that this function depends

neither on S nor on x .
Consider the case that S is an instant s and apply (5.7.2) to a function

φ ∈ C0(E) and a Borel set B in E .49 Then

Ex
[
f ◦Xs+σ|Fs

]
= Tσφ ◦Xs

and Px
[
Xs+σ ∈ B

∣∣Fs
]

= Tσ(Xs, B) . (5.7.4)

Visualize X as the position of a meandering particle. Then (5.7.4) says that
the probability of finding it in B at time s + σ given the whole history up

to time s is the same as the probability that during σ it made its way from
its position at time s to B , no matter how it got to that position.

Exercise 5.7.5 [11, page 50] If for every compact K ⊂ E and neighborhood G
of K

lim
t→0

sup
x∈K

Tt(x,E \G)

t
= 0 ,

then the paths of X. are Px-almost surely continuous, for all x ∈ E .

Exercise 5.7.6 For every x ∈ E and every function ψ in the domain D̆ of the
natural extension Ă of the generator (see pages 467–468)

Mψ
t

def= ψ(Xt) −
Z t

0

Aψ ◦Xs ds

is a Px-martingale. Conversely, if there exists a φ ∈ C̆ so that for all x ∈ E
Mψ
t

def= ψ(Xt) −
R t
0
φ(Xs) ds is a Px-martingale, then ψ ∈ D̆ and Ăψ = φ .

Proof of Theorem 5.7.3. To start with, let us assume that E is compact.

(i) Prepare, for every t ∈ R+ , a copy Et of E and take for Ω the product

E[0,∞) =
∏

t∈[0,∞)

Et

of all [0,∞)-tuples (xt)0≤t<∞ with entry xt in Et . Ω is compact in the
product topology. Xt is simply the tth coordinate: Xt

(
(xs)0≤s<∞

)
= xt .

Next let T denote the collection of all finite ordered subsets τ ⊂ [0,∞) and
T0 those that contain t0 = 0; both T and T0 are ordered by inclusion. For

any τ = {t1 . . . tk} ∈ T (with ti < ti+1 ) write

Eτ = Et1...tk
def= Et1 × · · · × Etk .

There are the natural projections

Xτ = Xt1...tk : E[0,∞) → Eτ

: (xt)0≤t<∞ 7→ (xt1 , . . . , xtk) .

49 See convention A.1.5 on page 364.
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“Xτ forgets the coordinates not listed in τ .” If τ is a singleton {t}, then
Xτ is the tth coordinate function Xt , so that we may also write

Xt1...tk =
(
Xt1 , . . . , Xtk

)
.

We shall define the expectations Ex first on a special class of functions,
the cylinder functions. F : E [0,∞) → R is a cylinder function based on

τ = {t0t1 . . . tk} ∈ T0 if there exists f : Eτ → R with F = f ◦Xτ , i.e.,

F = f(Xt0t1...tk) = f(Xt0, . . . , Xtk) , t0 = 0 .

We say that F is Borel or continuous, etc., if f is. If F is based on τ , it
is also based on any τ ′ containing τ ; in the representation F = f ◦ Xτ ′ ,

f simply does not depend on the coordinates that are not listed in τ . For
instance, if F is based on Xτ and G on Xτ ′ , then both are based on Xυ ,

where υ def= τ ∪ τ ′, and can be written F = f ◦ Xυ and G = g ◦ Xυ ; thus
F +G = (f + g) ◦Xυ is again a cylinder function. Repeating this with ·,∧,∨
replacing + we see that the Borel or continuous cylinder functions form both

an algebra and a vector lattice.

We are ready to define Px . Let F = f ◦ Xt0t1...tk be a bounded Borel
cylinder function. Define inductively f (k) = f , σi = ti − ti−1 , and

f (i−1)(x0, x1, . . . , xk−1)
def=

∫
Tσi

(xi−1, dxi) f
(i)(x0, x1, . . . , xi−1, xi) ,

as long as i ≥ 1, and finally set Ex[F ] def= f (0)(x). In other words,

Ex[F ] def=

∫
Tt1(x, dx1)

∫
· · ·
∫
Ttk−1−tk−2

(xk−2, dxk−1)

∫
Ttk−tk−1

(xk−1, dxk)

f(x, x1, . . . , xk−2, xk−1, xk) . (5.7.5)

To see that this makes sense assume for the moment that f ∈ C(Eτ ). We
see by inspection50 that then f (i) belongs to C(Et0...ti), i = k, k − 1, . . . , 0.

Thus

x 7→ Ex[F ] is continuous for F ∈ C(Eτ ) ◦Xτ .

Next consider the class of bounded Borel functions f on Et0...tk such that

f (i) is a bounded Borel function on Et0...ti for all i . It contains C(Eτ ) and

is closed under bounded sequential limits, so it contains all bounded Borel
functions: the iterated integral (5.7.5) makes sense.

Suppose that f does not depend on the coordinate xj , for some j between

1 and k . The Chapman–Kolmogorov equation (A.9.9) applied with s = σj ,
t = σj+1 , and y = xj+1 to φ(y) = f (j+1)(x0, . . . , xj−1, y) shows that for

50 This is particularly obvious when f is of the form f(x0, . . . , xk) =
Q
i φi(xi), φi ∈ C ,

or is a linear combination of such functions. The latter form an algebra uniformly dense in
C(Eτ ) (theorem A.2.2).
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i < j we get the same functions f (i) whether we consider F as a cylinder
function based on Xτ or on Xτ ′ , where τ ′ is τ with tj removed. Using

this observation it is easy to see that Ex is well-defined on Borel cylinder
functions and is linear. It is also evidently positive and has Ex[1] = 1. It

is a positive linear functional of mass one defined on the continuous cylinder
functions, which are uniformly dense 50 in C : Ex is a Radon measure. Also,

Ex[φ(X0)] = φ(x). Let F0
. denote the basic filtration of X. . Its final

σ-algebra F0
∞ is clearly nothing but the Baire σ-algebra of Ω. The collection

of all bounded Baire functions F on Ω for which x 7→ Ex[F ] is Baire
measurable on E contains the cylinder functions and is sequentially closed.

Thus it contains all Baire functions on Ω.
Only equation (5.7.1) is left to be proved. Fix 0 ≤ s < t , and let F

be a Borel cylinder function based on a partition τ ⊂ [0, s] in T0 and let

φ ∈ C0(E). The very definition of Ex gives

Ex
[
F · φ(Xt)

]
= Ex

[
F · Tt−sφ(Xs)

]
.

Since the functions F generate F0
s , equation (5.7.1) follows. Part (i) of

theorem 5.7.3 is proved.

(ii) We continue to assume that E is compact, and we employ the stoch-
astic representation constructed above. Its filtration is the basic filtration of

X. . Let αn > 0 in R and γn ≥ 0 in C be such that the sequence
(
Uαn

γn
)

is dense in C0+ . Let Zn. be the process

t 7→ e−αnt · Uαn
γn ◦Xt

of item 5.7.2 (ii). It is a global L2(Px)-integrator for every single x ∈ E

(lemma 2.5.27). The set Osc of points ω ∈ Ω where Q 3 q 7→ Znq (ω)
oscillates anywhere for any n belongs to F∞ and is P-nearly empty for every

probability P with respect to which the Zn are integrators (lemma 2.3.1),
in particular for every one of the Px . Since the differences of the Uαn

γn are

dense in C , we are assured that for all ω ∈ Ω′ def= Ω \Osc and all φ ∈ C0(E)

Q 3 q 7→ φ
(
Xq(ω)

)
has left and right limits at all finite instants.

Fix an instant t and an ω ∈ Ω′ and denote by Lt(ω) the intersection over n
of the closures of the sets {Xq(ω) : t ≤ q ≤ t+ 1/n} ⊂ E . This set contains

at least one point, by compactness, but not any more. Indeed, if there were

two, we would choose a φ ∈ C that separates them; the path q 7→ φ
(
Xq(ω)

)

would have two limit points as q ↓ t , which is impossible. Therefore

X ′t(ω) def= lim
Q3q↓t

Xq(ω)

exists for every t ≥ 0 and ω ∈ Ω′ and defines a right-continuous E-valued
process X ′. on Ω′ . A similar argument shows that X ′. has a unique left

limit in E at all instants. The set
[
Xt 6= X ′t

]
equals the union of the sets
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[
Znt 6= Znt+

]
∈ F0

t+1 , which are P-nearly empty in view of item 5.7.2 (i).
Thus X ′. is adapted to the P-regularization of F0

. . It is clearly also adapted

to that filtration’s right-continuous version F ′. . Moreover, equation (5.7.1)
stays when F0

. is replaced by F ′. . Namely, if Q 3 qn ↓ s , then the left-hand

side of
Ex
[
φ(Xt)|Fqn

]
= Tt−qn

φ(Xqn
)

converges in Ex-mean to Ex[φ(Xt)|F ′s ] , while the right-hand side converges
to Tt−sφ(Xs) by a slight extension of item 5.7.2 (i). Part (ii) is proved: the

primed representation
(
Ω′,F ′., X ′.,P

)
meets the description.

Let us then drop the primes and address the case of noncompact E .

We let E∆ denote the one-point compactification E ∪ {∆} of E , and con-

sider on E∆ the Feller semigroup T∆
. of remark A.9.6 on page 465. Func-

tions in C(E∆) that vanish at ∆ are identified with functions of C0(E).

Let X∆ def=
(
Ω,F., X∆

. ,P
∆
)

be the corresponding stochastic representation
provided by the proof above, with P∆ = {Px : x ∈ E∆} . Note that

T∆
t

(
x, {∆}

)
= 0, which has the effect that X∆

t 6= ∆ Px-almost surely for
all x ∈ E . Pick a function γ∆ ∈ C(E∆) that is strictly positive on E

and vanishes at ∆ and note that U∆
1 γ

∆ is of the same description. Then
t 7→ Z∆

t = e−t · U1γ
∆ ◦ X∆

t is a positive bounded right-continuous super-

martingale on F. with left limits and equals zero at time t if and only if
X∆
t = ∆. Due to exercise 2.5.32, the path of Z∆ is bounded away from zero

on finite time-intervals, which means that X∆
. stays in a compact subset of E

during any finite time-interval, except possibly in a P-nearly empty set N .

Removing N from Ω leaves us with a stochastic representation of T. on E .
It clearly satisfies (ii) of theorem 5.7.3.

Proof of Theorem 5.7.3 (iii). We start with the strong Markov property. It

clearly suffices to prove equation (5.7.2) for the case f ∈ C0(E). The general
case will follow from an application of the monotone class theorem. Let then

A ∈ FS and fix Px ∈ P . To start with, assume that S takes only countably
many values. Then∫

A · f
(
XS+σ

)
dPx =

∑

s≥0

∫
[S = s] ∩ A · f

(
XS+σ

)
dPx

since [S = s] ∩ A ∈ Fs : =
∑

s≥0

[S = s] ∩ A · Ex
[
f
(
XS+σ

)∣∣Fs
]
dPx

by (5.7.1): =
∑

s≥0

∫
[S = s] ∩ A · EXs

[
f(Xσ)

]
dPx

as Xs = XS on [S = s]: =
∑

s≥0

∫
[S = s] ∩ A · EXS

[
f(Xσ)

]
dPx

=

∫
A · EXS

[
f
(
Xσ

)]
dPx .
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In the general case let S(n) be the approximating stopping times of exer-
cise 1.3.20. Since x 7→ Ex

[
f(Xσ)

]
is continuous and bounded, taking the

limit in
∫
A · f

(
XS(n)+σ

)
dPx =

∫
A · EXS(n)

[
f
(
Xσ

)]
dPx

produces the desired equality
∫
A · f

(
XS+σ

)
dPx =

∫
A · EXS

[
f
(
Xσ

)]
dPx .

This proves the strong Markov property.

Now to the quasi-left-continuity. Let φ, ψ ∈ C0(E). Thanks to the right-
continuity of the paths

XT = lim
t↓0

lim
n→∞

XTn+t ,

and therefore

Ex
[
φ
(
XT−

)
· ψ
(
XT

)]
= lim

t↓0
lim
n→∞

Ex
[
φ
(
XTn

)
· ψ
(
XTn+t

)]

= lim
t↓0

lim
n→∞

Ex
[
φ
(
XTn

)
·
(
Ttψ

)(
XTn

)]

= lim
t↓0

Ex
[
φ
(
XT−

)
·
(
Ttψ

)(
XT−

)]

= Ex
[
φ
(
XT−

)
· ψ
(
XT−

)]
.

The equality

Ex
[
f(XT−, XT )

]
= Ex

[
f(XT−, XT−)

]

therefore holds for functions on E × E of the form (x, y) 7→ ∑
i φi(x)ψi(y),

which form a multiplicative class generating the Borels of E × E . Thus

Ex
[
h(XT− −XT )

]
= 0 for all Borel functions h on E , which implies that[

XT− 6= XT

]
=
⋃
n

[
X(T∧n)− 6= XT∧n

]
is Px-nearly empty: the quasi-left-

continuity follows.
Finally let us address the regularity. Let us denote by X 0

. ⊆ F. the basic

filtration of X. . Fix a Px ∈ P , a t ≥ 0, and a bounded X 0
t+-measurable

function F . Set G def= F − Ex[F |X 0
t ] . This function is measurable on X 0

τ for

all τ > t . Now let f : Db(E) → R be a bounded function of the form

f(ω) = f t(ω) · φ
(
Xu(ω)

)
, (∗)

where f t ∈ X 0
t , φ ∈ C0(E), and u > t , and consider

If def=

∫
f ·G dPx =

∫
f t ·G · φ(Xu) dP

x . (∗∗)
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Pick a τ ∈ (t, u) and condition on X 0
τ . Then

If =

∫
f t ·G · Tu−τφ(Xτ ) dP

x .

Due to item 5.7.2 (i), taking τ ↓ t produces

If =

∫
f t ·G · Tu−tφ(Xt) dP

x .

The factor of G in this integral is measurable on X 0
t , so the very definition

of G results in If = 0.
Now let f(ω) = f

t
(ω) · φ

(
Xv(ω)

)
be a second function of the form (∗),

where v ≥ u , say. Conditioning on X 0
u produces

Iff =

∫
f tf t ·G · φ(Xu)φ(Xv) dP

x =

∫
f tf t ·G ·

(
φ · Tv−uφ

)
(Xu) dP

x .

This is an integral of the form (∗∗) and therefore vanishes. That is to say,∫
f ·G dPx=0 for all f in the algebra generated by functions of the form (∗).

Now this algebra generates X 0
∞ . We conlude that [G 6= 0] is Px-negligible.

Since this set belongs to X 0
t+1 , it is even Px-nearly empty, and thus Px-nearly

F = Ex[F |X 0
t ] . To summarize: if F ∈ X 0

t+ , then F differs Px-nearly from
some X 0

t -measurable function F Px

= Ex[F |X 0
t ] , and this holds for all Px ∈ P .

This says that F belongs to the regularization XP
t . Thus X 0

t+ ⊂ XP
t and

then XP
t+ = XP

t ∀ t ≥ 0. Theorem 5.7.3 is proved in its entirety.

Exercise 5.7.7 Let X` = (Ω,F.,X`
. , {Px}) be a regular stochastic representation

of T`
. . Describe X` and the projection X. def= πE ◦X`

. on the second factor.

Exercise 5.7.8 To appreciate the designation “Zero-One Law” of theo-
rem 5.7.3 (iiic) show the following: for any x ∈ E and A ∈ FP

0+[X.] , Px[A] is
either zero or one. In particular, for B ∈ B•(E),

TB def= inf{t > 0 : Xt ∈ B}
is Px-almost surely either strictly positive or identically zero.

Exercise 5.7.9 (The Canonical Representation of T.) Let X =
(Ω,F.,X., {Px}) be a regular stochastic representation of the conservative Feller
semigroup T. . It gives rise to a map ρ : Ω → DE , space of right-continuous paths
x. : [0,∞) → E with left limits, via ρ(ω)t = Xt(ω). Equip DE with its basic filtra-
tion F0

. [DE ] , the filtration generated by the evaluations x. 7→ xt , t ∈ [0,∞), which
we denote again by Xt . Then ρ is F0

∞[DE ]/F∞-measurable, and we may define the
laws of X as the images under ρ of the Px and denote them again by Px . They de-
pend only on the semigroup T. , not on its representation X . We now replace F0

. [DE ]

on DE by the natural enlargement FP
.+[DE ] , where P = {Px : x ∈ E} , and then

rename FP
.+[DE ] to F. . The regular stochastic representation (DE ,F.,X., {Px})

is the canonical representation of T. .
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Exercise 5.7.10 (Continuation) Let us denote the typical path in DE by ω ,
and let θs : Db(E) → Db(E) be the time shift operator on paths defined by

(θs(ω))t = ωs+t , s, t ≥ 0 .

Then θs ◦ θt = θs+t, Xt ◦ θs = Xt+s, θs ∈ Fs+t/Ft, and θs ∈ FP
s+t/FP

t for all
s, t ≥ 0, and for any finite F-stopping time S and bounded F-measurable random
variable F

Ex[F ◦ θS |FS ] = EXS [F ] :

“the semigroup T. is represented by the flow θ. .”

Exercise 5.7.11 Let E be N equipped with the discrete topology and define the
Poisson semigroup Tt by

(Ttφ)(k) = e−t
∞X

i=0

φ(k + i)
ti

i!
, φ ∈ C0(N) .

This is a Feller semigroup whose generator Aφ : n 7→ φ(n + 1) − φ(n) is defined
for all φ ∈ C0(N). Any regular process representing this semigroup is Poisson
process.

Exercise 5.7.12 Fix a t > 0, and consider a bounded continuous function defined
on all bounded paths ω : [0,∞) → E that is continuous in the topology of pointwise
convergence of paths and depends on the path prior to t only; that is to say, if the
stopped paths ωt and ω′t agree, then F (ω) = F (ω′). (i) There exists a countable
set τ ∈ [0, t] such that F is a cylinder function based on τ ; in other words, there is
a function f defined on all bounded paths ξ : τ → E and continuous in the product
topology of Eτ such that F = f(Xτ ). (ii) The function x 7→ Ex[F ] is continuous.
(iii) Let Tn,. be a sequence of Feller semigroups converging to T. in the sense that
Tn,tφ(x) → Ttφ(x) for all φ ∈ C0(E) and all x ∈ E . Then Exn[F ] → Ex[F ] .

Exercise 5.7.13 For every x ∈ E , t > 0, and ε > 0 there exist a compact set K
such that

Px[Xs ∈ K ∀ s ∈ [0, t]] > 1 − ε . (5.7.6)

Exercise 5.7.14 Assume the semigroup T. is compact; that is to say, the image
under Tt of the unit ball of C0(E) is compact, for arbitrarily small, and then
all, t > 0. Then Tt maps bounded Borel functions to continuous functions and
x 7→ Ex[F ◦θt] is continuous for bounded F ∈ F∞ , provided t > 0. Equation (5.7.6)
holds for all x in an open set.

Theorem 5.7.15 (A Feynman–Kac Formula) Let Ts,t be a conservative family

of Feller transition probabilities, with corresponding infinitesimal generators
At , and let X` =

(
Ω,F., X.̀ , {Px}

)
be a regular stochastic representation of

its time-rectification T.̀ . Denote by X. its trace on E , so that X`t = (t,Xt) .

Suppose that Φ ∈ dom(Ă`) satisfies on [0, u]×E the backward equation

∂Φ

∂t
(t, x) +AtΦ (t, x) =

(
q·Φ − g

)
(t, x) (5.7.7)

and the final condition Φ(u, x) = f(x) ,
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where q, g : [0, u]×E → R and f : E → R are continuous. Then Φ(t, x) has
the following stochastic representation:

Φ(t, x) = Et,x
[
Quf(Xu)

]
+ Et,x

[∫ u

t

Qτg(X
`
τ ) dτ

]
, (5.7.8)

where Qτ
def= exp

(
−
∫ τ

t

q(X`s ) ds
)
,

provided (a) q is bounded below, (b) g ∈ C̆ or g ≥ 0 , (c) f ∈ C̆ or f ≥ 0 ,

and

(d) X`. has continuous paths or

(d’)

∫

E`
|Φ(s, y)|p T`t

(
(x, t), ds× dy

)
is finite for some p > 1.

Proof. Let S ≤ u be a stopping time and set Gv =
∫ v
t
Qτg(X

`
τ ) dτ . Itô’s

formula gives Pt,x-almost surely

GS +QSΦ(X`S )−Φ(t, x) = GS +QSΦ(X`S ) −QtΦ(X`t )

= GS +

∫ S

t+

Φ(X`τ ) dQτ +

∫ S

t+

Qτ dΦ(X`τ )

= GS −
∫ S

t

Qτ · qΦ◦X`τ dτ

by 5.7.6: +

∫ S

t

Qτ · Ă`Φ◦X`τ dτ +

∫ S

t+

Qτ dM
Φ
τ

=

∫ S

t

Qτ ·
(
g − qΦ

)
◦X`τ dτ

by A.9.15 and (5.7.7): +

∫ S

t

Qτ · (qΦ − g)◦X`τ dτ +

∫ S

t+

Qτ dM
Φ
τ

=

∫ S

t+

Qτ dM
Φ
τ .

Since the paths of X.̀ stay in compact sets Pt,x-almost surely and all

functions appearing are continuous, the maximal function of every inte-
grand above is Pt,x-almost surely finite at time S , in the dΦ(X`τ )- and

dMΦ
τ -integrals. Thus every integral makes sense (theorem 3.7.17 on page 137)

and the computation is kosher. Therefore

Φ(t, x) = QSΦ(S,XS) +

∫ S

t

Qτg(X
`
τ ) dτ −

∫ S

t+

Qτ dM
Φ
τ

= Et,x
[
QSΦ(S,XS)

]
+ Et,x

[∫ S

t

Qτg(X
`
τ ) dτ

]
− Et,x

[∫ S

t+

Qτ dM
Φ
τ

]
,
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provided the random variables have finite Pt,x-expectation. The proviso in
the statement of the theorem is designed to achieve this and to have the last

expectation vanish. The assumption that q be bounded below has the effect
that Q?u is bounded. If g ≥ 0, then the second expectation exists at time u .

The desired equality equation (5.7.8) now follows upon application of Et,x ,
and it is to make this expectation applicable that assumptions (a)–(d) are

needed. Namely, since q is bounded below, Q is bounded above. The solidity
of C̆ together with assumptions (b) and (c) make sure that the expectation of

the first two integrals exists. If (d’) is satisfied, then MΦ
. is an L1-integrator

(theorem 2.5.30 on page 85) and the expectation of
∫ u
t
Qτ dM

Φ
τ vanishes. If

(d) is satisfied, then X ∈ Kn+1 up to and incuding time Sn , so that MΦ

stopped at time Sn is a bounded martingale: we take the expectation at time

Sn , getting zero for the martingale integral, and then let n→ ∞ .

Repeated Footnotes: 2711 2722 2733 2744 2775 2787 2808 28110 28211 28212 28716

28817 29320 29521 29723 30125 30326 30328 30530 30832 31033 31235 31236 31937

32038 32139 32340 33444 35248 35450





Appendix A

Complements to Topology and Measure Theory

We review here the facts about topology and measure theory that are used in

the main body. Those that are covered in every graduate course on integration

are stated without proof. Some facts that might be considered as going
beyond the very basics are proved, or at least a reference is given. The

presentation is not linear – the two indexes will help the reader navigate.

A.1 Notations and Conventions

Convention A.1.1 The reals are denoted by R , the complex numbers by C ,

the rationals by Q . Rd∗ is punctured d-space Rd \ {0} .
A real number a will be called positive if a ≥ 0 , and R+ denotes the set

of positive reals. Similarly, a real-valued function f is positive if f(x) ≥ 0
for all points x in its domain dom(f) . If we want to emphasize that f is

strictly positive: f(x) > 0 ∀ x ∈ dom(f), we shall say so. It is clear what
the words “negative” and “strictly negative” mean. If F is a collection

of functions, then F+ will denote the positive functions in F , etc. Note
that a positive function may be zero on a large set, in fact, everywhere. The

statements “b exceeds a ,” “b is bigger than a ,” and “a is less than b”
all mean “a ≤ b ;” modified by the word “strictly” they mean “a < b .”

A.1.2 The Extended Real Line R is the real line augmented by the two
symbols −∞ and ∞ = +∞ :

R = {−∞} ∪ R ∪ {+∞} .

We adopt the usual conventions concerning the arithmetic and order structure
of the extended reals R :

−∞ < r < +∞ ∀ r ∈ R ; | ±∞| = +∞ ;

−∞∧ r = −∞ , ∞∨ r = ∞ ∀ r ∈ R ;

−∞ + r = −∞ , +∞ + r = +∞ ∀ r ∈ R ;

r · ±∞ =





±∞ for r > 0 ,
0 for r = 0 ,

∓∞ for r < 0 ;

±∞p =





±∞ for p > 0 ,
1 for p = 0 ,

0 for p < 0 .
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The symbols ∞ − ∞ and 0/0 are not defined; there is no way to do this
without confounding the order or the previous conventions.

A function whose values may include ±∞ is often called a numerical
function. The extended reals R form a complete metric space under the

arctan metric
ρ(r, s) def=

∣∣ arctan(r) − arctan(s)
∣∣ , r, s ∈ R .

Here arctan(±∞) def= ± π/2. R is compact in the topology τ of ρ . The

natural injection R ↪→ R is a homeomorphism; that is to say, τ agrees on
R with the usual topology.

a ∨ b (a ∧ b) is the larger (smaller) of a and b . If f, g are numerical
functions, then f ∨ g (f ∧ g ) denote the pointwise maximum (minimum) of

f, g . When a set S ⊂ R is unbounded above we write supS = ∞ , and
inf S = −∞ when it is not bounded below. It is convenient to define the

infimum of the empty set ∅ to be +∞ and to write sup ∅ = −∞ .

A.1.3 Different length measurements of vectors and sequences come in handy

in different places. For 0 < p < ∞ the `p-length of x = (x1, . . . , xn) ∈ Rn

or of a sequence (x1, x2, . . .) is written variously as

|x |p = ‖x‖`p def=
(∑

ν |xν |p
)1/p

, while |z |∞ = ‖z‖`∞ def= sup η|zη |

denotes the `∞-length of a d-tuple z = (z1, z2, . . . , zd) or a sequence
z = (z0, z1, . . .). The vector space of all scalar sequences is a Fréchet space

(which see) under the topology of pointwise convergence and is denoted
by `0 . The sequences x having |x |

p
< ∞ form a Banach space under | |

p
,

1 ≤ p < ∞ , which is denoted by `p . For 0 < p < q we have

|z|q ≤ |z|p ; and |z|p ≤ d1/(q−p) · |z|q (A.1.1)

on sequences z of finite length d . | | stands not only for the ordinary absolute

value on R or C but for any of the norms | |
p

on Rn when p ∈ [0,∞] need
not be displayed.

Next some notation and conventions concerning sets and functions, which

will simplify the typography considerably:

Notation A.1.4 (Knuth [56]) A statement enclosed in rectangular brackets
denotes the set of points where it is true. For instance, the symbol [f = 1] is

short for {x ∈ dom(f) : f(x) = 1} . Similarly, [f > r] is the set of points x
where f(x) > r, [fn 6→] is the set of points where the sequence (fn) fails to

converge, etc.

Convention A.1.5 (Knuth [56]) Occasionally we shall use the same name or
symbol for a set A and its indicator function: A is also the function that

returns 1 when its argument lies in A , 0 otherwise. For instance, [f > r]
denotes not only the set of points where f strictly exceeds r but also the

function that returns 1 where f > r and 0 elsewhere.



A.1 Notations and Conventions 365

Remark A.1.6 The indicator function of A is written 1A by most math-
ematicians, ıA , χA , or IA or even 1A by others, and A by a select few.

There is a considerable typographical advantage in writing it as A : [T kn < r]

or
[
U

[a,b]
S ≥ n

]
are rather easier on the eye than 1[Tk

n<r]
or 1ˆ

U
[a,b]
S ≥n

˜ ,
respectively. When functions z are written s 7→ zs , as is common in stochas-
tic analysis, the indicator of the interval (a, b] has under this convention at s

the value (a, b]s rather than 1(a,b]s .

In deference to prevailing custom we shall use this swell convention only

sparingly, however, and write 1A when possible. We do invite the aficionado
of the 1A-notation to compare how much eye strain and verbiage is saved on

the occasions when we employ Knuth’s nifty convention.

�

���������
	��

�������������	���������������������	��������

Figure A.14 A set and its indicator function have the same name

Exercise A.1.7 Here is a little practice to get used to Knuth’s convention:
(i) Let f be an idempotent function: f 2 = f . Then f = [f = 1] = [f 6= 0]. (ii)
Let (fn) be a sequence of functions. Then the sequence ([fn →] · fn) converges
everywhere. (iii)

R
(0, 1](x) · x2 dx = 1/3. (iv) For fn(x) def= sin(nx) compute

[fn 6→] . (v) Let A1,A2, . . . be sets. Then Ac1 = 1−A1 ,
S
n An = supnAn =

W
nAn ,T

nAn = infnAn =
V
nAn . (vi) Every real-valued function is the pointwise limit

of the simple step functions

fn =
4nX

k=−4n

k2−n · [k2−n ≤ f < (k + 1)2−n] .

(vii) The sets in an algebra of functions form an algebra of sets. (viii) A family
of idempotent functions is a σ-algebra if and only if it is closed under f 7→ 1 − f
and under finite infima and countable suprema. (ix) Let f : X → Y be a map and
S ⊂ Y . Then f−1(S) = S ◦ f ⊂ X .
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A.2 Topological Miscellanea

The Theorem of Stone–Weierstraß

All measures appearing in nature owe their σ-additivity to the following very

simple result or some variant of it; it is also used in the proof of theorem A.2.2.

Lemma A.2.1 (Dini’s Theorem) Let B be a topological space and Φ a
collection of positive continuous functions on B that vanish at infinity. 1

Assume Φ is decreasingly directed 2,3 and the pointwise infimum of Φ is zero.
Then Φ → 0 uniformly; that is to say, for every ε > 0 there is a ψ ∈ Φ with

ψ(x) ≤ ε for all x ∈ B and therefore φ ≤ ε uniformly for all φ ∈ Φ with
φ ≤ ψ .

Proof. The sets [φ ≥ ε] , φ ∈ Φ, are compact and have void intersection.

There are finitely many of them, say [φi ≥ ε], i = 1, . . . , n, whose intersection
is void (exercise A.2.12). There exists a ψ ∈ Φ smaller than 3 φ1 ∧ · · · ∧ φn .

If φ ∈ Φ is smaller than ψ , then |φ| = φ < ε everywhere on B .

Consider a vector space E of real-valued functions on some set B . It is
an algebra if with any two functions φ, ψ it contains their pointwise product

φψ . For this it suffices that it contain with any function φ its square φ2 .

Indeed, by polarization then φψ = 1/2
(
(φ+ ψ)2 − φ2 − ψ2

)
∈ E. E is

a vector lattice if with any two functions φ, ψ it contains their pointwise

maximum φ ∨ ψ and their pointwise minimum φ ∧ ψ . For this it suffices
that it contain with any function φ its absolute value |φ| . Indeed, φ ∨ ψ =

1/2
(
|φ− ψ| + (φ+ ψ)

)
, and φ ∧ ψ = (φ+ ψ) − (φ ∨ ψ). E is closed under

chopping if with any function φ it contains the chopped function φ∧1. It

then contains f ∧ q = q(f/q ∧ 1) for any strictly positive scalar q . A lattice
algebra is a vector space of functions that is both an algebra and a lattice

under pointwise operations.

Theorem A.2.2 (Stone–Weierstraß) Let E be an algebra or a vector lattice
closed under chopping, of bounded real-valued functions on some set B . We

denote by Z the set {x ∈ B : φ(x) = 0 ∀ φ ∈ E} of common zeroes
of E , and identify a function of E in the obvious fashion with its restriction

to B0
def= B\Z .

(i) The uniform closure E of E is both an algebra and a vector lattice

closed under chopping. Furthermore, if Φ : R → R is continuous with
Φ(0) = 0 , then Φ ◦ φ ∈ E for any φ ∈ E .

1 A set is relatively compact if its closure is compact. φ vanishes at ∞ if its carrier [|φ| ≥ ε]
is relatively compact for every ε > 0. The collection of continuous functions vanishing at
infinity is denoted by C0(B) and is given the topology of uniform convergence. C0(B) is
identified in the obvious way with the collection of continuous functions on the one-point
compactification B∆ def= B ∪ {∆} (see page 374) that vanish at ∆.
2 That is to say, for any two φ1, φ2 ∈ Φ there is a φ ∈ Φ less than both φ1 and φ2 . Φ is
increasingly directed if for any two φ1, φ2 ∈ Φ there is a φ ∈ Φ with φ ≥ φ1 ∨ φ2 .
3 See convention A.1.1 on page 363 about language concerning order relations.
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(ii) There exist a locally compact Hausdorff space B̂ and a map j : B0 →
B̂ with dense image such that φ̂ 7→ φ̂◦j is an algebraic and order isomorphism

of C0(B̂) with E ' E |Bo
. We call B̂ the spectrum of E and j : B0 → B̂ the

local E-compactification of B . B̂ is compact if and only if E contains

a function that is bounded away from zero. 4 If E separates the points 5

of B0 , then j is injective. If E is countably generated, 6 then B̂ is separable
and metrizable.

(iii) Suppose that there is a locally compact Hausdorff topology τ on B

and E ⊂ C0(B, τ), and assume that E separates the points of B0
def= B\Z .

Then E equals the algebra of all continuous functions that vanish at infinity
and on Z .7

Proof. (i) There are several steps. (a) If E is an algebra or a vector lattice

closed under chopping, then its uniform closure E is clearly an algebra or a
vector lattice closed under chopping, respectively.

(b) Assume that E is an algebra and let us show that then E is a vector
lattice closed under chopping. To this end define polynomials pn(t) on [−1, 1]

inductively by p0 = 0, pn+1(t) = 1/2
(
t2 + 2pn(t) −

(
pn(t)

)2)
. Then pn(t) is

a polynomial in t2 with zero constant term. Two easy manipulations result
in

2
(
|t| − pn+1(t)

)
=
(
2 − |t|

)
|t| −

(
2 − pn(t)

)
pn(t)

and 2
(
pn+1(t) − pn(t)

)
= t2 −

(
pn(t)

)2
.

Now (2 − x)x = 2x− x2 is increasing on [0, 1]. If, by induction hypothesis,

0 ≤ pn(t) ≤ |t| for |t| ≤ 1, then pn+1(t) will satisfy the same inequality;

as it is true for p0 , it holds for all the pn . The second equation shows that
pn(t) increases with n for t ∈ [−1, 1]. As this sequence is also bounded, it

has a limit p(t) ≥ 0. p(t) must satisfy 0 = t2 − (p(t))2 and thus equals |t| .
Due to Dini’s theorem A.2.1, |t| − pn(t) decreases uniformly on [−1, 1] to 0.

Given a φ ∈ E, set M = ‖φ‖∞ ∨ 1. Then Pn(t) def= Mpn(t/M) converges
to |t| uniformly on [−M,M ], and consequently |f | = limPn(f) belongs to

E = E . To see that E is closed under chopping consider the polynomials

Q′n(t)
def= 1/2

(
t+ 1 − Pn(t− 1)

)
. They converge uniformly on [−M,M ] to

1/2
(
t+ 1 − |t− 1|

)
= t ∧ 1. So do the polynomials Qn(t) = Q′n(t) −Q′n(0),

which have the virtue of vanishing at zero, so that Qn ◦ φ ∈ E . Therefore

φ ∧ 1 = limQn ◦ φ belongs to E = E .
(c) Next assume that E is a vector lattice closed under chopping, and let

us show that then E is an algebra. Given φ ∈ E and ε ∈ (0, 1), again set

4 φ is bounded away from zero if inf{|φ(x)| : x ∈ B} > 0.
5 That is to say, for any x 6= y in B0 there is a φ ∈ E with φ(x) 6= φ(y).
6 That is to say, there is a countable set E0 ⊂ E such that E is contained in the smallest
uniformly closed algebra containing E0 .
7 If Z = ∅, this means E = C0(B); if in addition τ is compact, then this means E = C(B).
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M = ‖φ‖∞ + 1. For k ∈ Z ∩ [−M/ε,M/ε] let `k(t) = 2kεt− k2ε2 denote the
tangent to the function t 7→ t2 at t = kε. Since `k ∨ 0 = (2kεt− k2ε2) ∨ 0 =

2kεt− (2kεt ∧ k2ε2), we have

Φε(t)
def=
∨{

2kεt− k2ε2 : q k ∈ Z, |k| < M/ε
}

=
∨{

2kεt− (2kεt ∧ k2ε2) : k ∈ Z, |k| < M/ε
}
.

Now clearly t2−ε ≤ Φε(t) ≤ t2 on [−M,M ], and the second line above shows

that Φe ◦ φ ∈ E . We conclude that φ
2

= limε→0 Φe ◦ φ ∈ E = E .
We turn to (iii), assuming to start with that τ is compact. Let E ⊕ R

def= {φ+ r : φ ∈ E , r ∈ R}. This is an algebra and a vector lattice 8 over R
of bounded τ -continuous functions. It is uniformly closed and contains the

constants. Consider a continuous function f that is constant on Z , and let
ε > 0 be given. For any two different points s, t ∈ B, not both in Z , there is

a function ψs,t in E with ψs,t(s) 6= ψs,t(t). Set

φs,t(τ) = f(s) +

(
f(t) − f(s)

ψs,t(t) − ψs,t(s)

)
· (ψs,t(τ) − ψs,t(s)) .

If s = t or s, t ∈ Z , set φs,t(τ) = f(t). Then φs,t belongs to E ⊕ R
and takes at s and t the same values as f . Fix t ∈ B and consider the
sets U ts = [φs,t > f − ε]. They are open, and they cover B as s ranges

over B ; indeed, the point s ∈ B belongs to U ts . Since B is compact, there

is a finite subcover {U tsi
: 1 ≤ i ≤ n}. Set φ

t
=
∨n
i=1 φsi,t. This function

belongs to E ⊕ R, is everywhere bigger than f − ε , and coincides with f

at t . Next consider the open cover {[φt < f + ε] : t ∈ B}. It has a finite

subcover {[φti < f + ε] : 1 ≤ i ≤ k}, and the function φ def=
∧k
i=1 φ

ti ∈ E ⊕ R
is clearly uniformly as close as ε to f . In other words, there is a sequence

φn + rn ∈ E ⊕ R that converges uniformly to f . Now if Z is non-void and f
vanishes on Z , then rn → 0 and φn ∈ E converges uniformly to f . If Z = ∅,
then there is, for every s ∈ B, a φs ∈ E with φs(s) > 1. By compactness
there will be finitely many of the φs , say φs1 , . . . , φsn

, with φ def=
∨
i φsi

> 1.

Then 1 = φ ∧ 1∈ E and consequently E ⊕ R = E. In both cases f ∈ E = E. If

τ is not compact, we view E ⊕ R as a uniformly closed algebra of bounded
continuous functions on the one-point compactification B∆ = B ∪̇ {∆} and

an f ∈ C0(B) that vanishes on Z as a continuous bounded function on

B∆ that vanishes on Z ∪ {∆} , the common zeroes of E on B∆ , and apply
the above: if E ⊕ R 3 φn + rn → f uniformly on B∆ , then rn → 0, and

f ∈ E = E .

8 To see that E ⊕ R is closed under pointwise infima write (φ+ r) ∧ (ψ + s) =
(φ− ψ) ∧ (s− r) + ψ + r. Since without loss of generality r ≤ s, the right-hand side be-
longs to E ⊕ R.
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(d) Of (i) only the last claim remains to be proved. Now thanks to
(iii) there is a sequence of polynomials qn that vanish at zero and converge

uniformly on the compact set [−‖φ‖∞, ‖φ‖∞] to Φ. Then

Φ ◦ φ = lim qn ◦ φ ∈ E = E .

(ii) Let E0 be a subset of E that generates E in the sense that E is
contained in the smallest uniformly closed algebra containing E0 . Set

Π =
∏

ψ∈E0

[
−‖ψ‖u,+‖ψ‖u

]
.

This product of compact intervals is a compact Hausdorff space in the product
topology (exercise A.2.13), metrizable if E0 is countable. Its typical element

is an “E0-tuple” (ξψ)ψ∈E0 with ξψ ∈ [−‖ψ‖
u
,+‖ψ‖

u
] . There is a natural

map j : B → Π given by x 7→ (ψ(x))ψ∈E0 . Let B denote the closure of

j(B) in Π, the E-completion of B (see lemma A.2.16). The finite linear
combinations of finite products of coordinate functions φ̂ : (ξψ)ψ∈E0 7→ ξφ ,

φ ∈ E0 , form an algebra A ⊂ C(B) that separates the points. Now set
Z def= {ẑ ∈ B : φ̂(ẑ) = 0 ∀ φ ∈ A}. This set is either empty or contains one

point, (0, 0, . . .), and j maps B0
def= B \Z into B̂ def= B \Z . View A as a

subalgebra of C0(B̂) that separates the points of B . The linear multiplicative

map φ̂ 7→ φ̂ ◦ j evidently takes A to the smallest algebra containing E0 and
preserves the uniform norm. It extends therefore to a linear isometry of A
– which by (iii) coincides with C0(B̂) – with E ; it is evidently linear and

multiplicative and preserves the order. Finally, if φ ∈ E separates the points
x, y ∈ B , then the function φ̂ ∈ A that has φ = φ̂ ◦ j separates j(x), j(y),

so when E separates the points then j is injective.

Exercise A.2.3 Let A be any subset of B . (i) A function f can be approximated
uniformly on A by functions in E if and only if it is the restriction to A of a function
in E . (ii) If f1, f2 : B → R can be approximated uniformly on A by functions in
E (in the arctan metric ρ ; see item A.1.2), then ρ(f1, f2) is the restriction to A of
a function in E .

All spaces of elementary integrands that we meet in this book are self-confined

in the following sense.

Definition A.2.4 A subset S ⊂ B is called E-confined if there is a function
φ ∈ E that is greater than 1 on S : φ ≥ 1S . A function f : B → R is

E-confined if its carrier 9 [f 6= 0] is E-confined; the collection of E-confined
functions in E is denoted by E00 . A sequence of functions fn on B is

E-confined if the fn all vanish outside the same E-confined set; and E is self-
confined if all of its members are E-confined, i.e., if E = E00 . A function f

is the E-confined uniform limit of the sequence (fn) if (fn) is E-confined

9 The carrier of a function φ is the set [φ 6= 0].
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and converges uniformly to f . The typical examples of self-confined lattice
algebras are the step functions over a ring of sets and the space C00(B) of

continuous functions with compact support on B . The product E1 ⊗ E2 of
two self-confined algebras or vector lattices closed under chopping is clearly

self-confined.

A.2.5 The notion of a confined uniform limit is a topological notion: for every

E-confined set A let FA denote the algebra of bounded functions confined
by A . Its natural topology is the topology of uniform convergence. The

natural topology on the vector space FE of bounded E-confined functions,

union of the FA , the topology of E-confined uniform convergence is
the finest topology on bounded E-confined functions that agrees on every FA
with the topology of uniform convergence. It makes the bounded E-confined
functions, the union of the FA , into a topological vector space. Now let I be a

linear map from FE to a topological vector space and show that the following
are equivalent: (i) I is continuous in this topology; (ii) the restriction of I
to any of the FA is continuous; (iii) I maps order-bounded subsets of FE to
bounded subsets of the target space.

Exercise A.2.6 Show: if E is a self-confined algebra or vector lattice closed under
chopping, then a uniform limit φ ∈ E is E-confined if and only if it is the uniform
limit of a E-confined sequence in E ; we then say “φ is the confined uniform
limit” of a sequence in E . Therefore the “confined uniform closure E00 of E ” is a
self-confined algebra and a vector lattice closed under chopping.

The next two corollaries to Weierstraß’ theorem employ the local E-compacti-

fication j : B0 → B̂ to establish results that are crucial for the integration
theory of integrators and random measures (see proposition 3.3.2 and lem-

ma 3.10.2). In order to ease their statements and the arguments to prove
them we introduce the following notation: for every X ∈ E the unique con-

tinuous function X̂ on B̂ that has X̂ ◦ j = X will be called the Gelfand
transform of X ; next, given any functional I on E we define Î on Ê by

Î(X̂) = I(X̂ ◦ j) and call it the Gelfand transform of I .
For simplicity’s sake we assume in the remainder of this subsection that

E is a self-confined algebra and a vector lattice closed under chopping, of
bounded functions on some set B .

Corollary A.2.7 Let (L, τ) be a topological vector space and τ0 ⊂ τ a

weaker Hausdorff topology on L . If I : E → L is a linear map whose
Gelfand transform Î has an extension satisfying the Dominated Convergence

Theorem, and if I is σ-continuous in the topology τ0 , then it is in fact
σ-additive in the topology τ .

Proof. Let E 3 Xn ↓ 0. Then the sequence (X̂n) of Gelfand transforms
decreases on B̂ and has a pointwise infimum K̂ : B̂ → R . By the DCT,

the sequence
(
Î(X̂n)

)
has a τ -limit f in L , the value of the extension at

K̂ . Clearly f = τ− lim Î(X̂n) = τ− limI(Xn) = τ0− limI(Xn) = 0. Since



A.2 Topological Miscellanea 371

τ0 is Hausdorff, f = 0. The σ-continuity of I is established, and exer-
cise 3.1.5 on page 90 produces the σ-additivity. This argument repeats that

of proposition 3.3.2 on page 108.

Corollary A.2.8 Let H be a locally compact space equipped with the algebra
H def= C00(H) of continuous functions of compact support. The cartesian

product B̌ def= H × B is equipped with the algebra Ě def= H⊗ E of functions

(η,$) 7→
∑

i

Hi(η)Xi($) , Hi ∈ H, Xi ∈ E , the sum finite.

Suppose θ is a real-valued linear functional on Ě that maps order-bounded
sets of Ě to bounded sets of reals and that is marginally σ-additive on

E ; that is to say, the measure X 7→ θ(H⊗X) on E is σ-additive for every

H ∈ H . Then θ is in fact σ-additive. 10

Proof. First observe easily that E 3 Xn ↓ 0 implies θ(Ȟ ·Xn) → 0 for every
Ȟ ∈ Ě . Another way of saying this is that for every Ȟ ∈ Ě the measure

X 7→ θȞ(X) def= θ(Ȟ ·X) on E is σ-additive.
From this let us deduce that the variation θ has the same property. To

this end let  : B0 → B̂ denote the local E-compactification of B ; the local
H-compactification of H clearly is the identity map id : H → H . The

spectrum of Ě is ̂̌B = H × B̂ with local Ě-compactification ̌ def= id ⊗  .
The Gelfand transform θ̂ is a σ-additive measure on ̂̌E of finite variation

θ̂ = θ̂ ; in fact, θ̂ is a positive Radon measure on ̂̌B . There exists a

locally θ̂ -integrable function ̂̌Γ with ̂̌Γ 2
= 1 and θ̂ = ̂̌Γ · θ̂ on ̂̌B , to

wit, the Radon–Nikodym derivative dθ̂
/
d θ̂ . With these notations in place

pick an H ∈ H+ with compact carrier K and let (Xn) be a sequence in E
that decreases pointwise to 0. There is no loss of generality in assuming that

both X1 < 1 and H < 1. Given an ε > 0, let Ê be the closure in B̂ of
([X1 > 0]) and find an ̂̌X ∈ ̂̌E with

∫

K×E

∣∣ ̂̌Γ − ̂̌X
∣∣ d θ̂ < ε .

Then θ̂ (H ⊗ X̂n) =

∫

K×bE
H(η)X̂n($̂) ̂̌Γ (η, $̂) θ̂(dη, d$̂)

≤
∫

K×bE
H(η)X̂n($̂)̂̌X (η, $̂) θ̂(dη, d$̂) + ε

=

∫

H×bB
H(η)X̂n($̂)̂̌X (η, $̂) θ̂(dη, d$̂) + ε

= θHX̌(Xn) + ε

10 Actually, it suffices to assume that H is Suslin, that the vector lattice H ⊂ B∗(H)
generates B∗(H), and that θ is also marginally σ-additive on H – see [93].
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has limit less than ε by the very first observation above. Therefore

θ (H⊗Xn) = θ̂ (H ⊗ X̂n) ↓ 0 .

Now let Ě 3 X̌n ↓ 0. There are a compact set K ⊂ H so that X̌1(η,$) =
0 whenever η 6∈ K , and an H ∈ H equal to 1 on K . The functions

Xn : $ 7→ maxη∈H X̌(η,$) belong to E , thanks to the compactness of
K , and decrease pointwise to zero on B as n→ ∞ . Since X̌n ≤ H⊗Xn ,

θ (X̌n) ≤ θ (H⊗Xn) −−−→n→∞ 0 : θ and with it θ is indeed σ-additive.

Exercise A.2.9 Let θ : E → R be a linear functional of finite variation. Then its
Gelfand transform bθ : bE → R is σ-additive due to Dini’s theorem A.2.1 and has the
usual integral extension featuring the Dominated Convergence Theorem (see pages

395–398). Show: θ is σ-additive if and only if
R bk dbθ = 0 for every function bk on

the spectrum bB that is the pointwise infimum of a sequence in bE and vanishes on
j(B).

Exercise A.2.10 Consider a linear map I on E with values in a space Lp(µ),
1 ≤ p < ∞ , that maps order intervals of E to bounded subsets of Lp . Show: if I
is weakly σ-additive, then it is σ-additive in in the norm topology Lp .

Weierstraß’ original proof of his approximation theorem applies to functions

on Rd and employs the heat kernel γtI (exercise A.3.48 on page 420). It
yields in its less general setting an approximation in a finer topology than

the uniform one. We give a sketch of the result and its proof, since it is
used in Itô’s theorem, for instance. Consider an open subset D of Rd . For

0 ≤ k ∈ N denote by Ck(D) the algebra of real-valued functions on D that

have continuous partial derivatives of orders 1, . . . , k . The natural topology
of Ck(D) is the topology of uniform convergence on compact subsets of D ,

of functions and all of their partials up to and including order k . In order
to describe this topology with seminorms let Dk denote the collection of

all partial derivative operators of order not exceeding k ; Dk contains by
convention in particular the zeroeth-order partial derivative Φ 7→ Φ. Then

set, for any compact subset K ⊂ D and Φ ∈ Ck(D),

‖Φ‖k,K def= sup
x∈K

sup
∂∈Dk

|∂Φ(x)| .

These seminorms, one for every compact K ⊂ D , actually make for a metriz-
able topology: there is a sequence Kn of compact sets with Kn ⊂ K̊n+1

whose interiors K̊n exhaust D ; and

ρ(Φ,Ψ) def=
∑

n

2−n
(
1 ∧ ‖Φ − Ψ‖n,Kn

)

is a metric defining the natural topology of Ck(D), which is clearly much

finer than the topology of uniform convergence on compacta.

Proposition A.2.11 The polynomials are dense in Ck(D) in this topology.
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Here is a terse sketch of the proof. Let K be a compact subset of D . There
exists a compact K ′ ⊂ D whose interior K̊ ′ contains K . Given Φ ∈ Ck(D),

denote by Φσ the convolution of the heat kernel γtI with the product11

K̊ ′·Φ. Since Φ and its partials are bounded on K̊ ′ , the integral defining the

convolution exists and defines a real-analytic function Φt . Some easy but
space-consuming estimates show that all partials of Φt converge uniformly

on K to the corresponding partials of Φ as t ↓ 0: the real-analytic functions
are dense in Ck(D). Then of course so are the polynomials.

Topologies, Filters, Uniformities

A topology on a space S is a collection t of subsets that contains the
whole space S and the empty set ∅ and that is closed under taking finite

intersections and arbitrary unions. The sets of t are called the open sets or
t-open sets. Their complements are the closed sets. Every subset A ⊆ S

contains a largest open set, denoted by Å and called the t-interior of A ;
and every A ⊆ S is contained in a smallest closed set, denoted by Ā and

called the t-closure of. A subset A ⊂ S is given the induced topology
tA

def= {A ∩ U : U ∈ t} . For details see [55] and [34]. A filter on S is

a collection F of non-void subsets of S that is closed under taking finite

intersections and arbitrary supersets. The tail filter of a sequence (xn) is
the collection of all sets that contain a whole tail {xn : n ≥ N} of the

sequence. The neighborhood filter V(x) of a point x ∈ S for the topology
t is the filter of all subsets that contain a t-open set containing x . The filter

F converges to x if F refines V(x), that is to say if F ⊃ V(x). Clearly a
sequence converges if and only if its tail filter does. By Zorn’s lemma, every

filter is contained in (refined by) an ultrafilter, that is to say, in a filter that
has no proper refinement.

Let (S, tS) and (T, tT ) be topological spaces. A map f : S → T is
continuous if the inverse image of every set in tT belongs to tS . This is the

case if and only if V(x) refines f−1(V(f(x)) at all x ∈ S .

The topology t is Hausdorff if any two distinct points x, x′ ∈ S have
non-intersecting neighborhoods V, V ′ , respectively. It is completely regular

if given x ∈ E and C ⊂ E closed one can find a continuous function that is
zero on C and non-zero at x .

If the closure Ū is the whole ambient set S , then U is called t-dense.
The topology t is separable if S contains a countable t-dense set.

Exercise A.2.12 A filter U on S is an ultrafilter if and only if for every A ⊆ S
either A or its complement Ac belongs to U . The following are equivalent: (i) every
cover of S by open sets has a finite subcover; (ii) every collection of closed subsets
with void intersection contains a finite subcollection whose intersection is void;
(iii) every ultrafilter in S converges. In this case the topology is called compact.

11 K̊′ denotes both the set K̊′ and its indicator function – see convention A.1.5 on page 364.
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Exercise A.2.13 (Tychonoff’s Theorem) Let Eα, tα , α ∈ A , be topological
spaces. The product topology t on E =

Q
Eα is the coarsest topology with respect

to which all of the projections onto the factors Eα are continuous. The projection
of an ultrafilter on E onto any of the factors is an ultrafilter there. Use this to
prove Tychonoff’s theorem: if the tα are all compact, then so is t .

Exercise A.2.14 If f : S → T is continuous and A ⊂ S is compact (in the
induced topology, of course), then the forward image f(A) is compact.

A topological space (S, t) is locally compact if every point has a basis of

compact neighborhoods, that is to say, if every neighborhood of every point

contains a compact neighborhood of that point. The one-point compacti-
fication S∆ of (S, t) is obtained by adjoining one point, often denoted by

∆ and called the point at infinity or the grave, and declaring its neighbor-
hood system to consist of the complements of the compact subsets of S . If S

is already compact, then ∆ is evidently an isolated point of S∆ = S ∪̇ {∆} .

A pseudometric on a set E is a function d : E × E → R+ that has

d(x, x) = 0; is symmetric: d(x, y) = d(y, x); and obeys the triangle in-

equality: d(x, z) ≤ d(x, y) + d(y, z). If d(x, y) = 0 implies that x = y , then
d is a metric. Let u be a collection of pseudometrics on E . Another pseu-

dometric d′ is uniformly continuous with respect to u if for every ε > 0
there are d1, . . . , dk ∈ u and δ > 0 such that

d1(x, y) < δ, . . . , dk(x, y) < δ =⇒ d′(x, y) < ε , ∀ x, y ∈ E .

The saturation of u consists of all pseudometrics that are uniformly con-
tinuous with respect to u . It contains in particular the pointwise sum and

maximum of any two pseudometrics in u , and any positive scalar multiple
of any pseudometric in u . A uniformity on E is simply a collection u of

pseudometrics that is saturated; a basis of u is any subcollection u0 ⊂ u

whose saturation equals u . The topology of u is the topology tu generated
by the open “pseudoballs” Bd,ε(x0)

def= {x ∈ E : d(x, x0) < ε} , d ∈ u , ε > 0.

A map f : E → E′ between uniform spaces (E, u) and (E ′, u′) is uni-
formly continuous if the pseudometric (x, y) 7→ d′

(
f(x), f(y)

)
belongs to

u , for every d′ ∈ u′ . The composition of two uniformly continuous functions
is obviously uniformly continuous again. The restrictions of the pseudomet-

rics in u to a fixed subset A of S clearly generate a uniformity on A , the

induced uniformity. A function on S is uniformly continuous on A if
its restriction to A is uniformly continuous in this induced uniformity.

The filter F on E is Cauchy if it contains arbitrarily small sets; that is
to say, for every pseudometric d ∈ u and every ε > 0 there is an F ∈ F

with d-diam(F ) def= sup{d(x, y) : x, y ∈ F} < ε . The uniform space (E, u)
is complete if every Cauchy filter F converges. Every uniform space (E, u)

has a Hausdorff completion. This is a complete uniform space (E, u)
whose topology tu is Hausdorff, together with a uniformly continuous map

j : E → E such that the following holds: whenever f : E → Y is a uniformly
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continuous map into a Hausdorff complete uniform space Y , then there exists
a unique uniformly continuous map f : E → Y such that f = f ◦ j . If a

topology t can be generated by some uniformity u , then it is uniformizable;
if u has a basis consisting of a singleton d , then t is pseudometrizable and

metrizable if d is a metric; if u and d can be chosen complete, then t is
completely (pseudo)metrizable.

Exercise A.2.15 A Cauchy filter F that has a convergent refinement converges.
Therefore, if the topology of the uniformity u is compact, then u is complete.

A compact topology is generated by a unique uniformity: it is uniformizable
in a unique way; if its topology has a countable basis, then it is completely pseu-
dometrizable and completely metrizable if and only if it is also Hausdorff. A contin-
uous function on a compact space and with values in a uniform space is uniformly
continuous.

In this book two types of uniformity play a role. First there is the case that

u has a basis consisting of a single element d , usually a metric. The second
instance is this: suppose E is a collection of real-valued functions on E . The

E-uniformity on E is the saturation of the collection of pseudometrics dφ
defined by

dφ(x, y) =
∣∣φ(x) − φ(y)

∣∣ , φ ∈ E , x, y ∈ E .

It is also called the uniformity generated by E and is denoted by u[E ] . We

leave to the reader the following facts:

Lemma A.2.16 Assume that E consists of bounded functions on some set E .

(i) The uniformities generated by E and the smallest uniformly closed
algebra containing E and the constants coincide.

(ii) If E contains a countable uniformly dense set, then u[E ] is pseu-

dometrizable: it has a basis consisting of a single pseudometric d . If in addi-
tion E separates the points of E , then d is a metric and tu[E] is Hausdorff.

(iii) The Hausdorff completion of (E, u[E ]) is the space E of the proof

of theorem A.2.2 equipped with the uniformity generated by its continuous
functions: if E contains the constants, it equals Ê ; otherwise it is the one-

point compactification of Ê . In any case, it is compact.

(iv) Let A ⊂ E and let f : A → E ′ be a uniformly continuous 12 map
to a complete uniform space (E ′, u′) . Then f(A) is relatively compact in

(E′, tu′) . Suppose E is an algebra or a vector lattice closed under chopping;
then a real-valued function on A is uniformly continuous 12 if and only if it

can be approximated uniformly on A by functions in E ⊕R , and an R-valued
function is uniformly continuous if and only if it is the uniform limit (under

the arctan metric ρ !) of functions in E ⊕ R .

12 The uniformity of A is of course the one induced from u[E]: it has the basis of
pseudometrics (x, y) 7→ dφ(x, y) = |φ(x) − φ(y)|, dφ ∈ u[E], x, y ∈ A, and is therefore
the uniformity generated by the restrictions of the φ ∈ E to A. The uniformity on R is of
course given by the usual metric ρ(r, s) def= |r − s|, the uniformity of the extended reals by
the arctan metric ρ(r, s) – see item A.1.2.
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Exercise A.2.17 A subset of a uniform space is called precompact if its image in
the completion is relatively compact. A precompact subset of a complete uniform
space is relatively compact.

Exercise A.2.18 Let (D, d) be a metric space. The distance of a point x ∈ D
from a set F ⊂ D is d(x,F ) def= inf{d(x, x′) : x′ ∈ F} . The ε-neighborhood of F
is the set of all points whose distance from F is strictly less than ε ; it evidently
equals the union of all ε-balls with centers in F . A subset K ⊂ D is called totally
bounded if for every ε > 0 there is a finite set Fε ⊂ D whose ε-neighborhood
contains K . Show that a subset K ⊆ D is precompact if and only if it is totally
bounded.

Semicontinuity

Let E be a topological space. The collection of bounded continuous real-
valued functions on E is denoted by Cb(E). It is a lattice algebra containing

the constants. A real-valued function f on E is lower semicontinuous
at x ∈ E if lim infy→x f(y) ≥ f(x); it is called upper semicontinuous at

x ∈ E if lim supy→x f(y) ≤ f(x). f is simply lower (upper) semicontinuous

if it is lower (upper) semicontinuous at every point of E . For example, an
open set is a lower semicontinuous function, and a closed set is an upper

semicontinuous function.13

Lemma A.2.19 Assume that the topological space E is completely regular.

(a) For a bounded function f the following are equivalent:

(i) f is lower (upper) semicontinuous;

(ii) f is the pointwise supremum of the continuous functions φ ≤ f

(f is the pointwise infimum of the continuous functions φ ≥ f );
(iii) −f is upper (lower) semicontinuous;

(iv) for every r ∈ R the set [f > r] (the set [f < r]) is open.

(b) Let A be a vector lattice of bounded continuous functions that contains

the constants and generates the topology. 14 Then:

(i) If U ⊂ E is open and K ⊂ U compact, then there is a function φ ∈ A
with values in [0, 1] that equals 1 on K and vanishes outside U .

(ii) Every bounded lower semicontinuous function h is the pointwise
supremum of an increasingly directed subfamily Ah of A .

Proof. We leave (a) to the reader. (b) The sets of the form [φ > r] , φ ∈ A ,

r > 0, clearly form a subbasis of the topology generated by A . Since [φ > r]
= [(φ/r − 1) ∨ 0 > 0], so do the sets of the form [φ > 0], 0 ≤ φ ∈ A . A finite

intersection of such sets is again of this form:
⋂
i[φi > 0] equals [

∨
i φi > 0].

13 S denotes both the set S and its indicator function – see convention A.1.5 on page 364.
14 The topology generated by a collection Γ of functions is the coarsest topology with
respect to which every γ ∈ Γ is continuous. A net (xα) converges to x in this topology
if and only if γ(xα) → γ(x) for all γ ∈ Γ. Γ is said to define the given topology τ if the
topology it generates coincides with τ ; if τ is metrizable, this is the same as saying that a
sequence xn converges to x if and only if γ(xn) → γ(x) for all γ ∈ Γ.
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The sets of the form [φ > 0], φ ∈ A+ , thus form a basis of the topology
generated by A .

(i) Since K is compact, there is a finite collection {φi} ⊂ A+ such that

K ⊂ ⋃
i[φi > 0] ⊂ U . Then ψ def=

∨
φi vanishes outside U and is strictly

positive on K . Let r > 0 be its minimum on K . The function φ def= (ψ/r)∧1

of A+ meets the description of (i).

(ii) We start with the case that the lower semicontinuous function h is
positive. For every q > 0 and x ∈ [h > q] let φqx ∈ A be as provided by (i):

φqx(x) = 1, and φqx(x
′) = 0 where h(x′) ≤ q . Clearly q · φqx < h . The finite

suprema of the functions q · φqx ∈ A form an increasingly directed collection

Ah ⊂ A whose pointwise supremum evidently is h . If h is not positive, we
apply the foregoing to h+ ‖h‖∞ .

Separable Metric Spaces

Recall that a topological space E is metrizable if there exists a metric d

that defines the topology in the sense that the neighborhood filter V(x) of

every point x ∈ E has a basis of d-balls Br(x)
def= {x′ : d(x, x′) < r} – then

there are in general many metrics doing this. The next two results facilitate

the measure theory on separable and metrizable spaces.

Lemma A.2.20 Assume that E is separable and metrizable.

(i) There exists a countably generated 6 uniformly closed lattice algebra
U [E] of bounded uniformly continuous functions that contains the constants,

generates the topology, 14 and has in addition the property that every bounded
lower semicontinuous function is the pointwise supremum of an increasing

sequence in U [E] , and every bounded upper semicontinuous function is the

pointwise infimum of a decreasing sequence in U [E] .
(ii) Any increasingly (decreasingly) directed 2 subset Φ of Cb(E) contains

a sequence that has the same pointwise supremum (infimum) as Φ .

Proof. (i) Let d be a metric for E and D = {x1, x2, . . .} a countable

dense subset. The collection Γ of bounded uniformly continuous functions
γk,n : x 7→ kd(x, xn) ∧ 1, x ∈ E , k, n ∈ N , is countable and generates the

topology; indeed the open balls [γk,n < 1/2] evidently form a basis of the
topology. Let A denote the collection of finite Q-linear combinations of 1

and finite products of functions in Γ. This is a countable algebra over Q
containing the scalars whose uniform closure U [E] is both an algebra and a
vector lattice (theorem A.2.2).

Let h be a lower semicontinuous function. Lemma A.2.19 provides an

increasingly directed family Uh ⊂ U [E] whose pointwise supremum is h ;
that it can be chosen countable follows from (ii).

(ii) Assume Φ is increasingly directed and has bounded pointwise supre-
mum h . For every φ ∈ Φ, x ∈ E , and n ∈ N let ψφ,x,n be an element of

A with ψφ,x,n ≤ φ and ψφ,x,n(x) > φ(x) − 1/n . The collection Ah of these



378 App. A Complements to Topology and Measure Theory

ψφ,x,n is at most countable: Ah = {ψ1, ψ2, . . .} , and its pointwise supremum
is h . For every n select a φ′n ∈ Φ with ψn ≤ φ′n . Then set φ1 = φ′1 , and

when φ1, . . . , φn ∈ Φ have been defined let φn+1 be an element of Φ that
exceeds φ1, . . . , φn, φ

′
n+1 . Clearly φn ↑ h .

Lemma A.2.21 (a) Let X ,Y be metric spaces, Y compact, and suppose that
K ⊂ X × Y is σ-compact and non-void. Then there is a Borel cross section;

that is to say, there is a Borel map γ : X → Y “whose graph lies in K when
it can:” when x ∈ πX (K) then

(
x, γ(x)

)
∈ K – see figure A.15.

(b) Let X ,Y be separable metric spaces, X locally compact and Y compact,
and suppose G : X × Y → R is a continuous function. There exists a Borel

function γ : X → Y such that for all x ∈ X

sup
{
G(x, y) : y ∈ Y

}
= G

(
x, γ(x)

)
.

�

�

�

�

�

�

�

Figure A.15 The Cross Section Lemma

Proof. (a) To start with, consider the case that Y is the unit interval I
and that K is compact. Then γK(x) def= inf{t : (x, t) ∈ K} ∧ 1 defines

an upper semicontinuous function from X to I with
(
x, γ(x)

)
∈ K when

x ∈ πX (K). If K is σ-compact, then there is an increasing sequence
(
Kn

)
of

compacta with union K . The cross sections γKn give rise to the decreasing

and ultimately constant sequence (γn) defined inductively by γ1
def= γK1 ,

γn+1
def=

{
γn on [γn < 1],

γKn+1 on [γn = 1].

Clearly γ def= inf γn is Borel, and
(
x, γ(x)

)
∈ K when x ∈ πX (K). If Y is not

the unit interval, then we use the universality A.2.22 of the Cantor set C ⊂ I :

it provides a continuous surjection φ : C → Y . Then K ′ def= (φ× idX )−1(K)
is a σ-compact subset of I×X , there is a Borel function γK

′
: X → C whose

restriction to πX (K ′) = πX (K) has its graph in K ′ , and γ def= φ ◦ γK′
is the

desired Borel cross section.

(b) Set σ(x) def= sup
{
{G(x, y) : y ∈ Y

}
. Because of the compactness of

Y , σ is a continuous function on X and K def= {(x, y) : G(x, y) = σ(x)} is a

σ-compact subset of X × Y with X -projection X . Part (a) furnishes γ .
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Exercise A.2.22 (Universality of the Cantor Set) For every compact metric
space Y there exists a continuous map from the Cantor set onto Y .

Exercise A.2.23 Let F be a Hausdorff space and E a subset whose induced
topology can be defined by a complete metric ρ . Then E is a Gδ-set; that is to say,
there is a sequence of open subsets of F whose intersection is E .

Exercise A.2.24 Let (P, d) be a separable complete metric space. There exists a

compact metric space bP and a homeomorphism j of P onto a subset of bP . j can

be chosen so that j(P ) is a dense Gδ-set and a Kσδ-set of bP .

Topological Vector Spaces

A real vector space V together with a topology on it is a topological vector
space if the linear and topological structures are compatible in this sense:

the maps (f, g) 7→ f + g from V × V to V and (r, f) 7→ r · f from R × V to
V are continuous.

A subset B of the topological vector space V is bounded if it is absorbed

by any neighborhood V of zero; this means that there exists a scalar λ so
that B ⊂ λV def= {λv : v ∈ V } .

The main examples of topological vector spaces concerning us in this book

are the spaces Lp and Lp for 0 ≤ p ≤ ∞ and the spaces C0(E) and C(E)
of continuous functions. We recall now a few common notions that should

help the reader navigate their topologies.

A set V ⊂ V is convex if for any two scalars λ1, λ2 with absolute value less
than 1 and sum 1 and for any two points v1, v2 ∈ V we have λ1v1+λ2v2 ∈ V .

A topological vector space V is locally convex if the neighborhood filter at
zero (and then at any point) has a basis of convex sets. The examples above

all have this feature, except the spaces Lp and Lp when 0 ≤ p < 1.

One of the most useful facts about topological vector spaces is doubtlessly
the

Theorem A.2.25 (Hahn–Banach) Let C,K be two disjoint convex sets in

a topological vector space V , C closed and K compact. There exists a
continuous linear functional x∗ : V → R so that x∗(k) < 1 for all k ∈ K

and x∗(x) ≥ 1 for all x ∈ C . In other words, C lies on one side of the
hyperplane [x∗ = 1] and K strictly on the other. Therefore a closed convex

subset of V is weakly closed (see item A.2.32).

A.2.26 Gauges It is easy to see that a topological vector space admits a
collection Γ of gauges dd ee : V → R+ that define the topology in the sense

that fn → f if and only if ddf − fn ee → 0 for all dd ee ∈ Γ. This is the same
as saying that the “balls”

Bε(0) def= {f : ddf ee < ε} , dd ee ∈ Γ , ε > 0 ,

form a basis of the neighborhood system at 0 and implies that ddrf ee −−→r→0 0

for all f ∈ V and all dd ee ∈ Γ. There are always many such gauges. Namely,
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let {Vn} be a decreasing sequence of neighborhoods of 0 with V0 = V . Then

ddf ee def=
(
inf{n : f ∈ Vn}

)−1

will be a gauge. If the vn form basis of neighborhoods at zero, then Γ can

be taken to be the singleton {dd ee} above. With a little more effort it can be
shown that there are continuous gauges defining the topology that are sub-

additive: ddf + gee ≤ ddf ee + ddgee . For such a gauge, dist(f, g) def= ddf − gee
defines a translation-invariant pseudometric, a metric if and only if V is
Hausdorff. From now on the word gauge will mean a continuous subadditive

gauge.

A locally convex topological vector space whose topology can be defined

by a complete metric is a Fréchet space. Here are two examples that recur
throughout the text:

Examples A.2.27 (i) Suppose E is a locally compact separable metric space

and F is a Fréchet space with translation-invariant metric ρ (visualize R).
Let CF (E) denote the vector space of all continuous functions from E to F .

The topology of uniform convergence on compacta on CF (E) is given
by the following collection of gauges, one for every compact set K ⊂ E ,

ddφeeK def= sup
{
ρ
(
φ(x)

)
: x ∈ K} , φ : E → F . (A.2.1)

It is Fréchet. Indeed, a cover by compacta Kn with Kn ⊂ K̊n+1 gives rise to

the gauge φ 7→∑
nddφeeKn

∧ 2−n , (A.2.2)

which in turn gives rise to a complete metric for the topology of CF (E). If
F is separable, then so is CF (E).

(ii) Suppose that E = R+ , but consider the space DF , the path space,

of functions φ : R+ → F that are right-continuous and have a left limit
at every instant t ∈ R+ . Inasmuch as such a càdlàg path is bounded on

every bounded interval, the supremum in (A.2.1) is finite, and (A.2.2) again
describes the Fréchet topology of uniform convergence on compacta. But now

this topology is not separable in general, even when F is as simple as R . The
indicator functions φt

def= 1[0,t) , 0 < t < 1, have ddφs − φt ee[0,1] = 1, yet they

are uncountable in number.

With every convex neighborhood V of zero there comes the Minkowski
functional ‖f ‖ def= inf{|r| : rf ∈ V } . This continuous gauge is both sub-

additive and absolute-homogeneous: ‖r · f ‖ = |r| · ‖f ‖ for f ∈ V and
r ∈ R . An absolute-homogeneous subadditive gauge is a seminorm. If V is

locally convex, then their collection defines the topology. Prime examples of
spaces whose topology is defined by a single seminorm are the spaces Lp and

Lp for 1 ≤ p ≤ ∞ , and C0(E).
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Exercise A.2.28 Suppose that V has a countable basis at 0. Then B ⊂ V is
bounded if and only if for one, and then every, continuous gauge dd ee on V that
defines the topology

sup{ddλ · f ee : f ∈ B} −−−→λ→0 0 .

Exercise A.2.29 Let V be a topological vector space with a countable base at 0,
and dd ee and dd ee′ two gauges on V that define the topology – they need not be
subadditive nor continuous except at 0. There exists an increasing right-continuous
function Φ : R+ → R+ with Φ(r) −−→r→0 0 such that ddf ee′ ≤ Φ(ddf ee) for all f ∈ V .

A.2.30 Quasinormed Spaces In some contexts it is more convenient to use the

homogeneity of the ‖ ‖
Lp on Lp rather than the subadditivity of the dd ee

Lp .
In order to treat Banach spaces and spaces Lp simultaneously one uses the

notion of a quasinorm on a vector space E . This is a function ‖ ‖ : E → R+

such that

‖x‖ = 0 ⇐⇒ x = 0 and ‖r·x‖ = |r| · ‖x‖ ∀ r ∈ R, x ∈ E .

A topological vector space is quasinormed if it is equipped with a quasi-

norm ‖ ‖ that defines the topology, i.e., such that xn −−−→n→∞ x if and only
if ‖xn − x‖ −−−→n→∞ 0. If (E, ‖ ‖

E
) and (F, ‖ ‖

F
) are quasinormed topological

vector spaces and u : E → F is a continuous linear map between them, then
the size of u is naturally measured by the number

‖u‖ = ‖u‖L(E,F )
def= sup

{
‖u(x)‖F : x ∈ E, ‖x‖E ≤ 1

}
.

A subadditive quasinorm clearly is a seminorm; so is an absolute-homogeneous

gauge.

Exercise A.2.31 Let V be a vector space equipped with a seminorm ‖ ‖ . The
set N def= {x ∈ V : ‖x‖ = 0} is a vector subspace and coincides with the closure of

{0} . On the quotient V̇ def= V/N set ‖ ẋ‖ def= ‖x‖ . This does not depend on the

representative x in the equivalence class ẋ ∈ V̇ and makes (V̇, ‖ ‖) a normed

space. The transition from (V, ‖ ‖) to (V̇, ‖ ‖) is such a standard operation that

it is sometimes not mentioned, that V and V̇ are identified, and that reference is
made to “the norm” ‖ ‖ on V .

A.2.32 Weak Topologies Let V be a vector space and M a collection of linear

functionals µ : V → R . This gives rise to two topologies. One is the topology
σ(V,M) on V , the coarsest topology with respect to which every functional

µ ∈ M is continuous; it makes V into a locally convex topological vector
space. The other is σ(M,V), the topology on M of pointwise convergence

on V . For an example assume that V is already a topological vector space
under some topology τ and M consists of all τ -continuous linear functionals

on V , a vector space usually called the dual of V and denoted by V∗ .
Then σ(V,V∗) is called by analysts the weak topology on V and σ(V∗,V)

the weak∗ topology on V∗ . When V = C0(E) and M = P∗ ⊂ C0(E)∗

probabilists like to call the latter the topology of weak convergence – as

though life weren’t confusing enough already!
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Exercise A.2.33 If V is given the topology σ(V,M), then the dual of V coincides
with the vector space generated by M .

The Minimax Theorem, Lemmas of Gronwall and Kolmogoroff

Lemma A.2.34 (Ky–Fan) Let K be a compact convex subset of a topological
vector space and H a family of upper semicontinuous concave numerical

functions on K . Assume that the functions of H do not take the value +∞
and that any convex combination of any two functions in H majorizes another

function of H . If every function h ∈ H is nonnegative at some point kh ∈ K ,
then there is a common point k ∈ K at which all of the functions h ∈ H take

a nonnegative value.

Proof. We argue by contradiction and assume that the conclusion fails. Then
the convex compact sets [h ≥ 0], h ∈ H , have void intersection, and there

will be finitely many h ∈ H , say h1, . . . , hN , with

N⋂

n=1

[hn ≥ 0] = ∅ . (A.2.3)

Let the collection {h1, . . . , hN} be chosen so that N is minimal. Since

[h ≥ 0] 6= ∅ for every h ∈ H , we must have N ≥ 2. The compact convex
set

K ′ def=

N⋂

n=3

[hn ≥ 0] ⊂ K

is contained in [h1 < 0] ∪ [h2 < 0] (if N = 2 it equals K ). Both h1 and h2

take nonnegative values on K ′ ; indeed, if h1 did not, then h2 could be struck
from the collection, and vice versa, in contradiction to the minimality of N .

Let us see how to proceed in a very simple situation: suppose K is the
unit interval I = [0, 1] and H consists of affine functions. Then K ′ is a

closed subinterval I ′ of I , and h1 and h2 take their positive maxima at one
of the endpoints of it, evidently not in the same one. In particular, I ′ is

not degenerate. Since the open sets [h1 < 0] and [h2 < 0] together cover
the interval I ′ , but neither does by itself, there is a point ξ ∈ I ′ at which

both h1 and h2 are strictly negative; ξ evidently lies in the interior of I ′ .
Let η = max

{
h1(ξ), h2(ξ)

}
. Any convex combination h′ = r1h1 + r2h2 of

h1, h2 will at ξ have a value less than η < 0. It is clearly possible to choose
r1, r2 ≥ 0 with sum 1 so that h′ has at the left endpoint of I ′ a value in

(−η/2, 0). The affine function h′ is then evidently strictly less than zero on
all of I ′ . There exists by assumption a function h ∈ H with h ≤ h′ ; it can

replace the pair {h1, h2} in equation (A.2.3), which is in contradiction to the
minimality of N . The desired result is established in the simple case that K

is the unit interval and H consists of affine functions.
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The general case follows readily from this. First note that the set
[hi > −∞] is convex, as the increasing union of the convex sets

⋃
k∈N[hi ≥ −k],

i = 1, 2. Thus

K ′0
def= K ′ ∩ [h1 > −∞] ∩ [h2 > −∞]

is convex. Next observe that there is an ε > 0 such that the open set

[h1 + ε < 0] ∪ [h2 + ε < 0] still covers K ′ . For every k ∈ K ′0 consider
the affine function

ak : t 7→ −
(
t ·
(
h1(k) + ε

)
+ (1 − t) ·

(
h2(k) + ε

))
,

i.e., ak(t)
def= −

(
t · h1(k) + (1 − t) · h2(k)

)
− ε ,

on the unit interval I . Every one of them is nonnegative at some point of I ;

for instance, if k ∈ [h1 + ε < 0], then limt→1 ak(t) = −
(
h1(k) + ε

)
> 0. An

easy calculation using the concavity of hi shows that a convex combination

rak+(1−r)ak′ majorizes ark+(1−r)k′ . We can apply the first part of the proof
and conclude that there exists a τ ∈ I at which every one of the functions ak
is nonnegative. This reads

h′(k) def= τ · h1(k) + (1 − τ) · h2(k) ≤ −ε < 0 k ∈ K ′0 .

Now τ is not the right endpoint 1; if it were, then we would have h1 < −ε
on K ′0 , and a suitable convex combination rh1 + (1 − r)h2 would majorize

a function h ∈ H that is strictly negative on K ; this then could replace the
pair {h1, h2} in equation (A.2.3). By the same token τ 6= 0. But then h′ is

strictly negative on all of K ′ and there is an h ∈ H majorized by h′ , which
can then replace the pair {h1, h2} . In all cases we arrive at a contradiction

to the minimality of N .

Lemma A.2.35 (Gronwall’s Lemma) Let φ : [0,∞] → [0,∞) be an increasing

function satisfying

φ(t) ≤ A(t) +

∫ t

0

φ(s) η(s) ds t ≥ 0 ,

where η : [0,∞) → R is positive and Borel, and A : [0,∞) → [0,∞) is
increasing. Then

φ(t) ≤ A(t) · exp
(∫ t

0

η(s) ds
)
, t ≥ 0 .

Proof. To start with, assume that φ is right-continuous and A constant.

Set H(t) def= exp
(∫ t

0

η(s) ds
)

, fix an ε > 0 ,

and set t0
def= inf

{
s : φ(s) ≥

(
A+ ε

)
·H(s)

}
.
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Then φ(t0) ≤ A+ (A+ ε)

∫ t0

0

H(s) η(s)ds

= A+ (A+ ε)
(
H(t0) −H(0)

)
= (A+ ε)H(t0) − ε

< (A+ ε)H(t0) .

Since this is a strict inequality and φ is right-continuous, φ(t′0) ≤ (A+ε)H(t′0)
for some t′0 > t0 . Thus t0 = ∞ , and φ(t) ≤ (A+ ε)H(t) for all t ≥ 0. Since

ε > 0 was arbitrary, φ(t) ≤ AH(t). In the general case set

ψ(s) = inf
{
φ(τ ∧ t) : τ > s

}
.

ψ is right-continuous and satisfies ψ(τ) ≤ A(t) +
∫ τ
0
ψ(s) η(s) ds for τ ≥ 0.

The first part of the proof applies and yields φ(t) ≤ ψ(t) ≤ A(t) ·H(t).

Exercise A.2.36 Let x : [0,∞] → [0,∞) be an increasing function satisfying

xµ ≤ C + max
ρ=p,q

“Z µ

0

(A+Bxλ)
ρ
dλ
”1/ρ

, µ ≥ 0 ,

for some 1 ≤ p ≤ q <∞ and some constants A,B > 0. Then there exist constants
α ≤ 2(A/B + C) and β ≤ maxρ=p,q(2B)ρ/ρ such that xλ ≤ αeβλ for all λ > 0.

Lemma A.2.37 (Kolmogorov) Let U be an open subset of Rd , and let

{Xu : u ∈ U}

be a family of functions, 15 all defined on the same probability space (Ω,F ,P)
and having values in the same complete metric space (E, ρ) . Assume that

ω 7→ ρ(Xu(ω), Xv(ω)) is measurable for any two u, v ∈ U and that there exist
constants p, β > 0 and C <∞ so that

E [ρ(Xu, Xv)
p] ≤ C · |u− v |d+β for u, v ∈ U . (A.2.4)

Then there exists a family {X ′u : u ∈ U} of the same description which

in addition has the following properties: (i) X ′. is a modification of X. ,
meaning that P[Xu 6= X ′u] = 0 for every u ∈ U ; and (ii) for every single

ω ∈ Ω the map u 7→ Xu(ω) from U to E is continuous. In fact there exists,
for every α > 0 , a subset Ωα ∈ F with P[Ωα] > 1 − α such that the family

{u 7→ X ′u(ω) : ω ∈ Ωα}

of E-valued functions is equicontinuous on U and uniformly equicontinu-
ous on every compact subset K of U ; that is to say, for every ε > 0

there is a δ > 0 independent of ω ∈ Ωα such that |u− v | < δ im-

plies ρ(X ′u(ω), X ′v(ω)) < ε for all u, v ∈ K and all ω ∈ Ωα . (In fact,
δ = δK;α,p,C,β(ε) depends only on the indicated quantities.)

15 Not necessarily measurable for the Borels of (E, ρ).
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Exercise A.2.38 (Ascoli–Arzelà) Let K ⊆ U , ε 7→ δ(ε) an increasing function
from (0, 1) to (0, 1), and C ⊆ E compact. The collection K(δ(.)) of paths
x : K → C satisfying

|u− v | ≤ δ(ε) =⇒ ρ(xu, xv) ≤ ε

is compact in the topology of uniform convergence of paths; conversely, a compact
set of continuous paths is uniformly equicontinuous and the union of their ranges is
relatively compact. Therefore, if E happens to be compact, then the set of paths
{X ′

.(ω) : ω ∈ Ωα} of lemma A.2.37 is relatively compact in the topology of uniform
convergence on compacta.

Proof of A.2.37. Instead of the customary euclidean norm | |
2

we may and

shall employ the sup-norm | |∞ . For n ∈ N let Un be the collection of vectors
in U whose coordinates are of the form k2−n , with k ∈ Z and |k2−n| < n .

Then set U∞ =
⋃
n Un . This is the set of dyadic-rational points in U and

is clearly in U . To start with we investigate the random variables 15 Xu ,

u ∈ U∞ .
Let 0 < λ < β/p .16 If u, v ∈ Un are nearest neighbors, that is to say if

|u− v | = 2−n , then Chebyscheff’s inequality and (A.2.4) give

P
([
ρ(Xu, Xv) > 2−λn

])
≤ 2pλn · E [ρ(Xu, Xv)

p]

≤ C · 2pλn · 2−n(d+β) = C · 2(pλ−β−d)n .

Now a point u ∈ Un has less than 3d nearest neighbors v in Un , and there
are less than (2n2n)d points in Un . Consequently

P
[ ⋃

u,v∈Un

|u−v |=2−n

[
ρ(Xu, Xv) > 2−λn

]]

≤ C · 2(pλ−β−d)n · (6n)d · 2nd = C · (6n)d2−(β−pλ)n .

Since 2−(β−pλ) < 1, these numbers are summable over n . Given α > 0, we
can find an integer Nα depending only16 on C, β, p such that the set

Nα =
⋃

n≥Nα

⋃

u,v∈Un

|u−v |=2−n

[
ρ(Xu, Xv) > 2−λn

]

has P[Nα] < α . Its complement Ωα = Ω \ Nα has measure

P[Ωα] > 1 − α .

A point ω ∈ Ωα has the property that whenever n > Nα and u, v ∈ Un have

distance |u− v | = 2−n then

ρ
(
Xu(ω), Xv(ω)

)
≤ 2−λn . (∗)

16 For instance, λ = β/2p.
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Let K be a compact subset of U , and let us start on the last claim by showing
that {u 7→ Xu(ω) : ω ∈ Ωα} is uniformly equicontinuous on U∞ ∩K. To

this end let ε > 0 be given. There is an n0 > Nα such that

2−λn0 < ε · (1 − 2−λ) · 2λ−1 .

Note that this number depends only on α, ε , and the constants of inequal-

ity (A.2.4). Next let n1 be so large that 2−n1 is smaller than the distance
of K from the complement of U , and let n2 be so large that K is contained

in the centered ball (the shape of a box) of diameter (side) 2n2 . We respond
to ε by setting

n = n0 ∨ n1 ∨ n2 and δ = 2−n .

Clearly δ was manufactured from ε,Kα, p, C, β alone. We shall show that

|u− v | < δ implies ρ
(
Xu(ω), Xv(ω)

)
≤ ε for all ω ∈ Ωα and u, v ∈ K ∩U∞ .

Now if u, v ∈ U∞ , then there is a “mesh-size” m ≥ n such that both u and v

belong to Um . Write u = um and v = vm . There exist um−1, vm−1 ∈ Um−1

with |um − um−1|∞ ≤ 2−m , |vm − vm−1| ≤ 2−m ,

and |um−1 − vm−1| ≤ |um − vm| .
Namely, if u = (k12

−m, . . . , kd2−m) and v = (`12
−m, . . . , `d2−m), say, we

add or subtract 1 from an odd kδ according as kδ − `δ is strictly positive

or negative; and if kδ is even or if kδ − `δ = 0, we do nothing. Then we
go through the same procedure with v . Since δ ≤ 2n1 , the (box-shaped)

balls with radius 2−n about um, vm lie entirely inside U , and then so do the
points um−1, vm−1 . Since δ ≤ 2−n2 , they actually belong to Um−1 . By the

same token there exist um−2, vm−2 ∈ Um−2

with |um−1 − um−2| ≤ 2−m−1 , |vm−1 − vm−2| ≤ 2−m−1 ,

and |um−2 − vm−2| ≤ |um−1 − vm−1| .
Continue on. Clearly un = vn . In view of (∗) we have, for ω ∈ Ωα ,

ρ
(
Xu(ω), Xv(ω)

)
≤ ρ
(
Xu(ω), Xum−1

(ω)
)

+ . . .+ ρ
(
Xun+1

(ω), Xun
(ω)
)

+ ρ
(
Xun

(ω), Xvn
(ω)
)

+ ρ
(
Xvn

(ω), Xvn+1
(ω)
)

+ . . .+ ρ
(
Xvm−1

(ω), Xv(ω)
)

≤ 2−mλ + 2−(m−1)λ + . . .+ 2−(n+1)λ

+ 0

+ 2−(n+1)λ + . . .+ 2−(m−1)λ + 2−mλ

≤ 2

∞∑

i=n+1

(2−λ)i = 2 · 2−λn ·
(
2−λ/(1 − 2−λ)

)
≤ ε .

To summarize: the family {u 7→ Xu(ω) : ω ∈ Ωα} of E-valued functions is

uniformly equicontinuous on every relatively compact subset K of U∞ .
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Now set Ω0 =
⋃
n Ω1/n . For every ω ∈ Ω0 , the map u 7→ Xu(ω) is

uniformly continuous on relatively compact subsets of U∞ and thus has a

unique continuous extension to all of U . Namely, for arbitrary u ∈ U we set

X ′u(ω) def= lim
{
Xq(ω) : U∞ 3 q → u

}
, ω ∈ Ω0 .

This limit exists, since
{
Xq(ω) : U∞ 3 q → u

}
is Cauchy and E is

complete. In the points ω of the negligible set N = Ωc0 =
⋂
αNα we set

X ′u equal to some fixed point x0 ∈ E . From inequality (A.2.4) it is plain
that X ′u = Xu almost surely. The resulting selection meets the description; it

is, for instance, an easy exercise to check that the δ given above as a response
to K and ε serves as well to show the uniform equicontinuity of the family{
u 7→ X ′u(ω) : ω ∈ Ωα

}
of functions on K .

Exercise A.2.39 The proof above shows that there is a negligible set N such
that, for every ω 6∈ N , q 7→ Xq(ω) is uniformly continuous on every bounded set
of dyadic rationals in U .

Exercise A.2.40 Assume that the set U , while possibly not open, is contained in
the closure of its interior. Assume further that the family {Xu : u ∈ U} satisfies
merely, for some fixed p > 0, β > 0:

lim sup
U3v,v′→u

E [ρ(Xv ,Xv′)
p]

|v − v′ |d+β
<∞ ∀ u ∈ U .

Again a modification can be found that is continuous in u ∈ U for all ω ∈ Ω.

Exercise A.2.41 Any two continuous modifications X ′
u,X

′′
u are indistinguishable

in the sense that the set {ω : ∃u ∈ U with X ′
u(ω) 6= X ′′

u (ω)} is negligible.

Lemma A.2.42 (Taylor’s Formula) Suppose D ⊂ Rd is open and convex and
Φ : D → R is n-times continuously differentiable. Then 17

Φ(z + ∆)−Φ(z) = Φ;η(z) · ∆η+

∫ 1

0

(1−λ) Φ;ηθ

(
z+λ∆

)
dλ · ∆η∆θ

=
n−1∑

ν=1

1

ν!
Φ;η1...ην

(z) · ∆η1 · · ·∆ην

+

∫ 1

0

(1−λ)n−1

(n−1)!
Φ;η1...ηn

(
z+λ∆

)
dλ · ∆η1 · · ·∆ηn

for any two points z, z + ∆ ∈ D .

17 Subscripts after semicolons denote partial derivatives, e.g.,

Φ;η
def=

∂Φ

∂xη
and Φ;ηθ

def=
∂2Φ

∂xη∂xθ
.

Summation over repeated indices in opposite positions is implied by Einstein’s convention,
which is adopted throughout.
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A.2.43 Let 1 ≤ p <∞ , and set n = [p] and ε = p− n . Then for z, δ ∈ R

|z + δ|p = |z|p +

n−1∑

ν=1

(
p

ν

)
|z|p−ν(sgn z)ν · δν

+

∫ 1

0

n(1−λ)n−1

(
p

n

)
|z + λδ|ε

(
sgn(z + λδ)

)n
dλ · δn ,

where

(
p

ν

)
def=
p(p− 1) · · · (p− ν + 1)

ν!
and sgn z def=

{
1 if z > 0

0 if z = 0
−1 if z < 0 .

Differentiation

Definition A.2.44 (Big O and Little o) Let N,D, s be real-valued functions
depending on the same arguments u, v, . . .. One says

“N = O(D) as s→ 0” if lim
δ→0

sup
{N(u, v, . . .)

D(u, v, . . .)
: s(u, v, . . .) ≤ δ

}
<∞ ,

“N = o(D) as s→ 0” if lim
δ→0

sup
{N(u, v, . . .)

D(u, v, . . .)
: s(u, v, . . .) ≤ δ

}
= 0 .

If D = s , one simply says “N = O(D)” or “N = o(D) ,” respectively.

This nifty convention eases many arguments, including the usual definition
of differentiability, also called Fréchet differentiability:

Definition A.2.45 Let F be a map from an open subset U of a seminormed

space E to another seminormed space S . F is differentiable at a point
u ∈ U if there exists a bounded 18 linear operator DF [u] : E → S , written

η 7→ DF [u]·η and called the derivative of F at u , such that the remain-
der RF , defined by

F (v) − F (u) = DF [u]·(v − u) + RF [v;u] ,

has ‖RF [v;u]‖S = o(‖v − u‖E) as v → u .

If F is differentiable at all points of U , it is called differentiable on U

or simply differentiable; if in that case u 7→ DF [u] is continuous in the
operator norm, then F is continuously differentiable; if in that case

‖RF [v;u]‖
S

= o(‖v−u‖
E

) ,19 F is uniformly differentiable.

Next let F be a whole family of maps from U to S , all differentiable at

u ∈ U . Then F is equidifferentiable at u if sup{‖RF [v;u]‖
S

: F ∈ F} is

18 This means that the operator norm DF [u] E→S
def= sup{

‚‚DF [u] · η
‚‚
S

:
‚‚η

‚‚
E

≤ 1} is

finite.
19 That is to say sup {‚‚RF [v;u]

‚‚
S
/

‚‚v−u
‚‚
E

:
‚‚v−u

‚‚
E

≤ δ} −−−→δ→0 0, which explains the

word “uniformly.”
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o(‖v − u‖
E

) as v → u , and uniformly equidifferentiable if the previous
supremum is o(‖v − u‖

E
) as ‖v − u‖

E
→ 0 .

Exercise A.2.46 (i) Establish the usual rules of differentiation. (ii) If F is
differentiable at u , then ‖F (v) − F (u)‖

S
= O(‖v − u‖

E
) as v → u . (iii) Suppose

now that U is open and convex and F is differentiable on U . Then F is Lipschitz
with constant L if and only if DF [u]

E→S
is bounded; and in that case

L = sup u DF [u]
E→S

.

(iv) If F is continuously differentiable on U , then it is uniformly differentiable on
every relatively compact subset of U ; furthermore, there is this representation of
the remainder:

RF [v;u] =

Z 1

0

(DF [u+ λ(v−u)] −DF [u])·(v−u) dλ .

Exercise A.2.47 For differentiable f : R → R , Df [x] is multiplication by f ′(x).

Now suppose F = F [u, x] is a differentiable function of two variables, u ∈ U
and x ∈ V ⊂ X , X being another seminormed space. This means of course

that F is differentiable on U × V ⊂ E ×X . Then DF [u, x] has the form

DF [u, x] ·
(
η
ξ

)
=
(
D1F [u, x], D2F [u, x]

)
·
(
η
ξ

)

= D1F [u, x]·η +D2F [u, x]·ξ , η ∈ E, ξ ∈ X ,

where D1F [u, x] is the partial in the u-direction and D2F [u, x] the
partial in the x-direction. In particular, when the arguments u, x are

real we often write F;1 = F;u
def= D1F , F;2 = F;x

def= D2F , etc.

Example A.2.48 — of Trouble Consider a differen- �������� �	�
 ������	�
tiable function f on the line of not more than

linear growth, for example f(x) def=
∫ |x|
0

s ∧ 1 ds .

One hopes that composition with f , which takes
φ to F [φ] def= f ◦ φ , might define a Fréchet differentiable map F from Lp(P)

to itself. Alas, it does not. Namely, if DF [0] exists, it must equal mul-
tiplication by f ′(0), which in the example above equals zero – but then

RF (0, φ) = F [φ] − F [0] −DF [0]·φ = F [φ] = f ◦ φ does not go to zero faster
in Lp(P)-mean ‖ ‖

p
than does ‖φ− 0‖

p
– simply take φ through a sequence

of indicator functions converging to zero in Lp(P)-mean.
F is, however, differentiable, even uniformly so, as a map from Lp(P)

to Lp
◦
(P) for any p◦ strictly smaller than p , whenever the derivative f ′

is continuous and bounded. Indeed, by Taylor’s formula of order one (see

lemma A.2.42 on page 387)

F [ψ] = F [φ] + f ′(φ)·(ψ−φ)

+

∫ 1

0

[
f ′
(
φ+ σ(ψ−φ)

)
− f ′

(
φ
)]
dσ · (ψ−φ) ,
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whence, with Hölder’s inequality and 1/p◦ = 1/p+ 1/r defining r,

‖RF [ψ;φ]‖p◦ ≤
∥∥∥
∫ 1

0

[
f ′
(
φ+ σ(ψ−φ)

)
− f ′

(
φ
)]
dσ
∥∥∥
r
· ‖ψ−φ‖p .

The first factor tends to zero as ‖ψ−φ‖
p
→ 0, due to theorem A.8.6, so that

‖RF [ψ;φ]‖
p◦ = o

(
‖ψ−φ‖

p
). Thus F is uniformly differentiable as a map

from Lp(P) to Lp
◦
(P), with20 DF [φ] = f ′ ◦ φ .

Note the following phenomenon: the derivative ξ 7→ DF [φ]·ξ is actually a
continuous linear map from Lp(P) to itself whose operator norm is bounded

independently of φ by ‖f ′‖ def= supx |f ′(x)| . It is just that the remainder
RF [ψ;φ] is o(‖ψ − φ‖

p
) only if it is measured with the weaker seminorm

‖ ‖
p◦ . The example gives rise to the following notion:

Definition A.2.49 (i) Let (S, ‖ ‖
S
) be a seminormed space and ‖ ‖◦

S
≤ ‖ ‖

S

a weaker seminorm. A map F from an open subset U of a seminormed

space (E, ‖ ‖
E

) to S is ‖ ‖◦
S
-weakly differentiable at u ∈ U if there exists a

bounded18 linear map DF [u] : E → S such that

F [v] = F [u] +DF [u]·(v−u) + RF [u; v] ∀ v ∈ U ,

with ‖RF [u; v]‖◦S = o
(
‖v−u‖E

)
as v → u , i.e.,

‖RF [u; v]‖◦
S

‖v−u‖
E

−−→v→u 0 .

(ii) Suppose that S comes equipped with a family N◦ of seminorms

‖ ‖◦
S
≤ ‖ ‖

S
such that ‖x‖

S
= sup{‖x‖◦

S
: ‖ ‖◦

S
∈ N◦} ∀ x ∈ S . If F

is ‖ ‖◦
S
-weakly differentiable at u ∈ U for every ‖ ‖◦

S
∈ N◦ , then we call F

weakly differentiable at u . If F is weakly differentiable at every u ∈ U , it
is simply called weakly differentiable; if, moreover, the decay of the remainder

is independent of u, v ∈ U :

sup
{ ‖RF [u; v]‖◦

S

δ
: u, v ∈ U , ‖v−u‖E < δ

}
−−→
δ→0 0

for every ‖ ‖◦
S
∈ N◦ , then F is uniformly weakly differentiable on U .

Here is a reprise of the calculus for this notion:

Exercise A.2.50 (a) The linear operator DF [u] of (i) if extant is unique, and
F → DF [u] is linear. To say that F is weakly differentiable means that F is, for
every ‖ ‖◦

S
∈ N◦ , Fréchet differentiable as a map from (E, ‖ ‖

E
) to (S, ‖ ‖◦

S
) and

has a derivative that is continuous as a linear operator from (E, ‖ ‖
E

) to (S, ‖ ‖
S
).

(b) Formulate and prove the product rule and the chain rule for weak differentia-
bility. (c) Show that if F is ‖ ‖◦

S
-weakly differentiable, then for all u, v ∈ E

‖F [v] − F [u]‖◦
S
≤ sup

˘
DF [u] : u ∈ E

¯
· ‖v−u‖E .

20 DF [φ]·ξ = f ′ ◦ φ · ξ . In other words, DF [φ] is multiplication by f ′ ◦ φ.
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σ-Algebras

A measurable space is a set F equipped with a σ-algebra F of subsets of F .
A random variable is a map f whose domain is a measurable space (F,F)

and which takes values in another measurable space (G,G). It is understood

that a random variable f is measurable: the inverse image f−1(G0) of every
set G0 ∈ G belongs to F . If there is need to specify which σ-algebra on the

domain is meant, we say “f is measurable on F ” and write f ∈ F . If we
want to specify both σ-algebras involved, we say “f is F/G-measurable” and

write f ∈ F/G . If G = R or G = Rn , then it is understood that G is the
σ-algebra of Borel sets (see below). A random variable is simple if it takes

only finitely many different values.
The intersection of any collection of σ-algebras is a σ-algebra. Given

some property P of σ-algebras, we may therefore talk about the σ-algebra
generated by P : it is the intersection of all σ-algebras having P . We assume

here that there is at least one σ-algebra having P , so that the collection whose
intersection is taken is not empty – the σ-algebra of all subsets will usually

do. Given a collection Φ of functions on F with values in measurable spaces,
the σ-algebra generated by Φ is the smallest σ-algebra on which every

function φ ∈ Φ is measurable. For instance, if F is a topological space,

there are the σ-algebra B∗(F ) of Baire sets and the σ-algebra B•(F ) of
Borel sets. The former is the smallest σ-algebra on which all continuous

real-valued functions are measurable, and the latter is the generally larger
σ-algebra generated by the open sets. 13 Functions measurable on B∗(F ) or

B•(F ) are called Baire functions or Borel functions, respectively.

Exercise A.3.1 On a metrizable space the Baire and Borel functions coincide.
In particular, on Rn and on the path spaces C

n or the Skorohod spaces D
n ,

n = 1, 2, . . . , there is no distinction between the two.

Sequential Closure

Consider random variables fn : (F,F) → (G,G), where G is the Borel
σ-algebra of some topology on G . If fn → f pointwise on F , then f is

again a random variable. This is because for any open set U ⊂ G , f−1(U) =⋃
N

⋂
n>N f

−1
n (U) ∈ F – since {B : f−1(B) ∈ F} is a σ-algebra containing

the open sets, it contains the Borels. A similar argument applies when G is
the Baire σ-algebra B∗(G). Inasmuch as this permanence property under

pointwise limits of sequences is the main merit of the notions of σ-algebra
and F/G-measurability, it deserves a bit of study of its own:

A collection B of functions defined on some set E and having values in a
topological space is called sequentially closed if the limit of any pointwise

convergent sequence in B belongs to B as well. In most of the applications
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of this notion the functions in B are considered numerical, i.e., they are
allowed to take values in the extended reals R . For example, the collection of

F/G-measurable random variables above, the collection of dd ee∗-measurable
processes, and the collection of dd ee∗-measurable sets each are sequentially

closed.
The intersection of any family of sequentially closed collections of functions

on E plainly is sequentially closed. If E is any collection of functions,
then there is thus a smallest sequentially closed collection Eσ of functions

containing E , to wit, the intersection of all sequentially closed collections
containing E . Eσ can be constructed by transfinite induction as follows. Set

E0
def= E . Suppose that Eα has been defined for all ordinals α < β . If β is the

successor of α , then define Eβ to be the set of all functions that are limits

of a sequence in Eα ; if β is not a successor, then set Eβ def=
⋃
α<β Eα . Then

Eβ = Eσ for all β that exceed the first uncountable ordinal ℵ1 .
It is reasonable to call Eσ the sequential closure or sequential span

of E . If E is considered as a collection of numerical (real-valued) functions,
and if this point must be emphasized, we shall denote the sequential closure

by Eσ
R

(EσR ). It will generally be clear from the context which is meant.

Exercise A.3.2 (i) Every f ∈ Eσ is contained in the sequential closure of a
countable subcollection of E . (ii) E is called σ-finite if it contains a countable
subcollection whose pointwise supremum is everywhere strictly positive. Show: if E
is a ring of sets or a vector lattice closed under chopping or an algebra of bounded
functions, then E is σ-finite if and only if 1 ∈ Eσ . (iii) The collection of real-valued
functions in Eσ

R
coincides with EσR .

Lemma A.3.3 (i) If E is a vector space, algebra, or vector lattice of real-
valued functions, then so is its sequential closure EσR . (ii) If E is an algebra

of bounded functions or a vector lattice closed under chopping, then EσR is
both. Furthermore, if E is σ-finite, then the collection Eσe of sets in Eσ
is the σ-algebra generated by E , and Eσ consists precisely of the functions
measurable on Eσe .

Proof. (i) Let ∗ stand for +,−, ·,∨,∧ , etc. Suppose E is closed under ∗ .

The collection E∗ def=
{
f : f ∗ φ ∈ Eσ ∀ φ ∈ E

}
(∗)

then contains E , and it is sequentially closed. Thus it contains Eσ. This

shows that

the collection E∗∗ def=
{
g : f ∗ g ∈ Eσ ∀ f ∈ Eσ

}
(∗∗)

contains E . This collection is evidently also sequentially closed, so it contains

Eσ . That is to say, Eσ is closed under ∗ as well.
(ii) The constant 1 belongs to Eσ (exercise A.3.2). Therefore Eσe is not

merely a σ-ring but a σ-algebra. Let f ∈ Eσ . The set13 [f > 0] =
limn→∞ 0 ∨

(
(n · f) ∧ 1

)
, being the limit of an increasing bounded sequence,

belongs to Eσe . We conclude that for every r ∈ R and f ∈ Eσ the set13
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[f > r] = [f − r > 0] belongs to Eσe : f is measurable on Eσe . Conversely, if
f is measurable on Eσe , then it is the limit of the functions

∑
|ν|≤2n ν2

−n[ν2−n < f ≤ (ν + 1)2−n
]

in Eσ and thus belongs to Eσ . Lastly, since every φ ∈ E is measurable on Eσe ,
Eσe contains the σ-algebra EΣ generated by E ; and since the EΣ-measurable

functions form a sequentially closed collection containing E , Eσe ⊂ EΣ .

Theorem A.3.4 (The Monotone Class Theorem) Let V be a collection of

real-valued functions on some set that is closed under pointwise limits of in-
creasing or decreasing sequences – this makes it a monotone class. Assume

further that V forms a real vector space and contains the constants. With
any subcollection M of bounded functions that is closed under multiplica-

tion – a multiplicative class – V then contains every real-valued function
measurable on the σ-algebra MΣ generated by M .

Proof. The family E of all finite linear combinations of functions in M∪{1}
is an algebra of bounded functions and is contained in V . Its uniform closure
E is contained in V as well. For if E 3 fn → f uniformly, we may without loss

of generality assume that ‖f − fn ‖∞ < 2−n/4. The sequence fn − 2−n ∈ E
then converges increasingly to f . E is a vector lattice (theorem A.2.2).

Let E↑↓ denote the smallest collection of functions that contains E and is
closed under pointwise limits of monotone sequences; it is evidently contained

in V . We see as in (∗) and (∗∗) above that E↑↓ is a vector lattice; namely, the

collections E∗ and E∗∗ from the proof of lemma A.3.3 are closed under limits
of monotone sequences. Since lim fn = supN infn>N fn , E↑↓ is sequentially

closed. If f is measurable on MΣ , it is evidently measurable on EΣ = Eσe
and thus belongs to Eσ ⊂ E↑↓ ⊂ V (lemma A.3.3).

Exercise A.3.5 (The Complex Bounded Class Theorem) Let V be a com-
plex vector space of complex-valued functions on some set, and assume that V
contains the constants and is closed under taking limits of bounded pointwise con-
vergent sequences. With any subfamily M ⊂ V that is closed under multiplication
and complex conjugation – a complex multiplicative class – V contains every
bounded complex-valued function that is measurable on the σ-algebra MΣ gener-
ated by M . In consequence, if two σ-additive measures of totally finite variation
agree on the functions of M , then they agree on MΣ .

Exercise A.3.6 On a topological space E the class of Baire functions is the
sequential closure of the class Cb(E) of bounded continuous functions. If E is
completely regular, then the class of Borel functions is the sequential closure of the
set of differences of lower semicontinuous functions.

Exercise A.3.7 Suppose that E is a self-confined vector lattice closed under
chopping or an algebra of bounded functions on some set E (see exercise A.2.6).
Let us denote by Eσ00 the smallest collection of functions on f that is closed under
taking pointwise limits of bounded E-confined sequences. Show: (i) f ∈ Eσ00 if and
only if f ∈ Eσ is bounded and E-confined; (ii) Eσ00 is both a vector lattice closed
under chopping and an algebra.
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Measures and Integrals

A σ-additive measure on the σ-algebra F is a function µ : F → R 21 that
satisfies µ

(⋃
nAn

)
=
∑
n µ
(
An
)

for every disjoint sequence (An) in F .

Σ-algebras have no raison d’être but for the σ-additive measures that live on
them. However, rare is the instance that a measure appears on a σ-algebra.

Rather, measures come naturally as linear functionals on some small space E
of functions (Radon measures, Haar measure) or as set functions on a ring A
of sets (Lebesgue measure, probabilities). They still have to undergo a lengthy

extension procedure before their domain contains the σ-algebra generated by
E or A and before they can integrate functions measurable on that.

Set Functions A ring of sets on a set F is a collection A of subsets of F
that is closed under taking relative complements and finite unions, and then

under taking finite intersections. A ring is an algebra if it contains the
whole ambient set F , and a δ-ring if it is closed under taking countable

intersections (if both, it is a σ-algebra or σ-field). A measure on the
ring A is a σ-additive function µ : A → R of finite variation. The additivity

means that µ(A+ A′) = µ(A) + µ(A′) for13 A,A′, A + A′ ∈ A . The
σ-additivity means that µ

(⋃
nAn

)
=
∑
n µ
(
An
)

for every disjoint sequence

(An) of sets in A whose union A happens to belong to A . In the presence
of finite additivity this is equivalent with σ-continuity: µ(An) → 0 for every

decreasing sequence (An) in A that has void intersection. The additive set
function µ : A → R has finite variation on A ⊂ F if

µ (A) def= sup{µ(A′) − µ(A′′) : A′, A′′ ∈ A , A′ +A′′ ≤ A}
is finite. To say that µ has finite variation means that µ (A) < ∞ for

all A ∈ A . The function µ : A → R+ then is a positive σ-additive

measure on A , called the variation of µ . µ has totally finite variation
if µ (F ) < ∞ . A σ-additive set function on a σ-algebra automatically has

totally finite variation. Lebesgue measure on the finite unions of intervals
(a, b] is an example of a measure that appears naturally as a set function on

a ring of sets.

Radon Measures are examples of measures that appear naturally as linear

functionals on a space of functions. Let E be a locally compact Hausdorff
space and C00(E) the set of continuous functions with compact support. A

Radon measure is simply a linear functional µ : C00(E) → R that is bounded
on order-bounded (confined) sets.

Elementary Integrals The previous two instances of measures look so dis-
parate that they are often treated quite differently. Yet a little teleological

thinking reveals that they fit into a common pattern. Namely, while measur-

ing sets is a pleasurable pursuit, integrating functions surely is what measure

21 For numerical measures, i.e., measures that are allowed to take their values in the
extended reals R , see exercise A.3.27.



A.3 Measure and Integration 395

theory ultimately is all about. So, given a measure µ on a ring A we imme-
diately extend it by linearity to the linear combinations of the sets in A , thus

obtaining a linear functional on functions. Call their collection E [A] . This is
the family of step functions φ over A , and the linear extension is the natural

one: µ(φ) is the sum of the products height–of–step times µ-size–of–step.
In both instances we now face a linear functional µ : E → R . If µ was a

Radon measure, then E = C00(E); if µ came as a set function on A , then
E = E [A] and µ is replaced by its linear extension. In both cases the pair

(E , µ) has the following properties:
(i) E is an algebra and vector lattice closed under chopping. The functions

in E are called elementary integrands.
(ii) µ is σ-continuous: E 3 φn ↓ 0 pointwise implies µ(φn) → 0.

(iii) µ has finite variation: for all φ ≥ 0 in E
µ (φ) def= sup

{
|µ(ψ)| : ψ ∈ E , |ψ| ≤ φ

}

is finite; in fact, µ extends to a σ-continuous positive 22 linear functional
on E , the variation of µ . We shall call such a pair (E , µ) an elementary

integral.
(iv) Actually, all elementary integrals that we meet in this book have a

σ-finite domain E (exercise A.3.2). This property facilitates a number of
arguments. We shall therefore subsume the requirement of σ-finiteness on E
in the definition of an elementary integral (E , µ).

Extension of Measures and Integration The reader is no doubt familiar with
the way Lebesgue succeeded in 1905 23 to extend the length function on the

ring of finite unions of intervals to many more sets, and with Caratheodory’s
generalization to positive σ-additive set functions µ on arbitrary rings of sets.

The main tools are the inner and outer measures µ∗ and µ∗ .
Once the measure is extended there is still quite a bit to do before it

can integrate functions. In 1918 the French mathematician Daniell noticed

that many of the arguments used in the extension procedure for the set
function and again in the integration theory of the extension are the same.

He discovered a way of melding the extension of a measure and its integration
theory into one procedure. This saves labor and has the additional advantage

of being applicable in more general circumstances, such as the stochastic
integral. We give here a short overview. This will furnish both notation

and motivation for the main body of the book. For detailed treatments see
for example [9] and [12]. The reader not conversant with Daniell’s extension

procedure can actually find it in all detail in chapter 3, if he takes Ω to consist
of a single point.

Daniell’s idea is really rather simple: get to the main point right away,
the main point being the integration of functions. Accordingly, when given a

22 A linear functional is called positive if it maps positive functions to positive numbers.
23 A fruitful year – see page 9.
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measure µ on the ring A of sets, extend it right away to the step functions
E [A] as above. In other words, in whichever form the elementary data appear,

keep them as, or turn them into, an elementary integral.
Daniell saw further that Lebesgue’s expand–contract construction of the

outer measure of sets has a perfectly simple analog in an up–down procedure
that produces an upper integral for functions. Here is how it works. Given a

positive elementary integral (E , µ), let E↑ denote the collection of functions h
on F that are pointwise suprema of some sequence in E :

E↑ =
{
h : ∃φ1, φ2, . . . in E with h = supn φn

}
.

Since E is a lattice, the sequence (φn) can be chosen increasing, simply by
replacing φn with φ1 ∨ · · · ∨ φn . E↑ corresponds to Lebesgue’s collection of

open sets, which are countable suprema 13 of intervals. For h ∈ E↑ set
∫ ∗

h dµ def= sup

{∫
φ dµ : E 3 φ ≤ h

}
. (A.3.1)

Similarly, let E↓ denote the collection of functions k on the ambient set F
that are pointwise infima of some sequence in E , and set

∫

∗
k dµ def= inf

{∫
φ dµ : E 3 φ ≥ k

}
.

Due to the σ-continuity of µ ,
∫ ∗

dµ and
∫
∗ dµ are σ-continuous on E↑

and E↓ , respectively, in this sense: E↑ 3 hn ↑ h implies
∫ ∗
hn dµ→

∫ ∗
h dµ

and E↓ 3 kn ↓ k implies
∫
∗ kn dµ→

∫
∗ k dµ. Then set for arbitrary functions

f : F → R
∫ ∗

f dµ def= inf

{∫ ∗
h dµ : h ∈ E↑, h ≥ f

}
and

∫

∗
f dµ def= sup

{∫

∗
k dµ : k ∈ E↓, k ≤ f

} (
= −

∫ ∗−f dµ ≤
∫ ∗
f dµ

)
.

∫ ∗
dµ and

∫
∗ dµ are called the upper integral and lower integral asso-

ciated with µ , respectively. Their restrictions to sets are precisely the outer
and inner measures µ∗ and µ∗ of Lebesgue–Caratheodory. The upper

integral is countably subadditive, 24 and the lower integral is countably su-
peradditive. A function f on F is called µ-integrable if

∫ ∗
f dµ =

∫
∗ f dµ ,

and the common value is the integral
∫
f dµ . The idea is of course that on

the integrable functions the integral is countably additive. The all-important

Dominated Convergence Theorem follows from the countable additivity with
little effort.

The procedure outlined is intuitively just as appealing as Lebesgue’s, and
much faster. Its real benefit lies in a slight variant, though, which is based on

24
R ∗ P∞

n=1 fn ≤ P∞
n=1

R ∗
fn .
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the easy observation that a function f is µ-integrable if and only if there is
a sequence (φn) of elementary integrands with

∫ ∗ |f −φn| dµ→ 0, and then∫
f dµ = lim

∫
φn dµ . So we might as well define integrability and the integral

this way: the integrable functions are the closure of E under the seminorm

f 7→ ‖f ‖∗
µ

def=
∫ ∗ |f | dµ , and the integral is the extension by continuity. One

now does not even have to introduce the lower integral, saving labor, and the

proofs of the main results speed up some more.
Let us rewrite the definition of the Daniell mean ‖ ‖∗

µ
:

‖f ‖∗µ = inf
|f |≤h∈E↑

sup
φ∈E,|φ|≤h

∣∣∣∣
∫
φ dµ

∣∣∣∣ . (D)

As it stands, this makes sense even if µ is not positive. It must merely have

finite variation, in order that ‖ ‖∗
µ

be finite on E . Again the integral can be
defined simply as the extension by continuity of the elementary integral. The

famous limit theorems are all consequences of two properties of the mean:
it is countably subadditive on positive functions and additive on E+ , as it

agrees with the variation µ there.
As it stands, (D) even makes sense for measures µ that take values in some

Banach space F , or even some space more general than that; one only needs
to replace the absolute value in (D) by the norm or quasinorm of F . Under

very mild assumptions on F , ordinary integration theory with its beautiful
limit results can be established simply by repeating the classical arguments.

In chapter 3 we go this route to do stochastic integration.

The main theorems of integration theory use only the properties of the mean
‖ ‖∗

µ
listed in definition 3.2.1. The proofs given in section 3.2 apply of course

a fortiori in the classical case and produce the Monotone and Dominated
Convergence Theorems, etc. Functions and sets that are ‖ ‖∗

µ
-negligible or

‖ ‖∗
µ
-measurable25 are usually called µ-negligible or µ-measurable, respec-

tively. Their permanence properties are the ones established in sections 3.2

and 3.4. The integrability criterion 3.4.10 characterizes µ-integrable functions
in terms of their local structure: µ-measurability, and their ‖ ‖∗

µ
-size.

Let Eσ denote the sequential closure of E . The sets in Eσ form a

σ-algebra26 Eσe , and Eσ consists precisely of the functions measurable on Eσe .
In the case of a Radon measure, Eσ are the Baire functions. In the case that

the starting point was a ring A of sets, Eσe is the σ-algebra generated by A .
The functions in Eσ are by Egoroff’s theorem 3.4.4 µ-measurable for every

measure µ on E , but their collection is in general much smaller than the
collection of µ-measurable functions, even in cardinality. Proposition 3.6.6,

on the other hand, supplies µ-envelopes and for every µ-measurable function
an equivalent one in Eσ .

25 See definitions 3.2.3 and 3.4.2
26 The assumption that E be σ-finite is used here – see lemma A.3.3.
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For the proof of the general Fubini theorem A.3.18 below it is worth stating
that ‖ ‖∗

µ
is maximal: any other mean that agrees with ‖ ‖∗

µ
on E+ is

less than ‖ ‖∗
µ

(see 3.6.1); and for applications of capacity theory that it is
continuous along arbitrary increasing sequences (see 3.6.5):

0 ≤ fn ↑ f pointwise implies ‖fn ‖∗µ ↑ ‖f ‖∗µ . (A.3.2)

Exercise A.3.8 (Regularity) Let Ω be a set, A a σ-finite ring of subsets, and
µ a positive σ-additive measure on the σ-algebra Aσ generated by A . Then µ
coincides with the Daniell extension of its restriction to A .

(i) For any µ-integrable set A , µ(A) = sup {µ(K) : K ∈ Aδ, K ⊂ A} .

(ii) Any subset Ω′ of Ω has a measurable envelope. This is a subset fΩ′ ∈ Aσ

that contains Ω′ and has the same outer measure. Any two measurable envelopes
differ µ∗-negligibly.

Order-Continuous and Tight Elementary Integrals

Order-Continuity A positive Radon measure (C00(E), µ) has a continuity
property stronger than mere σ-continuity. Namely, if Φ is a decreasingly di-

rected2 subset of C0(E) with pointwise infimum zero, not necessarily count-
able, then inf{µ(φ) : φ ∈ Φ} = 0. This is called order-continuity and is

easily established using Dini’s theorem A.2.1. Order-continuity occurs in the
absence of local compactness as well: for instance, Dirac measure or, more

generally, any measure that is carried by a countable number of points is
order-continuous.

Definition A.3.9 Let E be an algebra or vector lattice closed under chopping,

of bounded functions on some set E . A positive linear functional µ : E → R
is order-continuous if

inf{µ(φ) : φ ∈ Φ} = 0

for any decreasingly directed family Φ ⊂ E whose pointwise infimum is zero.

Sometimes it is useful to rephrase order-continuity this way: µ(sup Φ) =
sup µ(Φ) for any increasingly directed subset Φ ⊂ E+ with pointwise supre-

mum sup Φ in E .

Exercise A.3.10 If E is separable and metrizable, then any positive σ-continuous
linear functional µ on Cb(E) is automatically order-continuous.

In the presence of order-continuity a slightly improved integration theory is
available: let E⇑ denote the family of all functions that are pointwise suprema

of arbitrary – not only the countable – subcollections of E , and set as in (D)

‖f ‖.µ = inf
|f |≤h∈E⇑

sup
φ∈E,|φ|≤h

∣∣∣∣
∫
φ dµ

∣∣∣∣ .
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The functional ‖ ‖.
µ

is a mean27 that agrees with ‖ ‖∗
µ

on E+ , so thanks

to the maximality of the latter it is smaller than ‖ ‖∗
µ

and consequently has

more integrable functions. It is order-continuous 2 in the sense that ‖supH‖.
µ

= sup ‖H‖.
µ

for any increasingly directed subset H ⊂ E⇑+ , and among all

order-continuous means that agree with µ on E+ it is the maximal one.27

The elements of E⇑ are ‖ ‖.
µ
-measurable; in fact,27 assume that H ⊂ E⇑ is

increasingly directed with pointwise supremum h′ . If ‖h′ ‖.
µ
< ∞ , then27 h′

is integrable and H → h′ in ‖ ‖.
µ
-mean:

inf
{∥∥h′ − h

∥∥.
µ

: h ∈ H
}

= 0 . (A.3.3)

For an example most pertinent in the sequel consider a completely regular
space and let µ be an order-continuous positive linear functional on the lattice

algebra E = Cb(E). Then E⇑ contains all bounded lower semicontinuous
functions, in particular all open sets (lemma A.2.19). The unique extension

under ‖ ‖.
µ

integrates all bounded semicontinuous functions, and all Borel

functions – not merely the Baire functions – are ‖ ‖.
µ
-measurable. Of course,

if E is separable and metrizable, then E↑ = E⇑ , ‖ ‖∗
µ

= ‖ ‖.
µ

for any

σ-continuous µ : Cb(E) → R , and the two integral extensions coincide.

Tightness If E is locally compact, and in fact in most cases where a positive
order-continuous measure µ appears naturally, µ is tight in this sense:

Definition A.3.11 Let E be a completely regular space. A positive order-
continuous functional µ : Cb(E) → R is tight and is called a tight measure

on E if its integral extension with respect to ‖ ‖.
µ

satisfies

µ(E) = sup{µ(K) : K compact } .

Tight measures are easily distinguished from each other:

Proposition A.3.12 Let M ⊂ Cb(E; C) be a multiplicative class that is closed
under complex conjugation, separates the points 5 of E , and has no common

zeroes. Any two tight measures µ, ν that agree on M agree on Cb(E) .

Proof. µ and ν are of course extended in the obvious complex-linear way to

complex-valued bounded continuous functions. Clearly µ and ν agree on the
set AC of complex-linear combinations of functions in M and then on the

collection AR of real-valued functions in AC . AR is a real algebra of real-
valued functions in Cb(E), and so is its uniform closure A[M] . In fact, A[M]

is also a vector lattice (theorem A.2.2), still separates the points, and µ = ν
on A[M] . There is no loss of generality in assuming that µ(1) = ν(1) = 1.

Let f ∈ Cb(E) and ε > 0 be given, and set M = ‖f ‖∞ . The tightness of
µ, ν provides a compact set K with µ(K) > 1− ε/M and ν(K) > 1− ε/M .

27 This is left as an exercise.
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The restriction f|K of f to K can be approximated uniformly on K to
within ε by a function φ ∈ A[M] (ibidem). Replacing φ by −M ∨ φ ∧M
makes sure that φ is not too large. Now

|µ(f) − µ(φ)| ≤
∫

K

|f − φ| dµ+

∫

Kc

|f − φ| dµ ≤ ε+ 2Mµ(Kc) ≤ 3ε .

The same inequality holds for ν , and as µ(φ) = ν(φ), |µ(f) − ν(f)| ≤ 6ε .

This is true for all ε > 0, and hence µ(f) = ν(f).

Exercise A.3.13 Let E be a completely regular space and µ : Cb(E) → R a posi-
tive order-continuous measure. Then U0

def= sup{φ ∈ Cb(E) : 0 ≤ φ ≤ 1, µ(φ) = 0}
is integrable. It is the largest open µ-negligible set, and its complement U c0 , the
“smallest closed set of full measure,” is called the support of µ .

Exercise A.3.14 An order-continuous tight measure µ on Cb(E) is inner
regular; that is to say, its ‖ ‖.

µ
-extension to the Borel sets satisfies

µ(B) = sup {µ(K) : K ⊂ B, K compact }
for any Borel set B , in fact for every ‖ ‖.

µ
-integrable set B . Conversely, the Daniell

‖ ‖∗
µ
-extension of a positive σ-additive inner regular set function on the Borels of

a completely regular space E is order-continuous on Cb(E), and the extension of
the resulting linear functional on Cb(E) agrees on B•(E) with µ . (If E is polish
or Suslin, then any σ-continuous positive measure on Cb(E) is inner regular – see
proposition A.6.2.)

A.3.15 The Bochner Integral Suppose (E , µ) is a σ-additive positive elemen-

tary integral on E and V is a Fréchet space equipped with a distinguished
subadditive continuous gauge dd eeV . Denote by E ⊗ V the collection of all

functions f : E → V that are finite sums of the form

f(x) =
∑

i

vi φi(x) , vi ∈ V , φi ∈ E ,

and define

∫

E

f(x) µ(dx) def=
∑

i

vi

∫

E

φi dµ for such f .

For any f : E → V set ddfee∗V,µ def=
⌈⌈
ddfeeV

⌉⌉∗
µ

=

∫ ∗
ddfeeV dµ

and let F[dd ee∗V,µ] def=
{
f : E → V : ddλfee∗V,µ−−→λ→0 0

}
.

The elementary V-valued integral in the second line is a linear map from
E ⊗ V to V majorized by the gauge dd ee∗V,µ on F[dd ee∗V,µ] . Let us call a

function f : E → V Bochner µ-integrable if it belongs to the closure of
E⊗V in F[dd ee∗V,µ] . Their collection L1

V(µ) forms a Fréchet space with gauge

dd ee∗V,µ , and the elementary integral has a unique continuous linear extension

to this space. This extension is called the Bochner integral. Neither L1
V(µ)

nor the integral extension depend on the choice of the gauge dd eeV . The
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Dominated Convergence Theorem holds: if L1
V(µ) 3 fn → f pointwise and

ddfn eeV ≤ g ∈ F[dd ee∗
µ
] ∀ n , then fn → f in dd ee∗V,µ-mean, etc.

Exercise A.3.16 Suppose that (E, E , µ) is the Lebesgue integral (R+, E(R+), λ).
Then the Fundamental Theorem of Calculus holds: if f : R+ → V is continuous,
then the function F : t 7→

R t
0
f(s) λ(ds) is differentiable on [0,∞) and has the

derivative f(t) at t ; conversely, if F : [0,∞) → V has a continuous derivative F ′

on [0,∞), then F (t) = F (0) +
R t
0
F ′ dλ .

Projective Systems of Measures

Let T be an increasingly directed index set. For every τ ∈ T let (Eτ , Eτ ,Pτ )
be a triple consisting of a set Eτ , an algebra and/or vector lattice Eτ of

bounded elementary integrands on Eτ that contains the constants, and a
σ-continuous probability Pτ on Eτ . Suppose further that there are given

surjections πτσ : Eτ → Eσ such that

φ ◦ πτσ ∈ Eτ

and

∫
φ ◦ πτσ dPτ =

∫
φ dPσ

for σ ≤ τ and φ ∈ Eσ . The data
(
(Eτ , Eτ ,Pτ , πτσ) : σ ≤ τ ∈ T

)
are called a

consistent family or projective system of probabilities.
Let us call a thread on a subset S ⊂ T any element (xσ)σ∈S of

∏
σ∈S Eσ

with πτσ(xτ ) = xσ for σ < τ in S and denote by ET = lim←−Eτ the set of all
threads on T .28 For every τ ∈ T define the map

πτ : ET → Eτ by πτ
(
(xσ)σ∈T

)
= xτ .

Clearly πτσ ◦ πτ = πσ , σ < τ ∈ T .

A function f : ET → R of the form f = φ ◦ πτ , φ ∈ Eτ , is called a cylinder

function based on πτ . We denote their collection by

ET =
⋃

τ∈T
Eτ ◦ πτ .

Let f = φ◦πσ and g = ψ◦πτ be cylinder functions based on σ, τ , respectively.
Then, assuming without loss of generality that σ ≤ τ , f+g = (φ◦πτσ+ψ)◦πτ
belongs to ET . Similarly one sees that ET is closed under multiplication,
finite infima, etc: ET is an algebra and/or vector lattice of bounded functions

on ET . If the function f ∈ ET is written as f = φ ◦ πσ = ψ ◦ πτ with

φ ∈ Cb(Eσ), ψ ∈ Cb(Eτ ), then there is an υ > σ, τ in T , and with ρ def=
φ ◦ πυσ = ψ ◦ πυτ , Pσ(φ) = Pυ(ρ) = Pτ (ψ) due to the consistency. We may

thus define unequivocally for f ∈ ET , say f = φ ◦ πσ ,

P(f) def= Pσ(φ) .

28 It may well be empty or at least rather small.
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Clearly P : ET → R is a positive linear map with sup{P(f) : |f | ≤ 1} = 1. It
is denoted by lim←−Pτ and is called the projective limit of the Pτ . We also call

(ET , ET ,P) the projective limit of the elementary integrals (Eτ , Eτ ,Pτ , πτσ)
and denote it by = lim←−(Eτ , Eτ ,Pτ , πτσ). P will not in general be σ-additive.

The following theorem identifies sufficient conditions under which it is. To
facilitate its statement let us call the projective system full if every thread on

any subset of indices can be extended to a thread on all of T . For instance,
when T has a countable cofinal subset then the system is full.

Theorem A.3.17 (Kolmogorov) Assume that

(i) the projective system
(
(Eτ , Eτ ,Pτ , πτσ) : σ ≤ τ ∈ T

)
is full;

(ii) every Pτ is tight under the topology generated by Eτ .

Then the projective limit P = lim←−Pτ is σ-additive.

Proof. Suppose the sequence of functions fn = φn ◦ πτn
∈ ET decreases

pointwise to zero. We have to show that P(fn) → 0. By way of contradiction
assume there is an ε > 0 with P(fn) > 2ε ∀n . There is no loss of generality in

assuming that the τn increase with n and that f1 ≤ 1. Let Kn be a compact
subset of Eτn

with Pτn
(Kn) > 1 − ε2−n , and set Kn =

⋂
N≥n π

τN
τn

(KN ).

Then Pτn
(Kn) ≥ 1 − ε , and thus

∫
Kn φn dPτn

> ε for all n . The compact

sets K
n

def= Kn ∩ [φn ≥ ε] are non-void and have πτn
τm

(K
n
) ⊃ K

m
for m ≤ n ,

so there is a thread (xτ1 , xτ2 , . . .) with φn(xτn
) ≥ ε . This thread can be

extended to a thread θ on all of T , and clearly fn(θ) ≥ ε ∀n . This
contradiction establishes the claim.

Products of Elementary Integrals

Let (E, EE, µ) and (F, EF , ν) be positive elementary integrals. Extending µ

and ν as usual, we may assume that EE and EF are the step functions over
the σ-algebras AE ,AF , respectively. The product σ-algebra AE ⊗ AF is

the σ-algebra on the cartesian product G def= E×F generated by the product
paving of rectangles

AE ×AF
def=
{
A×B : A ∈ AE , B ∈ AF

}
.

Let EG be the collection of functions on G of the form

φ(x, y) =

K∑

k=1

φk(x)ψk(y) , K ∈ N, φk ∈ EE , ψk ∈ EF . (A.3.4)

Clearly13 AE ⊗ AF is the σ-algebra generated by EG . Define the product

measure γ = µ× ν on a function as in equation (A.3.4) by
∫

G

φ(x, y) γ(dx, dy) def=
∑

k

∫

E

φk(x)µ(dx) ·
∫

F

ψk(y) ν(dy)

=

∫

F

(∫

E

φ(x, y)µ(dx)
)
ν(dy) . (A.3.5)
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The first line shows that this definition is symmetric in x, y , the second
that it is independent of the particular representation (A.3.4) and that γ is

σ-continuous, that is to say, φn(x, y) ↓ 0 implies
∫
φn dγ → 0. This is evident

since the inner integral in equation (A.3.5) belongs to EF and decreases

pointwise to zero. We can now extend the integral to all AE ⊗AF -measurable
functions with finite upper γ-integral, etc.

Fubini’s Theorem says that the integral
∫
f dγ can be evaluated iteratively

as
∫ ( ∫

f(x, y) µ(dx)
)
ν(dy) for γ-integrable f . In several instances we need

a generalization, one that refers to a slightly more general setup.

Suppose that we are given for every y ∈ F not the fixed measure φ(x, y) 7→∫
E
f(x, y) dµ(x) on EG but a measure µy that varies with y ∈ F , but so

that y 7→
∫
φ(x, y) µy(dx) is ν-integrable for all φ ∈ EG . We can then define

a measure γ =
∫
µy ν(dy) on EG via iterated integration:
∫
φ dγ def=

∫ (∫
φ(x, y) µy(dx)

)
ν(dy) , φ ∈ EG .

If EG3φn↓0, then EF3
∫
φn(x, y) µy(dx) ↓ 0 and consequently

∫
φn dγ → 0:

γ is σ-continuous. Fubini’s theorem can be generalized to say that the

γ-integral can be evaluated as an iterated integral:

Theorem A.3.18 (Fubini) If f is γ-integrable, then
∫
f(x, y) µy(dx) exists

for ν-almost all y ∈ Y and is a ν-integrable function of y , and
∫
f dγ =

∫ (∫
f(x, y) µy(dx)

)
ν(dy) .

Proof. The assignment f 7→
∫ ∗

(
∫ ∗ |f(x, y)| µy(dx)) ν(dy) is a mean that

coincides with the usual Daniell mean ‖ ‖∗
γ

on E , and the maximality of
Daniell’s mean gives

∫ ∗ (∫ ∗
|f(x, y)| µy(dx)

)
ν(dy) ≤ ‖f ‖∗γ (∗)

for all f : G → R . Given the γ-integrable function f , find a sequence
(
φn
)

of functions in EG with
∑ ‖φn ‖∗γ < ∞ and such that f =

∑
φn both in

‖ ‖∗
γ
-mean and γ-almost surely. Applying (∗) to the set of points (x, y) ∈ G

where
∑
φn(x, y) 6= f(x, y), we see that the set N1 of points y ∈ F where

not
∑
φn(., y) = f(., y) µy-almost surely is ν-negligible. Since

∥∥∥
∥∥∥
∑

|φn(., y)|
∥∥∥
∗

µy

∥∥∥
∗

ν
≤
∥∥∥
∑

‖φn(., y)‖∗µy

∥∥∥
∗

ν
≤
∑

‖φn ‖∗γ <∞ ,

the sum g(y) def= ‖∑ |φn(., y)|‖∗µy
=
∑∫

|φn(x, y)|µy(dx) is ν-measurable

and finite in ν-mean, so it is ν-integrable. It is, in particular, finite ν-almost
surely (proposition 3.2.7). Set N2 = [g = ∞] and fix a y /∈ N1 ∪N2 . Then

f(., y) def=
∑ |φn(., y)| is µy-almost surely finite (ibidem). Hence

∑
φn(., y)
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converges µy-almost surely absolutely. In fact, since y /∈ N1 , the sum is
f(., y). The partial sums are dominated by f(., y) ∈ L1(µy). Thus f(., y) is

µy-integrable with integral

I(y) def=

∫
f(x, y) µy(dx) = lim

n

∫ ∑

ν≤n
φν(x, y)µy(dx) .

I is ν-almost surely defined and ν-measurable, with |I| ≤ g having ‖I‖∗
ν
<∞;

it is thus ν-integrable with integral
∫
I(y) ν(dy) = lim

∫ ∫ ∑

ν≤n
φν(x, y)µy(dx) ν(dy) =

∫
f dγ .

The interchange of limit and integral here is justified by the observation that
|
∫ ∑

ν≤n φν(x, y)µy(dx) | ≤
∑
ν≤n

∫
|φν(x, y)|µy(dx) ≤ g(y) for all n .

Infinite Products of Elementary Integrals

Suppose for every t in an index set T the triple (Et, Et,Pt) is a positive
σ-additive elementary integral of total mass 1. For any finite subset τ ⊂ T
let (Eτ , Eτ ,Pτ ) be the product of the elementary integrals (Et, Et,Pt), t ∈ τ .
For σ ⊂ τ there is the obvious projection πτσ : Eτ → Eσ that “forgets the

components not in σ ,” and the projective limit (see page 401)

(E, E ,P) def=
∏

t∈T
(Et, Et,Pt) def= lim←−τ⊂T (Eτ , Eτ ,Pτ , πτσ)

of this system is the product of the elementary integrals (Et, Et,Pt),
t ∈ T . It has for its underlying set the cartesian product E =

∏
t∈T Et . The

cylinder functions of E are finite sums of functions of the form

(et)t∈T 7→ φ1(et1) · φ2(et2) · · ·φj(etj ) , φi ∈ Eti ,

“that depend only on finitely many components.” The projective limit

P = lim←−Pτ clearly has mass 1.

Exercise A.3.19 Suppose T is the disjoint union of two non-void subsets T1, T2 .
Set (Ei, Ei,Pi) def=

Q
t∈Ti

(Et, Et,Pt), i = 1, 2. Then in a canonical way

Y

t∈T

(Et, Et,Pt) = (E1, E1,P1) × (E2, E2,P2) , so that,

for φ ∈ E ,

Z
φ(e1, e2)P(de1, de2) =

Z “Z
φ(e1, e2)P2(de2)

”
P1(de1) . (A.3.6)

The present projective system is clearly full, in fact so much so that no
tightness is needed to deduce the σ-additivity of P = lim←−Pτ from that of

the factors Pt :

Lemma A.3.20 If the Pt are σ-additive, then so is P .
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Proof. Let (φn) be a pointwise decreasing sequence in E+ and assume that
for all n ∫

φn(e) P(de) ≥ a > 0 .

There is a countable collection T0 = {t1, t2, . . .} ⊂ T so that every φn
depends only on coordinates in T0 . Set T1

def= {t1} , T2
def= {t2, t3, . . .} . By

(A.3.6), ∫ (∫
φn(e1, e2)P2(de2)

)
Pt1(de1) > a

for all n . This can only be if the integrands of Pt1 , which form a pointwise
decreasing sequence of functions in Et1 , exceed a at some common point

e′1 ∈ Et1 : for all n
∫
φn(e

′
1, e2) P2(de2) ≥ a .

Similarly we deduce that there is a point e′2 ∈ Et2 so that for all n
∫
φn(e′1, e

′
2, e3) P3(de3) ≥ a ,

where e3 ∈ E3
def= Et3×Et4 ×· · ·. There is a point e′ = (et) ∈ E with e′ti = e′i

for i = 1, 2, . . ., and clearly φn(e′) ≥ a for all n .

So our product measure is σ-additive, and we can effect the usual extension
upon it (see page 395 ff.).

Exercise A.3.21 State and prove Fubini’s theorem for a P-integrable function
f : E → R .

Images, Law, and Distribution

Let (X, EX) and (Y, EY ) be two spaces, each equipped with an alge-
bra of bounded elementary integrands, and let µ : EX → R be a posi-

tive σ-continuous measure on (X, EX). A map Φ : X → Y is called
µ-measurable29 if ψ ◦ Φ is µ-integrable for every ψ ∈ EY . In this case

the image of µ under Φ is the measure ν = Φ[µ] on EY defined by

ν(ψ) =

∫
ψ ◦ Φ dµ , ψ ∈ EY .

Some authors write µ ◦ Φ−1 for Φ[µ] . ν is also called the distribution or

law of Φ under µ . For every x ∈ X let λx be the Dirac measure at Φ(x).
Then clearly ∫

Y

ψ(y) ν(dy) =

∫

X

∫

Y

ψ(y)λx(dy) µ(dx)

29 The “right” definition is actually this: Φ is µ-measurable if it is largely uniformly
continuous in the sense of definition 3.4.2 on page 110, where of course X,Y are given
the uniformities generated by EX ,EY , respectively.
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for ψ ∈ EY , and Fubini’s theorem A.3.18 says that this equality extends to
all ν-integrable functions. This fact can be read to say: if h is ν-integrable,

then h ◦ Φ is µ-integrable and
∫

Y

h dν =

∫

X

h ◦ Φ dµ . (A.3.7)

We leave it to the reader to convince herself that this definition and conclusion
stay mutatis mutandis when both µ and ν are σ-finite.

Suppose X and Y are (the step functions over) σ-algebras. If µ is a
probability P , then the law of Φ is evidently a probability as well and is

given by
Φ[P](B) def= P([Φ ∈ B]) , ∀B ∈ Y . (A.3.8)

Suppose Φ is real-valued. Then the cumulative distribution function 30

of (the law of) Φ is the function t 7→ FΦ(t) = P[Φ ≤ t] = Φ[P]
(
(−∞, t]

)
.

Theorem A.3.18 applied to (y, λ) 7→ φ′(λ)[Φ(y) > λ] yields
∫
φ dΦ[P] =

∫
φ ◦ Φ dP (A.3.9)

=

∫ +∞

−∞
φ′(λ)P[Φ > λ] dλ =

∫ +∞

−∞
φ′(λ)

(
1 − FΦ(λ)

)
dλ

for any differentiable function φ that vanishes at −∞ . One defines the
cumulative distribution function F = Fµ for any measure µ on the

line or half-line by F (t) = µ((−∞, t]) , and then denotes µ by dF and the
variation µ variously by |dF | or by d F .

The Vector Lattice of All Measures

Let E be a σ-finite algebra and vector lattice closed under chopping, of
bounded functions on some set F . We denote by M∗[E ] the set of all measures

– i.e., σ-continuous elementary integrals of finite variation – on E . This is a

vector space under the usual addition and scalar multiplication of functions.
Defining an order by saying that µ ≤ ν is to mean that ν − µ is a positive

measure22 makes M∗[E ] into a vector lattice. That is to say, for every two
measures µ, ν ∈ M∗[E ] there is a least measure µ∨ν greater than both µ and

ν and a greatest measure µ ∧ ν less than both. In these terms the variation
µ is nothing but µ ∨ (−µ). In fact, M∗[E ] is order-complete: suppose

M ⊂ M∗[E ] is order-bounded from above, i.e., there is a ν ∈ M∗[E ] greater
than every element of M ; then there is a least upper order bound

∨M [5].

Let Eσ0 = {φ ∈ Eσ : |φ| ≤ ψ for some ψ ∈ E} , and for every µ ∈ M∗[E ]
let µσ denote the restriction of the extension

∫
dµ to Eσ0 . The map µ 7→ µσ

is an order-preserving linear isomorphism of M∗[E ] onto M∗
(
Eσ0
)
.

30 A distribution function of a measure µ on the line is any function F : (−∞,∞) → R

that has µ((a, b]) = F (b)−F (a) for a < b in (−∞,∞). Any two differ by a constant. The
cumulative distribution function is thus that distribution function which has F (−∞) = 0.
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Every µ ∈ M∗[E ] has an extension whose σ-algebra of µ-measurable sets
includes Eσe but is generally cardinalities bigger. The universal completion

of E is the collection of all sets that are µ-measurable for every single
µ ∈ M∗[E ] . It is denoted by E∗e . It is clearly a σ-algebra containing Eσe .

A function f measurable on E∗e is called universally measurable. This is
of course the same as saying that f is µ-measurable for every µ ∈ M∗[E ] .

Theorem A.3.22 (Radon–Nikodym) Let µ, ν ∈ M∗[E ] , with E σ-finite. The

following are equivalent: 26

(i) µ =
∨
k∈N µ ∧ (k ν ) .

(ii) For every decreasing sequence φn ∈ E+ , ν(φn)→0 =⇒ µ(φn)→0.

(iii) For every decreasing sequence φn ∈ Eσ0+ , νσ(φn)→0 =⇒ µσ(φn)→0.

(iv) For φ ∈ Eσ0 , νσ(φ) = 0 implies µσ(φ) = 0 .

(v) A ν-negligible set is µ-negligible.

(vi) There exists a function g ∈ Eσ such that µ(φ) = νσ(gφ) for all φ ∈ E .

In this case µ is called absolutely continuous with respect to ν and we
write µ� ν ; furthermore, then

∫
f dµ =

∫
fg dν whenever either side makes

sense. The function g is the Radon–Nikodym derivative or density of

µ with respect to ν , and it is customary to write µ = gν , that is to say, for
φ ∈ E we have (gν)(φ) = νσ(gφ) .

If µ� ρ for all µ ∈ M ⊂ M∗[E ] , then
∨M � ρ .

Exercise A.3.23 Let µ, ν : Cb(E) → R be σ-additive with µ � ν . If ν is
order-continuous and tight, then so is µ .

Conditional Expectation

Let Φ : (Ω,F) → (Y,Y) be a measurable map of measurable spaces and µ a
positive finite measure on F with image ν def= Φ[µ] on Y .

Theorem A.3.24 (i) For every µ-integrable function f : Ω → R there exists

a ν-integrable Y-measurable function E[f |Φ] = Eµ[f |Φ] : Y → R , called the

conditional expectation of f given Φ , such that

∫

Ω

f · h ◦ Φ dµ =

∫

Y

E[f |Φ] · h dν

for all bounded Y-measurable h : Y → R . Any two conditional expectations
differ at most in a ν-negligible set of Y and depend only on the class of f .

(ii) The map f 7→ Eµ[f |Φ] is linear and positive, maps 1 to 1 , and is

contractive31 from Lp(µ) to Lp(ν) when 1 ≤ p ≤ ∞ .

31 A linear map Φ : E → S between seminormed spaces is contractive if there exists a
γ ≤ 1 such that

‚‚Φ(x)
‚‚
S
≤ γ ·

‚‚x
‚‚
E

for all x ∈ E ; the least γ satisfying this inequality
is the modulus of contractivity of Φ. If the contractivity modulus is strictly less than 1,
then Φ is strictly contractive.
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(iii) Assume Γ : R → R is convex 32 and f : Ω → R is F-measurable and
such that Γ ◦ f is ν-integrable. Then if µ(1) ≥ 1 , we have ν-almost surely

Γ
(
Eµ[f |Φ]

)
≤ Eµ[Γ(f)|Φ] . (A.3.10)

Proof. (i) Consider the measure fµ : B 7→
∫
B
f dµ , B ∈ F , and its image

ν′ = Φ[fµ] . This is a measure on the σ-algebra Y , absolutely continuous with
respect to ν . The Radon–Nikodym theorem provides a derivative dν ′/dν ,

which we may call Eµ[f |Φ]. If f is changed µ-negligibly, then the measure ν ′

and thus the (class of the) derivative do not change.
(ii) The linearity and positivity are evident. The contractivity follows from

(iii) and the observation that x 7→ |x|p is convex when 1 ≤ p <∞ .
(iii) There is a countable collection of linear functions `n(x) = αn + βnx

such that Γ(x) = supn `n(x) at every point x ∈ R . Linearity and positivity
give

`n
(
Eµ[f |Φ]

)
= Eµ

[
`n(f)|Φ

]
≤ Eµ[Γ(f)|Φ] a.s. ∀ n ∈ N .

Upon taking the supremum over n , Jensen’s inequality (A.3.10) follows.

Frequently the situation is this: Given is not a map Φ but a sub-σ-algebra
Y of F . In that case we understand Φ to be the identity (Ω,F) → (Ω,Y).

Then Eµ[f |Φ] is usually denoted by E[f |Y] or Eµ[f |Y] and is called the
conditional expectation of f given Y . It is thus defined by the identity

∫
f ·H dµ =

∫
Eµ[f |Y] ·H dµ , H ∈ Yb ,

and (i)–(iii) continue to hold, mutatis mutandis.

Exercise A.3.25 Let µ be a subprobability (µ(1) ≤ 1) and φ : R+ → R+ a
concave function. Then for all µ-integrable functions z

Z
φ(|z|) dµ ≤ φ

„Z
|z| dµ

«
.

Exercise A.3.26 On the probability triple (Ω,G,P) let F be a sub-
σ-algebra of G , X an F/X -measurable map from Ω to some measurable space
(Ξ,X ), and Φ a bounded X ⊗ G-measurable function. For every x ∈ Ξ set
Φ(x, ω) def= E[Φ(x, .)|F ](ω). Then E[Φ(X(.), .)|F ](ω) = Φ(X(ω), ω) P-almost
surely.

Numerical and σ-Finite Measures

Many authors define a measure to be a triple (Ω,F , µ), where F is a σ-algebra
on Ω and µ : F → R+ is numerical, i.e., is allowed to take values in the

extended reals R , with suitable conventions about the meaning of r+∞ , etc.

32 Γ is convex if Γ(λx+(1−λ)x′) ≤ λΓ(x)+(1−λ)Γ(x′) for x, x′ ∈ domΓ and 0 ≤ λ ≤ 1;
it is strictly convex if Γ(λx + (1−λ)x′) < λΓ(x) + (1−λ)Γ(x′) for x 6= x′ ∈ domΓ and
0 < λ < 1.
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(see A.1.2). µ is σ-additive if it satisfies µ
(⋃

Fn
)

=
∑
µ(Fn) for mutually

disjoint sets Fn ∈ F . Unless the δ-ring Dµ def= {F ∈ F : µ(F ) <∞} generates

the σ-algebra F , examples of quite unnatural behavior can be manufactured
[110]. If this requirement is made, however, then any reasonable integration

theory of the measure space (Ω,F , µ) is essentially the same as the integration
theory of (Ω,Dµ, µ) explained above.

µ is called σ-finite if Dµ is a σ-finite class of sets (exercise A.3.2), i.e., if
there is a countable family of sets Fn ∈ F with µ(Fn) <∞ and

⋃
n Fn = Ω;

in that case the requirement is met and (Ω,F , µ) is also called a σ-finite
measure space.

Exercise A.3.27 Consider again a measurable map Φ : (Ω,F) → (Y,Y) of
measurable spaces and a measure µ on F with image ν on Y , and assume that
both µ and ν are σ-finite on their domains.

(i) With µ0 denoting the restriction of µ to Dµ , µ = µ∗
0 on F .

(ii) Theorem A.3.24 stays, including Jensen’s inequality (A.3.10).
(iii) If Γ is strictly convex, then equality holds in inequality (A.3.10) if and only if

f is almost surely equal to a function of the form f ′ ◦ Φ, f ′ Y-measurable.
(iv) For h ∈ Yb , E[fh ◦ Φ|Φ] = h · E[f |Φ] provided both sides make sense.
(v) Let Ψ : (Y,Y) → (Z,Z) be measurable, and assume Ψ[ν] is σ-finite. Then

Eµ[f |Ψ ◦ Φ] = Eν [Eµ[f |Φ]|Ψ] , and E[f |Z] = E[E[f |Y]|Z]

when Ω = Y = Z and Z ⊂ Y ⊂ F .
(vi) If E[f · b] = E[f · E[b|Y]] for all b ∈ L∞(Y), then f is measurable on Y .

Exercise A.3.28 The argument in the proof of Jensen’s inequality theorem A.3.24
can be used in a slightly different context. Let E be a Banach space, ν a signed
measure with σ-finite variation ν , and f ∈ L1

E(ν) (see item A.3.15). Then

‚‚‚
Z
f dν

‚‚‚
E
≤
Z

‖f ‖E d ν .

Exercise A.3.29 Yet another variant of the same argument can be used to estab-
lish the following inequality, which is used repeatedly in chapter 5. Let (F,F , µ)
and (G,G, ν) be σ-finite measure spaces. Let f be a function measurable on the
product σ-algebra F ⊗ G on F ×G . Then

‚‚‚‖f ‖Lp(µ)

‚‚‚
Lq(ν)

≤
‚‚‚‖f ‖Lq(ν)

‚‚‚
Lp(µ)

for 0 < p ≤ q ≤ ∞ .

Characteristic Functions

It is often difficult to get at the law of a random variable Φ : (F,F) → (G,G)

through its definition (A.3.8). There is a recurring situation when the pow-
erful tool of characteristic functions can be applied. Namely, let us suppose

that G is generated by a vector space Γ of real-valued functions. Now, inas-
much as γ = −i limn→∞ n

(
eiγ/n − ei0

)
, G is also generated by the functions

y 7→ eiγ(y) , γ ∈ Γ .
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These functions evidently form a complex multiplicative class eiΓ , and in
view of exercise A.3.5 any σ-additive measure µ of totally finite variation

on G is determined by its values

µ̂(γ) =

∫

G

eiγ(y) µ(dy) (A.3.11)

on them. µ̂ is called the characteristic function of µ . We also write µ̂Γ

when it is necessary to indicate that this notion depends on the generating

vector space Γ, and then talk about the characteristic function of µ for Γ.
If µ is the law of Φ : (F,F) → (G,G) under P , then (A.3.7) allows us to

rewrite equation (A.3.11) as

Φ̂[P](γ) =

∫

G

eiγ(y) Φ[P](dy) =

∫

F

eiγ◦Φ dP , γ ∈ Γ .

Φ̂[P] = Φ̂[P]Γ is also called the characteristic function of Φ.

Example A.3.30 Let G = Rn , equipped of course with its Borel σ-algebra.

The vector space Γ of linear functions x 7→ 〈ξ|x〉 , one for every ξ ∈ Rn ,
generates the topology of Rn and therefore also generates B•(Rn). Thus

any measure µ of finite variation on Rn is determined by its characteristic
function for Γ

F[µ(dx)](ξ) = µ̂(ξ) =

∫

Rn

e
i〈ξ|x〉

µ(dx) , ξ ∈ Rn .

µ̂ is a bounded uniformly continuous complex-valued function on the dual Rn

of Rn .

Suppose that µ has a density g with respect to Lebesgue measure λ ; that
is to say, µ(dx) = g(x)λ(dx). µ has totally finite variation if and only if

g is Lebesgue integrable, and in fact µ = |g|λ . It is customary to write
ĝ or F[g(x)] for µ̂ and to call this function the Fourier transform 33 of g

(and of µ). The Riemann–Lebesgue lemma says that ĝ ∈ C0(Rn). As g
runs through L1(λ), the ĝ form a subalgebra of C0(Rn) that is practically

impossible to characterize. It does however contain the Schwartz space S
of infinitely differentiable functions that together with their partials of any

order decay at ∞ faster than |ξ|−k for any k ∈ N . By theorem A.2.2 this

algebra is dense in C0(Rn). For g, h ∈ S (and whenever both sides make
sense) and 1 ≤ ν ≤ n

F[ixνg(x)](ξ) =
∂

∂ξν
F[g(x)](ξ) and F

[∂g(x)
∂xν

]
(ξ) = −iξν · ĝ(ξ)

ĝ?h = ĝ · ĥ , ĝ·h = ĝ?ĥ and34 *̂µ = *̂µ . (A.3.12)

33 Actually it is the widespread custom among analysts to take for Γ the space of lin-
ear functionals y 7→ 2π〈ξ|x〉, ξ ∈ Rn , and to call the resulting characteristic func-
tion the Fourier transform. This simplifies the Fourier inversion formula (A.3.13) to
g(x) =

R
e−2πi〈ξ|x〉bg(ξ) dξ .

34 *φ(x) def= φ(−x) and *µ(φ) def= µ(*φ) define the reflections through the origin *φ and *µ.

Note the perhaps somewhat unexpected equality *g·λ = (−1)n · *g · λ.
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Roughly: the Fourier transform turns partial differentiation into multiplica-
tion with −i times the corresponding coordinate function, and vice versa; it

turns convolution into the pointwise product, and vice versa. It commutes
with reflection µ 7→ *µ through the origin. g can be recovered from its

Fourier transform ĝ by the Fourier inversion formula

g(x) = F−1[ĝ](x) =
1

(2π)n

∫

Rn

e−i〈ξ|x〉 ĝ(ξ) dξ . (A.3.13)

Example A.3.31 Next let (G,G) be the path space C n , equipped with its

Borel σ-algebra. G = B•(C n) is generated by the functions w 7→ 〈α|w〉t
(see page 15). These do not form a vector space, however, so we emulate
example A.3.30. Namely, every continuous linear functional on C n is of the

form

w 7→ 〈w|γ〉 def=

∫ ∞

0

n∑

ν=1

wνt dγ
ν
t ,

where γ = (γν)nν=1 is an n-tupel of functions of finite variation and of compact
support on the half-line. The continuous linear functionals do form a vector

space Γ = C n∗ that generates B•(C n) (ibidem). Any law L on C n is
therefore determined by its characteristic function

L̂(γ) =

∫

C n

ei〈w|γ〉 L(dw) .

An aside: the topology generated 14 by Γ is the weak topology σ(C n,C n∗)
on C n (item A.2.32) and is distinctly weaker than the topology of uniform
convergence on compacta.

Example A.3.32 Let H be a countable index set, and equip the “sequence
space” RH with the topology of pointwise convergence. This makes RH into

a Fréchet space. The stochastic analysis of random measures leads to the
space DRH of all càdlàg paths [0,∞) → RH (see page 175). This is a polish

space under the Skorohod topology; it is also a vector space, but topology
and linear structure do not cooperate to make it into a topological vector

space. Yet it is most desirable to have the tool of characteristic functions at

one’s disposal, since laws on DRH do arise (ibidem). Here is how this can
be accomplished. Let Γ denote the vector space of all functions of compact

support on [0,∞) that are continuously differentiable, say. View each γ ∈ Γ
as the cumulative distribution function of a measure dγt = γ̇tdt of compact

support. Let ΓH0 denote the vector space of all H-tuples γ = {γh : h ∈ H}
of elements of Γ all but finitely many of which are zero. Each γ ∈ ΓH0 is

naturally a linear functional on DRH , via

DRH 3 z. 7→ 〈z.|γ〉 def=
∑

h∈H

∫ ∞

0

zht dγ
h
t ,
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a finite sum. In fact, the 〈.|γ〉 are continuous in the Skorohod topology
and separate the points of DRH ; they form a linear space Γ of continuous

linear functionals on DRH that separates the points. Therefore, for one good
thing, the weak topology σ(DRH ,Γ ) is a Lusin topology on DRH , for which

every σ-additive probability is tight, and whose Borels agree with those of the
Skorohod topology; and for another, we can define the characteristic function

of any probability P on DRH by

P̂(γ) def= E
[
ei〈.|γ〉

]
.

To amplify on examples A.3.31 and A.3.32 and to prepare the way for

an easy proof of the Central Limit Theorem A.4.4 we provide here a simple

result:
Lemma A.3.33 Let Γ be a real vector space of real-valued functions on some

set E . The topologies generated 14 by Γ and by the collection eiΓ of functions
x 7→ eiγ(x), γ ∈ Γ , have the same convergent sequences.

Proof. It is evident that the topology generated by eiΓ is coarser than the

one generated by Γ. For the converse, let (xn) be a sequence that converges

to x ∈ E in the former topology, i.e., so that eiγ(xn) → eiγ(x) for all γ ∈ Γ.
Set δn = γ(xn) − γ(x). Then eitδn → 1 for all t . Now

1

K

∫ K

−K
1 − eitδn dt = 2

(
1 − 1

K

∫ K

0

cos(tδn) dt

)

= 2

(
1 − sin(δnK)

δnK

)
≥ 2

(
1 − 1

|δnK|

)
.

For sufficiently large indices n ≥ n(K) the left-hand side can be made smaller
than 1, which implies 1/|δnK| ≥ 1/2 and |δn| ≤ 2/K : δn → 0 as desired.

The conclusion may fail if Γ is merely a vector space over the rationals Q :
consider the Q-vector space Γ of rational linear functions x 7→ qx on R . The

sequence (2πn!) converges to zero in the topology generated by eiΓ , but not
in the topology generated by Γ, which is the usual one. On subsets of E

that are precompact in the Γ-topology, the Γ-topology and the eiΓ-topology
coincide, of course, whatever Γ. However,

Exercise A.3.34 A sequence (xn) in Rd converges if and only if (ei〈t|xn〉 )

converges for almost all t ∈ Rd .

Exercise A.3.35 If cL1(γ) = cL2(γ) for all γ in the real vector space Γ, then L1

and L2 agree on the σ-algebra generated by Γ.

Independence On a probability space (Ω,F ,P) consider n P-measurable

maps Φν : Ω → Eν , where Eν is equipped with the algebra Eν of elementary
integrands. If the law of the product map (Φ1, . . . ,Φn) : Ω → E1×· · ·×En –

which is clearly P-measurable if E1×· · ·×En is equipped with E1⊗· · ·⊗En –
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happens to coincide with the product of the laws Φ1[P], . . . ,Φn[P] , then one
says that the family {Φ1, . . . ,Φn} is independent under P . This defi-

nition generalizes in an obvious way to countable collections {Φ1,Φ2, . . .}
(page 404).

Suppose F1,F2, . . . are sub-σ-algebras of F . With each goes the (trivially
measurable) identity map Φn : (Ω,F) → (Ω,Fn). The σ-algebras Fn are

called independent if the Φn are.

Exercise A.3.36 Suppose that the sequential closure of Eν is generated by the
vector space Γν of real-valued functions on Eν . Write Φ for the product mapQn
ν=1 Φν from Ω to

Q
ν Eν . Then Γ def=

Nn
ν=1 Γν generates the sequential closure

of
Nn

ν=1 Eν , and {Φ1, . . . ,Φn} is independent if and only if

dΦ[P]
Γ
(γ1 ⊗ · · · ⊗ γn) =

Y

1≤ν≤n

Φ̂ν [P]
Γν

(γν) .

Convolution

Fix a commutative locally compact group G whose topology has a countable

basis. The group operation is denoted by + or by juxtaposition, and it is
understood that group operation and topology are compatible in the sense

that “the subtraction map” − : G×G → G , (g, g′) 7→ g − g′ , is continuous.
In the instances that occur in the main body (G,+) is either Rn with its

usual addition or {−1, 1}n under pointwise multiplication. On such a group
there is an essentially unique translation-invariant 35 Radon measure η called

Haar measure. In the case G = Rn , Haar measure is taken to be Lebesgue
measure, so that the mass of the unit box is unity; in the second example it

is the normalized counting measure, which gives every point equal mass 2−n

and makes it a probability.

Let µ1 and µ2 be two Radon measures on G that have bounded variation:
‖µi‖ def= sup{µi(φ) : φ ∈ C00(G) , |φ| ≤ 1} < ∞ . Their convolution µ1?µ2

is defined by

µ1?µ2(φ) =

∫

G×G
φ(g1 + g2) µ1(dg1)µ2(dg2) . (A.3.14)

In other words, apply the product µ1×µ2 to the particular class of functions

(g1, g2) 7→ φ(g1 + g2), φ ∈ C00(G). It is easily seen that µ1?µ2 is a Radon
measure on C00(G) of total variation ‖µ1?µ2‖ ≤ ‖µ1‖ · ‖µ2‖ , and that

convolution is associative and commutative. The usual sequential closure
argument shows that equation (A.3.14) persists if φ is a bounded Baire

function on G .
Suppose µ1 has a Radon–Nikodym derivative h1 with respect to Haar

measure: µ1 = h1η with h1 ∈ L1[η] . If φ in equation (A.3.14) is negligible
for Haar measure, then µ1?µ2 vanishes on φ by Fubini’s theorem A.3.18.

35 This means that
R
φ(x + g) η(dx) =

R
φ(x) η(dx) for all g ∈ G and φ ∈ C00(G) and

persists for η-integrable functions φ. If η is translation-invariant, then so is cη for c ∈ R,
but this is the only ambiguity in the definition of Haar measure.
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Therefore µ1?µ2 is absolutely continuous with respect to Haar measure. Its
density is then denoted by h1?µ2 and can be calculated easily:

(
h1?µ1

)
(g) =

∫

G

h1(g − g2) µ2(dg2) . (A.3.15)

Indeed, repeated applications of Fubini’s theorem give
∫

G

φ
(
g
)
µ1?µ2(dg) =

∫

G×G
φ
(
g1 + g2

)
h1

(
g1
)
η(dg1)µ2(dg2)

by translation-invariance: =

∫

G×G
φ
(
(g1−g2) + g2)

)
h1

(
g1−g2

)
η(dg1)µ2(dg2)

with g = g1 : =

∫

G×G
φ
(
g
)
h1

(
g − g2

)
η(dg)µ2(dg2)

=

∫

G

φ(g)
(∫

G

h1(g − g2) µ2(dg2)
)
η(dg) ,

which exhibits
∫
h1(g − g2) µ2(dg2) as the density of µ1?µ2 and yields

equation (A.3.15).

Exercise A.3.37 (i) If h1 ∈ C0(G), then h1?µ2 ∈ C0(G) as well. (ii) If µ2 , too,
has a density h2 ∈ L1[η] with respect to Haar measure η , then the density of µ1?µ2

is commonly denoted by h1?h2 and is given by

(h1?h2)(g) =

Z
h1(g1)h2(g − g1) η(dg1) .

Let us compute the characteristic function of µ1?µ2 in the case G = Rn :

µ̂1?µ2(ζ) =

∫

Rn

ei〈ζ|z1+z2〉 µ1(dz1)µ2(dz2)

=

∫
ei〈ζ|z1〉 µ1(dz1) ·

∫
ei〈ζ|z2〉 µ2(dz2)

= µ̂1(ζ) · µ̂2(ζ) . (A.3.16)

Exercise A.3.38 Convolution commutes with reflection through the origin 34: if
µ = µ1?µ2 , then *µ = *µ1? *µ2 .

Liftings, Disintegration of Measures

For the following fix a σ-algebra F on a set F and a positive σ-finite

measure µ on F (exercise A.3.27). We assume that (F , µ) is complete,
i.e., that F equals the µ-completion Fµ , the σ-algebra generated

by F and all subsets of µ-negligible sets in F . We distinguish care-
fully between a function f ∈ L∞ 36 and its class modulo negligible func-

tions ḟ ∈ L∞ , writing f≤̇g to mean that ḟ ≤ ġ , i.e., that ḟ , ġ con-
tain representatives f ′, g′ with f ′(x) ≤ g′(x) at all points x ∈ F , etc.

36 f is F-measurable and bounded.
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Definition A.3.39 (i) A density on (F,F , µ) is a map θ : F → F with the
following properties:

a) θ(∅) = ∅ and θ(F ) = F ; b) A⊆̇B =⇒ θ(A) ⊆ θ(B) ∈ Ḃ ∀ A,B ∈ F ;
c) A1 ∩ . . . ∩Ak=̇∅ =⇒ θ(A1) ∩ . . . ∩ θ(Ak) = ∅ ∀ k ∈ N, A1, . . . , Ak ∈ F .

(ii) A dense topology is a topology τ ⊂ F with the following properties:
a) a negligible set in τ is void; and b) every set of F contains a τ -open set

from which it differs negligibly.
(iii) A lifting is an algebra homomorphism T : L∞ → L∞ that takes the

constant function 1 to itself and obeys f=̇g =⇒ Tf = Tg ∈ ġ .

Viewed as a map T : L∞ → L∞ , a lifting T is a linear multiplicative inverse
of the natural quotient map ˙ : f 7→ ḟ from L∞ to L∞ . A lifting T is

positive; for if 0 ≤ f ∈ L∞, then f is the square of some function g and
thus Tf = (Tg)2 ≥ 0. A lifting T is also contractive; for if ‖f‖∞ ≤ a, then

−a ≤ f ≤ a=⇒−a ≤ Tf ≤ a=⇒‖Tf‖∞ ≤ a.

Lemma A.3.40 Let (F,F , µ) be a complete totally finite measure space.
(i) If (F,F , µ) admits a density θ , then it has a dense topology τθ that

contains the family {θ(A) : A ∈ F} .
(ii) Suppose (F,F , µ) admits a dense topology τ . Then every function

f ∈ L∞ is µ-almost surely τ -continuous, and there exists a lifting Tτ such
that Tτf(x) = f(x) at all τ -continuity points x of f .

(iii) If (F,F , µ) admits a lifting, then it admits a density.

Proof. (i) Given a density θ , let τθ be the topology generated by the sets
θ(A)\N , A ∈ F , µ(N) = 0. It has the basis τ0 of sets of the form

⋂I

i=1
θ(Ai) \Ni , I ∈ N , Ai ∈ F , µ(Ni) = 0 .

If such a set is negligible, it must be void by A.3.39 (ic). Also, any set A ∈ F
is µ-almost surely equal to its τθ-open subset θ(A) ∩ A . The only thing
perhaps not quite obvious is that τθ ⊂ F . To see this, let U ∈ τθ . There is a

subfamily U ⊂ τ0 ⊂ F with union U . The family U∪f ⊂ F of finite unions
of sets in U also has union U . Set u = sup{µ(B) : B ∈ U∪f} , let {Bn} be

a countable subset of U∪f with u = supn µ(Bn), and set B =
⋃
nBn and

C = θ(F \B). Thanks to A.3.39(ic), B ∩ C = ∅ for all B ∈ U , and thus

B ⊂ U ⊂ Cc=̇B . Since F is µ-complete, U ∈ F .
(ii) A set A ∈ F is evidently continuous on its τ -interior and on the

τ -interior of its complement Ac ; since these two sets add up almost every-
where to F , A is almost everywhere τ -continuous. A linear combination of

sets in F is then clearly also almost everywhere continuous, and then so is
the uniform limit of such. That is to say, every function in L∞ is µ-almost

everywhere τ -continuous.
By theorem A.2.2 there exists a map j from F into a compact space F̂

such that f̂ 7→ f̂ ◦ j is an isometric algebra isomorphism of C(F̂ ) with L∞ .
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Fix a point x ∈ F and consider the set Ix of functions f ∈ L∞ that differ
negligibly from a function f ′ ∈ L∞ that is zero and τ -continuous at x . This

is clearly an ideal of L∞ . Let Îx denote the corresponding ideal of C(F̂ ).
Its zero-set Ẑx is not void. Indeed, if it were, then there would be, for every

ŷ ∈ F̂ , a function f̂y ∈ Îx with f̂y(ŷ) 6= 0. Compactness would produce a

finite subfamily {f̂yi} with f̂ def=
∑
f̂2
yi ∈ Îx bounded away from zero. The

corresponding function f = f̂ ◦ j ∈ Ix would also be bounded away from

zero, say f > ε > 0. For a function f ′=̇f continuous at x , [f ′ < ε] would be
a negligible τ -neighborhood of x , necessarily void. This contradiction shows

that Ẑx 6= ∅ .
Now pick for every x ∈ F a point x̂ ∈ Ẑx and set

Tτf(x) def= f̂(x̂) , f ∈ L∞ .

This is the desired lifting. Clearly Tτ is linear and multiplicative. If f ∈ L∞
is τ -continuous at x , then g def= f − f(x) ∈ Ix , ĝ ∈ Îx , and ĝ(x̂) = 0, which

signifies that Tg(x) = 0 and thus Tτf(x) = f(x): the function Tτf differs
negligibly from f , namely, at most in the discontinuity points of f . If f, g

differ negligibly, then f − g differs negligibly from the function zero, which is

τ -continuous at all points. Therefore f − g ∈ Ix ∀ x and thus T (f − g) = 0
and Tf = Tg.

(iii) Finally, if T is a lifting, then its restriction to the sets of F (see
convention A.1.5) is plainly a density.

Theorem A.3.41 Let (F,F , µ) be a σ-finite measure space (exercise A.3.27)

and denote by Fµ the µ-completion of F .
(i) There exists a lifting T for (F,Fµ, µ) .

(ii) Let C be a countable collection of bounded F-measurable functions.
There exists a set G ∈ F with µ(Gc) = 0 such that G · Tf = G · f for all f

that lie in the algebra generated by C or in its uniform closure, in fact for all
bounded f that are continuous in the topology generated by C .

Proof. (i) We assume to start with that µ ≥ 0 is finite. Consider the set

L of all pairs (A, TA), where A is a sub-σ-algebra of Fµ that contains all
µ-negligible subsets of Fµ and TA is a lifting on (E,A, µ). L is not void:

simply take for A the collection of negligible sets and their complements and
set TAf =

∫
f dµ . We order L by saying (A, TA) � (B, TB) if A ⊂ B

and the restriction of TB to L∞(A) is TA . The proof of the theorem
consists in showing that this order is inductive and that a maximal element

has σ-algebra Fµ .
Let then C = {(Aσ, T

Aσ) : σ ∈ Σ} be a chain for the order � . If the

index set Σ has no countable cofinal subset, then it is easy to find an upper
bound for C : A def=

⋃
σ∈Σ Aσ is a σ-algebra and and TA , defined to coincide

with TAσ on Aσ for σ ∈ Σ, is a lifting on L∞(A). Assume then that Σ
has a countable cofinal subset – that is to say, there exists a countable subset

Σ0 ⊂ Σ such that every σ ∈ Σ is exceeded by some index in Σ0 . We may



A.3 Measure and Integration 417

then assume as well that Σ = N . Letting B denote the σ-algebra generated
by
⋃
nAn we define a density θ on B as follows:

θ(B) def=
[

lim
n→∞

TAnEµ
[
B|An

]
= 1
]
, B ∈ B .

The uniformly integrable martingale Eµ
[
B|An

]
converges µ-almost every-

where to B (page 75), so that θ(B) = B µ-almost everywhere. Properties a)
and b) of a density are evident; as for c), observe that B1∩ . . .∩Bk=̇∅ implies

B1 + · · ·+Bk≤̇k−1, so that due to the linearity of the E[.|An] and TAn not
all of the θ(Bi) can equal 1 at any one point: θ(B1) ∩ . . . ∩ θ(Bk) = ∅ .

Now let τ denote the dense topology τθ provided by lemma A.3.40 and TB

the lifting Tτ (ibidem). If A ∈ An , then θ(A) = TAnA is τ -open, and so is

TAnAc=1 − TAnA. This means that TAnA is τ -continuous at all points, and
therefore TAA = TAnA : TB extends TAn and (B, TB) is an upper bound

for our chain. Zorn’s lemma now provides a maximal element (M, TM) of L .

It is left to be shown that M = F . By way of contradiction assume that

there exists a set F ∈ F that does not belong to M . Let τM be the dense
topology that comes with TM considered as a density. Let F̊ def=

⋃{U ∈ τM :

U⊂̇F} denote the essential interior of F , and replace F by the equivalent
set (F ∪ F̊ ) \ F̊ c . Let N be the σ-algebra generated by M and F ,

N =
{
(M ∩ F ) ∪ (M ′ ∩ F c) : M,M ′ ∈ M

}
,

and τN =
{

(U ∩ F ) ∪ (U ′ ∩ F c) : U,U ′ ∈ τM
}

the topology generated by τM, F, F c . A little set algebra shows that τN is a
dense topology for N and that the lifting TN provided by lemma A.3.40 (ii)

extends TM . (N , TN ) strictly exceeds (M, TM) in the order � , which is
the desired contradiction.

If µ is merely σ-finite, then there is a countable collection {F1, F2, . . .}
of mutually disjoint sets of finite measure in F whose union is F . There

are liftings Tn for µ on the restriction of F to Fn . We glue them together:
T : f 7→∑

Tn(Fn·f) is a lifting for (F,F , µ).

(ii)
⋃
f∈C[Tf 6= f ] is contained in a µ-negligible subset B ∈ F (see A.3.8).

Set G = Bc . The f ∈ L∞ with GTf = Gf ∈ F form a uniformly closed
algebra that contains the algebra A generated by C and its uniform closure

A , which is a vector lattice (theorem A.2.2) generating the same topology τC
as C . Let h be bounded and continuous in that topology. There exists an

increasingly directed family Ah ⊂ A whose pointwise supremum is h (lem-

ma A.2.19). Let G′ = G ∩ TG . Then G′h = supG′Ah
= supG′TAh

is

lower semicontinuous in the dense topology τT of T . Applying this to −h
shows that G′h is upper semicontinuous as well, so it is τT -continuous and

therefore µ-measurable. Now GTh ≥ supGTAh
= supGAh

=Gh. Applying

this to −h shows that GTh ≤ Gh as well, so that GTh = Gh ∈ F .
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Corollary A.3.42 (Disintegration of Measures) Let H be a locally compact
space with a countable basis for its topology and equip it with the algebra

H = C00(H) of continuous functions of compact support; let B be a set
equipped with E , a σ-finite algebra or vector lattice closed under chopping of

bounded functions, and let θ be a positive σ-additive measure on H⊗ E .
There exist a positive measure µ on E and a slew $ 7→ ν$ of positive

Radon measures, one for every $ ∈ B , having the following two properties:
(i) for every φ ∈ H ⊗ E the function $ 7→

∫
φ(η,$) ν$(dη) is measurable

on the σ-algebra P generated by E ; (ii) for every θ-integrable function
f : H × B → R, f(., $) is ν$-integrable for µ-almost all $ ∈ B , the

function $ 7→
∫
f(η,$) ν$(dη) is µ-integrable, and

∫

H×B

f(η,$) θ(dη, d$) =

∫

B

∫

H

f(η,$)ν$(dη) µ(d$) .

If θ(1H ⊗ X) < ∞ for all X ∈ E , then the ν$ can be chosen to be
probabilities.

Proof. There is an increasing sequence of func–
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tions Xi ∈ E with pointwise supremum 1.
The sets Pi

def= [Xi > 1 − 1/i] belong to the

sequential closure Eσ of E and increase to B .

Let Eσ0 denote the collection of those bounded
functions in Eσ that vanish off one of the Pi .

There is an obvious extension of θ to H⊗Eσ0 .
We shall denote it again by θ and prove the

corollary with
(
E , θ
)

replaced by
(
Eσ0 , θ

)
. The

original claim is then immediate from the observation that every function in

φ ∈ E is the dominated limit of the sequence φ·Pi ∈ Eσ0 . There is also an
increasing sequence of compacta Ki ⊂ H whose interiors cover H .

For an h ∈ H consider the map µh : Eσ0 → R defined by

µh(X) =

∫
h ·X dθ , X ∈ Eσ0

and set µ =
∑

i

aiµ
Ki ,

where the ai > 0 are chosen so that
∑
aiµ

Ki(1) <∞ . Then µh is a measure

whose variation µ|h| is majorized by a multiple of µ . Indeed, there is an index
i such that Ki contains the support of h , and then µ|h| ≤ a−1

i ‖h‖∞·µ .

There exists a bounded Radon–Nikodym derivative ġh = dµh
/
dµ . The

map H 3 h 7→ ġh ∈ L∞(µ) is clearly positive and linear. Fix a lifting

T : L∞(µ) → L∞(µ), producing the set C of theorem A.3.41 (ii) by picking
for every h in a uniformly dense countable subcollection of H a representative

gh ∈ ġh that is measurable on P . There then exists a set G ∈ P of
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µ-negligible complement such that G·gh = G·T ġh for all h ∈ H . We define
now the maps ν$ : H → R , one for every $ ∈ B , by

ν$(h) = G($) · T$(ġh) .

As positive linear functionals on H they are Radon measures, and for every
h ∈ H , $ 7→ ν$(h) is P-measurable. Let φ =

∑
k hkXk ∈ H ⊗ Eσ0 . Then

∫
φ(η,$) θ(dη, d$) =

∑

k

∫
Xk($) µhk(d$) =

∑

k

∫
Xkġ

hk dµ

=
∑

k

∫
Xk

∫
hk(η) ν$(dη) µ(d$)

=

∫ ∫
φ(η,$) ν$(dη) µ(d$) .

The functions φ for which the left-hand side and the ultimate right-hand

side agree and for which $ 7→
∫
φ(η,$) ν$(dη) is measurable on P form a

collection closed under H⊗ E-dominated sequential limits and thus contains(
H⊗E

)σ
00

. This proves (i). Theorem A.3.18 on page 403 yields (ii). The last

claim is left to the reader.

Exercise A.3.43 Let (Ω,F , µ) be a measure space, C a countable collection of
µ-measurable functions, and τ the topology generated by C . Every τ -continuous
function is µ-measurable.

Exercise A.3.44 Let E be a separable metric space and µ : Cb(E) → R a
σ-continuous positive measure. There exists a strong lifting, that is to say, a
lifting T : L∞(µ) → L∞(µ) such that Tφ(x) = φ(x) for all φ ∈ Cb(E) and all x in
the support of µ .

Gaussian and Poisson Random Variables

The centered Gaussian distribution with variance t is denoted by γt :

γt(dx) =
1√
2πt

e
−x2/2t

dx .

A real-valued random variable X whose law is γt is also said to be N(0, t),
pronounced “normal zero–t .” The standard deviation of such X or of

γt by definition is
√
t ; if it equals 1, then X is said to be a normalized

Gaussian. Here are a few elementary integrals involving Gaussian distribu-

tions. They are used on various occasions in the main text. |a | stands for
the Euclidean norm |a |

2
.

Exercise A.3.45 A N(0, t)-random variable X has expectation E[X] = 0,
variance E[X2] = t , and its characteristic function is

E
h
eiξX

i
=

Z

R

eiξxγt(dx) = e
−tξ2/2

. (A.3.17)
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Exercise A.3.46 The Gamma function Γ, defined for complex z with a strictly
positive real part by

Γ(z) =

Z ∞

0

uz−1e−u du ,

is convex on (0,∞) and satisfies Γ(1/2) =
√
π , Γ(1) = 1, Γ(z + 1) = z · Γ(z), and

Γ(n+ 1) = n! for n ∈ N .

Exercise A.3.47 The Gauß kernel has momentsZ +∞

−∞

|x|p γt(dx) =
(2t)p/2√

π
· Γ
“ p+ 1

2

”
, (p > −1).

Now let X1, . . . ,Xn be independent Gaussians distributed N(0, t). Then the
distribution of the vector X = (X1, . . . ,Xn) ∈ Rn is γtI(x)dx , where

γtI(x) def=
1

(
√

2πt)n
e
−|x |2/2t

is the n-dimensional Gauß kernel or heat kernel. I indicates the identity matrix.

Exercise A.3.48 The characteristic function of the vector X (or of γtI ) is

e−t|ξ |2/2 . Consequently, the law of ξ is invariant under rotations of Rn . Next let
0 < p <∞ and assume that t = 1. Then

1

(
√

2π)n

Z

Rn

|x |p e−|x |2/2
dx1 dx2 . . . dxn =

2p/2 · Γ
`
n+p

2

´

Γ( n
2
)

,

and for any vector a ∈ Rn

1

(
√

2π)n

Z

Rn

˛̨
˛
nX

ν=1

xν · aν
˛̨
˛
p

e
−|x |2/2

dx1 . . . dxn =
|a|p · 2p/2Γ

`
p+1
2

´
√
π

.

Consider next a symmetric positive semidefinite d× d-matrix B ; that is

to say, xηxθB
ηθ ≥ 0 for every x ∈ Rd .

Exercise A.3.49 There exists a matrix U that depends continuously on B such
that Bηθ =

Pn
ι=1 U

η
ι U

θ
ι .

Definition A.3.50 The Gaussian with covariance matrix B or centered

normal distribution with covariance matrix B is the image of the heat
kernel γI under the linear map U : Rd → Rd.

Exercise A.3.51 The name is justified by these facts: the covariance ma-

trix
∫

Rd x
ηxθ γB(dx) equals Bηθ ; for any t > 0 the characteristic function

of γtB is given by

γ̂tB(ξ) = e
−tξηξθB

ηθ/2
.

Changing topics: a random variable N that takes only positive integer
values is Poisson with mean λ > 0 if

P[N = n] = e−λ
λn

n!
, n = 0, 1, 2 . . . .

Exercise A.3.52 Its characteristic function bN is given by

bN(α) def= E
h
eiαN

i
= e

λ(eiα−1)
.

The sum of independent Poisson random variables Ni with means λi is Poisson
with mean

P
λi .
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A.4 Weak Convergence of Measures

In this section we fix a completely regular space E and consider σ-continuous

measures µ of finite total variation µ (1) = ‖µ‖ on the lattice algebra
Cb(E). Their collection is M∗(E). Each has an extension that integrates

all bounded Baire functions and more. The order-continuous elements of

M∗(E) form the collection M.(E). The positive22 σ-continuous measures of
total mass 1 are the probabilities on E , and their collection is denoted by

M∗1,+(E) or P∗(E). We shall be concerned mostly with the order-continuous
probabilities on E ; their collection is denoted by M.

1,+(E) or P.(E) . Recall

from exercise A.3.10 that P∗(E) = P.(E) when E is separable and metriz-
able. The advantage that the order-continuity of a measure conveys is that

every Borel set, in particular every compact set, is integrable with respect to
it under the integral extension discussed on pages 398–400.

Equipped with the uniform norm Cb(E) is a Banach space, and M∗(E)
is a subset of the dual C∗b (E) of Cb(E). The pertinent topology on M∗(E)

is the trace of the weak∗-topology on C∗b (E); unfortunately, probabilists call
the corresponding notion of convergence weak convergence, 37 and so nolens

volens will we: a sequence 38 (µn) in M∗(E) converges weakly to µ ∈ P∗(E),
written µn ⇒ µ, if

µn(φ) −−−→n→∞ µ(φ) ∀ φ ∈ Cb(E) .

In the typical application made in the main body E is a path space C or D ,

and µn, µ are the laws of processes X(n), X considered as E-valued random
variables on probability spaces

(
Ω(n),F (n),P(n)

)
, which may change with n .

In this case one also writes X(n) ⇒ X and says that X(n) converges to X
in law or in distribution.

It is generally hard to verify the convergence of µn to µ on every single
function of Cb(E). Our first objective is to reduce the verification to fewer

functions.

Proposition A.4.1 Let M ⊂ Cb(E; C) be a multiplicative class that is closed
under complex conjugation and generates the topology, 14 and let µn, µ belong

to P.(E) .39 If µn(φ) → µ(φ) for all φ ∈ M , then µn ⇒ µ 38; moreover,
(i) For h bounded and lower semicontinuous,

∫
h dµ ≤ lim infn→∞

∫
h dµn ;

and for k bounded and upper semicontinuous,
∫
k dµ ≥ lim supn→∞

∫
k dµn .

(ii) If f is a bounded function that is integrable for every one of the µn
and is µ-almost everywhere continuous, then still

∫
f dµ = limn→∞

∫
f dµn .

37 Sometimes called “strict convergence,” “convergence étroite” in French. In the parlance
of functional analysts, weak convergence of measures is convergence for the trace of the
weak∗-topology (!) σ(C∗

b (E), Cb(E)) on P∗(E); they reserve the words “weak conver-

gence” for the weak topology σ(Cb(E), C∗
b (E)) on Cb(E). See item A.2.32 on page 381.

38 Everything said applies to nets and filters as well.
39 The proof shows that it suffices to check that the µn are σ-continuous and that µ is
order-continuous on the real part of the algebra generated by M.
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Proof. Since µn(1) = µ(1) = 1, we may assume that 1 ∈ M . It is easy to see
that the lattice algebra A[M] constructed in the proof of proposition A.3.12

on page 399 still generates the topology and that µn(φ) → µ(φ) for all of its
functions φ . In other words, we may assume that M is a lattice algebra.

(i) We know from lemma A.2.19 on page 376 that there is an increasingly
directed set Mh ⊂ M whose pointwise supremum is h . If a <

∫
h dµ ,40

there is due to the order-continuity of µ a function φ ∈ M with φ ≤ h
and a < µ(φ). Then a < lim inf µn(φ) ≤ lim inf

∫
h dµn . Consequently∫

h dµ ≤ lim inf
∫
h dµn . Applying this to −k gives the second claim of (i).

(ii) Set k(x) def= lim supy→x f(y) and h(x) def= lim infy→x f(y). Then k is

upper semicontinuous and h lower semicontinuous, both bounded. Due to (i),

lim sup

∫
f dµn ≤ lim sup

∫
k dµn

as h = f = k µ-a.e.: ≤
∫
k dµ =

∫
f dµ =

∫
h dµ

≤ lim inf

∫
h dµn ≤ lim inf

∫
f dµn :

equality must hold throughout. A fortiori, µn ⇒ µ .

For an application consider the case that E is separable and metrizable. Then

every σ-continuous measure on Cb(E) is automatically order-continuous (see
exercise A.3.10). If µn → µ on uniformly continuous bounded functions, then

µn ⇒ µ and the conclusions (i) and (ii) persist. Proposition A.4.1 not only

reduces the need to check µn(φ) → µ(φ) to fewer functions φ , it can also
be used to deduce µn(f) → µ(f) for more than µ-almost surely continuous

functions f once µn ⇒ µ is established:

Corollary A.4.2 Let E be a completely regular space and (µn) a sequence38 of

order-continuous probabilities on E that converges weakly to µ ∈ P.(E) . Let
F be a subset of E , not necessarily measurable, that has full measure for every

µn and for µ (i.e.,
∫ .
F dµ =

∫ .
F dµn = 1 ∀ n). Then

∫
f dµn →

∫
f dµ

for every bounded function f that is integrable for every µn and for µ and

whose restriction to F is µ-almost everywhere continuous.

Proof. Let E denote the collection of restrictions φ|F to F of functions φ

in Cb(E). This is a lattice algebra of bounded functions on F and generates

the induced topology. Let us define a positive linear functional µ|F on E by

µ|F
(
φ|F ) def= µ(φ) , φ ∈ Cb(E) .

µ|F is well-defined; for if φ, φ′ ∈ Cb(E) have the same restriction to F , then

F ⊂ [φ = φ′] , so that the Baire set [φ 6= φ′] is µ-negligible and consequently

40 This is of course the µ-integral under the extension discussed on pages 398–400.
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µ(φ) = µ(φ′). µ|F is also order-continuous on E . For if Φ ⊂ E is decreasingly
directed with pointwise infimum zero on F , without loss of generality consist-

ing of the restrictions to F of a decreasingly directed family Ψ ⊂ Cb(E), then
[inf Ψ = 0] is a Borel set of E containing F and thus has µ-negligible comple-

ment: inf µ|F (Φ) = inf µ(Ψ) = µ(inf Ψ) = 0. The extension of µ|F discussed
on pages 398–400 integrates all bounded functions of E⇑ , among which are

the bounded continuous functions of F (lemma A.2.19), and the integral is
order-continuous on Cb(F ) (equation (A.3.3)). We might as well identify

µ|F with the probability in P.(F ) so obtained. The order-continuous mean
f → ‖f|F ‖.

µ|F
is the same whether built with E or Cb(F ) as the elementary

integrands,27 agrees with ‖ ‖.
µ

on Cb+(E), and is thus smaller than the lat-

ter. From this observation it is easy to see that if f : E → R is µ-integrable,
then its restriction to F is µ|F -integrable and

∫
f|F dµ|F =

∫
f dµ . (A.4.1)

The same remarks apply to the µn|F . We are in the situation of pro-

position A.4.1: µn ⇒ µ clearly implies µn|F
(
ψ|F
)

→ µ|F
(
ψ|F
)

for all
ψ|F in the multiplicative class E that generates the topology, and therefore

µn|F (φ) → µ|F (φ) for all bounded functions φ on F that are µ|F -almost
everywhere continuous.

This translates easily into the claim. Namely, the set of points in F
where f|F is discontinuous is by assumption µ-negligible, so by (A.4.1) it

is µ|F -negligible: f|F is µ|F -almost everywhere continuous. Therefore
∫
f dµn =

∫
f|F dµn|F →

∫
f|F dµ|F =

∫
f dµ .

Proposition A.4.1 also yields the Continuity Theorem on Rd without further

ado. Namely, since the complex multiplicative class {x 7→ ei〈x|α〉 : α ∈ Rd}
generates the topology of Rd (lemma A.3.33), the following is immediate:

Corollary A.4.3 (The Continuity Theorem) Let µn be a sequence of prob-
abilities on Rd and assume that their characteristic functions µ̂n converge

pointwise to the characteristic function µ̂ of a probability µ . Then µn ⇒ µ ,
and the conclusions (i) and (ii) of proposition A.4.1 continue to hold.

Theorem A.4.4 (Central Limit Theorem with Lindeberg Criteria) For n ∈ N
let X1

n, . . . , X
rn
n be independent random variables, defined on probability

spaces (Ωn,Fn,Pn) . Assume that En[Xk
n = 0] and (σkn)

2 def= En[|Xk
n|2] < ∞

for all n ∈ N and k ∈ {1, . . . , rn} , set Sn =
∑rn

k=1X
k
n and s2n = var(Sn) =∑rn

k=1 |σkn|2 , and assume the Lindeberg condition

1

s2n

rn∑

k=1

∫

|Xk
n|>εsn

|Xk
n|2 dPn −−−→n→∞ 0 for all ε > 0 . (A.4.2)

Then Sn/sn converges in law to a normalized Gaussian random variable.
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Proof. Corollary A.4.3 reduces the problem to showing that the characteristic
functions Ŝn(ξ) of Sn converge to e−ξ

2/2 (see A.3.45). This is a standard

estimate [10]: replacing Xk
n by Xk

n/sn we may assume that sn = 1. The
inequality27 ∣∣∣eiξx −

(
1 + iξx− ξ2x2/2

)∣∣∣ ≤ |ξx|2 ∧ |ξx|3

results in the inequality
∣∣∣X̂k

n(ξ) −
(
1 − ξ2|σkn|2/2

)∣∣∣ ≤ En
[∣∣ξXk

n

∣∣2 ∧
∣∣ξXk

n

∣∣3
]

≤ ξ2
∫

|Xk
n|≥ε

∣∣Xk
n

∣∣2 dPn +

∫

|Xk
n|<ε

∣∣ξXk
n

∣∣3 dPn

≤ ξ2
∫

|Xk
n|≥ε

∣∣Xk
n

∣∣2 dPn + ε|ξ|3|σkn|2 ∀ ε > 0

for the characteristic function of Xk
n . Since the |σkn|2 sum to 1 and ε > 0 is

arbitrary, Lindeberg’s condition produces

rn∑

k=1

∣∣∣X̂k
n(ξ) −

(
1 − ξ2|σkn|2/2

)∣∣∣ −−−→n→∞ 0 (A.4.3)

for any fixed ξ . Now for ε > 0, |σkn|2 ≤ ε2+
∫
|Xk

n|≥ε
∣∣Xk

n

∣∣2 dPn , so Lindeberg’s

condition also gives maxrn

k=1 σ
k
n −−−→n→∞ 0. Henceforth we fix a ξ and consider

only indices n large enough to ensure that
∣∣1−ξ2|σkn|2/2

∣∣ ≤ 1 for 1 ≤ k ≤ rn .

Now if z1, . . . , zm and w1, . . . , wm are complex numbers of absolute value less
than or equal to one, then

∣∣∣
m∏

k=1

zk −
m∏

k=1

wk

∣∣∣ ≤
m∑

k=1

∣∣zk − wk
∣∣ , (A.4.4)

so (A.4.3) results in

Ŝn(ξ) =

rn∏

k=1

X̂k
n(ξ) =

rn∏

k=1

(
1 − ξ2|σkn|2/2

)
+ Rn , (A.4.5)

where Rn −−−→n→∞ 0: it suffices to show that the product on the right converges

to e−ξ
2/2 =

∏rn

k=1 e
−ξ2|σk

n|2/2 . Now (A.4.4) also implies that

∣∣∣
rn∏

k=1

e−ξ
2|σk

n|2/2 −
rn∏

k=1

(
1 − ξ2|σkn|2/2

)∣∣∣ ≤
rn∑

k=1

∣∣∣e−ξ2|σk
n|2/2 −

(
1 − ξ2|σkn|2/2

)∣∣∣ .

Since |e−x−(1−x)| ≤ x2 for x ∈ R+ ,27 the left-hand side above is majorized

by

ξ4
rn∑

k=1

|σkn|4 ≤ ξ4
rn

max
k=1

|σkn|2 ×
rn∑

k=1

|σkn|2 −−−→n→∞ 0 .

This in conjunction with (A.4.5) yields the claim.
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Uniform Tightness

Unless the underlying completely regular space E is Rd , as in corollary A.4.3,

or the topology of E is rather weak, it is hard to find multiplicative classes
of bounded functions that define the topology, and proposition A.4.1 loses its

utility. There is another criterion for the weak convergence µn ⇒ µ , though,
one that can be verified in many interesting cases, to wit that the family {µn}
be uniformly tight and converge on a multiplicative class that separates the
points.

Definition A.4.5 The set M of measures in M.(E) is uniformly tight
if M def= sup

{
µ (1) : µ ∈ M

}
is finite and if for every α > 0 there is a

compact subset Kα ⊂ E such that sup
{
µ (Kc

α)40 : µ ∈ M
}
< α .

A set P ⊂ P.(E) clearly is uniformly tight if and only if for every α < 1

there is a compact set Kα such that µ(Kα) ≥ 1 − α for all µ ∈ P .

Proposition A.4.6 (Prokhoroff) A uniformly tight collection M ⊂ M.(E)

is relatively compact in the topology of weak convergence of measures 37; the
closure of M belongs to M.(E) and is uniformly tight as well.

Proof. The theorem of Alaoglu, a simple consequence of Tychonoff’s theorem,

shows that the closure of M in the topology σ
(
C∗b (E), Cb(E)

)
consists of

linear functionals on Cb(E) of total variation less than M . What may not
be entirely obvious is that a limit point µ′ of M is order-continuous. This is

rather easy to see, though. Namely, let Φ ⊂ Cb(E) be decreasingly directed
with pointwise infimum zero. Pick a φ0 ∈ Φ. Given an α > 0, find a

compact set Kα as in definition A.4.5. Thanks to Dini’s theorem A.2.1 there
is a φα ≤ φ0 in Φ smaller than α on all of Kα . For any φ ∈ Φ with φ ≤ φα

|µ(φ)| ≤ α µ (Kα) +

∫

Kc
α

φα d µ ≤ α
(
M + ‖φ0 ‖∞

)
∀ µ ∈ M .

This inequality will also hold for the limit point µ′ . That is to say, µ′(Φ) → 0:
µ′ is order-continuous.

If φ is any continuous function less than 13 Kc
α , then |µ(φ)| ≤ α for

all µ ∈ M and so |µ′(φ)| ≤ α . Taking the supremum over such φ gives

µ′ (Kc
α) ≤ α : the closure of M is “just as uniformly tight as M itself.”

Corollary A.4.7 Let (µn) be a uniformly tight sequence 38 in P.(E) and

assume that µ(φ) = limµn(φ) exists for all φ in a complex multiplicative

class M of bounded continuous functions that separates the points. Then
(µn) converges weakly 37 to an order-continuous tight measure that agrees

with µ on M . Denoting this limit again by µ we also have the conclusions
(i) and (ii) of proposition A.4.1.

Proof. All limit points of {µn} agree on M and are therefore identical (see

proposition A.3.12).
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Exercise A.4.8 There exists a partial converse of proposition A.4.6, which is used
in section 5.5 below: if E is polish, then a relatively compact subset P of P

.
(E)

is uniformly tight.

Application: Donsker’s Theorem

Recall the normalized random walk

Z
(n)
t =

1√
n

∑

k≤tn
X

(n)
k =

1√
n

∑

k≤[tn]

X
(n)
k , t ≥ 0 ,

of example 2.5.26. The X
(n)
k are independent Bernoulli random variables

with P(n)[X
(n)
k = ±1] = 1/2; they may be living on probability spaces(

Ω(n),F (n),P(n)
)

that vary with n . The Central Limit Theorem easily

shows27 that, for every fixed instant t , Z
(n)
t converges in law to a Gaussian

random variable with expectation zero and variance t . Donsker’s theorem
extends this to the whole path: viewed as a random variable with values in

the path space D , Z(n) converges in law to a standard Wiener process W .
The pertinent topology on D is the topology of uniform convergence on

compacta; it is defined by, and complete under, the metric

ρ(z, z′) =
∑

u∈N

2−u ∧ sup
0≤s≤u

∣∣z(s) − z′(s)
∣∣ , z, z′ ∈ D .

What we mean by Z(n) ⇒W is this: for all continuous bounded functions φ
on D ,

E(n)
[
φ(Z(n)

. )
] −−−→n→∞ E

[
φ(W.)

]
. (A.4.6)

It is necessary to spell this out, since a priori the law W of a Wiener process

is a measure on C , while the Z(n) take values in D – so how then can the
law Z(n) of Z(n) , which lives on D , converge to W? Equation (A.4.6) says

how: read Wiener measure as the probability

W : φ 7→
∫
φ|C dW , φ ∈ Cb(D) ,

on D . Since the restrictions φ|C , φ ∈ Cb(D), belong to Cb(C ), W is

actually order-continuous (exercise A.3.10). Now C is a Borel set in D (ex-
ercise A.2.23) that carries W , 27 so we shall henceforth identify W with W
and simply write W for both.

The left-hand side of (A.4.6) raises a question as well: what is the meaning
of E(n)

[
φ(Z(n))

]
? Observe that Z(n) takes values in the subspace D (n) ⊂ D

of paths that are constant on intervals of the form [k/n, (k + 1)/n), k ∈ N ,
and take values in the discrete set N/

√
n . One sees as in exercise 1.2.4 that

D(n) is separable and complete under the metric ρ and that the evaluations
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z 7→ zt , t ≥ 0, generate the Borel σ-algebra of this space. We see as above
for Wiener measure that

Z(n) : φ 7→ E(n)
[
φ(Z(n)

. )
]
, φ ∈ Cb(D) ,

defines an order-continuous probability on D . It makes sense to state the

Theorem A.4.9 (Donsker) Z(n) ⇒ W . In other words, the Z(n) converge in
law to a standard Wiener process.

We want to show this using corollary A.4.7, so there are two things to prove:
1) the laws Z(n) form a uniformly tight family of probabilities on Cb(D), and

2) there is a multiplicative class M = M ⊂ Cb(D ; C) separating the points

so that
EZ(n)

[φ] −−−→n→∞ EW[φ] ∀ φ ∈ M .

We start with point 2). Let Γ denote the vector space of all functions
γ : [0,∞) → R of compact support that have a continuous derivative γ̇ . We

view γ ∈ Γ as the cumulative distribution function of the measure dγt =
γ̇tdt and also as the functional z. 7→ 〈z.|γ〉 def=

∫∞
0
zt dγt . We set M =

eiΓ def= {ei〈.|γ〉 : γ ∈ Γ} as on page 410. Clearly M is a multiplicative
class closed under complex conjugation and separating the points; for if

ei
R∞
0
zt dγt = ei

R∞
0
z′t dγt for all γ ∈ Γ, then the two right-continuous paths

z, z′ ∈ D must coincide.

Lemma A.4.10 E(n)
[
ei
R∞
0
Z

(n)
t dγt

]
−−−→n→∞ e−

1
2

R∞
0
γ2

t dt .

Proof. Repeated applications of l’Hospital’s rule show that (tanx − x)/x3

has a finite limit as x→ 0, so that tanx = x+O(x3) at x = 0. Integration
gives ln cosx = −x2/2 + O(x4). Since γ is continuous and bounded and

vanishes after some finite instant, therefore,

∞∑

k=1

ln cos
(γk/n√

n

)
= −1

2

∞∑

k=1

γ2
k/n

n
+ O(1/n)−−−→n→∞ − 1

2

∫ ∞

0

γ2
t dt ,

and so
∞∏

k=1

cos
(γk/n√

n

)
−−−→n→∞ e−

1
2

R∞
0
γ2

t dt . (∗)

Now

∫ ∞

0

Z
(n)
t dγt = −

∫ ∞

0

γt dZ
(n)
t = −

∞∑

k=1

γk/n√
n

·X(n)
k ,

and so E(n)
[
ei
R∞
0
Z

(n)
t dγt

]
= E(n)

[
e
−i
P∞

k=1

γk/n√
n
·X(n)

k

]

=

∞∏

k=1

cos
(γk/n√

n

)
−−−→n→∞ e−

1
2

R∞
0
γ2

t dt .



428 App. A Complements to Topology and Measure Theory

Now to point 1), the tightness of the Z(n) . To start with we need a criterion
for compactness in D . There is an easy generalization of the Ascoli–Arzela

theorem A.2.38:

Lemma A.4.11 A subset K ⊂ D is relatively compact if and only if the

following two conditions are satisfied:
(a) For every u ∈ N there is a constant Mu such that |zt| ≤ Mu for all

t ∈ [0, u] and all z ∈ K .
(b) For every u ∈ N and every ε > 0 there exists a finite collection T u,ε=

{0 = tu,ε0 < tu,ε1 < . . . < tu,εN(ε) = u} of instants such that for all z ∈ K

sup{|zs − zt| : s, t ∈ [tu,εn−1, t
u,ε
n )} ≤ ε , 1 ≤ n ≤ N(ε) . (∗)

Proof. We shall need, and therefore prove, only the sufficiency of these two

conditions. Assume then that they are satisfied and let F be a filter on K .
Tychonoff’s theorem A.2.13 in conjunction with (a) provides a refinement F′

that converges pointwise to some path z . Clearly z is again bounded by Mu

on [0, u] and satisfies (∗). A path z′ ∈ K that differs from z in the points

tu,εn by less than ε is uniformly as close as 3ε to z on [0, u] . Indeed, for
t ∈ [tu,εn−1, t

u,ε
n )

∣∣zt − z′t
∣∣ ≤

∣∣zt − ztu,ε
n−1

∣∣+
∣∣ztu,ε

n−1
− z′tu,ε

n−1

∣∣+
∣∣z′tu,ε

n−1
− z′t

∣∣ < 3ε .

That is to say, the refinement F′ converges uniformly [0, u] to z . This holds
for all u ∈ N , so F′ → z ∈ D uniformly on compacta.

We use this to prove the tightness of the Z(n) :

Lemma A.4.12 For every α > 0 there exists a compact set Kα ⊂ D with the

following property: for every n ∈ N there is a set Ω
(n)
α ∈ F (n) such that

P(n)
[
Ω(n)
α

]
> 1 − α and Z(n)

(
Ω(n)
α

)
⊂ Kα .

Consequently the laws Z(n) form a uniformly tight family.

Proof. For u ∈ N , let

Mu
α

def=
√
u2u+1/α

and set Ω
(n)
α,1

def=
⋂

u∈N

[∣∣Z(n)
∣∣∗
u
≤Mu

α

]
.

Now Z(n) is a martingale that at the instant u has square expectation u , so

Doob’s maximal lemma 2.5.18 and a summation give

P(n)
[∣∣Z(n)

∣∣∗
u
> Mu

α

]
<

√
u/Mu

α and P
[
Ω

(n)
α,1

]
> 1 − α/2 .

For ω ∈ Ω
(n)
α,1 , Z(n)

. (ω) is bounded by Mu
α on [0, u] .
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The construction of a large set Ω
(n)
α,2 on which the paths of Z(n) satisfy (b)

of lemma A.4.11 is slightly more complicated. Let 0 ≤ s ≤ τ ≤ t . Z
(n)
τ − Z

(n)
s

=
∑

[sn]<k≤[τn]X
(n)
k has the same distribution as M

(n)
τ

def=
∑
k≤[τn]−[sn]X

(n)
k .

Now M
(n)
t has fourth moment

E
[∣∣M (n)

t

∣∣4
]

= 3
(
[tn] − [sn]

)2/
n2 ≤ 3

(
t− s+ 1/n

)2
.

Since M (n) is a martingale, Doob’s maximal theorem 2.5.19 gives

E
[

sup
s≤τ≤t

∣∣Z(n)
τ − Z(n)

s

∣∣4
]
≤
(

4

3

)4

· 3(t− s+ 1/n)2 < 10(t− s+ 1/n)2 (∗)

for all n ∈ N . Since
∑
N2−N/2 < ∞ , there is an index Nα such that

40
∑

N≥Nα

N2−N/2 < α/2 .

If n ≤ 2Nα , we set Ω
(n)
α,2 = Ω(n) . For n > 2Nα let N (n) denote the set of

integers N ≥ Nα with 2N ≤ n . For every one of them (∗) and Chebyscheff’s

inequality produce

P
[

sup
k2−N≤τ≤(k+1)2−N

∣∣Z(n)
τ − Z

(n)
k2−N

∣∣ > 2−N/8
]

≤ 2N/2 · 10
(
2−N + 1/n

)2 ≤ 40 · 2−3N/2 , k = 0, 1, 2, . . . .

Hence
⋃

N∈N (n)

⋃

0≤k<N2N

[
sup

k2−N≤τ≤(k+1)2−N

∣∣Z(n)
τ − Z

(n)

k2−N

∣∣ > 2−N/8
]

has measure less than α/2. We let Ω
(n)
α,2 denote its complement and set

Ω(n)
α = Ω

(n)
α,1 ∩ Ω

(n)
α,2 .

This is a set of P(n)-measure greater than 1 − α .

For N ∈ N , let T N be the set of instants that are of the form k/l ,
k ∈ N, l ≤ 2Nα , or of the form k2−N , k ∈ N . For the set Kα we take the

collection of paths z that satisfy the following description: for every u ∈ N
z is bounded on [0, u] by Mu

α and varies by less than 2−N/8 on any interval
[s, t) whose endpoints s, t are consecutive points of T N . Since T N ∩ [0, u] is

finite, Kα is compact (lemma A.4.11).

It is left to be shown that Z(n)
. (ω) ∈ Kα for ω ∈ Ω

(n)
α . This is easy when

n ≤ 2Nα : the path Z(n)
. (ω) is actually constant on [s, t), whatever ω ∈ Ω(n) .

If n > 2Nα and s, t are consecutive points in T N , then [s, t) lies in an
interval of the form

[
k2−N , (k + 1)2−N

)
, N ∈ N (n) , and Z(n)

. (ω) varies by

less than 2−N/8 on [s, t) as long as ω ∈ Ω
(n)
α .



430 App. A Complements to Topology and Measure Theory

Thanks to equation (A.3.7),

Z(n)(Kα) = E
[
Kα ◦ Z(n)

]
≥ P(n)

[
Ω(n)

]
≥ 1 − α , n ∈ N .

The family
{
Z(n) : n ∈ N

}
is thus uniformly tight.

Proof of Theorem A.4.9. Lemmas A.4.10 and A.4.12 in conjunction with cri-
terion A.4.7 allow us to conclude that

(
Z(n)

)
converges weakly to an order-

continuous tight (proposition A.4.6) probability Z on D whose character-
istic function ẐΓ is that of Wiener measure (corollary 3.9.5). By proposi-

tion A.3.12, Z = W .

Example A.4.13 Let δ1, δ2, . . . be strictly positive numbers. On D define by
induction the functions τ0 = τ+

0 = 0,

τk+1(z) = inf
{
t :
∣∣zt − zτk(z)

∣∣ ≥ δk+1

}

and τ+
k+1(z) = inf

{
t :
∣∣∣zt − zτ+

k
(z)

∣∣∣ > δk+1

}
.

Let Φ = Φ(t1, ζ1, t2, ζ2, . . .) be a bounded continuous function on RN and set

φ(z) = Φ
(
τ1(z), zτ1(z), τ2(z), zτ2(z), . . .

)
, z ∈ D .

Then EZ(n)

[φ]−−−→n→∞ EW[φ] .

Proof. The processes Z(n),W take their values in the Borel 41 subset

D
' def=

⋃

n

D
(n) ∪ C

of D . D' therefore27 has full measure for their laws Z(n),W . Henceforth we
consider τk, τ

+
k as functions on this set. At a point z0 ∈ D(n) the functions

τk , τ+
k , z 7→ zτk(z) , and z 7→ zτ+

k
(z) are continuous. Indeed, pick an instant

of the form p/n , where p, n are relatively prime. A path z ∈ D' closer

than 1/(6
√
n) to z0 uniformly on [0, 2p/n] must jump at p/n by at least

2/(3
√
n), and no path in D' other than z0 itself does that. In other words,

every point of
⋃
nD(n) is an isolated point in D' , so that every function

is continuous at it: we have to worry about the continuity of the functions

above only at points w ∈ C . Several steps are required.

a) If z → zτk(z) is continuous on Ek
def= C ∩

[
τk = τ+

k < ∞
]
, then

(a1) τk+1 is lower semicontinuous and (a2) τ+
k+1 is upper semicontinuous

on this set.

To see (a1) let w ∈ Ek , set s = τk(w), and pick t < τk+1(w). Then
α def= δk+1 − sups≤σ≤t |wσ − ws | > 0. If z ∈ D' is so close to w uniformly

41 See exercise A.2.23 on page 379.
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on a suitable interval containing [0, t + 1] that |ws − zτk(z) | < α/2, and is
uniformly as close as α/2 to w there, then

∣∣zσ − zτk(z)

∣∣ ≤ |zσ − wσ| + |wσ − ws| +
∣∣ws − zτk(z)

∣∣

< α/2 + (δk+1 − α) + α/2 = δk+1

for all σ ∈ [s, t] and consequently τk+1(z) > t . Therefore we have as desired

lim infz→w τk+1(z) ≥ τk+1(w).
To see (a2) consider a point w ∈

[
τ+
k+1 < u

]
∩ Ek . Set s = τ+

k (w). There

is an instant t ∈ (s, u) at which α def= |wt − ws | − δk+1 > 0. If z ∈ D'

is sufficiently close to w uniformly on some interval containing [0, u] , then

|zt − wt | < α/2 and |ws − zτk(z) | < α/2 and therefore
∣∣zt − zτk(z)

∣∣ ≥ −|zt − wt| + |wt − ws| −
∣∣ws − zτk(z)

∣∣

> −α/2 + (δk+1 + α) − α/2 = δk+1 .

That is to say, τ+
k+1 < u in a whole neighborhood of w in D' , wherefore as

desired lim supz→w τ
+
k+1(z) ≤ τ+

k+1(w).

b) z → zτk(z) is continuous on Ek for all k ∈ N . This is trivially true for
k = 0. Asssume it for k . By a) τk+1 and τ+

k+1 , which on Ek+1 agree and

are finite, are continuous there. Then so is z → zτk(z) .
c) W[Ek] = 1 , for k = 1, 2, . . .. This is plain for k = 0. Assuming it for

1, . . . , k , set Ek =
⋂
κ≤k Eκ . This is then a Borel subset of C ⊂ D of Wiener

measure 1 on which plainly τk+1 ≤ τ+
k+1 . Let δ = δ1 + · · · + δk+1 . The

stopping time τ+
k+1 occurs before T def= inf

{
t : |wt| > δ

}
, which is integrable

(exercise 4.2.21). The continuity of the paths results in

δ2k+1 =
(
wτk+1

− wτk

)2
=
(
wτ+

k+1
− wτ+

k

)2
.

Thus δ2k+1 = EW
[(
wτk+1

− wτk

)2]
= EW

[
w2
τk+1

− w2
τk

]

= EW
[
2

∫ τk+1

τk

ws dws +
(
τk+1 − τk

)]
= EW[τk+1 − τk] .

The same calculation can be made for τ+
k+1 , so that EW[τ+

k+1 − τk+1 ] = 0 and

consequently τ+
k+1 = τk+1 W-almost surely on Ek : we have W[Ek+1] = 1,

as desired.

Let E =
⋃
n D(n) ∪ ⋂k Ek . This is a Borel subset of D with W[E] =

Z(n)[E] = 1 ∀ n . The restriction of φ to it is continuous. Corollary A.4.2

applies and gives the claim.

Exercise A.4.14 Assume the coupling coefficient f of the markovian SDE (5.6.4),
which reads

Xt = x+

Z t

0

f(Xx
s−) dZs , (A.4.7)

is a bounded Lipschitz vector field. As Z runs through the sequence Z (n) the
solutions X(n) converge in law to the solution of (A.4.7) driven by Wiener process.
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A.5 Analytic Sets and Capacity

The preimages under continuous maps of open sets are open; the preimages
under measurable maps of measurable sets are measurable. Nothing can be

said in general about direct or forward images, with one exception: the con-
tinuous image of a compact set is compact (exercise A.2.14). (Even Lebesgue

himself made a mistake here, thinking that the projection of a Borel set would
be Borel.) This dearth is alleviated slightly by the following abbreviated the-

ory of analytic sets, initiated by Lusin and his pupil Suslin. The presentation
follows [20] – see also [17]. The class of analytic sets is designed to be invari-

ant under direct images of certain simple maps, projections. Their theory
implicitly uses the fact that continuous direct images of compact sets are

compact.

Let F be a set. Any collection F of subsets of F is called a paving
of F , and the pair (F,F) is a paved set. Fσ denotes the collection of

subsets of F that can be written as countable unions of sets in F , and
Fδ denotes the collection of subsets of F that can be written as countable

intersections of members of F . Accordingly Fσδ is the collection of sets
that are countable intersections of sets each of which is a countable union

of sets in F , etc. If (K,K) is another paved set, then the product paving
K × F consists of the “rectangles” A× B , A ∈ K, B ∈ F . The family K of

subsets of K constitutes a compact paving if it has the finite intersection

property: whenever a subfamily K′ ⊂ K has void intersection there exists a
finite subfamily K′0 ⊂ K′ that already has void intersection. We also say that

K is compactly paved by K .

Definition A.5.1 (Analytic Sets) Let (F,F) be a paved set. A set A ⊂ F is

called F-analytic if there exist an auxiliary set K equipped with a compact

paving K and a set B ∈ (K×F)σδ such that A is the projection of B on F :

A = πF (B) .

Here πF = πK×FF is the natural projection of K×F onto its second factor F

– see figure A.16. The collection of F-analytic sets is denoted by A[F ] .

Theorem A.5.2 The sets of F are F-analytic. The intersection and the

union of countably many F-analytic sets are F-analytic.

Proof. The first statement is obvious. For the second, let {An : n = 1, 2 . . .}
be a countable collection of F -analytic sets. There are auxiliary spaces Kn

equipped with compact pavings Kn and (Kn × F)σδ-sets Bn ⊂ Kn × F
whose projection onto F is An . Each Bn is the countable intersection of

sets Bjn ∈ (Kn × F)σ .
To see that

⋂
An is F -analytic, consider the product K =

∏∞
n=1Kn .

Its paving K is the product paving, consisting of sets C =
∏∞
n=1Cn , where
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Figure A.16 An F-analytic set A

Cn = Kn for all but finitely many indices n and Cn ∈ Kn for the finitely
many exceptions. K is compact. For if

{
Cα
}

=
{∏

n C
α
n : α ∈ A

}
⊂ K has

void intersection, then one of the collections
{
Cαn : α

}
, say Cα1 , must have

void intersection, otherwise
∏
n

⋂
α C

α
n 6= ∅ would be contained in

⋂
αC

α .

There are then α1, . . . , αk with
⋂
i C

αi
1 = ∅ , and thus

⋂
i C

αi = ∅ . Let

B′n =
∏

m6=n
Km × Bn =

∏

m6=n
Km ×

∞⋃

j=1

Bjn ⊂ F ×K .

Clearly B =
⋂
B′n belongs to (K × F)σδ and has projection

⋂
An onto F .

Thus
⋂
An is F -analytic.

For the union consider instead the disjoint union K =
⊎
nKn of the Kn .

For its paving K we take the direct sum of the Kn : C ⊂ K belongs to K if

and only if C ∩Kn is void for all but finitely many indices n and a member
of Kn for the exceptions. K is clearly compact. The set B def=

⊎
nBn equals⋂∞

j=1

⊎
nB

j
n and has projection

⋃
An . Thus

⋃
An is F -analytic.

Corollary A.5.3 A[F ] contains the σ-algebra generated by F if and only if the

complement of every set in F is F-analytic. In particular, if the complement
of every set in F is the countable union of sets in F , then A[F ] contains

the σ-algebra generated by F .

Proof. Under the hypotheses the collection of sets A ⊂ F such that both A

and its complement Ac are F -analytic contains F and is a σ-algebra.

The direct or forward image of an analytic set is analytic, under certain

projections. The precise statement is this:

Proposition A.5.4 Let (K,K) and (F,F) be paved sets, with K compact. The

projection of a K × F-analytic subset B of K × F onto F is F-analytic.
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Proof. There exist an auxiliary compactly paved space (K ′,K′) and a set
C ∈

(
K′ × (K × F)

)
σδ

whose projection on K × F is B . Set K ′′ = K ′ ×K

and let K′′ be its product paving, which is compact. Clearly C belongs
to (K′′ × F)σδ , and πK

′′×F
F (C) = πK

′×F
F (B). This last set is therefore

F -analytic.

Exercise A.5.5 Let (F,F) and (G,G) be paved sets. Then A[A[F ]] = A[F ] and
A[F ] ×A[G]⊂A[F × G]. If f : G→ F has f−1(F) ⊂ G , then f−1(A[F ]) ⊂ A[G] .

Exercise A.5.6 Let (K,K) be a compactly paved set. (i) The intersections of
arbitrary subfamilies of K form a compact paving K∩a . (ii) The collection K∪f of
all unions of finite subfamilies of K is a compact paving. (iii) There is a compact
topology on K (possibly far from being Hausdorff) such that K is a collection of
compact (but not necessarily closed) sets.

Definition A.5.7 (Capacities and Capacitability) Let (F,F) be a paved set.

(i) An F-capacity is a positive numerical set function I that is defined on
all subsets of F and is increasing: A ⊂ B =⇒ I(A) ≤ I(B) ; is continuous

along arbitrary increasing sequences: F ⊃ An ↑ A =⇒ I(An) ↑ I(A) ; and is

continuous along decreasing sequences of F : F 3 Fn ↓ F =⇒ I(Fn) ↓ I(F ) .
(ii) A subset C of F is called (F , I)-capacitable, or capacitable for short,

if

I(C) = sup{I(K) : K ⊂ C , K ∈ Fδ} .
The point of the compactness that is required of the auxiliary paving is the
following consequence:

Lemma A.5.8 Let (K,K) and (F,F) be paved sets, with K compact. Denote

by K ⊗ F the paving (K × F)∪f of finite unions of rectangles from K × F .

(i) For any sequence (Cn) in K ⊗ F , πF
(⋂

nCn
)

=
⋂
n πF (Cn) .

(ii) If I is an F-capacity, then

I ◦ πF : A 7→ I
(
πF (A)

)
, A ⊂ K × F ,

is a K ⊗ F-capacity.

Proof. (i) Let x ∈ ⋂
n πF (Cn). The sets Kx

n
def= {k ∈ K : (k, x) ∈ Cn}

belong to K∪f and are non-void. Exercise A.5.6 furnishes a point k in their

intersection, and clearly (k, x) is a point in
⋂
n Cn whose projection on F

is x . Thus
⋂
n πF (Cn) ⊂ πF

(⋂
n Cn

)
. The reverse inequality is obvious.

Here is a direct proof that avoids ultrafilters. Let x be a point in⋂
n πF (Cn) and let us show that it belongs to πF

(⋂
n Cn

)
. Now the sets

Kx
n = {k ∈ K : (k, x) ∈ Cn} are not void. Kx

n is a finite union of sets in K ,

say Kx
n =

⋃I(n)
i=1 K

x
n,i . For at least one index i = n(1), Kx

1,n(1) must intersect

all of the subsequent sets Kx
n , n > 1, in a non-void set. Replacing Kx

n by
Kx

1,n(1) ∩Kx
n for n = 1, 2 . . . reduces the situation to Kx

1 ∈ K∩f . For at least

one index i = n(2), Kx
2,n(2) must intersect all of the subsequent sets Kx

n ,
n > 2, in a non-void set. Replacing Kx

n by Kx
2,n(2) ∩ Kx

n for n = 2, 3 . . .
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reduces the situation to Kx
2 ∈ K∩f . Continue on. The Kx

n so obtained be-
long to K∩f , still decrease with n , and are non-void. There is thus a point

k ∈ ⋂nKx
n . The point (k, x) ∈ ⋂n Cn evidently has πF (k, x) = x , as desired.

(ii) First, it is evident that I ◦ πF is increasing and continuous along

arbitrary sequences; indeed, K × F ⊃ An ↑ A implies πF (An) ↑ πF (A),
whence I ◦ πF (An) ↑ I ◦ πF (An). Next, if Cn is a decreasing sequence in

K ⊗ F , then πF (Cn) is a decreasing sequence of F , and by (i) I ◦ πF (Cn)
= I

(
πF (Cn)

)
decreases to I

(⋂
n πF (Cn)

)
= I ◦ πF

(⋂
nCn

)
: the continuity

along decreasing sequences of K ⊗ F is established as well.

Theorem A.5.9 (Choquet’s Capacitability Theorem) Let F be a paving
that is closed under finite unions and finite intersections, and let I be an

F-capacity. Then every F-analytic set A is (F , I)-capacitable.
Proof. To start with, let A ∈ Fσδ . There is a sequence of sets F σn ∈ Fσ
whose intersection is A . Every one of the F σn is the union of a countable

family {F jn : j ∈ N} ⊂ F . Since F is closed under finite unions, we may
replace F jn by

⋃j
i=1 F

i
n and thus assume that F jn increases with j : F jn ↑ F σn .

Suppose I(A) > r . We shall construct by induction a sequence (F ′n) in F
such that F ′n ⊂ F σn and I(A ∩ F ′1 ∩ . . . ∩ F ′n) > r .

Since I(A) = I(A ∩ F σ1 ) = sup
j
I(A ∩ F j1 ) > r ,

we may choose for F ′1 an F j1 with sufficiently high index j . If F ′1, . . . , F
′
n in

Fσδ have been found, we note that

I(A ∩ F ′1 . . . ∩ F ′n) = I(A ∩ F ′1 ∩ . . . ∩ F ′n ∩ F σn+1)

= sup
j
I(A ∩ F ′1 ∩ . . . ∩ F ′n ∩ F jn+1) > r ;

for F ′n+1 we choose F jn+1 with j sufficiently large. The construction of
the F ′n is complete. Now F δ def=

⋂∞
n=1 F

′
n is an Fδ-set and is contained in

A , inasmuch as it is contained in every one of the F σn . The continuity along
decreasing sequences of F gives I(F δ) ≥ r . The claim is proved for A ∈ Fσδ .

Now let A be a general F -analytic set and r < I(A). There are an
auxiliary compactly paved set (K,K) and an (K × F)σδ-set B ⊂ K × F

whose projection on F is A . We may assume that K is closed under taking
finite intersections by the simple expedient of adjoining to K the intersections

of its finite subcollections (exercise A.5.6). The paving K ⊗ F of K × F is
then closed under both finite unions and finite intersections, and B still

belongs to (K ⊗ F)σδ . Due to lemma A.5.8 (ii), I ◦ πF is a K ⊗ F -capacity
with r < I ◦ πF (B), so the above provides a set C ⊂ B in (K ⊗ F)δ with

r < I
(
πF (C)

)
. Clearly Fr

def= πF (C) is a subset of A with r < I(Fr). Now

C is the intersection of a decreasing family Cn ∈ K ⊗ F , each of which has
πF (Cn) ∈ F , so by lemma A.5.8 (i) Fr =

⋂
n πF (Cn) ∈ Fδ . Since r < I(A)

was arbitrary, A is (F , I)-capacitable.
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Applications to Stochastic Analysis

Theorem A.5.10 (The Measurable Section Theorem) Let (Ω,F) be a mea-
surable space and B ⊂ R+ × Ω measurable on B•(R+) ⊗ F .

(i) For every F-capacity 42 I and ε > 0 there is an F-measurable function

R : Ω → R+ , “an F-measurable random time,” whose graph is contained
in B and such that

I[R < ∞] > I[πΩ(B)] − ε .

(ii) πΩ(B) is measurable on the universal completion F ∗ .
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Figure A.17 The Measurable Section Theorem

Proof. (i) πΩ denotes, of course, the natural projection of B onto Ω. We
equip R+ with the paving K of compact intervals. On Ω × R+ consider the

pavings
K × F and K ⊗ F .

The latter is closed under finite unions and intersections and generates the

σ-algebra B•(R+) ⊗ F . For every set M =
⋃
i[si, ti] × Ai in K ⊗ F and

every ω ∈ Ω the path M.(ω) =
⋃
i:Ai(ω)6=∅[si, ti] is a compact subset of R+ .

Inasmuch as the complement of every set in K×F is the countable union of
sets in K×F , the paving of R+×Ω which generates the σ-algebra B•(R+)⊗F ,

every set of B•(R+)⊗F , in particular B , is K ×F -analytic (corollary A.5.3)
and a fortiori K ⊗F -analytic. Next consider the set function

F 7→ J(F ) def= I[π(F )] = I ◦ πΩ(F ) , F ⊂ B.

According to lemma A.5.8, J is a K ⊗F -capacity. Choquet’s theorem pro-
vides a set K ∈ (K ⊗ F)δ , the intersection of a decreasing countable family

42 In most applications I is the outer measure P∗ of a probability P on F , which by
equation (A.3.2) is a capacity.
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{Cn} ⊂ K ⊗F , that is contained in B and has J(K) > J(B)− ε . The “left
edges” Rn(ω) def= inf{t : (t, ω) ∈ Cn} are simple F -measurable random vari-

ables, with Rn(ω) ∈ Cm(ω) for n ≥ m at points ω where Rn(ω) <∞.
Therefore R def= supnRn is F -measurable, and thus R(ω) ∈ ⋂mCm(ω)

= K(ω) ⊂ B(ω) where R(ω) <∞. Clearly [R < ∞] = πΩ[K] ∈ F has
I[R < ∞] > I[πΩ(B)]− ε .

(ii) To say that the filtration F. is universally complete means of course
that Ft is universally complete for all t ∈ [0,∞] (Ft = F∗t ; see page 407); and

this is certainly the case if F. is P-regular, no matter what the collection P

of pertinent probabilities. Let then P be a probability on F , and Rn
F -measurable random times whose graphs are contained in B and that have
P∗[πΩ(B)] < P[Rn <∞]+1/n . Then A def=

⋃
n[Rn < ∞] ∈ F is contained in

πΩ(B) and has P[A] = P∗[πΩ(B)] : the inner and outer measures of πΩ(B)

agree, and so πΩ(B) is P-measurable. This is true for every probability P
on F , so πΩ(B) is universally measurable.

A slight refinement of the argument gives further information:

Corollary A.5.11 Suppose that the filtration F. is universally complete,

and let T be a stopping time. Then the projection πΩ[B] of a progressively
measurable set B ⊂ [[0, T ]] is measurable on FT .

Proof. Fix an instant t < ∞ . We have to show that πΩ[B] ∩ [T ≤ t] ∈ Ft .
Now this set equals the intersection of πΩ[Bt] with [T ≤ t] , so as [T ≤ t] ∈ FT
it suffices to show that πΩ[Bt] ∈ Ft . But this is immediate from theo-

rem A.5.10 (ii) with F = Ft , since the stopped process Bt is measurable on
B•(R+) ⊗Ft by the very definition of progressive measurability.

Corollary A.5.12 (First Hitting Times Are Stopping Times) If the filtration
F. is right-continuous and universally complete, in particular if it satisfies

the natural conditions, then the debut

DB(ω) def= inf{t : (t, ω) ∈ B}
of a progressively measurable set B ⊂ B is a stopping time.

Proof. Let 0 ≤ t < ∞ . The set B ∩ [[0, t)) is progressively measurable and

contained in [[0, t]], and its projection on Ω is [DB < t] . Due to the universal
completeness of F. , [DB < t] belongs to Ft (corollary A.5.11). Due to the

right-continuity of F. , DB is a stopping time (exercise 1.3.30 (i)).

Corollary A.5.12 is a pretty result. Consider for example a progressively
measurable process Z with values in some measurable state space (S,S),

and let A ∈ S . Then TA
def= inf{t : Zt ∈ A} is the debut of the progressively

measurable set B def= [Z ∈ A] and is therefore a stopping time. TA is the

“first time Z hits A ,” or better “the last time Z has not touched A .” We
can of course not claim that Z is in A at that time. If Z is right-continuous,

though, and A is closed, then B is left-closed and ZTA
∈ A .
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Corollary A.5.13 (The Progressive Measurability of the Maximal Process)
If the filtration F. is universally complete, then the maximal process X? of

a progressively measurable process X is progressively measurable.

Proof. Let 0 ≤ t < ∞ and a > 0. The set [X?
t > a] is the projection on Ω

of the B•[0,∞)⊗ Ft-measurable set [|Xt| > a] and is by theorem A.5.10
measurable on Ft = F∗t : X? is adapted. Next let T be the debut of

[X? > a] . It is identical with the debut of [|X| > a] , a progressively
measurable set, and so is a stopping time on the right-continuous version

F.+ (corollary A.5.12). So is its reduction S to [|X|T > a] ∈ FT+ (proposi-
tion 1.3.9). Now clearly [X? > a] = [[S]]∪((T,∞)). This union is progressively

measurable for the filtration F.+ . This is obvious for ((T,∞)) (proposi-
tion 1.3.5 and exercise 1.3.17) and also for the set [[S]] =

⋂
[[S, S + 1/n))

(ibidem). Since this holds for all a > 0, X? is progressively measurable
for F.+ . Now apply exercise 1.3.30 (v).

Theorem A.5.14 (Predictable Sections) Let (Ω,F.) be a filtered measurable

space and B ⊂ B a predictable set. For every F∞-capacity I 42and every
ε > 0 there exists a predictable stopping time R whose graph is contained

in B and that satisfies (see figure A.17)

I[R < ∞] > I[πΩ(B)] − ε .

Proof. Consider the collection M of finite unions of stochastic intervals of
the form [[S, T ]], where S, T are predictable stopping times. The arbitrary

left-continuous stochastic intervals

((S, T ]] =
⋃

n

⋂

k

[[S + 1/n, T + 1/k]] ∈ Mδσ ,

with S, T arbitrary stopping times, generate the predictable σ-algebra P (ex-
ercise 2.1.6), and then so does M . Let [[S, T ]] , S, T predictable, be an element

of M . Its complement is [[0, S)) ∪ ((T,∞)). Now ((T,∞)) =
⋃

[[T + 1/n, n]] is
M-analytic as a member of Mσ (corollary A.5.3), and so is [[0, S)). Namely,

if Sn is a sequence of stopping times announcing S , then [[0, S)) =
⋃

[[0, Sn]]
belongs to Mσ . Thus every predictable set, in particular B , is M-analytic.

Consider next the set function

F 7→ J(F ) def= I[πΩ(F )] , F ⊂ B.

We see as in the proof of theorem A.5.10 that J is an M-capacity. Choquet’s
theorem provides a set K ∈ Mδ , the intersection of a decreasing countable

family {Mn} ⊂ M , that is contained in B and has J(K) > J(B) − ε . The
“left edges” Rn(ω) def= inf{t : (t, ω) ∈ Mn} are predictable stopping times

with Rn(ω) ∈ Mm(ω) for n ≥ m . Therefore R def= supnRm is a predictable

stopping time (exercise 3.5.10). Also, R(ω) ∈ ⋂mMm(ω) = K(ω) ⊂ B(ω)
where R(ω) < ∞ . Evidently [R < ∞] = πΩ[K] , and therefore I[R < ∞] >

I[πΩ(B)] − ε .
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Corollary A.5.15 (The Predictable Projection) Let X be a bounded measur-
able process. For every probability P on F∞ there exists a predictable process

XP,P such that for all predictable stopping times T

E
[
XT [T <∞]

]
= E

[
XP,PT [T <∞]

]
.

XP,P is called a predictable P-projection of X . Any two predictable
P-projections of X cannot be distinguished with P .

Proof. Let us start with the uniqueness. If XP,P and XP,P are predictable
projections of X , then N def=

[
XP,P > XP,P

]
is a predictable set. It is

P-evanescent. Indeed, if it were not, then there would exist a predictable
stopping time T with its graph contained in N and P[T <∞] > 0; then we

would have E
[
XP,PT

]
> E

[
XP,PT

]
, a plain impossibility. The same argument

shows that if X ≤ Y , then XP,P≤Y P,P except in a P-evanescent set.

Now to the existence. The family M of bounded processes that have

a predictable projection is clearly a vector space containing the constants,
and a monotone class. For if Xn have predictable projections XnP,P and,

say, increase to X , then lim supXnP,P is evidently a predictable projection
of X . M contains the processes of the form X = (t,∞)× g , g ∈ L∞(F∗∞),

which generate the measurable σ-algebra. Indeed, a predictable projection of
such a process is Mg

.− · (t,∞). Here Mg is the right-continuous martingale

Mg
t = E[g|Ft] (proposition 2.5.13) and M g

.− its left-continuous version. For
let T be a predictable stopping time, announced by (Tn), and recall from

lemma 3.5.15 (ii) that the strict past of T is
∨FTn

and contains [T > t] .

Thus E[g|FT−] = E
[
g|
∨

FTn

]

by exercise 2.5.5: = lim E
[
g|FTn

]

by theorem 2.5.22: = limM g
Tn

= Mg
T−

P-almost surely, and therefore

E
[
XT · [T <∞]

]
= E

[
g · [T > t]

]

= E
[
E[g|FT−] · [T > t]

]
= E

[
Mg
T− · [T > t]

]

= E
[(
Mg

.−·(t,∞)
)
T
· [T < ∞]

]
.

This argument has a flaw: M g is generally adapted only to the natural
enlargement FP

.+ and Mg
.− only to the P-regularization FP . It can be fixed

as follows. For every dyadic rational q let M g
q be an Fq-measurable random

variable P-nearly equal to M g
q− (exercise 1.3.33) and set

Mg,n def=
∑

k

Mk2−n

[
k2−n, (k + 1)2−n

)
.
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This is a predictable process, and so is M g def= lim supnM
g,n . Now the

paths of Mg differ from those of M g
.− only in the P-nearly empty set⋃

q[M
g
q− 6= Mg

q ] . So Mg · (t,∞) is a predictable projection of X = (t,∞)×g .
An application of the monotone class theorem A.3.4 finishes the proof.

Exercise A.5.16 For any predictable right-continuous increasing process I

E
hZ

X dI
i

= E
hZ

XP,P dI
i
.

Supplements and Additional Exercises

Definition A.5.17 (Optional or Well-Measurable Processes) The σ-algebra
generated by the càdlàg adapted processes is called the σ-algebra of optional or
well-measurable sets on B and is denoted by O . A function measurable on O is
an optional or well-measurable process.

Exercise A.5.18 The optional σ-algebra O is generated by the right-continuous
stochastic intervals [[S,T )), contains the previsible σ-algebra P , and is contained in
the σ-algebra of progressively measurable sets. For every optional process X there
exist a predictable process X ′ and a countable family {T n} of stopping times such
that [X 6= X ′] is contained in the union

S
n[[Tn]] of their graphs.

Corollary A.5.19 (The Optional Section Theorem) Suppose that the filtra-
tion F. is right-continuous and universally complete, let F = F∞ , and let B ⊂ B
be an optional set. For every F-capacity I 42 and every ε > 0 there exists a stopping
time R whose graph is contained in B and which satisfies (see figure A.17)

I[R <∞] > I[πΩ(B)] − ε .

[Hint: Emulate the proof of theorem A.5.14, replacing M by the finite unions of
arbitrary right-continuous stochastic intervals [[S, T )).]

Exercise A.5.20 (The Optional Projection) Let X be a measurable process.
For every probability P on F∞ there exists a process XO,P that is measurable on
the optional σ-algebra of the natural enlargement FP

.+ and such that for all stopping
times

E[XT [T <∞]] = E[XO,P
T [T <∞]] .

XO,P is called an optional P-projection of X . Any two optional P-projections of
X are indistinguishable with P .

Exercise A.5.21 (The Optional Modification) Assume that the measured
filtration is right-continuous and regular. Then an adapted measurable process X
has an optional modification.

A.6 Suslin Spaces and Tightness of Measures

Polish and Suslin Spaces

A topological space is polish if it is Hausdorff and separable and if its
topology can be defined by a metric under which it is complete. Exercise 1.2.4

on page 15 amounts to saying that the path space C is polish. The name
seems to have arisen this way: the Poles decided that, being a small nation,

they should concentrate their mathematical efforts in one area and do it
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well rather than spread themselves thin. They chose analysis, extending the
achievements of the great Pole Banach. They excelled. The theory of analytic

spaces, which are the continuous images of polish spaces, is essentially due
to them. A Hausdorff topological space F is called a Suslin space if there

exists a polish space P and a continuous surjection p : P → F . A Suslin
space is evidently separable. 43 If a continuous injective surjection p : P → F

can be found, then F is a Lusin space. A subset of a Hausdorff space is a
Suslin set or a Lusin set, of course, if it is Suslin or Lusin in the induced

topology. The attraction of Suslin spaces in the context of measure theory
is this: they contain an abundance of large compact sets: every σ-additive

measure on their Borels is tight.

Exercise A.6.1 (i) If P is polish, then there exists a compact metric space bP
and a homeomorphism j of P onto a dense subset of bP that is both a Gδ-set and

a Kσδ-set of bP .
(ii) A closed subset and a continuous Hausdorff image of a Suslin set are Suslin.

This fact is the clue to everthing that follows.
(iii) The union and intersection of countably many Suslin sets are Suslin.
(iv) In a metric Suslin space every Borel set is Suslin.

Proposition A.6.2 Let F be a Suslin space and E be an algebra of continuous
bounded functions that separates the points of F , e.g., E = Cb(F ) .

(i) Every Borel subset of F is K-analytic.

(ii) E contains a countable algebra E0 over Q that still separates the points

of F . The topology generated by E0 is metrizable, Suslin, and weaker than

the given one (but not necessarily strictly weaker).

(iii) Let m : E → R be a positive σ-continuous linear functional with
‖m‖ def= sup{m(φ) : φ ∈ E , |φ| ≤ 1} < ∞ . Then the Daniell extension

of m integrates all bounded Borel functions. There exists a unique σ-additive
measure µ on B•(F ) that represents m :

m(φ) =

∫
φ dµ , φ ∈ E .

This measure is tight and inner regular, and order-continuous on Cb(F ) .

Proof. Scaling reduces the situation to the case that ‖m‖ = 1. Also, the
Daniell extension of m certainly integrates any function in the uniform closure

of E and is σ-continuous thereon. We may thus assume without loss of

generality that E is uniformly closed and thus is both an algebra and a vector
lattice (theorem A.2.2). Fix a polish space P and a continuous surjection

p : P → F . There are several steps.

(ii) There is a countable subset Φ ⊂ E that still separates the points
of F . To see this note that P × P is again separable and metrizable, and

43 In the literature Suslin and Lusin spaces are often metrizable by definition. We don’t
require this, so we don’t have to check a topology for metrizability in an application.
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let U0[P×P ] be a countable uniformly dense subset of U [P×P ] (see lem-
ma A.2.20). For every φ ∈ E set gφ(x

′, y′) def= |φ(p(x′)) − φ(p(y′))| , and let

UE denote the countable collection

{f ∈ U0[P×P ] : ∃φ ∈ E with f ≤ gφ} .

For every f ∈ UE select one particular φf ∈ E with f ≤ gφf
, thus obtaining

a countable subcollection Φ of E . If x = p(x′) 6= p(y′) = y in F , then

there are a φ ∈ E with 0 < |φ(x) − φ(y)| = gφ(x
′, y′) and an f ∈ U [P × P ]

with f ≤ gφ and f(x′, y′) > 0. The function φf ∈ Φ has gφf
(x′, y′) > 0,

which signifies that φf (x) 6= φf (y): Φ ⊂ E still separates the points of F .

The finite Q-linear combinations of finite products of functions in Φ form a
countable Q-algebra E0 .

Henceforth m′ denotes the restriction m to the uniform closure E ′ def= E0

in E = E . Clearly E ′ is a vector lattice and algebra and m′ is a positive

linear σ-continuous functional on it.

Let j : F → F̂ denote the local E0-compactification of F provided by theo-
rem A.2.2 (ii). F̂ is metrizable and j is injective, so that we may identify F

with the dense subset j(F ) of F̂ . Note however that the Suslin topology of F
is a priori finer than the topology induced by F̂ . Every φ ∈ E ′ has a unique

extension φ̂ ∈ C0(F̂ ) that agrees with φ on F , and Ê ′ = C0(F̂ ). Let us define
m̂′ : C(F̂ ) → R by m̂′(φ̂) = m′(φ). This is a Radon measure on F̂ . Thanks

to Dini’s theorem A.2.1, m̂′ is automatically σ-continuous. We convince

ourselves next that F has upper integral (= outer measure) 1. Indeed, if
this were not so, then the inner measure m̂′∗(F̂ − F ) = 1 − m̂′∗(F ) of its

complement would be strictly positive. There would be a function k ∈ C↓(F̂ ),

pointwise limit of a decreasing sequence φ̂n in C(F̂ ), with k ≤ F̂ − F and

0 < m̂′∗(k)=lim m̂′(φ̂n)=limm′(φn). Now
(
φn
)

decreases to zero on F and
therefore the last limit is zero, a plain contradiction.

So far we do not know that F is m̂′-measurable in F̂ . To prove that

it is it will suffice to show that F is K-analytic in F̂ : since m̂′∗ is a
K-capacity, Choquet’s theorem will then provide compact sets Kn ⊂ F

with sup m̂′(Kn) = sup m̂′∗(Kn) = 1, showing that the inner measure of F
equals 1 as well, so that F is measurable. To show the analyticity of F

we embed P homeomorphically as a Gδ in a compact metric space P̂ , as in
exercise A.6.1. Actually, we shall view P as a Gδ in Π def= F̂ × P̂ , embedded

via x 7→ (p(x), x). The projection π of Π on its first factor F̂ coincides with
p on P .

Now the topologies of both F̂ and P̂ have a countable basis of relatively

compact open balls, and the rectangles made from them constitute a count-
able basis for the topology of Π. Therefore every open set of Π is the count-

able union of compact rectangles and is thus a K×σ -set for the paving K× def=
K[F̂ ] ×K[P̂ ]. The complement of a set in K× is the countable union of sets

in K× , so every Borel set of Π is K×-analytic (corollary A.5.3). In particular,
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Figure A.18 Compactifying the situation

P , which is the countable intersection of open subsets of Π (exer-

cise A.6.1), is K×-analytic. By proposition A.5.4, F = π(P ) is K[F̂ ]-analytic
and a fortiori K[F ]-analytic.

This argument also shows that every Borel set B of F is analytic. Namely,
B↑ def= p−1(B) is a Borel set of P and then of Π, and its image B = π(B↑)
is K[F̂ ]-analytic in F and in F̂ . As above we see that therefore m̂′∗(B) =
sup{

∫
K dm̂′ : K ⊂ B, K ∈ K[F̂ ]} : B 7→ µ(B) def=

∫
B dm̂′ is an inner

regular measure representing m .

Only the uniqueness of µ remains to be shown. Assume then that µ′ is

another measure on the Borel sets of F that agrees with m on E . Taking
Cb(F ) instead of E in the previous arguments shows that µ′ is inner regular.

By theorem A.3.4, µ and µ′ agree on the sets of K[F̂ ] in F , by the inner

regularity on all Borel sets.

A.7 The Skorohod Topology

In this section (E, ρ) is a fixed complete separable metric space. Replacing if

necessary ρ by ρ∧1, we may and shall assume that ρ ≤ 1. We consider the set
DE of all paths z : [0,∞) → E that are right-continuous and have left limits

zt− def= lims↑t zs ∈ E at all finite instants t > 0. Integrators and solutions
of stochastic differential equations are random variables with values in DRn .

In the stochastic analysis of them the maximal process plays an important
role. It is finite at finite times (lemma 2.3.2), which seems to indicate that

the topology of uniform convergence on bounded intervals is the appropriate
topology on D . This topology is not Suslin, though, as it is not separable:

the functions [0, t), t ∈ R+, are uncountable in number, but any two of them
have uniform distance 1 from each other. Results invoking tightness, as for

instance proposition A.6.2 and theorem A.3.17, are not applicable.

Skorohod has given a polish topology on DE . It rests on the idea that

temporal as well as spatial measurements are subject to errors, and that
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paths that can be transformed into each other by small deformations of space
and time should be considered close. For instance, if s ≈ t , then [0, s) and

[0, t) should be considered close. Skorohod’s topology of section A.7 makes
the above-mentioned results applicable. It is not a panacea, though. It is not

compatible with the vector space structure of DR , thus rendering tools from
Fourier analysis such as the characteristic function unusable; the rather useful

example A.4.13 genuinely uses the topology of uniform convergence – the
functions φ appearing therein are not continuous in the Skorohod topology.

It is most convenient to study Skorohod’s topology first on a bounded
time-interval [0, u] , that is to say, on the subspace Du

E ⊂ DE of paths z that

stop at the instant u : z = zu in the notation of page 23. We shall follow
rather closely the presentation in Billingsley [10]. There are two equivalent

metrics for the Skorohod topology whose convenience of employ depends on

the situation. Let Λ denote the collection of all strictly increasing functions
from [0,∞) onto itself, the “time transformations.” The first Skorohod

metric d(0) on Du
E is defined as follows: for z, y ∈ Du

E , d(0)(z, y) is the
infimum of the numbers ε > 0 for which there exists a λ ∈ Λ with

‖λ‖(0) def= sup
0≤t<∞

|λ(t) − t| < ε

and sup
0≤t<∞

ρ
(
zt, yλ(t)

)
< ε .

It is left to the reader to check that

‖λ‖(0)
=
∥∥λ−1

∥∥(0)
and ‖λ ◦ µ‖(0) ≤ ‖λ‖(0)

+ ‖µ‖(0)
, λ, µ ∈ Λ ,

and that d(0) is a metric satisfying d(0)(z, y) ≤ supt ρ(zt, yt). The topology

of d(0) is called the Skorohod topology on Du
E . It is coarser than the uniform

topology. A sequence
(
z(n)

)
of Du

E converges to z ∈ Du
E if and only if there

exist λn ∈ Λ with ‖λn ‖(0) → 0 and z
(n)
λn(t) → zt uniformly in t .

We now need a couple of tools. The oscillation of any stopped path

z : [0,∞) → E on an interval I ⊂ R+ is oI [z]
def= sup

{
ρ(zs, zt) : s, t ∈ I

}
,

and there are two pertinent moduli of continuity:

γδ[z] def= sup
0≤t<∞

o[t,t+δ][z]

and γδ[) [z] def= inf
{

sup
i
o[ti,ti+1)[z] : 0 = t0 < t1 < . . . , |ti+1 − ti| > δ

}
.

They are related by γδ[) [z] ≤ γ2δ[z] . A stopped path z = zu : [0,∞) → E is
in Du

E if and only if γδ[) [z] −−→δ→0 0 and is continuous if and only if γδ[z] −−→δ→0 0

– we then write z ∈ C u
E . Evidently

ρ
(
zt, z

(n)
t

)
≤ ρ
(
zt, zλ−1

n (t)

)
+ ρ
(
zλ−1

n (t), z
(n)
t

)
≤ ρ
(
zt, zλ−1

n (t)

)
+ d(0)

(
z, z(n)

)

≤ γ‖λ
−1
n ‖[z] + d(0)

(
z, z(n)

)
.
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The first line shows that d(0)
(
z, z(n)

)
→ 0 implies z

(n)
t → zt in continuity

points t of z , and the second that the convergence is uniform if z = zu is con-
tinuous (and then uniformly continuous). The Skorohod topology therefore

coincides on C u
E with the topology of uniform convergence.

It is separable. To see this let E0 be a countable dense subset of E and

let D(k) be the collection of paths in Du
E that are constant on intervals of

the form [i/k, (i + 1)/k), i ≤ ku , and take a value from E0 there. D (k) is

countable and
⋃
k D(k) is d(0)-dense in Du

E .
However, Du

E is not complete under this metric – [u/2 − 1/n, u/2) is

a d(0)-Cauchy sequence that has no limit. There is an equivalent metric,
one that defines the same topology, under which Du

E is complete; thus Du
E

is polish in the Skorohod topology. The second Skorohod metric d(1) on
Du
E is defined as follows: for z, y ∈ Du

E , d(1)(z, y) is the infimum of the

numbers ε > 0 for which there exists a λ ∈ Λ with

‖λ‖(1) def= sup
0≤s<t<∞

ln
∣∣∣λ(t) − λ(s)

t− s

∣∣∣ < ε (A.7.1)

and sup
0≤t<∞

ρ
(
zt, yλ(t)

)
< ε . (A.7.2)

Roughly speaking, (A.7.1) restricts the time transformations to those with
“slope close to unity.” Again it is left to the reader to show that

‖λ‖(1)
=
∥∥λ−1

∥∥(1)
and ‖λ ◦ µ‖(1) ≤ ‖λ‖(1)

+ ‖µ‖(1)
, λ, µ ∈ Λ ,

and that d(1) is a metric.

Theorem A.7.1 (i) d(0) and d(1) define the same topology on Du
E .

(ii) (Du
E , d

(1)) is complete. DE is separable and complete under the metric

d(z, y) def=
∑

u∈N

2−u ∧ d(1)(zu, yu) , z, y ∈ DE .

The polish topology τ of d on DE is called the Skorohod topology and

coincides on CE with the topology of uniform convergence on bounded inter-
vals and on Du

E ⊂ DE with the topology of d(0) or d(1) . The stopping maps

z 7→ zu are continuous projections from (DE , d) onto (Du
E , d

(1)) , 0 < u <∞ .
(iii) The Hausdorff topology σ on DRd generated by the linear functionals

z 7→ 〈z|φ〉 def=

∫ ∞

0

d∑

a=1

z(a)
s φa(s) ds , φ ∈ C00(R+,Rd) ,

is weaker than τ and makes DRd into a Lusin topological vector space.

(iv) Let F0
t denote the σ-algebra generated by the evaluations z 7→ zs,

0 ≤ s ≤ t, the basic filtration of path space. Then F 0
t ⊂ B•(D t

E , τ) , and

F0
t = B•(D t

E , σ) if E = Rd .
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(v) Suppose Pt is, for every t < ∞ , a σ-additive probability on F 0
t , such

that the restriction of Pt to F0
s equals Ps for s < t. Then there exists a unique

tight probability P on the Borels of (DE , τ) that equals Pt on Ft for all t .

Proof. (i) If d(1)(z, y) < ε < 1/(4 + u), then there is a λ ∈ Λ with

‖λ‖(1)
< ε satisfying (A.7.2). Since λ(0) = 0, ln(1 − 2ε) < −ε < ln

(
λ(t)/t

)

< ε < ln(1 + 2ε), which results in |λ(t) − t| ≤ 2εt ≤ 2ε(u + 1) < 1/2 for

0 ≤ t ≤ u+ 1. Changing λ on [u + 1,∞) to continue with slope 1 we get

‖λ‖(0) ≤ 2ε(u+1) and d(0)(z, y) ≤ 2ε(u+1). That is to say, d(1)(z, z(n)) → 0

implies d(0)(z, z(n)) → 0. For the converse we establish the following claim: if
d(0)(z, y) < δ2 < 1/4 , then d(1)(z, y) ≤ 4δ+γδ[) [z] . To see this choose instants

0 = t0 < t1 . . . with ti+1 − ti > δ and o[ti,ti+1)[z] < γδ[) [z] + δ and µ ∈ Λ

with ‖µ‖(0)
< δ2 and supt ρ

(
zµ−1(t), yt

)
< δ2 . Let λ be that element of Λ

which agrees with µ at the instants ti and is linear in between, i = 0, 1, . . ..

Clearly µ−1 ◦ λ maps [ti, ti+1) to itself, and

ρ
(
zt, yλ(t)

)
≤ ρ
(
zt, zµ−1◦λ(t)

)
+ ρ
(
zµ−1◦λ(t), yλ(t)

)

≤ γδ[) [z] + δ + δ2 < 4δ + γδ[) [z] .

So if d(0)(z, z(n)) → 0 and 0 < ε < 1/2 is given, we choose 0 < δ < ε/8

so that γδ[) [z] < ε/2 and then N so that d(0)(z, z(n)) < δ2 for n > N . The

claim above produces d(1)(z, z(n)) < ε for such n .

(ii) Let
(
z(n)

)
be a d(1)-Cauchy sequence in Du

E . Since it suffices to show
that a subsequence converges, we may assume that d(1)

(
z(n), z(n+1)

)
< 2−n .

Choose µn ∈ Λ with

‖µn ‖(1)
< 2−n and sup

t
ρ
(
z
(n)
t , z

(n+1)
µn(t)

)
< 2−n .

Denote by µn+m
n the composition µn+m ◦ µn+m−1 ◦ · · · ◦ µn . Clearly

sup
t

∣∣∣µn+m+1 ◦ µn+m
n (t) − µn+m

n (t)
∣∣∣ < 2−n−m−1 ,

and by induction sup
t

∣∣∣µn+m′
n (t) − µn+m

n (t)
∣∣∣ ≤ 2−n−m , 1 ≤ m < m′ .

The sequence
(
µn+m
n

)∞
m=1

is thus uniformly Cauchy and converges uniformly

to some function λn that has λn(0) = 0 and is increasing. Now

ln
∣∣∣ µ

n+m
n (t) − µn(s)

t− s

∣∣∣ ≤
∑n+m

i=n+1
‖µi ‖(1) ≤ 2−n ,

so that ‖λn ‖(1) ≤ 2−n . Therefore λn is strictly increasing and belongs to Λ.

Also clearly λn = λn+1 ◦ µn . Thus

sup
t
ρ
(
z
(n)

λ−1
n (t)

, z
(n+1)

λ−1
n+1(t)

)
= sup

t
ρ
(
z
(n)
t , z

(n+1)
µn(t)

)
≤ 2−n ,

and the paths z
(n)

λ−1
n

converge uniformly to some right-continuous path z



A.7 The Skorohod Topology 447

with left limits. Since z(n) is constant on [λ−1
n ≥ u], and since λ−1

n (t) → t
uniformly on [0, u + 1], z is constant on (u,∞) ⊂ lim inf[λ−1

n ≥ u] and by

right-continuity belongs to Du
E . Since ‖λn ‖(1) −−−→n→∞ 0 and supt ρ

(
zt, z

(n)

λ−1
n (t)

)

converges to 0, d(1)
(
z, z(n)

) −−−→n→∞ 0:
(
Du
E , d

(1)
)

is indeed complete. The
remaining statements of (ii) are left to the reader.

(iii) Let φ = (φ1, . . . , φd) ∈ C00(R+,Rd). To see that the linear functional

z 7→ 〈z|φ〉 is continuous in the Skorohod topology, let u be the supremum

of supp φ . If z(n) → z , then supn∈N,t≤u
∣∣z(n)
t

∣∣ is finite and z
(n)
t

−−−→n→∞ zt
in all but the countably many points t where zt jumps. By the DCT the

integrals 〈z(n)|φ〉 converge to 〈z|φ〉 . The topology σ is thus weaker than τ .
Since 〈z(n)|φ〉 = 0 for all continuous φ : [0,∞) → Rd with compact support

implies z ≡ 0, this evidently linear topology is Lusin. Writing 〈z|φ〉 as a
limit of Riemann sums shows that the σ-Borels of D t

Rd are contained in F0
t .

Conversely, letting φ run through an approximate identity φn supported
on the right of s ≤ t 44 shows that zs = lim〈z|φn〉 is measurable on B•(σ),

so that there is coincidence.
(iv) In general, when E is just some polish space, one can define a Lusin

topology σ weaker than τ as well: it is the topology generated by the
τ -continuous functions z 7→

∫∞
0
ψ(zs) · φ(s) ds , where φ ∈ C00(R+) and

ψ : E → R is uniformly continuous. It follows as above that F 0
t = B•(D t

E , σ).
(v) The Pt viewed as probabilities on the Borels of (D t

E , σ) form a tight

(proposition A.6.2) projective system, evidently full, under the stopping maps
πtu(z)

def= zt 45. There is thus on
⋃
t Cb

(
D t
E , σ

)
◦ πt a σ-additive projective

limit P (theorem A.3.17). This algebra of bounded Skorohod-continuous

functions separates the points of DE , so P has a unique extension to a tight
probability on the Borels of the Skorohod topology τ (proposition A.6.2).

Proposition A.7.2 A subset K ⊂ DE is relatively compact if and only if both

(i) {zt : z ∈ K } is relatively compact in E for every t ∈ [0,∞) and (ii) for

every instant u ∈ [0,∞) , limδ→0 γ
δ
[) [z

u] = 0 uniformly in z ∈ K . In this
case the sets {zt : 0 ≤ t ≤ u, z ∈ K } , u < ∞ , are relatively compact in E .

For a proof see for example Ethier and Kurtz [33, page 123].

Proposition A.7.3 A family M of probabilities on DE is uniformly tight

provided that for every instant u < ∞ we have, uniformly in µ ∈ M ,∫

DE

γδ[) [z
u] ∧ 1 µ(dz)−−→δ→0 0

or sup
{∫

DE

ρ(zuT , z
u
S) ∧ 1 µ(dz) : S, T ∈ T , 0 ≤ S ≤ T ≤ S + δ

}
−−→
δ→0 0 .

Here T denotes collection of stopping times for the right-continuous version

of the basic filtration on DE .

44 supp φn ∈ [s, s+ 1/n], φηn ≥ 0, and
R
φηn(r) dr = 1.

45 The set of threads is identified naturally with DE .
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A.8 The Lp -Spaces

Let (Ω,F ,P) be a probability space and recall from page 33 the following
measurements of the size of a measurable function f :

ddfeep = ddfeeLp(P)
def=





‖f‖p =
(∫

|f |p dP
)1/p

for 1 ≤ p <∞,

‖f‖pp =

∫
|f |p dP for 0 < p ≤ 1,

inf
{
λ : P

[
|f | > λ

]
≤ λ

}
for p = 0;

and

‖f‖[α] = ‖f‖[α;P] = inf
{
λ > 0 : P[|f | > λ] ≤ α

}
for p = 0 and α > 0.

The space Lp(P) is the collection of all measurable functions f that satisfy

ddrf ee
Lp(P)

−−→r→0 0. Customarily, the slew of Lp-spaces is extended at p = ∞
to include the space L∞ = L∞(P) = L∞(F ,P) of bounded measurable
functions equipped with the seminorm

‖f ‖∞ = ‖f ‖L∞(P)
def= inf{c : P[|f | > c] = 0} ,

which we also write dd ee∞ , if we want to stress its subadditivity. L∞ plays

a minor role in this book, since it is not suited to be the range of a vector
measure such as the stochastic integral.

Exercise A.8.1 (i) ddf ee
0
≤ a ⇐⇒ P[|f | > a] ≤ a .

(ii) For 1 ≤ p ≤ ∞ , dd ee
p

is a seminorm. For 0 ≤ p < 1, it is subadditive but

not homogeneous.
(iii) Let 0 ≤ p ≤ ∞ . A measurable function f is said to be finite in p-mean if

lim
r→0

ddrf eep = 0 .

For 0 < p ≤ ∞ this means simply that ddf ee
p
< ∞ . A numerical measurable

function f belongs to Lp if and only if it is finite in p-mean.
(iv) Let 0 ≤ p ≤ ∞ . The spaces Lp are vector lattices, i.e., are closed under

taking finite linear combinations and finite pointwise maxima and minima. They
are not in general algebras, except for L0 , which is one. They are complete under
the metric distp(f, g) = ddf − gee

p
, and every mean-convergent sequence has an

almost surely convergent subsequence.
(v) Let 0 ≤ p < ∞ . The simple measurable functions are p-mean dense.

(A measurable function is simple if it takes only finitely many values, all of them
finite.)

Exercise A.8.2 For 0 < p < 1, the homogeneous functionals ‖ ‖
p

are not

subadditive, but there is a substitute for subadditivity:

‖f1 + . . .+ fn‖p ≤ n0∨(1−p)/p ·
„
‖f1‖p + . . .+ ‖fn‖p

«
0 < p ≤ ∞ .

Exercise A.8.3 For any set K and p ∈ [0,∞] , ddK ee
Lp(P)

= (P[K])1∧ 1/p .



A.8 The Lp -Spaces 449

Theorem A.8.4 (Hölder’s Inequality) For any three exponents 0 < p, q, r ≤ ∞
with 1/r = 1/p+ 1/q and any two measurable functions f, g ,

‖fg‖r ≤ ‖f ‖p · ‖g‖q .
If p, p′ ∈ [1,∞] are related by 1/p + 1/p′ = 1 , then p, p′ are called conju-
gate exponents. Then p′ = p/(p− 1) and p = p′/(p′ − 1). For conjugate

exponents p, p′

‖f ‖p = sup{
∫
fg : g ∈ Lp

′
, ‖g‖p′ ≤ 1} .

All of this remains true if the underlying measure is merely σ-finite. 46

Proof: Exercise.

Exercise A.8.5 Let µ be a positive σ-additive measure and f a µ-measurable
function. The set If

def= {1/p ∈ R+ : ‖f ‖
p
<∞} is either empty or is an interval.

The function 1/p 7→ ‖f ‖
p

is logarithmically convex and therefore continuous on

the interior I̊f . Consequently, for 0 < p0 < p1 <∞ ,

sup
p0<p<p1

‖f ‖p = ‖f ‖p0 ∨ ‖f ‖p1 .

Uniform Integrability Let 0 < p < ∞ and let P be a positive measure of
finite total mass. A collection C of Lp-integrable functions is uniformly

p-integrable if for every ε > 0 there is a constant Kε with the following
property: for every f ∈ C there is an f ′ with

−Kε ≤ f ′ ≤ Kε and
∥∥f − f ′

∥∥
Lp(P)

< ε ,

that is to say, so that the Lp-distance of f from the uniformly bounded set

{f ′ : −Kε ≤ f ′ ≤ Kε}
is less than ε . f ′ = (−Kε) ∨ f ∧ Kε will minimize this distance. Uniform
integrability generalizes the domination condition in the DCT in this sense: if

there is a g ∈ Lp with |f | ≤ g for all f ∈ C , then C is uniformly p-integrable.
Using this notion one can establish the most general and sharp convergence

theorem of Lebesgue’s theory – it makes a good exercise:

Theorem A.8.6 (Dominated Convergence Theorem on Lp ) Suppose that the

measure has finite total mass and let 0 ≤ p < ∞ . A sequence (fn) in Lp

converges in p-mean if and only if it is uniformly p-integrable and converges

in measure.

Exercise A.8.7 (Fatou’s Lemma) (i) Let (fn) be a sequence of positive
measurable functions. Then‚‚‚lim inf

n→∞
fn

‚‚‚
Lp

≤ lim inf
n→∞

‖fn‖Lp , 0 < p ≤ ∞;
ll

lim inf
n→∞

fn
mm
Lp

≤ lim inf
n→∞

ddfneeLp , 0 ≤ p <∞;
‚‚‚lim inf
n→∞

fn

‚‚‚
[α]

≤ lim inf
n→∞

‖fn‖[α] , 0 < α <∞.

46 I.e., L1(µ) is σ-finite (exercise A.3.2).
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(ii) Let (fn) be a sequence in L0 that converges in measure to f . Then

‖f‖Lp ≤ lim inf
n→∞

‖fn‖Lp , 0 < p ≤ ∞;

ddfeeLp ≤ lim inf
n→∞

ddfneeLp , 0 ≤ p <∞;

‖f‖[α] ≤ lim inf
n→∞

‖fn‖[α] , 0 < α <∞.

A.8.8 Convergence in Measure — the Space L0 The space L0 of almost

surely finite functions plays a large role in this book. Exercise A.8.10 amounts
to saying that L0 is a topological vector space for the topology of convergence

in measure, whose neighborhood system at 0 has a countable basis, and which
is defined by the gauge dd ee

0
. Here are a few exercises that are used in the

main text.

Exercise A.8.9 The functional dd ee
0

is by no means the canonical way with which
to gauge the size of a.s. finite measurable functions. Here is another one that serves
just as well and is sometimes easier to handle: ddf ee

�
def= E[|f | ∧ 1] , with associated

distance
dist�(f, g) def= ddf − gee� = E[|f − g| ∧ 1] .

Show: (i) dd ee
�

is subadditive, and dist� is a pseudometric. (ii) A sequence (fn)

in L0 converges to f ∈ L0 in measure if and only if ddf − fn ee� −−−→n→∞ 0. In other

words, dd ee
�

is a gauge on L0(P).

Exercise A.8.10 L0 is an algebra. The maps (f, g) 7→ f + g and (f, g) 7→ f · g
from L0 × L0 to L0 and (r, f) 7→ r · f from R × L0 to L0 are continuous. The
neighborhood system at 0 has a basis of “balls” of the form

Br(0) def= {f : ddf ee0 < r} and of the form Br(0) def= {f : ddf ee� < r} , r > 0 .

Exercise A.8.11 Here is another gauge on L0(P), which is used in proposi-
tion 3.6.20 on page 129 to study the behavior of the stochastic integral under a
change of measure. Let P′ be a probability equivalent to P on F , i.e., a probability
having the same negligible sets as P . The Radon–Nikodym theorem A.3.22 on
page 407 provides a strictly positive F-measurable function g′ such that P′ = g′P .
Show that the spaces L0(P) and L0(P′) coincide; moreover, the topologies of
convergence in P-measure and in P′-measure coincide as well.

The mean dd ee
L0(P′) thus describes the topology of convergence in P-measure

just as satisfactorily as does dd ee
L0(P)

: dd ee
L0(P′) is a gauge on L0(P).

Exercise A.8.12 Let (Ω,F) be a measurable space and P � P′ two probabilities
on F . There exists an increasing right-continuous function Φ : (0, 1] → (0, 1] with
limr→0 Φ(r) = 0 such that ddf ee

L0(P)
≤ Φ(ddf ee

L0(P′) ) for all f ∈ F .

A.8.13 The Homogeneous Gauges ‖ ‖[α] on Lp Recall the definition of the

homogeneous gauges on measurable functions f ,

‖f ‖[α] = ‖f ‖[α;P]
def= inf

{
λ > 0 : P[|f | > λ] ≤ α

}
.

Of course, if α < 0, then ‖f ‖
[α]

= ∞ , and if α ≥ 1, then ‖f ‖
[α]

= 0. Yet

it streamlines some arguments a little to make this definition for all real α .
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Exercise A.8.14 (i) ‖r · f ‖
[α]

= |r| · ‖f ‖
[α]

for any measurable f and any r ∈ R .

(ii) For any measurable function f and any α > 0, ddf ee
L0 < α ⇐⇒ ‖f ‖

[α]
< α ,

‖f ‖
[α]

≤ λ ⇐⇒ P[|f | > λ] ≤ α , and ddf ee
L0 = inf{α : ‖f ‖

[α]
≤ α} .

(iii) A sequence (fn) of measurable functions converges to f in measure if and
only if ‖fn − f ‖

[α]
−−−→n→∞ 0 for all α > 0, i.e., iff P[|f − fn| > α] −−−→n→∞ 0 ∀α > 0.

(iv) The function α 7→ ‖f ‖
[α]

is decreasing and right-continuous. Considered as

a measurable function on the Lebesgue space (0, 1) it has the same distribution as
|f | . It is thus often called the non-increasing rearrangement of |f | .
Exercise A.8.15 (i) Let f be a measurable function. Then for 0 < p <∞

‚‚|f |p
‚‚

[α]
=
“
‖f‖[α]

”p
, ‖f‖[α] ≤ α−1/p · ‖f‖Lp ,

and E
ˆ
|f |p

˜
=

Z 1

0

‖f‖p[α] dα .

In fact, for any continuous Φ on R+ ,
R

Φ(|f |) dP =
R 1

0
Φ(‖f ‖

[α]
) dα .

(ii) f 7→ ‖f ‖
[α]

is not subadditive, but there is a substitute:

‖f + g‖[α+β] ≤ ‖f ‖[α] + ‖g‖[β] .

Exercise A.8.16 In the proofs of 2.3.3 and theorems 3.1.6 and 4.1.12 a “Fubini–
type estimate” for the gauges ‖ ‖

[α]
is needed. It is this: let P, τ be probabilities,

and f(ω, t) a P × τ -measurable function. Then for α, β, γ > 0
‚‚‚‖f ‖[β;τ ]

‚‚‚
[α;P]

≤
‚‚‚‖f ‖[γ;P]

‚‚‚
[αβ−γ;τ ]

.

Exercise A.8.17 Suppose f, g are positive random variables with ‖f‖
Lr(P/g)

≤ E,

where r > 0. Then

‖f‖[α+β] ≤ E ·
 
‖g‖

[α]

β

!1/r

, ‖f‖[α] ≤ E ·
 

2 ‖g‖
[α/2]

α

!1/r

(A.8.1)

and ‖fg‖[α] ≤ E·‖g‖[α/2]·
 

2‖g‖
[α/2]

α

!1/r

. (A.8.2)

Bounded Subsets of Lp Recall from page 379 that a subset B of a topological

vector space V is bounded if it can be absorbed by any neighborhood V of
zero; that is to say, if for any neighborhood V of zero there is a scalar r such

that C ⊂ r·V .

Exercise A.8.18 (Cf. A.2.28) Let 0 ≤ p ≤ ∞ . A set C ⊂ Lp is bounded if and
only if

sup{ddλ·f eep : f ∈ C} −−−→λ→0 0 , (A.8.3)

which is the same as saying sup{ddf ee
p

: f ∈ C} < ∞ in the case that p is strictly

positive. If p = 0, then the previous supremum is always less than or equal to 1
and equation (A.8.3) describes boundedness. Namely, for C ⊂ L0(P), the following
are equivalent: (i) C is bounded in L0(P); (ii) sup{ddλ·f ee

L0(P)
: f ∈ C} −−−→λ→0 0;

(iii) for every α > 0 there exists Cα <∞ such that

‖f ‖[α;P] ≤ Cα ∀ f ∈ C .
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Exercise A.8.19 Let P′ � P . Then the natural injection of L0(P) into L0(P′) is
continuous and thus maps bounded sets of L0(P) into bounded sets of L0(P′).

The elementary stochastic integral is a linear map from a space E of functions

to one of the spaces Lp . It is well to study the continuity of such a map. Since

both the domain and range are metric spaces, continuity and boundedness
coincide – recall that a linear map is bounded if it maps bounded sets of its

domain to bounded sets of its range.

Exercise A.8.20 Let I be a linear map from the normed linear space (E , ‖ ‖
E
)

to Lp(P), 0 ≤ p ≤ ∞ . The following are equivalent: (i) I is continuous. (ii) I is
continuous at zero. (iii) I is bounded.

(iv) sup


ddI(λ·φ)ee

p
: φ ∈ E , ‖φ‖E ≤ 1

ff
−−−→λ→0 0 .

If p = 0, then I is continuous if and only if for every α > 0 the number

‖I ‖[α;P]
def= sup


‖I(X)‖

[α;P]
: X ∈ E , ‖X ‖E ≤ 1

ff
is finite.

A.8.21 Occasionally one wishes to estimate the size of a function or set

without worrying about its measurability. In this case one argues with the

upper integral
∫ ∗

or the outer measure P∗ . The corresponding constructs
for ‖ ‖

p
, dd ee

p
, and ‖ ‖

[α]
are

‖f ‖∗p = ‖f ‖∗Lp(P)
def=
(∫ ∗

|f |p dP
)1/p

ddf ee∗p = ddf ee∗Lp(P)
def=
(∫ ∗

|f |p dP
)1∧1/p





for 0 < p <∞ ,

ddf ee∗0 = ddf eeL0(P)
def= inf{λ : P∗[|f | ≥ λ] ≤ λ}

‖f ‖∗[α] = ‖f ‖∗[α;P]
def= inf{λ : P∗[|f | ≥ λ] ≤ α}

}
for p = 0 .

Exercise A.8.22 It is well known that
R ∗

is continuous along arbitrary
increasing sequences:

0 ≤ fn ↑ f =⇒
Z ∗

fn ↑
Z ∗

f .

Show that the starred constructs above all share this property.

Exercise A.8.23 Set ‖f ‖
1,∞

= ‖f ‖
L1,∞(P)

= supλ>0 λ · P[|f | > λ] . Then

‖f‖p ≤ p
“2 − p

1 − p

”1/p

· ‖f‖1,∞ for 0 < p < 1 ,

‖f + g‖1,∞ ≤ 2 ·
“
‖f‖1,∞ + ‖g‖1,∞

”
,

and ‖rf‖1,∞ = |r| · ‖f‖1,∞ .
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Marcinkiewicz Interpolation

Interpolation is a large field, and we shall establish here only the one rather
elementary result that is needed in the proof of theorem 2.5.30 on page 85.

Let U : L∞(P) → L∞(P) be a subadditive map and 1 ≤ p ≤ ∞ . U is said to
be of strong type p−p if there is a constant Ap with

‖U(f)‖p ≤ Ap · ‖f ‖p ,

in other words if it is continuous from Lp(P) to Lp(P). It is said to be of

weak type p−p if there is a constant A′p such that

P[|U(f)| ≥ λ] ≤
(A′p
λ

· ‖f ‖p
)p

.

“Weak type ∞−∞” is to mean “strong type ∞−∞ .” Chebyscheff’s inequal-

ity shows immediately that a map of strong type p−p is of weak type p−p .

Proposition A.8.24 (An Interpolation Theorem) If U is of weak types p1−p1

and p2−p2 with constants A′p1 , A
′
p2

, respectively, then it is of strong type p−p
for p1 < p < p2 :

‖U(f)‖p ≤ Ap · ‖f‖p

with constant Ap ≤ p1/p ·
( (2A′p1)

p1

p− p1
+

(2A′p2)
p2

p2 − p

)1/p

.

Proof. By the subadditivity of U we have for every λ > 0

|U(f)| ≤ |U(f · [|f | ≥ λ])| + |U(f · [|f | < λ])| ,

and consequently

P[|U(f)| ≥ λ] ≤ P[|U(f · [|f | ≥ λ])| ≥ λ/2] + P[|U(f · [|f | < λ])| ≥ λ/2]

≤
(A′p1
λ/2

)p1 ∫

[|f |≥λ]

|f |p1 dP +
(A′p2
λ/2

)p2 ∫

[|f |<λ]

|f |p2 dP .

We multiply this with λp−1 and integrate against dλ , using Fubini’s theo-

rem A.3.18:
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E(|U(f)|p)
p

=

∫ ∫ |U(f)|

0

λp−1 dλdP =

∫ ∫ ∞

0

P[|U(f)| ≥ λ]λp−1 dλ

≤
∫ (A′p1

λ/2

)p1 ∫

[|f |≥λ]

|f |p1λp−1 dλdP

+

∫ (A′p2
λ/2

)p2 ∫

[|f |<λ]

|f |p2λp−1 dλdP

=
(
2A′p1

)p1
∫ ∫ |f |

0

|f |p1λp−p1−1 dλdP

+
(
2A′p2

)p2
∫ ∫ ∞

|f |
|f |p2λp−p2−1 dλdP

=
(2A′p1)

p1

p− p1

∫
|f |p1 |f |p−p1 dP +

(2A′p2)
p2

p2 − p

∫
|f |p2 |f |p−p2 dP

=
( (2A′p1)

p1

p− p1
+

(2A′p2)
p2

p2 − p

)
·
∫

|f |p dP .

We multiply both sides by p and take pth roots; the claim follows.

Note that the constant Ap blows up as p ↓ p1 or p ↑ p2 . In the one
application we make, in the proof of theorem 2.5.30, the map U happens

to be self-adjoint, which means that

E[U(f) · g] = E[f · U(g)] , f, g ∈ L2 .

Corollary A.8.25 If U is self-adjoint and of weak types 1−1 and 2−2 , then U

is of strong type p−p for all p ∈ (1,∞) .

Proof. Let 2 < p < ∞ . The conjugate exponent p′ = p/(p− 1) then lies in

the open interval (1, 2), and by proposition A.8.24

E[U(f) · g] = E[f · U(g)] ≤ ‖f ‖p · ‖U(g)‖p′ ≤ ‖f ‖p ·Ap′‖g‖p′ .

We take the supremum over g with ‖g‖
p′ ≤ 1 and arrive at

‖U(f)‖p ≤ Ap′ · ‖f ‖p .

The claim is satisfied with Ap = Ap′ . Note that, by interpolating now

between 3/2 and 3, say, the estimate of the constants Ap can be improved
so no pole at p = 2 appears. (It suffices to assume that U is of weak types

1−1 and (1+ε) − (1+ε)).
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Khintchine’s Inequalities

Let T be the product of countably many two-point sets {1,−1} . Its elements
are sequences t = (t1, t2, . . .) with tν = ±1. Let εν : t 7→ tν be the νth

coordinate function. If we equip T with the product τ of uniform measure
on {1,−1} , then the εν are independent and identically distributed Bernoulli

variables that take the values ±1 with τ -probability 1/2 each. The εν form
an orthonormal set in L2(τ) that is far from being a basis; in fact, they form

so sparse or lacunary a collection that on their linear span

R =
{ n∑

ν=1

aνεν : n ∈ N, aν ∈ R
}

all of the Lp(τ)-topologies coincide:

Theorem A.8.26 (Khintchine) Let 0 < p < ∞ . There are universal constants

kp, Kp such that for any natural number n and reals a1, . . . , an

∥∥∥
n∑

ν=1

aνεν

∥∥∥
Lp(τ)

≤ kp ·
( n∑

ν=1

a2
ν

)1/2

(A.8.4)

and
( n∑

ν=1

a2
ν

)1/2

≤ Kp ·
∥∥∥
n∑

ν=1

aνεν

∥∥∥
Lp(τ)

. (A.8.5)

For p = 0, there are universal constants κ0 > 0 and K0 <∞ such that

( n∑

ν=1

a2
ν

)1/2

≤ K0 ·
∥∥∥
n∑

ν=1

aνεν

∥∥∥
[κ0;τ ]

. (A.8.6)

In particular, a subset of R that is bounded in the topology induced by any
of the Lp(τ), 0 ≤ p < ∞ , is bounded in L2(τ). The completions of R
in these various topologies being the same, the inequalities above stay if the
finite sums are replaced with infinite ones. Bounds for the universal constants

kp, Kp, K0, κ0 are discussed in remark A.8.28 and exercise A.8.29 below.

Proof. Let us write ‖f ‖
p

for ‖f ‖
Lp(τ)

. Note that for f =
∑n
ν=1 aνεν ∈ R

‖f ‖2 =
(∑

ν

a2
ν

)1/2

.

In proving (A.8.4)–(A.8.6) we may by homogeneity assume that ‖f ‖
2

= 1.

Let λ > 0. Since the εν are independent and cosh x ≤ ex
2/2 (as a term–by–

term comparison of the power series shows),

∫
eλf(t) τ(dt) =

N∏

ν=1

cosh(λaν) ≤
N∏

ν=1

eλ
2a2

ν/2 = eλ
2/2 ,
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and consequently

∫
eλ|f(t)| τ(dt) ≤

∫
eλf(t) τ(dt) +

∫
e−λf(t) τ(dt) ≤ 2eλ

2/2 .

We apply Chebysheff’s inequality to this and obtain

τ([|f | ≥ λ]) = τ
([
eλ|f | ≥ eλ

2
])

≤ e−λ
2 · 2eλ2/2 = 2e−λ

2/2 .

Therefore, if p ≥ 2, then

∫
|f(t)|p τ(dt) = p ·

∫ ∞

0

λp−1 τ([|f | ≥ λ]) dλ

≤ 2p ·
∫ ∞

0

λp−1e−λ
2/2 dλ

with z = λ2/2: = 2p ·
∫ ∞

0

(2z)(p−2)/2e−z dz

= 2
p
2 +1 · p

2
Γ(
p

2
) = 2

p
2 +1Γ(

p

2
+ 1) .

We take pth roots and arrive at (A.8.4) with

kp =

{
2

1
p + 1

2 (Γ(p
2

+ 1))
1/p ≤ √

2p if p ≥ 2

1 if p < 2.

As to inequality (A.8.5), which is only interesting if 0 < p < 2, write

‖f‖2
2 =

∫
|f |2(t) τ(dt) =

∫
|f |p/2(t) · |f |2−p/2(t) τ(dt)

using Hölder: ≤
(∫

|f |p(t) τ(dt)
)1/2

·
(∫

|f |4−p(t) τ(dt)
)1/2

= ‖f‖p/2p · ‖f‖2−p/2
4−p ≤ ‖f‖p/2p · k2− p/2

4−p ‖f‖2− p/2
2 ,

and thus ‖f‖p/22 ≤ k
2− p/2
4−p · ‖f‖p/2p and ‖f‖2 ≤ k

4/p −1
4−p · ‖f‖p .

The estimate

k4−p ≤ 2 ·
(

Γ
( 4 − p

2
+ 1

))1/(4−p)
≤ 2 · (Γ(3))

1/4
= 25/4

leads to (A.8.5) with Kp ≤ 25/p −5/4 . In summary:

Kp ≤





1 if p ≥ 2,
25/p −5/4 < 25/p if 0 < p < 2

≤ 16 if 1 ≤ p <∞.
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Finally let us prove inequality (A.8.6). From

‖f‖1 =

∫
|f(t)| τ(dt) =

∫

[|f |≥‖f‖1/2]
|f(t)| τ(dt) +

∫

[|f |<‖f‖1/2]
|f(t)| τ(dt)

≤ ‖f‖2 ·
(
τ
[
|f | ≥ ‖f‖1/2

])1/2

+ ‖f‖1/2

≤ K1 · ‖f‖1 ·
(
τ
[
|f | ≥ ‖f‖1/2

])1/2

+ ‖f‖1/2

we deduce that 1/2 ≤ K1 ·
(
τ
[
|f | ≥ ‖f‖1/2

])1/2

and thus
1

(2K1)2
≤ τ

([
|f | ≥ ‖f‖1/2

])
≤ τ

[
|f | ≥ ‖f‖

2

2K1

]
. (∗)

Recalling that ‖f‖[α;τ ] = inf {λ : τ [|f | ≥ λ] < α} ,

we rewrite (∗) as ‖f‖2 ≤ 2K1 · ‖f‖[1/(4K2
1);τ ] ,

which is inequality (A.8.6) with K0 = 2K1 and κ0 = 1/(4K2
1).

Exercise A.8.27 ‖f ‖
2
≤ (
p

1/2 −√
κ)

−1 · ‖f ‖
[κ]

for 0 < κ < 1/2.

Remark A.8.28 Szarek [105] found the smallest possible value for K1 :
K1 =

√
2. Haagerup [38] found the best possible constants kp, Kp for all

p > 0:

kp =





1 for 0 < p ≤ 2,

√
2 ·
(Γ
(
(p+ 1/2)

)
√
π

)1/p

for 2 ≤ p < ∞;
(A.8.7)

Kp =





2−1/2 ·
( √

π

Γ
(
(p+ 1)/2

) ∨ 2
)1/p

for 0 < p ≤ 2,

1 for 2 ≤ p <∞.

(A.8.8)

In the text we shall use the following values to estimate the Kp and κ0 (they
are only slightly worse but rather simpler to read):

Exercise A.8.29

K
(A.8.6)
0 ≤ 2

√
2 and κ(A.8.6)

0 ≥ 1/8 for p = 0 ;

K(A.8.5)
p ≤

8
<
:

21/p − 1/2 for 0 < p ≤ 1.8

1.00037 · 21/p − 1/2 for 1.8 < p ≤ 2

1 for 2 ≤ p <∞.

(A.8.9)

Exercise A.8.30 The values of kp and Kp in (A.8.7) and (A.8.8) are best possible.

Exercise A.8.31 The Rademacher functions rn are defined on the unit interval
by

rn(x) = sgn sin(2nπx) , x ∈ (0, 1), n = 1, 2, . . .

The sequences (εν) and (rν) have the same distribution.
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Stable Type

In the proof of the general factorization theorem 4.1.2 on page 191, other

special sequences of random variables are needed, sequences that show a
behavior similar to that of the Rademacher functions, in the sense that

on their linear span all Lp-topologies coincide. They are the sequences of
independent symmetric q-stable random variables.

Symmetric Stable Laws Let 0 < q ≤ 2. There exists a random variable γ(q)

whose characteristic function is

E
[
eiαγ

(q)
]

= e−|α|
q

.

This can be proved using Bochner’s theorem: α 7→ |α|q is of negative type,

so α 7→ e−|α|
q

is of positive type and thus is the characteristic function of a

probability on R . The random variable γ(q) is said to have a symmetric
stable law of order q or to be symmetric q-stable. For instance, γ(2)

is evidently a centered normal random variable with variance 2; a Cauchy
random variable, i.e., one that has density 1/π(1+x2) on (−∞,∞), is

symmetric 1-stable. It has moments of orders 0 < p < 1.

We derive the existence of γ(q) without appeal to Bochner’s theorem in
a computational way, since some estimates of their size are needed anyway.

For our purposes it suffices to consider the case 0 < q ≤ 1.

The function α 7→ e−|α|
q

is continuous and has very fast decay at ±∞ , so

its inverse Fourier transform

f (q)(x) def=
1

2π

∫ ∞

−∞
e−ixα·e−|α|q dα

is a smooth square integrable function with the right Fourier transform
α 7→ e−|α|

q

. It has to be shown, of course, that f (q) is positive, so that

it qualifies as the probability density of a random variable – its integral is
automatically 1, as it equals the value of its Fourier transform at α = 0.

Lemma A.8.32 Let 0 < q ≤ 1 . (i) The function f (q) is positive: it is indeed

the density of a probability measure. (ii) If 0 < p < q , then
∣∣γ(q)

∣∣ has pth

moment

‖γ(q)‖pp = Γ
(
(q − p)/q

)
· b(p) , (A.8.10)

where b(p) def=
2

π

∫ ∞

0

ξp−1 sin ξ dξ

is a strictly decreasing function with limp→0 = 1 and

(3 − p)/π ≤ b(p) ≤ 1 − (1−2/π)p ≤ 1 .
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Proof (Charlie Friedman). For strictly positive x write

f (q)(x) =
1

2π

∫ ∞

−∞
e−ixα·e−|α|q dα =

1

π

∫ ∞

0

cos(αx)·e−αq

dα

=
1

π

∑∞
k=0

∫ (k+1)π/x

kπ/x

cos(αx)·e−αq

dα

with αx = ξ + kπ : =
1

πx

∑∞
k=0

∫ π

0

cos(ξ + kπ)·e−
(

ξ+kπ
x

)q

dξ

=
1

πx

∑∞
k=0(−1)k

∫ π

0

cos ξ·e−
(

ξ+kπ
x

)q

dξ

integrating by parts: =
∑∞

k=0

q(−1)k

πx1+q

∫ π

0

sin ξ·e−
(

ξ+kπ
x

)q

·(ξ + kπ)q−1 dξ

=
q

πx1+q

∫ ∞

0

sin ξ·e−( ξ
x )q ·ξq−1 dξ .

The penultimate line represents f (q)(x) as the sum of an alternating series.
In the present case 0 < q ≤ 1 it is evident that e−((ξ+kπ)/x)q

(ξ + kπ)q−1

decreases as k increases. The series’ terms decrease in absolute value, so the
sum converges. Since the first term is positive, so is the sum: f (q) is indeed

a probability density.

(ii) To prove the existence of pth moments write ‖γ(q)‖pp as

∫ ∞

−∞
|x|p f (q)(x) dx = 2

∫ ∞

0

xp f (q)(x) dx

=
2q

π

∫ ∞

0

∫ ∞

0

xp−1−q sin ξ e−(ξ/x)q

ξq−1 dx dξ

with (ξ/x)q = y : =
2

π

∫ ∞

0

∫ ∞

0

y−p/qe−yξp−1 sin ξ dy dξ

= Γ
(
(q − p)/q

)
· b(p) .

The estimates of b(p) are left as an exercise.

Lemma A.8.33 Let 0 < q ≤ 2 , let
(
γ

(q)
1 , γ

(q)
2 , . . .

)
be a sequence of inde-

pendent symmetric q-stable random variables defined on a probability space

(X,X , dx) , and let c1, c2, . . . be a sequence of reals. (i) For any p ∈ (0, q)

∥∥∥
∞∑

ν=1

cν γ
(q)
ν

∥∥∥
Lp(dx)

= ‖γ(q)‖p ·
( ∞∑

ν=1

|cν |q
)1/q

. (A.8.11)

In other words, the map `q 3 (cν) 7→
∑
ν cνγ

(q)
ν is, up to the factor ‖γ(q)‖p ,

an isometry from `q into Lp(dx) .
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(ii) This map is also a homeomorphism from `q into L0(dx) . To be precise:
for every β ∈ (0, 1) there exist universal constants A[β],q and B[β],q with

A[β],q ·
∥∥∥
∑

ν

cνγ
(q)
ν

∥∥∥
[β;dx]

≤ ‖(cν)‖`q ≤ B[β],q ·
∥∥∥
∑

ν

cνγ
(q)
ν

∥∥∥
[β;dx]

. (A.8.12)

Proof. (i) The functions
∑
ν cνγ

(q)
ν and ‖(cν)‖`q ·γ

(q)
1 are easily seen to have

the same characteristic function, so their Lp-norms coincide.

(ii) In view of exercise A.8.15 and equation (A.8.11),

‖f ‖[β] ≤ β−1/p ‖f ‖Lp(dx) = β−1/p ‖γ(q)‖p · ‖(cν)‖`q

for any p ∈ (0, q): A[β],q
def= sup

{
β1/p·‖γ(q)‖−1

p : 0 < p < q
}

answers the

left-hand side of inequality (A.8.12).

The constant B[β],q is somewhat harder to come by. Let 0 < p1 < p2 < q

and r > 1 be so that r · p1 = p2 . Then the conjugate exponent of r is
r′ = p2/(p2 − p1). For λ > 0 write

‖f‖p1p1 =

∫

[|f |>λ‖f‖p1
]

|f |p1 +

∫

[|f |≤λ‖f‖p1
]

|f |p1

using Hölder: ≤
(∫

|f |p2
) 1

r ·
(
dx[|f | > λ‖f‖p1 ]

) 1
r′ + λp1‖f‖p1p1 ,

and so
(
1 − λp1

)
‖f‖p1p1 ≤ ‖f‖p1p2 ·

(
dx[|f | > λ‖f‖p1 ]

) 1
r′

and dx[|f | > λ‖f‖p1 ] ≥
((

1 − λp1
)
‖f‖p1

p1

‖f‖p1
p2

∨ 0

) p2
p2−p1

by equation (A.8.11): =

((
1 − λp1

)
‖γ(q)‖p1p1

‖γ(q)‖p1
p2

∨ 0

) p2
p2−p1

.

Therefore, setting λ =
(
B · ‖γ(q)‖p1

)−1
and using equation (A.8.11):

dx[|f | > ‖(cν)‖`q
/
B] ≥

((
‖γ(q)‖p1p1 − B−p1

)

‖γ(q)‖p1p2
∨ 0

) p2
p2−p1

. (∗)

This inequality means

‖(cν)‖`q ≤ B · ‖f ‖[β(B,p1,p2,q)]
,

where β(B, p1, p2, q) denotes the right-hand side of (∗). The question is

whether β(B, p1, p2, q) can be made larger than the β < 1 given in the
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statement, by a suitable choice of B . To see that it can be we solve the
inequality β(B, p1, p2, q) ≥ β for B :

B ≥
((

‖γ(q)‖p1p1 − β
p2−p1

p2 ‖γ(q)‖p1p2
)
∨ 0
)−1

p1

by (A.8.10): =

((
b(p1)·Γ

(q−p1

q

)
− β

p2−p1
p2

(
b(p2)·Γ

(q−p2

q

))
p1
p2

)
∨ 0

)−1
p1

.

Fix p2 < q . As p1 → 0, b(p1) → 1 and Γ
(
q−p1
q

)
→ 1, so the expression in

the outermost parentheses will eventually be strictly positive, and B < ∞
satisfying this inequality can be found. We get the estimate:

B[β],q ≤ inf

((
‖γ(q)‖p1−β

p2−p1
p2 ‖γ(q)‖

p1
p2
p2

)
∨0

)−1
p1

, (A.8.13)

the infimum being taken over all p1, p2 with 0 < p1 < p2 < q .

Maps and Spaces of Type (p, q) One-half of equation (A.8.11) holds even
when the cν belong to a Banach space E , provided 0 < p < q < 1: in this

range there are universal constants Tp,q so that for x1, . . . , xn ∈ E

∥∥∥
n∑

ν=1

xν γ
(q)
ν

∥∥∥
Lp(dx)

≤ Tp,q ·
( n∑

ν=1

‖xν |‖qE
)1/q

.

In order to prove this inequality it is convenient to extend it to maps and to
make it into a definition:

Definition A.8.34 Let u : E → F be a linear map between quasinormed vector

spaces and 0 < p < q ≤ 2 . u is a map of type (p, q) if there exists a
constant C <∞ such that for every finite collection {x1, . . . , xn} ⊂ E

∥∥∥
∥∥∥

n∑

ν=1

u
(
xν
)
γ(q)
ν

∥∥∥
F

∥∥∥
Lp(dx)

≤ C ·
( n∑

ν=1

‖xν ‖qE
)1/q

. (A.8.14)

Here γ
(q)
1 , . . . , γ

(q)
n are independent symmetric q-stable random variables de-

fined on some probability space (X,X , dx) . The smallest constant C satisfy-
ing (A.8.14) is denoted by Tp,q(u) . A quasinormed space E (see page 381)

is said to be a space of type (p, q) if its identity map idE is of type (p, q) ,
and then we write Tp,q(E) = Tp,q(idE) .

Exercise A.8.35 The continuous linear maps of type (p, q) form a two-sided
operator ideal: if u : E → F and v : F → G are continuous linear maps between
quasinormed spaces, then Tp,q(v ◦u) ≤ ‖u‖ ·Tp,q(v) and Tp,q(v ◦u) ≤ ‖v‖ ·Tp,q(u).
Example A.8.36 [66] Let (Y,Y, dy) be a probability space. Then the natural
injection j of Lq(dy) into Lp(dy) has type (p, q) with

Tp,q(j) ≤ ‖γ(q)‖p . (A.8.15)
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Indeed, if f1, . . . , fn ∈ Lq(dy), then

‚‚‚
‚‚‚
nX

ν=1

j(fν) γ
(q)
ν

‚‚‚
Lp(dy)

‚‚‚
Lp(dx)

=
“Z Z ˛̨

˛
nX

ν=1

fν(y) γ
(q)
ν (x)

˛̨
˛
p

dx dy
”1/p

by equation (A.8.11): = ‖γ(q)‖p ·
“Z “ nX

ν=1

|fν(y)|q
”p/q

dy
”1/p

≤ ‖γ(q)‖p ·
“Z “ nX

ν=1

|fν(y)|q
”
dy
”1/q

= ‖γ(q)‖p ·
“ nX

ν=1

‖fν‖qLq(dy)

”1/q

.

Exercise A.8.37 Equality obtains in inequality (A.8.15).

Example A.8.38 [66] For 0 < p < q < 1,

Tp,q(`
1) ≤ ‖γ(q)‖p ·

‖γ(1)‖q
‖γ(1)‖p

.

To see this let γ
(1)
1 , γ

(1)
2 , . . . be a sequence of independent symmetric 1-stable

(i.e., Cauchy) random variables defined on a probability space (X,X , dx),
and consider the map u that associates with (ai) ∈ `1 the random variable∑
i aiγ

(1)
i . According to equation (A.8.11), u has norm ‖γ(1)‖q if considered

as a map uq : `1 → Lq(dx), and has norm ‖γ(1)‖p if considered as a map

up : `1 → Lp(dx). Let j denote the injection of Lq(dx) into Lp(dx). Then
by equation (A.8.11)

v def= ‖γ(1)‖−1
p · j ◦ uq

is an isometry of `1 onto a subspace of Lp(dx). Consequently

Tp,q(`
1) = Tp,q

(
id`1

)
= Tp,q(v

−1 ◦ v)

by exercise A.8.35: ≤ Tp,q(v) ≤ ‖γ(1)‖−1
p ·

∥∥uq
∥∥ · Tp,q(j)

by example A.8.36: ≤ ‖γ(1)‖−1
p · ‖γ(1)‖q · ‖γ(q)‖p .

Proposition A.8.39 [66] For 0 < p < q < 1 every normed space E is of type

(p, q) :

Tp,q(E) ≤ Tp,q(`
1) ≤ ‖γ(q)‖p ·

‖γ(1)‖q
‖γ(1)‖p

. (A.8.16)

Proof. Let x1, . . . , xn ∈ E , and let E0 be the finite-dimensional subspace
spanned by these vectors. Next let x′1, x

′
2, . . . ∈ E0 be a sequence dense in

the unit ball of E0 and consider the map π : `1 → E0 defined by

π
(
(ai)

)
=
∞∑

i=1

ai x
′
i , (ai) ∈ `1 .
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It is easily seen to be a contraction: ‖π(a)‖
E0

≤ ‖a‖
`1

. Also, given ε > 0,

we can find elements aν ∈ `1 with π(aν) = xν and ‖aν ‖`1 ≤ ‖xν ‖E + ε .

Using the independent symmetric q-stable random variables γ
(q)
ν from defi-

nition A.8.34 we get

∥∥∥
∥∥∥
n∑

ν=1

xν γ
(q)
ν

∥∥∥
E

∥∥∥
Lp(dx)

=
∥∥∥
∥∥∥
n∑

ν=1

π ◦ id`1(aν) γ(q)
ν

∥∥∥
E

∥∥∥
Lp(dx)

≤ ‖π‖ · Tp,q(`1) ·
( n∑

ν=1

‖aν‖q`1
)1/q

≤ Tp,q(`
1) ·
( n∑

ν=1

‖xν‖qE + εq
)1/q

.

Since ε > 0 was arbitrary, inequality (A.8.16) follows.

A.9 Semigroups of Operators

Definition A.9.1 A family {Tt : 0 ≤ t < ∞} of bounded linear operators on
a Banach space C is a semigroup if Ts+t = Ts ◦ Tt for s, t ≥ 0 and T0

is the identity operator I . We shall need to consider only contraction
semigroups: the operator norm ‖Tt ‖ def= sup{‖Ttφ‖C : ‖φ‖

C
≤ 1} is

bounded by 1 for all t ∈ [0,∞) . Such T. is (strongly) continuous if
t 7→ Ttφ is continuous from [0,∞) to C , for all φ ∈ C .

Exercise A.9.2 Then T. is, in fact, uniformly strongly continuous. That is to
say, ‖Ttφ− Tsφ‖ −−−−−→

(t−s)→0 0 for every φ ∈ C .

Resolvent and Generator

The resolvent or Laplace transform of a continuous contraction semi-

group T. is the family U. of bounded linear operators Uα , defined on φ ∈ C
as

Uαφ
def=

∫ ∞

0

e−αt · Ttφ dt , α > 0 .

This can be read as an improper Riemann integral or a Bochner integral
(see A.3.15). Uα is evidently linear and has ‖αUα ‖ ≤ 1. The resolvent,

identity
Uα − Uβ = (β − α)UαUβ , (A.9.1)

is a straightforward consequence of a variable substitution and implies that

all of the Uα have the same range U def= U1C . Since evidently αUαφ −−−→α→0 φ
for all φ ∈ C , U is dense in C .

The generator of a continuous contraction semigroup T. is the linear
operator A defined by

Aψ def= lim
t↓0

Ttψ − ψ

t
. (A.9.2)
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It is not, in general, defined for all ψ ∈ C , so there is need to talk about
its domain dom(A). This is the set of all ψ ∈ C for which the limit (A.9.2)

exists in C . It is very easy to see that Tt maps dom(A) to itself, and that
ATtψ = TtAψ for ψ ∈ dom(A) and t ≥ 0. That is to say, t 7→ Ttψ has a

continuous right derivative at all t ≥ 0; it is then actually differentiable at
all t > 0 ([115, page 237 ff.]). In other words, ut

def= Ttψ solves the C-valued

initial value problem
dut
dt

= Aut , u0 = ψ .

For an example pick a φ ∈ C and set ψ def=
∫ s
0
Tσφ dσ . Then ψ ∈ dom(A)

and a simple computation results in

Aψ = Tsφ− φ . (A.9.3)

The Fundamental Theorem of Calculus gives

Ttψ − Tsψ =

∫ t

s

Tτ Aψ dτ . (A.9.4)

for ψ ∈ dom(A) and 0 ≤ s < t .
If φ ∈ C and ψ def= Uαφ , then the curve t 7→ Ttψ = eαt

∫∞
t
e−αsTsφ ds is

plainly differentiable at every t ≥ 0, and a simple calculation produces

A[Ttψ] = Tt[Aψ] = Tt[αψ − φ] ,

and so at t = 0 AUαφ = αUαφ− φ ,

or, equivalently, (αI −A)Uα = I or (I −A/α)−1 = αUα . (A.9.5)

This implies
∥∥(I − εA)−1

∥∥ ≤ 1 for all ε > 0 . (A.9.6)

Exercise A.9.3 From this it is easy to read off these properties of the generator A :
(i) The domain of A contains the common range U of the resolvent operators Uα .
In fact, dom(A) = U , and therefore the domain of A is dense [53, p. 316].
(ii) Equation (A.9.3) also shows easily that A is a closed operator, meaning that
its graph GA

def= {(ψ,Aψ) : ψ ∈ dom(A)} is a closed subset of C × C . Namely,
if dom(A) 3 ψn → ψ and Aψn → φ , then by equation (A.9.3) Tsψ − ψ =
lim
R s
0
TσAψn dσ =

R s
0
Tσφ dσ ; dividing by s and letting s → 0 shows that

ψ ∈ dom(A) and φ = Aψ . (iii) A is dissipative. This means that

‖(I − εA)ψ‖
C
≥ ‖ψ‖C (A.9.7)

for all ε > 0 and all ψ ∈ dom(A) and follows directly from (A.9.6).

A subset D0 ⊂ domA is a core for A if the restriction A0 of A to D0

has closure A (meaning of course that the closure of GA0
in C ×C is GA ).

Exercise A.9.4 D0 ⊂ domA is a core if and only if (α−A)D0 is dense in C for
some, and then for all, α > 0. A dense invariant 47 subspace D0 ⊂ domA is a
core.

47 I.e., TtD0 ⊆ D0 ∀ t ≥ 0.
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Feller Semigroups

In this book we are interested only in the case where the Banach space C

is the space C0(E) of continuous functions vanishing at infinity on some
separable locally compact space E . This Banach space carries an additional

structure, the order, and the semigroups of interest are those that respect it:

Definition A.9.5 A Feller semigroup on E is a strongly continuous semi-

group T. on C0(E) of positive48 contractive linear operators Tt from C0(E)
to itself. The Feller semigroup T. is conservative if for every x ∈ E and

t ≥ 0

sup{Ttφ (x) : φ ∈ C0(E) , 0 ≤ φ ≤ 1} = 1 .

The positivity and contractivity of a Feller semigroup imply that the linear
functional φ 7→ Ttφ(x) on C0(E) is a positive Radon measure of total

mass ≤ 1. It extends in any of the usual fashions (see, e.g., page 395) to a
subprobability Tt(x, .) on the Borels of E . We may use the measure Tt(x, .)

to write, for φ ∈ C0(E),

Ttφ(x) =

∫
Tt(x, dy) φ(y) . (A.9.8)

In terms of the transition subprobabilities Tt(x, dy), the semigroup pro-

perty of T. reads
∫
Ts+t(x, dy) φ(y) =

∫
Ts(x, dy)

∫
Tt(y, dy

′) φ(y′) (A.9.9)

and extends to all bounded Baire functions φ by the Monotone Class Theorem

A.3.4; (A.9.9) is known as the Chapman–Kolmogorov equations.

Remark A.9.6 Conservativity simply signifies that the Tt(s, .) are all prob-

abilities. The study of general Feller semigroups can be reduced to that of
conservative ones with the following little trick. Let us identify C0(E) with

those continuous functions on the one-point compactification E∆ that vanish
at “the grave ∆.” On any Φ ∈ C∆ def= C(E∆) define the semigroup T∆

. by

T∆

t Φ (x) =

{
Φ(∆) +

∫
E
Tt(x, dy)

(
Φ(y) − Φ(∆)

)
if x ∈ E,

Φ(∆) if x = ∆.
(A.9.10)

We leave it to the reader to convince herself that T∆
. is a strongly contin-

uous conservative Feller semigroup on C(E∆), and that “the grave” ∆ is

absorbing: Tt(∆, {∆}) = 1. This terminology comes from the behavior of
any process X. stochastically representing T∆

. (see definition 5.7.1); namely,

once X. has reached the grave it stays there. The compactification T. → T∆
.

comes in handy even when T. is conservative but E is not compact.

48 That is to say, φ ≥ 0 implies Ttφ ≥ 0.
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Examples A.9.7 (i) The simplest example of a conservative Feller semigroup
perhaps is this: suppose that {θs : 0 ≤ s <∞} is a semigroup under com-

position, of continuous maps θs : E → E with lims↓0 θs(x) = x = θ0(x)
for all x ∈ E , a flow. Then Tsφ = φ ◦ θs defines a Feller semigroup T. on

C0(E), provided that the inverse image θ−1
s (K) is compact whenever K ⊂ E

is.

(ii) Another example is the Gaussian semigroup of exercise 1.2.13 on Rd :

Γtφ(x) def=
1

(2πt)d/2

∫

Rd

φ(x+ y) e−|y|
2/2t dy = *γt?φ (x) .

(iii) The Poisson semigroup is introduced in exercise 5.7.11, and the semi-
group that comes with a Lévy process in equation (4.6.31).

(iv) A convolution semigroup of probabilities on Rn is a family
{µt : t > 0} of probabilities so that µs+t = µs?µt for s, t > 0 and µ0 = δ0 .

Such gives rise to a semigroup of bounded positive linear operators Tt on
C0(Rn) by the prescription

Ttφ (z) def= *µt?φ (x) =

∫

Rn

φ(z + z′) µt(dz
′) , φ ∈ C0(Rn) , z ∈ Rn .

It follows directly from proposition A.4.1 and corollary A.4.3 that the follow-

ing are equivalent: (a) limt↓0 Ttφ = φ for all φ ∈ C0(Rn); (b) t 7→ µ̂t(ζ) is
continuous on R+ for all ζ ∈ Rn ; and (c) µtn ⇒ µt weakly as tn → t . If

any and then all of these continuity properties is satisfied, then {µt : t > 0}
is called a conservative Feller convolution semigroup.

A.9.8 Here are a few observations. They are either readily verified or

substantiated in appendix C or are accessible in the concise but detailed
presentation of Kallenberg [53, pages 313–326].

(i) The positivity of the Tt causes the resolvent operators to be positive as
well. It causes the generator A to obey the positive maximum principle;

that is to say, whenever ψ ∈ dom(A) attains a positive maximum at x ∈ E ,
then Aψ (x) ≤ 0.

(ii) If the semigroup T. is conservative, then its generator A is conser-

vative as well. This means that there exists a sequence ψn ∈ dom(A) with
supn ‖ψn ‖∞ < ∞ ; supn ‖Aψn ‖∞ < ∞ ; and ψn → 1, Aψn → 0 pointwise

on E .

A.9.9 The Hille–Yosida Theorem states that the closure A of a closable ope-
rator49 A is the generator of a Feller semigroup – which is then unique – if

and only if A is densely defined and satisfies the positive maximum principle,
and α−A has dense range in C0(E) for some, and then all, α > 0.

49 A is closable if the closure of its graph GA in C0(E) × C0(E) is the graph of an
operator A, which is then called the closure of A. This simply means that the relation
GA ⊂ C0(E)×C0(E) actually is (the graph of) a function, equivalently, that (0, φ) ∈ GA

implies φ = 0.
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For proofs see [53, page 321], [100], and [115]. One idea is to emulate the
formula eat = limn→∞(1 − ta/n)−n for real numbers a by proving that

Ttφ
def= lim

n→∞
(I − tA/n)−nφ

exists for every φ ∈ C0(E) and defines a contraction semigroup T. whose
generator is A . This idea succeeds and we will take this for granted. It is

then easy to check that the conservativity of A implies that of T. .

The Natural Extension of a Feller Semigroup

Consider the second example of A.9.7. The Gaussian semigroup Γ. applies
naturally to a much larger class of continuous functions than merely those

vanishing at infinity. Namely, if φ grows at most exponentially at infinity, 50

then Γtφ is easily seen to show the same limited growth. This phenomenon

is rather typical and asks for appropriate definitions. In other words, given a
strongly continuous semigroup T. , we are looking for a suitable extension T̆.
in the space C = C(E) of continuous functions on E .

The natural topology of C is that of uniform convergence on compacta,

which makes it a Fréchet space (examples A.2.27).

Exercise A.9.10 A curve [0,∞) 3 t 7→ ψt in C is continuous if and only if the
map (s, x) 7→ ψs(x) is continuous on every compact subset of R+ ×E .

Given a Feller semigroup T. on E and a function f : E → R , set 51

‖f ‖̆t,K def= sup
{∫ ∗

E

Ts(x, dy) |f(y)| : 0 ≤ s ≤ t, x ∈ K
}

(A.9.11)

for any t > 0 and any compact subset K ⊂ E, and then set

ddfeĕ def=
∑

ν

2−ν ∧ ‖f ‖̆ν,Kν
,

and F̆ def=
{
f : E → R : ddλfeĕ −−→λ→0 0

}

=
{
f : E → R : ‖f ‖̆t,K < ∞ ∀t <∞, ∀K compact

}
.

The ‖ . ‖̆t,K and dd .eĕ are clearly solid and countably subadditive; therefore

F̆ is complete (theorem 3.2.10 on page 98). Since the ‖ . ‖̆t,K are seminorms,

this space is also locally convex. Let us now define the natural domain C̆
of T. as the dd eĕ-closure of C00(E) in F̆ , and the natural extension T̆. on

C̆ by

T̆tφ̆ (x) def=

∫

E

Tt(x, dy) φ̆(y)

50 |φ(x)| ≤ Cec‖x‖ for some C, c > 0. In fact, for φ = ec‖x‖ ,
R

Γt(x, dy) φ(y) =

etc
2/2ec‖x‖ .

51
R ∗

denotes the upper integral – see equation (A.3.1) on page 396.
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for t ≥ 0, φ̆ ∈ C̆ , and x ∈ E . Since the injection C00(E) ↪→ C̆ is evidently
continuous and C00(E) is separable, so is C̆ ; since the topology is defined by

the seminorms (A.9.11), C̆ is locally convex; since F̆ is complete, so is C̆ :
C̆ is a Fréchet space under the gauge dd eĕ . Since dd eĕ is solid and C00(E) is

a vector lattice, so is C̆ . Here is a reasonably simple membership criterion:

Exercise A.9.11 (i) A continuous function φ belongs to C̆ if and only if for every
t <∞ and compact K ⊂ E there exists a ψ ∈ C with |φ| ≤ ψ so that the function
(s, x) 7→

R ∗

E
Ts(x, dy) ψ(y) is finite and continuous on [0, t]×K . In particular, when

T. is conservative then C̆ contains the bounded continuous functions Cb = Cb(E)
and in fact is a module over Cb .

(ii) T̆. is a strongly continuous semigroup of positive continuous linear operators.

A.9.12 The Natural Extension of Resolvent and Generator The Bochner

integral52

Ŭαψ =

∫ ∞

0

e−αt · T̆tψ dt (A.9.12)

may fail to exist for some functions ψ in C̆ and some α > 0.50 So we

introduce the natural domains of the extended resolvent

D̆α = D̆[Ŭα] def=
{
ψ ∈ C̆ : the integral (A.9.12) exists and belongs to C̆

}
,

and on this set define the natural extension of the resolvent operator
Ŭα by (A.9.12). Similarly, the natural extension of the generator is

defined by

Ăψ def= lim
t↓0

T̆tψ − ψ

t
(A.9.13)

on the subspace D̆ = D̆[Ă] ⊂ C̆ where this limit exists and lies in C̆ . It is

convenient and sufficient to understand the limit in (A.9.13) as a pointwise
limit.

Exercise A.9.13 D̆α increases with α and is contained in D̆ . On D̆α we have

(αI − Ă)Ŭα = I .

The requirement that Ăψ ∈ C̆ has the effect that T̆tĂψ = ĂT̆tψ for all t ≥ 0 and

T̆tψ − T̆sψ =

Z t

s

T̆σĂψ dσ , 0 ≤ s ≤ t <∞ .

A.9.14 A Feller Family of Transition Probabilities is a slew {Tt,s : 0 ≤ s ≤ t}
of positive contractive linear operators from C0(E) to itself such that for all
φ ∈ C0(E) and all 0 ≤ s ≤ t ≤ u <∞

Tu,sφ = Tu,t ◦ Tt,sφ and Tt,tφ = φ ;

(s, t) 7→ Tt,sφ is continuous from R+ × R+ to C0(E).

52 See item A.3.15 on page 400.
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It is conservative if for every pair s ≤ t and x ∈ E the positive Radon
measure

φ 7→Tt,sφ (x) is a probability Tt,s(x, .) ;

we may then write Tt,sφ (x) =

∫

E

Tt,s(x, dy) φ(y) .

The study of T.,. can be reduced to that of a Feller semigroup with the

following little trick: let E` def= R+×E , and define T`t : C`0
def= C0(E

`) → C`0
by

T`s φ (t, x) =

∫

E

Ts+t,t(x, dy) φ(s+ t, y) ,

or T`s
(
(t, x), dτ×dξ

)
= δs+t(dτ) × Ts+t,t(x, dξ) .

Then T.̀ is a Feller semigroup on E` . We call it the time-rectification of

T.,. . This little procedure can be employed to advantage even if T.,. is already
“time-rectified,” that is to say, even if Tt,s depends only on the elapsed time

t− s : Tt,s = Tt−s,0 = Tt−s , where T. is some semigroup.
Let us define the operators

Aτ : φ 7→ lim
t↓0

Tτ+t,τφ− φ

t
, φ ∈ dom(Aτ ) ,

on the sets dom(Aτ ) where these limits exist, and write

(Aτφ)(τ, x) =
(
Aτφ(τ, .)

)
(x)

for φ(τ, .) ∈ dom(Aτ ). We leave it to the reader to connect these operators

with the generator A` :

Exercise A.9.15 Describe the generator A` of T`
. in terms of the operators Aτ .

Identify dom(T̆`
. ), D[Ŭ`

. ] , Ŭ`
. , dom(Ă`), and Ă` . In particular, for ψ ∈ dom(Ă`),

A`ψ(τ, x) =
∂ψ

∂t
(τ, x) + Aτψ(τ, x) .

Repeated Footnotes: 3661 3662 3663 3675 3676 37512 37613 37614 38415 38516

38818 39522 39726 39927 41034 42137 42138 42240 43642 46750



Appendix B

Answers to Selected Problems

Answers to most of the problems can be found in Appendix C, which is available
on the web via http://www.ma.utexas.edu/users/cup/Answers.

2.1.6 Define Tn+1 = inf{t > Tn : Xt+ − Xt 6= 0} ∧ t , where t is an instant
past which X vanishes. The Tn are stopping times (why?), and X is a linear
combination of X0 · [[0]] and the intervals ((Tn, Tn+1]] .
2.3.6 For N = 1 this amounts to ζ1 ≤ Lqζ1 , which is evidently true. Assuming
that the inequality holds for N − 1, estimate

ζ2N = ζ2
N−1 + (ζN − ζN−1)(ζN + ζN−1)

≤ L2
q

NX

n=1

(ζn − ζn−1)
2 + (ζN − ζN−1)(ζN + ζN−1)

− L2
q(ζN − ζN−1)(ζN − ζN−1)

= L2
q

NX

n=1

(ζn − ζn−1)
2 + (ζN − ζN−1)((1 − L2

q)ζN + (L2
q + 1)ζN−1) .

Now with L2
q = (q+1)/(q−1) we have 1−L2

q = −2/(q−1) and L2
q+1 = 2q/(q−1),

and therefore

(1 − L2
q)ζN + (L2

q + 1)ζN−1 =
2

q − 1
( − ζN + qζN−1) ≤ 0 .

2.5.17 Replacing Fn by Fn− p , we may assume that p = 0. Then Sn def=
Pn
ν=1Fν

has expectation zero. Let Fn denote the σ-algebra generated by F1, F2, . . . , Fn−1 .
Clearly Sn is a right-continuous square integrable martingale on the filtration {Fn} .
More precisely, the fact that E[Fν |Fµ ] = 0 for µ < ν implies that

E
h
S2
n

i
= E

h`Pn
ν=1Fν

´2i
= E

hPn
ν=1F

2
ν

i
+ 2
P

1≤µ<ν≤nE
ˆ
FµE[Fν |Fµ ]

˜
≤ nσ2 .

Therefore Zn def= Sn/n has ‖Zn‖L2 ≤ σ
p

1/n −−−→n→∞ 0. (Using Chebyscheff’s in-
equality here we may now deduce the weak law of large numbers.) The strong law
says that Zn −−−→n→∞ 0 almost surely and evidently follows if we can show that Zn
converges almost surely to something as n→ ∞ . To see that it does we write

Zν − Zν−1 =
Fν
ν

− 1

ν(ν−1)

X

1≤i<ν

Fi , ν = 2, 3, . . . ,

470
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and set eZn def=
X

1≤ν≤n

Fν
ν
, n = 1, 2, 3, . . . ,

and bZ1 = 0, bZn def=
X

1<ν≤n

Sν−1

ν(ν−1)
, n = 2, 3, . . . .

Then Zn = eZn − bZn ,

and it suffices to show that both eZ. and bZ. converge almost surely. Now eZ. is an
L2-bounded martingale and so has a limit almost surely. Namely, because of the
cancellation as above,

E
h
eZ2
n

i
≤

X

1≤ν≤n

E[F 2
ν ]

ν2
<
X

ν<∞

σ2

ν2
<∞ .

As to bZ, since bZ
∞

def=
X

2≤ν<∞

|Sν−1|
ν(ν−1)

has E[ bZ
∞

] ≤
X

2≤ν<∞

‖Sν−1‖L2

ν(ν−1)
≤

X

2≤ν<∞

σ
√
ν−1

ν(ν−1)
<∞ ,

the sum defining bZ∞
def= lim bZn almost surely converges, even absolutely.

3.8.10 (i) Both (Y,Z) → [Y,Z]($) and (Y,Z) → c[Y,Z]($) are inner products
with associated lengths S[Z]($), σ[Z]($). The claims are Minkowski’s inequalities
and follow from a standard argument.

(ii) Take U = V = [[0, T ]] in theorem 3.8.9 and apply Hölder’s inequality.
3.8.18 (i) Choose numbers αi > 0 satisfying inequality (3.7.12):

P∞
i=1 iαi ·Xi

I0 <∞

(Xi is X stopped at i). With each αi goes a δi > 0 so that |x− x′| ≤ δi implies
|F (x) − F (x′)| ≤ αi . Set T i0 = 0 and T ik+1

def= inf{t > T ik : |Zt − ZT i
k
| ≥ αi} . Then

set
iY ηt

def=
P
k,ν F

η
ν (XT i

k
)(Xν

T i
k+1

∧t −Xν
T i

k
∧t) , η = 1, . . . , d .

According to theorem 3.7.26, nearly everywhere iY. −−−→i→∞ (F (X)∗X). uniformly on
bounded time-intervals. Let us toss out the nearly empty set where the limit does
not exist and elsewhere select this limit for F (X)∗X . Now let ω, ω′ be such that
X.(ω) and X.(ω′) describe the same arc via t 7→ t′ . The times T ik may well

differ at ω and ω′ , in fact T ik(ω
′) = (T ik(ω))

′
, but the values XT i

k
(ω) and XT i

k
(ω′)

clearly agree. Therefore iYt(ω) = iYt′(ω
′) for all n ∈ N and all t ≥ 0. In the limit

(F (X)∗X)
t
(ω) = (F (X)∗X)

t′(ω
′).

(ii) We start with the case d = 1. Apply (i) with f(x) = 2x and toss out
in addition the nearly empty set of ω ∈ Ω where [W,W ]t(ω) 6= t for some t .
Now if W.(ω) and W.(ω′) describe the same arc via t 7→ t′ , then [W,W ].(ω) =
W 2

. (ω) − 2(W.∗W ).(ω) and [W,W ].(ω′) = W 2
. (ω′) − 2(W.∗W ).(ω′) describe the

same arc also via t 7→ t′ . This reads t = t′ .
In the case d > 1 apply the foregoing to the components W η of W separately.

3.9.10 (i) Set Mt
def= 〈ξ|XT+t − XT 〉 and assume without loss of generality that

M0 ≤ a . This continuous local martingale has a continuous strictly increasing
square function [M,M ]t = ξµξν([Xµ,Xν ]T+t − [Xµ,Xν ]T ) −−−→t→∞ ∞ . The time
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transformation T λ = Tλ+ def= inf{t : [M,M ]t ≥ λ} of exercise 3.9.8 turns M into a
Wiener process. The zero-one law of exercise 1.3.47 on page 41 shows that T = T±

almost surely.
(ii) In the previous argument replace T by S . The continuous time transforma-

tion T λ = Tλ+ def= inf{t : [M,M ]t ≥ λ} turns Mt
def= 〈ξ|XS+t−XS〉 into a standard

Wiener process, which exceeds any number, including a±〈ξ|XS〉 , in finite time (ex-
ercise 1.3.48 on page 41). Therefore the stopping times T and T± are almost surely
finite. Consider the set X− of paths [S(ω),∞) 3 t 7→ Xt(ω) that have T (ω) > τ .
Each of them stays on the same side of H as XS(ω) for t ∈ [S(ω), τ ] , in fact by
continuity it stays a strictly positive distance away from H during this interval.
Any other path X.(ω′) sufficiently close to a path in X− will not enter H during
[S(ω′), τ ] either and thus will have T (ω′) > τ : the set X− is open.

Next consider the set X+ of paths [S(ω),∞) 3 t 7→ Xt(ω) that have T+(ω) < τ .
If X.(ω) ∈ X+ , then there exists a σ < τ with 〈ξ|Xσ〉 > a : XS(ω) and Xσ(ω) lie
on different sides of H . Clearly if ω′ is such that the path X.(ω′) is sufficiently
close to that of ω , then Xσ(ω

′) will also lie on the other side of H : X+ is open
as well. After removal of the nearly empty set [T 6= T+] we are in the situation
that the sets {X.(ω) : T (ω)><τ} are open for all τ : T depends continuously on the
path.
3.10.6 (i) Let K1,K2 ⊂ H be disjoint compact sets. There are φin ∈ C00[H] with
φin ↓n Ki pointwise and such that φ1

1 and φ2
1 have disjoint support. Then φin∗β →

Ki∗β as L2-integrators and therefore uniformly on bounded time-intervals (theo-
rem 2.3.6) and in law. Also, clearly K1∗β and K2∗β are independent, inasmuch
as φ1

m∗β and φ2
n∗β are. In the next step exhaust disjoint relatively compact

Borel subsets B1, B2 of H by compact subsets with respect to the Daniell means
B 7→ ‖B×[0, n]‖∗

β−2
, n ∈ N , which are K-capacities (proposition 3.6.5), to see that

B1∗β and B2∗β are independent Wiener processes. Clearly ν(B) def= E[(B∗β)21 ]
defines an additive measure on the Borels of H . It is σ-continuous, beacause it is
majorized by B 7→ [‖B×[0, 1]‖∗

β−2
]
2
, even inner regular.

3.10.9 Let I denote the image in L2 def= L2(F0
∞[β],P) of L1[β−2] under the map

X̌ 7→
R∞

0
X̌ dβ , and I the algebraic sum I⊕R . By theorem 3.10.6 (ii), I and then

I are closed in L2 , and their complexifications IC, IC are closed in L2
C . By the

Dominated Convergence Theorem for the L2-mean both vector spaces are closed
under pointwise limits of bounded sequences.

For h ∈ E [Ȟ] def= E [H]⊗C00(R+) set Mh def= h∗β , which is a martingale with

square bracket [Mh,Mh]t =
R t
0
h2(η, s) ν(dη)ds . Then let Gh = exp (iMh +

[Mh,Mh]/2) be the Doléans–Dade exponential of iMh . Clearly Gh∞ = 1 +R∞

0
iGh dMh belongs to IC , and so does its scalar multiple exp (iMh

∞) . The latter

form a multiplicative class M contained in IC and generating F0
∞[β] (page 409).

By exercise A.3.5 the vector space IC contains all bounded F0
∞[β]-measurable func-

tions. As it is mean closed, it contains all of L2
C . Thus I = L2 .

4.3.10 Use exercise 3.7.19, proposition 3.7.33, and exercise 3.7.9.
4.5.8 Inequality (4.5.9) and the homogeneity argument following it show that for
any bounded previsible X ≥ 0

µ〈σ〉(X) ≤ (µ〈ρ〉(X))
τ−σ
τ−ρ · (µ〈τ〉(X))

σ−ρ
τ−ρ ≤ (µ〈ρ〉 ∨ µ〈τ〉)(X) .

4.5.9 Since z 7→ (z + ζ)p − zp increases, inequality (4.5.16) can with the help of
theorem 2.3.6 be continued as

‖Z∞‖pLp ≤
`
C?p Z

Ip + ζ[Z]
´p − C?pp Z

p

Ip .
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Replace Z by X∗Z and take the supremum over X with |X| ≤ 1 to obtain

Z
p

Ip ≤
`
C?p Z

Ip + ζ[Z]
´p − C?pp Z

p

Ip ,

or (1 + C?pp )1/p Z
Ip ≤ C?p Z

Ip + ζ[Z]

and Z
Ip ≤ c�pζ[Z]

with c�p ≤
“
(1 + C?pp )1/p − C∗

p

”−1

≤ 0.6 · 4p .

4.5.21 Let T = inf{t : At ≥ a} and S = inf{t : Yt ≥ y} . Both are stopping
times, and T is predictable (theorem 3.5.13); there is an increasing sequence Tn
of finite stopping times announcing T . On the set [Y∞ > y,A∞ < a ] , S is finite,
YS ≥ y , and the Tn increase without bound. Therefore

[Y∞ > y,A∞ < a] ≤ 1

y
· sup
n
YS∧Tn

and so P[Y∞ > y,A∞ < a] ≤ 1

y
· sup
n

E[YS∧Tn ]

≤ 1

y
· sup
n

E[AS∧Tn ] ≤ 1

y
· E[A∞ ∧ a] .

Applying this to sequences yn ↓ y and an ↑ a yields inequality (4.5.30). This then
implies P[Y = ∞, A ≤ a] = 0 for all a <∞ ; then P[Y = ∞, A <∞] = 0, which is
(4.5.31).
4.5.24 Use the characterizations 4.5.12, 4.5.13, and 4.5.14. Consider, for instance,
the case of Z〈q〉 . Let q′X, q′Ȟ be the quantities of exercise 4.5.14 and its answer
for ′Z . Then Ȟ(y, s) def=

q′Ȟ ◦ C(y, s) = q′Ȟ(Cy, s) = 〈q′Xs|Cy〉 = 〈CT q′Xs|y〉 ,
where CT : `∞(′d) → `∞(d) denotes the (again contractive) transpose of C . By
exercise 4.5.14, the Doléans–Dade measure ′µ of |Ȟ|q∗Z is majorized by that of

Λ〈q〉[Z] . But ′µ is the Doléans–Dade measure of Λ〈q〉[′Z] ! Indeed, the compensator

of |Ȟ|q∗Z = |q′Ȟ ◦ C|q∗Z = |q′Ȟ|q∗C[Z ] = |q′Ȟ |q∗′Z is Λ〈q〉[′Z] . The other cases
are similar but easier.
5.2.2 Let S < T µ on [Tµ > 0]. From inequality (4.5.1)

‚‚|∆∗Z|?S
‚‚
Lp ≤ C�

p · max
ρ=1,p�

‚‚‚
“Z S

0

|∆|ρ dΛ
”1/ρ‚‚‚

Lp

≤ C�
p · max

ρ=1,p�

‚‚‚
“Z µ

0

δρ dλ
”1/ρ‚‚‚

Lp
= δ · C�

p max
ρ=1,p�

µ1/ρ .

Letting S run through a sequence announcing T µ , multiplying the resulting inequal-
ity ‖|∆∗Z|?Tµ−‖

Lp ≤ δ · C�
p maxρ=1,p� µ

1/ρ by e−Mµ , and taking the supremum
over µ > 0 produces the claim after a little calculus.

5.2.18 (i) Since e
pmWt−p

2m2t/2
= Et[pmW ] is a martingale of expectation one

we have |Et[mW ]|p = e
pmWt−pm

2t/2
= Et[pmW ] · e(p

2−p)m2t/2
,

E
ˆ|Et[mW ]|p˜ = e

(p2−p)m2t/2
, and ‖Et[mW ]‖

Lp = e
m2(p−1)t/2

.

Next, from e
|x| ≤ ex + e−x we get

e
|mWt| ≤ emWt + e−mWt = e

m2t/2 × (Et[mW ] + Et[−mW ]) ,
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e
|mW |?t ≤ e

m2t/2 × (E ?t [mW ] + E
?
t [−mW ]) ,

and
‚‚‚e|mW |?t

‚‚‚
Lp

≤ e
m2t/2 × (

‚‚E ?t [mW ]
‚‚
Lp +

‚‚E ?t [−mW ]
‚‚
Lp)

by theorem 2.5.19: ≤ e
m2t/2 × 2p′ · em

2(p−1)t/2
= 2p′ · em

2pt/2
.

(ii) We do this with | | denoting the `1-norm on Rd . First,

‚‚‚e|mZ?|t
‚‚‚
Lp

= e
|m|t ×

Y
η

‚‚‚em|Wη?|t
‚‚‚
Lp

by independence of the W η : ≤ e
|m|t ×

„
2p′ · em

2pt/2

«d−1

= (2p′)
d−1 × e

(|m|+(d−1)m2p/2)·t
.

Thus
‚‚‚e|mZ?|t

‚‚‚
Lp

≤ Ap,d × e
Md,m,p·t

. (1)

Next,
‚‚|Z?|rt

‚‚
Lp =

‚‚|Z?|t
‚‚r
Lrp ≤

„
t+

P
η

‚‚|W η?|t
‚‚
Lrp

«r

=

„
t+ (d−1) ·

‚‚|W |?t
‚‚
Lrp

«r

by theorem 2.5.19: ≤
„
t+ (d−1)(rp)′ ·

‚‚|W |t
‚‚
Lrp

«r

≤ 2r
′
„
tr + (d−1)r(rp)′r · ‖|W |t×‖r

Lrp

«

by exercise A.3.47 with σ =
√
t:= 2r

′
„
tr + (d−1)r(rp)′rΓp,r · tr/2

«
.

Thus
‚‚|Z?|rt

‚‚
Lp ≤ Brt

r +Bd,r,pt
r/2 . (2)

Applying Hölder’s inequality to (1) and (2), we get

‚‚‚|Z?|rt · e|mZ?|t
‚‚‚
Lp

≤
„
Brt

r +Bd,r,2pt
r/2

«
×
„
A2p,de

Md,m,pt
«

= tr/2A2p,d

„
Bd,r,2p +Brt

r/2

«
× e

Md,m,2pt :

we get, for suitable B′ = B′
d,p,r,M

′ = M ′
d,m,p,r, the desired inequality

‚‚‚|Z?|rt · e|mZ?|t
‚‚‚
Lp

≤ B′ · tr/2 eM′t .

5.3.1 S?n
p,M is naturally equipped with the collection N◦ of seminorms

p◦,M◦ ,

where 2 ≤ p◦ < p and M◦ > M . N◦ forms an increasing family with pointwise
limit

p,M
. For 0 ≤ σ ≤ 1 set uσ def= u + σ(v−u) and Xσ def= X + σ(Y−X).

Write F for Fη , etc. Then the remainder F [v, Y ] − F [u,X] −D1F [u,X]·(v−u) −
D2F [u,X]·(Y−X) becomes, as in example A.2.48,

RF [u,X; v, Y ] =

Z 1

0

„
Df(uσ,Xσ) −Df(u,X)

«
·
„
v−u
Y−X

«
dσ .
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With Rσf def= Df(uσ,Xσ) − Df(u,X) , 1/p◦ = 1/p + 1/r , and R
pp◦ denoting

the operator norm of a linear operator R : `p(k+n) → `p
◦
(n) we get

|RF [u,X; v, Y ]?Tλ−|p◦ ≤ C · rλ · (|v−u| + ||Y−X|?Tλ−|p) ,

where rλ def= sup
t<Tλ

sup
0≤σ≤1

Rσf
pp◦ ,

and where C is a suitable constant depending only on k, n, p, p◦ . Now rλ is
a bounded random variable and converges to zero in probability as |v − u| +
Y−X ?

p,M
→ 0. (Use that the T λ of definition (5.2.4) on page 283 are bounded;

then Xσ
t ranges over a relatively compact set as [0 ≤ σ ≤ 1] and 0 ≤ t ≤ T λ .)

In other words, the uniformly bounded increasing functions λ 7→ ‖rλ‖r converge

pointwise – and thus uniformly on compacta – to zero as |v−u|+ Y−X ?

p,M
→ 0.

Therefore the first factor on the right in

RF [u,X; v, Y ]
p◦,M◦ ≤ C sup

λ
e(M−M◦)λ‖rλ‖r · (|v−u| + Y−X ?

p,M
)

converges to zero as |v−u|+ Y−X ?

p,M
→ 0, which is to say RF [u,X; v, Y ]

p◦,M◦ =

o(|v − u| + Y−X ?

p,M
).

5.4.19 (ii) For fixed µ and δ set k def= dµ/δe , and λi def= iδ and Ti def= Tλi for
i = 0, 1, . . . , k . Then λk−1 < µ ≤ λk . Let ∆?

i denote the maximal function of
the difference of the global solution at Ti , which is XTi

= Ξ[C,Z]Ti
, from its

Ξ′-approximate X ′
Ti

. Consider an s ∈ [T λi , Tλi+1 ] .

Since X ′
s −Xs = Ξ′[X ′

Ti
,Zs−ZTi ] − Ξ′[XTi

,Zs−ZTi ]

+ Ξ′[XTi
,Zs−ZTi ] − Ξ[XTi ,Zs−ZTi ] ,

5.4.17 gives
‚‚∆?

i+1

‚‚
Lp ≤

‚‚∆?
i

‚‚
Lp × eL

′δ + (
‚‚|X|?Ti

+1
‚‚
Lp) × (Mδ)re

Mδ
,

which implies |∆?
k| ≤ (|X|?Tk

+1) × (Mδ)re
Mδ ·P0≤i<ke

iL′δ

for X. ∈ Sp,M , as λk = kδ : ≤ ( X.
?

M
e
Mλk + 1) × (Mδ)re

Mδ · e
L′kδ − 1

eL
′δ − 1

by (5.2.23), as δ → 0: ≤ 2

1−γ

„
0C

?

M
+ 1

«
e
Mλk × (Mδ)re

Mδ · k eL
′λk

since k = λk/δ : ≤ const ( C
?

M
+ 1)Mre

Mδ
δr−1 × λk·e(M+L′)λk

≤ B·(‖C‖Lp+1) × δr−1·eMλk

for suitable B = B[f ; Ξ′] and M = M [f ; Ξ′] > M+L′ .
5.5.7 Let P,P ∈ P . Thanks to the uniform ellipticity (5.5.17) there exist bounded
functions hη so that f0 = −Pη fη · hη . Then M def= h∗W is a martingale under

both P and P , and by exercise 3.9.12 so is the Doléans–Dade exponential G′

of M . The Girsanov theorem 3.9.19 asserts that W ′ def= Wt +
R .
0

hs ds is a Wiener

process under the probabilities P′ and P′ that on every Ft agree with G′
tP and

G′
tP , respectively. Now X satisfies equation (5.5.20) with W ′ replacing W , and

therefore by assumption P′ = P′ . This clearly implies P = P .
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5.5.13 Let s ≤ t ≤ t′ . Then by Itô’s formula

u(t′−t,Xt) = u(t′−s,Xs) −
Z t

s

u̇(t′−σ,Xσ) dσ

+

Z t

s

u;ν(t
′−σ,Xσ) dXxν

σ +

Z t

s

Au(t′−σ,Xσ) dσ

= u(t′−s,Xs) +

Z t

s

u;ν(t
′−σ,Xσ) dXxν

σ .

Taking the conditional expectation under Fs exhibits t 7→ u(t′−t,Xt) as a bounded
local martingale.
5.5.14 It suffices to consider equation (5.5.20). Recall that P is the collection of all
probabilities on C

n under which the process Wt of (5.5.19) is a standard Wiener
process. Let P,P ∈ P . From φ0, φ1, . . . , φk ∈ C∞

b (Rn) and 0 = t0 < t1 < · · · < tk
make the function Φ def= φ0(X

x
0 ) · φ1(X

x
t1) · · ·φk(Xx

tk) on the path space C
n . Their

collection forms a multiplicative class that separates the points of C
n . Since path

space is polish and consequently every probability on it is tight (proposition A.6.2),
or simply because the functions Φ generate the Borel σ-algebra on path space,
P = P will follow if we can show that E = E on the functions Φ (proposi-
tion A.3.12). This we do by induction in k . The case k = 0 is trivial. Note
that the equality E[Φ] = E[Φ] on Φ made from smooth functions φi persists on
functions Φ made from continuous, even bounded Baire, functions φi , by the usual
sequential closure argument. To propel ourselves from k to k + 1 let u denote a
solution to the initial value problem u̇ = Au with u(0, x) = φk+1(x) and write
Φ def= φ0◦Xx

0 · φ1◦Xx
t1 · · ·φk◦Xx

tk
. Then, with t = t′ = tk+1 and s = tk , exer-

cise 5.5.13 produces

E
h
φk+1(X

x
tk+1

)|Ftk
i

= E
h
u(0,Xx

tk+1
)|Ftk

i

= E
ˆ
u(tk+1−tk,Xx

tk
)
˜

and so E[Φ · φk+1(X
x
tk+1

)] = E
ˆ
Φ · u(tk+1−tk,Xx

tk
)
˜

= E
ˆ
Φ · u(tk+1−tk,Xx

tk
)
˜

(∗)

by the same token: = E[Φ · φk+1(X
x
tk+1

)] .

At (∗) we used the fact that the argument of the expectation is a k-fold product of
the same form as Φ, so that the induction hypothesis kicks in.
A.2.23 Let Un be the set of points x in F that have a neighborhood Vn(x) whose
intersection with E has ρ-diameter strictly less than 1/n . The Un clearly are
open and contain E . Their intersection is E . Indeed, if x ∈ TUn , then the sets
E ∩ Vn(x) form a Cauchy filter basis in E whose limit must be x .

A.3.5 The family of all complex finite linear combinations of functions in M∪{1}
is a complex algebra A of bounded functions in V that is closed under complex

conjugation; the σ-algebra it generates is again MΣ . The real-valued functions

in A form a real algebra A0 of bounded functions that again generates MΣ . It is

a multiplicative class contained in the bounded monotone class V0 of real-valued

functions in V . Now apply theorem A.3.4 suitably.
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46. K. Itô, “Extension of stochastic integrals,” Proceedings of the Interna-

tional Symposium on Stochastic Differential Equations, Kyoto (1976),
95–109.
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79. P. A. Meyer, “Construction de solutions d’équation de structure,” in:
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Probabilités XIV , LNM 784, 1980, pp. 343–346.
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Index of Notations

A[F ] the F-analytic sets 432

A∞ the algebra
S

0≤t<∞ Ft 22

A∞σ the countable unions of sets in A∞ 35

B the base space [0,∞) × Ω 22

B̌ product of auxiliary space with base space B 109

η̌ = (η,$) = (η, s, ω), the typical point of B̌ def= H × B 172

B∗(E) , B•(E) the Baire & Borel sets or functions of E 391

b(p) = 2
π

R∞

0
ξp−1 sin ξ dξ 458

[[[0, t]]] def= Rd∗ × [[0, t]] 181

[[[0, T ]]] def= H × [[0, T ]] 172

Cb(E) the continuous bounded functions on E 376

C0(B) the continuous functions vanishing at infinity 366

C00(B) the continuous functions with compact support 370

Ck(D) the k-times continuously diff’ble functions on D 372

Ckb the bounded functions with k bounded partials 281

C = C
1 the path space C[0,∞) 14

C
d the path space CRd [0,∞) 20

δηθ the Kronecker delta 19

δs the Dirac measure, or point mass, at s 398

∆X the jump process of X ∈ D (∆X0
def= 0) 25

DλF [u] the λth (weak) derivative of F at u 305

dF the measure with distribution function F 406

d F = |dF | its variation 406

D = D[F.] the càdlàg adapted processes 24

D ,Dd,DE canonical space of càdlàg paths 66

E,EP expectation under the prevailing probability, P 32

Ex Ex[F ] =
R
F dPx 351

E[f |Φ],E[f |Y] the conditional expectation of f given Φ, Y 407

E = E [F.] the elementary stochastic integrands 46
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484 Index of Notations

E1 the unit ball {X ∈ E : −1 ≤ X ≤ 1} of E 51

E↑
+ the pointwise suprema of sequences in E 88

E00 the E-confined functions in E 369

E00 the confined uniform closure of E00 370

Eσ00 the E-confined functions in Eσ 393

EP = E [FP
. ] the elementary integrands of the natural enlargement 57

0F coupling coefficients adjusted so that 0F [0] = 0 272
0C initial condition adjusted correspondingly 272

Ft the past or history at time t 21

FT the past at the stopping time T 28

F. the filtration {Ft}0≤t≤∞ 21

F.− the left-continuous version of F. 123

F.+ the right-continuous version of F. 37

F0
. [Z] the basic filtration of the process Z 23

F.[Z] the natural filtration of the process Z 39

F0
. [DE ],F0

.+[DE ] basic, canonical filtration of path space 66

F.[DE ] the natural filtration of path space 67

F∞,F∗
∞ the σ-algebra

W
0≤t<∞Ft , its universal completion 22

FT− the strict past of T 120

F[dd.ee∗] the processes finite for dd.ee∗ 97

FP
. ,FP

. the P,P-regularization of F. 37

FP
.+ the natural enlargement of a filtration 39

eF a predictable envelope of F . 125

S∆ def= S ∪̇ {∆} the one-point compactification of S 374

Ȟ def= H × [0,∞) the product of auxiliary space with time 177

h0 prototypical sure Hunt function y 7→ |y|2 ∧ 1 180

h′
0 y 7→

R
[|ζ|≤1]

|ei〈ζ|y〉 − 1 |2 dζ , another one 182

ηp,q(I) a factorization constant 192

L∞ the essentially bounded measurable functions 448

Lp = Lp(P) the space of p;P-integrable functions 33

L0, L0(Ft,P) (classes of) measurable a.s. finite functions 33

`p the vectors or sequences x = (xν) with |x |
p
<∞ 364

`0 def= RN the Fréchet space of scalar sequences 364

L the left-continuous paths with finite right limits 24

L = L[F.] the collection of adapted maps Z : Ω → L 24

L1[dd.ee∗] &L1[Z−p] the dd.ee∗- & Z−p-integrable processes 99

L1[ζ−p] = L1[dd ee∗
ζ−p

] the ζ−p-integrable processes 175

Λ〈q〉[Z] the previsible controller for Z 238

M∗(E)&M
.
(E) the σ-additive & order-continuous measures on E 421
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M∗[E ] the σ-additive measures on E 406

Mg the martingale Mg
. = E[g|F.] 72

µZ the Doléans–Dade measure of Z 222

O( . ), o( . ) big O and little o 388

(Ω,F.) the underlying filtered measurable space 21

$ the typical point (s, ω) of R+ × Ω 22

P the pertinent probabilities 32

P[Z] the probabilities for which Z is an L0-integrator 61

P00 the bdd. predictable processes with bdd. carrier 128

P̌ def= B•(H) ⊗ P = (E [H]⊗E [F.])σ , predictable random functions 172

P∗(E) = M∗
1,+(E) the probabilities on Cb(E) 421

P
.
(E) = M

.
1,+(E) the order-continuous probabilities on E 421

p� = p�[Z] p if Z jumps, 2 otherwise 238

1� = 1�[Z] 2 if Z is a martingale, 1 otherwise 238

P = P[F.] the predictable processes or σ-algebra 115

PP the processes previsible with P 118

R+ the positive reals, i.e., the reals ≥ 0 363

Rd∗ punctured d-space Rd \ {0} 363

R the extended reals {−∞} ∪ R ∪ {∞} 363

ρ(r, s) the arctan metric on R 364

S Schwartz space of C∞-functions of fast decay 269

S?n
p,M processes with finite Picard Norm

?

p,M
283

S[Z] &σ[Z] square function & continuous square function of Z 148

σ(C∗
b (E), Cb(E)) the topology of weak convergence of measures 421

T = T[F.] the F.-stopping times 27

T
.

: λ 7→ Tλ the time transformation for Z 239

V µ the Doléans–Dade process of µ 222

W Wiener process as a C[0,∞)-valued random variable 14

W Wiener measure 16

Z.(ω) the path s 7→ Zs(ω) 23

Zs the function ω 7→ Z(s, ω) 23

ζT = [[[0, T ]]]ζ the random measure ζ stopped at T 173

Symbols

1A = A the indicator function of A 365

Φ[µ] = µ ◦ Φ−1 the image of the measure µ under Φ 405

µ?ν the convolution of µ and ν 413

V∗ dual of the topological vector space V 381

X∗Z the indefinite Itô integral 133
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Z? the maximal process of Z 26
*φ , *µ φ , µ reflected through the origin 410

E∗
e the universal completion of E 407

Ac the complement of A 373

bµΓ the characteristic function of µ for Γ 410

Fδ the intersections of countable subfamilies of F 432

Fσ the unions of countable subfamilies of F 432

Fσδ the intersections of countable subfamilies of Fσ 432

ε denoting measurability, as in f ∈ F/G 391

ε “is member of” or “is measurable on” 23

= denotes near equality and indistinguishability 35

F+ the positive elements of F 363R
X dZ the elementary integral 47R
X dZ the elementary integral for vectors 56R
X dZ the (extended or Itô) stochastic integral 99R
X dZ the (extended) stochastic integral revisited 134R
A
F =

R
A·F the integral over the set A of the function F 105R

X dZ the (extended or Itô) integral for vectors 110R T
0

X dZ its value at T ∈ T 134

X∗Z the indefinite Itô integral for vectors 134R
XδZ the Stratonovich integral 169

X◦Z the indefinite Stratonovich integral 169R T
0
G dZ

R T
0
G dZ def=

R
G dZT 131R T

S+
G dZ

R T
0
G · ((S,∞)) dZ 131

H∗Z the indefinite integral of H against jump measure 181

M∞ the limit of the martingale M at infinity 75

| |
p

= ‖ ‖
`p

|x |
p

def= (
P
ν |xν |p)

1/p
, 0 < p <∞ 364

| |
∞

= ‖ ‖
`∞ |x |

∞
def= supν |xν | 364

| | any of the norms | |
p

on Rn 364

∧&∨ a ∨ b & a ∧ b : smaller & larger of a, b 364
W WF = supremum or span of the family F 22

‖I ‖ = ‖I ‖
L(E,F )

= sup{‖I(x)‖
F

: x ∈ E, ‖x‖
E
≤ 1} 381

‖f ‖
p

= ‖f ‖
Lp(P)

def= (
R
|f |p dP)

1/p
33

‖f ‖∗
p

= ‖f ‖∗
p;P

its mean ‖f ‖∗
Lp(P)

def= (
R ∗ |f |p dP)

1/p
452

dd ee
Z−p

the semivariation for dd ee
p

53

‖ ‖∗
Z−p

the Daniell extension of ‖ .‖
Z−p

88

ddf ee
p

= ddf ee
Lp(P)

= ddf ee
Lp(P)

def= (
R
|f |p dP)

1/p ∧1
33

ddf ee∗
p

= ddf ee∗
p;P

its mean ddf ee∗
Lp(P)

def= (
R ∗|f |p dP)

1/p ∧1
452

dd ee∗ a subadditive mean 95
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Z
Ip= Z

Ip[P]
integrator (quasi)norms of the integrator Z 55

ζh,t
Ip= ζh,t

Ip[P]
integrator (quasi)norms of the random measure ζ 173

dd ee∗
Z−p

= dd ee∗
Z−p;P

the Daniell mean 88

Z
Ip = Z

Ip[P]
def= sup {‖

R
X dZ ‖

Lp(P)
: X ∈ E , |X| ≤ 1} 55

Z
Ip = Z

Ip[P]
def= sup {‖

R
X dZ ‖

Lp(P)
: X ∈ E , |X| ≤ 1} 56

ddf ee
0

= ddf ee
0;P

the metric inf{λ : P[|f | ≥ λ] ≤ λ} on L0 34

‖ ‖
[α]

‖f ‖
[α]

def= inf{λ > 0 : P[|f | > λ] ≤ α} 34

‖ ‖∗
[α]

the corresponding mean 452

‖ ‖
Z−[α]

the corresponding semivariation 53

‖ ‖∗
Z−[α]

the Daniell extension of ‖ .‖
Z−[α]

88

[α]
the integrator size according to ‖ ‖

[α]
55

p,M
,

?

p,M
Picard Norms 283

Fµ µ-completion of F 414

TA the reduction of T ∈ T to A ∈ FT 31

0A the stopping time 0 reduced to A ∈ F0 48
σ, Eσ, Eσ

R
denoting sequential closure, of E 392

cV, jV continuous & jump part of finite variation process V 69
c̃Z, rZ continuous martingale part of Z , rest Z − c̃Z 235
s̃Z & lZ small-jump martingale part & large-jump part of Z 237
v̂Z a continuous finite variation part of Z 237
pZ the part of Z supported on a sparse previsible set 235
qZ the quasi-left-continuous rest Z − pZ 235

[Z,Z], c[Z,Z] & j[Z,Z] square bracket, its continuous & jump parts 148

[Y,Z], c[Y,Z] & j[Y,Z] square bracket, its continuous & jump parts 150

ZT ZTs = ZT∧s is the process Z stopped at T ∈ T 28

ZS the S-scalæfication of Z 139

[[T ]] = [[T,T ]] the graph of the stopping time T 28

X.− &X.+ left- & right-continuous version of X 24

z , µ variation of distribution function z , or measure µ 45

dz = |dz| the variation measure of the measure dz 45

cZ &fZ compensator & compensatrix of jump measure 232

ḟ the equivalence class of f mod negligible functions 13

Z∞ = Z∞− the limit (possibly ±∞) of Z at ∞ 27

� denoting absolute continuity 407

�. & ≈. local absolute continuity & local equivalence 40

⇒ denoting weak convergence of measures 421

ZT the random variable ω 7→ ZT (ω)(ω). 28

bZ, eZ previsible & martingale parts of the integrator Z 221

bζ, eζ previsible & martingale parts of random measure ζ 231
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A

absolute-homogeneous, 33, 54, 380
absolutely continuous, 407

locally, 40
accessible stopping time, 122
action, differentiable, 279, 326
adapted, 23, 25

map of filtered spaces, 64, 317, 348
process, 23, 28

adaptive, 7, 141, 281, 317, 319
a.e., almost everywhere, 32, 96

meaning Z-a.e., 129
algorithm

computing integral pathwise, 140
solving a markovian SDE, 311
solving a SDE pathwise, 7, 314

a.s., almost surely, P-a.s., 32
ambient set, 90
analytic set, 432
analytic space, 441
approximate identity, 447
approximation, numerical – see

method, 280
arctan metric, 110, 364, 369, 375
Ascoli–Arzela theorem, 7, 385, 428
ASSUMPTIONS

on the data of a SDE, 272
the filtration is natural (regular and

right-continuous), 58, 118, 119,
123, 130, 162, 221, 254, 437

the filtration is right-continuous,
140

auxiliary base space, 172
auxiliary space, 171, 172, 239, 251

B

backward equation, 359
Baire & Borel, function, set &

σ-algebra, 391, 393

Banach space
-valued integrable functions, 409

base space, 22, 40, 90, 172
auxiliary, 172

basic filtration, 18
of a process, 19, 23
of Wiener process, 18
on path space, 66, 445

basis
of neighborhoods, 374
of a uniformity, 374

bigger than (≥), 363
Big O, 388
Blumenthal, 352
Borel σ-algebra on path space, 15
bounded

Ip[P]-bounded process, 49
linear map, 452
polynomially, 322
process of — variation, 67
stochastic interval, 28
subset of a topological vector space,

379, 451
subset of Lp , 451
variation, 45

(B-p), 50, 53
bracket

previsible, oblique or angle —, 228
square —, 148, 150

Brownian motion, 9, 12, 18, 80
Burkholder, 84, 213

C

càdlàg, càglàd, 24
canonical

decompositions of an integrator,
221, 234, 235

filtration on path space, 66, 335
Wiener process, 16, 58

canonical representation, 66
of an integrator, 14, 67
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canonical representation (cont’d)
of a random measure, 177
of a semigroup, 358

capacity, 124, 252, 398, 434
Caratheodory, 395
carrier of a function, 369
Cauchy

filter, 374
random variable & distribution, 458

Cauchy–Schwarz inequality, 150
Central Limit Theorem, 10, 423
Chapman–Kolmogorov equations, 465
characteristic function, 13, 161, 254,

410, 430, 458
of a Gausssian, 419
of a Lévy process, 263
of Wiener process, 161

characteristic triple, 232, 259, 270
chopping, 47, 366
Choquet, 435, 442
class Ckb etc, 281
closure

sequential, 392
topological of a set, 373

commuting flows, 279
commuting vector fields, 279, 326
compact, 373, 375

paving, 432
compensated part of an integrator, 221
compensator, 185, 221, 230, 231
compensatrix, 221
complete

uniform space, 374
universally — filtration, 22

completely regular, 373, 376, 421
completion

of a filtration, 39
of a uniform space, 374
universal, 22, 26, 407, 436
with respect to a measure, 414

E-completion, 369, 375
completely (pseudo)metrizable, 375
compound Poisson process, 270
conditional expectation, 71, 72, 408
condition(s)

(IC-p), 89
(B-p), 50, 53
(RC-0), 50
the natural, 39

confined, 394
E-confined, 369
uniform limit, 370

conjugate exponents, 76, 449

conservative
generator, 466, 467
semigroup, 268, 465, 466, 467

consistent family, 164, 166, 401
full, 402

continuity along increasing sequences,
95, 124, 137, 398, 452

of a capacity, 434
of E , 89, 106
of E+ , 94
of E↑

+ , 90, 95, 125
Continuity Theorem, 254, 423
continuous martingale part

of a Lévy process, 258
of an integrator, 235

contractivity, 235, 251, 407
modulus, 274, 290, 299, 407
strict, 274, 275, 282, 291, 297, 407

control
previsible, of integrators, 238
previsible, of random measures, 251
sure, of integrators, 292

controller
the, for random measures, 251
the previsible, 238, 283, 294

CONVENTIONS, 21
[Z,Z]0 = j[Z,Z]0 = Z2

0 , 148
= denotes near equality and indis-

tinguishability, 35
[Y,Z]0 = j[Y,Z]0 = Y0·Z0 , 150
∈ meaning “measurable on”, 23,

391R T
0
G dZ is the random variable
(G∗Z)T , 134R T

0
G dZ =

R
G dZT , 131

P is understood, 55
∆X0 = X0 , 25
X0− = 0, 24
about positivity, negativity etc., 363
about ±∞ , 363
Einstein convention, 8, 146
integrators have right-continuous

paths with left limits, 62
processes are only a.e. defined, 97
re Z-negligibility, Z-measurability,
Z-a.e., 129

sets are functions, 364
convergence

dd ee∗-a.e. & Z−p-a.e., 96
in law or distribution, 421
in mean, 6, 96, 99, 102, 103, 449
in measure or probability, 34
largely uniform, 111
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convergence (cont’d)
of a filter, 373
uniform — on large sets, 111
weak, of measures, 421

convex
function, 147, 408
function of an L0-integrator, 146
set, 146, 189, 197, 379, 382

convolution, 117, 196, 199, 275, 288,
373, 413

semigroup, 254
core, 270, 464
countably generated, 100, 377

algebra or vector lattice, 367
countably subadditive, 87, 90, 94, 396
coupling coefficient, 1, 2, 4, 8, 272

autologous, 288, 299, 305
autonomous, 287
depending on a parameter, 302, 305
endogenous, 289, 314, 316, 331
instantaneous, 287
Lipschitz, 285
Lipschitz in Picard norm, 286
markovian, 272, 321
non-anticipating, 272, 333
of linear growth, 332
randomly autologous, 288, 300
strongly Lipschitz, 285, 288, 289

Courrège, 232
covariance matrix, 10, 19, 161, 420
cross section, 204, 331, 378, 436, 438,

440
cumulative distr. function, 69, 406

D

Daniell mean, 87, 397
the, 89, 95, 109, 124, 174
maximality of, 123, 135, 217, 398

Daniell’s method, 87, 395
Davis, 213
DCT: Dominated Convergence Theo-

rem, 5, 52, 103
debut, 40, 127, 437
decompositions, canonical,

of an integrator, 221, 234, 235
of a Lévy process, 265

decreasingly directed, 366, 398
Dellacherie, 432
derivative, 388

higher order weak, 305
tiered weak, 306
weak, 302, 390

deterministic, not depending on chance
ω , 7, 47, 123, 132

differentiable, 388
action, 279, 326
l-times weakly, 305
weakly, 278, 390

diffusion coefficient, 11, 19
Dirac measure, 41, 398
disintegration, 231, 258, 418
dissipative, 464
distinguish processes, 35
distribution, 14, 405

cumulative — function, 406
Gaussian or normal, 419

distribution function, 45, 87, 406
of Lebesgue measure, 51
random, 49
stopped, 131

Doléans–Dade
exponential, 159, 163, 167, 180, 186,

219, 326, 344
measure, 222, 226, 241, 245, 247,

248, 249, 251
process, 222, 226, 231, 245, 247, 249

Donsker, 426
Doob, 60, 75, 76, 77, 223
Doob–Meyer decomposition, 187, 202,

221, 228, 231, 233, 235, 240, 244,
247, 254, 266

δ-ring, 104, 394, 409
drift, 4, 72, 272
driver, 11, 20, 169, 188, 202, 228, 246

of a stochastic differential equation,
4, 6, 17, 271, 311

d-tuple of integrators
see vector of —, 9

dual of a topological vector space, 381

E

effect, of noise, 2, 8, 272
Einstein convention, 146
elementary

integral, 7, 44, 47, 99, 395
integrand, 7, 43, 44, 46, 47, 49, 56,

79, 87, 90, 95, 99, 111, 115, 136,
155, 395

stochastic integral, 47
stopping time, 47, 61

endogenous coupling coefficient, 314,
316, 331

enlargement
natural, of a filtration, 39, 57, 101,

255, 440
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enlargement (cont’d)
usual, of a filtration, 39

envelope, 125, 129
Z-envelope, 129
measurable, 398
predictable, 125, 129, 135, 337

equicontinuity, uniform, 384, 387
equivalence class ḟ of a function, 32
equivalent, locally, 40, 162
equivalent probabilities, 32, 34, 50, 187,

191, 206, 208, 450
Euler–Peano approximation, 7, 311,

312, 314, 317
evaluation process, 66
evanescent, 35
exceed, 363
expectation, 32
exponential, stochastic, 159, 163, 167,

180, 186, 219
extended reals, 23, 60, 74, 90, 125, 363,

364, 392, 394, 408
extension, integral, of Daniell, 87

F

factorization, 50, 192, 233, 282, 291,
293, 295, 298, 304, 320, 458

of random measures, 187, 208, 297
factorization constant, 192
Fatou’s lemma, 449
Feller semigroup, 269, 350, 351, 465,

466
canonical representation of, 358
conservative, 268, 465
convolution, 268, 466
natural extension of, 467
stochastic representation, 351
stochastic representation of, 352

filter, convergence of, 373
filtered measurable space, 21, 438
filtration, 5, 22

basic, of a process, 18, 19, 23, 254
basic, of path space, 66, 166, 445
basic, of Wiener process, 18
canonical, of path space, 66, 335
full, 166, 176, 177, 185
full measured, 166
P-regular, 38, 437
is assumed right-continuous and

regular, 58, 60, 62
measured, 32, 39
natural, of a process, 39
natural, of a random measure, 177
natural, of path space, 67, 166

filtration (cont’d)
natural enlargement of, 39, 57, 254
regular, 38, 437
regularization of a, 38, 135
right-continuous, 37
right-continuous version of, 37, 38,

117, 438
universally complete, 22, 437, 440

finite
for the mean, 90, 94
function — in p-mean, 448
process — for the mean, 97, 100
process of — variation, 68
stochastic interval, 28
variation, 45
variation, process of —, 23

finite intersection property, 432
finite variation, 394, 395
flow, 278, 326, 359, 466
λ-form, 305
Fourier transform, 410
Fréchet space, 364, 380, 400, 467
French School, 21, 39
Friedman, 459
Fubini’s theorem, 403, 405
full

filtration, 166, 176, 185
measured filtration, 166
projective system, 402, 447

function
finite in p-mean, 448
p-integrable, 33
idempotent, 365
lower semicontinuous, 194, 207, 376
numerical, 110, 364
simple measurable, 448
universally measurable, 22, 23, 351,

407, 437
upper semicont., 108, 194, 376, 382
vanishing at infinity, 366, 367

functional, 370, 372, 379, 381, 394
functional, solid, 34

G

Garsia, 215
gauge, 50, 89, 95, 130, 380, 381, 400,

450, 468
gauges defining a topology, 95, 379
Gauß kernel, 420
Gaussian

distribution, 419
normalized, 12, 419, 423
semigroup, 466
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Gaussian (cont’d)
with covariance matrix, 270, 420

Gδ-set, 379
Gelfand transform, 108, 174, 370
generate

a σ-algebra from functions, 391
a topology, 376, 411

generator, conservative, 467
Girsanov’s theorem, 39, 162, 164, 167,

176, 186, 338, 475
global Lp(P)-integrator, 50
global Lp-random measure, 173
graph of an operator, 464
graph of a random time, 28
Gronwall, 383
Gundy, 213

H

Haagerup, 457
Haar measure, 196, 394, 413
Hardy mean, 179, 217, 219, 232, 234
Hardy space, 220
harmonic measure, 340
Hausdorff space or topology, 367, 370,

373
heat kernel, 420
Heun method, 322
heuristics, 10, 11, 12
history, 5, 21

course of, 3, 318
hitting distribution, 340
Hölder’s inequality, 33, 188, 449
homeomorphism, 343, 347, 364, 379,

441, 460
Hunt function, 181, 185, 257, 258

I

(IC-p), 89
idempotent function, 365
iff, meaning if and only if, 37
Lp(P)-integrator, 50

global, 50
vector of, 56

image of a measure, 405
increasingly directed, 72, 366, 376, 398,

417
increasing process, 23
increments, 10, 19

independent, 10, 253
indefinite integral

against an integrator, 134
against jump measure, 181

independent, 10, 16, 263, 413

independent (cont’d)
increments, 10, 253

indistinguishable, 35, 62, 226, 387
induced topology, 373
induced uniformity, 374
inequality

Cauchy–Schwarz —, 150
Hölder’s —, 449
of Hölder, 33, 188

initial condition, 8, 273
initial value problem, 342
inner measure, 396
inner regularity, 400
instant, 31
integrability criterion, 113, 397
integrable

function, Banach space-valued, 409
process, on a stochastic interval, 131
set, 104

integral
against a random measure, 174
elementary, 7, 44, 99, 395
elementary stochastic, 47
extended, 100
extension of Daniell, 87
Itô stochastic, 99, 169
Stratonovich stochastic, 169, 320
upper, of Daniell, 87
Wiener, 5

integral equation, 1
integrand, 43

elementary, 7, 43, 44, 46, 47, 49, 56,
79, 87, 90, 95, 99, 111, 115, 136,
155

elementary stochastic, 46
integrator, 7, 20, 43, 50

d-tuple of, see vector of, 9
local, 51, 234
slew of, see vector of, 9

integrators
vector of, 56, 63, 77, 134, 149, 187,

202, 238, 246, 282, 285
intensity, 231

measure, 231
of jumps, 232, 235
rate, 179, 185, 231

interpolation, 33, 85, 453
interval

finite stochastic, 28
stochastic, 28

intrinsic time, 239, 318, 321, 323
iterates

Picard, 2, 3, 6, 273, 275
Itô, 5, 24
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Itô’s theorem, 157
Itô stochastic integral, 99, 169

J

Jensen’s inequality, 73, 243, 408
jump intensity, 232

continuous, 232, 235
measure, 258
rate, 232, 258

jump measure, 181
jump process, 148

K

Khintchine, 64, 455
Khintchine constants, 457
Kolmogorov, 3, 384
Kronecker delta, 19
Kunita–Watanabe, 212, 228, 232
Ky–Fan, 34, 189, 195, 207, 382

L

largely
smooth, 111, 175
uniform convergence, 111
uniformly continuous, 405

lattice algebra, 366, 370
law, 10, 13, 14, 161, 405

Newton’s second, 1
of Wiener process, 16
strong law of large numbers, 76, 216

Lebesgue, 87, 395
Lebesgue measure, 394
Lebesgue–Stieltjes integral, 4, 43, 54,

87, 142, 144, 153, 158, 170, 232,
234

left-continuous
process, 23
version of a process, 24
version of the filtration, 123

`p-length of a vector or sequence, 364
less than (≤), 363
Lévy

measure, 258, 269
process, 239, 253, 292, 349, 466

Lie bracket, 278
lifetime of a solution, 273, 292
lifting, 415

strong, 419
Lindeberg condition, 10, 423
linear functional, positive, 395
linear map, bounded, 452

Lipschitz
constant, 144, 274
coupling coefficients, 285
function, 2, 4, 144
in p-mean, 286
in Picard norm, 286
locally, 292
strongly, 285, 288, 289
vector field, 274, 287

Little o, 388
local

L1-integrator, 221
Lp-random measure, 173
martingale, 75, 84, 221
property of a process, 51, 80

local E-compactification, 108, 367, 370
local martingale, 75

square integrable, 84
locally absolutely continuous, 40, 52,

130, 162
locally bounded, 122, 225
locally compact, 374
locally convex, 50, 187, 379, 467
locally equivalent probabilities, 40, 162,

164
locally Lipschitz, 292
locally Z−p-integrable, 131
Lorentz space, 51, 83, 452
lower integral, 396
lower semicontinuous, 207, 376

function, 194
Lp-bounded, 33
Lp(P)-integrator, 50
Lp-integrator, 50, 62

complex, 152
vector of, 56

Lusin, 110, 432
space, 447
space or subset, 441

L0-integrator
convex function of a, 146

M

(M), condition, 91, 95
markovian coupling coefficient, 272,

287, 311, 321
Markov property, 349, 352

strong, 349, 352
martingale, 5, 19, 71, 74, 75

continuous, 161
local, 75, 84
locally square integrable, 213
of finite variation, 152, 157



Index 495

martingale (cont’d)
previsible, 157
previsible, of finite variation, 157
square integrable, 78, 163, 186, 262
uniformly integrable, 72, 75, 77, 123,

164
martingale measure, 220
martingale part, continuous, of an

integrator, 235
martingale problem, 338
Maurey, 195, 205
maximal inequality, 61, 337
maximality

of a mean, 123
of Daniell’s mean, 123, 135, 217, 398

maximal lemma of Doob, 76
maximal path, 26, 274
maximal process, 21, 26, 29, 38, 61, 63,

122, 137, 159, 227, 360, 443
maximum principle, 340
MCT: Monotone Convergence Theo-

rem, 102
mean, 94, 399

the Daniell —, 89, 124, 174
controlling a linear map, 95
controlling the integral, 95, 99, 100,

101, 123, 124, 217, 247, 249, 250
Hardy—, 217, 219, 232, 234
σ-finite –, 105
majorizing a linear map, 95
maximality of a —, 123
maximality of Daniell’s —, 123, 135,

217
pathwise, 216

measurable, 110
cross section, 436, 438, 440
filtered — space, 21, 438
Z-measurable, 129
Z−p-measurable, 111
on a σ-algebra, 391
process, 23, 243
set, 114
simple function, 448
space, 391

measure, 394
σ-finite, 449
of totally finite variation, 394
support of a, 400
tight, 21, 165, 399, 407, 425, 441

measured filtration, 39
measure space, 409
method

adaptive, 281
Euler, 281, 311, 314, 318, 322

method (cont’d)
Heun, 322
order of, 281, 324
Runge–Kutta, 282, 321, 322
scale-invariant, 282, 329
single-step — ξ′ , 280
single-step — Ξ′ , 322, 325
Taylor, 281, 282, 321, 322, 327

metric, 374
metrizable, 367, 375, 376, 377
Meyer, 228, 232, 432
minimax theorem, 382
µ-integrable, 397
µ-measurable, 397
µ-negligible, 397
model, 1, 4, 6, 10, 11, 18, 20, 21, 27, 32
modification, 58, 61, 62, 75, 101, 132,

134, 136, 147, 167, 223, 268
P-modification, 34, 384
modulus

of continuity, 58, 191, 206, 209, 444
of contractivity, 290, 299, 407

monotone class, 16, 145, 155, 218, 224,
393, 439

Monotone Class Theorem, 16
multiplicative class, 393, 399, 421

complex, 393, 399, 410, 421, 423,
425, 427

µ-measurable
map between measure spaces, 405

N

natural
domain of a semigroup, 467
extension of a semigroup, 467
filtration of path space, 67, 166
increasing process, 228, 234

natural conditions, 29, 39, 60, 118, 119,
127, 130, 133, 162, 437

natural enlargement of a filtration, 57,
101, 254, 255, 440

nearly, 118, 119, 141
nearly, P-nearly, 35
negative, (≤ 0), 363

strictly — (< 0), 363
negligible, 32, 95

meaning Z-negligible, 129
P-negligible, 32
neighborhood filter, 373
Nelson, 10
Newton, 1
Nikisin, 207
noise, 2
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noise (cont’d)
background, 2, 8, 272
cumulative, 2
effect of, 2

nolens volens, meaning nilly–willy, 421
non-adaptive, 281, 317, 321
non-anticipating

process, 6, 144
random measure, 173

normal distribution, 419
normalized Gaussian, 12, 419, 423
Notations, see Conventions, 21
Novikov, 163, 165
numerical, 23, 392, 394, 408

function, 110, 364
numerical approximation, see method,

280

O

ODE, 4, 273, 326
one-point compactification, 374, 465
optional

σ-algebra O , 440
process, 440
projection, 440
stopping theorem, 77

order-bounded, 406
order-complete, 252, 406
order-continuity, 398, 421
order-continuous mean, 399
order interval, 45, 50, 173, 372
order of an approximation scheme, 281,

319, 324
oscillation of a path, 444
outer measure, 32

P

partition, random or stochastic, 138
past, 5, 21

strict, of a stopping time, 120, 225
path, 4, 5, 11, 14, 19, 23

—s describing the same arc, 153
path space, 14, 20, 166, 380, 391, 411,

440
basic filtration of, 66
canonical, 66
canonical filtration of, 66, 335
natural filtration of, 67, 166

pathwise
computation of the integral, 140
failure of the integral, 5, 17
mean, 216, 238
previsible control, 238

pathwise (cont’d)
solution of an SDE, 311
stochastic integral, 7, 140, 142, 145

paving, 432
permanence properties, 165, 391, 397

of fullness, 166
of integrable functions, 101
of integrable sets, 104
of measurable functions, 111, 114,

115, 137
of measurable sets, 114

Picard, 4, 6
iterates, 2, 3, 6, 273, 275

Picard norm, 274, 283
Lipschitz in, 286

p-integrable
function or process, 33
uniformly — family, 449

Pisier, 195
p-mean σ-additivity, 106
p-mean, 33
p;P-mean σ-additivity, 90
point at infinity, 374
point process, 183

Poisson, 185
simple, 183

Poisson point process, 185, 264
compensated, 185

Poisson process, 270, 359
Poisson random variable, 420
Poisson semigroup, 359
polarization, 366
polish space, 15, 20, 440
polynomially bounded, 322
positive (≥ 0), 363

linear functional, 395
strictly — (> 0), 363

positive maximum principle, 269, 466
potential, 225
P-regular filtration, 38, 437
precompact, 376
predictable, 115

increasing process, 225
process of finite variation, 117
projection, 439
random function, 172, 175, 180
stopping time, 118, 438
transformation, 185

predict a stopping time, 118
previsible, 68

bracket, 228
control, 238
dual — projection, 221
process, 68, 122, 138, 149, 156, 228
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previsible (cont’d)
process of finite variation, 221
process — with P , 118
set, 118
set, sparse, 235
square function, 228

previsible controller, 238, 283, 294
probabilities

locally equivalent, 40, 162
probability, 3

on a topological space, 421
process, 6, 23, 90, 97

adapted, 23
basic filtration of a, 19, 23, 254
continuous, 23
defined dd ee∗-a.e., 97
evanescent, 35
finite for the mean, 97, 100
Ip[P]-bounded, 49
Lp-bounded, 33
p-integrable, 33
dd ee∗-integrable, 99
dd ee∗-negligible, 96
Z−p-integrable, 99
Z−p-measurable, 111
increasing, 23
indistinguishable —es, 35
integrable on a stochastic interval,

131
jump part of a, 148
jumps of a, 25
left-continuous, 23
Lévy, 239, 253, 292, 349
locally Z−p-integrable, 131
local property of a, 51, 80
maximal, 21, 26, 29, 61, 63, 122, 137,

159, 227, 360, 443
measurable, 23, 243
modification of a, 34
natural increasing, 228
non-anticipating, 6, 144
of bounded variation, 67
of finite variation, 23, 67
optional, 440
predictable, 115
predictable increasing, 225
predictable of finite variation, 117
previsible, 68, 118, 122, 138, 149,

156, 228
previsible with P , 118
right-continuous, 23
square integrable, 72
stationary, 10, 19, 253
stopped, 23, 28, 51

process (cont’d)
stopped just before T , 159, 292
variation — of another, 68, 226

product σ-algebra, 402
product of elementary integrals, 402,

413
infinite, 12, 404

product paving, 402, 432, 434
progressively measurable, 25, 28, 35, 37,

38, 40, 41, 65, 437, 440
projection

dual previsible, 221
predictable, 439
well-measurable, 440

projective limit
of elementary integrals, 402, 404,

447
of probabilities, 164

projective system, 401
full, 402, 447

Prokhoroff, 425
‖ ‖

p
-semivariation, 53

pseudometric, 374
pseudometrizable, 375
punctured d-space, 180, 257

Q

quasi-left-continuity, 232, 235, 239, 250,
265, 285, 292, 319, 350

of a Lévy process, 258
of a Markov process, 352

quasinorm, 381

R

Rademacher functions, 457
Radon measure, 177, 184, 231, 257, 263,

355, 394, 398, 413, 418, 442, 465,
469

Radon–Nikodym derivative, 41, 151,
187, 223, 407, 450

random
interval, 28
partition, refinement of a, 138
sheet, 20
time, 27, 118, 436
vector field, 272

random function, 172, 180
predictable, 175

randomly autologous
coupling coefficient, 300

random measure, 109, 173, 188, 205,
235, 246, 251, 263, 296, 370

canonical representation, 177
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random measure (cont’d)
compensated, 231
driving a SDE, 296, 347
driving a stochastic flow, 347
factorization of, 187, 208
quasi-left-continuous, 232
spatially bounded, 173, 296
stopped, 173
strict, 183, 231, 232
vanishing at 0, 173
Wiener, 178, 219

random time, graph of, 28
random variable, 22, 391

nearly zero, 35
simple, 46, 58, 391
symmetric stable, 458

(RC-0), 50
rectification

time — of a SDE, 280, 287
time — of a semigroup, 469

recurrent, 41
reduce

a process to a property, 51
a stopping time to a subset, 31, 118

reduced stopping time, 31
refine

a filter, 373, 428
a random partition, 62, 138

regular, 35
filtration, 38, 437
stochastic representation, 352

regularization
of a filtration, 38, 135

relatively compact, 260, 264, 366, 385,
387, 425, 426, 428, 447

remainder, 277, 388, 390
remove a negligible set from Ω, 165,

166, 304
representation

canonical of an integrator, 67
of a filtered probability space, 14,

64, 316
representation of martingales

for Lévy processes, 261
on Wiener space, 218

resolvent, 352, 463
identity, 463

right-continuous, 44
filtration, 37
process, 23
version of a filtration, 37
version of a process, 24, 168

ring of sets, 394
Runge–Kutta, 281, 282, 321, 322, 327

S

σ-additive, 394
in p-mean, 90, 106
marginally, 174, 371

σ-additivity, 90
σ-algebra, 394

Baire vs. Borel, 391
function measurable on a, 391
generated by a family of functions,

391
generated by a property, 391
universally complete, 407

σ-algebras, product of, 402
scalæfication, of processes, 139, 300,

312, 315, 335
scalae: ladder, flight of steps, 139, 312
Schwartz, 195, 205
Schwartz space, 269
σ-continuity, 90, 370, 394, 395
self-adjoint, 454
self-confined, 369
semicontinuous, 207, 376, 382
semigroup

conservative, 467
convolution, 254
Feller, 268, 465
Feller convolution, 268, 466
Gaussian, 19, 466
natural domain of a, 467
of operators, 463
Poisson, 359
resolvent of a, 463
time-rectification of a, 469

semimartingale, 232
seminorm, 380
semivariation, 53, 92
separable, 367

topological space, 15, 373, 377
sequential closure or span, 392
set

analytic, 432
P-nearly empty, 60
dd ee∗-measurable, 114
identified with indicator function,

364
integrable, 104

σ-field, 394
shift

a process, 4, 162, 164
a random measure, 186

σ-algebra
P of predictable sets, 115
O of well-measurable sets, 440
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σ-algebra (cont’d)
of dd ee∗-measurable sets, 114
optional — O , 440

σ-finite
class of functions or sets, 392, 395,

397, 398, 406, 409
mean, 105, 112
measure, 406, 409, 416, 449

simple
measurable function, 448
point processs, 183
random variable, 46, 58, 391

size of a linear map, 381
Skorohod, 21, 443

space, 391
Skorohod topology, 21, 167, 411, 443,

445
slew of integrators

see vector of integrators, 9
solid, 36, 90, 94

functional, 34
solution

strong, of a SDE, 273, 291
weak, of a SDE, 331

space
analytic, 441
completely regular, 373, 376
Hausdorff, 373
locally compact, 374
measurable, 391
polish, 15
Skorohod, 391

span, sequential, 392
sparse, 69, 225
sparse previsible set, 235, 265
spatially bounded random measure,

173, 296
spectrum of a function algebra, 367
square bracket, 148, 150
square function, 94, 148

continuous, 148
of a complex integrator, 152
previsible, 228

square integrable
locally — martingale, 84, 213
martingale, 78, 163, 186, 262
process, 72

square variation, 148, 149
stability

of solutions to SDE’s, 50, 273, 293,
297

under change of measure, 129
stable, 220
standard deviation, 419

stationary process, 10, 19, 253
step function, 43
step size, 280, 311, 319, 321, 327
stochastic

analysis, 22, 34, 47, 436, 443
exponential, 159, 163, 167, 180, 185,

219
flow, 343
flow, of class C1 , 346
integral, 99, 134
integral, elementary, 47
integrand, elementary, 46
integrator, 43, 50, 62
interval, bounded, 28
interval, finite, 28
partition, 140, 169, 300, 312, 318
representation, regular, 352
representation of a semigroup, 351

Stone–Weierstraß, 108, 366, 377, 393,
399, 441, 442

stopped
just before T , 159, 292
process, 23, 28, 51

stopping time, 27, 51
accessible, 122
announce a, 118, 284, 333
arbitrarily large, 51
elementary, 47, 61
examples of, 29, 119, 437, 438
past of a, 28
predictable, 118, 438
totally inaccessible, 122, 232, 235,

258
Stratonovich equation, 320, 321, 326
Stratonovich integral, 169, 320, 326
strictly positive or negative, 363
strict past of a stopping time, 120
strict random measure, 183, 231, 232
strong law of large numbers, 76, 216
strong lifting, 419
strongly perpendicular, 220
strong Markov property, 352
strong solution, 273, 291
strong type, 453
subadditive, 33, 34, 53, 54, 130, 380
submartingale, 73, 74
supermartingale, 73, 74, 78, 81, 85, 356
support of a measure, 400
sure control, 292
Suslin, 432

space or subset, 441
symmetric form, 305
symmetrization, 305
Szarek, 457
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T

tail filter, 373
Taylor method, 281, 282, 321, 322, 327
Taylor’s formula, 387
THE

Daniell mean, 89, 109, 124
previsible controller, 238
time transformation, 239, 283, 296

threshold, 7, 140, 168, 280, 311, 314
tiered weak derivatives, 306
tight

measure, 21, 165, 399, 407, 425, 441
uniformly, 334, 425, 427

time, random, 27, 118, 436
time-rectification of a SDE, 287
time-rectification of a semigroup, 469
time shift operator, 359
time transformation, 283, 444

the, 283, 239, 296
topological space, 373

Lusin, 441
polish, 20, 440
separable, 15, 373, 377
Suslin, 441

topological vector space, 379
topology, 373

generated by functions, 411
generated from functions, 376
Hausdorff, 373
of a uniformity, 374
of confined uniform convergence, 50,

172, 252, 370
of uniform convergence on com-

pacta, 14, 263, 372, 380, 385, 411,
426, 467

Skorohod, 21
uniform — on E , 51

totally bounded, 376
totally finite variation, 45

measure of, 394
totally inaccessible stopping time, 122,

232, 235, 258
trajectory, 23
transformation, predictable, 185
transition probabilities, 465
transparent, 162
triangle inequality, 374
Tychonoff’s theorem, 374, 425, 428
type

map of weak —, 453
(p, q) of a map, 461

U

dd ee∗-a.e.
defined process, 97
convergence, 96

dd ee∗-integrable, 99

dd ee∗-measurable, 111
process, on a set, 110
set, 114

dd ee∗-negligible, 95

dd ee∗
Z−p

-a.e., 96

dd ee∗
Z−p

-negligible, 96

uniform
convergence, 111
largely — convergence, 111

uniform convergence on compacta
see topology of, 380

uniformity, 374
generated by functions, 375, 405
induced on a subset, 374

E-uniformity, 110, 375
uniformizable, 375
uniformly continuous, 374

largely, 405
uniformly differentiable

weakly, 299, 300, 390
weakly l-times, 305

uniformly integrable, 75, 225, 449
martingale, 72, 77

uniqueness of weak solutions, 331
universal completeness of the regular-

ization, 38
universal completion, 22, 26, 407, 436
universal integral, 141, 331
universally complete, 38

filtration, 437, 440
universally measurable

function, 22
set or function, 23, 351, 407, 437

universal solution of an endogenous
SDE, 317, 347, 348

up-and-down procedure, 88
upcrossing, 59, 74
upcrossing argument, 60, 75
upper integral, 32, 87, 396
upper regularity, 124
upper semicontinuous, 107, 194, 207,

376, 382
usual conditions, 39, 168
usual enlargement, 39, 168
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V

vanish at infinity, 366, 367
variation, 395

bounded, 45
finite, 45
function of finite, 45
measure of finite, 394
of a measure, 45, 394
process, 68, 226
process of bounded, 67
process of finite, 67
square, 148, 149
totally finite, 45

vector field, 272, 311
random, 272

vector lattice, 366, 395
vector measure, 49, 53, 90, 108, 172,

448
vector of integrators

see integrators, vector of, 9
version

left-continuous, of a process, 24
right-continuous, of a process, 24
right-continuous, of a filtration, 37

W

weak
derivative, 302, 390
higher order derivatives, 305
tiered derivatives, 306

weak convergence, 421
of measures, 421

weak∗ topology, 263, 381
weakly differentiable, 278, 390

l-times, 305

weak solution, 331
weak topology, 381, 411
weak type, 453
well-measurable

σ-algebra O , 440
process, 217, 440

Wiener, 5
integral, 5
measure, 16, 20, 426
random measure, 178, 219
sheet, 20
space, 16, 58

Wiener process, 9, 10, 11, 17, 89, 149,
161, 162, 251, 426

as integrator, 79, 220
canonical, 16, 58
characteristic function, 161
d-dimensional, 20, 218
Lévy’s characterization, 19, 160
on a filtration, 24, 72, 79, 298
square bracket, 153
standard, 11, 16, 18, 19, 41, 77, 153,

162, 250, 326
standard d-dimensional, 20, 218
with covariance, 161, 258

Z

Zero-One Law, 41, 256, 352, 358
Z-measurable, 129
Z−p-a.e., 96, 123

convergence, 96
Z−p-integrable, 123, 99
ζ−p-integrable, 175
Z−p-measurable, 111, 123
Z−p-negligible, 96
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Answers
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several errors (now corrected): Equation (*) on page 3 was wrong, and the

answer on page 7 to exercise 1.3.10 on page 29 contained a typo (Zt instead
of ZT ). Also, the answers on page 9 to exercises 1.3.34–36 were garbled.

1



2 Answers

Answers

1.1.1 See [9, page 41], or [5, page 293 ff.]: Consider a physical system, for

instance an ear of corn, member of a (vast) corn field. An observable is a
quantity about the ear that can be measured by a well–defined procedure.

For example, the girth G , the number N of kernels, the length L , the weight
W of our ear of corn are observables, measurable by applying a tape measure,

by counting, or by weighing on a scale, respectively. The observables form
an algebra and vector lattice E in the obvious way; for instance, G + 3W ,

LN , and G ∧W are the observables having the procedures “measure girth
and weight and add three times the latter to the former,” “multiply the

length by the number of kernels,” and “take the smaller of girth and weight,”
respectively. In fact, for a technical reason that will become transparent

later let us consider complex observables (G + iW etc). They clearly form

a commutative algebra A over the compex field C . (Note the implicit
requirement that different observables can be measured simultaneously – no

quantum effects here.) For every observable Z = X + iY let Z∗ denote
the observable whose value is the complex conjugate x − iy whenever a

measurement of Z produces x+ iy . Clearly (Z1Z2)
∗ = Z∗2Z

∗
1 , Z∗∗ = Z , and

(zZ)∗ = zZ∗ for z ∈ C and Z,Z1, Z2 ∈ A . Let ‖Z‖ be the supremum of the

possible values of |Z| = |X + iY | def=
√
X2 + Y 2 , taken over the ensemble to

be represented (the corn field). Then restrict attention to the commutative

normed C-algebra A of those observables Z that have ‖Z‖ <∞ . The evident
submultiplicativity ‖Z1Z2‖ ≤ ‖Z1‖ · ‖Z2‖ makes A a normed algebra. Its

completion A is easily seen to be a Banach algebra with a multiplicative
unit I (the observable that produces the value 1 upon all measurements),

where involution Z 7→ Z∗ and norm ‖ ‖ satisfy ‖Z1Z2‖ ≤ ‖Z1‖ · ‖Z2‖
and ‖Z∗Z‖ = ‖Z‖2 . A Banach algebra with unit and involution as above is

known as a unital C∗-algebra.

Another common example of a commutative unital C∗-algebra is the
space CC(Ω) of continuous functions on a compact Hausdorff space Ω, with

pointwise addition, multiplication, involution = complex conjugation, and
equipped with the supremum norm. This example is typical. Namely, every

commutative unital C∗-algebra A is of the form CC(Ω) for some
compact Hausdorff space Ω . Let us take this fact for granted right now

– its proof, which will also clarify the precise meaning of “is of the form,” can
be found further down. Given this fact, the algebra and vector lattice closed

under chopping E of real bounded observables is then identified with a dense
subset Ê of the real part CR(Ω) of CC(Ω), for some compact Hausdorff Ω.

The probabilistic aspect in this story comes from the interest in the aver-
age of the various observables: what is the average weight of an ear of corn,

and how can one estimate it without harvesting the whole field and toting it
to the scales? A little reflection shows that the average is a linear positive

functional on the observables E , with the average of the unit observable I
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being 1. Corresponding to it is a positive linear functional E : Ê → R with
E[1] = 1. There is an immediate extension by continuity to all of CR(Ω). On

CR(Ω), then, the average is (represented as) a positive Radon measure E of
total mass one. Such is automatically σ-additive. The extension theory of

page 394 ff. applies and produces a σ-additive extension, called the expecta-
tion and again denoted by E . Its restriction to the integrable subsets F of Ω

(see notation A.1.4) is the probability P . The laws of large numbers allow
the identification of P[F ] with a limiting frequency (and of E as a limiting

average). Most often (Ω,F ,P) is taken as the basic mathematical model for
the probabilistic analysis, possibly because people might find the frequency

of events intuitively more appealing than the average of measurements, and
despite the difficulty of justifying the ad hoc requirement of σ-additivity of P .

The latter is gone from the model (E ,E).

The structure theorem for a unital commutative C∗-algebra A is left to be

established. There will be several steps.
(i) If Z ∈ A is invertible, then Z +H is invertible with inverse

(Z +H)−1 = Z−1
∞∑

k=0

(−HZ−1)k , (∗)

provided ‖H‖ < ‖Z−1‖ ; simply multiply the evidently convergent sum on the

right or left with Z +H , obtaining I in both cases. The invertible elements
of A therefore form an open set G . Since a proper ideal I is disjoint from G
so is its closure I , which therefore is proper as well.
(ii) An element X ∈ A is self–adjoint if X∗ = X . An ideal I is self–adjoint

if it equals I∗ def= {X∗ : X ∈ I} . By Zorn’s lemma, a proper self–adjoint ideal
is contained in a maximal proper self–adjoint ideal M , which by (i) is closed.

The quotient Ȧ def= A/M is in the obvious way a C∗-algebra and clearly
contains no proper self–adjoint ideal. In fact, every non–zero element Ż ∈ Ȧ
is invertible: if not, then the self–adjoint ideal Ȧ · Ż∗Ż , which would not
contain the unit İ , equals {0̇} , whence Ż∗Ż = 0̇ and Ż = 0̇. In other words,

Ȧ is a field. We shall see soon that “the C∗-field” Ȧ equals C .

(iii) From the submultiplicativity of the norm, ‖Zn‖1/n ≤ ‖Z‖ , so that
ν(Z) def= inf{‖Zn‖1/n : n ∈ N} exists. It is not hard to see that ν(Z) =

limn→∞ ‖Zn‖1/n . Indeed, given an ε > 0, find an N ∈ N with ‖ZN‖1/N <
ν(Z) + ε . For n > N there are q, r with n = qN + r and 0 ≤ r < N . Then

‖Zn‖1/n ≤ ‖ZN‖q/n‖Z‖r/n ≤ (ν(Z)+ε)qN/n‖Z‖r/n −−−→n→∞ ν(Z)+ε ; hence
lim supn→∞ ‖Zn‖1/n ≤ ν(Z) + ε ∀ ε > 0 and lim supn→∞ ‖Zn‖1/n = ν(Z).

Note that, for a self–adjoint element X ∈ A , ‖X2‖ = ‖X∗X‖ = ‖X‖2 , hence

‖X‖ = ‖X2k‖2−k −−−→
k→∞ ν(X), whence finally ν(X) = ‖X‖ .

(iv) The resolvent of Z ∈ A is the function C 3 z 7→ (zI−Z)−1 , defined on
the open (by (i)) set υZ of z ∈ C for which the inverse exists. The compact

complement σZ of υZ is called the spectrum of Z . From the straightforward
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resolvent identity

(zI − Z)−1 − (z′I − Z)−1 = −(z − z′)(zI − Z)−1(z′I − Z)−1

it is clear that z 7→ (zI − Z)−1 is not only continuous, but even complex

differentiable (analytic) on υZ . The observation that (zI − Z)−1 −−−→z→∞ 0
proves that the spectrum σZ is not empty: if it were, any continuous linear

functional on A applied to (zI−Z)−1 would produce an entire function that
vanishes at infinity; such must vanish identically, and by the Hahn–Banach

theorem we would arrive at the impossible consequence (zI−Z)−1 = 0 ∀z .
We apply this in the C∗-field Ȧ = A/M of (ii): Let 0 6= Ż ∈ Ȧ and z ∈ σŻ .

Then zİ − Ż , not being invertible, must be zero: Ż = zI .
(v) By (∗), (zI − Z)−1 = (1/z) ·∑∞k=0 z

−kZk . The time–honored root test,

suitably adapted to series in A , shows that the convergence radius of the

series (in 1/z ) on the right hand side is
(
ν(Z)

)−1
. That is to say, the circle[

|1/z| =
(
ν(Z)

)−1]
=
[
|z| = ν(Z)] must contain a singularity of (zI − Z)−1 .

From this we conclude that ν(Z) equals the spectral radius ρ(Z) of Z ,
which is defined as ρ(Z) = max{|z| : z ∈ σZ} . For a self–adjoint element

X = X∗ ∈ A , therefore,

‖X‖ = ν(X) = ρ(X) . (∗∗)

(vi) Let Ω denote the collection of all linear multiplicative
(
ω(Z1Z2) =

ω(Z1)ω(Z2)
)

functionals ω : A → C that take I to 1 and respect the

involution
(
ω(Z∗) = ω(Z)

)
, the ∗-characters. Such ω has norm 1.

Indeed, let ‖Z‖ < 1. Then ‖Z∗Z‖ < 1. Define an by
√

1 − x =
∑
anx

n

for |x| < 1, and set Y def=
∑
an(Z

∗Z)n . Then I − Z∗Z = Y ∗Y and so
ω(I) − ω(Z∗Z) = ω(Y ∗Y ) > 0 and |ω(Z)| < 1. Given the topology of

pointwise convergence, Ω is a compact Hausdorff space (see exercise A.2.13).
For Z ∈ A set

Ẑ(ω) def= ω(Z) .

This defines a continuous function Ẑ : Ω → C . The map Z 7→ Ẑ is clearly

linear, multiplicative, turns involution on A into complex conjugation on
CC(Ω), and has Î = 1 and ‖Ẑ‖∞ ≤ ‖Z‖ . It is left to be shown that it is

in fact an isometry. To this end let Z ∈ A and z = ‖Z‖ . Then by (∗∗) we
have |z|2 ∈ σZ∗Z , and the proper self–adjoint ideal I def= A · (|z|2I − Z∗Z)

is contained in a maximal proper self–adjoint ideal M , which is closed and
gives rise to a bijective ∗-character ω̇ : Ȧ def= A/M → C . Let ω be the com-

position of ω̇ with the quotient map A → Ȧ . At this point ω ∈ Ω clearly
|Ẑ(ω)|2 = ω(Z∗Z) = |z|2 , so that ‖Ẑ‖∞ = |Ẑ(ω)| = ‖Z‖ .

Z 7→ Ẑ furnishes the desired linear isometric multiplicative involution–
preserving identification of A with CC(Ω).

1.2.4 (ii): For u ∈ N let W u be a countable uniformly dense subset of

{w ∈ C[0, u] : w0 = 0} . Identify every path w in W u with that path in C
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which agrees with w on [0, u] and is constant thereafter. The collection⋃
uW

u is plainly dense in C in the topology of uniform convergence on

compacta.
1.2.10 E[Wt−Ws|F0

s [W.]]=E[Wt−Ws]=0. As E[−2WtWs|F0
s [W.]]=−2W 2

s ,

E
[
W 2
t −W 2

s |F0
s [W.]

]
=E

[
(Wt−Ws)

2 |F0
s [W.]

]
=E

[
(Wt−Ws)

2
]
=t−s .

1.2.11 (i) =⇒ (ii): The independence of the increments gives

E
[
Mz
t −Mz

s |F0
s [X.]

]
= E

[(
ez(Xt−Xs)−z2(t−s)/2 − 1

)
ezXs−z2s/2∣∣F0

s [X.]
]

= E
[(
ez(Xt−Xs)−z2(t−s)/2 − 1

)]
E
[
ezXs−z2s/2

]
.

Now E
[
ezXs−z2s/2

]
=

1√
2π s

∫
ezx−z

2s/2e−x
2/2s dx

=
1√
2π s

∫
e−(x−zs)2/2s dx = 1 ,

so E
[
Mz
t −Mz

s |F0
s [X.]

]
= 0 .

(ii) =⇒ (iii) is obvious; and a computation as above shows that if (iii) is

satisfied, then

E
[
eiα(Xt−Xs)+α2(t−s)/2∣∣F0

s [X.]
]

= 1 .

This clearly implies that the increment Xt−Xs is independent of all previous
increments and that its characteristic function is e−α

2(t−s)/2 . This identifies

Xt −Xs as a normal random variable with mean zero and variance t− s .
1.2.12 The Borel functions φ for which this equation holds form a vector

space that contains the constants and is closed under pointwise limits of
bounded sequences. Thanks to exercise A.3.5 it suffices to establish the claim

for functions φ of the form φ(y) = exp(iαy). These form a multiplicative
class that generates the Borel σ-algebra on R . For such φ the right-hand

side can be evaluated; by exercise A.3.45 on page 419 it equals

exp
(
−α2(t− s)/2

)
· exp(iαWs) . (∗)

For any F0
s [W.]-measurable bounded random variable F

E

[
eiαWtF

]
= E

[
e
iα(Wt−Ws)

FeiαWs

]
= E

[
e
iα(Wt−Ws)

]
E

[
FeiαWs

]

= e−α
2(t−s)/2 · E

[
FeiαWs

]
.

Integrating (∗) against F yields the same. Thus the two F 0
s [W.]-measurable

random variables of the statement are a.s. the same.
1.2.14 (ii): To study the joint law of the increments

t1 ·W1/t1 − t0 ·W1/t0 , . . . , tn ·W1/tn − tn−1 ·W1/tn−1
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use the characteristic function:

E
[
e
i
P

n

k=1
αk·tkW1/tk

−tk−1W1/tk−1

]

= E
[
eiα1·t1W1/t1

−t0W1/t0

]
× E

[
e
i
P

n

k=2
αk·tkW1/tk

−tk−1W1/tk−1

]

= E
[
eiα1·t0W1/t1

−t0W1/t0 · eiα1(t1−t0)W1/t1

]
× E

[
. . .
]

= E
[
eiα1·t0W1/t1

−t0W1/t0

]
· E
[
eiα1(t1−t0)W1/t1

]
× E

[
. . .
]

= e−α
2
1·t20·( 1

t0
− 1

t1
) · E

[
e−α

2
1·

(t1−t0)2

t1

]
× E

[
. . .
]

= e−α
2
1·(t1−t0) × E

[
. . .
]

leads by induction to

E
[
e
i
P

n

k=1
αk·tkW1/tk

−tk−1W1/tk−1

]
= e−

Pn

k=1
α2

k·(tk−tk−1) ,

which is the characteristic function of the joint distribution of the increments
Wt1 −Wt0 ,. . . ,Wtn −Wtn−1

of a standard Wiener process. We conclude that

W ′t
def= tW1/t has independent stationary increments with law N(0, t − s).

Import W ′t −−→t→0 0 from exercise 2.5.21 (ii). Setting W ′0
def= 0 we obtain a

process W ′ with almost surely continuous paths, a standard Wiener process

(definition 1.2.3).
1.2.15 (i): Take the product of d independent copies of a standard one-

dimensional Wiener process. (ii): Every component W η is a standard one-
dimensional Wiener process. (v): Exercise 1.2.10: E[W η

t |F0
s [W.]] = W η

s and

E
[
W η
t W

θ
t −W η

sW
θ
s |F0

s [W.]
]

= (t− s) · δηθ .

Exercise 1.2.11: take z ∈ Cd and replace zX by 〈z|Xt〉 =
∑
η zηX

η
t .

Exercise 1.2.12: f is now a Borel function on Rd . The formula reads

E
[
φ(Wt)|F0

s [W.]
]

=
(
2π(t− s)

)n/2 ∫ +∞

−∞
φ(y) · e(−|y−Ws|2/2(t−s)) dy1 . . . dyd ,

where | | is the euclidean norm on Rd . The proof of exercise 1.2.12 given in

this appendix applies literally, if the function φ(y) is read to mean φ(y) =
exp(i〈α|y〉), etc.

1.2.16 In the proof of theorem 1.2.2 replace {φn} by a basis of the Hilbert
space of Lebesgue square integrable functions on Ȟ . The estimate (1.2.2)

that was used in the application on page 14 of Kolmogorov’s lemma A.2.37
can be replaced by

E
[∣∣Wz2 −Wz1

∣∣6
]
≤ const · n3‖z2 − z1 ‖3

∞ if ‖zi ‖∞ ≤ n .
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1.3.2 Apply theorem A.5.10.

1.3.6 Let A =
[
W ?
∞ < c

]
. Then A lies in the intersection of the sets

An =
[
|Wn −Wn−1| < 2c

]
, each of which has the same probability q < 1.

Since the An form an independent collection, P[A] ≤ qN for all N ∈ N .
Consequently

P
[
W ?
∞ <∞] ≤

∑

c∈N

P
[
W ?
∞ < c

]
= 0 .

1.3.10 ZT∨t − ZT = (Z − ZT )t .

1.3.15 (ii): [infn≤N Tn≤t] =
⋃
n≤N [Tn≤t] . [supn∈N Tn>t]=

⋃
n∈N[Tn>t] ∈ Ft.

1.3.16 (i): A ∈ FS implies A ∩ [T ≤ t] =
(
A ∩ [S ≤ t]

)
∩ [T ≤ t] ∈ Ft .

(ii): [S < T ] ∩ [T ≤ t] =
⋃
q∈Q[S ≤ q] ∩ [q < T ≤ t] ∈ Ft for all t and thus

[S < T ] ∈ FT . Therefore [T ≤ S] = [S < T ]c ∈ FT as well. [S < T ] ∩ [S ≤ t]
=
(
([S < T ] ∩ [T ≤ t]) ∩ [S ≤ t]

)
∪
(
[T > t] ∩ [S ≤ t]

)
∈ Ft for all t and thus

[S < T ] ∈ FS and [T ≤ S] ∈ FS . Finally, [S < T ] = [S∧T < T ] ∈ FS∧T etc.

1.3.17 [[0, T ))t = [T > t] = [T ≤ t]c belongs to Ft for all t precisely if T is
a stopping time. In that case

[[0, T ]]t = [T ≥ t] = [T < t]c =
( ⋃

Q3q<t
[T ≤ q]

)c
∈ Ft .

All other stochastic intervals are differences of the two above.

1.3.18 [TA ≤ t] = A ∩ [T ≤ t] ∈ Ft ∀ t .
1.3.20 ∀t ≥ 0 ∃k ∈ N with k/n≤t<(k + 1)/n . Then [T (n)≤ t]

= [T≤ k/n] ∈ Ft.
1.3.21 (i) and (ii): Adapt the proof of theorem 2.4.4 on page 69, but note
that

∑
n ∆XTn

· [[Tn]] will generally not converge. (iii): Define inductively

T j+1 = inf{s > T j : |h(∆Xs)| ≥ ε} and set J ε def=
∑
j h(∆XT j )[[T j,∞)).

Clearly J ε. is adapted, and so is J. = limε→0 J
ε
. .

1.3.27 (i): Suppose the stopping times S, T agree almost surely. The set
[S < T ] =

⋃{[S < q < T ] : q ∈ Q} belongs to A∞σ and is negligible, so it is

nearly empty.
(ii): N =

(
N ∩ [T = ∞]

)
∪⋃nN ∩ [T ≤ n] .

1.3.28 Let X,Y be adapted right-continuous processes. The set where their

paths differ: [X. 6= Y.] = {ω ∈ Ω : ∃t with Xt(ω) 6= Yt(ω)}=
⋃
q∈Q[Xq 6= Yq]

then belongs to A∞σ ; if X,Y are modifications of each other, it is negligible.

1.3.30 (i): If T is a stopping time, then [T < t] =
⋃
n[T ≤ (t− 1/n) ∨ 0]

∈ Ft . Conversely, if [T < t] ∈ Ft ∀ t > 0, then [T ≤ t] =⋂
n[T < t+ 1/n] ∈ ⋂n Ft+1/n=Ft+ = Ft .
(ii): [T < t] =

⋃ { [Zq > λ] : Q 3 q < t} . The T λ+ do not change if Zt is
replaced with Z+

t
def= sup{Zs : s ≤ t} . We may thus assume Z is increasing.

If Tλ+ < t , then Zt > λ and consequently Zt > µ for some µ > λ ; that
is to say, T µ+ ≤ t . Thus infµ>λ T

µ+ = T λ+ , which says that λ 7→ T λ+ is

right-continuous.
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(iv): [T < t] =
⋃
n[Tn < t] ; and A ∈ ⋂n FTn

=⇒ A ∩ [Tn < t] ∈ Ft∀n∀t
=⇒ A ∩ [T < t] ∈ Ft∀t=⇒ A ∩ [T ≤ t]=A ∩⋂n[T ≤ t+ 1/n] ∈ Ft+=Ft.

(v): If X is left-continuous and adapted to F.+ , thenXt−1/n ∈ F(t−1/n)+⊂Ft
and consequently Xt = limXt−1/n ∈ Ft . Next let X be adapted to F. and

progressively measurable for F.+ , and fix an instant t > 0. Evidently

Xt = X · [[0, t)) +Xt · [[t,∞))

= lim
1/t<n→∞

X · [[0, t− 1/n)) +Xt · [[t,∞))

= lim
n
Xt−1/n · [[0, t− 1/n)) +Xt · [[t,∞)) .

The second summand is clearly measurable on B•[0,∞) ⊗ Ft . By the
above Xt−1/n is measurable on B•[0,∞) ⊗ F(t−1/n)+ , which is contained

in B•[0,∞)⊗ Ft . The limit Xt is then also measurable on this product.
Since this true for all t > 0, X is progressively measurable for F. .

1.3.31 Let P ∈ P and A,A(1), A(2), . . . ∈ FP
t . Let N P denote the P-nearly

empty sets. There are sets AP, A
(1)
P , A

(2)
P , . . . ∈ Ft with |A − AP| ∈ N P

and
∣∣A(i) − A

(i)
P

∣∣ ∈ N P , i = 1, 2, . . .. Evidently |Ac − AcP| ∈ N P , showing

that FP
t is closed under taking complements. Similarly,

∣∣⋃
iA

(i)−⋃iA
(i)
P

∣∣ ≤∑∣∣A(i) − A
(i)
P

∣∣ ∈ N P , showing that FP
t is closed under taking countable

unions: FP
t is a σ-algebra.

Suppose A ∈ F∗∞ is such that there exists an AP ∈ Ft with |A− AP| ∈ N P .

Then AP \ A and A \ AP belong to F∗∞ and are P-nearly empty. Then
A = (AP \ (AP \ A)) ∪ (A \ AP) belongs to the σ-algebra generated by Ft
and the P-nearly empty sets. This σ-algebra on the other hand is clearly
contained in FP

t , since a P-nearly empty set evidently belongs to it.

1.3.33 Consider the collection F̃P
t of random variables that satisfy this

condition. If f (n) ∈ F̃P
t converge pointwise on Ω to f and f

(n)
P ∈ Ft differ

only on a P-nearly empty set from f (n) , then set fP
def= lim sup f

(n)
P . This

random variable is measurable on Ft , and the set N def=
[
f 6= fP

]
is contained

in the union of the sets
[
f (n) 6= f

(n)
P

]
, each of which is covered by a countable

family of P-negligible sets of A∞ . Then so is N : F̃P
t is sequentially closed,

and therefore contains the σ-algebra generated by Ft and the P-nearly empty
sets, and every random variable measurable thereon. The converse F̃P

t ⊂ FP
t

is obvious.

1.3.34 (ii): Suppose f satisfies this condition. Given P ∈ P we can find
an Ft-measurable random variable fP such that N def= [f 6= fP] is P-nearly

empty. For any r ∈ R ,
∣∣[f < r] − [fP < r]

∣∣ is a set of F∗∞ contained in N ,
therefore [f < r] ∈ FP

t .

Conversely, assume f is FP
t -measurable. For n ∈ N and k ∈ Z set

fn =

∞∑

k=−∞
k2−n · [k2−n < f ≤ (k + 1)2−n]P .
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These are Ft-measurable functions. Clearly lim sup fn is Ft-measurable and
differs only in a P-nearly empty set from f .

1.3.35 (i): For every rational q > 0 let X ′q ∈ Fq be a random variable

nearly equal to Xq (exercise 1.3.33), and set X ′t
def= lim inf{X ′q : Q 3 q ↓ t}.

X ′ is clearly adapted to F.+ = F. . Outside the nearly empty set

N def=
⋃
q[X

′
q 6= Xq] , X

′
. is right-continuous and agrees with X. . The set

[X ′ 6= X] is evidently evanescent. If X is a set, choose the X ′q idempotent.

If X is increasing, define X ′t = limQ3q′↓t supq′≥q∈QX
′
q instead.

(ii): The sufficiency of the condition is evident. For the necessity consider
the FP

. -adapted right-continuous decreasing process X def= [[0, T )) (conven-

tion A.1.5 and exercise 1.3.17). Let X ′ be a right-continuous F.-adapted set

indistinguishable from X , and consider its “right edge”

T ′ def= inf{t ≥ 0 : X ′t = 0} = inf{t : (1 −X ′)t ≥ 1} .

This is an F.-stopping time (proposition 1.3.11), evidently nearly equal to T .

If A ∈ FP
T , then the reduction TA is a stopping time on FP

. . Let T ′ be
an F.-stopping time nearly equal to T . Then AP

def= [T ′ < ∞] meets the

description of the second claim.

1.3.36 (i): Let A ∈ ⋂n F
P

t+1/n , and let P ∈ P . There exist A(n) ∈ Ft+1/n

that is P-nearly equal to A . Then AP
def= lim infnA

(n) ∈ Ft+ is P-nearly
equal to A . Conversely, assume A ∈ FP

t+ . Given P ∈ P we can find an

AP ∈ Ft+ that is P-nearly equal to A . Therefore A ∈ FP
u for all u > t and

A ∈ FP
t+ .

1.3.42 Fix an instant t and a P-negligible set A ∈ Ft . Then A ∩ [T > t]

∈ FT is P′-negligible for arbitrarily large stopping times T , and then so is
A , provided we understand “arbitrarily large” to mean arbitrarily large with

respect to P′ : for every ε > 0 and instant t there is a stopping time T with
P′[T ≤ t] < ε so that P′ � P on FT .

1.3.44 Let Ω be the half-line, let F∞ be the σ-algebra of Lebesgue measur-
able subsets of Ω, and let P be the restriction of the normal law γ1 to F∞ .

For Ft take the σ-algebra generated by the sets in F∞ that are contained
in [0, t] and the interval (t,∞). The pairs (Ft,P) are all complete. If u > t ,

then {u} ∈ A∞ is P-nearly empty, yet the outer measure that goes with the
pair (Ft,P|Ft

) does not annihilate {u} .

1.3.47 (i): F0
t is the σ-algebra generated by the functions Ws , 0 ≤ s ≤ t

(see page 15). Let t < u . We have to show that if f is a bounded function
measurable on Ft+ =

⋂
t<t′<u Ft′ , then f is already measurable on FP

t . That

is, we have to exhibit a function fP ∈ Ft that P-nearly equals f . We let
fP be the conditional expectation of f on F0

t (theorem A.3.24 on page 407).

It suffices to show that fP differs Pu-negligibly from f (Pu is of course the
restriction of P to Fu ). In terms of the Ft+-measurable function g def= f − fP

this means that the measure µ def= g · Pu vanishes on Fu . Suppose we know
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that
∫
φ(ω) dµ(dω) = 0 for every function φ of the form (1.2.6):

φ(ω) = exp
(
i

L∑

k=1

rk
(
Wtk(ω) −Wtk−1

(ω)
))

, (∗)

rk ∈ R , 0 = t0 < t1 < . . . < tL = u . Then we notice that the family
of such functions φ forms a multiplicative class and apply exercise A.3.5:

µ vanishes on all bounded functions measurable on the σ-algebra generated
by the functions (∗); this σ-algebra is evidently Fu ; and we are done.

In proving that µ vanishes on the function φ of (∗), we may assume that t is
among the tk , say t = tK−1 , and by inserting another point strictly between t

and the next instant and renaming that new instant tK we may assume

that tK is as close to t as we please. We get∫
φ dµ = E[g · φ dP]

= E
[
g · e(i

P
k≤K

rk(Wtk
−Wtk−1

)) · e(i
P

K<k≤L
rk(Wtk

−Wtk−1
))
]

= E
[
g · e(i

P
k≤K

rk(Wtk
−Wtk−1

))
]
·
∏

K<k≤L
E
[
e(irk(Wtk

−Wtk−1
))
]

by A.3.45: = E
[
g · e(i

P
k≤K

rk(Wtk
−Wtk−1

))
]
·
∏

K<k≤L
e(−r

2
k(tk−tk−1)/2) .

We have used the fact that g is measurable on FP
tK

, and that the following

increments are independent of this σ-algebra and of each other. Now as
tK ↓ t , the second factor in the last line stays bounded, and the first factor

converges to
E
[
g · exp

(
i
∑

tk≤t
rk(Wtk −Wtk−1

)
)]

,

which is zero, since the exponential is Ft-measurable.

(ii): The set [T± = 0] belongs to F0
.+[W ] ⊆ FP[W ] . The latter σ-algebra

contains only sets nearly equal to either ∅ or Ω. Thus P[T± = 0] equals

either zero or one. If P[T+ = 0] = 0, then P[T− = 0] = 0 and vice versa
– simply consider that T− is “T+ for −W .” In that case T± > 0 almost

surely and W 2
T±∧t = 0 for all t . From exercise 1.2.10 in conjunction with the

optional stopping theorem 2.5.22 we see that then E[T± ∧ t] = 0. In other
words, we must have P[T+ = 0] = P[T− = 0] = 1.

2.1.10 (i): If S is an elementary stopping time, then
∫
X dZS =

∫
X · [[0, S]] dZ (∗)

for all X ∈ E . Let t > 0 and let Tn denote the stopping times of exer-
cise 1.3.20. With S = Tn ∧ t (∗) gives

∫
X dZTn∧t =

∫
X · [[0, Tn ∧ t]] dZ , X ∈ E .
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As X ranges over the unit ball of E , the integrals on the right stay in some
bounded subset of Lp , call it B . As n→ ∞ , the left-hand side converges to∫
X dZT∧t , due to the right-continuity of the paths. As X ∈ E1 varies, all

these integrals stay in the closure of B , which is again a bounded set. That

is to say, ZT∧t =
(
ZT
)t

is global Lp-integrator for all t , which means that
ZT is an Lp-integrator.

(ii):
∫
X dZS∨T = [S < T ] ·

∫
X dZS + [T ≤ S] ·

∫
X dZT for X ∈ E . As

X ranges over the unit ball of E , these integrals stay in a bounded set of Lp .

This argument covers the “global” case. Replace in it S with S ∧ t and T
with T ∧ t to get the “plain” case.

2.1.13 If such an extension is to exist, then Z must satisfy (RC-0). Namely,
Zu − Zt equals

∫
((t, u]] dZ , and if u ↓ t and consequently ((t, u]] ↓ ∅ , this

must converge to zero in Lp(P), and thus a fortiori in measure.
To see the necessity of (B-p), recall first what it means that a subset I of Lp

is bounded: every neighborhood V of zero in Lp absorbs V ; i.e., there is
a scalar r such that I ⊂ r · V . Now if (B-p) were violated, there would

exist a Y ∈ E+ such that the collection I of integrals
∫
X dZ of elementary

integrands X in the order interval

[−Y, Y ] def= {X ∈ E : |X| ≤ Y }

were unbounded. For r = n there would beXn ∈ [−Y, Y ] with
∫
Xn dZ /∈ nV.

The sequence (Xn/n) of elementary integrands would converge pointwise and
dominatedly (by Y ) to zero, yet their integrals would stay outside V .

2.2.14 Use exercise 1.3.20 and the argument of proposition 2.2.11.

2.3.3 We use again the set S of 2.3.2 and set ZS def= sup{|Z |
s

: s ∈ S} .

For λ < ‖ZS ‖
[α]

, T def= inf{s ∈ S : |Z |
s
> λ} ∧ u is strictly less than u on

[ZS > λ ] , a set of probability > α where |Z |
T
≥ λ . We get the inequality

λ = λ
∥∥∥
[
ZS > λ

]∥∥∥
[α]

≤
∥∥ |Z |T

∥∥
[α]
.

With the independent Bernoulli random variables ε1, . . . , εd of theorem A.8.26,

|Z|T ≤ K0

∥∥∥
∑

η
ZηT εη

∥∥∥
[κ0;τ ]

,

and with exercise A.8.16: λ ≤ K0

∥∥∥
∥∥∥
∑

η
ZηT εη

∥∥∥
[γ;P]

∥∥∥
[ακ0−γ;τ ]

, γ < ακ0 .

Now
∑

η
ZηT εη(t) =

∫ ∑
η
[[0, T ]] dZη ,

and consequently λ ≤ K0

∥∥∥ Zu
[γ]

∥∥∥
[ακ0−γ;τ ]

= K0 Zu
[γ]
.

Now take the supremum over γ < ακ0 , λ < ‖ZS ‖
[α]

and S ⊂ [0, u] etc.
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2.3.7 Let X = f0 · [[0]]+
∑N
n=1 fn ·((tn, tn+1]] be an elementary integrand that

vanishes past t and has |X| ≤ 1, as in equation (2.1.1) on page 46. Then

∫
X d|Z| = f0|Z|0 +

N∑

n=1

fn

(
|Z|tn+1

− |Z|tn
)

= f0 sgn(Z0) · Z0 +

N∑

n=1

fn sgn(Ztn)
(
Ztn+1

− Ztn
)

+

N∑

n=1

fn

(∣∣Ztn+1

∣∣−
∣∣Ztn

∣∣− sgn(Ztn)
(
Ztn+1

− Ztn
))

≤
∫
XY dZ + A , (∗)

where Y def= sgn(Z0) · [[0]] +
N∑

n=1

sgn(Ztn) · ((tn, tn+1]]

is an elementary integrand in E1 and

A def=

N∑

n=1

(∣∣Ztn+1

∣∣−
∣∣Ztn

∣∣− sgn(Ztn)
(
Ztn+1

− Ztn
))

is a sum of positive random variables; indeed, since the absolute value function
|.| is convex, |z2| − |z1| − sgn(z1)

(
z2 − z1

)
≥ 0 for any two reals z1, z2 . For

the choice X = [[0, t]] we actually get the equality |Z|t =
∫
Y dZ+A , whence

A = |Z|t −
∫
Y dZ . Now (∗) stays when X is replaced by −X . Therefore

∣∣∣
∫
X d|Z|

∣∣∣ ≤
∣∣∣
∫
XY dZ

∣∣∣+ A ≤
∣∣∣
∫
XY dZ

∣∣∣+
∣∣∣
∫

[[0, t]] dZ
∣∣∣−
∫
Y dZ ,

sum of three random variables that all have dd ee
p
-mean less than Zt Ip .

2.3.8 (ii) For an elementary F .-stopping time T , [[0, T ]]. ◦ R ∈ E 1. Con-
versely, if T is an elementary F.-stopping time, then for every one of its values

ti there is an Ai ∈ F ti so that [T = ti] = Ai ◦R . Then T def=
∑
i ti ·Ai is an

elementary stopping time on F . with T = T ◦ R and [[0, T ]]. = [[0, T ]]. ◦ R .

Taking differences and linear combinations as in equation (2.1.4) we see that
E consists exactly of the processes X ◦ R with X ∈ E . The processes X

with X ◦ R ∈ P are evidently sequentially closed; thus P ◦ R ⊆ P – here

P denotes the predictables for F . , of course. Conversely, the processes X
of the form X = X ◦ R are also sequentially closed and contain E , so they

exhaust P .
(iv) If N ∈ F t is P-negligible, then N ◦R = R−1(N) is P-negligible; therefore

the inverse image of a P-nearly empty set is P-nearly empty, and X ◦ R is

1 See convention A.1.5 on page 364
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(F.,P)-previsible provided X is (F .,P)-previsible.
(v) Equation (2.3.8) extends to ddF ee∗

Z−p = ddF ◦Ree∗
Z−p in the two steps of

Daniell’s up-and-down procedure. This leads directly to the remaining claims.
2.4.3 Hint: Suppose V

t+
= inf{ V

u
: u > t}> V

t
+ε . Set U def= {u > t :

|Vu − Vt| < ε/2} and pick u1 ∈ U . There are {t = t0 < t1 < . . . < tI+1 = u1}
with

∑
i |Vti+1

− Vti | > ε . Repeat this with u2 = t1 etc. and conclude that

Vt+ = ∞ .
2.4.9 (i): If T λ < τ , then It ≥ λ for some t < τ and consequently Iτ > λ

and T λ+ ≤ τ . Thus T λ+ ≤ T λ . The reverse inequality is obvious. (ii):

[TΛ+ < t] =
⋃

[TΛ(n)+ < t] , so it suffices to consider the case that Λ

takes only countably many values λn . As [T λn+ < t] ∩ [Λ = λn] ∈ Ft ,
[TΛ+ < t] =

⋃
[TΛ+ < t] ∩ [Λ = λn] ∈ Ft .

2.5.2 Since by exercise A.3.27 (v)

E[Mg
t |Fs] = E

[
E[g|Ft] |Fs

]
= E[g|Fs] = Mg

s , s < t ,

Mg is a martingale. Next, there exists a K ∈ R such that the function

gK = (−K ∨ g ∧ K) has ‖g − gK ‖
L1 < ε . Let G be any sub-σ-algebra of

F∞ . Then E[gK |G] lies between −K and K and has L1-distance less than ε

from g , since by Jensen’s inequality A.3.24

|E[g|G] − E[gK |G] | = |E[g − gK |G] | ≤ E[|g − gK | |G] .

Thus the collection {E[gK |G] : G ⊂ F∞ } is uniformly integrable.
2.5.4 See exercises 1.2.10, 1.2.11, and 1.3.47.

2.5.5 Set g∞ def= E[g|∨F] . Let ε > 0 and consider the algebra
⋃

F . Its

step functions are dense in L1(
∨

F,P). There is such a step function gε with
‖g∞ − gε ‖

1
≤ ε . It is measurable on some G ∈ F . For G ⊂ G ′ ∈ F
∥∥∥g∞ − gG

′
∥∥∥

1
≤ ‖g∞ − gε ‖1 +

∥∥∥gε − gG
′
∥∥∥

1
≤ 2ε .

2.5.6 Without loss of generality we may assume that both f and f ′ are

bounded (how?). For every n ∈ N let Fn be the σ-algebra generated by the
sets

[
k2−n < f ≤ (k + 1)2−n

]
, k = 0, 1, 2, . . ., and the P-negligible subsets

of F . Both f and f ′ are measurable on the σ-algebra F∞ generated the Fn .
Mn

def= E[f |Fn] and M ′n
def= E[f ′|Fn] are uniformly integrable martingales on

the filtration {Fn}n∈N (example 2.5.2). The hypothesis translates to Mn =
M ′n P-almost surely. Since Mn → f and M ′n → f ′ in L1(P)-mean (exer-

cise 2.5.5), f = f ′ P-almost surely.
2.5.12 (i): By corollary 2.5.11 this condition is necessary. To see that it is

sufficient, let s < t be two instants, and let A ∈ Fs . Form the elementary

stopping time sA ∧ t which equals s on A and t off A (exercise 1.3.18). The
given information E[Mt −MsA

] = 0 can be rewritten as
∫

A

E [Mt|Fs] dP =

∫

A

Ms dP .
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(ii): Let M,N be supermartingales, 0 ≤ t and A ∈ Fs . Then
∫
Mt ∧Nt·A dP =

∫
Mt ∧Nt·[Ms < Ns]A dP +

∫
Mt ∧Nt·[Ns ≤Ms]A dP

≤
∫
Mt·[Ms < Ns]A dP +

∫
Nt·[Ns ≤Ms]A dP

≤
∫
Ms·[Ms < Ns]A dP +

∫
Ns·[Ns ≤Ms]A dP

=

∫
Ms ∧Ns·[Ms < Ns]A dP +

∫
Ms ∧Ns·[Ns ≤Ms]A dP

=

∫
Ms ∧Ns·A dP .

2.5.14 For the first statement apply exercise 1.3.35 on page 38. Next,
since M is uniformly integrable it is L1-bounded and M∞ def= limnMn exists

pointwise. Again since M is uniformly integrable this limit is taken in
L1-mean (theorem A.8.6).

2.5.16 Set Ft = Fn and Mt = Mn for n ≤ t < n+1 and apply proposi-
tion 2.5.13.

2.5.21 (i): Use exercise 1.2.11 and lemma 2.5.18.

(ii): From (i) P[sups<nWs/n>β/n+α/2]≤e−αβ . With β=n2/3 and α=n−1/3,
the first Borel–Cantelli lemma gives P[sups<nWs/n > 2n−1/3 i.o.] = 0. This

implies lim supWt/t ≤ 0, and lim infWt/t = − lim sup−Wt/t ≥ 0.
2.5.23 (ii): Let 0 ≤ s < t and A ∈ Fs . Then

E[MT
t ·A] = E

[
MT
t ·A · [T ≤ s]

]
+ E

[
MT
t ·A · [T > s]

]

= E
[
MT∧t ·A · [T ≤ s]

]
+ E

[
MT∧t ·A · [T > s]

]

= E
[
MT∧s ·A · [T ≤ s]

]
+ E

[
Ms∨T∧t ·A · [T∧t > s]

]

by theorem 2.5.22: = E
[
MT∧s ·A · [T ≤ s]

]
+ E

[
Ms ·A · [T∧t > s]

]

= E
[
MT∧s ·A · [T ≤ s]

]
+ E

[
MT∧s ·A · [T > s]

]

= E
[
MT∧s ·A

]
= E

[
MT
s ·A

]

and E[MT
t |Fs] = MT

s .

(iii): Let M be a local martingale. Given a t ∈ R+ and ε > 0 one can find a

stopping time T with P[T < t] < ε such that MT is a martingale. Then T ∧t
has P[T ∧ t < t] < ε and reduces M to a uniformly integrable martingale.

(iv): Let 0 ≤ s < t < ∞ and A ∈ Fs . There exist stopping times Tn
that increase without bound and reduce M to martingales. For m ∈ N set

Am = A ∩ [s < Tm] . Then Am ∈ Fs∧Tm
and by Fatou’s lemma A.8.7

E[Mt Am] ≤ lim inf
n→∞

E[Mt∧Tn
Am]
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by part (i): = E[Ms∧Tm
Am]

since s < Tm on Am : = E[Ms Am] ≤ E[Ms A] .

Hence E[Mt A] ≤ E[Ms A] .

For the last statement of (iv) write

E[MS∨T ] = E[MS∨T [S ≤ T ]] + E[MS∨T [S > T ]]

= E[MT [S ≤ T ]] + E[MS[S > T ]]

by 1.3.16 (iv): = E
[
E[MT |FS∧T ][S ≤ T ]

]
+ E

[
E[MS|FS∧T ][S > T ]

]

by part (i): = E[MS∧T [S ≤ T ]] + E[MS∧T [S > T ]] = E[MS∧T ] = E[M0]

2.5.25 For X = f0 · [[0]]+
∑N
n=1 fn · ((tn, tn+1]] an elementary integrand as in

the proof of theorem 2.5.24 we take the square root in

E
[(∫

X dW

)2]
= E

[( N∑

n=1

fn · (Wtn+1
−Wtn)

)2]

= E
[ N∑

n=1

f2
n ·
(
Wtn+1

−Wtn

)2]

= E
[ N∑

n=1

f2
n ·
(
W 2
tn+1

− 2Wtn+1
Wtn +W 2

tn

)]

by 2.5.4 and 2.5.3: = E
[ N∑

n=1

f2
n ·
(
W 2
tn+1

−W 2
tn

)]

by 2.5.4: = E
[ N∑

n=1

f2
n ·
(
tn+1 − tn

)]
=

∫ ∫
X2
s ds dP .

For the second equality chose X = [[0, t]].

2.5.31 From proposition A.8.24

A(2.5.6)
p ≤





( 4p

(p− 1)(2 − p)

)1/p

for 1 < p < 2,

1 for p = 2
(3 · 83/2 · p
p− 3/2

+
83 · 3 · p
3 − p

)1/p

for 2/3 < p < 3

( 4p

p− 2

)1− 1/p

for 2 < p <∞.

(Since lim26=p→2Ap ≈ 57.8, this is an unsatisfactory formula; the problem

arises to fashion a better one. Using complex interpolation one can show
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that Ap ≤ ( 16
p−1 )

2(2−p)
for 1 < p < 2, which has at least the right limit

behavior at p = 2)

2.5.32 There is a nearly empty set N1 off which the path Q 3 q 7→ Sq
has no oscillatory discontinuities (lemma 2.5.27 and lemma 2.3.1). Use this

to define S′t
def= limq↓t Sq , a supermartingale with right-continuous paths and

adapted to FP
.+ . For δ > 0 set Tδ

def= inf{t : St < δ} . This is a FP
.+-stopping

time at which S′Tδ
≤ δ . Let T

(n)
δ be the stopping times of exercise 1.3.20 and

fix an instant t . By exercise 2.5.12, E
[
(St − S

t∧T (n)
δ

) · [T (n)
δ < t]

]
≤ 0, which

in the limit produces E
[
St · [Tδ < t]

]
= E

[
S′t · [Tδ < t]

]
≤ E

[
St∧Tδ

· [Tδ < t]
]
≤

δ · P[Tδ < t] ≤ δ and exhibits N2
def=
⋂
δ[Tδ < t] as P-nearly empty, inasmuch

as St is almost surely strictly positive. Now if the restriction to Q of S.(ω)
is not bounded away from zero on [0, t] , then neither is S ′.(ω) and ω must

lie in N2 : N def= N1 ∪N2 meets the description.
3.1.2 Let S(n), T (n) be the stopping times of exercise 1.3.20. Then clearly

X(n) def= n · ((S(n) ∧ n, T (n) ∧ n]] are elementary integrands whose supremum
H = ∞ · ((S, T ]] ∈ E↑+ majorizes |F | . It suffices to show that ddH ee∗

Z−0 ≤ ε .

But this is evident: the stochastic integral f def=
∫
X dZ of any X ∈ E with

|X| ≤ H vanishes off [S < T ] and therefore has ddf ee
0
≤ ε ; the supremum of

such ddf ee
0

is ddH ee∗
Z−0 .

3.1.3 This is immediate from exercise 2.5.25 and Daniell’s construction.

3.2.2 For every n there is a countable collection
{
X(n,k)

}
in E whose

pointwise supremum is H(n) . The functions X(n) def= supν,k≤nX
(ν,k) ≤ H(n)

belong to E and increase pointwise to supnH
(n) . Hence

⌈⌈
sup
n
H(n)

⌉⌉∗
= sup

n

⌈⌈
X(n)

⌉⌉∗
≤ sup

n

⌈⌈
H(n)

⌉⌉∗
≤
⌈⌈

sup
n
H(n)

⌉⌉∗
.

3.2.5 Suppose F is evanescent. Then the projection N of [F 6= 0] on

Ω is nearly empty. By the regularity of the filtration, X def= N × [0,∞)
is an elementary integrand, and evidently ddX ee

Z−p = 0. The countable

subadditivity of the mean implies that dd∞ ·X ee∗
Z−p = 0, the solidity then

that ddF ee∗
Z−p = 0.

3.2.11 The first statement was done in 3.2.7 if F is everywhere defined.

3.2.12 (ii): Given an ε > 0 find N ∈ N so that
∑
n≥N ddFn ee∗ < ε/2.

Then find 0 < r < 1 so that
∑
n<N ddr · |Fn|ee∗ < ε/2. Use the countable

subadditivity and solidity to conclude that ddr ·∑ |Fn|ee∗ < ε .
3.2.15 (i): If F ∈ L1[dd ee∗] , then there are elementary integrands Xn with

ddF −Xn ee∗ < 2−n . The proof of theorem 3.2.10, suitably adapted, shows

that the sequence F1 = X1, F2 = X2−X1, . . . , Fn = Xn−Xn−1, . . . will meet
the description. For the converse note that for X1, . . . , XN ∈ E

⌈⌈
F −

N∑

n=1

Xn

⌉⌉∗
≤

N∑

n=1

ddFn −Xn ee∗ +

∞∑

n=N+1

ddFn ee∗ .
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Given ε > 0, find first N so large that the second sum is less than ε/2, then
find Xn ∈ E such that the (finite) first sum is also less than ε/2.

(ii) is plain from (i) and the countable subadditivity of the mean.

(iii): Let Fn ∈ L1[dd ee∗]+ with dd∑n Fn ee
∗
< ∞ . Find Xn ∈ E+ with

ddFn −Xn ee∗ ≤ 2−n (why can the Xn be chosen to be positive?). Then

⌈⌈∑

n

Xn

⌉⌉∗
≤
⌈⌈∑

n

Fn

⌉⌉∗
+
⌈⌈∑

n

(Xn − Fn)
⌉⌉∗

≤
⌈⌈∑

n

Fn

⌉⌉∗
+ 2 <∞ ,

and therefore ddXn ee∗ −−−→n→∞ 0.

3.2.16 (i): Let
(
Xn

)
,
(
Yn
)

be sequences in E that converge in mean to
F,G ∈ L1[dd ee∗], respectively, and let r, s ∈ R . Then

(
rXn + sYn

)
converges

to rF + sG in mean, since

dd(rF + sG) − (rXn + sYn)ee∗ ≤ |r|ddF −Xn ee∗ + |s|ddG− Yn ee∗ ,

which converges to zero as n→ ∞ . Thus

∫
(rF + sG) = lim

n

∫
(rXn + sYn) = lim

n

(
r

∫
Xn + s

∫
Yn

)

= r

∫
F + s

∫
G .

This shows that the integral is linear. Next let (Xn) be a sequence of ele-

mentary integrands with ddF −Xn ee∗ −−−→n→∞ 0. Then ddXn ee∗ −−−→n→∞ ddF ee∗
by exercise 3.2.9, and so |

∫
F dZ|=limn |

∫
Xn dZ|≤limn ddXnee∗=ddF ee∗.

3.2.30 If not, one of the collections Mk = {A ∩ ((k − 1, k]] : A ∈ M} would

contain uncountably many non-negligible sets. For some r ∈ N we would

have ddAee∗ > 1/r for uncountably many A ∈ Mk , which is impossible since
the measure of ((k − 1, k]] is finite.

3.3.3 The General Stone–Weierstraß theorem A.2.2 permits the extension

of the bounded linear map
∫

. dZ : E0 → Lp to E0
, so that the At and

E0 may be assumed to be both algebras and vector lattices closed under

chopping. The argument of lemma 3.3.1, which does not refer to the nature

of the elementary integrands, shows that
∫

. Z is σ-additive in probability.
The argument of proposition 3.3.2 also carries through, showing that

∫
. Z

is a σ-additive vector measure to Lp . Daniell’s mean furnishes an extension
satisfying the Dominated Convergence Theorem, and therefore integrating

every elementary integrand in E .

3.4.1 There is a sequence of elementary integrands Xk with ddXk ee∗ < 2−k

for k ≥ 1 and F =
∑
k≥0X

k a.e. and in mean. Then Y K def=
∑

k≤K k|Xk|
converges to an integrable function G . Set U def= [G > M ] ≤ G/M . Then
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U = supn,K 1 ∧
(
n·(Y K − (Y K ∧M))

)
∈ E↑+ and ddU ee∗ < ε for a suitable

choice of M . On U c ,
∑
kX

k converges uniformly to F .

3.4.7 The class of functions φ such that φ(F1, . . . , FN ) is measurable is

closed under pointwise limits, by Egoroff’s theorem, and contains the con-
tinuous functions, by theorem 3.4.6. Thus it contains the smallest class of

functions closed under pointwise limits and containing the continuous func-
tions, viz. the Borel functions.

3.4.8 Needed

3.5.4 The first statement is clearly true if Z is continuous and adapted. The
collection of adapted processes Z such that ZT is predictable is closed under

pointwise limits. If the predictable process V has right-continuous paths of
finite variation, then V = sup{∑i

∣∣V qi+1 − V qi
∣∣} , where the supremum

is extended over all finite rational partitions {0 = q0 < q1 < q2 < . . .} of
[0,∞).

3.5.5 Let ε > 0. There is a K such that P[|f | ≥ K] ≤ ε. Let us write

f ·((S, T ]] ·G = G(K) +G′, with G(K) def= f ·[|f | < K] · ((S, T ]] ·G and G′ def=
f ·[|f | ≥ K] · ((S, T ]] ·G = f · ((S[|f |≥K], T ]] ·G. G(K) , being Z−0-measurable

and majorized by KG , is Z−0-integrable. G′ vanishes off the stochastic
interval ((S[|f |≥K], T ]] , whose projection on Ω has measure less than ε , and

thus has ddG′ ee∗
Z−0 ≤ ε (exercise 3.1.2). That is to say, f ·((S, T ]] ·G differs

arbitrarily little (by less than ε) from a Z−0-integrable process (G(K) ), so it is
Z−0-integrable itself. Furthermore,

∫
f ·((S, T ]] ·G dZ

.
=limK→∞

∫
G(K) dZ. It

suffices to show that
∫
G(K) dZ

.
=f [|f | < K]

∫
((S, T ]] ·G dZ; in other words,

that equation (3.5.2) holds when f is bounded. If it holds when S and T

are elementary, we apply it to the stopping times S(n) ∧ n, T (n) ∧ n and take
the limit as n→ ∞ : we may assume that S, T are elementary. If it holds

when f is a set in FS , then it holds for linear combinations of them and their
uniform limits: we may assume in addition that f is a set A ∈ FS . In that

case the equality in question reads
∫

((SA, TA]] ·G dZ=Ȧ ·
∫

((S, T ]] ·G dZ. If
G ∈ E is an elementary stochastic interval or a linear combination thereof, it

is true by inspection; it follows in general by approximation with elementary

integrands.

3.5.7 (i): Let
(
X(n)

)
be a sequence in PP with pointwise limit X . There

are predictable processes X
(n)
P such that Nn

def= πΩ[X(n) 6= X
(n)
P ] is nearly

empty. Set XP = lim supX
(n)
P . This is a predictable process. The projection

of [X 6= XP] on Ω is contained in the union of the Nn and therefore in a
negligible set of A∞σ : it is nearly empty itself. In other words, the paths of

X and XP agree outside a nearly empty set.

(ii): Let us start by showing that a measurable evanescent process X
is predictable. There is a nearly empty set N such that X vanishes off

N def= [0,∞)×N . Now the collection MN of processes Y such that Y ·N ∈ P
is a monotone class and contains every generator of the measurable processes

of the form (s, t] × A , A ∈ F∗∞ . Indeed,
(
(s, t]× A

)
· N =(s, t] × (A ∩N) is
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in E on the grounds that the nearly empty set A ∩N belongs to F0 = FP
0+ .

Therefore MN contains all measurable processes, in particular X . That is

to say, X ∈ P . Now if X is a measurable previsible process and XP ∈ P
cannot be distinguished from X with P , then X = XP +

(
X − XP

)
is the

sum of two processes in P .

3.5.10 (i): (t−1/n)∨0 predicts t . (T +(ε−1/n) : n > 1/ε) predicts T +ε .

If T 1, T 2, . . . are announced by T 1
n , T

2
n , . . ., then T ′N =

∨
k,n≤N T

k
n predicts∨

k T
k , and T 1

n ∧ . . . ∧ T kn predicts T 1 ∧ . . . ∧ T k . (ii): 0A ∧ n predicts 0A .
SA = S ∨ 0A . If

(
S(n)

)
announces S , then

(
Sn[Sn≤T ] ∧ n

)
announces S[S≤T ] .

3.5.11 It suffices to show that [[0, T )) is predictable; all other intervals in
question can be gotten from this one by taking intersections and relative

complements with intervals then known to be predictable. Let
(
Tn
)

be a
sequence of stopping times announcing T and simply observe that [[0, T )) is

a simple combination of predictable sets:

[[0, T )) =
⋃

n

[[0, Tn]] \ [[T ]] .

3.5.19 (i) The set {t : ∆Vt ≥ λ} is left closed, on the grounds that the
non-oscillatory nature of the path of V ∈ D prevents it from having an

accumulation point. The graph of T λ∆V is the intersection of the previsible
sets [[0, T λ∆V ]] and [∆V ≥ λ] . The claim follows from theorem 3.5.13. (ii) (See

the proof of theorem 2.4.4). For every i, j ∈ N define inductively T i,0 = 0
and

T i,j+1 = inf
{
t > T i,j : ∆It ≥ 1/i

}
.

From exercise 3.5.19 we know that the T i,j are predictable stopping times.
They are countable in number, so we count them:

{
T i,j

}
=
{
T ′1, T

′
2, . . .

}
.

The T ′n do not have disjoint graphs, of course, so we force the issue: since
Pn

def= [[Tn]]\
⋃
ν<n[[T

′
ν ]] is previsible, the reduction Tn of T ′n to

⋂
ν<n[Tν 6= Tn],

which has Pn for its graph, is a predictable stopping time (see theo-
rem 3.5.13). The Tn meet the claim.

3.5.20 Let
(
Sn
)

be a sequence of stopping times announcing T . By Doob’s
optional stopping theorem 2.5.22,

MT− = limMSn
= lim E

[
M∞|FSn

]

both almost surely and in L1-mean. For every n and A ∈ FSn
the integrals

of M∞ and MT− over A agree. Since FT− =
∨FSn

, these integrals agree

also if taken over any set of FT− .

3.6.8 XF̃ ≥ XF is predictable, so XF̃ ≥ X̃F a.e. By the same argument,

X−1X̃F ≥ F̃ . Division by zero does not really occur (why?).

3.6.13 Let T (n) be the stopping times of exercise 1.3.20. The equality
∫
X dZT

(n)∧k =

∫
X · [[0, T (n) ∧ k]] dZ
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holds trivially for all X ∈ E and all k, n ∈ N . By right-continuity we have
∫
X dZT∧k

.
=

∫
X · [[0, T ∧ k]] dZ

for all X ∈ E . Consider the collection of all predictable X for which
the equality above obtains. By the Dominated Convergence Theorem this

collection is closed under limits of bounded sequences and therefore contains
all bounded predictable processes. Letting k → ∞ shows that for all X ∈ P00∫

X dZT =

∫
X · [[0, T ]] dZ . (∗)

Now let G̃ be a Z-envelope of |G| . Choose it so that it is also a ZT -envelope
of |G| . Then by exercise 3.6.8

ddG · [[0, T ]]ee∗Z−p =
⌈⌈
G̃ · [[0, T ]]

⌉⌉∗
Z−p

by corollary 3.6.10: = sup

{⌈⌈∫
Y dZ

⌉⌉
p

: Y ∈ P00, |Y | ≤ G̃ · [[0, T ]]

}

by (∗): = sup

{⌈⌈∫
Y dZT

⌉⌉
p

: Y ∈ P00, |Y | ≤ G̃

}

= ddGee∗ZT−p .

The rest is even simpler. Suppose, say, G · [[0, T ]] is Z−p-integrable. There is
a sequence of elementary integrands X (n) with ddG · [[0, T ]]−X(n)ee∗

Z−p → 0.

Then ddG−X(n)ee∗
ZT−p = dd(G−X(n)) · [[0, T ]]ee∗

Z−p → 0 and
∫
G dZT =

lim
∫
X(n) dZT=lim

∫
X(n) · [[0, T ]] dZ.

3.6.14 The mean dd ee∗ def= dd ee∗
Z−0 + dd ee∗

Z′−0 majorizes d(Z +Z ′) on E and

therefore dd ee∗
(Z+Z′)−0 on predictable processes (exercise 3.6.16). Let F , F

be predictable with F ≤ F ≤ F and ddF − F ee∗
Z−0 = 0, and let F ′, F

′
be

similar, constructed with Z ′ instead (proposition 3.6.6 (ii)). Set Φ def= F ∧F ′
and Φ def= F ∧ F ′ . Then ddΦ − Φee∗ = 0 and therefore ddΦ − F ee∗

(Z+Z′)−0 = 0.

If F is integrable for both Z and Z ′ , then Φ is finite for dd ee∗
Z−0 and

dd ee∗
Z′−0 , therefore for dd ee∗ and for dd ee∗

(Z+Z′)−0 : it and with it F is

(Z + Z ′)−0-integrable; etc.
3.6.16 If ddF ee∗

Z−p > a , then dd
∫
Y dZ ee

Lp > a for some Y as in coroll-

ary 3.6.10. Such Y is integrable for any mean; there is a sequence (X (n)) of

elementary integrands converging in the mean dd ee∗ + dd ee∗
Z−p to Y . Then

ddF ee∗ ≥ ddY ee∗ = limn ddX(n) ee∗ ≥ limn ddX(n) ee∗
Z−p > a .

3.6.18 Start with p ≥ 1. Consider pairs (A, µA) consisting of a Z-non-

negligible predictable Z−p-integrable set A and a positive σ-additive measure
µA that satisfies |µ(X)| ≤ ddX ee∗

Z−p and

µA(P ) = 0 ⇐⇒ ddP ee∗Z−p = 0 ∀P ∈ P.
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A maximal collection of such pairs with mutually disjoint first entries is at
most countable, so we write it {(A(1), µA(1)), . . .} . The complement of

⋃
k Ak

is Z-negligible; if it were not, then the Hahn–Banach theorem A.2.25 would
provide a linear functional µ on L(1)[Z−p] with µ(B) > 0. Such µ would be a

measure on P , and it could be chosen positive. It is not hard to restrict µ to a
subset A(0) of B such that (A(0), µ|A(0)) could be adjoined to the supposedly

maximal collection. µ :=
∑
k 2−kµAk

meets the description.

If 0 ≤ p < 1, then theorem 4.1.2 provides a probability P′ ≈ P for which Z
is an L2-integrator. The measure µ produced above in this situation is a

control measure for Z .
3.7.2 T (1) ∨ T (2) reduces Z to an Lp(P)-integrator. (exercise 2.1.10). We

may assume without loss of generality that G is positive. By exercise 3.6.13
the G · ((S(i), T (i)]] are ZT

(1)∨T (2)−p-integrable and then so is their supremum

G · ((S(1) ∧ S(2), T (1) ∨ T (2)]] .

3.7.8 For every P ∈ P let P−
∫
G dZ denote the stochastic integral computed

in L0(P). Let Ξ denote the collection of bounded predictable processes X

such that there exists a right-continuous process X∗Z with left limits and
with (X∗Z)t ∈ P−

∫
X · [[0, t]] dZ for all P ∈ P and all t > 0. Clearly E ⊂ Ξ.

Let
(
X(n)

)
be a bounded sequence in Ξ that converges pointwise to some

X ∈ Ξ. By lemma 2.3.2 and exercise 3.6.13
⌈⌈(

X(n)∗Z −X(m)∗Z
)?
t

⌉⌉
Lp(P)

−−−−−→m,n→∞ 0

for every P ∈ P and t > 0. That is to say, the set of points in Ω where the
path of X(n)∗Z does not converge uniformly on every finite interval belongs

to A∞σ by its description and is P-negligible for every P ∈ P . We set
X∗Z = 0 on this set and X∗Z = limX(n)∗Z elsewhere. Using the regularity

of F. we conclude that X ∈ Ξ: Ξ contains all bounded predictable processes.

If X is predictable and locally Z−0;P-integrable for every P ∈ P , we apply
the result to

(
(−n) ∨X ∧ n

)
· [[0, n]] and take the limit.

3.7.9 There are stopping times Tn increasing to ∞ that reduce M to
global L1-integrators for which G is MTn−1-integrable (corollary 2.5.29).

The situation is reduced to the case that M is a martingale and global
L1-integrator and G is M−1-integrable. We have to show that then G∗M is

a martingale, i.e., that E
[∫
X d(G∗M)

]
= 0 for X ∈ E with X0 = 0 (see

proposition 2.5.10). This is evident if G is elementary, and follows in general

by approximating G with elementary integrands in dd ee∗
1−M -mean.

3.7.15 Apply exercise 3.6.13 and lemma 3.7.5: for any t

(G∗ZT )t ∈
∫ t

0

G dZT =

∫
[[0, T ∧ t]] ·G dZ =

∫
[[0, T ∧ t]] d(G∗Z)

3 (G∗Z)T∧t = (G∗Z)Tt .

Now use the right-continuity of the ultimate right and left-hand sides.
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3.7.16 We start with the case that the graph [[T ]] is included. Setting
B def=

{
(s, ω) : ω ∈ Ω0, s ≤ T (ω)

}
write

X∗Z −X ′∗Z ′ = (X −X ′)∗Z +X ′∗(Z − Z ′) . (∗)

It is clear upon inspection that X∗(Z −Z ′) = 0 on B if X is an elementary
integrand. We know from exercise 3.6.14 that X ′ is (Z − Z ′)−0-integrable.

There is a sequence
(
X(n)

)
of elementary integrands such thatX (n)∗(Z − Z ′)

converges to X ′∗(Z − Z ′) uniformly on bounded intervals, except in a nearly
empty set (corollary 3.7.11). We conclude that, on B , X ′∗(Z − Z ′) is

indistinguishable from 0.
To show that the first term of (∗) is evanescent on B let ε > 0 and set

S = inf
{
t :
(
(X −X ′)∗Z

)?
t
≥ ε
}
. This is a stopping time (proposition 1.3.11).

On Ω0 ∩ [S ≤ T ] the entire path of (X −X ′) · [[0, S]] vanishes. From coroll-

ary 3.7.13 in conjunction with lemma 3.7.5 and exercise 3.6.13 we know that
for all t

(
(X −X ′)∗Z

)
S∧t ∈

∫ S∧t

0

(X −X ′) dZ =

∫
(X −X ′) · [[0, S]] dZt

almost surely vanishes on this set. The right-continuity of (X −X ′)∗Z shows

that the whole path of (X −X ′)∗Z vanishes almost surely up to and including
time S on Ω0 ∩ [S ≤ T ] . Since

(
(X −X ′)∗Z

)?
S
≥ ε on [S <∞], this

implies that S > T almost surely on Ω0 . We take ε → 0 and conclude that
(X −X ′)∗Z vanishes almost surely on Ω0 up to and including time T .

If [[T ]] is excluded, we apply the above to (T − ε) ∨ 0 and let ε→ 0.
3.7.18 needed

3.7.19 The first statement was done in exercise 3.5.8. For the second state-
ment note that ((S, T ]]∗Z = ZT −ZS is previsible if S, T are stopping times.

Thus X∗Z is previsible for X ∈ E . Now approximate the general integrand

as in corollary 3.7.11.
3.7.20 (i) To say that f ·G is Z−0-integrable on ((S, T ]] means that f · G ·
((S, T ]] is Z−0-integrable (exercise 3.6.13). In view of definition 3.7.1 neither
hypothesis nor conclusion are changed if we replace G by G · ((S, T ]] : we

may assume that G vanishes off ((S, T ]] and is Z−0-integrable. Then f · G
is Z−0-integrable on ((S, T ]] if and only if f · ((S, T ]] is G∗Z−0-integrable

(theorem 3.7.10), which is true because G∗Z is a global L0-integrator and
f · ((S, T ]] has almost surely finite maximal function at ∞ (theorem 3.7.17).

Thus
∫ T

S+

f ·G dZ =

∫
f · ((S, T ]] d(G∗Z)

by exercise 3.5.5: = ḟ ·
(
(G∗Z)T − (G∗Z)S

)
˙

by exercise 3.6.13: = ḟ ·
∫

((S, T ]] d(G∗Z)
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by theorem 3.7.10: = ḟ ·
∫
G · ((S, T ]] dZ

by exercise 3.6.13: = ḟ ·
∫ T

S+

G dZ .

(ii) Again we may assume that G vanishes off the predictable interval [[S, T ]]

and is Z−0-integrable. Again we know a priori that f · G is Z−0-integrable
on [[S, T ]] : it amounts to saying that f · [[S, T ]] is G∗Z−0-integrable, which is

true for the same reason as above. This allows us to reduce the problem to
the case that f is bounded. For if we have the equality (3.7.6) in this case,

we apply it to (−k) ∨ f ∧ k and let k → ∞ . Say |f | ≤ k .
Let (S(n)) be an increasing sequence of stopping times announcing S . There

is a sequence of FS(n)-measurable functions f (n) with |f (n)| ≤ k that
converges almost surely to f ; we can take for f (n) the conditional expectation

of f given FS(n) , or by density first find the f (n) so as to converge in
dd ee

0
-mean to f and then go to an almost surely convergent subsequence.

Now from (i)
∫ T

S(n)+

f (m) ·G dZ = ḟ (m) ·
∫ T

S(n)+

G dZ , m ≤ n ∈ N .

We let first n→ ∞ and then m→ ∞ and get the claim.
(iii) G is predictable (proposition 3.5.2) and has almost surely finite max-

imal function at any finite instant t . It is thus Z−0-integrable on every inter-
val [[0, t]] (theorem 3.7.17) with integral

∫
G · [[0, t]] dZ .

=
∑
fk · (ZtSk+1

− ZtSk
)

(proposition 3.5.2 and theorem 3.2.24).
3.7.21 By corollary A.5.13, |X (n)−X|?T is FT -measurable. Thus every sub-

sequence of X(n) has a further subsequence X(nk) with |X(nk)−X|?T −−−→
k→∞ 0

almost surely. Then X(nk) · [[0, T ]] → X · [[0, T ]] nearly uniformly and thus

Z-almost everywhere. By theorem 3.7.17, X (nk) · [[0, T ]] → X · [[0, T ]] in

Z−p-mean, by equation (3.7.5) X (nk)∗ZT −X∗ZT
Z−p −−−→k→∞ 0, and the

claim follows from theorem 2.3.6.

3.7.24 Make ‖(X.− −Xnk) · [[0, k]]‖∗
Z−p summable and use Borel–Cantelli.

3.7.25 Let S1,S2 be stochastic partitions. Then S def=
⋃{[[S]] : S ∈ S1 ∪S2}

is progressively measurable. Define by induction T1 = inf{t : t ∈ S} and
Tk+1

def= inf{t > Tk : t ∈ S} . T1 , being the infimum of the first stopping time

of S1 and the first stopping time of S2 is a stopping time (exercise 1.3.15). If
Tk is a stopping time, then Tk+1 is the debut of the progressively measurable

set ((T1,∞)) ∩ S and therefore is a stopping time, by corollary A.5.12. This
big result uses the natural conditions, so it is better to argue as follows:

[Tk+1 ≤ t] =
⋃{[Tk < S ≤ t] : S ∈ S1 ∪ S2} . Now [Tk < S] ∈ FS (exer-

cise 1.3.16) and so [Tk < S ≤ t] = [Tk < S] ∩ [S ≤ t] ∈ Ft . The Tk and

T∞ def= supk∈N Tk make up a partition that refines both S1 and S2 .
3.7.27 Let R def= (X,Z), R : Ω → D2 the associated representation so that

X = X◦R , Z = Z◦R . Now define stopping times Sk : D2 → R and processes
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Y
(δ)

t on D2 by (3.7.10) and (3.7.11). Choose δn so that
∑

n f(nδn) < ∞ ,

let and set (x.−⊕∗z). def= limY
(δn)
. (x., z.) where this limit exists uniformly on

bounded intervals, x.−⊕∗z def= 0 elsewhere. This produces a map: D2 → D

which is easily seen to be adapted to the canonical (i.e., right-continuous)

filtrations on these path spaces. Clearly the version of X.−∗Z produced by
the algorithm (3.7.11) is nothing but the composition X.−⊕∗Z of (X,Z) with

this map, as long as Z satisfies (3.7.13).

3.7.29 Apply the Borel–Cantelli lemma to this consequence of inequal-

ity (3.7.14):

P
[∣∣X.−∗Z − Y (δn)

∣∣?
∞ > 1/n

]
≤ nδn · Z I0 .

3.7.31 (ii) The set [N(U) > K] is the same as [SK < U ] , and on it

Kδ2 ≤
∑

k<K

(
XU
Sk+1

−XU
Sk

)2 ≤ L2
∑

k<K

(
X ′USk+1

−X ′USk

)2
.

We take the square root and apply corollary 3.1.7, getting

√
Kδ
(
P[N > K]

)1/q ≤ LK(A.8.5)
q X ′U Iq .

Raising this to the power q and using the estimate of K
(A.8.5)
q from exer-

cise A.8.29 gives the claim.

3.7.32 (i) The approximands of corollary 3.7.11 have continuous paths.

(ii) Let
(
X(n)

)
be a sequence of elementary integrands approximating X

in mean, fast enough so that X(n)∗Z → X∗Z uniformly on compacta a.s.

(corollary 3.7.11). Since the equation in question holds by inspection for
elementary integrands,

∆(X∗Z) = lim∆(X(n)∗Z) = limX(n) · ∆Z = X · ∆Z .

(iii) The same argument works if X(n) is chosen as in theorem 3.7.26.

3.7.35 Use theorem A.3.18 on page 403.

3.8.3 Convolving the absolute value function |.| with a suitable approximate

identity δ that is of class C∞ , has compact support, and is symmetric about
the origin produces C∞-functions |.|(δ) that converge uniformly on every

compact set in Rd to |.| ; also, the gradients of the |.|(δ) will converge point-
wise and dominatedly on every compact to ∇η|.| . Applying theorem 3.8.1 to

the |.|(δ) and taking the limit will result in the claim.

3.8.6 Apply exercise 3.7.19.

3.8.8 For η = 1, . . . , d let S = {0 = S0 ≤ S1 ≤ S2 ≤ . . . ≤ ∞} be a
random partition8, and set fη0 = Zη0 , fη1 = ZηS1

− Zη0 , fηk = ZηSk
− ZηSk−1

,

k = 2, 3 . . . , K . Enumerate the f ’s: f1, . . . f(K+1)h . Let εν be the Bernoulli



Answers 25

random variables of theorem A.8.26. We have

((K+1)d∑

ν=1

f2
ν

)1/2

≤ K(A.8.5)
p ·

∥∥∥
(K+1)d∑

ν=1

fνεν

∥∥∥
Lp(τ)

and so
∥∥∥
((K+1)d∑

ν=1

f2
ν

)1/2∥∥∥
Lp(P)

≤ Kp ·
∥∥∥
∥∥∥

(K+1)d∑

ν=1

fνεν

∥∥∥
Lp(τ)

∥∥∥
Lp(P)

= Kp ·
∥∥∥
∥∥∥

(K+1)d∑

ν=1

fνεν

∥∥∥
Lp(P)

∥∥∥
Lp(τ)

≤ Kp · ZT
Ip[P]

.

This is because the sum in the penultimate line is of the form
∫ T
0
〈X|dZ〉 with

X ∈ Ed1 . As the partition S runs through a sequence whose mesh tends to

zero, the left-hand side of this inequality converges to (
∑d
η=1[Z

η, Zη]T )
1/2

.
The case p = 0 is handled similarly (see the proof of corollary 3.1.7).

3.8.11 There are arbitrarily large stopping times T1 such that MT1
.− and

NT1
.− are bounded. For instance, the infimum of

inf{t : |Mt| > k} and inf{t : |Nt| > k}

tends to ∞ as k → ∞ . There are arbitrarily large stopping times T2 such
that both MT2 and NT2 are L1-integrators (corollary 2.5.29). T def= T1 ∧ T2

can be made arbitrarily large. The first two terms on the right in

MT ·NT =

∫ T

0+

M.− dN +

∫ T

0+

N.− dM + [M,N ]T

are the values at T of martingales that vanish at t = 0. Their expectation is
zero. The last claim follows from theorem 2.5.19.

3.8.12 Given ε > 0 set S0
def= 0 and Sk+1

def= T∧inf{t > Sk : |V ct −V cSk
| ≥ ε} .

For this partition8

ATT [ .2;V c] ≤ ε
∑

n

|VSk+1
− VSk

| ≤ ε · V
T
.

Hence S[cV ] = 0 and S[V ] = S[jV + jV ] ≤ S[jV ] = S[V − cV ] ≤ S[V ] . The

second claim follows from the inequality of Kunita–Watanabe.

3.8.13 Without loss of generality M0 = 0. Since M is continuous and has
finite variation, [M,M ] = 0 (exercise 3.8.12). There are thus arbitrarily

large times T with E[M2
T ] = 0 (exercise 3.8.11). By theorem 2.5.19 there

are arbitrarily large bounded stopping times T with E[M ?2
T ] = 0: the set

[M?
.− 6= 0] is evanescent.
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3.8.14

YsZs =

∫ s

0+

Y.− dZ +

∫ s

0+

Z.− dY + [Y, Z]s

= Y0Z0 +
∑

0<k<∞

(
Y Sk+1ZSk+1 − Y SkZSk

)
s

= Y0Z0 +
∑

0<k<∞

(
Y Sk+1
s − Y Sk

s

)(
ZSk+1
s − ZSk

s

)

+
∑

0<k<∞
YSk

(
ZSk+1
s − ZSk

s

)
+

∑

0<k<∞
ZSk

(
Y Sk+1
s − Y Sk

s

)

= Y0Z0 +
∑

0<k<∞

(
Y Sk+1
s − Y Sk

s

)(
ZSk+1
s − ZSk

s

)

+

∫ s

0+

Y S.− dZ +

∫ s

0+

ZS.− dY

Subtract the first line from the last and rearrange to obtain

[Y, Z]s −
(
Y0Z0 +

∑

0<k<∞
(Y Sk+1
s − Y Sk

s )(ZSk+1
s − ZSk

s )
)

=

∫ s

0

(Y S − Y ).− dZ +

∫ s

0

(ZS − Z).− dY .

Now apply theorem 2.3.6 and theorem 3.7.10.

3.8.24 (i) Let Z be a previsible local martingale of finite variation. Set
M def= Z − Z0 . 2.5.29 and 3.5.16 provide arbitrarily large stopping times T

such that MT is a bounded global L1-integrator. Since M has finite varia-
tion, the continuous bracket {M,M} vanishes (exercise 3.8.12) and proposi-

tion 3.8.22 results in

M2
T =

∫ (
M +M.−

)
dMT .

Since M is a martingale, the right-hand side has expectation zero (exer-
cise 3.2.17). By Doob’s maximal theorem 2.5.19, E[M ?2

T ] = 0 for arbitrarily

large stopping times T : M is indeed evanescent, and Z = M0 is constant.
(ii) Again 2.5.29 and 3.5.16 provide arbitrarily large stopping times T such

that MT is a global L1-integrator and V
T

is bounded. By exercise 3.8.12

[M,V ]TS − [M,V ]T0 =
∑

0<s≤T∧S
∆Ms·∆Vs =

∫ S

0+

∆V dMT

for any stopping time S ; since this quantity has expectation zero, [M,V ]T is

by proposition 2.5.10 a martingale, and [M,V ] is a local martingale.
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3.8.25 (i) Linearity and the Dominated Convergence Theorem reduce the
situation to the case that f is positive and bounded. By proposition 3.6.6 (ii)

there is a positive previsible process P ≤ f ·[[T ]] that differs Z−0-negligibly
from f ·[[T ]] . By theorem 3.5.13, [P > 0] is the graph of a predictable stopping

time S , announced by the sequence (Sn), say. By lemma 3.5.15, PS is
measurable on the strict past FS− and can be approximated in measure by

random variables fn ∈ FSn
. Taking a subsequence, we can arrange things so

that fn → PS almost surely. Then fn·((Sn, T ]] → P = PS·[[S]] except on an

evanescent set. Taking the limit in

∫
fn·((Sn, S]] dZ = fn ·

(
ZS − ZSn

)

results in ∫
f ·[[T ]] dZ =

∫
P dZ = PS · ∆ZS .

Now since the L0-integrators f ·[[T ]]∗Z and P∗Z are the same and have the

same jumps, and since the jump PS ·∆ZS of the latter vanishes almost surely
on [T < S] = [S = ∞] , the jump f ·∆ZT of the former also vanishes almost

surely on this set, and the consequent equality PS·∆ZS = f ·∆ZT results in
the claim.

(ii) In the proof of proposition 3.8.22 apply (i) instead of theorem 3.5.13 and

continue as in the proof of proposition 3.8.22.

3.9.1 For any F ∈ C2(D) set F def= F ◦ Z , so that Φ = Φ(Z) and Φ;η =

Φ;η(Z), etc. Let Φ,Ψ ∈ I . That is to say,

dΦt = Φ;ηt−dZ
η
t +

1

2
Φ;ηθtd[Z

η, Zθ]ct + (∆Φt−Φ;ηt−∆Zηt )

and dΨt = Ψ;ηt−dZ
η
t +

1

2
Ψ;ηθtd[Z

η, Zθ]ct + (∆Ψt−Ψ;ηt−∆Zηt ) .

Hence d[Φ,Ψ]t = d[Φ,Ψ]ct + ∆Φt∆Ψt

= Φ;ηtΨ;ηtd[Z
η, Zθ]ct + ∆Φt∆Ψt

and d(Φ · Ψ)t = Φt−dΨt + Ψt−dΦt + d[Φ,Ψ]t

=
(
Ψ · Φ;η + Φ · Ψ;η

)
t−dZ

η
t (∗)

+
1

2

(
Ψ · Φ;ηθ + Φ · Ψ;ηθ + 2Φ;η · Ψ′θ

)
t
d[Zη, Zθ]ct (∗∗)

+ Ψt−(∆Φt−Φ;ηt−∆Zηt ) + Φt−(∆Ψt−Ψ;ηt−∆Zηt ) (∗∗∗)

+ ∆Φt∆Ψt . (∗∗∗∗)
Now ∆ΦΨt = Ψt−∆Φt + Φt−∆Ψt + ∆Φt∆Ψt

and(ΦΨ);ηt−∆Zηt = (Φ · Ψ;η + Ψ · Φ;η)t−∆Zηt .
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We see that the items in lines (∗∗∗) and (∗∗∗∗) add up to ∆ΦΨt −
ΦΨ;ηt−∆Zηt . Identifying the products in lines (∗) and (∗∗) by means of

Leibniz’ product rule gives

dΦΨt = (ΦΨ);ηt−dZ
η +

1

2
(ΦΨ);ηθtd[Z

η, Zθ]ct + ∆ΦΨt − (ΦΨ);ηt−∆Zηt .

This says that ΦΨ ∈ I as claimed.
3.9.3 Both existence and uniqueness are immediate from theorem 5.2.15 on

page 291. It is also easy to see that a solution E must equal the right-
hand side ′E of (3.9.4): by exercise 3.7.16, E satisfies E = 1 + E.−∗ZT1−

on [[0, T1)), where T1 = inf{t : Et ≤ 0} . Applying Itô’s Formula with

Φ = ln shows that E = ′E on [[0, T1)). By proposition 3.8.21, E = ′E
on [[0, T1]] . Then continue as in the existence proof. For the second claim,

compute: d(E [Z]E [Z ′]) = E [Z].−dE [Z ′] + E [Z ′].−dE [Z] + d
[
E [Z], E [Z ′]

]
=

(E [Z ′]E [Z ′]).−d(Z + Z ′ + d[Z,Z ′]) .
3.9.8 Since [M,M ]∞ = ∞ , the T λ+ are almost surely finite. The time
transformation λ 7→ T λ is left-continuous, t 7→ T λ+ is right-continuous (theo-

rem 2.4.7) and so is G. (exercise 1.3.30(iii)). Since [M,M ]. is continuous

T [M,M ]t ≤ [M,M ]Tλ = λ = [M,M ]Tλ+ ≤ T [M,M ]t+ .

Due to theorem 2.5.22, (Wλ,Gλ) is a right-continuous local martingale. Let
0 ≤ s < t <∞ and A ∈ Gs , and set X def= A · (s, t] .

Since λ < [M,M ]τ ≤ µ⇐⇒ Tµ+ < τ ≤ T λ+ ,

we have X[M,M ] = A · ((T λ+, Tµ+]]

and

∫
X dW = A · (Wµ −Wλ) = A ·

(
MTµ+ −MTλ+

)
=

∫
X[M,M ] dM .

That is to say, the vector space and bounded monotone class of processes X

such that X[M,M ] ∈ P[F ] and
∫ t
0
X dW =

∫ Tλ+

0
X[M,M ] dM for all t contains

a linear generator of P[G] and thus contains all bounded G-predictable

processes (theorem A.3.4). The usual truncation argument does the rest

(use corollary 3.6.10).

For t > 0 [W,W ]t = W 2
t − 2

∫ t

0

Ws− dWs

= M2
Tλ+ − 2

∫ Tλ+]]

0

W[M,M ]s dMs

= [M,M ]Tλ+ + 2

∫ Tλ+]]

0

(
Ms −W[M,M ]s

)
dMs

= t+ 2

∫ Tλ+]]

0

Xs dMs . (∗)
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where Xs = Ms −W[M,M ]s . Then XTλ+ = 0 for all t , and the change-of-
variable formula 2.4.7 gives

∫∞
0
X2 d[M,M ] = 0: the local martingale X∗M

has square function X2∗[M,M ] = 0 (proposition 3.8.19) and therefore van-
ishes (exercise 3.8.11). The last integral in (∗) is zero, thus [W,W ]λ = λ ,

and in view of corollary 3.9.5 W is a standard Wiener process.
Next let X be left-continuous and adapted to F. . Then XT . is left-

continuous and adapted to G. . The monotone class theorem shows that XT .

is predictable on G. for any X ∈ P[F.] . Let X be the elementary integrand

A · (s, t] , A ∈ Fs . To see that
∫
XTλ dWλ =

∫
X dM it suffices by the above

to show that
∫
XT [M,M] dM =

∫
X dM . Now

XT [M,M] = A ∩
[
s < T [M,M ] ≤ t

]
= A ∩

[
[M,M ]s < [M,M ] ≤ [M,M ]t

]

= A ∩
{
σ : T [M,M ]s+ < σ ≤ T [M,M ]t+

}

so that ∆ def=
∣∣X −XT [M,M]

∣∣ = A ∩
(
((s, T [M,M ]s+]] ∪ ((t, T [M,M ]t+]]

)
.

T [M,M ]s+ , being the first time [M,M ] is strictly greater than [M,M ]s , is a

stopping time. As [M,M ] is constant on ∆, [∆∗M,∆∗M ] = ∆2∗[M,M ] = 0,
and we see as above that, indeed,

∫
XT [M,M] dM =

∫
X dM . The monotone

class of processes for which this equality holds contains thus a generator of
P[F.] , and then every bounded predictable process.

3.9.12 (i) Let T be a stopping time at which G′T and MT are bounded
and therefore are martingale L2-integrators. Then

(
G′Tt

)2
= 1 + 2 (G′T ∗G′T )t +

∫ t

0

(
G′Ts

)2
d[M,M ]Ts

≤ 1 + 2 (G′T ∗G′T )t +

∫ t

0

(
G′Ts

)2
η2
s ds

and so E
[(
G′Tt

)2] ≤ 1 + E
[∫ t

0

(G′Ts )2η2
s ds

]
= 1 +

∫ t

0

E
[
(G′Ts )2

]
η2
s ds .

Gronwall’s lemma A.2.35 gives E[(G′t∧T )
2
] ≤ exp(

∫ t
0
η2
s ds). Now take

T ↑ ∞ and apply Fatou’s lemma to arrive at E[G′2t ] ≤ exp(
∫ t
0
η2
s ds). For

(ii) see [81] and [54, page 199]. For the last claim consult [65].

3.9.15 There is an increasing sequence of stopping times Tn ∈ T whose
pointwise limit is ∞ P-almost surely. Let 0 < t < ∞ and set

N def=
⋂
n[Tn ≤ t] . This is a P-nearly empty set and belongs to FTn

∩ Ft
since F. is regular. The σ-additivity of P′ gives

E
[
G′t
]
≥ E

[
G′t[Tn > t]

]
= P′[ [Tn > t] ∪N ] → P′[Ω] = 1 .

3.9.18 Let Ω′ def= Ω\N , and F ′t = {A∩Ω′ : A ∈ Ft} the filtration induced on
Ω′ . It is naturally measured by the collection P′ of probabilities P′ : A∩Ω′ 7→∫
A
dP , P ∈ P . Let then (F ′t,P

′
t) be a consistent system of σ-additive
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probabilities with P
′
t � P′t on F ′t , P′ ∈ P′, t ≥ 0. Let P

′
: A′∞ def=

⋃
t F ′t → R

be its projective limit. Again it is to be shown that if A′∞ 3 A′n ↓ ∅ ,

then P
′
[A′n] → 0. We write A′n = An ∩ Ω′ , where An ∈ A∞ can be

chosen to decrease as n increases. Now Ft 3 A 7→ Pt[A] def= P
′
t[A ∩ Ω′] ,

t ≥ 0, clearly defines a consistent system (F.,P.) such that Pt � Pt on Ft ,
P ∈ P, t ≥ 0. For if P ∈ P vanishes on A ∈ Ft , then P′[A∩Ω′] = 0 and thus

Pt[A] = P
′
[A ∩ Ω′] = 0. Let P denote its σ-additive projective limit on F∞ .

Then lim P
′
[A′n] = lim P[An] = P[

⋂
An] ≤ P[N ] = 0 (see equation (3.9.8) on

page 167).
3.9.23 X · Z = X∗Z + Z∗X + c[X,Z] =

(
X∗Z + c[X,Z]/2

)
+(

Z∗X + c[X,Z]/2
)
=X◦Z + Z◦X.

3.10.4 This is evident if F̌ is a linear combination of functions in H . An

arbitrary function in E [H] is the confined uniform limit of such and its
indefinite integral is therefore uniformly on bounded intervals the limit of

the indefinite integrals of such, at least nearly (see inequality (3.10.3)). Then
clearly X̌∗ζ is F.[ζ]-adapted, and another application of inequality (3.10.3)

gives the claim.
4.1.3 An application of Hölder’s inequality with conjugate exponents q/p

and q/(q − p) yields
∫

|f |r dµ =

∫
g · |f |r dµ/g ≤

(∫
gq/(q−p) dµ/g

)(q−p)/p
·
(∫

|f |rq/pdµ/g
)p/q

≤ c · ‖f‖rLrq/p(µ/g) .

(ii) is the first half of exercise A.8.17. (iii) Let X ∈ L1[Z−q; P′] . There
are elementary integrands X(n) converging in L1[Z−q; P′] to X . Then

∆(n) def= X∗Z − X(n)∗Z has ‖|Y ∗∆(n)|?∞ ‖
Lq(P′) → 0 uniformly for Y ∈ P

with |Y | ≤ 1. Then, with r = p in (i), supY ‖|Y ∗∆(n)|?∞ ‖
Lp(P)

→ 0, which

implies ∆(n)
Ip[P]

→ 0 and X(n) → X in L1[Z−p; P] .

4.1.5 According to criterion 4.1.4 there is a strictly positive function g0 with

‖g0‖Lp/(q−p)(P)
≤ 1 such that for every x ∈ E

(
|I(x)|q · dP

g0

)1/q

≤ ηp,q(I) · ‖x‖E , x ∈ E .

What is left to do is to adjust g0 so that
dP

g0
becomes a probability.

Now since

∫
dP

g0 + 0
=

∫ (
gp/(q−p)

)(p−q)/p
dP

by theorem A.3.24: >

(∫
gp/(q−p) dP

)(p−q)/p
≥ 1 (∗)

and

∫
dP

g0 + 1
< 1 ,
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there is a number σ ∈ (0, 1) such that the function g def= g0 + σ satisfies∫
g−1dP = 1. Then g′ def= g−1 is bounded and P′ = g′P is a probability. (If

the inequality on the left in (∗) is not strict, we face by exercise A.3.27 (iii)
the case of a constant g0 ; it is silly to contemplate this case, and anyway

then g′ = 1/g0 = 1 is a priori bounded.) The remaining inequalities are easy
to establish: by exercise A.8.2,

‖g‖Lp/(q−p)(P) ≤ 2

((
1− p

q−p

)/
p

q−p

)
∨0 · (1 + σ) ≤ 2(p∨(q−p))/p ,

which is inequality (4.1.14). The estimate (4.1.15) follows from exercise 4.1.3.

4.1.6 Let 0 < p < q < q and suppose C def= ηp,q(I) is finite. Then there

is a g ≥ 0 with
∫
gp/(q−p) dµ ≤ 1 and

∫ ∣∣I(x)
∣∣q/g dµ ≤ C

q‖x‖q . Set

g def= g(q−p)/(q−p) = gq/q ·gp(q−q)/q(q−p) . Then
∫
gp/(q−p) dµ ≤ 1, and Hölder’s

inequality gives
∫ ∣∣I(x)

∣∣q/g dµ ≤ C
q‖x‖q .

4.1.6 It suffices to prove inequality (4.1.13) for a step function

f =
∑

i

xi Ai , xi ∈ E , Ai ∈ T .

Then

∥∥∥‖If‖Lq(τ)

∥∥∥
Lp(µ)

=
∥∥∥
∥∥∥
∑

i

Ixi Ai
∥∥∥
Lq(τ)

∥∥∥
Lp(µ)

=
∥∥∥
(∑

i

∣∣Ixi
∣∣qτ(Ai)

)1/q∥∥∥
Lp(µ)

≤ C
(∑

i

‖xi‖qE τ(Ai)
)1/q

= C ‖f‖Lq(τ,E) .

4.1.8 Such I can be extended via the methods of chapter 3 to a continuous
linear map of the bounded Baire functions on K to Lp(µ), preserving the

modulus of continuity. For the second claim use the first one on the Gelfand
transform Î (see page 370).

(4.1.18) Indeed, let {xν}nν=1 be a finite collection of vectors in `∞(k). xν
has an expansion xν =

∑
κ eκ · xκν in terms of the standard basis {eκ}kκ=1 of

`∞(k), and

|Ixν |2 =
( k∑

κ=1

Ieκ · xκν
)2

≤
∑

κ

(Ieκ )
2
∑

κ

(xκν )
2 ≤ k

∑

κ

(Ieκ )
2‖xν ‖2

`∞ .

Therefore
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∥∥∥
(∑

ν

|Ixν |2
) 1

2
∥∥∥
Lp(µ)

≤
√
k ·
∥∥∥
(∑

κ

(Ieκ)2
) 1

2
∥∥∥
Lp(µ)

·
(∑

ν

‖xν‖2
`∞(k)

) 1
2

≤
√
k ·
∥∥∥
(∑

κ

(Ieκ)p
) 1

p
∥∥∥
Lp(µ)

·
(∑

ν

‖xν‖2
`∞(k)

) 1
2

=
√
k ·
(∑

κ

‖Ieκ‖pLp(µ)

) 1
p ·
(∑

ν

‖xν‖2
`∞(k)

) 1
2

≤ k1/p+1/2‖I‖p ·
(∑

ν

‖xν‖2
`∞(k)

) 1
2

.

4.1.13 Choose p = 0.5, p1 = .253, p2 = .559, q = 0.8, β = 1/4, and

δ = α/8 and evaluate on the computer Tp,q(E) ≤ 4.327 . . ., B
(A.8.13)
[β],q ≤

17.76 . . . (cf. inequality (A.8.16)), and get

B[β],q · Tp,q(E) · ‖I ‖
[δ]

(αβ − δ)1/p
≤

76.87 . . . · ‖I ‖
[α/8]√

α/8
≤

218 ‖I ‖
[α/8]√

α
.

4.1.14 (i) Apply theorem 4.1.7. (ii) Reduce to (i) by proposition 4.1.12.

4.2.1 K[Z] ⊂ K[Z ′] and S∞[Z] ∈ K[Z] .
4.2.9 Let µ(dt) = ft dyt and ν(dt) = dzt . Clearly µ

(
{0}
)

≤ ν
(
{0}
)
.

Consider next an interval of the form [s, t). Given ε > 0 set t0 = s and
tn+1 = inf{t > tn : |ft − ftn | ≥ ε} . Since f does not oscillate at any point,

supn tn > t . There will be an N such that tN < t ≤ tN+1 . Redefine tN+1 = t
and consider the partition {t0 < t1 . . . < tN+1 = t} of (s, t] into half-open

intervals [tn, tn+1). Since f does not oscillate by more than ε on any of these
intervals, we have

µ
(
[s, t)

)
=
∑

n

µ
(
[tn, tn+1)

)

≤
∑

n

sup
tn≤t<tn+1

f(t) ·
(
ytn+1

− ytn
)

≤ ε(yt − ys) +
∑

n

inf
tn≤t<tn+1

f(t) ·
(
ytn+1

− ytn
)

≤ ε(yt − ys) +
∑

n

(
ztn+1

− ztn
)

= ε(yt − ys) + ν
(
[s, t)

)
.

Since this is true for all ε > 0, we have µ ≤ ν on all intervals of the form
[s, t) and their finite unions, then on the sequential closure of these, which is

the Borel σ-algebra.
4.2.11 There are arbitrarily large stopping times T such that MT is a global

L1-integrator and MT
.− is bounded (corollary 2.5.29). Let N be a bounded

martingale and X ∈ E1 . The first two terms in

(X∗M)T ·NT =

∫ T

0

(X∗M).− dN +

∫ T

0

X·N.− dM +
[
(X∗M), N

]
T
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have expectation zero. Thus

E
[
(X∗M)T ·NT

]
= E

[
[(X∗M), N ]T

]
= E

[(
X∗[M,N ]

)
T

]
≤ E

[
[M,N ] ∞

]

≤ 2
√

2p · ‖S∞[M ]‖Lp · ‖N∞‖Lp′ .by corollary 4.2.8:

Taking the supremum over N with ‖N∞ ‖
Lp′ ≤ 1 and all X ∈ E1 , and

letting T → ∞ yields the claim. The last statement is better done this way:

for X ∈ E1

E
[
(X∗M)2∞

]
= E

[
[X∗M,X∗M ]∞

]
= E

[
(X2∗[M,M ])∞

]
≤ E

[
[M,M ]∞

]
.

4.2.13 Using lemma 4.2.2 on page 210, continue at inequality (4.2.7) on
page 214 instead with

E
[
|MT |?q

]
≤ eq2

2
·
(
E
[(
M

?(q−2)
T

)q′/(2−q′)](2−q′)/q′)
· ‖M‖Kq

=
eq2

2
·
(
E[M?q

T ]
)(q−2)/q

· ‖M‖Kq ,

divide, and take the square root. The first inequality is corollary 4.2.4.

4.2.14 In view of exercise 2.5.17 only the case 1 < q < 2 is new. We
continue the notations from its answer on page 470. The crucial inequality

‖Sn ‖L2 ≤ σ
√
n can be replaced by

‖Sn‖Lq ≤ C(4.2.4)
q

∥∥∥[S, S]1/2n

∥∥∥
Lq

= Cq

∥∥∥
( n∑

ν=1

F 2
ν

)1/2∥∥∥
Lq

≤ Cq

∥∥∥
( n∑

ν=1

|Fν |q
)1/q∥∥∥

Lq
≤ Cqσqn

1/q .

A similar argument gives

∥∥∥|Z̃n|?
∥∥∥
Lq

≤ Cq

∥∥∥
( n∑

ν=1

F 2
ν

ν2

)1/2∥∥∥
Lq

≤ Cq

∥∥∥
( n∑

ν=1

|Fν |q
νq

)1/q∥∥∥
Lq

≤ Cqσq
(∑

ν−q
)1/q

<∞ ,

showing that Z̃ is a global Lq-integrator and thus has almost surely a limit
at infinity. The expectation of the total variation of Ẑ can be estimated by

∑

2≤ν<∞

E[|Sν−1|]
ν(ν − 1)

≤
∑

2≤ν<∞

‖Sν−1‖Lq

ν(ν − 1)
≤ Cqσq

∑

2≤ν<∞

(ν−1)1/q

ν(ν − 1)
<∞ .

4.2.17 The left-hand inequality becomes obvious upon the choice T = 0 in

the definition of K[M ] , given our convention that [M,M ]0− = 0. For the
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right-hand inequality replace the estimate in the proof of inequality (4.2.5)
for 2 ≤ q <∞ by

E[Sq∞] ≤ q

2
· E
[∫ ∞

0

Sq−2 d(S2)
]

≤ q

2
· inf

{
E
[
Sq−2 · g2

]
: g ∈ Kq[M ]

}

≤ q

2
·
(
E[Sq∞]

)q/(q−2) · inf
{(

E[gq]
)2/q

: g ∈ K[M ]
}
.

‖S∞[M ]‖Lq ≤
√
q/2 · ‖M‖Kq .Thus

4.2.19 As r < p , M is an Lr-integrator. Since X is M -measurable
(page 118) it suffices to show that ‖X ‖∗

M−r is finite (theorem 3.4.10). Now

‖X‖∗M−r ≤ C(4.2.8)
r ·

∥∥∥
(∫

X2 d[M,M ]
)1/2∥∥∥

Lr

≤ Cr · ‖X?
∞ · S∞[M ]‖Lr

≤ Cr · ‖X?
∞‖Lq · ‖S∞[M ]‖Lp < ∞ .

4.2.21 By exercise 1.3.6 on page 26, T c < ∞ so that T c ∧ n ↑ T c . Taking
the expectation in

W 2
T c∧n = 2

∫ T c∧n

0

W dW + T c ∧ n

yields

E
[
W 2
T c∧n

]
= E

[
T c ∧ n

]
,

and Fatou’s lemma A.8.7 gives

E[c2] = E
[
lim infW 2

T c∧n
]
≤ lim inf E

[
T c ∧ n

]
= E

[
T c
]
≤ c2 .

T c+ is handled the same way.

4.2.22 Set V def=
∑
i[M

i,M i] . In view of the inequalities of Kunita–
Watanabe (theorem 3.8.9), d[M i,M j] is absolutely continuous with respect

to d[M i,M i] for 1 ≤ i, j ≤ n and then with respect to dV . There-
fore there exists a symmetric positive semidefinite matrix Gij of well-

measurable processes, the Radon–Nikodym derivatives d[M i,M j]/dV , so
that d[M i,M j] = Gij dV . It has trace 1. The usual diagonalization pro-

cess for a symmetric matrix furnishes further an orthonormal matrix U iν
and scalars λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 so that Gij =

∑
ν U

i
νU

j
νλν . The

similarity-invariance of the trace gives
∑
λν = 1. Repeated applications

of lemma A.2.21 on page 378 during the diagonalization process show that

the U iν and the λν can be chosen to depend Borel measurably on Gij ,
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so that they are again well-measurable processes. Next observe that for
X = (Xi) ∈ L1[M−p]

X∗M Ip ∼ ‖S∞[X∗M ]‖Lp

=
∥∥∥
(∫ n∑

i,j=1

XiXj d[M
i,M j]

)1/2∥∥∥
Lp

=
∥∥∥
(∫ ∑

i,j

XiXj G
ij dV

)1/2∥∥∥
Lp

=
∥∥∥
(∫ ∗∑

ν

〈X|Uν〉2λν dV
)1/2∥∥∥

∗

Lp

= ‖〈X|U.〉‖∗ ,

where ‖F ‖∗ def=
∥∥∥
(∫ ∗ n∑

ν=1

|Fν |2λν dV
)1/2∥∥∥

∗

Lp

on functions F = (Fν) that live on B̌ def= {1, . . . , n} × B . After these pre-

liminaries, let (1X, 2X, 3X . . .) be a sequence in L1[M−p] such that nX∗M
converges in Hp

0 to some martingale L . Then nF (ν,$) def= 〈nX($)|(Uν)($)〉
defines a Cauchy sequence (nF ) for the mean ‖ ‖∗ , and replacing (nX) by

a subsequence we may in view of theorem 3.2.22 assume that 〈nX|U.〉 con-
verges both ‖ ‖∗-a.e. and in ‖ ‖∗-mean to some function F on B̌ . Since∑
ν U

i
νU

j
ν = δij , nXi =

∑
ν〈nX|Uν〉U iν → Xi

def=
∑
ν FνU

i
ν both ‖ ‖∗-a.e.

and in ‖ ‖∗-mean, for i = 1, . . . , n . For ease of thinking and without loss of

generality (see page 116) we assume the nXi and Xi are predictable. Now
in case a) Gij is diagonal, U iν = δiν , X 7→ ‖〈X|U.〉‖∗ is solid and thus

is a mean; in fact, it is equivalent to the Daniell mean dd ee∗
M−p on pre-

visibles (proposition 3.6.1 and exercise 3.6.16). Then X ∈ L1[M−p] , and

L = X∗M . In case b) the brackets [M i,M j] are previsible, so are the
Gij , λν , and the U iν ; we set Nν

def= Uν∗M , obtaining martingales satisfy-

ing a) and having {N1, . . . , Nn}‖ = A‖ . Now an L ∈ A‖ can be written

L =
∑
ν X

ν∗Nν = (
∑
ν X

νU iν)∗M i . In case c) we replace the [M i,M j] by
the previsible brackets 〈M i,M j〉 (see page 228), obtain previsible Gij , λν ,

and U iν , and continue as in b).
4.3.5 Hint: Use the argument of 3.3.1 to show that the Doléans–Dade

measure of Z , defined on the algebra of finite unions of stochastic intervals
((S, T ]] , is σ-additive there and vanishes on evanescent sets.

4.3.6 Let
(
S(n)

)
be a sequence of stopping times that announces T . Then

E[Z̃T |FS(n) ] = Z̃S(n) −−−→n→∞ Z̃.−T and thus E[ Z̃T − Z̃.−T |FT− ] = 0. Since

ẐT ∈ FT− , ẐT − Ẑ.−T=E[ẐT − Ẑ.−T |FT−]=E[ZT − ZT−|FT−].
For the second claim reduce to global L1-integrators; at the predictable time

T ε = inf{t : ∆Ẑt ≥ ε} the jump is zero. Thus T ε = ∞ .
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To prove the inequality, let M be a martingale with ‖M∞ ‖
(q/2)′ ≤ 1.

There is a countable family {Tn} of stopping times, all of them necessarily
predictable, at which the jumps of Ẑ occur (theorem 2.4.4). Then

E
[
[Ẑ, Ẑ]∞ ·M∞

]
= E

[∑

n

∣∣E
[
∆ZTn

|FTn−
]∣∣2 ·M∞

]

by inequality (A.3.10): ≤ E
[∑

n

E
[
(∆ZTn

)2|FTn−
]
·MTn−

]

= E
[∑

n

(∆ZTn
)2 ·MTn−

]
≤ E

[j[Z,Z]∞ ·M?
∞
]

by theorem 2.5.19: ≤
∥∥∥j[Z,Z]∞

∥∥∥
q/2

· (q/2) = (q/2)
∥∥∥jS∞[Z]

∥∥∥
2

q
.

Taking the supremum over M and then the square root gives the claim.

4.3.8 Let M be a bound for the jumps of Z , let Z = Ẑ + Z̃ be the Doob–

Meyer decomposition of Z and S a stopping time, necessarily predictable
(exercise 3.5.19), at which Ẑ jumps. In view of exercise 4.3.6 we have

|∆ẐS| ≤M , and therefore |∆Z̃S| ≤ 2M . Thus |∆Z̃| ≤ 2M . Let K > 0 and
U = inf{t : Ẑ

t
∨St[Z̃] ≥ K} . U can be made arbitrarily large by the choice

of K . Then ẐU is a global q-integrator for all q since ‖ ẐU ∞ ‖
L∞ ≤ K+M ,

and Z̃U is a global q-integrator for all q since ‖S∞[Z̃U ]‖
L∞ ≤ K + 2M (ex-

ercise 4.2.18).

4.3.9 We may without loss of generality assume that Z is a global
L1-integrator. Let U = inf{t : |∆Zt| ≥ M} . This stopping time can be

made arbitrarily large by the choice of M > 0. Let ZU− be the process Z
stopped just before U :

ZU− = Z · [[0, U)) + ZU− · [[U,∞)) = (Z − ∆ZU )U .

Since ZU− differs by the L1-bounded finite variation process ∆ZU · [[U,∞))
from the L1-integrator ZU , it is a global L1-integrator itself, with jumps

uniformly bounded by M . Now apply exercise 4.3.8.

4.3.12 (i)⇒(ii) Let N be a previsible set with µV ′(N) = 0. By Fubini’s
theorem A.3.18 we have

∫
N
dV ′t (ω) = 0 and then

∫
N
dVt(ω) = 0 for almost

all ω ∈ Ω and, taking the expectation, µV (N) = 0.

(ii)⇒(iii) is immediate from the theorem of Radon–Nikodym.

It is left to prove the last statement under the assumption (iii); it will

entrain the implication (iii)⇒(i). Let V = G∗V ′ . This is a previsible (ex-
ercise 3.7.19) positive increasing process. Both V and V are Doléans–Dade

processes for the measure µV , so they are indistinguishable.

4.3.13 Let D be a Radon–Nikodym derivative of µ with respect to the
variation measure µ . This is a previsible process of absolute value one.

Since µ = D · µ and µ ≥ µ we have V ≥ V = D∗V . On the
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other hand, d(D∗V ) is a positive measure on the line majorizing |dV | , so
D∗V ≥ V . To prove the remaining inequality V Ip ≥ ‖ V ∞ ‖

Lp , note

that V Ip ≥ ‖
∫
DdV ‖

Lp = ‖ V ∞ ‖
Lp .

4.3.14 There is an increasing sequence of stopping times Tn so that

M (n) def= MTn+1 − MTn is the sum of a finite variation process V (n) and
a global L2-integrator Z(n) (corollary 2.5.29). Let Z(n) = Ẑ(n) + Z̃(n) be the

Doob–Meyer decomposition and write

M =
∑

n

(
V (n) + Ẑ(n)

)
+
∑

n

Z̃(n) .

4.3.17 Copy the proofs of the corresponding statements for the square
bracket.

4.3.18 Use exercise 3.8.24 on page 157 (ii).

4.3.21 Taking the expectation in
∫
X dZ ≤

∫
|X| d Ẑ +

∫
X dZ̃ ≤ X?

∞ · Ẑ ∞ +

∫
X dZ̃

gives ‖Z ‖∧
p

≤ ‖ Ẑ ∞ ‖
Lp . The measurability of X?

∞ is not required for

this argument. The remaining inequality ‖ Ẑ ∞ ‖
Lp ≤ p‖Z ‖∧

p
is nontrivial

only if ‖Z ‖∧
p
< ∞ . In this case |Ẑ0| =

∫
sgn(Ẑ0)·[[0]] dZ is p-integrable.

There are then arbitrarily large stopping times S such that ẐS = Ẑ
S

is
p-integrable (see the proof of corollary 3.5.16). Let D = D−1 be a previsible

derivative of the Doléans–Dade measure νbZ with respect to its variation

and set X = pD ẐS
p−1

. This previsible process has itsmaximal process
maximal function in Lp :

∥∥X?
∞−
∥∥
Lp = ‖X∞− ‖Lp = p ·

∥∥∥ Ẑ
S

∥∥∥
p−1

Lp
.

Now d Ẑ
p ≤ p Ẑ

p−1
d Ẑ = pD Ẑ

p−1
dẐ = X dẐ and consequently

∥∥∥ Ẑ
S

∥∥∥
p

Lp
= E

[
Ẑ

p

∞−

]
≤ p·

∥∥∥ Ẑ
S

∥∥∥
p−1

Lp
· ‖Z ‖∧p .

Division by the middle factor yields the claim.

4.3.22 Take the supremum over g ∈ Lp
′

1 over

E
[
Î∞ · g

]
= E

[∫ ∞

0

Mg
.− dÎ

]
= E

[∫ ∞

0

Mg
.− dI

]

≤ E[Mg?
∞ · I∞] ≤ ‖Mg?

∞ ‖Lp′ · ‖I∞‖Lp

by theorem 2.5.19: ≤ p · ‖I∞‖Lp = p · I Ip .

4.4.1 We have shown that for every n ∈ N there are a stopping time Tn
with P[Tn < n] < 2−n , a process nV of finite variation, and a L2-bounded
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martingale nM with |∆nM| ≤ 1, both stopping at time Tn , such that
ZTn = nV + nM . Replacing if necessary Tn by T ′n = inf{Tν : ν ≥ n}
and nV, nM by the stopped processes nV T

′
n , nMT ′

n , we may assume that the Tn
increase to ∞ . It looks as though the right-continuity of the filtration is used

here (see exercise 1.3.30); it is left to the reader to show that its regularity
suffices. The decomposition

ZTn+1 − ZTn =
(
n+V − n+V Tn

)
+
(
n+M − n+MTn

)

def=
n′V + n′M

has the property that its finite variation and martingale parts stop at Tn+1

and vanish on [[0, Tn]] . We get the required decomposition Z = V + M by

setting

V = V +

∞∑

n=1

n′V and M = M +

∞∑

n=1

n′M ,

sums which at every point $ ∈ B have only finitely many non-zero terms.
4.4.4 By proposition 3.7.33 F is V−0-integrable and by exercise 3.6.16 and

definition (4.2.9) F is M−2-integrable; now apply exercise 3.6.14.

4.4.6 There is a countable Q-algebra C ⊂ C00(H) whose sequential closure
is B•(H). For every φ ∈ C let P φ be the sparse predictable support of φ∗ζ
and set P =

⋃
φ∈C P

φ . Let S be a predictable stopping time. Then so is

the time S′ whose graph is [[S]] \ P (theorem 3.5.13). The Ȟ ∈ P̌ with the
property that ∆

(
Ȟ∗ζ

)
S′ is nearly zero is sequentially closed and contains

φX for all φ ∈ C and all X ∈ E (equation (3.10.2)). Therefore it contains
P̌ .

4.5.3 Let us write ‖X ‖�
T

for the right-hand side of (4.5.1). To start with
assume T reduces Z to a global Lp-integrator. For any bounded Y ∈ Pd
with |Yη| ≤ |Xη| clearly ‖

∫
Y dZT ‖

Lp ≤ ‖X ‖�
T

. Corollary 3.6.10 implies

that Xη is Zη−p-integrable for 1 ≤ η ≤ d . Setting X (n) def= X · [|X| ≤ n] ,

we have (X − X(n))∗ZT
Ip ≤∑η ‖Xη −X

(n)
η ‖∗

ZT−p −−−→n→∞ 0 and by theo-

rem 2.3.6 ‖(X − X(n))∗Z?
T ‖ −−−→n→∞ 0. Since ‖|X(n)∗Z|?T ‖Lp ≤ ‖X ‖�

T
, we

have ‖|X∗Z|?T ‖Lp ≤ ‖X ‖�
T

in the limit. In general let Tn be stopping
times reducing Z to global Lp-integrators. Then the previous argument gives

‖|X∗Z|?T∧Tn
‖
Lp ≤ ‖X ‖�

T
, which produces (4.5.1) in the limit as n→ ∞ .

4.5.9 From (1 + c)x − 1 ≥ x ln(1 + c) we get, with x = 1/p ,
((

1 + (1/p′)p
)1/p − 1

)
≥ 1

p
ln
(
1 + (1 − 1/p)p

)
.

Since p 7→ (1 − 1/p)p increases this exceeds p−1 ln
(
1 + (1/2)2

)
≥ 1/(5p).

4.5.11 Since d[Z,Z] ≤ dΛ, Itô’s formula gives

|X∗f(Z)|?T ≤ |Xf ′(Z)∗Z|?T + |Xf ′′(Z)∗[Z,Z]|?T/2 , which implies

‖|X∗f(Z)|?T‖Lp ≤ C�pL max
ρ=1�,2

∥∥∥
(∫ T

0

|X|ρs dΛs
)1/ρ∥∥∥

Lp
+
L

2

∥∥∥
(∫ T

0

|X|s dΛs
)∥∥∥

Lp
.
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4.5.12 The Doléans–Dade measure of Z〈1〉 is the Doléans–Dade measure of
X∗Z and by inequality (4.5.21) majorizes the Doléans–Dade measure of any

other X ′∗Z with X ′ ∈ Ed1 .

4.5.13 The differential form of equation (4.5.23) exhibits the Doléans–Dade
measure of Z〈2〉 as the Doléans–Dade measure of [X∗Z, X∗Z] .

4.5.14 Set qȞ def= 〈qXs|y〉 . The Doléans–Dade measure of |qȞ|q∗Z coin-

cides by equation (4.5.25) with that of Z〈q〉 and majorizes by definition the
Doléans–Dade measures of all other |Ȟ|q∗Z , Ȟ as indicated.

4.5.20 (i) Inequality (4.5.27) is obvious with C0 = 1 when ` = 0. Since

|d[Zη, Zθ]| ≤ dΛ , (4.5.28) follows from

∥∥∥
∫ Tµ

Tκ

gι·|Zι − ZιT
κ ∣∣?` |d[Zη, Zθ]|

∥∥∥
Lp

≤
∥∥∥
∫ Tµ

Tκ

gι ·
∣∣Zι − ZιT

κ ∣∣?`
s
dΛs

∥∥∥
Lp

by theorem 2.4.7: =
∥∥∥
∫ µ

κ

gι ·
∣∣Zι − ZιT

κ ∣∣?`
Tλ dλ

∥∥∥
Lp

by exercise A.3.29: ≤
∫ µ

κ

∥∥∥gι · |Zι − ZιT
κ |?`Tλ

∥∥∥
Lp
dλ

by inequality (4.5.27): ≤ C` · ‖g‖Lp

∫ µ

κ

(λ−κ)`/2 dλ

≤ 1

`/2 + 1
C` (µ−κ)`/2+1 · ‖g‖Lp .(C.1)

For ` = 1, gη · |Zη − ZηT
κ |? equals

∣∣gη · ((T κ, Tµ]]∗Zη
∣∣? , and theorem 4.5.1

gives

∥∥∥gη · |Zη − ZηT
κ |?Tµ

∥∥∥
Lp

≤ C�p · max
ρ=1,2

∥∥∥
(∫ Tµ

Tκ

|g|ρ dΛ
)1/ρ∥∥∥

Lp

by theorem 2.4.7: ≤ C�p · ‖g‖Lp · max
ρ=1,2

(µ−κ)1/ρ

since µ−κ ≤ 1: ≤ C�p (µ−κ)1/2 · ‖g‖Lp .

Let then ` > 1 and assume inequality (4.5.27) has been established for indices
up to ` . Now

(Zη−ZηTκ

)`+1
t = (`+1)

(
((T κ, Tµ]](Zη−ZηTκ

)`∗Zη
)
t

+
(`+1)`

2

∫ t

Tκ

(Zη−ZηTκ

)`−1 d[Zη, Zη]

≤ (`+1)
∣∣∣((T κ, Tµ]](Zη−ZηTκ

)`∗Zη
∣∣∣
?

t

+
(`+1)`

2

∫ t

Tκ

∣∣Zη−ZηTκ ∣∣`−1 ∣∣d[Zη, Zη]
∣∣
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implies

|Zη−ZηTκ |?`+1
Tµ ≤ (`+1)

∣∣∣((T κ, Tµ]](Zη−ZηTκ

)`∗Zη
∣∣∣
?

Tµ

+
(`+1)`

2

∫ Tµ

Tκ

∣∣Zη−ZηTκ∣∣`−1 ∣∣d[Zη, Zη]
∣∣ , (C.2)

the first term of which contributes not more than

(`+1)C�p · max
ρ=1,2

∥∥∥
(∫ Tµ

Tκ

∣∣gη|Zη−ZηT
κ |?`s

∣∣ρ dΛs
)1/ρ∥∥∥

Lp

= (`+1)C�p · max
ρ=1,2

∥∥∥
(∫ µ

κ

∣∣gη|Zη−ZηT
κ |?`Tλ

∣∣ρ dλ
)1/ρ∥∥∥

Lp

by A.3.29: ≤ (`+1)C�p · max
ρ=1,2

(∫ µ

κ

∥∥∥gη|Zη−ZηT
κ |?`Tλ

∥∥∥
ρ

Lp
dλ
)1/ρ

by induction hyp.: ≤ (`+1)C�p · C`‖g‖Lp max
ρ=1,2

(∫ µ

κ

(λ− κ)`ρ/2 dλ
)1/ρ

= (`+1)C�p · C`‖g‖Lp max
ρ=1,2

· 1

(`ρ/2 + 1)1/ρ
(µ− κ)`/2+1/ρ

as µ− κ ≤ 1: ≤
√
`+1C�pC`(µ− κ)(`+1)/2 · ‖g‖

to ‖gη|Zη−ZηT
κ |?`+1
Tλ ‖

Lp . The contribution of the second term (C.2) can be
estimated by

(`+1)`

2

C`−1

(`−1)/2 + 1
· ‖g‖Lp = `C`−1 · ‖g‖Lp ,

due to inequality (C.1). This establishes the claim (i) and gives the recurrence
relation

C0 = 1 , C1 ≤ C�p , C`+1 ≤ C` · C�p
√

2(`+2) + C`−1 · ` for `≥2 .

4.5.21 Set Q1
def= E

[
φ(A) · ψ( 1

A )
]
. Then

E[φ(Y ) · ψ(
1

A
)] = E

[
φ(Y ) · ψ(

1

A
)[Y ≤ A]

]
+ E

[
φ(Y ) · ψ(

1

A
)[Y > A]

]

≤ Q1 + E
[(
φ(Y ) − φ(A)

)
· ψ(

1

A
)[Y > A]

]

= Q1 +

∫
[A < y ≤ Y ] dφ(y)

[
A ≤ 1

a

]
dψ(a) dP

≤ Q1 +

∫
P
[
Y ≥ y,A ≤ y ∧ 1

a

]
dφ(y) dψ(a)

≤ Q1 +

∫
1

y
·
(
A∧y∧1

a

)
dφ(y) dψ(a) dP .
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Now

q2
def=

∫
1

y
·
(
A∧y∧1

a

)
dφ(y) dψ(a)

=

∫
1

y
· y∧1

a
·
[
A >

1

a

]
dφ(y) dψ(a) +

∫
1

y
·A∧y ·

[
A ≤ 1

a

]
dφ(y) dψ(a)

=

∫ [
y ≤ 1

a
, a >

1

A

]
dφ(y) dψ(a) +

∫
1

ya
·
[
y >

1

a
, a >

1

A

]
dφ(y) dψ(a)

+

∫
A

y
·
[
A < y , a ≤ 1

A

]
dφ(y) dψ(a) +

∫ [
y < A , a ≤ 1

A

]
dφ(y) dψ(a)

≤
∫ ∞

1
A

φ(1/a) dψ(a) +

∫ ∞
1
A

(1

a

∫ ∞

1/a

dφ(y)

y

)
dψ(a)

+ A

∫ ∞

A

dφ(y)

y
ψ(

1

A
) + φ(A) · ψ(

1

A
)

=

∫ ∞
1
A

Φ(1/a) dψ(a) + Φ(A)ψ(
1

A
) .

Inserting this into the previous inequality results in inequality (4.5.32). An
easy manipulation shows that φ(y) = yβ has Φ(y) = yβ/(1 − β) and that,

with ψ(a) = aα ,

∫ ∞
1
A

Φ(1/a) dψ(a) =
α

(1 − β)(β − α)
·Aβ−α .

Consequently φ(Y ) · ψ( 1
A

) = Aα−β and

(
Φ(A) + φ(A)

)
· ψ(

1

A
) +

∫ ∞
1
A

Φ(1/a) dψ(a)

=
(
1 +

1

1 − β
+

α

(1 − β)(β − α)

)
·Aβ−α

=
(2 − β)(β − α) + α

(1 − β)(β − α)
·Aβ−α ≤ 2

(1 − β)(β − α)
·Aβ−α .

Taking expectations results in inequality (4.5.33).

4.5.26 The underlying filtration F. is assumed right-continuous. A time
transformation is an increasing collection T . def= {T λ : 0 ≤ λ <∞} of

stopping times with T λ −−−→
λ→∞ ∞ . T . is called left-continuous or right-

continuous provided it equals

T
.− : λ 7→ T λ− def= lim{T κ : λ > κ ↑ λ}

or T
.+ : λ 7→ T λ+ def= lim{Tµ : λ < µ ↓ λ} ,
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respectively. With the three associated time transformations (see Exercises
1.3.15 and 1.3.30) T .− , T . , T .+ come the filtrations FT .− , FT . , FT .+ .

Clearly

Tλ− ≤ T λ ≤ T λ+ and FTλ− ⊆ FTλ ⊆ FTλ+ , λ ≥ 0 .

It is the last filtration, F .
def= FT .+ = {FTλ+ : 0 ≤ λ < ∞} , that we

single out, for its right-continuity (ibidem). By interpreting λ as a new
time parameter, the time transformations T .− , T . , and T .+ can also be

thought of as F.-adapted increasing processes, T .− left-continuous, and T .+

right-continuous. The finite random variable

Λt
def= inf{λ : T λ− > t} = inf{λ : T λ > t} = inf{λ : T λ+ > t} (C.3)

is, for every t ≥ 0, an F .-stopping time and defines a right-continuous time

transformation Λ. on F . (ibidem). Considered as a process, t 7→ Λt is

easily seen to be F.-adapted. Indeed, for any µ > 0 we have [Λt < µ]
=
⋃{[T λ+ > t] : λ < µ} =

⋃{[T q > t] : Q 3 q < µ} ∈ Ft. Its left-continuous

version is at t > 0 given by

Λt− = inf{λ : T λ+ ≥ t} . (C.4)
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Figure C.19 A Time Transformation

Lemma C.1 (i) Equalities (C.3) and (C.4) hold. (ii) For λ, t ≥ 0

Tλ− = inf{t : Λt ≥ λ} ≤ T λ ≤ T λ+ = inf{t : Λt > λ} ; (C.5)

[Tλ− ≤ t] = [λ ≤ Λt] and [Λt− ≤ λ] = [t ≤ T λ+] ; (C.6)

and thus T λ− ≤ t ≤ T λ+ ⇐⇒ Λt− ≤ λ ≤ Λt . (C.7)

(iiia) The following are equivalent: Λ. is strictly increasing; for all λ ≥ 0 ,
Tλ− = T λ = T λ+ ; one of T .− , T . , T .+ is continuous; all of them are.

(iiib) T . is strictly increasing if and only if Λ. is continuous.
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(iv) The T λ are finite (everywhere, nearly, almost surely) if and only if
Λt −−−→t→∞ ∞ (everywhere, nearly, almost surely). The T λ are bounded if and

only if inf{Λt(ω) : ω ∈ Ω} −−−→t→∞ ∞ .
(v) If T is an F.-stopping time, then ΛT is an F.-stopping time; if L is an

F.-stopping time, then TL+ = T←−
L is an F.-stopping time.

(vi) Λ∞ def= sup{λ : T λ <∞} is an F.-stopping time.

(vii) If the T λ are nearly finite, then F. and FT . have the same nearly empty
sets.

Proof. (i) If inf{λ : T λ+ > t} < µ , then T λ > t for some λ < µ and
thus Tµ− > t and inf{λ : T λ− > t} ≤ µ : inf{λ : T λ− > t} ≤ inf{λ :

Tλ+ > t} follows, and with the reverse inequality being obvious we get
equality throughout (C.3). As to (C.4), both sides of the equation define left-

continuous functions of t that agree unless the level set [T .+ = t] has strictly
positive length, which can happen only countably often. (ii) The inequalities

in (C.5) are obvious. The equalities follow directly from the right-continuity

of Λ. and T .+ in conjunction with (C.3) and (C.4). Equation (C.7) is but
a summary of (C.6). (iii) Clearly T .− is left-continuous and T .+ is right-

continuous; they agree iff they are continuous. The equalities in (C.5) make it
obvious that they do agree iff Λ. has no level sets [Λ. = t] of strictly positive

length, i.e., iff Λ. is strictly increasing. (v) If Λ takes countably many values
λi , then [TΛ ≤ t]=

⋃
[TΛ ≤ t,Λ = λi]=

⋃
[Tλi ≤ t] ∩ [Λ = λi] belongs to Ft

inasmuch as [T λi ≤ t] ∈ Ft and [Λ = λi] ∈ FTλi . In the general case use
the stopping times Λ(n) of exercise 1.3.20 and the right-continuity of both

T←−
.

and of F←−T . . The same argument shows that ΛT is an F.-stopping time.
(vi) [λ < Λ∞] = [T λ+ < ∞] ∈ Fλ . (vii) Use equation (C.5) and exer-

cise 3.5.19. Let now B denote a copy of the base space B = [0,∞)×Ω and
denote its typical point by (λ, ω). Since T λ− may well be infinite, we need to

augment B temporarily: B′ is the base space with the graph [[∞]] = {∞}×Ω
of the infinite stopping time adjoined:

B′ def= [0,∞]× Ω = B ∪ [[∞]] .

The left-continuous time transformations T .− and Λ.− give rise to maps (see

figure C.20)

T
.− : B → B′ via (λ, ω) 7→

(
Tλ−(ω), ω

)

and Λ.− : B → B′ via (t, ω) 7→
(
Λt−(ω), ω

)
,

in which the image of [[0,Λ∞)) lies in B and that of B in [[0,Λ∞)), respec-
tively. If both Λ. and T .− are continuous or are strictly increasing, then

T .− and Λ.− are inverses of each other.
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Figure C.20 A Time Transformation

Let us denote by an underscore the composition with T .− . To be quite
precise, for X : B → R ,

Xλ(ω) def=

{
XTλ−(ω) where T λ−(ω) <∞, i.e., on [[0,Λ∞))

0 on [[Λ∞,∞)), i.e., for Λ∞(ω) ≤ λ < ∞.

If X is progressively measurable for F. , then X is adapted to F . (proposi-

tion 1.3.9); if X is left-continuous, then clearly so is X . The usual sequential
closure argument shows that X 7→ X takes F.-predictable processes to

F.-predictable processes that vanish on [[Λ∞,∞)).

Definition C.2 An Lp-integrator Z is called compatible with the time

transformation T . if (a) the stopped process ZT
µ+

is Ip-bounded for all
µ < ∞ and (b) Z is nearly constant in time on every interval of the form

[[Tλ−, Tλ+]] – by lemma C.1 (iii) this holds in particular when Λ. is strictly
increasing.

Exercise C.3 If the T λ− are predictable, as is typical, then the compatibility
simply means that

S
λ>0 [[Tλ−, Tλ+]] is Z-negligible.

Proposition C.4 Let 0 ≤ p < ∞ and suppose the Lp-integrator Z is compatible
with the time transformation T

.
. Then Z is nearly right-continuous and adapted

to F. ; in fact, it is an Lp-integrator on F . and satisfies

Zµ
Ip ≤ ZT

µ

Ip . (C.8)

Moreover, for every Z−p-integrable process X the process X is Z−p-integrable and
Z

B

Xs dZs =

Z

B

Xλ dZλ . (C.9)

Proof. For every λ ≥ 0 let Nλ be the nearly empty set of ω ∈ Ω so that
t 7→ Zt(ω) is not constant for T λ−(ω) ≤ t ≤ T λ+(ω). The representation

N def=
⋃

λ

Nλ =
⋃

n

(⋃

λ

Nλ ∩ [Tλ+ > T λ− + 1/n <∞]
)

exhibits their union N as a countable union of nearly empty sets, which is
therefore nearly empty. Indeed, there are at most countably many λ ’s for

which the sets in the inner union are non-void. Upon removal of N we are
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left with a process Z whose paths are càdlàg and constant in time on every
interval of the form [[T λ−, Tλ+]] not only nearly but in fact everywhere. If

λn ↓ λ , then Zλn
= ZTλn− = ZTλn+ −−−→n→∞ ZTλ+ = ZTλ− = Zλ, therefore Z is

right-continuous at any λ ≥ 0.

Let then X def= f0[[0]] +
N∑

n=1

fn·((λn, λn+1]] , fn ∈ L∞(Fλn
) ,

be a typical elementary integrand from E [F .] with λN+1 ≤ µ (see (2.1.1)).

Then

∫
X dZ = f0·Z0 +

∑N
n=1fn·

(
ZTλn+1 − ZTλn

)
=

∫
X ′ dZ ,

where X ′ def= f0·[[0]] +
∑N
n=1fn·((T λn , Tλn+1 ]] ∈ P[F.]

From this equation (C.8) is evident.

Let X = f · ((s, t]] with f ∈ Fs . Then2

((s, t]]
λ

= [s < T λ− ≤ t] = [Λs < λ ≤ Λt] = ((Λs,Λt]]λ

and

∫

B

X dZ =

∫
f · ((s, t]] dZ = f ·

(
Zt − Zs

)

as TΛt− ≤ t ≤ TΛt : = f ·
(
ZTΛt − ZTΛs

)
=

∫
f · ((Λs,Λt]] dZ

=

∫
Xλ dZλ .

By linearity, (C.9) is true for X ∈ E , and then for bounded predictable X .
It is a matter of bookkeeping to extend this to Z−0-integrable processes X .

C.5 An integrator Z compatible with T . has [Z,Z] = [Z,Z] .

Proof. For 0 ≤ µ <∞
∫ Tµ−

0+

Z.− dZ =

∫

B

((0, Tµ−]] · Z.− dZ =

∫

[[0,Λ∞))

((0, Tµ−]]Tλ− · Zλ− dZλ

=

∫
((0, Tµ+]]Tλ−Zλ− dZλ =

∫ µ

0+

Zλ− dZλ .

Thus [Z,Z]
µ

= [Z,Z]Tµ− = Z2
Tµ− − Z2

0 − 2

∫ Tµ−

0+

Z.− dZ

= Z2
µ − Z2

0 − 2

∫ µ

0+

Zλ− dZλ = [Z,Z]µ .

2 In accordance with convention A.1.5 on page 364 sets are identified with their (idempo-
tent) indicator functions. A stochastic interval ((S,T ]], for instance, has at the instant s

the value ((S,T ]]s = [S < s ≤ T ] =
n

1 if S(ω) < s ≤ T (ω)
0 elsewhere

.
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C.6 Let M be a continuous local martingale on (Ω,F ,P), set Λ =

[M,M ] , and introduce the time transformations T λ−, Tλ+ of (C.5), setting
Tλ def= Tλ− . By inequality (4.2.8), M is constant on the intervals [[T λ−, Tλ+]] ,

so M is a continuous local martingale. If Λt −−−→t→∞ ∞ , then by item C.5 and
corollary 3.9.5, M is a standard Wiener process on F . . If P[Λ∞ < ∞] > 0,

let W be a Wiener process on (Ω′,F ′.,P′) that is independent of (F∞,P), and
set M ′ def= [[0,Λ∞))∗M + [[Λ∞,∞))∗W . Show that M ′ is a standard Wiener

process on (Ω×Ω′,F.×F ′.,P×P′).

Sure Control of Integrators can be had in a manner similar to item C.6.

Suppose Z is a vector of Lq-integrators, q ≥ 2, and Λ = Λ〈q〉[Z] is its

previsible controller from theorem 4.5.1. It is nary a loss of generality to
assume that Λ is strictly increasing and Λt −−−→t→∞ ∞ (see remark 4.5.2). By

lemma C.1, we then have equality of continuous time transformations

Tλ− def= inf{t : Λt ≥ λ} = T λ def= Tλ+ def= inf{t : Λt > λ} .

Since Λ∞ = ∞ , the map T .− : B → B is continuous and surjective. The

controlling estimate (4.5.1) turns into

‖|X∗Z|?Λ‖Lp ≤ C�p · max
ρ=1�,p�

∥∥∥
(∫ Λ+

0

|X|ρλ dλ
)1/ρ∥∥∥

Lp

for any F.-stopping time Λ and any p ∈ [2, q] . Continue on.

4.6.5 (adapt exercise 1.3.47 or theorem 5.7.3 (iii)).
4.6.14 (i) Equation (4.6.19) has the easy consequence

E
[
exp

(
i

∫
h dZ

)]
= E

[
exp

(
i
∑

j

αjZ(Aj)
)]

=
∏

j

exp
(
(ν×λ)(Aj)

(
eiαj − 1

))
,

showing that the random variables Z(Aj) are independent Poisson with

means (ν×λ)(Aj).
4.6.21 A gives rise to a Lévy process Z (page 267). The definition (4.6.31)

produces a Feller semigroup whose generator is necessarily dissipative and

conservative and is given by A (equation (4.6.32)) on S . S is dense in C0

and invariant under both TD. and TJ. , thus under T. , and therefore is a core

for A (exercise A.9.4).

5.1.7 (i) The function f(x) def=
∫ |x|
0

s ∧ 1 ds of example A.2.48 serves again:

the paths e./n converge to zero in s1 , yet the remainder

RF (e./n; 0) = f(e./n) − f(0) − f ′(0)·e./n = f(e./n)

has ‖RF (e./n; 0)‖1 = ‖e./n‖1 6= o(‖e./n‖1) .
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(ii) On the positive side, if M◦ > M , pick n ∈ N and let ε > 0 be given.

There exists a t > n so that 2Le
(M−M◦)t ≤ ε . There exists a δ > 0 so

that for all u, v ∈ U in the ball of radius n and all x, y ∈ Rn in the ball of

radius neM
◦t , |v−u| + |y−x| ≤ δ implies Df(v, y)−Df(u, x) ≤ ε . Let

|v−u| + ‖y. − x.‖ ≤ δe−Mt . Then |ys − xs| ≤ δ for s ≤ t and so

∣∣Rf(v, ys;u, xs]
∣∣ ≤ eMs

∫ 1

0

Df
(
(u, xs) + λ(v−u, ys−xs)

)
−Df(u, xs) dλ

× ‖y. − x.‖M

≤
{
εeMs for s ≤ t
eMs2L ≤ εeM

◦s for s > t

}
× ‖y. − x.‖M ,

which implies
‖Rf [v, y.;u, x.]‖M◦

‖y. − x.‖M
≤ ε .

5.1.8 (i) Both ξf.+s(x) and ξf.
(
ξfs (x)

)
satisfy dXt = f(Xt) dt with X0 =

ξfs (x). (ii) Hint: Define Dξft [x] as the solution of equation (5.1.24) on
page 278. Then write a differential equation for ∆. def= ξf. (x) − ξf. (x′) −
Dξf. [x] · (x−x′). Then show, using inequality (5.1.16) on page 276, that
‖∆. ‖/|x−x′| −−−−−→x−x′→0 0. This means that Dξf. [x] is the Fréchet derivative at

x of ξf. : x′ 7→ ξ.(x′), map from Rn to s (see definition A.2.49 on page 390).

As for equation (5.1.24), both sides answer the same initial value problem.

5.1.10 (ii) By the chain rule, σ 7→ Ξf [x, zσ] solves (5.1.25).
5.1.11 (i) The exponential limit for the growth in time follows from

item 5.1.4.
(ii) Set 0ξ′[x, t] def= ξ′[x, t] − x and 0 ≤ s ≤ δ . Since 0ξ′[c, 0] = 0 ∀ c ∈ Rn ,

we have ξ′;ν [c, 0] = 0 for all c ∈ Rn and, for some cs between c, c′ ,

0ξ′[c′, s] − 0ξ′[c, s] = 0ξ′;ν [cs, s](c
′−c)ν

=
(
0ξ′;ν[cs, s] − 0ξ′;ν [cs, 0]

)
(c′−c)ν ,

whence
∣∣0ξ′[c′, s] − 0ξ′[c, s]

∣∣ ≤ L′δ · |c′−c| ≤
(
eL

′δ − 1) · |c′−c|

and
∣∣ξ′[c′, s] − ξ′[c, s]

∣∣ ≤ eL
′δ · |c′−c| , 0 ≤ s ≤ δ .

(iii) For fixed t and δ set k def= dt/δe and ti
def= iδ for i = 0, 1, . . . , k . Then

tk−1 < t ≤ tk . Let ∆?
i denote the maximal function of the difference of the

global solution at ti , which is xti = ξ[c, ti] , from its ξ′-approximate x′ti .

Consider an s ∈ [ti, ti+1] .

Since x′s − xs = ξ′
[
x′ti , s−ti

]
− ξ′

[
xti , s−ti

]

+ ξ′
[
xti , s−ti

]
− ξ[xti , s−ti] ,

we have
∣∣∆?

i+1

∣∣ ≤
∣∣∆?

i

∣∣× eL
′δ + (|x|?ti+1) × (mδ)re

mδ
,
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which implies
∣∣∆?

k

∣∣ ≤ (|x|?tk+1) × (mδ)re
mδ ·

∑

0≤i<k
eiL

′δ

for x. ∈ sM , as tk = kδ : ≤ (‖x.‖Me
Mtk + 1) × (mδ)re

mδ · e
L′kδ − 1

eL
′δ − 1

by (5.1.16), as δ → 0: ≤ 2

1−γ
(
‖c‖M+

|f(0)|
eM

+1
)
eMtk × (mδ)re

mδ·k eL′tk

since k = tk/δ : ≤ const (‖c‖M + 1)mre
mδ
δr−1 × tk·e(M+L′)tk

≤ b·(|c|+1) × δr−1·emtk

for suitable b = b[f ; ξ′] and m = m[f ; ξ′] > M+L′ .
5.2.3 We know already from inequality (5.2.6) that

∥∥∥
(
F ν∗Z

)?
Tµ−

∥∥∥
∗

Lp
≤ C�p max

ρ=1,p

∥∥∥
( ∫ µ

0

|F ν
Tλ−|ρ∞ dλ

)1/ρ∥∥∥
∗

Lp

by exercise A.3.29: ≤ C�p max
ρ=1,p

( ∫ µ

0

∥∥|F ν?
Tλ−|∞

∥∥∗ρ
Lp
dλ
)1/ρ

.

Taking the p-norm for counting measure and using Fubini’s theorem gives

∥∥∥
∣∣(F ∗Z

)?
Tµ−

∣∣
p

∥∥∥
∗

Lp
≤ C�p max

ρ=1,p

( ∫ µ

0

∥∥|F ?
Tλ−|∞p

∥∥∗ρ
Lp
dλ
)1/ρ

Measuring in Lp
(
Me−Mµ dµ

)
the part that appears for ρ = p on the right-

hand side gives a number less than M−1/p · |F |∞ .
p,M

. For the case ρ = 1

we set f(λ) def= ‖|FTλ−|?∞p ‖
∗ρ
Lp and α def= M/(p+ p′) and estimate

∫ µ

0

f(λ) dλ =

∫
[λ ≤ µ]eαλ · [λ ≤ µ]f(λ)e−αλdλ

≤
(∫ µ

0

eαp
′λdλ

)1/p′

·
(∫ µ

0

f(λ)pe−αpλdλ
)1/p

<
( 1

αp′

)1/p′

eαµ ·
(∫

[λ ≤ µ]f(λ)pe−αpλ dλ
)1/p

whence
∫ (∫ µ

0

f(λ) dλ
)p
Me−Mµdµ <

( 1

αp′

) p

p′ ·
∫ ∫

[λ ≤ µ]f(λ)pe−αpλMe(αp−M)µdµdλ

<
( 1

αp′

)p/p′
·
∫
f(λ)pe−αpλ

M

αp−M
e(αp−M)µ

∣∣∣
∞

λ
dλ

=
( 1

αp′

)p/p′ 1

M − αp
·
∫ ∞

0

f(λ)pMe−Mλ dλ

≤
( 1

αp′

)p/p′ 1

M − αp
· |F |∞

.p
p,M
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=
( p
M

)p
· |F |∞

.p
p,M

Thus F.−∗Z
.

p,M
≤ C�p

( 1

M1/p
∨ p

M

)
· |F |∞

.p
p,M

.

5.2.16 needed
5.2.20 needed

5.2.21 0U[X] def= U[X] − C has the same contractivity modulus γ < 1 as
U . Thus C

?

p,M
= X − 0U[X]

?

p,M
≤ X

?

p,M
+ 0U[X] − 0U[0]

?

p,M

≤ (1 + γ) X
?

p,M
.

5.2.22 Apply (5.2.34) with C = C[u], C ′ = C[v] and F [ . ] = F [u, . ],F ′[ . ] =

F [v, . ] .
5.2.24 : Let t < ∞ . Zt is an Lp-integrator for some p > dimU and an

equivalent probability P′ . The assumed Lipschitz conditions imply that the
stopped processes X[u]t satisfy (5.2.41) for P′ (proposition 5.2.22). Coroll-

ary 5.2.23 shows that they are nearly continuous in u ∈ U . Then let t→ ∞ .
5.3.11 (i) Let A be a symmetric bilinear form on euclidean space Rn . Then

sup{|A(ξ, η)| : |ξ |
2
≤ 1, |η |

2
≤ 1} = sup{|A(ξ, ξ)| : |ξ |

2
≤ 1} . This is

easily seen by diagonalizing the symmetric matrix A ; in fact, |A(ξ, η)| is
strictly less than the supremum above unless ξ and η are collinear and

of unit euclidean length. (ii) Let now A be a symmetric k-linear form
on euclidean space Rn . Then sup{|A(ξ1, . . . , ξk)| : |ξi |2 ≤ 1, 1≤i≤k} is

taken at a k-tuple (ξ1, . . . , ξk) of unit vectors. Considering A(ξ1, ξ2, . . .)
a bilinear form in (ξ1, ξ2) and using (i) shows that ξ1 = ±ξ2 . Similarly

ξi = ±ξj for 1 ≤ i < j ≤ k . Thus the supremum is taken also at a
k-tuple of the form (ξ, ξ, . . . , ξ). (iii) Next let D∗ be a k-linear scalar

form on a seminormed space (E, ‖ ‖
E

). Let xi ∈ E1 , i = 1, . . . , k , with
a < ‖D∗(x1, . . . , xk)‖S . Define the k-linear form A on euclidean space Rk

by A(ξ1, . . . , ξk)
def= D∗

(∑
ξκ1xκ, . . . ,

∑
ξκkxκ

)
. By (ii) there is a ξ ∈ Rk so

that, with x def=
∑
ξκxκ , a < D∗(x, . . . , x). Now ‖x‖

E
≤ ∑

κ |ξκ| ≤ k1/2 .

Thus a < kk/2{supD∗(x, . . . , x) : ‖x‖
E

≤ 1} . (iv) Finally let D be a
k-linear map from a seminormed space (E, ‖ ‖

E
) to another seminormed

space (S, ‖ ‖
S
). Let a < sup{‖D(x1, . . . , xk)‖S : ‖xi ‖E ≤ 1} . There are

a linear form y∗ in the dual S∗ that has norm ‖y∗ ‖
S∗ ≤ 1 and elements

x1, . . . , xk in E so that D∗ def= y∗ ◦D has a < ‖D∗(x1, . . . , xk)‖S . By (iii),

there is an x ∈ E1 with a < kk/2D∗(x, . . . , x):
sup{‖D(x1, . . . , xk)‖S : ‖xi‖E ≤ 1}≤ kk/2 sup{‖D(x, . . . , x)‖

S
: ‖x‖

E
≤ 1} .

5.3.18 Let us pick a u ∈ U , and write Dλ for DλF [u] and T λ[v] for
TλF [u](v). For v, v′ ∈ U

T l[v′] − T l[v] =
∑

0≤λ≤l

Dλ

λ!
·
[
(v′−u)⊗λ − (v−u)⊗λ

]

=
∑

0≤λ≤l

Dλ

λ!
·
[ ∑

0≤i≤λ

(λ
i

)
(v−u)⊗λ−i ⊗ (v′−v)⊗i − (v−u)⊗λ

]
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=
∑

0≤λ≤l

Dλ

λ!
·
∑

0<i≤λ

(λ
i

)
(v−u)⊗λ−i ⊗ (v′−v)⊗i

=
∑

0<i≤l

∑

i≤λ≤l

(λi )D
λ

λ!
· (v−u)⊗λ−i ⊗ (v′−v)⊗i ,

whence

DiT l[v]·ξ⊗i =
∑

i≤λ≤l

i!(λi )D
λ

λ!
· (v−u)⊗λ−i ⊗ ξ⊗i , i = 1, · · · , l

= DiF [u]·ξ⊗i +
∑

i<λ≤l

Dλ

(λ− i)!
· (v−u)⊗λ−i⊗ ξ⊗i

= DiT l[u]·ξ⊗i + Di+1 · ξ⊗i⊗(v−u) + r(v−u) ,

where each summand of r(v−u) contains a power (v−u)⊗p with p ≥ 2.

Hence v 7→ DiT lF [u](v)·ξ⊗i has ith derivative η 7→ Di+1F [u] · ξ⊗i⊗η at
v = u , for i = 1, . . . , l− 1. In fact, since the derivatives appearing in r(v−u)
are bounded, v 7→ DiT lF [u](v)·ξ⊗i is uniformly differentiable.
Let us define G[v] def= F [v] − T lF [u](v). This function is l-times weakly

uniformly differentiable with D0G[u] = . . . = DlG[u] = 0 and ‖G[u]‖◦
S

=

o
(
‖v−u‖l

E

)
. It is left to prove that v 7→ DiG[v] ·ξ⊗i has vanishing derivative

at u , for i = 1, . . . , l − 1. Let ξ, ξ′ ∈ E be unit vectors and τ ∈ R and set

v def= u+ τξ , v′ def= u+ τξ′

Then both G[v′] −G[v] =
(
G[u+ τξ]−G[u]

)
−
(
G[u+ τξ′]−G[u]

)

=
∑

0<i≤l
τ iDiG[v] · (ξ′ − ξ)⊗i +RlG[v; v′]

and RlG[v; v′] are o(τ l) when measured with ‖ ‖◦
S

, independently of the
location of u ∈ U . Hence so is the sum above. This implies

DiG[τv] · (ξ′ − ξ)⊗i

τ l−i
−−→τ→0 0 , i = 0, . . . , l ;

and therefore D
{
v 7→ DiG[v] · (ξ′ − ξ)⊗i

}
= 0 at u , i = 0, . . . , l−1 .

5.3.19 Answer forthcoming.

5.4.8 Since the mesh of T goes to zero, we have
∣∣F ′[X]−F [X]

∣∣
∞ → 0

pointwise on H × B , after composition with the time transformation T .

on {1, . . . , n} × {λ : 0 ≤ λ < ∞} × Ω. The Dominated Convergence
Theorem produces F T [X]−F [X]

.
p,M

−−→
δ→0 0 for all M > 0 after integra-

tion suitable powers over dP and dλ , and exercise 5.2.3 on page 285 yields
F T [X]−F [X]

?

p,M
−−→
δ→0 0.

5.4.12 Apply theorem 3.9.24 on page 170.
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5.4.17 (i) Let P be such that
∣∣Φ;ν [x, z]

∣∣ ≤ P (|z|) for Φ = Ξ;η and Φ =
Ξ′;ηνΞ

′ν
;θ . In fact, let Φ be one of these (Itô-) coefficients, say the one with

index ι , and, given λ , pick k so that κ def= kδ ≤ λ < (k+1)δ . Write
ζT def= Z−ZT . Then
∥∥∥F ′ι[Y ]Tλ − F ′ι[X]Tλ

∥∥∥
Lp

=
∥∥∥Φ[YTκ , ζT

κ

Tλ ] − Φ[XTκ , ζT
κ

Tλ ]
∥∥∥
Lp

by the mean value theorem: ≤
∥∥∥
∣∣Y −X

∣∣?
TκP

(∣∣ZTλ − ZTκ

∣∣)
∥∥∥
Lp

by inequality (4.5.29): ≤
∥∥∥
∣∣Y −X

∣∣?
Tκ

∥∥∥
Lp

× P ′
(√
λ−κ

)

with L def= P ′(
√
δ): ≤ L ·

∥∥∥
∣∣Y −X

∣∣?
Tκ

∥∥∥
Lp

≤ L ·
∥∥∥
∣∣Y −X

∣∣?
Tλ

∥∥∥
Lp
.

(ii) From Ξ′[C, z] = C + Ξ′;η[C, 0]zη + Ξ′;ηθ[C, z]zηzθ and the assumption

Ξ′;η,Ξ
′
;ηθ ∈ BP , we see that 0Ξ′[C, z] def= Ξ′[C, z]−C has

∣∣0Ξ′[C, z]
∣∣ ≤ P (|z|),

P being a polynomial with zero constant term. Therefore, by (4.5.27),

‖
∣∣0Ξ′[C, ζTκ

]
∣∣?
Tλ ‖Lp ≤ P ′

(√
λ−κ

)
, P ′ being another polynomial with zero

constant term. From this, inequality (5.4.31) is evident. Also, we see here

that ‖
∣∣0Ξ′[C ′, ζTκ

. ] − 0Ξ′[C, ζT
κ

. ]
∣∣?
Tλ ‖Lp is bounded by a multiple of

√
λ−κ

for λ in some neighborhood of κ , whence inequality (5.4.32) for λ ≈ κ .

For large λ we write
∣∣Ξ′[C ′, z] − Ξ′[C, z]

∣∣ ≤ |C ′ − C| · P (|z|) .
This implies

∥∥∥
∣∣Ξ′[C ′, ζTκ

. ] − Ξ′[C, ζT
κ

. ]
∣∣?
Tλ

∥∥∥
Lp

≤
∥∥C ′−C

∥∥
Lp · P ′(

√
λ−κ)

for some (other) L′ : ≤
∥∥C ′−C

∥∥
Lp · eL

′(λ−κ)
.

5.4.20 X−X ′ solves ∆ =
{(
F [X ′]ι − F ′ι[X

′]ι
)
∗Zι

}
+
(
F ι[∆ +X ′] − F ι[X

′]
)
∗Zι,

so by exercise 5.2.21,
(
F [X ′]ι − F ′ι[X

′]ι
)
∗Zι

p,M
= o(δ). By theorems 4.3.1

and 2.3.6 the martingale parts (. .)∗Z̃η satisfy the same estimate; if Z hap-
pens to be a martingale, this reads

(
fη(X

′) − F ′η[X
′]
)
∗Zη

p,M
= o(δ). If it

so happens that Z is a standard Wiener process, then it follows from theo-

rem 4.2.12 that ‖
{ ∫ δ

0

(
fη(X

′
s) − F ′η[X

′]s
)2
ds
}1/2‖

Lp = o(δ). In particular

for p = 2,
∫ δ
0
‖fη
(
C + 0Ξ′(s)

)
− 0Ξ′;η(s)‖

2

L2 ds = o(δ2). Now the integrand is

the square of a function φ that obeys |φ(t)− φ(s)| ≤ const ·
√
|t− s| (see in-

equality (5.5.9) on page 333). If such φ also has
∫ δ
0
φ2(s)ds = o(δ2), it must

have φ(δ) = o(
√
δ). Else there exists an a with φ(t) ≥ a

√
t arbitrarily close

to 0. With b the Hölder 1/2-continuity modulus, φ(s) ≥ a
√
t− b

√
t− s ≥ 0

for γt ≤ s ≤ t . γ = (b2 − a2)/b2 . Then
∫ t
0
φ2(s) ds≥

∫ t
γt
φ2(s) ≥ C(a, b)t2.

Contradiction. This is equation (5.4.36).
5.4.31 Set K def= t/δ . Then the number of evaluations of ξ′ is

N = |Zδ|/δ + |Z2δ|/δ + . . .+ |ZKδ|/δ
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= (δ + |Wδ|) + (2δ + |W2δ|) + . . . (Kδ + |WKδ|)
and has expectation

N1 =
const

δ

(
δK(K+1)/2 + const

∑K
1

√
kδ
)

≈ const

δ

(
t2/δ + const

√
δ ·K3/2

)

≈ b1t
2 + b2t

3/2

δ2
=
B1(t)

δ2
.

By inequality (5.4.50) on page 328, δ−2 ≈ B
2/r
1 e

2M1t/r, whence the claim.

5.4.32 We pick an exponent p ≥ 2 and a growth constant M > M
�(5.2.20)
p,L

to our liking, and let γ def= γ
(5.2.21)
p,M,L < 1 denote the modulus of contractivity

of Y 7→ U[Y ] def= C + f(Y ) ∗Z in S?n
p,M that goes with these choices. Having

picked a δ > 0, we fix the partition by Tk
def= k · δ , set X ′0

def= c , and continue

recursively: when at time Tk the approximate solution X ′t has been defined
for 0 ≤ t ≤ Tk and the signal Zt has been observed at time t ∈ [Tk, Tk+1]

set3,
(
f ·(Zt−ZTk

t )
)
(x) def=

∑
ηfη(x)ζ

kη
t ,

and X ′t
def= ξ′[X ′Tk

, 1; f ·(Zt−ZTk
t )] .

The next and last item on the agenda is of course the estimation of the
deviation of the exact solution X to (5.4.25) from its Ξ′-approximate X ′

made with step size δ . We set the stage. X is the solution to the fixed point

problem

Xt = C + U[X]t , where U[Y ] def= fη(Y )∗Zη ;

the Ξ′-approximate X ′ is the one and only continuous process with

X ′t = C + U′[X ′]t
def= C +

∑

k

((Tk, Tk+1]]t ξ
′[X ′Tk

, 1; f ·(Zt−ZTk
t )] ;

and X ′′ shall be the auxiliary process

X ′′t = C + U′′[X ′′]t
def= C +

∑

k

((Tk, Tk+1]]t ξ[X
′
Tk
, 1; f ·(Zt−ZTk

t )] .

Then ∆t
def= X ′t −Xt = U′[X ′]t − U[X]t

= U′[X ′]t−U[X ′′]t︸ ︷︷ ︸+ U[X ′′]t−U[X ′]t︸ ︷︷ ︸+ U[∆+X]t − U[X]t︸ ︷︷ ︸

= D
(1)
t + D

(2)
t +

∫ t

0

Gη[∆]s dZ
η
s .

3 In practice one would not want to do this for all t ∈ [[Tk, Tk+1]], of course, only for
t = Tk+1 , k = 0, 1, . . .. The generality adopted is in keeping with our definition 5.4.14.
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This exhibits ∆ as the solution of a stochastic differential equation whose (en-
dogenous but non-autologous) coupling coefficients Gη[∆t]

def= fη(∆t+Xt) −
fη(Xt) are Lipschitz with constant L and vanish at ∆ = 0, and with non-

constant initial condition D(1) + D(2) . According to inequality (5.1.16) on

page 276,

∆
?

p,M
≤ 1

1 − γ
·
(
D(1) ?

p,M
+ D(2) ?

p,M

)
.

To estimate ∆ it suffices therefore to estimate D(1) and D(2) . We start

with D(2) . For Tk ≤ s ≤ Tk+1 we have

|X ′′s −X ′s| = |ξ[X ′Tk
, 1; f ·(Zs−ZTk

s )] − ξ′[X ′Tk
, 1; f ·(Zs−ZTk

s )]|

≤
(
m[f ·(Zs−ZTk

s ); ξ′] · s
)r+1

e
m[f ·(Zs−Z

Tk
s );ξ′]·s

.

With m def= sup{m[fηz
η; ξ′] : |z| ≤ 1} (C.10)

this gives

|X ′′s −X ′s| ≤
(
m|Zs−ZTk

s |
)r+1

e
m|Zs−Z

Tk
s | . (C.11)

There is of course an assumption hidden in definition (C.10), namely
Condition C.7 If ξ′ is locally of order r + 1 on f1, . . . , fd , then m[ . , ξ′] is
bounded on their convex hull. (If, as is often the case, m[f ; ξ′] can be estimated
by polynomials in the uniform bounds of various derivatives of f , then the present
condition is easily verified.)

Therefore

D
(2)
t =

∫ t

0

fη(X
′′
s ) − fη(X

′
s) dZ

η

has size

∥∥∥
∣∣D(2)

∣∣?
Tk

∥∥∥
Lp

≤ C�(4.5.1)p d · max
ρ=1�,2

∥∥∥
(∫ Tk

0

∣∣∣fη(X ′′s )−fη(X ′s)
∣∣∣
ρ

ds
)1/ρ∥∥∥

Lp

≤ C�pdL · max
ρ=1�,2

∥∥∥
(∫ Tk

0

∣∣X ′′s −X ′s
∣∣ρ ds

)1/ρ∥∥∥
Lp

by A.3.29: ≤ C�pdL · max
ρ=1�,2

(∫ Tk

0

∥∥X ′′s −X ′s
∥∥ρ
Lp ds

)1/ρ

= C�pdL · max
ρ=1�,2

( ∑

0≤κ<k

∫ Tκ+1

Tκ

∥∥X ′′s −X ′s
∥∥ρ
Lp ds

)1/ρ

by (C.11): ≤ C�pdL·max
ρ=1�,2

(∑

0≤κ<k

∫ Tκ+1

Tκ

∥∥∥
(
m|Zs−ZTk

s |
)r+1

e
m|Zs−Z

Tk
s |
∥∥∥
ρ

Lp
ds
) 1

ρ

= C�pdLm
r+1·max

ρ=1�,2
k1/ρ ·

(∫ δ

0

∥∥∥|Zs|r+1 e
m|Z|s

∥∥∥
ρ

Lp
ds
) 1

ρ

(C.12)
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by 5.2.18: ≤ C�pdLm
r+1B′·max

ρ=1�,2
(Tk/δ)

1/ρ ·
(∫ δ

0

(
s(r+1)/2 eM

′s
)ρ
ds
) 1

ρ

≤ C�pdLm
r+1B′(Tk∨

√
Tk)e

M ′δ·
(δ−1δ

(r+1)
2 +1

(r+1)/2 +1
∨ δ

−1
2 δr/2+1

(r/2 + 1)/2

)

≤ C�pdLm
r+1B′eM

′δδ(r+1)/2 ×
(
Tk ∨

√
Tk) .

From this it is evident that there is a constant B(2) = B
(2)
d,m,p,r such that

∥∥∥D(2)?
t

∥∥∥
Lp

≤ B(2) · δ(r+1)/2 ×
(
t ∨

√
t
)

∀ t ≥ 0

for small δ. Multiplying this by e−Mt and taking the supremum over t ≥ 0 gives

D(2) ?

p,M
≤ B(2) · δ(r+1)/2 .

for sufficiently small δ > 0 and suitable constant B(2) . Equality (C.12)

is justified by the observation that Zs and ZTk+s − ZTk
have the same

distribution (exercise 3.9.7).

It is time to estimate D(1) . On an interval ((Tk, Tk+1]] we have

U′[X ′]t = ξ′[X ′Tk
, 1; f ·(Zt−ZTk

t ); ξ′]

= U′[X ′]Tk
+
(
ξ′[X ′Tk

, 1; f ·(Zt−ZTk
t ); ξ′] −X ′Tk

)

and U[X ′′]t = U[X ′′]Tk
+

∫ t

Tk

fη(X
′′
s ) dZηs

= U[X ′′]Tk
+
(
ξ[X ′Tk

, 1; f ·(Zt−ZTk
t ); ξ′] −X ′Tk

)
.

Thus
∣∣D(1)

t −D
(1)
Tk

∣∣ =
∣∣ξ′[X ′Tk

, 1; f ·(Zt−ZTk
t ); ξ′] − ξ[X ′Tk

, 1; f ·(Zt−ZTk
t ); ξ′]

∣∣

≤
(
m[f ·(Zt−ZTk

t ); ξ′]·1
)r+1 × e

m[f ·(Zt−Z
Tk
t );ξ′]·1

,

using (C.10): ≤ (m · |Zt−ZTk
t |)r+1 e

m|Zt−Z
Tk
t | ,

whence

sup
Tk≤t≤Tk+1

∣∣D(1)
t −D(1)

Tk

∣∣ ≤ (m · |Z−ZTk |?Tk+1
)r+1 e

m|Z−ZTk |?Tk+1

and D
(1)?
Tk+1

−D
(1)?
Tk

≤ (m · |Z−ZTk |?Tk+1
)r+1 e

m|Z−ZTk |?Tk+1 .

Hence D
(1)?
Tk

≤
∑

0≤κ<k
(m · |Z−ZTκ |?Tκ+1

)r+1 e
m|Z−ZT κ |?Tκ+1 .

Now the distribution of |Z−ZTκ |?Tκ+1
is exactly that of Z?

δ , thus
∥∥∥D(1)?

Tk

∥∥∥
Lp

≤ mr+1k ·
∥∥∥|Z|?δ e

m|Z|?δ
∥∥∥
Lp
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by 5.2.18: ≤ mr+1Tkδ
−1 ·B′δ(r+1)/2eM

′δ .

From this it is evident that there is a constant B(1) = B
(1)
d,m,p,r such that

for small δ∥∥∥D(1)?
t

∥∥∥
Lp

≤ B(1) · δr/2−1/2 × t ∀ t ≥ 0 .

5.5.5 Let L(n) be a sequence of laws in L def=
{
(X.,Z.)[P] : X. ∈ XAB

}
.

There is a subsequence, which we will again denote by L(n) , such that

L(n)(φ) −−−→n→∞ L(∞)(φ) for all φ ∈ Cb
(
C n+d[0,∞)

)
, defining a positive linear

functional L(∞) of mass one on Cb
(
C n+d[0,∞)

)
. Due to Kolmogorov’s

theorem A.3.17 and the established tightness of the projection of L(∞) on

the C n+d[0, u] , u ∈ N , L(∞) is σ-additive; due to the polish nature of
C n+d[0,∞) it is even tight. Thus it belongs to the weak closure of {L(n)}
in the set of probabilities on C n+d[0,∞). This argument shows that L is
relatively compact in the topology of weak convergence of measures. The

uniform tightness now follows from exercise A.4.8.
5.6.3 (i)

dDD = D.−dD + dDD.− + [D,D]

= D.−dY D.− +D.−dY D.− +D.−d[Y, Y ]D.−

= D.−(−dY + dc[Y, Y ] + dJ)D.− +D.−dY D.−

+D.−(−d[Y, Y ] + d[Y, c[Y, Y ]] + d[Y, J ])D.−

= D.−(dc[Y, Y ] + dJ)D.− +D.−(−d[Y, Y ] + d[Y, J ])D.−

= D.−(dJ − j[Y, Y ] + d[Y, J ])D.− = D.−(∆J − (∆Y)2 + ∆Y∆J)D.−

= D.−
(
(I + ∆Y)∆J − (∆Y)2

)
D.− = 0 .

(ii) is evident.

(5.6.10) Let Rn 3 xn → x . Then Xxn
t → Xx

t in probability (use in-
equality (5.2.36), if necessary after a change of measure that turns Z t into

an L2-integrator). Next let φ ∈ C00(Rn), supported on the ball Br(0) of
radius r , say. Then the probability that Xx

. enters Br(0) before time t is

less than C(5.2.25)
∣∣f
∣∣
∞pe

Mt/(|x| − r) −−−→x→∞ 0. This implies Ttφ(x) −−−→x→∞ 0.

Approximating an arbitrary φ ∈ C0 uniformly by functions of compact
support will establish the claim Ttφ ∈ C0 .

5.7.2 (ii) Let s < t , say.

Ex
[
|φ(Xt) − φ(Xs)|2

]
= Ex

[
φ2(Xs) − 2φ(Xs) · φ(Xt) + φ2(Xt)

]

condition on Fs and use (5.7.1):= Ex
[(
φ2 − 2φ · Tt−s(φ) + Tt−s(φ

2)
)
◦Xs

]

by equation (5.7.1): = Ts

(
φ2 − 2φ · Tt−s(φ) + Tt−s(φ

2)
)
(x) .
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This converges to zero uniformly in x as (t − s) → 0 on the grounds that
the argument of Ts converges uniformly to 0 and the operator norm ‖Ts ‖
is less than 1. For the second claim observe that

Tu−τφ ◦Xτ − (Tu−tφ ◦Xt = Tu−τφ ◦Xτ − Tu−tφ ◦Xτ

+ Tu−tφ ◦Xτ − Tu−tφ ◦Xt

can be made arbitrarily small in L2(Px) if τ is chosen sufficiently close to t :

given ε > 0 choose t′ ∈ (t, u) so that t < τ < t′ implies that Tu−τφ and
Tu−tφ differ uniformly by less that ε/2; this will make the L2(Px)-mean

of the first summand less than ε/2; then use the continuity of the curve

τ 7→ (Tu−tφ)(Xτ ) to make the L2(Px)-mean of the second summand less
than ε/2 as well.

(iii) Let 0 ≤ s < t . Since

e−αtTt−sUαγ = e−αtTt−s

∫ ∞

0

e−ασTσγ dσ = e−αt
∫ ∞

0

e−ασTσ+t−sγ dσ

σ → σ − t+ s: = e−αs
∫ ∞

t−s
e−ασTσγ dσ ≤ e−αsUαγ ,

equation (5.7.1) gives

Ex
[
Zt|Fs

]
= Ex

[
e−αtUαγ ◦Xt|Fs

]
= e−αtTt−sUαγ ◦Xs Px-a.s.

≤ e−αsUαγ ◦Xs = Zs .

5.7.6 There is an increasing sequence ψn ∈ C00(E) with pointwise limit |ψ| .
Since Ex[ψn ◦ Xt] = Ttψn(x) ≤ T̆t|ψ|(x) < ∞ , the random variables ψ(Xt)

etc. are all Px-integrable. Now

Ex[ψ(Xt) − ψ(Xs)|Fs] =
(
T̆t−sψ − ψ

)
◦Xs Px-a.s.

=

∫ t

s

(
T̆τ−sĂψ

)
◦Xs dτ

=

∫ t

s

Ex[Ăψ ◦Xτ |Fs] dτ Px-a.s.

= Ex
[∫ t

s

Ăψ ◦Xτ dτ
∣∣Fs
]

Px-a.s. .

5.7.8 A differs Px-negligibly from a set APx ∈ F0[X.] . F0[X.] is generated
by X0 , which equals x Px-almost surely, and so equals the σ-algebra of

Px-negligible sets and their complements. For the second claim observe that
TB is an FP

.+[X.]-stopping time (corollary A.5.12); so A def= [TB = 0] belongs

to F←−
P
0 [X.] = FP

0 [X.] .
5.7.12 (i) There is an increasing sequence of compact sets Kn whose interiors

exhaust E . The paths ω which are in Kn at all times form a compact set
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Kn in the product topology, which is the topology of pointwise convergence.
The bounded continuous cylinder functions based on finite sets σ ∈ [0,∞)

form an algebra that separates the points of Kn . By theorem A.2.2 there is
one of them, say Fn = φn ◦ Xσn

, with |F − Fn| < 1/n uniformly on Kn .

Set τ =
⋃
σn ∪ Q and regard Fn as a continuous bounded cylinder function

based on τ : Fn = fn ◦Xτ , where fn = φn ◦ πτσn
. Clearly f def= lim fn exists

uniformly on
⋃
nXτ (Kn) and F = f ◦Xτ on bounded paths. To see that f

is continuous on Eτ , let xα. → x. pointwise. Pick a bounded path x0
. on all

of [0,∞) and define xαt to equal xαt for t ∈ τ , x0
t otherwise, and similary

define x . Then xα. → x. , and therefore f(xα) = F (xα) → F (x) = f(x).

(ii) Since τ is dense in [0,∞) and the paths of Db(E) are right-continuous,
the cylinder functions Φ based on finite subsets of τ (and restricted to Db(E))

form an algebra A that generates F∞ . Since A is countably generated Px

is order-continuous on it. Since x 7→ Ex[Φ] is continuous for Φ ∈ A and

F is continuous in the topology generated by A on Db(E), x 7→ Ex[F ] is
continuous as well (proposition A.4.1). The argument for (iii) is similar.

5.7.13 Let Kn be an increasing sequence of compacta whose interiors ex-

haust E , and set Ωn = {ω : ωq ∈ Kn for Q 3 q ≤ t + 1} . Since

Db(E) =
⋃

Ωn , Px[Ωn] > 1 − ε for sufficiently large n . The right-continuity
of ω causes ωs ∈ Kn ∀ s ≤ t .

A.2.3 (i) The condition is clearly sufficient. For the necessity suppose then

that the sequence (φn) in E or E converges uniformly on A to f . By
taking a subsequence we may assume that |f − φn | ≤ 2−n−1 on A . Then

|φn+1 − φn | ≤ 2−n on A , and the function ψn
def= −2−n∨

(
φn+1−φn

)
∧2−n ,

which by theorem A.2.2 (i) belongs to E , equals φn+1 − φn on A0 . There-

fore the sum φ def= φ1 +
∑∞
n=1 ψn converges uniformly, with limit in E = E .

Clearly f = φ on A0 .
(ii) Given ε > 0 find φ1, φ2 ∈ E with ρ(fi, φi) < ε on A , i = 1, 2.

Then set M def= sup(|φ1| ∨ |φ2| , and on [−M,M ] × [−M,M ] approximate
(x, y) 7→ ρ(x, y) uniformly to within ε by a polynomial p(x, y). Then∣∣ρ(f1, f2) − p(φ1, φ2)

∣∣≤
∣∣ρ(f1, f2) − ρ(φ1, φ2)

∣∣+
∣∣ρ(φ1, φ2) − p(φ1, φ2)

∣∣≤ 3ε on
A .

A.2.6 Ê consists of functions of compact support, and φ̂ is a function of
compact support K as well. There exists ψ̂ ∈ Ê=C00(B̂) with ψ̂ ≥ K .

Tietze’s extension theorem provides a function ρ̂ ∈ E equal to 1/ψ̂ on K . If

Ê 3 ρ̂n → ρ̂ and Ê 3 φ̂n → φ̂ uniformly, then the (φ̂n · ψ̂ρ̂n) ◦ j ∈ E form a
E-confined sequence converging uniformly to φ .

A.2.9 We check the σ-continuity at 0 (see exercise 3.1.5 on page 90).

⇐: Let E 3 Xn ↓ 0. Then k̂ def= inf X̂n vanishes on j(B) and is the pointwise
infimum of a sequence in Ê . Consequently θ(Xn) = θ̂(X̂n) →

∫
k̂ dθ̂ = 0: θ

is indeed σ-additive.
⇒: If k̂ : B̂ → R vanishes on j(B) and is the pointwise infimum of a sequence

(X̂n) in Ê then Xn
def= X̂n ◦ j ↓ 0 on B and so

∫
k̂ dÎ = lim Î(X̂n) =
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limI(Xn) = 0.
A.2.10 The assumption of weak σ-additivity means that for all continuous

linear functionals g : Lp → R , θ def= g ◦ I is σ-additive. The extension
theory of Sections 3.1–3.2 furnishes an integral

∫
. dÎ of the σ-additive

Gelfand transform Î (see assumption 3.1.4). Let then E 3 Xn ↓ 0, and
set k̂ def= inf X̂n . Then f def= limI(Xn) = lim Î(X̂n) =

∫
k̂ dÎ exists in

the norm topology Lp , due to the Dominated Convergence Theorem. Since
〈g|f〉 = lim〈g|I(Xn)〉 = lim θ(Xn) = 0 for all g in the dual of Lp , f = 0

thanks to the Hahn–Banach theorem A.2.25.
A.2.19 (iv) implies (ii), for lower semicontinuity: Let x ∈ E , set r = f(x),

and let ε > 0. The function that has on [f ≤ r− ε] the value inf f and at x
the value r − ε is continuous on the closed set [f ≤ r − ε] ∪ {x} . Tietze’s

extension theorem provides a continuous extension φ to all of E with values

in [inf f, r − ε] . Clearly φ ≤ f and φ(x) ≥ f(x) − ε .
A.2.24 Let U [P ] be the algebra of lemma A.2.20, and j : P → P̂ as

furnished by theorem A.2.2 (ii). Since 1 ∈ U [P ] , P̂ is compact; since U [P ]
is countably generated, P̂ is metrizable; since U [P ] generates the topology

of P , j is a homeomorphism of P with its image j(P ). By exercise A.2.23,
j(P ) is a Gδ-set of P̂ ; and in the compact metric space P̂ every open set is

a Kσ-set.
A.2.29 Set Φ0(r) = sup

{
ddf ee′ : ddf ee < r

}
. This is clearly an increasing

positive numerical function on R+ satisfying

ddf ee′ ≤ Φ0

(
ddf ee

)
, f ∈ V .

Given an ε > 0, we can find a dd ee−δ-ball {f : ddf ee < δ} contained in the
dd ee′−ε-ball {f : ddf ee′ < ε} . Clearly r < δ implies Φ0(r) < ε : Φ0 has the

desired property Φ(r) −−→r→0 0. Now Φ0 may not be right-continuous, but

Φ(r) def= inf
(
Φ0(s) : s > r

)

is, and it retains the other properties of Φ0 .
A.2.36 The right-continuous version of x. will satisfy the same inequality,

so we may as well assume x. to be right-continuous to start with. Set
α def= 2(A

/
B+C) and β def= maxρ=p,q(2B)ρ

/
ρ . Then ξλ

def= A
/
B+xλ satisfies

ξµ ≤ α

2
+ max
ρ=p,q

B
(∫ µ

0

ξρλ dλ
)1/ρ

, µ ≥ 0 ,

and the claim follows from ξλ ≤ αeβλ ∀ λ . This is certainly true in some
neighborhood of λ = 0. If Λ def= {inf λ : ξλ > αeβλ} < ∞ , then by right-

continuity

αeβΛ ≤ ξΛ ≤ α

2
+ max
ρ=p,q

αB
(∫ Λ

0

eβρλ dλ
)1/ρ

<
α

2
+ max
ρ=p,q

αBeβΛ

(βρ)1/ρ
≤ α

2
+
α

2
eβΛ ≤ αeβΛ .
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This contradiction shows that Λ = ∞ .

A.2.40 Cover U by bounded sets.

A.2.50 Chain Rule: If Φ : D → E is differentiable and F : E → S

weakly differentiable, then F ◦ Φ : D → S is weakly differentiable and
DF ◦ Φ[u] = DF [Φ(u)]DΦ[u] . For c) apply the chain rule and the mean

value theorem to t 7→ F (u+ t(v − u)).

A.3.1 Let d be a metric defining the topology. A closed set F is the zero-

set of the function x 7→ d(x, F ) def= inf{d(x, y) : y ∈ F} , which is continuous;
thus F is a Baire set. Then so is every open set.

A.3.2 (i) The functions f of this description form a sequentially closed

family.
(ii) Suppose supn fn > 0. Then f (n) def= 1 ∧ n supν<n |fν | ∈ E and 1 =

lim f (n) ∈ Eσ . Conversely, if 1 ∈ Eσ , then there is a countable family
{f1, f2, . . .} ⊂ E whose sequential closure contains 1. The fn cannot all

vanish at any one point because then so would 1, thus sup |fn| > 0.
(iii) The Eα above are the same whether the sequences occurring in their

definition are considered as R-valued sequences that converge pointwise in R
or as R-valued sequences that happen to have a real-valued pointwise limit.

A.3.6 The sequential closure of the class of differences of bounded lower

semicontinuous functions contains the topology 13, which forms a multiplica-
tive class; it therefore contains all Borel functions. Conversely, a lower semi-

continuous function h is the supremum of the countable collection q · [h > q] ,
q ∈ Q , and so is Borel measurable. Then so is a bounded lower semicontinu-

ous function, a difference of such, and every function in the sequential closure
of such differences.

A.3.7 Suppose f ∈ Eσ is E-confined. There is a ψ ∈ E with |f | ≤ ψ . The
collection of functions g ∈ Eσ such that −ψ ∨ g ∧ψ is the limit of a bounded

E-confined sequence in Eσ is sequentially closed and thus contains Eσ .

A.3.8 (i) This is just the definition of inner measure, which agrees with µ
on Aσ . (ii) Any idempotent member (set) of the class inf

{
ḟ ∈ L0(Aσ, µ) :

∃f ∈ ḟ with f ≥ Ω′
}

will do.

A.3.10 Due to lemma A.2.20 any decreasingly directed collection Φ ⊂ Cb(E)
contains a decreasing sequence (φn) with the same pointwise infimum; then

inf µ(Φ) = inf µ(φn). For if µ(φ) < a for some φ ∈ Φ, then φ ∧ φn ↓ φ and
consequently inf µ(φn) ≤ limµ(φ ∧ φn) < a .

A.3.21 See [5, page 286 ff.].

A.3.25 There is collection L of affine functions R+ 3 x 7→ `(x) = ax + b
whose pointwise infimum is φ . For each one of them a and b are positive and∫
φ(|z|) dµ≤

∫
`(|z|) dµ= a

∫
|z| dµ+ b

∫
1 dµ≤ a

∫
|z| dµ+ b= `

( ∫
|z| dµ

)
.

Taking the infimum over ` ∈ L yields the claim.

A.3.26 This is evident if Φ(x, ω) is a product of the form φ(x)ψ(ω), then
if it is the linear combination of such functions, then if it belongs to the

sequential closure of the algebra formed by the latter.
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A.3.28 Let f∗ be an element in the unit ball E∗1 of the dual of E . Then

〈
∫
f dν|f∗〉 =

∫
〈f |f∗〉 dν ≤

∫
‖f ‖E d ν .

Taking the supremum over f ∈ E∗1 yields the claim.

A.3.29 The cases q = ∞ and p = q are trivial.
The case 1 = p < q : If ‖‖f ‖

L1(µ)
‖
Lq(ν)

> 1, then

∫ (∫
|f(x, y)| µ(dx)

)q
ν(dy) > 1

and there is a function g ∈ Lq
′

+(ν) of norm one in that space with

1 <

∫ (∫
|f(x, y)| µ(dx)

)
· g(y) ν(dy)

=

∫ (∫
|f(x, y)| · g(y) ν(dy)

)
µ(dx)

≤
∫ (∫

|f(x, y)|q ν(dy)
)1/q

·
(∫

|g(y)|q′ ν(dy)
)1
/
q′

µ(dx)

=
∥∥∥‖f‖Lq(ν)

∥∥∥
L1(µ)

.

In the remaining case 0 < p < q < ∞ write

∥∥∥‖f‖Lp(µ)

∥∥∥
Lq(ν)

=
∥∥∥‖|f |p‖1/p

L1(µ)

∥∥∥
Lq(ν)

=
∥∥∥‖|f |p‖L1(µ)

∥∥∥
1/p

Lq/p(ν)

≤
∥∥∥‖|f |p‖Lq/p(ν)

∥∥∥
1/p

L1(µ)
=
∥∥∥‖f‖Lq(ν)

∥∥∥
Lp(µ)

.

A.3.37 (i) The continuity of h1?µ2 is an immediate consequence of the
metrizability of G and the Dominated Convergence Theorem. To see that

h1?µ2 vanishes at ∞ , let ε > 0 be given. There exist a compact set K2 so
that µ2(K

c
2) < ε and a compact set K1 outside which |h1| < ε . If g lies

outside the compact algebraic sum K1 + K2 ⊂ G , then h1(g − g2) < ε for
g2 ∈ K1 and therefore

∫
K2
h1(g − g2)µ2(dg2) < ε‖µ2‖ . Clearly

∫
Kc

2
h1(g −

g2)µ2(dg2) < ε‖h1‖ . Thus h1?µ2 −−−→g→∞ 0.
A.3.44 Since µ is order-continuous (exercise A.3.10), it makes sense to talk

about the support C of µ (exercise A.3.13). Let S be a lifting, Υ a countable
uniformly dense subset of U [E] (see lemma A.2.20), and N the negligible set⋃{[Sυ 6= υ] ∩ C : υ ∈ Υ} . For x /∈ N set Tf(x) = Sf(x), f ∈ L∞ . If
x ∈ N , consider the ideal Ix of functions f ∈ L∞ that differ negligibly

from a function υ′ that is continuous (in the metric topology) at x and
has υ′(x) = 0. As in the proof of lemma A.3.40 one checks that there is an

x̂ ∈ Ê at which all the functions of Îx vanish. Set Tf(x) = f̂(x̂) and check
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that T is a lifting with Tυ(x) = υ(x) for x ∈ C and υ ∈ U [E]. For x ∈ C
and φ ∈ Cb we have by lemma A.2.20 Tφ(x)≥ sup{Tυ(x) : φ ≥ υ ∈ U [E]}=

sup{υ(x) : φ ≥ υ ∈ U [E]}= φ(x). Applying this to −φ gives Tφ(x) = φ(x).

A.3.45 Equation (A.3.17): Integrating e
−(x2+y2)/2

over the plane in polar

coordinates establishes first that
∫ +∞

−∞
e
−x2/2

=
√

2π .

The variable substitution u = (x− iξt)/
√
t turns the integral

E
[
eiξX

]
=

1√
2πt

∫ +∞

−∞
eiξx · e−x

2/2t
dx

into
e−tξ

2/2

√
2π

∫ +∞

−∞
e
−u2/2

du = e−tξ
2/2 .

A.3.49 Apply functional calculus to the self-adjoint operator B . Or apply

the power series for ‖B ‖1/2√
1 − x to the matrix I − B/‖B ‖ , ‖B ‖ being

the operator norm of B .
A.4.8 See [12], ch. IX, §5: Treat first the case that E is also locally com-

pact. Suppose the locally compact space E has a countable basis, and P

is a family of probabilities on E that is relatively compact in the topology
σ
(
P.(E), C00(E)

)
of convergence on continuous functions of compact sup-

port. There exists an increasing sequence of compacta Kn ⊂ E whose in-
teriors cover E . By way of contradiction assume P is not uniformly tight.

Then there exist an α > 0 and measures µn ∈ P with µn(Kn) ≤ 1 − α .
Extracting a subsequence we may assume that µn → µ ∈ P.(E) on all

φ ∈ C00(E). Now µ(K) > 1 − α for some compact K ⊂ E , since µ is a
tight probability. There exist a φ ∈ C00(E) with φ = 1 on K and an N ∈ N
so that K̊N contains the support of φ . Now as µn(φ) → µ(φ) > 1 − α we
have µn(Kn) ≥ µn(KN ) ≥ µ(φ) > 1 − α for sufficiently large n ≥ N , a

contradiction.
An arbitrary polish space is the intersection of a decreasing sequence of

open subsets En of some compact space (exercise A.6.1). We view the
measures of P as measures on the En , which are locally compact. Due to the

first part of the argument there are compacta Kn ⊂ En with µ(En −Kn) <

α2−n ∀ µ ∈ P . K def=
⋂
nKn ⊂ E is compact and has µ(E −K) ≤ α .

A.5.6 (ii) Suppose that K′ ⊂ K∪f has the property that no finite subcol-

lection has void intersection. Then there is an ultrafilter U containing K′ .
Every set K ′ ∈ K′ is the finite union K ′ =

⋃I(K′)
i=1 K ′i of sets in K . At least

one of the K ′i , say K ′i(K′) , belongs to U . No intersection of finitely many

such K ′i(K′) is void, and therefore neither is
⋂{

K ′i(K′) : K ′ ∈ K′
}
⊂ ⋂K′ .

(iii) Take for the closed sets the sets in K∩a∪f .



62 Answers

A.5.16 Apply theorem 2.4.7.
A.5.18 Proposition 3.5.2 shows that O contains P . Let X ∈ D . Let δ > 0

and define the stopping times S0 = 0 and

Sk+1 = inf {t > Sk : |X −XSk
|?t ≥ δ } , k = 1, 2, . . .

and X(δ) = X0[[0]] +
∑

k

XSk
· [[Sk, Sk+1)) . (∗)

Since X has no oscillatory discontinuities, Sk ↑ ∞ . Evidently, X and X(δ)

differ uniformly by less than δ . The process X (δ) differs from the previsible
process

X0[[0]] +
∑

k

XSk
· ((Sk, Sk+1]]

only in the set
⋃
k[[Sk]] . The processes (∗) form therefore a generator of O for

which the claim is true. It is now easy to check that the optional processes
for which the second claim holds is a monotone class. An application of

theorem A.3.4 finishes the proof.
A.5.20 The family of processes that have an optional projection is a mono-

tone class. It contains the processes of the form [t,∞)×g , g ∈ F ∗∞ bounded,
which generate the measurable σ-algebra. Indeed, let M g be the right-

continuous martingale E[g|FP
t+] (proposition 2.5.13). It follows from Doob’s

optional stopping theorem 2.5.22 that [[t,∞)) ·M g is an optional projection

of [t,∞) × g . If XO,P and X
O,P

are two optional projections of X , then

B def=
[
XO,P 6= X

O,P]
is an optional set. If it were not P-evanescent, one could

find a stopping time T whose graph is contained in B and has non-negligible

projection on Ω. This however is clearly impossible.
A.5.21 XO,P meets the description. Indeed, for any t and A ∈ Ft = FP

t+

E
[
A ·XO,Pt

]
= E

[
XO,PtA

[tA <∞]
]

= E
[
XtA [tA <∞]

]
= E

[
A ·Xt

]
:

the Ft-measurable random variables XO,Pt and Xt differ negligibly.

A.6.1 (i) See exercise A.2.24. (ii) Let p : P → S be a continuous map
from the polish space onto the Suslin set S , and C ⊂ S closed. Then

p : p−1(C) → C exhibits C as a Suslin set. (iii) Let Sn be Suslin subsets of
a Hausdorff space and pn : Pn → Sn continuous surjections. In the product

space
∏
n Pn , which is polish, let P def= {(xn) : pn(xn) = pm(xm) for m 6= m} .

This is a closed and therefore polish subspace of
∏
n Pn . The continuous map

p : P → ⋂
n Sn exhibits the intersection of the Sn as Suslin. For the union,

consider the disjoint topological sum P def=
⊎
n Pn . Its is again polish, and

the obvious map p : P → ⋃
n Sn shows that the union of the Sn is polish.

(iv) By (i), a closed ball of the given Suslin space S is Suslin. Since S is

separable as the continuous image of a separable space and metrizable by
assumption, the complement of a closed ball is the countable union of closed

balls and is therefore also Suslin. The collection of sets which together with
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their complements are Suslin is closed under taking complements and by (ii)
is closed under countable unions and contains the closed balls. It contains

therefore the σ-algebra generated by the closed balls, the Borels.
A.8.1 (i) If ddf ee

0
≤ a , then there exists a decreasing sequence (λn) with

inf λn ≤ a and P[|f | > λn] ≤ λm for 1 ≤ m ≤ n . Then P[|f | > a] ≤ P[|f | >
λ] ≤ λm for all m , and therefore P[|f | > a] ≤ λ ≤ a . The reverse implication

is obvious.
(ii), for p = 0: Let a = ddf ee

0
and b = ddgee

0
. Since [|f + g| > a + b] ⊂

[|f | > a] ∪ [|g| > b] , we have by (i) P[|f + g| > a + b] ≤ a + b , i.e.,
ddf + gee

0
≤ ddf ee

0
+ ddgee

0
.

(iii), for p = 0: limr→0 ddrf eep = 0 clearly implies P[|f | = ∞] = 0.

(iv), for p = 0: The algebraic properties are obvious. Given a dd ee
0
-Cauchy

sequence (fn) extract a subsequence (fnk
) with ddfnk+1

− fnk
ee ≤ 2−k . Then∑

k |fnk+1
− fnk

| is a.s. finite, and therefore (fnk
) converges a.s. The limit is

a dd ee
0
-mean limit of (fn) by a standard argument.

A.8.2 This is clear if p ≥ 1. For 0 < p < 1 Hölder’s inequality (theo-
rem A.8.4 on page 449) with conjugate exponents 1/p, 1/(1 − p) gives

a1 + . . .+ an ≤ n1−p(a1/p
1 + . . .+ a

1/p
n

)
for aν ≥ 0. Apply this to

aν = (
∫
|fν |p ) to obtain

∫
|f1 + . . .+ fn|p ≤

∫
|f1|p + . . .+

∫
|fn|p

≤ n1−p
((∫

|f1|p
)1/p

+ . . .+
(∫

|fn|p
)1/p)p

and take pth roots.

A.8.4 Hölder’s inequality for the special case r = 1 of conjugate exponents
is in any textbook on integration. By applying that to the function |fg|r ,
with conjugate exponents p/r and q/r , the general case follows. For the
second claim reduce to the case ‖f ‖

p
= 1 and take g = fp−1 .

A.8.5 Let 1/p and 1/q be points in If and 1/s = θ/p+(1−θ)/q (0 < θ < 1)
a point in between. Set a = sθ/p ; then 1 − a = (1 − θ)s/q and 0 < a < 1.

Apply Hölder’s inequality with conjugate exponents 1/a and 1/(1 − a) to
|f |p and |f |q :

∫
|f |s dµ =

∫
|f |pa · |f |q(1−a) ≤

(∫
|f |p dµ

)a
·
(∫

|f |q dµ
)(1−a)

= ‖f‖apLp · ‖f‖(1−a)q
Lq = ‖f‖θsLp · ‖f‖(1−θ)s

Lq ,

and so ‖f‖Ls ≤ ‖f‖θLp · ‖f‖1−θ
Lq

and ln
(
‖f‖Ls

)
≤ θ ln

(
‖f‖Lp

)
+ (1 − θ) ln

(
‖f‖Lq

)
.

A.8.11 The notions of F -measurability and almost sure finiteness coincide,

whether P or P′ is the measure: L0(P) and L0(P′) coincide as sets. Suppose
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fn → 0 in P-measure, and let ε > 0. Now

P′
[
|fn| > ε

]
=

∫ [
|fn| > ε

]
· g′ dP

=

∫ [
|fn| > ε

][
g′ > M

]
· g′ dP +

∫ [
|fn| > ε

][
g′ ≤M

]
· g′ dP

≤
∫ [

g′ > M
]
· g′ dP +M · P

[
[|fn| > ε

]]
.

Choosing first M so large that the first summand on the right is less than

ε/2 and then n so large that the second summand also is less than ε/2, we
see that eventually ddfn eeL0(P′) ≤ ε : fn → 0 in P′-measure. Interchanging

the roles of P and P′ and replacing g′ by g def= (g′)−1 shows that the converse
implication fn → 0 in P′-measure =⇒ fn → 0 in P-measure is also true:

the two topologies are, indeed, the same.
A.8.12 Set Φ(r) = sup{ddf ee

L0(P′) : ddf ee
L0(P)

≤ r} . To see that Φ(r) −−→r→0 0

let ε > 0 be given and denote by g a Radon–Nikodym derivative dP′/dP .

There is a K > 1 so that P′[g > K] < ε/2. Set δ def= ε/(2K). If ddf ee
L0(P)

< δ ,

then P[|f | > ε] < ε/(2K) and so P′[|f | > ε]≤P′[g > K] +KP[|f | > ε]< ε. To

get Φ right-continuous replace it by its right-continuous version.
A.8.15 (i) E[ |f |p ] =

∫∞
0
tp dP[|f | ≤ t] =

∫∞
0

(
Tλ+

)p
[Tλ+ < ∞] dλ by the

change-of-variable theorem 2.4.7, where T λ+ def= inf{t : P[|f | ≤ t] > λ} =
inf{t : P[|f | > t] ≤ 1 − λ} = ‖f ‖

[1−λ]
and [T λ+ < ∞] = [0 ≤ λ < 1]. Hence

E[ |f |p ] =
∫ 1

0
‖f ‖p

[1−λ]
dλ =

∫ 1

0
‖f ‖p

[λ]
dλ . The last claim is done similarly,

with t 7→ tp replaced by t 7→ Φ(t).
(ii) If λ < ‖f + g‖

[α+β]
, then

α+ β ≤ P[|f + g| > λ] ≤ P[|f | + |g| > λ]

≤ P[|f | > ‖f‖[α]] + P[|f | + |g| > λ , |f | ≤ ‖f‖[α]]

≤ α+ P[|g| > λ− ‖f‖[α]] .

Thus β ≤ P[|g| > λ − ‖f ‖
[α]

] , i.e., ‖g‖
[β]

≥ λ − ‖f ‖
[α]

] and λ ≤ ‖f ‖
[α]

+

‖g‖
[β]

.
A.8.16 Let ρ > 0. Then

ρ <
∥∥∥‖f‖[β;τ ]

∥∥∥
[α;P]

=⇒ α < P
[
‖|f |‖[β;τ ] > ρ

]
= P

[
τ [|f | > ρ] > β

]

=⇒ αβ <

∫
τ [f(ω, ·) > ρ] P(dω) =

∫
P[f(·, t) > ρ]τ(dt) .

With g(t) def= P[f(·, t) > ρ] we have 0 ≤ g ≤ 1 and

αβ <

∫
g(t) τ(dt)
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=

∫
g(t)[g(t) ≤ γ] τ(dt) +

∫
g(t)[g(t) > γ] τ(dt)

≤ γ + τ [g > γ]

so that αβ − γ ≤ τ [g > γ] = τ
[
P[|f | > ρ] > γ

]
,

i.e., αβ − γ ≤ τ
[
‖f‖[γ;P] > ρ

]
,

which reads ρ ≤
∥∥∥‖f‖[γ;P]

∥∥∥
[αβ−γ;τ ]

.

A.8.17 (A.8.1): Set λ = ‖g‖
[α]

and denote the right-hand side of the first
inequality by Λ. Then

P[f > Λ] ≤ P[f > Λ ; g ≤ λ] + P[g > λ] ≤ P[f r/Λr > 1 ; λ/g ≤ 1] + α

≤ λ

Λr
E[f r/g] + α =

λ

ErΛr
+ α = β + α .

(A.8.2): Set λ = ‖g‖
[α/2]

and denote the right-hand side of inequality (A.8.2)
by Λ. Then

P[fg > Λ] ≤ P[fg > Λ ; g < λ] + P[g ≥ λ] ≤ P[f > Λ/λ ; λ/g > 1] + α/2

≤ λE
[
[f > Λ/λ] · 1/g

]
+ α/2 ≤

∥∥∥λf
Λ

∥∥∥
r

Lr(P/g)
+ α/2

≤ λr+1Er

Λr
+ α/2 = α/2 + α/2 = α .

A.8.22 p = 0: If ‖fn ‖[α]
≤ a ∀ n , then P[fn > a] ≤ α ∀ n and

consequently P[f > a] = supn P[fn > a] ≤ α , which says that ‖f ‖
[]
α ≤ a .

A.8.27 In the proof of inequality (A.8.6) replace the constant 2 by any

A > 1. The argument gives ‖f ‖
2
≤ AK1 · ‖f ‖

[(A−1/AK1)2]
. Solving (A −

1/AK1)
2 = κ and using the value K1 =

√
2 from remark A.8.28 produces

the claim.

A.8.29 Since p 7→ Γ
(
(p + 1)/2

)
is convex, there are two points at which

Γ
(
(p + 1)/2

)
equals

√
π/2. One of them is p = 2; inspection of a table

shows that the other is p0 ≈ 1.85. To the left of p0 equation (A.8.8) gives
Kp = 21/p − 1/2 . Calculations on a hand-held calculator show that the ratio

(√
π
/
Γ((p+ 1)/2)

)/
2

takes its maximum at pm ≈ 1.92175 and that its pthm root there is approxi-

mately 1.000366283.
A.8.30 By the Central Limit Theorem

lim
n

1

np

∫

T

|ε1 + . . .+ εn|p dτ =
1√
2π

∫ ∞

−∞
|x|pe−x2/2 dx

= 2p/2
Γ(p+1

2 )√
π

.
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Thus

Kp ≥
( √

π

Γ( p+1
2 )

)1/p
/√

2 .

Also, the choice n = 2 and a1 = a2 = 1 implies Kp ≥ 2
1
p− 1

2 .

A.8.32 Let the computer draw a graph of b(p).

A.8.35 Let x1, . . . , xn ∈ E and γ
(q)
1 , . . . , γ

(q)
n symmetric q-stable.

Then
∥∥∥
∥∥∥
n∑

ν=1

v ◦ u
(
xν
)
γ(q)
ν

∥∥∥
G

∥∥∥
Lp(dx)

≤ Tp,q(v) ·
( n∑

ν=1

‖u(xν)‖qF
)1/q

≤ Tp,q(v) · ‖u‖ ·
( n∑

ν=1

‖xν‖qE
)1/q

.

and
∥∥∥
∥∥∥
n∑

ν=1

v ◦ u
(
xν
)
γ(q)
ν

∥∥∥
G

∥∥∥
Lp(dx)

≤ ‖v‖ ·
∥∥∥
∥∥∥
n∑

ν=1

u
(
xν
)
γ(q)
ν

∥∥∥
G

∥∥∥
Lp(dx)

≤ ‖v‖ · Tp,q(u) ·
( n∑

ν=1

‖xν‖qE
)1/q

.

A.9.2

Ttψ − ψ

t
=

1

t

(∫ s

0

Tσ+tφ dσ −
∫ s

0

Tσφ dσ
)

=
1

t

(∫ s+t

t

Tσφ dσ −
∫ s

0

Tσφ dσ
)

=
1

t

(∫ s+t

s

Tσφ dσ −
∫ t

0

Tσφ dσ
)

−−→t→0 Tsφ− φ ,

and so ψ ∈ D[A]

and Aψ = Tsφ− φ

or Tsφ− φ = A
∫ s

0

Tσφ dσ for all φ ∈ C .

Since
∫ s
0
Tσφ dσ

/
s −−→s→0 φ , D[A] is dense in C0(E). We have used here that

Ts ◦ Aφ = A◦ Tsφ for φ ∈ D[A] , which is left for the reader to establish [33,

chapter I].
A.9.4 See [53, page 320].

A.9.8 For every s ∈ [0,∞), x ∈ E , and β < 1 there is a function φs,x,β ∈
C0(E) with 0 ≤ φ ≤ 1 and Tsφs,x,β(x) > β . Since s 7→ Tsφ(x) is continuous,

we have Tsφs,x,β(x) > β on a whole neighborhood Us of s . Any compact
interval [0, k] can be covered by finitely many of them; the supremum φkx,β of

the corresponding φs,x,β ’s has Tsφ
k
x,β(x) > β for all s ∈ [0, k] . For any fixed

α > 0 the choice of a sufficiently large kα will result in αUαφ
kα

x,β(x) > β .
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This inequality will by continuity hold in a whole neighborhood of x . Now let
K ⊂ E be compact. Taking a finite supremum of such functions φkα

x,β we find

a function φKα,β ∈ C0(E) with 0 ≤ φKα,β ≤ 1 such that αUαφ
K
α,β > β on K .

Let Kn be an increasing sequence of compacta whose interiors cover E , take

αn = 1/n , and choose φn ∈ C0(E) such that φn ≤ 1 and ψn
def= αnUαn

φn >
1 − 2−n on Kn . Now observe that Aψn = αnψn − αnφn → 0.

A.9.9 Applying the identity (αI −A)Uα = I to the ψn of A.9.8 (iii) gives

αUαψn − UαAψn = ψn

and in the limit α

∫

E

Uα(x, dy) = 1 .

i.e., α

∫ ∞

0

e−αsTs(x,E) ds = 1 ,

which shows that the measures Ts(x, .) all have total mass one.

A.9.11 (i), ⇐ : Urysohn’s lemma provides positive continuous functions
ρn ≤ 1 of compact support so that [ρn 6= 0] ⊂ [ρn+1 = 1] and supn ρn(x) = 1

at every point x ∈ E . Let ψn ∈ C be so that |φ| ≤ ψn , and (s, x) 7→∫ ∗
E
Ts(x, dy) ψn(y) is finite and continuous on [0, n] ×Kn . Then

‖φ− φ · ρk ‖̆n,Kn
= ‖φ · (1 − ρk) ‖̆n,Kn

≤ ‖ψn − ψn · ρk ‖̆n,Kn
−−−→
k→∞ 0 ,

since the continuous functions (s, x) 7→
∫ ∗
E
Ts(x, dy)

(
ψn−ψn·ρk

)
(y) decrease

pointwise, and by Dini’s lemma A.2.1 uniformly on [0, n]×Kn , to zero. There

is therefore a kn so that φn
def= φ · ρkn

∈ C00(E) has ‖φ− φn ‖̆n,Kn
< 2−n .

Clearly ddφ− φn eĕ ≤ (n+ 1)2−n −−−→n→∞ 0.

(i), ⇒ : Let φn ∈ C00(E) have ‖φ− φn ‖̆n,Kn
< 2−n , n = 1, 2, . . ., and set

φ0 = 0. The function ψ def=
∑
n≥1 |φn − φn−1| serves simultaneously for all

t <∞ and compact K ⊂ E .
(ii) Let φ ∈ C̆ and 0 ≤ s ≤ u . Then for every t < ∞ and compact K ⊂ E

‖T̆sφ‖̆t,K ≤ sup
{ ∫ ∗

E

Tτ (x, dy) T̆s|φ| (y) : 0 ≤ τ ≤ t, x ∈ K
}

≤ sup
{ ∫ ∗

E

Tτ+s(x, dy) |φ|(y) : 0 ≤ τ ≤ t, x ∈ K
}

≤ sup
{ ∫ ∗

E

Tτ (x, dy) |φ|(y) : 0 ≤ τ ≤ t+ u, x ∈ K
}

= ‖φ‖̆t+u,K ,

showing that T̆u : C̆ → C̆ is continuous. Next let φ̆ ∈ C̆ and φ ∈ C00(E).
Then T̆.φ̆− T.φ = T̆.(φ̆− φ) has ‖T̆sφ̆− Tsφ‖̆t,K ≤ ‖φ̆− φ‖̆t+u,K for

0 ≤ s ≤ u . This shows that the curve T̆.φ̆ is on bounded intervals [0, u]
the uniform limit of continuous curves T.φ in C̆ and therefore is continuous

itself.
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A.9.13 See exercise A.3.16 on page 401.
A.9.15 It is evident that T `t is linear and has operator norm ≤ 1. To see

that it maps C`0 into itself it suffices to check its behavior on functions of the
form (τ, x) 7→ φ1(τ)φ2(x), φ1 ∈ C0(R+), φ2 ∈ C0(E), on the grounds that

the linear combinations of these form an algebra A0 uniformly dense in C`0 ;
so T`t

(
C`0
)
⊂ C`0 is obvious. By the same token t 7→ T `t φ is continuous for

φ ∈ A0 and then for φ ∈ C`0 . The multiplicativity follows from

(T`s (T`t ψ))(τ, x) =

∫
(T`t ψ)(s+ τ, y) Ts+τ,τ (x, dy)

=

∫ ∫
ψ(s+ t+ τ, y′) Ts+t+τ,s+τ (y, dy

′) Ts+τ,τ (x, dy)

=

∫
ψ(t+ s+ τ, y) Ts+t+τ,τ (x, dy) = (T`s+tψ)(τ, x) .
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Du
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dF the measure with distribution function F 406
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D = D[F.] the càdlàg adapted processes 24
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Dd canonical path space 66

dom(f) the domain of f 363
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Ex Ex[F ] =
∫
F dPx 351

E[f |Φ],E[f |Y] the conditional expectation of f given Φ, Y 407

e the vector lattice of step functions on R+ 44

E = E [F.] the elementary stochastic integrands 46

E1 the unit ball {X ∈ E : −1 ≤ X ≤ 1} of E 51

E↑+ the pointwise suprema of sequences in E 88

E00 the E-confined functions in E 369

E00 the confined uniform closure of E00 370

Eσ00 the E-confined functions in Eσ 393

EP = E [FP
. ] the elementary integrands of the natural enlargement 57

0F coupling coefficients adjusted so that 0F [0] = 0 272
0C initial condition adjusted correspondingly 272

Ft the past or history at time t 21

FT the past at the stopping time T 28

F. the filtration {Ft}0≤t≤∞ 21

F.− the left-continuous version of F. 123

F.+ the right-continuous version of F. 37

F0
. [Z] the basic filtration of the process Z 23

F.[Z] the natural filtration of the process Z 39

F0
. [DE ],F0

.+[DE ] basic, canonical filtration of path space 66

F0
.+[DE ] the canonical filtration of path space 66

F.[DE ] the natural filtration of path space 67

F∞,F∗∞ the σ-algebra
∨

0≤t<∞ Ft , its universal completion 22

F∗∞ universal completion of F∞ 22

ĝ = F[g(x)] , F−1[.] Fourier transform and inverse 410

FT− the strict past of T 120

F[dd .ee∗] the processes finite for dd .ee∗ 97

FP
. ,FP

. the P,P-regularization of F. 37

FP
. = F̃. the (P-) regularization of F. 38

FP
.+ the natural enlargement of a filtration 39
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F̃ a predictable envelope of F . 125

F [X].− left-continuous version of coupling coefficient 271

GA the graph of the operator A 464

γ(q) the symmetric q-stable random variable 458

‖γ(q)‖p =
( ∫

|γ(q)(x)|p dx
)1/p

458

S∆ def= S ∪̇ {∆} the one-point compactification of S 374

γt , γtB the centered Gaussian with variance t , tB 419

Ȟ def= H × [0,∞) the product of auxiliary space with time 177

h0 prototypical sure Hunt function y 7→ |y|2 ∧ 1 180

h′0 y 7→
∫
[|ζ|≤1]

|ei〈ζ|y〉 − 1 |2 dζ , another one 182

ηp,q(I) a factorization constant 192

I the identity operator or matrix 463

K[Z] ingredient in ‖Z ‖Kq 209

L∞ the essentially bounded measurable functions 448

Lp = Lp(P) the space of p;P-integrable functions 33

L0, L0(Ft,P) (classes of) measurable a.s. finite functions 33

`p the vectors or sequences x = (xν) with |x |
p
<∞ 364

`0 def= RN the Fréchet space of scalar sequences 364

L the left-continuous paths with finite right limits 24

L = L[F.] the collection of adapted maps Z : Ω → L 24

L1[dd .ee∗] & L1[Z−p] the dd.ee∗- & Z−p-integrable processes 99

L1[Z−p] the Z−p-integrable processes 99

L1[Z−p] = L1[dd .ee∗
Z−p;P] the Z−p-integrable processes 99

L1[ζ−p] = L1[dd ee∗
ζ−p] the ζ−p-integrable processes 175

Λ〈q〉[Z] the previsible controller for Z 238

M∗(E) & M.(E) the σ-additive & order-continuous measures on E 421

M∗[E ] the σ-additive measures on E 406

M.(E) the order-continuous measures on Cb(E) 421

mesh(S) the mesh of a random partition 138

Mg the martingale Mg
. = E[g|F.] 72

‖ ‖
M

a Picard norm on paths 274

m[f ] = m[f ; ξ′] local constant for a single-step method ξ′ 281

µZ the Doléans–Dade measure of Z 222

N(0, t) the law “normal zero–t” 419

O σ-algebra of optional or well-measurable sets 440

O( . ), o( . ) big O and little o 388

(Ω,F.) the underlying filtered measurable space 21

$ the typical point (s, ω) of R+ × Ω 22
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P the pertinent probability on (Ω,F) 3

P the pertinent probabilities 32

P[Z] the probabilities for which Z is an L0-integrator 61

P00 the bdd. predictable processes with bdd. carrier 128

P̌ def= B•(H) ⊗ P = (E [H]⊗E [F.])σ , predictable random functions 172

P∗(E) = M∗1,+(E) the probabilities on Cb(E) 421

P.(E) = M.
1,+(E) the order-continuous probabilities on E 421

p� = p�[Z] p if Z jumps, 2 otherwise 238

1� = 1�[Z] 2 if Z is a martingale, 1 otherwise 238

P = P[F.] the predictable processes or σ-algebra 115

PP the processes previsible with P 118

Pt the restriction of P to Ft 40

Q the rationals 363

Qt def= {q ∈ Q : 0 ≤ q < t} ∪ {t} 26

R the reals 363

R+ the positive reals, i.e., the reals ≥ 0 363

Rd∗ punctured d-space Rd \ {0} 363

R the extended reals {−∞} ∪ R ∪ {∞} 363

RlF [u; v] Taylor Remainder of degree l of F as v → u 305

ρ(r, s) the arctan metric on R 364

S Schwartz space of C∞-functions of fast decay 269

sgn sgn z = 1, 0,−1 according as z > 0,= 0, < 0 388

sign signx = 1,−1 according as x ≥ 0, < 0 330

sM Banach space of paths with ‖ ‖
M
<∞ 275

Sn
p,M processes with finite Picard Norm

p,M
283

S?n
p,M processes with finite Picard Norm

?

p,M
283

S[Z] &σ[Z] square function & continuous square function of Z 148

σ[Z] continuous square function of Z 148

σ
(
C∗b (E), Cb(E)

)
the topology of weak convergence of measures 421

T lF [u] Taylor polynomial of degree l of F at u 305

T = T[F.] the F.-stopping times 27

T . : λ 7→ T λ the time transformation for Z 239

Tp,q(.) type of a map or space 461

U = Uα
(
C0(E)

)
the range of the resolvent operators 463

V µ the Doléans–Dade process of µ 222

Λ〈q〉[Z] a previsible fin. var. process controlling Z 245

Λ〈q〉[ζ] a previsible controller 251

W Wiener process as a C[0,∞)-valued random variable 14

W Wiener measure 16
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F0
. [W.] the basic filtration of Wiener process 18

ξf. (x) = ξ(x, . ; f) the flow generated by f 278

dd ee∗
Lp(P)

the corresponding mean 452

Z.(ω) the path s 7→ Zs(ω) 23

Zs the function ω 7→ Z(s, ω) 23

ζT = [[[0, T ]]]ζ the random measure ζ stopped at T 173

ζ[X] lifetime of the solution X 273

Symbols

E→S the operator norm sup{‖Te‖
S

: ‖e‖
E
≤ 1} 388

1A = A the indicator function of A 365

Φ[µ] = µ ◦ Φ−1 the image of the measure µ under Φ 405

µ?ν the convolution of µ and ν 413

V∗ dual of the topological vector space V 381

X∗Z the indefinite Itô integral 133

Z? the maximal process of Z 26
*φ , *µ φ , µ reflected through the origin 410

E∗e the universal completion of E 407

‖ ‖
BMO

the Mean Oscillation Norm 210

Ac the complement of A 373

µ̂Γ the characteristic function of µ for Γ 410(
p
ν

)
p choose ν = p(p− 1) · · · (p− ν + 1)

/
ν! 388

Fδ the intersections of countable subfamilies of F 432

Fσ the unions of countable subfamilies of F 432

Fσδ the intersections of countable subfamilies of Fσ 432

∅ the empty set 364

ε denoting measurability, as in f ∈ F/G 391

ε “is member of” or “is measurable on” 23
.
= denoting equality almost surely or of classes 32

= denotes near equality and indistinguishability 35

brc the largest integer n with n ≤ r 79

F+ the positive elements of F 363∫
X dZ the elementary integral 47∫
X dZ the elementary integral for vectors 56∫
X dZ the (extended or Itô) stochastic integral 99∫
X dZ the (extended) stochastic integral revisited 134∫
A
F =

∫
A·F the integral over the set A of the function F 105∫

X dZ the (extended or Itô) integral for vectors 110∫
X dZ the (extended) stochastic integral for vectors 134∫ T

0
X dZ its value at T ∈ T 134
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X∗Z the indefinite Itô integral for vectors 134∫
XδZ the Stratonovich integral 169

X◦Z the indefinite Stratonovich integral 169∫ T
0
G dZ

∫ T
0
G dZ def=

∫
G dZT 131∫ T

S+
G dZ

∫ T
0
G · ((S,∞)) dZ 131

H∗Z the indefinite integral of H against jump measure 181

M∞ the limit of the martingale M at infinity 75

| |
p

= ‖ ‖
`p

|x |
p

def=
(∑

ν |xν |p
)1/p

, 0 < p <∞ 364

| |∞ = ‖ ‖
`∞ |x |∞ def= supν |xν | 364

| | any of the norms | |
p

on Rn 364
∣∣ ∣∣
∞p

∣∣F
∣∣
∞p

def= (
∑

ν

(
sup η|F νη |

)p
)
1/p

283

∧&∨ a ∨ b & a ∧ b : smaller & larger of a, b 364∨ ∨F = supremum or span of the family F 22

∧ a ∧ b is the minimum of a and b 14

‖I ‖ = ‖I ‖
L(E,F )

= sup{‖I(x)‖
F

: x ∈ E, ‖x‖
E
≤ 1} 381

‖Z ‖Kq = inf {‖g‖
Lq : g ∈ K[Z]} 209

‖ ‖
BMO

= ‖ ‖K∞ 210

‖f ‖
p

= ‖f ‖
Lp(P)

def= (
∫
|f |p dP)

1/p
33

‖f ‖∗
p

= ‖f ‖∗
p;P

its mean ‖f ‖∗
Lp(P)

def= (
∫ ∗ |f |p dP)

1/p
452

dd ee
Z−p the semivariation for dd ee

p
53

‖ ‖∗
Z−p the Daniell extension of ‖ .‖

Z−p 88

ddf ee
p

= ddf ee
Lp(P)

= ddf ee
Lp(P)

def= (
∫
|f |p dP)

1/p ∧1
33

ddf ee∗
p

= ddf ee∗
p;P

its mean ddf ee∗
Lp(P)

def= (
∫ ∗|f |p dP)

1/p ∧1
452

dd ee∗ a subadditive mean 95

Z Ip= Z Ip[P]
integrator (quasi)norms of the integrator Z 55

ζh,t Ip= ζh,t Ip[P]
integrator (quasi)norms of the random measure ζ 173

dd ee∗
Z−p = dd ee∗

Z−p;P the Daniell mean 88

Z Ip = Z Ip[P]
def= sup {‖

∫
X dZ ‖

Lp(P)
: X ∈ E , |X| ≤ 1} 55

Z Ip = Z Ip[P]
def= sup {‖

∫
X dZ ‖

Lp(P)
: X ∈ E , |X| ≤ 1} 56

ddf ee
0

= ddf ee
0;P

the metric inf
{
λ : P

[
|f | ≥ λ

]
≤ λ

}
on L0 34

‖ ‖
[α]

‖f ‖
[α]

def= inf{λ > 0 : P[|f | > λ] ≤ α} 34

‖ ‖∗
[α]

the corresponding mean 452

‖ ‖
Z−[α]

the corresponding semivariation 53

‖ ‖∗
Z−[α]

the Daniell extension of ‖ .‖
Z−[α]

88

[α]
the integrator size according to ‖ ‖

[α]
55

p,M
,

?

p,M
Picard Norms 283

Fµ µ-completion of F 414



Index of Notations 7

TA the reduction of T ∈ T to A ∈ FT 31

0A the stopping time 0 reduced to A ∈ F0 48
σ, Eσ, Eσ

R
denoting sequential closure, of E 392

cV, jV continuous & jump part of finite variation process V 69
c̃Z, rZ continuous martingale part of Z , rest Z − c̃Z 235
s̃Z & lZ small-jump martingale part & large-jump part of Z 237
v̂Z a continuous finite variation part of Z 237
pZ the part of Z supported on a sparse previsible set 235
qZ the quasi-left-continuous rest Z − pZ 235

[Z,Z], c[Z,Z] & j[Z,Z] square bracket, its continuous & jump parts 148

[Y, Z], c[Y, Z] & j[Y, Z] square bracket, its continuous & jump parts 150
c[Y, Z] continuous part of the square bracket 150
j[Y, Z] jump part of the square bracket 150

Zt Zts = Zs∧t is the process Z stopped at t 23

ZT ZTs = ZT∧s is the process Z stopped at T ∈ T 28

σ(V,M) topology generated on V by the functions M 381

ZS the S-scalæfication of Z 139

[Z,Z] the square bracket of Z 148
c[Z,Z], j[Z,Z] its continuous & jump parts 148
j[Z,Z] the jump part of the square bracket of Z 148

[[T ]] = [[T, T ]] the graph of the stopping time T 28

X.−&X.+ left- & right-continuous version of X 24

X.+ the right-continuous version of X 24

z , µ variation of distribution function z , or measure µ 45

dz = |dz| the variation measure of the measure dz 45

̂Z & ̃Z compensator & compensatrix of jump measure 232

̃Z compensated part of the jump measure 232

ḟ the equivalence class of f mod negligible functions 13

Z [ν] the higher order brackets 239

Z〈ρ〉 higher order previsible brackets 240

Z∞ = Z∞− the limit (possibly ±∞) of Z at ∞ 27

� denoting absolute continuity 407

�. & ≈. local absolute continuity & local equivalence 40

≈. denoting local equivalence 40

⇒ denoting weak convergence of measures 421

ZT the random variable ω 7→ ZT (ω)(ω). 28

a ∼ b means both a/b and b/a are bounded by a constant <∞ 218

Ẑ, Z̃ previsible & martingale parts of the integrator Z 221



8 Index of Notations

ζ̂, ζ̃ previsible & martingale parts of random measure ζ 231

ζ̃ martingale part of the random measure ζ 231



Full Index

The page where an item is defined appears in boldface.
A page number in italics (boldface or no) refers to the

Answers in http://www.ma.utexas.edu/users/cup/Answers.

A

absolute-homogeneous, 33, 54, 380

absolutely continuous, 407

locally, 40

absorb, 379, 451, 465, 513

accessible stopping time, 122

action, differentiable, 279, 326

adapted, 23, 25

map of filtered spaces, 64, 317,

348

process, 23, 28

adaptive, 7, 141, 281, 317, 319

adjusted, initial condition 0C , 272

coupling coefficient 0F , 272, 286

a.e., almost everywhere, 32, 96

meaning Z-a.e., 129

a.e.,

meaning Z-almost everywhere,
129

Alaoglu, 425

algebra, 366

algorithm,

computing integral pathwise, 140

solving a markovian SDE, 311

solving a SDE pathwise, 7, 314

a.s., almost surely, P-a.s., 32

almost everywhere, 96

ambient set, 90

analytic set, 432

analytic space, 441

angle bracket 〈 , 〉 , 228

approximate identity, 447, 526

approximation, numerical – see
method, 280

arbitrarily large,

stopping times, 51

arc, 153

arctan metric, 110, 364, 369, 375

Ascoli–Arzela theorem, 7, 385, 428

ASSUMPTIONS,

on the data of a SDE, 272

the filtration is natural (regular

and right-continuous), 58, 118,
119, 123, 130, 162, 221, 254, 437

the filtration is right-continuous,
140

atomic decay, 122

autologous,

coupling coefficient, 288, 299, 305

auxiliary base space, 172

auxiliary space, 171, 172, 239, 251

average, 504

B

background noise, 2, 8, 272

stationary, 10

backward equation, 359

Baire & Borel, function, set &
σ-algebra, 391, 393

Baire & Borel functions, 391, 393

ball, 377, 379

Banach space,

-valued integrable functions, 409

base space, 22, 40, 64, 90, 172

auxiliary, 172



10 Index

basic filtration, 18

of a process, 19, 23

of Wiener process, 18

on path space, 66, 445

basis,

stochastic, 22

of neighborhoods, 374

of a uniformity, 374

Bernoulli random variables, 426, 455

bigger than (≥), 363

Big O, 388

Blumenthal, 352

Bochner integrable, 400, 463

Bochner’s theorem, 458

Borel,

σ-algebra, 391

Borel function, 391

Borel σ-algebra on path space, 15

bounded,

Ip[P]-bounded process, 49

linear map, 452

polynomially, 322

process of — variation, 67

stochastic interval, 28

subset of a topological vector
space, 379, 451

subset of Lp , 451, 513

variation, 45

bounded away from zero, 182, 344,
356, 367, 416

boundedawayfromzero, 208

bounded graph,

stopping time with —, 69

bounded mean oscillation, 210

(B-p), 50, 53

bracket,

previsible, oblique or angle —,

228

square —, 148, 150

brackets,

higher order, 239

higher order previsible, 240

Brown, 9

Brownian motion, 9, 12, 18, 80

Brownian sheet, 20

Burkholder, 84, 213

C

càdlàg, càglàd, 24

calculus, 141, 168, 241

canonical,

decompositions of an integrator,
221, 234, 235

filtration on path space, 66, 335

Wiener process, 16, 58

canonical representation, 66

of an integrator, 14, 67

of a random measure, 177

of a semigroup, 358

capacitable, 434

capacity, 124, 252, 398, 434

Caratheodory, 395

carrier of a function, 369

Cauchy,

distribution, 458

filter, 374

random variable & distribution,

458

Cauchy–Schwarz inequality, 150

Central Limit Theorem, 10, 423, 567

Chapman–Kolmogorov equations,
465

characteristic function, 13, 161, 254,
410, 430, 458, 507

of a Gausssian, 419

of a Lévy process, 263

of Wiener process, 161

characteristic triple, 232, 259, 270

chopping, 47, 366

closed under —, 47, 90, 94, 95,

105, 366, 395

Choquet, 435, 442

class Ckb etc, 281

class D processes, 222

closed,

operator, 464



Index 11

closed (cont’d)

sequentially, 391

set, 373

closure,

sequential, 392, 534

topological of a set, 373

collor, corlol, 24

commuting flows, 279

commuting vector fields, 279, 326

commuting with translation, 269

compact, 373, 375

paving, 432

compatible,

integrator — with a time trans-
formation, 546

compensated part of an integrator,

221

compensator, 185, 221, 230, 231

compensatrix, 221

complete,

uniform space, 374

universally — filtration, 22

completely regular, 373, 376, 421

completion,

of a filtration, 39

of a uniform space, 374

universal, 22, 26, 407, 436

with respect to a measure, 414

E-completion, 369, 375

completely (pseudo)metrizable, 375

compound Poisson process, 270

computer, 140, 311, 534

conditional expectation, 5, 71, 72,
349, 408, 511

condition(s),

(IC-p), 89

(B-p), 50, 53

(RC-0), 50

the natural, 39

confined, 369, 394

E-confined, 369

self-confined, 172, 393

uniform limit, 370

conjugate exponents, 76, 449

conservative,

generator, 466, 467

semigroup, 268, 465, 466, 467

consistent family, 164, 166, 401

full, 402

of probabilities, 401

constant,

ultimately, 119

continuity, 373

continuity along increasing se-
quences, 95, 124, 137, 398, 452

of a capacity, 434

of E , 89, 106

of E+ , 94

of E↑+ , 90, 95, 125

Continuity Theorem, 254, 423

continuous,

process, 23

continuous martingale part,

of a Lévy process, 258

of an integrator, 235

continuous semigroup, 463

contraction semigroup, 463

contractivity, 235, 251, 407, 415

modulus, 274, 290, 299, 407

strict, 274, 275, 282, 290, 291, 297,
407

control,

previsible, of integrators, 238

previsible, of random measures,
251

sure, of integrators, 292

controller,

the, for random measures, 251

the previsible, 238, 283, 294

control measure, 129

CONVENTIONS, 21

[Z,Z]0 = j[Z,Z]0 = Z2
0 , 148

= denotes near equality and in-

distinguishability, 35

[Y, Z]0 = j[Y, Z]0 = Y0·Z0 , 150
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CONVENTIONS (cont’d)

∈ meaning “measurable on”, 23,

391∫ T
0
G dZ is the random variable

(G∗Z)T , 134∫ T
0
G dZ =

∫
G dZT , 131

P is understood, 55

∆X0 = X0 , 25

X0− = 0, 24

about positivity, negativity etc.,

363

about ±∞ , 363

Einstein convention, 8, 146

integrators have right-continuous
paths with left limits, 62

processes are only a.e. defined, 97

re Z-negligibility, Z-measurability,
Z-a.e., 129

sets are functions, 364

Z-almost everywhere, 129

Z-measurable, 129

Z-negligible, 129

convergence,

dd ee∗-a.e. & Z−p-a.e., 96

in law or distribution, 421

in mean, 6, 96, 99, 102, 103, 449

in measure or probability, 34

in probability, 34

largely uniform, 111

of a filter, 373

uniform — on large sets, 111

weak, of measures, 421

convex,

function, 147, 408, 514

function of an L0-integrator, 146

set, 146, 189, 197, 379, 382

strictly — function, 408

convolution, 117, 196, 199, 275, 288,
373, 413

semigroup, 254

core, 270, 464

countably generated, 100, 377, 559,

560

countably generated (cont’d)

algebra or vector lattice, 367

countably subadditive, 87, 90, 94,
396

counting measure, 180, 413, 550

coupling coefficient, 1, 2, 4, 8, 272

autologous, 288, 299, 305
autonomous, 287

depending on a parameter, 302,

305

endogenous, 289, 314, 316, 331

instantaneous, 287

Lipschitz, 285
Lipschitz in p-mean, 286

Lipschitz in Picard norm, 286

markovian, 272, 321

non-anticipating, 272, 333

of linear growth, 332

randomly autologous, 288, 300

strongly Lipschitz, 285, 288, 289

Courrège, 232

covariance,

Wiener process with —, 161, 258

covariance matrix, 10, 19, 161, 420

cross section, 204, 331, 378, 436, 438,
440

cumulative,

noise, 2

cumulative distr. function, 69, 406

cylinder function, 354, 401

D

Daniell mean, 87, 397

the, 89, 95, 109, 124, 174
maximality of, 123, 135, 217, 398

Daniell’s method, 87, 395

Davis, 213

DCT: Dominated Convergence The-

orem, 5, 52, 103

debut, 40, 127, 437

decompositions, canonical, ,

of an integrator, 221, 234, 235

of a Lévy process, 265



Index 13

decreasingly directed, 366, 398

Dellacherie, 432

dense,

set in a topological space, 373

topology, 415

density, 407, 410

derivative, 388

higher order weak, 305

tiered weak, 306

weak, 302, 390

deterministic, not depending on

chance ω , 7, 47, 123, 132

differentiability,

Fréchet–, 549

differentiable, 388

action, 279, 326

l-times weakly, 305

weakly, 278, 390

differential form,

of Itô’s Formula, 158

diffusion coefficient, 11, 19

Dirac measure, 41, 398

discrete, 31

disintegration, 231, 258, 418

dissipative, 464

distinguish processes, 35

distribution, 10, 14, 405

cumulative — function, 406

Gaussian or normal, 419

normal, 419

distribution function, 43, 45, 87, 263,
406

of Lebesgue measure, 51

random, 49

stopped, 131

Doléans–Dade,

exponential, 159, 163, 167, 180,
186, 219, 326, 344

measure, 222, 226, 241, 245, 247,

248, 249, 251, 537, 541

process, 222, 226, 231, 245, 247,

249

Donsker, 426

Doob, 60, 75, 76, 77, 223, 521, 528

maximal lemma of —, 76

optional stopping theorem of —,

77, 521

Doob–Meyer decomposition, 187,

202, 221, 228, 231, 233, 235, 240,
244, 247, 254, 266

δ-ring, 104, 394, 409

drift, 4, 72, 272

drive, 9

driver, 11, 20, 169, 188, 202, 228, 246

of a stochastic differential equa-
tion, 4, 6, 17, 271, 311

driving term, 4, 11

d-tuple of integrators,

see vector of —, 9

dual of a topological vector space,

381

dyadic rationals, 36, 38, 385

E

effect, of noise, 2, 8, 272

Einstein convention, 146

elementary,

integral, 7, 44, 47, 99, 395

integrand, 7, 43, 44, 46, 47, 49, 56,

79, 87, 90, 95, 99, 111, 115, 136,
155, 395

stochastic integral, 47

stochastic integrand, 46

stopping time, 47, 61

endogenous coupling coefficient, 289,
314, 316, 331

enlargement,

natural, of a filtration, 39, 57, 101,
255, 440

usual, of a filtration, 39

envelope, 125, 129, 135

Z-envelope, 129

measurable, 398

predictable, 125, 129, 135, 337

predictable dd ee∗-—, 125

equicontinuity, uniform, 384, 387
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equivalence class ḟ of a function, 32

equivalent, locally, 40, 162

equivalent probabilities, 32, 34, 50,
187, 191, 206, 208, 450

ESP, extrasensory perception, 35

essence, 172, 175, 176

Euler–Peano approximation, 7, 311,
312, 314, 317

evaluation map, 15

evaluation process, 66

evanescent, 35

event, 3

evolution equation, 342

evolution of the world, 3

exceed, 363

expectation, 32, 505

exponential, stochastic, 159, 163,
167, 180, 186, 219

extended reals, 23, 60, 74, 90, 125,

363, 364, 375, 392, 394, 408

extension, integral, of Daniell, 87

F

factorization, 50, 192, 233, 282, 291,

293, 295, 298, 304, 320, 458, 523,
557

of random measures, 187, 208, 297

factorization constant, 192

Fatou’s lemma, 449, 536

Fefferman, 213

Fefferman’s inequality, 212

Feller semigroup, 269, 350, 351, 465,

466

canonical representation of, 358

conservative, 268, 465

convolution, 268, 466

natural extension of, 467

stochastic representation, 351

stochastic representation of, 352

filter, 373

filter, convergence of, 373

filtered measurable space, 21, 438

filtration, 5, 22

filtration (cont’d)

basic, of a process, 18, 19, 23, 254

basic, of path space, 66, 166, 445

basic, of Wiener process, 18

canonical, of path space, 66, 335

full, 166, 176, 177, 185

full measured, 166

P-regular, 38, 437

is assumed right-continuous and

regular, 58, 60, 62

measured, 32, 39

natural, of a process, 39

natural, of a random measure, 177

natural, of path space, 67, 166

natural enlargement of, 39, 57,
254

regular, 38, 437

regularization of a, 38, 135

right-continuous, 37

right-continuous version of, 37, 38,

117, 438

universally complete, 22, 437, 440

finite,

for the mean, 90, 94

function — in p-mean, 448

process — for the mean, 97, 100

process of — variation, 68

stochastic interval, 28

variation, 45

variation, process of —, 23

finite intersection property, 432

finite variation, 394, 395

flow, 278, 326, 359, 466

λ-form, 305

Fourier inversion formula, 411

Fourier transform, 410

Fréchet space, 364, 380, 400, 467

Fréchet differentiability, 549

French School, 21, 39

Friedman, 459

F.-stopping time, 27

Fubini’s theorem, 403, 405
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full,

filtration, 166, 176, 185

measured filtration, 166

projective system, 402, 447

function,

Baire & Borel, 391, 393

Banach space-valued integrable,
409

finite in p-mean, 448

p-integrable, 33

idempotent, 365

lower semicontinuous, 194, 207,

376, 393

numerical, 110, 364

simple measurable, 448

universally measurable, 22, 23,
351, 407, 437

upper semicont., 108, 194, 207,
376, 382

vanishing at infinity, 366, 367

functional, 370, 372, 379, 381, 394

functional, solid, 34

Fundamental Theorem of Calculus,

157, 170, 304, 401, 464

G

Gamma function, 420

Garsia, 215

gauge, 50, 89, 95, 130, 380, 381, 400,

450, 468

gauges defining a topology, 95, 379

Gauß kernel, 420

Gaussian,

distribution, 419

normalized, 12, 419, 423

semigroup, 466

with covariance matrix, 270, 420

Gδ-set, 379

Geiger counter, 122

Gelfand transform, 108, 174, 370,
533, 560

generate,

a σ-algebra from functions, 391

generate (cont’d)

a topology, 376, 411

generator, conservative, 467

generator of a semigroup, 351, 463

Girsanov’s theorem, 39, 162, 164,
167, 176, 186, 338, 475

global Lp(P)-integrator, 50

global Lp-random measure, 173

graph of an operator, 464

graph of a random time, 28

grave, 374, 465

Gronwall, 383

Gundy, 213

H

Haagerup, 457

Haar measure, 196, 394, 413

Hahn–Banach theorem, xii, 194, 301,

379, 523, 560

Hardy mean, 179, 217, 219, 232, 234

Hardy space, 220

harmonic measure, 340

Hausdorff space or topology, 367,
370, 373

heat kernel, 420

Heun method, 322

heuristics, 10, 11, 12

history, 5, 21

course of, 3, 318

hitting distribution, 340

Hölder’s inequality, 33, 188, 449

homeomorphism, 343, 347, 364, 379,

441, 460

Hunt function, 181, 185, 257, 258

C∗-algebra, 504

hyperplane, 379
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I

(IC-p), 89

idempotent function, 365

identity operator, 463

iff, meaning if and only if, 37

Lp(P)-integrator, 50

global, 50

vector of, 56

i.i.d.=independent identically distri-

buted, 79

image of a measure, 405

improper Riemann integral, 463

increasingly directed, 72, 366, 376,
398, 417

increasing process, 23

increments, 10, 19

independent, 10, 253

indefinite integral,

against an integrator, 134

against jump measure, 181

independent, 10, 16, 263, 413

increments, 10, 253

indistinguishable, 35, 62, 226, 387

induced topology, 373

induced uniformity, 374

inequality,

Cauchy–Schwarz —, 150

Hölder’s —, 449

of Hölder, 33, 188

initial condition, 8, 273

initial value problem, 279, 280, 342,
464, 549

inner measure, 396

inner regularity, 400

instant, 31

instantaneous,

coupling coefficient, 287

integrability criterion, 113, 397

integrable,

Bochner —, 400, 463

function, Banach space-valued,

409

integrable (cont’d)

process, on a stochastic interval,
131

set, 104

integral,

against a random measure, 174

elementary, 7, 44, 47, 99, 395

elementary stochastic, 47

extended, 100

extension of Daniell, 87

Itô stochastic, 99, 169

stochastic, 99

Stratonovich stochastic, 169, 320

upper, of Daniell, 87

Wiener, 5

integral equation, 1

integrand, 43

elementary, 7, 43, 44, 46, 47, 49,

56, 79, 87, 90, 95, 99, 111, 115,
136, 155

elementary stochastic, 46

integrator, 7, 20, 43, 50

d-tuple of, see vector of, 9

local, 51, 234

slew of, see vector of, 9

integrators,

vector of, 56, 63, 77, 134, 149, 187,

202, 238, 246, 282, 285

intensity, 231

measure, 231

of jumps, 232, 235

rate, 179, 185, 231

interior of a set, 373

interpolation, 33, 85, 453, 517

interval,

finite stochastic, 28

random —, 28

stochastic, 28

intrinsic time, 239, 318, 321, 323

invariant, 464

involution, 504

iterates,

Picard, 2, 3, 6, 273, 275
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Itô, 5, 24
Itô’s theorem, 157

Itô stochastic integral, 99, 169

J

Jensen’s inequality, 73, 243, 408, 515
jump intensity, 232

continuous, 232, 235
measure, 258

rate, 232, 258
jump measure, 181

jump process, 148

K

Khintchine, 64, 455
Khintchine constants, 457

Kolmogorov, 3, 384
Kronecker delta, 19

Kunita–Watanabe, 212, 228, 232
Ky–Fan, 34, 189, 195, 207, 382

L

lacunary, 455

Laplace transform,
of a semigroup, 463

largely,
smooth, 111, 175

uniform convergence, 111

uniformly continuous, 405
lattice algebra, 366, 370

law, 10, 13, 14, 161, 405
Newton’s second, 1

of Wiener process, 16
strong law of large numbers, 76,

216
symmetric stable, 458

Lebesgue, 87, 395
Lebesgue measure, 394

Lebesgue–Stieltjes integral, 4, 43, 54,
87, 142, 144, 153, 158, 170, 232,

234
left-continuous,

process, 23

left-continuous (cont’d)

time transformation, 543

version of a process, 24

version of the filtration, 123

`p-length of a vector or sequence,
364

less than (≤), 363

Lévy,

measure, 258, 269

process, 239, 253, 292, 349, 466

Lévy’s characterization of Wiener

process, 19, 160

Lie bracket, 278

lifetime of a solution, 273, 292

lifting, 415

strong, 419

Lindeberg condition, 10, 423

linear functional, positive, 395

linear map, bounded, 452

Lipschitz,

constant, 144, 274

coupling coefficients, 285

function, 2, 4, 144

in p-mean, 286

in Picard norm, 286

locally, 292

strongly, 285, 288, 289

vector field, 274, 287

Little o, 388

local,

L1-integrator, 221

Lp-random measure, 173

martingale, 75, 84, 221

property of a process, 51, 80

local E-compactification, 108, 367,

370

local martingale, 75

square integrable, 84

local time, 147

locally absolutely continuous, 40, 52,
130, 162

locally bounded, 122, 225

locally compact, 374
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locally convex, 50, 187, 379, 467

locally equivalent probabilities, 40,
162, 164

locally Lipschitz, 292

locally Z−p-integrable, 131

logcharacteristic function, 256, 257

Lorentz space, 51, 83, 452

lower integral, 396

lower semicontinuous, 207, 376, 393

function, 194

Lp-bounded, 33

Lp(P)-integrator, 50

Lp-integrator, 50, 62

complex, 152

vector of, 56

Lusin, 110, 432

space, 447

space or subset, 441

L0-integrator,

convex function of a, 146

M

(M), condition, 91, 95

markovian coupling coefficient, 272,

287, 311, 321

Markov property, 349, 352

strong, 349, 352

martingale, 5, 19, 71, 74, 75

continuous, 161

local, 75, 84

locally square integrable, 213

of finite variation, 152, 157

previsible, 157

previsible, of finite variation, 157

square integrable, 78, 163, 186,

262

uniformly integrable, 72, 75, 77,
123, 164

martingale measure, 220

martingale part, continuous, of an

integrator, 235

martingale problem, 338

P-martingale, 77

Maurey, 195, 205

maximal inequality, 61, 337

maximality,

of a mean, 123

of Daniell’s mean, 123, 135, 217,
398

maximal lemma of Doob, 76

maximal path, 26, 274

maximal process, 21, 26, 29, 38, 61,

63, 122, 137, 159, 227, 360, 443,
539

maximum principle, 340

MCT: Monotone Convergence Theo-

rem, 102

mean, 94, 399

the Daniell —, 89, 124, 174

controlling a linear map, 95

controlling the integral, 95, 99,
100, 101, 123, 124, 217, 247, 249,

250

Hardy—, 217, 219, 232, 234

σ-finite –, 105

majorizing a linear map, 95

maximality of a —, 123

maximality of Daniell’s —, 123,

135, 217

pathwise, 216

measurability, 111

measurable, 110

cross section, 436, 438, 440

filtered — space, 21, 438

Z-measurable, 129

Z−p-measurable, 111

on a σ-algebra, 391

process, 23, 243

set, 114

simple function, 448

space, 391

measure, 394

convergence in —, 34

σ-finite, 449

of totally finite variation, 394

support of a, 400
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measure (cont’d)

tight, 21, 165, 399, 407, 425, 441

measured filtration, 39

measure space, 409

mesh of a random partition, 138

method,

adaptive, 281

Euler, 280, 281, 311, 314, 318, 322

Heun, 322

order of, 281, 324

Runge–Kutta, 282, 321, 322

scale-invariant, 282, 329

single-step — ξ′ , 280

single-step — Ξ′ , 322, 325

Taylor, 281, 282, 321, 322, 327

metric, 374

metrizable, 367, 375, 376, 377

Meyer, 228, 232, 432

minimax theorem, 382

Minkowski functional, 380

µ-integrable, 397

µ-measurable, 397

µ-negligible, 397

model, 1, 2, 4, 6, 8, 9, 10, 11, 18, 20,

21, 27, 32

modification, 58, 61, 62, 75, 101, 132,

134, 136, 147, 167, 223, 268

P-modification, 34, 384

modulus,

of continuity, 58, 191, 206, 209,
444, 533

of contractivity, 290, 299, 407

momentum, 1

monotone class, 16, 145, 155, 218,

224, 393, 439, 520, 530, 531, 564

Monotone Class Theorem, 16

morphism, 66

morphism of filtered spaces, 64

multiplicative class, 393, 399, 421

complex, 393, 399, 410, 421, 423,

425, 427

µ-measurable,

map between measure spaces, 405

mutare, to change, 129, 165, 251,
347, 406

N

natural,

domain of a semigroup, 467

extension of a semigroup, 467

filtration of path space, 67, 166

increasing process, 228, 234

natural conditions, 29, 39, 60, 118,
119, 127, 130, 133, 162, 437

natural enlargement of a filtration,

57, 101, 254, 255, 440

nearly, 38, 52, 58, 71, 74, 75, 118,
119, 134, 141, 146, 152, 158, 304,

344, 545

nearly, P-nearly, 35, 38, 358, 511

nearly empty set, 35, 36, 60, 62, 127,

136, 150, 154, 167, 183, 283, 295,
355, 518, 520, 531, 546

P-nearly, 35, 38

negative, (≤ 0), 363

strictly — (< 0), 363

negligible, 32, 95

meaning Z-negligible, 129

P-negligible, 32

neighborhood filter, 373

Nelson, 10

Newton, 1

Nikisin, 207

noise, 2

background, 2, 8, 272

cumulative, 2

effect of, 2

nolens volens, meaning nilly–willy,

421

non-adaptive, 281, 317, 321

non-anticipating,

coupling coefficient, 333

process, 6, 144

random measure, 173

non-increasing rearrangement, 451

normal distribution, 419
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normal distribution with covariance
matrix, 420

normalized Gaussian, 12, 419, 423

normed algebra, 504

Notations, see Conventions, 21

Novikov, 163, 165

numerical, 23, 392, 394, 408

function, 110, 364

numerical approximation, see
method, 280

O

observable, 504

ODE, 4, 273, 326

one-point compactification, 356, 366,
374, 465

opaque, 162

open set, 373

operator norm, 388, 463

optional,

σ-algebra O , 440

process, 440
projection, 440

stopping theorem, 77, 521

order-bounded, 406

order-complete, 252, 406

order-continuity, 398, 421

order-continuous mean, 399

order interval, 45, 50, 173, 372, 513

order of an approximation scheme,
281, 319, 324

oscillation of a path, 444

outer measure, 32, 396

P

partial derivative, 389

partition,

random, 138

partition, random or stochastic, 138

partition,

stochastic, 138

past, 5, 21

of a stopping time, 28

past (cont’d)

strict, of a stopping time, 120,
225, 529

path, 4, 5, 11, 14, 19, 23

—s describing the same arc, 153

path space, 14, 20, 166, 380, 391,

411, 440

basic filtration of, 66

canonical, 66

canonical filtration of, 66, 335

natural filtration of, 67, 166

pathwise,

computation of the integral, 140

failure of the integral, 5, 17

mean, 216, 238

previsible control, 238

solution of an SDE, 311

stochastic integral, 7, 140, 142,
145

pauculi: a very few, 110, 174

paucity, 110, 174

paved set, 432

paving, 432

compact, 432

permanence properties, 165, 391, 397

of fullness, 166

of integrable functions, 101

of integrable sets, 104

of measurable functions, 111, 114,

115, 137

of measurable sets, 114

phase space, 1, 10

Picard, 4, 6

iterates, 2, 3, 6, 273, 275

iteration, 1, 313

Picard norm, xii, 274, 283

Lipschitz in, 286

p-integrable,

function or process, 33

process, 33

uniformly — family, 449

Pisier, 195

p-mean σ-additivity, 106
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p-mean, 33

p;P-mean σ-additivity, 90

point at infinity, 374

point process, 183

Poisson, 185

simple, 183

Poisson point process, 185, 264

compensated, 185

Poisson process, 268, 270, 359

Poisson random variable, 420

Poisson semigroup, 359

polarization, 366

polish space, 15, 20, 440

polynomially bounded, 322

positive (≥ 0), 363

linear functional, 395

strictly — (> 0), 363

positive maximum principle, 269,
466

positive semidefinite,

inner product, 150

matrix, 161, 258, 259, 420, 536

potential, 225

P-regular filtration, 38, 437

precompact, 376

predictable, 115

envelope, 125, 129, 135, 337

increasing process, 225

process, 115, 125

process of finite variation, 117

projection, 439

random function, 172, 175, 180

stopping time, 118, 438

transformation, 185

predict a stopping time, 118

prelocal, xii

previsible, 68

bracket, 228

control, 238

dual — projection, 221

process, 68, 122, 138, 149, 156,
217, 228, 238

process of finite variation, 221

previsible (cont’d)

process — with P , 118

set, 118

set, sparse, 235

square function, 228

previsible controller, 238, 283, 294

probabilities,

locally equivalent, 40, 162

probability, 3, 505

convergence in —, 34

on a topological space, 421

process, 6, 23, 90, 97

adapted, 23

basic filtration of a, 19, 23, 254

continuous, 23

defined dd ee∗-a.e., 97

evanescent, 35

finite for the mean, 97, 100

Ip[P]-bounded, 49

Lp-bounded, 33

p-integrable, 33

dd ee∗-integrable, 99

dd ee∗-negligible, 96

Z−p-integrable, 99

Z−p-measurable, 111

increasing, 23

indistinguishable —es, 35

integrable on a stochastic interval,
131

jump part of a, 148

jumps of a, 25

left-continuous, 23

Lévy, 239, 253, 292, 349

locally Z−p-integrable, 131

local property of a, 51, 80

maximal, 21, 26, 29, 61, 63, 122,

137, 159, 227, 360, 443, 539

measurable, 23, 243

modification of a, 34

natural increasing, 228

non-anticipating, 6, 144

of bounded variation, 67

of class D, 222
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process (cont’d)

of finite variation, 23, 67

optional, 440

predictable, 115, 125

predictable increasing, 225

predictable of finite variation, 117

previsible, 68, 118, 122, 138, 149,
156, 217, 228, 238

previsible of finite variation, 221

previsible with P , 118

reduced to a property at a stop-

ping time, 51

right-continuous, 23

square integrable, 72

stationary, 10, 19, 253

stopped, 23, 28, 51

stopped just before T , 159, 292,

538

variation — of another, 68, 226

Wiener —, 9

product σ-algebra, 402

product of elementary integrals, 402,

413

infinite, 12, 404

product paving, 402, 432, 434

progressively measurable, 25, 28, 35,
37, 38, 40, 41, 65, 437, 440, 510,

525, 546

projection,

dual previsible, 221

predictable, 439

well-measurable, 440

projective limit,

of elementary integrals, 402, 404,
447

of probabilities, 164

projective system, 401

full, 402, 447

Prokhoroff, 425

‖ ‖
p
-semivariation, 53

pseudometric, 374

pseudometrizable, 375

punctured d-space, 180, 257

Q

quasi-left-continuity, 232, 235, 239,
250, 265, 285, 292, 319, 350

of a Lévy process, 258

of a Markov process, 352

quasinorm, 381

quasinormed, 381

R

Rademacher functions, 457

Radon measure, 177, 184, 231, 257,
263, 355, 394, 398, 413, 418, 442,

465, 469

Radon–Nikodym derivative, 41, 151,

187, 223, 407, 450, 536

random,
interval, 28

partition, 138

partition, refinement of a, 138

sheet, 20

time, 27, 118, 436
vector field, 272

random function, 172, 180
predictable, 175

randomly autologous,

coupling coefficient, 288, 300

random measure, 56, 109, 173, 188,

205, 235, 246, 251, 263, 296, 370

canonical representation, 177

compensated, 231
driving a SDE, 296, 347

driving a stochastic flow, 347

factorization of, 187, 208

quasi-left-continuous, 232

spatially bounded, 173, 296
stopped, 173

strict, 183, 231, 232

vanishing at 0, 173

Wiener, 178, 219

random partition,

refinement of a, 62

random time, graph of, 28

random variable, 22, 391
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random variable (cont’d)

nearly zero, 35

simple, 46, 58, 391

symmetric stable, 458

(RC-0), 50

rcll, lcrl, 24

reals,

extended, 364, 375

rectification,

time — of a SDE, 280, 287

time — of a semigroup, 469

recurrent, 41

reduce,

a process to a property, 51

a stopping time to a subset, 31,
118

reduced stopping time, 31

refine,

a filter, 373, 428

a random partition, 62, 138

reflection through the origin, 268,

410, 414

regular, 35

filtration, 38, 437

stochastic representation, 352

regularization,

of a filtration, 38, 135

relatively compact, 260, 264, 366,

385, 387, 425, 426, 428, 447

remainder, 277, 388, 390

remove a negligible set from Ω, 165,

166, 304

representation,

canonical of an integrator, 67

of a filtered probability space, 14,

64, 316

representation of martingales,

for Lévy processes, 261

on Wiener space, 218

resolvent, 352, 463, 505

identity, 463, 506

Riemann–Lebesgue lemma, 410

right-continuous, 44

right-continuous (cont’d)

filtration, 37

process, 23

time transformation, 543

version of a filtration, 37

version of a process, 24, 168

ring of sets, 394

Runge–Kutta, 281, 282, 321, 322,

327

S

σ-additive, 394

in p-mean, 90, 106

marginally, 174, 371

σ-additivity, 90

σ-algebra, 394

Baire vs. Borel, 391

Baire, 391

function measurable on a, 391

generated by a family of func-

tions, 391

generated by a property, 391

universally complete, 407

σ-algebras, product of, 402

saturation,

of a collection of pseudometrics,

374

scalæfication, of processes, 139, 300,
312, 315, 335

scalae: ladder, flight of steps, 139,

312

Schwartz, 195, 205

Schwartz space, 269, 270, 410

σ-continuity, 90, 370, 394, 395, 559

SDE, Stoch. Differential Equation,

1

self–adjoint, 505

self-adjoint, 454

self-confined, 369

semicontinuous, 207, 376, 382

semigroup,

conservative, 467

continuous, 463
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semigroup (cont’d)

contraction, 463

convolution, 254

Feller, 268, 465

Feller convolution, 268, 466

Gaussian, 19, 466

natural domain of a, 467

of operators, 463

Poisson, 359

resolvent of a, 463

time-rectification of a, 469

semimartingale, 232

seminorm, 380

semivariation, 53, 92

separable, 367

topological space, 15, 373, 377

separates the points, 367, 375, 399,
412, 425, 441, 447, 559

sequential closure, 534

sequential closure or span, 392

sequentially closed, 17, 391, 510

set,

analytic, 432

P-nearly empty, 60

dd ee∗-measurable, 114

identified with indicator function,

364

integrable, 104

σ-field, 394

sheet,

Brownian, 20

random, 20

Wiener —, 20

shift,

a process, 4, 162, 164

a random measure, 186

σ-algebra,

P of predictable sets, 115

O of well-measurable sets, 440

of dd ee∗-measurable sets, 114

optional — O , 440

σ-finite,

class of functions or sets, 392, 395,
397, 398, 406, 409

mean, 105, 112

measure, 406, 409, 416, 449

simple,

measurable function, 448

point processs, 183

random variable, 46, 58, 391

size of a linear map, 381

Skorohod, 21, 443

space, 391

Skorohod topology, 21, 167, 411,

443, 445

slew of integrators,

see vector of integrators, 9

solid, 36, 90, 94

functional, 34

solution,

strong, of a SDE, 273, 291

weak, of a SDE, 331

space,

analytic, 441

completely regular, 373, 376

Hausdorff, 373

locally compact, 374

measurable, 391

polish, 15

Skorohod, 391

span, sequential, 392

sparse, 69, 165, 225

sparse previsible set, 235, 265

spatially bounded random measure,

173, 296

spectral radius, 506

spectrum, 505

spectrum of a function algebra, 367

square bracket, 148, 150

square function, 94, 148

continuous, 148

of a complex integrator, 152

previsible, 228
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square integrable,

locally — martingale, 84, 213

martingale, 78, 163, 186, 262

process, 72

square variation, 148, 149

stability,

of solutions to SDE’s, 50, 273,

293, 297

under change of measure, 129

stable, 220

stable span, 220

stable symmetric law, 458

standard deviation, 419

standard Wiener process, 11, 16, 18,

19, 77, 153, 162, 250, 326

d-dimensional, 20, 56, 160, 167,
218

on a filtration, 24, 72, 79, 298

state-of-the-world, 3

stationary,

background noise, 10

stationary process, 10, 19, 253

step function, 43

step size, 280, 311, 317, 319, 321, 327

stochastic,

analysis, 22, 34, 47, 436, 443

basis (see filtration), 22

exponential, 159, 163, 167, 180,
185, 219

flow, 343

flow, of class C1 , 346

integral, 99, 134

integral, elementary, 47

integrand, elementary, 46

integrator, 43, 50, 62

interval, bounded, 28

interval, finite, 28

partition, 138, 140, 147, 152, 169,
300, 312, 318

representation, regular, 352

representation of a semigroup, 351

Stone–Weierstraß, 108, 366, 377, 393,

399, 441, 442

stopped,

just before T , 159, 292, 538

process, 23, 28, 51

stopping,

optional — theorem, 77, 521

stopping time, 27, 51

accessible, 122

announce a, 118, 284, 333, 525

arbitrarily large, 51

elementary, 47, 61

examples of, 29, 119, 437, 438

of bounded graph, 69

past of a, 28

predictable, 118, 438

reduced, 31

totally inaccessible, 122, 232, 235,
236, 258

Stratonovich equation, 320, 321, 326

Stratonovich integral, 169, 320, 326

strictly positive or negative, 363

strict past,

of a stopping time, 529

strict past of a stopping time, 120

strict random measure, 183, 231, 232

strong law of large numbers, 76, 216

strong lifting, 419

strongly perpendicular, 220

strong Markov property, 349, 352

strong solution, 273, 291

strong type, 453

subadditive, 33, 34, 53, 54, 130, 380

P-submartingale, 73

submartingale, 73, 74

subprobability, 80, 408, 465

P-supermartingale, 73

supermartingale, 73, 74, 78, 81, 85,

352, 356

support of a measure, 400

sure control, 292

surely controlled, 292

Suslin, 432

space or subset, 441

symmetric form, 305
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symmetric stable,

random variable or law, 458

symmetrization, 305

Szarek, 457

T

tail filter, 373

Taylor method, 281, 282, 321, 322,
327

Taylor’s formula, 387

THE,

Daniell mean, 89, 109, 124

previsible controller, 238

time transformation, 239, 283, 296

thread, 401

threshold, 7, 140, 168, 280, 311, 314

tiered weak derivatives, 306

Tietze’s extension theorem, 560

tight,

measure, 21, 165, 399, 407, 425,

441

uniformly, 334, 425, 427

time, random, 27, 118, 436

time-rectification of a SDE, 287

time-rectification of a semigroup,

469

time shift operator, 359

time transformation, 283, 444, 530,
543

the, 283, 239, 296

topological space, 373

Lusin, 441

polish, 20, 440

separable, 15, 373, 377

Suslin, 441

topological vector space, 379

topology, 373

generated by functions, 411

generated from functions, 376

Hausdorff, 373

of a uniformity, 374

of confined uniform convergence,

50, 172, 252, 370

topology (cont’d)

of uniform convergence on com-

pacta, 14, 263, 372, 380, 385,
411, 426, 467

Skorohod, 21

uniform — on E , 51

totally bounded, 376

totally finite variation, 45

measure of, 394

totally inaccessible stopping time,

122, 232, 235, 236, 258

trajectory, 23

transformation, predictable, 185

transition probabilities, 465

translate, 269

translation-invariant, 269

transparent, 162

trapezoidal rule, 168

triangle inequality, 374

trick, 465, 469

Tychonoff’s theorem, 374, 425, 428

type,

map of weak —, 453

(p, q) of a map, 461

U

ultimately constant, 119

ultrafilter, 373, 563

dd ee∗-a.e.,

defined process, 97

convergence, 96

dd ee∗-integrable, 99

dd ee∗-measurable, 111

process, on a set, 110

set, 114

dd ee∗-negligible, 95

dd ee∗
Z−p-a.e., 96

dd ee∗
Z−p-negligible, 96

uniform,

convergence, 111

largely — convergence, 111
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uniform convergence on compacta,

see topology of, 380

uniform ellipticity, 337

uniformity, 374

generated by functions, 375, 405

induced on a subset, 374

E-uniformity, 110, 375

uniformizable, 375

uniformly continuous, 374

largely, 405

map, 374

pseudometric, 374

uniformly differentiable,

weakly, 299, 300, 390

weakly l-times, 305

uniformly p-integrable,

collection of functions, 449

uniformly integrable, 75, 225, 449

martingale, 72, 77

uniqueness of weak solutions, 331

unital, 504

universal completeness of the regu-
larization, 38

universal completion, 22, 26, 407,

436

universal integral, 141, 331

universally complete, 38

filtration, 437, 440

universally measurable,

function, 22

set or function, 23, 351, 407, 437

universal solution of an endogenous

SDE, 317, 347, 348

up-and-down procedure, 88

upcrossing, 59, 74

upcrossing argument, 60, 75

upper integral, 32, 87, 396

upper regularity, 124

upper semicontinuous, 107, 194, 207,

376, 382

usual conditions, 39, 168

usual enlargement, 39, 168

V

vanish at infinity, 366, 367, 465

variation, 395

bounded, 45
finite, 45

function of finite, 45

measure of finite, 394

of a measure, 45, 394

process, 68, 226
process of bounded, 67

process of finite, 67

square, 148, 149

totally finite, 45

vector field, 272, 311

random, 272

vector lattice, 366, 395

vector measure, 49, 53, 90, 108, 172,
448

vector of integrators,

see integrators, vector of, 9

version,

left-continuous, of a process, 24

right-continuous, of a process, 24
right-continuous, of a filtration,

37

W

Walsh basis, 196

weak,

derivative, 302, 390

higher order derivatives, 305

tiered derivatives, 306

weak convergence, 421
of measures, 421

weak∗ topology, 263, 381

weakly differentiable, 278, 390

l-times, 305

weak solution, 331

weak topology, 381, 411

weak type, 453

well-measurable,

σ-algebra O , 440

process, 217, 440, 536
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Wiener, 5
integral, 5

measure, 16, 20, 426
random measure, 178, 219

sheet, 20
space, 16, 58

Wiener process, 8, 9, 10, 11, 17, 89,
149, 161, 162, 169, 251, 426

as integrator, 79, 220
canonical, 16, 58

characteristic function, 161
d-dimensional, 20, 218

Lévy’s characterization, 19, 160

on a filtration, 24, 72, 79, 298
square bracket, 153

standard, 11, 16, 18, 19, 41, 77,
153, 162, 250, 326

standard d-dimensional, 20, 218
with covariance, 161, 258

Z

Zero-One Law, 41, 256, 352, 358
Z-measurable, 129

Z-negligible, 129
Z−p-a.e., 96, 123

convergence, 96
Z-envelope,

predictable, 129
Z−p-envelope,

predictable, 135

Z−p-integrable, 123, 99
ζ−p-integrable, 175

Z−p-measurable, 111, 123
Z−p-negligible, 96



Appendix D

Errata and Addenda

Erratum at Project 1.1.1 on page 3 (07/01/2002) Milan Lukic <lmi-

lan@shell.core.com> found several mistakes in appendix C, Answers to
the Problems, (http://www.ma.utexas.edu/users/cup/Answers), which see.

Erratum at Definition 3.5.17 on page 122 In the penultimate line read
strictly positive probability for positive probability.

Erratum at Equation (3.9.6) on page 162 Equation (3.9.5) on page 162
should read

M ′ =
(
M ′0 −G.−∗[M ′, G′]

)
+
(
G.−∗(M ′G′) − (M ′G).−∗G′

)
, (D.1)

and equation (3.9.6) should read

M +G′.−∗[M,G] = M0 +G′.−∗(MG) − (MG′).−∗G , (D.2)

every one of the processes on the right in (D.2) being a local P′-martingale.

Addendum to Theorem 4.1.2 on page 191 (Juli 2003) If the estimates (4.1.6)
and (4.1.9) on page 191 are not needed one can have the following result:

Theorem D.1 Suppose {Z(i) : i ∈ N} is a countable collection of
L0(P)-integrators. There exists a probability P′ equivalent with P on F∞
and having a bounded Radon–Nikodym derivative dP′/dP > 0 so that Z(i) is
an Lp(P′)-integrator for all p <∞ and all i ∈ N . In fact, given any sequence
(Tn) of almost surely finite stopping times that increases almost surely with-

out bound, P′ can be chosen so that every one of the stopped processes Z
(i)Tn

is a global Lp(P′)-integrator for every p < ∞ and every i ∈ N .

For the proof1 an auxiliary result is needed.

1 We rely heavily on the results and arguments of Jia–an Yan’s article in Sem. Prob. XIV,
page 220, where further literature is cited.

1



2 Errata and Addenda

Lemma D.2 (Mokobodzki–Dellacherie) (i) Let K be a convex subset of
L0(F ,P) that satisfies
(a) 0 ∈ K 2 and K− def= {k ∧ 0 : k ∈ K} ⊂ L1(F ,P) and
(b) K+

def= {k ∨ 0 : k ∈ K} is bounded in L0(P).
Then there exists a probability P′ that is equivalent with P on F and has
bounded Radon–Nikodym derivative dP′/dP > 0 such that

sup
{∫

k dP′ : k ∈ K
}
<∞ . (D.3)

(ii) Suppose now K is a countable collection of convex subsets of L0(P)
each of which satisfies (a) and (b) above. Again there exists a probability P′

equivalent with P and having bounded Radon–Nikodym derivative dP′/dP > 0,
so that inequality (D.3) is satisfied on every single K ∈ K .

Proof. Let K0
def= {f ∈ L1(P) : ∃k ∈ K with f ≤ k}

and K0
def= the closure of K0 in L1(P).

K0 is again convex, and every function k ∈ K is the pointwise supremum of
the functions k ∧ n ∈ K0 . Assumption (b) has the consequence that

∀A ∈ F with P[A] > 0 ∃ c ∈ R+ such that cA 6∈ K0 . (D.4)

Indeed, as K+ is bounded in L0(P) there is a c ∈ R+ with supk∈K+
P[k ≥ c]

≤ P[A]/2. Then clearly supk∈K0
P[k ≥ c] ≤ P[A]/2 as well, which implies

that cA cannot belong to K0 .
Yan1 has shown that condition (D.4) is necessary and sufficient for the

conclusion of (i). We show the sufficiency. To this end let, for any G ∈ L∞+ ,

c[G] def= sup{E[G · k] : k ∈ K} = sup{E[G · k] : k ∈ K0} ,
and let G def= {G ∈ L∞+ : c(G) <∞} and z def= inf{P[G = 0] : G ∈ G} .

There exists a sequence Gn ∈ G with z = limn P[Gn] . With λn > 0 chosen
so that

∑
λn · (c[Gn] + Gn ∞) < ∞ , clearly G′ def=

∑
λnGn ∈ G and

z = P[G′ = 0]. A suitable multiple of G′·P will be the desired probability P′

satisfying (D.3), provided that z = 0. We argue by contradiction. If z > 0
then there is a constant c > 0 with c[G′ = 0] 6∈ K0 . The Hahn–Banach
theorem provides a continuous linear functional g′ in the dual L∞(P) of
L1(P) so that

sup
k∈K0

∫
k · g′ dP <

∫
c[G = 0] · g′ dP . (D.5)

Since 0 ∈ K , K0 contains every negative bounded measurable function, in
particular n·(g′∧0), n ∈ N , which when substituted for k in (D.5) shows that
supn n ·

∫
(g′−)2 dP <∞ so that g′ must be almost surely positive. Therefore

2 If K ⊂ L1(P) then this condition is superfluous, as it can be had by a simple translation.
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g′ ∈ G . But then G′ + g′ belongs to G , and since the integral on the right
in inequality (D.5) is strictly positive, P[G′ + g′ = 0] < P[G′ = 0], which
contradicts the definition of z . This proves (i).

An aside. Suppose we know in advance that K ⊂ L∞(P). Define K0 instead as K − L∞
+

and denote by K0
p

the closure of K0 in Lp(P), and define in the previous argument K0

instead as the intersection of the K0
p
, p < ∞. Then Theorem D.2 persists. A slight

change to the argument occurs at inequality (D.5). From c[G′ = 0] 6∈ K0 we can now

only conclude that c[G′ = 0] 6∈ K0
p

for some p < ∞, so that the function g′ appearing

in inequality (D.5) can only be claimed to be in Lp
′
(P). But then g′ ∧ n will satisfy the

same inequality for sufficiently large n ∈ N, and, replacing g′ by it, we can continue the
argument as above.

Proof of (ii) (P.–A. Meyer 1): Let us count K = {Kn : n ∈ N} . Let
cn,m > 0 be such that P[k > cn,m] ≤ 2−n/m for all k ∈ Kn and all
m ∈ N ; then choose λn > 0 so that cm

def=
∑
n λncn,m < ∞ ∀ m . The

sets LN
def=
∑
n≤N λnKn are again convex and satisfy (a) and (b), and so

does their union L . To see that L satisfies (b), observe that every ` ∈ L is
a finite sum ` =

∑
n λnkn with kn ∈ Kn , so

P[` ≥ cm] ≤
∑

n

P[kn ≥ cm,n] ≤
∑

n

2−n/m = 1/m ∀m :

the positive part L+ of L is indeed bounded in L0(P), and the probability
P′ provided by part (i) for L meets the description of (ii).

Proof of Theorem D.1. Lemma D.2 (ii), applied to the sets

Kn
def=
{ n∑

i=1

∫ Tn

0

X(i) dZ(i) : X(i) ∈ E , |X(i)| ≤ 1
}
,

provides a probability equivalent with P and having bounded Radon–
Nikodym derivative with respect to which (Z(1), . . . , Z(n)) is an L1-integrator.
Actually, using Theorem 4.1.2 on page 191, we can say more: At every
time Tn there is a probability Pn ≈ P so that the stopped processes

Z
(1)Tn , . . . , Z

(n)Tn are global Ln(Pn)-integrators. This implies that the

set {∑n
i=1

∫ Tn

0
X(i) dZ(i) : X(i) ∈ E , |X(i)| ≤ 1} is bounded in Ln(Pn), or

again, that the set Kn of convex combinations of random variables the form

|∑n
i=1

∫ Tn

0
X(i) dZ(i) |n , X ∈ E , |X| ≤ 1, is bounded in L1

+(Pn). Kn is then
a fortiori bounded in L0(Pn) = L0(P) and its negative part (Kn)− = {0} be-
longs to L1(P). The probability P′ ≈ P produced by Lemma D.2 (ii) clearly
meets the description.

A similar argument shows that an L0-random measure is an L2-random mea-
sure for a suitable equivalent probability. Note again that these arguments
destroy any estimate of P in terms of P′ as in inequalities (4.1.6) and (4.1.9)
on page 191.
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Addendum to the subsection on the previsible bracket on page 231 (Trans-
formation of the Doob–Meyer decomposition under a Change of Mea-
sure) Suppose the local L1(P)-integrator Z has Doob–Meyer decomposition

Z = Ẑ + Z̃, and let P′ be a probability equivalent to P on F∞ , as in Lem-
ma 3.9.11 on page 162. There are a uniformly P-integrable (F.,P)-martingale
G′ and a uniformly P′-integrable (F.,P′)-martingale G such that P′ = G′∞·P ,
P = G∞·P , and G·G′ = 1.

To make the computation below meaningful, let us assume that Z is a
local Lp(P)-integrator and that G′ is locally bounded in Lp

′
(P), for some

p ∈ [1,∞). This has the effect that Z is a local L1(P′)-integrator (use coroll-

ary 4.4.3 on page 234) and thus has a Doob–Meyer decomposition Z = Ẑ ′+Z̃ ′

with respect to P′ . Here is a computation of Ẑ ′ and Z̃ ′ . Applying Equa-
tion (D.1) on page 1 with M = Z̃ gives

Z̃ ′ = −G.−∗〈Z̃ ′, G′〉 +
(
−G.−∗ ˜

[Z̃ ′, G′] +G.−∗(Z̃ ′G′) − Z̃ ′G′.−∗G′
)

︸ ︷︷ ︸

= −G.−∗〈Z̃ ′, G′〉 + Z (a local P-martingale) .

Since in view of exercise 4.3.18 〈Z̃ ′, G′〉 = 〈Z,G′〉, we get

Z = Ẑ + Z̃ =
(
Ẑ ′ −G.−∗〈Z,G′〉

)
+ Z ,

whence by the uniqueness of the Doob–Meyer decomposition

Ẑ =
(
Ẑ ′ −G.−∗〈Z,G′〉

)
and Z̃ = Z .

This gives the relations

Ẑ ′ = Ẑ +G.−∗〈Z,G′〉 = Ẑ +G.−∗〈Z̃, G′〉

and Z̃ ′ = Z̃ −G.−∗〈Z,G′〉 = Z̃ −G.−∗〈Z̃, G′〉

Addendum to Section 4.4 on page 232 (May 2003) It may be well to
compare the integration theory described in chapter 3 of this book with
the stochastic integral developed in Paul–André Meyer’s lectures [73]–[74]
and, slightly altered, in Protter’s book [91]. Since the latter these days
seems to be the preferred reference for stochastic integration with respect
to semimartingales that jump, we refer to its notations and presentation in
the following comparison.

Suppose Z = V +M is a semimartingale. It gives rise to the indefinite

stochastic integral X 7→ X · Z def=
∑

fi·(ZTi+1 − ZTi)

on the processes X =
∑

fi·((Ti, Ti+1]] , (∗)

with stopping times Ti ≤ Ti+1, fi ∈ L∞(FTi
), the sum finite.
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It is easy to see that X 7→ X · Z is a linear continuous map from the vector
space E of processes as in (∗) equipped with the topology ucp of uniform
convergence on compact intervals in probabilitys, to the vector space D of
adapted càdlàg processes equipped with the same topology. There exists
therefore an extension by continuity to the space bL of bounded adapted
càglàd processes, which evidently belongs to the ucp-closure of E . This first
extension is again denoted by X · Z in [91, pp. 34–45], and is called the
stochastic integral, with the qualifier “indefinite” left off (we would call
the same thing the indefinite integral and denote it by X∗Z ).

Next, if Z happens to be a global L2-integrator, then among its decompo-
sitions into a finite variation part and a local martingale there is a canonical
one where the finite variation part is previsible, to wit, the Doob–Meyer de-
composition Z = Ẑ + Z̃ . In this case there is the straightforward further
extension of the (indefinite) stochastic integral discussed in chapter 3, to pre-
visible processes X on which the Daniell-mean ddX ee∗

Z−2 is finite. Actually,
in [91] the mean

F 7→
(∫ ∗(∫ ∗

|Fs| d Ẑ
s

)2

dP
)1/2

+
(∫ ∗∫ ∗

F 2
s d[Z̃, Z̃]s dP

)1/2

is used instead, which of course on previsibles is bounded above and below
by universal multiples of ddX ee∗

Z−2 ([91, corollary on p. 138]). This second
extension is again denoted by X ·Z and evidently equals the indefinite integral
X∗Z of the present book.

Now if Z is merely a semimartingale then it is easily seen from the existence
of a decomposition Z = V + M that there exist arbitrarily large stopping
times T such that ZT− , “the process Z stopped strictly before T ” defined
as

ZT− def= Z·[[0, T )) + ZT−·[[T,∞)) ,

is a global L2-integrator ([91, theorem 13 on p. 132]). Indeed, for T def= inf{t :
|Vt| ∨ |Mt| > n} , ZT− has bounded jumps, and corollary 4.4.3 on page 234
shows that this process is actually an Lq-integrator for all q . This suggests
to declare a previsible process X (indefinitely) Z-integrable if there exist
arbitrarily large3 stopping times T

such that ZT− is a global L2-integrator (a)

and X is ZT−−2-integrable. (b)

Let us call the collection of such stopping times T[Z,X] . The final extension,
the general (indefinite) integral is defined in [91, first definition on p. 134] as
the limit of X · ZT− , taken as T ∈ T[Z,X] runs through a sequence (Tn)
that increases without bound, and is again denoted by X 7→ X · Z .

3 That is to say, for every ε > 0 and t ∈ (0,∞) there is a stopping time T with P[T < t] < ε
satisfying the condition in question.
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The existence of a sequence of stopping times Tn satisfying (a) and (b) and increasing
almost surely to ∞ can be deduced from the fact that if S,T satisfy (a), (b) then so does
S ∨ T . We show this now. Since, as a little picture will make clear, for X ∈ E

˛̨
˛
Z
X′ dZ(S∨T )−

˛̨
˛ ≤

˛̨
˛
Z
X′ dZS−

˛̨
˛ +

˛̨
˛
Z
X′ dZT−

˛̨
˛ +

˛̨
˛X′

S ·∆ZT−
S

˛̨
˛

≤
˛̨
˛
Z
X′ dZS−

˛̨
˛ +

˛̨
˛
Z
X′ dZT−

˛̨
˛ +

˛̨
˛
Z

|X′|2 d[ZT−, ZT−]
˛̨
˛
1/2

,

for any X′ ∈ E with |X′| ≤ |X|, we have

ddXee∗
Z(S∨T)−−2

≤ ddXee∗
ZS−−2

+ ddXee∗
ZT−−2

+K
(3.8.6)
2 ·ddXee∗

ZT−−2

≤ 2
“
ddXee∗

ZS−−2
+ ddXee∗

ZT−−2

”

for all X ∈ E and then for all X ∈ P , showing that S∨T again satisfies both (a) and (b).

The definite stochastic integral
∫ t
0
X dZ is then defined as the value of

X · Z at t , at least for finite instants t and previsible integrands X .

There is a little trouble in defining the definite integral
R ∞
0 X dZ within this scheme; the

definition
R ∞
0 X dZ def= limt→∞

R t
0 X dZ comes to mind, but this shares the lack of solidity

and of the dominated convergence theorem with the improper Riemann integral.

A process X (indefinitely) integrable in the sense of [91] described above is
easily seen to be locally Z−0-integrable in the sense of our chapter 3. Namely,
since the jump of Z at a T ∈ T[Z,X] is almost surely finite, the sum of
the means F 7→ ddF ee∗

ZT−−2 and F 7→ ‖FT ·∆ZT ‖∗L0 is evidently a mean

majorizing the Daniell mean F 7→ ddF ee∗
Z−0 for which X is finite (see defini-

tion 3.2.6 on page 97). In view of theorem 3.4.10 and definition 3.7.1, X is
Z−0-integrable on the stochastic interval [[0, T ]] , which expands to [[0,∞)) as
T ∈ T[Z,X] is taken through a sequence increasing without bound. It is clear
from exercise 3.7.16 that the indefinite integrals in Daniell’s and Protter’s
sense agree on integrands X as above:

X · Z = X∗Z .

Therefore the class of processes called integrable in [91] is contained in our
class of previsible locally Z−0-integrable processes, with the integrals, both
definite and indefinite, being the same at the times they are defined.

These two classes actually agree. To see this we must shoot with a big
cannon and invoke the main factorization theorem 4.1.2 on page 191, with
p = 2. Let then X ∈ P be Z−0-integrable. Given an arbitrarily large
stopping time T there exists a probability P′ equivalent with P on FT so that
both ZT and X∗ZT are global L2(P′)-integrators. By equation (3.7.5) on
page 135 and theorem 3.4.10 on page 113, the fact that, under P′ , ddXee∗

ZT−2 =

X∗ZT I2 is finite implies that X is ZT−2-integrable under P′ . According

to [91, theorem 25 on p. 140], X is (indefinitely) ZT -integrable in the sense
of [91] also under P . There exists therefore a stopping time S ≤ T , that can
still be had arbitrarily large, so that ZS− is a global L2(P)-integrator and X
is ZS−−2-integrable: X meets the definition of [91] of integrability.
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It speaks for the ingenuity of the authors who developed the theory without the benefit
of hindsight, that the ad hoc definition of a semimartingale actually covered all reasonable
integrators (i.e., all L0-integrators) and that the ad hoc definition of an (indefinitely)
integrable process offered in [73] and slightly gentrified in [91] covered all (at least all
previsible) locally Z−0-integrable processes.

I venture a small commercial. Daniell’s approach has the appeal of being just a
straightforward extension of the usual Lebesgue integral and of straightforwardly extending
to random measures — see page 174. In fact, it leads to the definition of a random measure
in a somewhat canonical way and thus could be used to unify the disparate definitions and
integration theories of random measures that populate the literature.

Erratum at Equation (5.2.5) on page 284 This inequality has the factor
|F |∞ p,M

missing on the right. It should read

F.−∗Z
?

p,M
≤ C

�(4.5.1)
p

M1/p�
· |F |∞ p,M

. (D.6)

Erratum at Theorem A.2.25 on page 379 Read “Let C,K be two disjoint
convex sets . . .” (Without the word disjoint the statement is obviously false.)
Thanks to Pedro Fortuny pfortuny@sdf-eu.org (06/05/2004).

Erratum at line +4 on page 430 For “conjuction” read “conjunction.”

Erratum at line +15 on page 448 The non–word “bsince” should be replaced
by the word “since.”

Thanks to Mohamoud Dualeh <mabaduuk@yahoo.com> (10/22/2003).

Erratum at line +2 on page 459 The term e−α
q

in the very first integral

should be replaced by e
−|α|q

.
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