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ABSTRACT

Stochastic integral representation of martingales has been undergoing a renaissance due
to questions motivated by Stochastic Finance theory. In the Brownian case one usually
has formulas (of differing degrees of exactness) for the predictable integrands. We extend
some of these to Markov cases where one does not necessarily have stochastic integral
representation of all martingales. Moreover we study various convergence questions that
arise naturally from (for example) approximations of ”"price processes” via Euler schemes
for solutions of stochastic differential equations. We obtain general results of the following
type: let U, U™ be random variables with decompositions:

[ee]
U:a+/ £,dX, + Noo
0

o0
U™ = ay +/ P dXT 4 N
0

where X, N, X" N" are martingales. If X" — X and U™ — U, when and how does
& — &7

1 Introduction

1) Consider a sequence X" of square-integrable martingales, which converge to another
square-integrable martingale X: this convergence may hold in a strong sense (as in IL?)
and all the X™’s and X are on the same probability space, or it may hold in the weak
sense (convergence in law) and each X" is defined on its own probability space. Let also
® be a bounded continuous functional (say, on the Skorokhod space of all right continuous
functions with left limits), and set U™ = ®(X") and U = ®(X), so that U™ converges to
U. Suppose in addition that we have the martingale representation property for each X™
and for X, so we can write U™ and U as stochastic integrals as follows:

n __ * n n _ *
U" = ap+ | €dXT, U = a+ | &dX,, (1.1)
0 0
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where «, and « are random variables measurable w.r.t. the relevant initial o-fields, and £"
and & are predictable processes. Then an important theoretical problem is to find whether
the sequence &" converges in law, for a suitable topology, to £.

This problem has also much practical relevance. For example in financial mathematics,
suppose that X models the price of a stock, and U is a claim based upon this stock, and
for simplicity the riskless bond has constant price 1. If the model is complete and with
no arbitrage opportunity, then X is a martingale under the unique risk neutral equivalent
measure, the price of the claim is the expectation E(U) = « under this measure, and
we have the martingale representation property w.r.t. X: then the process £ in (1.1)
is the so-called hedging strategy. Now, for computational purposes we might want to
take a discrete time approximation for X: e.g. a binomial approximation X™ which thus
converges in law to X, or an Euler approximation X™ which thus converges strongly to
X when this process is the solution of a stochastic differential equation. If one also has
the martingale representation property for the discrete time models (as is the case for
the binomial approximation), then it is important to know whether the “approximate”
hedging strategies £ do converge in some sense to £. Such questions have been touched
upon in [6] for example.

The above brief description immediately gives rise to two kinds of problems. The
first one comes from the fact that the martingale representation property quite often does
not hold: it holds under reasonably general conditions when the basic martingale X is
continuous, but it is usually lost as soon as X as jumps, and in particular in the discrete
time setting (except for the binomial model).

The second problem is to find an adequate topology for which the £”’s might converge.
This is not obvious, because these processes have a priori no regularity in time (they are
predictable, but otherwise neither right continuous nor left continuous in general).

2) To begin with, let us consider the first problem described above. Let X be a locally
square-integrable martingale on a filtered space (2, F, (F;)s>0, P) having F =/, Fy, and
U be a square-integrable random variable. Using the theory of “stable” subspaces gener-
ated by a martingale (see Dellacherie and Meyer [5], or [15] or [9] for this fact, as well as
for all results on martingales and stochastic integrals), we have the decomposition

o0
U = a+/ dXs + No, (1.2)
0

where o = E(U|Fj) and N is a square-integrable martingale (i.e. a martingale such that
sup, | IVy| is square-integrable), orthogonal to X and ¢ is a predictable process, and this
decomposition is unique up to null sets: it comes in fact from the (unique) decomposition
of the square-integrable martingale M; = E(U|F;) as a stochastic integral w.r.t. X, plus
an orthogonal term. Recall also that two locally square-integrable martingales M and N
are orthogonal if their product M N is a local martingale, and this is denoted by M L N.

Observe that o and N are defined uniquely up to a P-null set, while £ is defined
uniquely up to a null set w.r.t. the following measure

Qx (dw,dt) = P(dw)d(X,X)(w) (1.3)



on Q x IR,. Here, (X, X) denotes the “angle” (or predictable) bracket. We will denote
the process £ by (X, U), which is square-integrable w.r.t. Qx.

Section 2 of this paper is devoted to finding an “explicit” expression for the process &
above: first in the discrete time setting, where it is very simple; next in some Markovian
situations, when U has the form U = f(Y7) for a fixed time T" and an underlying Markov
process Y and X is a locally square-integrable martingale on this Markov process. We thus
extend the well known Clark-Haussmann formula, usually given for Brownian motion, in
two directions: the Brownian motion is replaced by a rather general Markov process, and
we do not assume the martingale representation property. But of course we are limited to
variables U of the form U = f(Y7) or more generally of the form U = f(Yp,,...,Yr,) for
fixed times T} < ... < T}.

Let us come back to the financial interpretation of (1.2): if the martingale representa-
tion property w.r.t. X does not hold, the variable N, in (1.2) is in general not equal to 0.
We are in the incomplete model case, and the process ¢ is shown to be a risk minimizing
strategy for hedging the claim U: see F6llmer and Sondermann [7].

3) Let us now turn to convergence results. To get an idea of what to expect as far as
convergence results are concerned, here is a trivial special case: we have a sequence U™
of random variables tending to a limit U in IL?(P), and a fixed locally square-integrable
martingale X. Writing M", o, £" and N" for the terms associated with U™ and X
in (1.2), the three variables o — «, [5°(&) — &5)dXs and N — Ny, are orthogonal in
IL2(P) and add up to U™ — U, so they all go to 0 in IL?(P). Since the expected value of
(fo° nsdX )% is Qx (n?), we deduce in particular that

Ur SR g = (X, U") SE@x) ¢(X,U). (1.4)

This leads us to consider first the case where all locally square-integrable martingales
X™ and X are defined on the same space (Q, F, (F;)i>0, P) with F = \/; F;. The simplest
result one can state in this direction is as follows:

Theorem A  Assume that X™ and X are locally square-integrable martingales on a
filtered space, such that (X™ — X, X" — X); — 0 in probability for all t € Ry, and that
U™ converges to U in IL?(P). Then £™ converges to & in Qx-measure.

We also give a series of other results, which are more difficult to state, and which
mainly concern discrete time approximations of a given martingale X, of various kinds:
stepwise approximations, or Euler schemes when X is the solution of a stochastic differ-
ential equation. All these results are proved in Section 3.

4) Section 4 is devoted to weak convergence results. First, we take advantage of the
explicit results of Section 2 in the Markov case to show that if X™ is the solution of the
equation dX[' = gn (X} )dZ} and X is the solution of a similar equation with ¢ and Z,
where Z" and Z are Lévy processes, and if g, — g and Z" converges in law to Z, then
under some mild additional assumptions the processes £” converge to ¢ for a suitable



topology, when U™ = f(X7) and U = f(Xr) and f is a differentiable function (typically
Z is a Brownian motion, but the Z™’s are not, so we have the martingale representation
property w.r.t. X, but not w.r.t. X™). We also give a discrete time version of this result.

Finally, we give an analogous convergence result when U" = ®(X") and U = ®(X)
for a continuous bounded function ® on the Skorokhod space, when X is the solution of
an equation as above with Z a Brownian motion, and the X™’s are discrete time solutions
of difference equations converging to X. As an example, particularly relevant in financial
applications, let us mention the case where

X'y = X'+ g(XY,

where for each n the (Y;");>1 are ii.d. bounded variables, centered with variance 1/n.

Then the processes X' = X[, converge in law to the solution of dX; = g(Xy)dW,, where
W is a Brownian motion, as soon as ¢ is Lipschitz. In this situation, with U" = &(X")
and U = ®(X) with ® as above, the processes {" (naturally defined as some sort of
interpolations of the discrete time processes ¢ (X™,U™)) do converge in a suitable sense to
&, in law.

2 Explicit representations of the integrand

In this section our aim is to give an “explicit” form for the integrand (X, U) in essentially
two specific cases: one is the discrete-time case, with an extension to the discretization of
a continuous-time process; the other is a Markov situation. It seems hopeless to obtain
such an explicit form in general, but other cases are found in the literature, essentially on
the Wiener space and using Malliavin calculus: see e.g. the book of Nualart [14] and the
references therein.

Before starting we wish to make precise the various notions of (locally) square-integra-
ble martingales used in this paper, since they play a crucial role. As said in the introduc-
tion, a process X given on a stochastic basis, either with discrete or with continuous time,
is called a square-integrable martingale if it is a martingale and if the supremum of X over
all time is square-integrable: then the limit X, exists and is a square-integrable variable.
X is called a locally square-integrable martingale if there is a sequence R, of stopping
times increasing to +o00, such that the process X stopped at any R, is a square-integrable
martingale. In between, we say that X is a martingale square-integrable on compacts if the
process X stopped at any finite deterministic time is a square-integrable martingale: for
example the Wiener process is a martingale square-integrable on compacts in this sense.

2.1 The discrete-time case

In this subsection, time is discrete: we have the basis (Q, F, (F;)icv, P) with F =\ F;
and with a given locally square-integrable martingale X. We also have a square-integrable
variable U. For any process Y we write AY; =Y; — Y;_1. In this discrete-time case, (1.2)
becomes

o0
U = a+) &AX;+ Ny, (2.1)
i=1



where the series converges in IL? and §; is F;_;-measurable and N is a square-integrable
martingale orthogonal to X. Here the orthogonality of X and N amounts to say that

E(AX;AN;|Fizy) = 0, Vi>1. (2.2)

The above conditional expectation is to be understood in the generalized sense, since
the variable AX;AN; might be not integrable: it is however integrable on each F; ;-
measurable set {R, > i} (where R, is as above), while U,{R,, > i} = Q. The same
comment applies below.

Proposition 2.1 Assume that X is a locally square-integrable martingale, and let M; =
E(U|F;). Then a version of & =¢&(X,U) is given by

E(AX;U|Fi—1)  E(AX;AM;|Fiy)

“ T B@XPRF)  BAXPIF)

(2.3)

Proof. By definition of M and by the property E(AX;|F;—1) = 0 (where again the
conditional expectation is in the generalized sense), the last equality in (2.3) is obvious.
Define ¢ by (2.3). The measurability condition is obviously met. Set

AN; = E(U|F;:) — E(U|Fi—1) — &GAX; = AM; — §AX;
and N; = 22‘:1 ANj. Then N is a square-integrable martingale with (2.2). That (2.1)

holds is then obvious. O

2.2 Discretization in time

Here we have a basis (2, F, (F;)i>0, P) such that F = \/,F;. We consider a square-
integrable martingale X. We also consider a locally finite subdivision 7 of IR, consisting
of an increasing sequence 7 = (T; : i € IN) of stopping times such that

Ty, =0, Ti<oo = T;<Tiy, limT; = oo a.s. (2.4)
1

The discretized process is then
Xi = XTi 1 € IN, (25)

which makes sense even on the set {T; = co}. Then the sequence (X;).cmv is a square-
integrable martingale w.r.t. the discrete-time filtration (Fr,)iepv. If U € IL2, we then
have the two decompositions (1.2) and (2.2), namely

Oé—’_fooogsts—,_Nooa
U = o _ (2.6)
a+ 3272 &GAXi + Noo,

where N is a square-integrable martingale w.r.t. (Fy)i>o orthogonal to X, and N is a
square-integrable martingale w.r.t. (Fr,)iemnv orthogonal to X, and o = E(U|Fy). Then



it is natural to call the discretized version of the integrand & the following continuous-time

process: B
& =& f T <t<T, i>1 (2.7)

In a sense, this process ¢’ naturally occurs if we replace X by the discretized version along
the subdivision 7.

Our aim here is to compute & in terms of £. This is simple, after recalling that the
process £ is square-integrable w.r.t. the finite measure Qx defined by (1.3), and after
introducing the o-field P’ on Q = Q x IR, which is generated by the sets D x (T}, Tj41],
where ¢ € IN and D € Fr;:

Proposition 2.2 Assume that X is a square-integrable martingale. With the above no-
tation we have &' = Qx(&|P') (the conditional expectation of & w.r.t. P' for the finite
measure Qx ).

Proof. Set A = (X, X) and B; = fg €sdAs. If My = E(U|Fy), then (1.2) yields M; =
o+ fg £sd X5+ Ni, hence (X, M) = B+ (X, N) = B because X and N are orthogonal. So
an application of Proposition 2.1 yields the following explicit form for &:

5- _ E(BTi - BTi—1|‘7:Ti—1)
' E(ATi - ATi—1|‘7:Ti—l).

(2.8)

For D € Fr, , we have
QX(le(Ti_l,Ti]g) = E(]'D(BTi - BTi—l)) = E(lDE(BTi - BTi71|‘7:Ti—1))'

By (2.8) and (2.7) this is equal to

E(]‘Dgl(ATz - ATi—l)) = QX(]‘DX(Tifl,Ti]gl)‘

Since ¢’ is obviously P’-measurable, this implies the result. O

Remark 2.3 Exactly the same result (with the same proof) holds if we assume that X is
a locally square-integrable martingale, such that each stopped process (XtT’ = X7at)1>0
is a square-integrable martingale. O

2.3 A Clark-Haussmann formula for Markov processes

In this subsection we give an alternative form of the Clark-Haussmann formula giving the
integrand &(X,U): see Nualart [14] for a general form of this formula.

The setting is as follows: we have a quasi-left continuous R%valued strong Markov
process Y on (2, F,(F;), P;), where P, is the probability measure under which Yy = =
a.s., and we assume also that Y is a semimartingale under each P,. Let u be the jump
measure of Y, and (B,C,v) its characteristics: we refer for this to [9], and also to [3]
for the following structural results, showing in particular that (B,C,r) do not depend
on the starting point: there exist a continuous increasing additive functional A, a Borel
IR%-valued function b, a Borel nonnegative symmetric IR¢ ® IR%valued function ¢ and a



transition measure F' from IR? into itself integrating z ~ |z|> A1 (the “modified Lévy
measure” ), such that

By = [yb(Ys-)dAs,
CP = fy (Y, )idA,, (2.9)
v(w,ds,dz) = dAs(w)F(Ys—(w),dz).

We denote by (P;) the transition semi-group of Y.

Now, we work under the measure P of the form P = [ m(dz)P; (so m is the law of Yj).
Denote by D7 the class of all Borel functions f such that f(Yr) € IL?(P) and that the
function (t,y) ~» P,f(y) on (0,00) x IR? is once differentiable in ¢ and twice differentiable
in y, with all partial derivatives being continuous.

Next, our basic locally square-integrable martingale X is of the form

t t
Xi = Xot [ 7dvie [ [ 35,2 - v)(ds.dz), (2.10)
0 0o JR
where Y¢ denotes the continuous martingale part of Y, and “T” denotes the transpose,

and v = (7%)1<i<q and 4 are predictable functions on © x Ry and Q x R, x IR, such
that for all £ < oco:

t
/asdAs < oo, where a; = 'y;Fc(Ys,)'ys—i—/F(Y;,,dz)"y(s,z)Z. (2.11)
0

Observe that under (2.11), X is well defined and is a locally square-integrable martingale
under each P, and P, with angle bracket (X, X), = fot asdAs.

Theorem 2.4 Let f € Dy and U = f(Yr) for a given T € IRy. Then a version of the
process £ = £(X,U) is given for s > T by & = 0 and for s <T by

1
fs = a_ ('Y;FC(}/S)V(PTsf)(Ys) —{—/F(st, dz)’?(s, z)(PT*Sf(YVS* + Z) _PTSf(Ys))>
S
(2.12)
We use here the traditional convention g = 0, since when a; = 0 the numerator in the

right side of (2.12) is also 0. Observe that the process £ does not depend on the measure
m in P, := P = [ m(dz)Py, as long as f(Yr) is in IL2(Py,).

Proof. Since U is Fp-measurable, that & = 0 for s > T is trivial. By the Markov
property, My = E(U|F,) is given for t < T by M; = g(t,Y};), where g(t,y) = Pr_.f(y).
By hypothesis, g is once differentiable in ¢ and twice differentiable in y with continuous
partial derivatives. By It6’s formula,

t 9 1 rt 52 -
M, = (s, Y )ds + = O Y e(Y)idA
! a+/0 639(3’ 5-) 8+2/0 1<lZ:J:<d 8@/163/79(8’ s)e(Ys-)"dA,



3 o(s, Yy )b(Y, dA—i—/Zang)dY”
Z<d 1<i<d

+/ /R ) az 95, Yo )2 i<y (0 — ) (ds, d2)

1<i<d

b

' 0 |
—i—/o /]Rd (Q(S,YS +2)—g(s,Ys) — Z oy -g(s,Ys- )z’1{2§1}) p(ds, dz).

1<i<d

The first three integrals above are predictable process of finite variation. The last integral
may be rewritten as the sum of the stochastic integral w.r.t. the measure martingale y—v,
plus the integral w.r.t. v, which again is a predictable process of finite variation. Since M
is a martingale, the sum of all predictable processes of finite variation must equal 0, and
after a simple transformation we get

M, — a+t gl Vi de+/ / (5,Ys +2) — g(s, Y ) (1 — v)(ds, d2).
0 1<7,<da

Then (1.2) and (2.10) give for t < T

/ ( s Y,_ ) fs'ys> dY’C
0 1<i<d

—i—/ot /,Rd (9(s,Ys 4 2) —g(s,Y,;_) — &7(s,2)) (1 — v)(ds, dz).

Then we get

(N, X), = /Ot(

S (o)~ k) et )yl +

1<i,j<d

b [ P d2) (g5, Yot 2) = gl Vo) — €47(52) s z)> dA,.

In view of (2.11), this becomes

(N, X) = / ( Esas + Z

1<4 ]<d

Y )e(Ys- )yl

+/ P(Ye, d2)(g(s.Yat 2) - g(s,Ys))y(s,z)> dA,.
IR

Since ¢ is charaterized by the orthogonality of N and X, that is by (N, X) = 0, a version
of ¢ is thus given by (2.12), and we have proved the claim. O

The class D7 of functions for which (2.12) holds is rather restrictive. It might be of
interest to enlarge this class. To this effect, for each # € IR? we introduce the set D/ of all

functions f for which there is a sequence f,, € Dr (called an “approximating sequence”)
such that f,(Yr) — f(Y7) in IL?(P) .



The measure @ x associated by (1.3) with X (and relative to P) is here Q x (dw, dt) =
P(dw)dA(w)a(w).

Finally, let D be the subset of all f € D/ such that y ~ P,.f(y) is differentiable for
0 <t < T, and for which there is an approximating sequence f, in D such that for all
t € (0,T] and y € IR? we have

Pfaly) = Pf (), aiyiptfn(w N a%Ptf(y), (2.13)

and that for @ y-almost all (w,t) with ¢ < T we have

[ PO @), d2)3(w,t, 2 (Proefa(Yie (@) + 2) = Proiful(Ve@)))

- /F(Y%—(W),dZ)W(w,t,Z)(PT—tf(%—(W)+Z) — Prif(Yi-(w))). (2.14)

Observe that (2.13) implies (2.14) as soon as f, the f,,’s and the aiyiPtfn’s are uniformly
bounded for each ¢, by virtue of (2.11) and of the fact that [ F(y,dz)(]z|> A1) < .

Corollary 2.5 a) If f € D). with the approzimating sequence f,, then a version of the
process £(X, f(Y7)) is the limit of (X, fn(YT)) in L?(Qx).

b) If further f € DY., then a version of the process £(X, f(Yr)) is given by (2.12) for
s<T, and by 0 for s > T.

Proof. The claim a) readily follows from (1.4). Assume now that f € D/, with the ap-
proximating sequence f,,. Then if ¢’ is given by (2.12), on the one hand £(X, £, (Y7))s(w) —
¢! (w) for @Qx-almost all (w, s), and on the other hand (1.4) holds: hence &' = &(X, f(Y7))
@ x-a.s., and we have b). O

2.4 A particular case

Theorem 2.4 and its corollary are not quite satisfactory, because they give {(X,U) for a
variable U of the form U = f(Yr), while one would like to have it for U = f(Xr). It
becomes more satisfactory when X itself is Markov. We give in some detail a simple case
of this situation, namely when X is the solution of the equation dX = g(X_)dZ, where Z
is a 1-dimensional Lévy process and g a smooth enough coefficient.

Since we wish X to be a locally square-integrable martingale, it is natural to assume
first that the Lévy process Z, which is defined on some space (2, F,(F;)i>0,P), is a
locally square-integrable martingale itself. This in fact implies that it is then a martingale
square-integrable on compacts, and its characteristic function has the form

E (ei“Zt) = expt <—§ + /F(dx)(ei“m —1- zuac)) , (2.15)

where ¢ > 0 and the Lévy measure F integrates z2. We set

¢ = c+/F(dz)22, (2.16)

9



so (Z,Z)y = ¢t, and of course we assume that ¢ > 0 (otherwise Z = 0 and what follows is
empty). Next we have a continuously differentiable function g with bounded derivative ¢',
and for any x we consider the solution X of the following stochastic differential equation:

t
X = o+ / 9(X* )iz, (2.17)
0

A classical argument (see (5.2) in the Appendix) yields that X* is a square-integrable
martingale over each finite interval [0,7]. Further, the solution of the following linear
equation

t
X = 1+ [ g(XT)Xdz, (2.18)
0

is also a square-integrable martingale over each finite interval [0, T]. So for each measurable
function f with at most linear growth we can set

Pif(z) = BE(f(X{),  Quf(z) = E(f(X])X["). (2.19)

Observe that (P;) is the semi-group of X*, which is a Markov process. We then have:

Theorem 2.6 Assume that g has a continuous and bounded derivative.

a) For any T € IR, and any differentiable function f with bounded derivative f' the
variable f(X7T) is square-integrable, and a version of £(X*, f(X7)) is given by

E(X7, F(XT) = nls, XE )1 om(s), (2.20)

where
1 1
n(s,y) = Qr—sf'(y) +5/F(dz)22/0 (Qr—sf'(y + 9(y)zu) — Qr—sf'(y))du. (2.21)

b) The same holds when f is the difference of two convex functions, with a right derivative
Il bounded and f' above replaced by f, provided we have Pi(y,.) has no atom for all
te(0,7], y € R.

In the last claim one can of course replace the right derivative f] by the left derivative
f{- The last condition is obviously satisfied when P;(x,.) has a density: this is the case
when ¢ > 0 as soon as g does not vanish (or, does not vanish in the set in which the
process X* takes its values). When ¢ = 0, one can find conditions implying the existence
of a density in e.g. [2].

Proof. 1) Our assumptions always imply that f and g have at most linear growth. Then
the property f(X%) € IL?(P) follows from (5.2) in the Appendix.

2) We first prove the result under the three additional assumptions that Z has bounded
jumps (which is equivalent to saying that F' has compact support), that ¢ is infinitely
differentiable with bounded derivatives of all orders, and that f is twice continuously
differentiable with f, f’ and f” bounded.

10



By virtue of Theorem 2.4 applied to Y = X7, it suffices to prove that f € Dr and
that (2.12) reduces to (2.21) in our situation. The first property is proved in Lemma 5.1
of the Appendix. So it remains to identify (2.12) with (2.21). With Y = X we have b = 0,
c(y) = cg(y)?, A; = t and F(y,.) is the image of the measure F' under the map z — g(y)z,
while in (2.10) we must take s = 1 and ¥(s, 2) = 2. So if a(y) = cg(y)? + [ F(dz)z*g(y)?,
(2.11) becomes a5 = a(X;_), while VP, f = Q.f' by (5.3). Then (2.12) yields that we
have (2.20) with 1’ instead of 7, given by

n/(s y) = g(y)ZcQT—sf’(y) + [ F(d2)zg9(y)(Pr_sf(y + 9(v)2) — Pr_sf(y))
’ g()2(c+ [ F(dz)2?)

if g(y) # 0, and 7/(s,y) = 0 if g(y) = 0. By Taylor’s formula and again the property
VP f = Q.f" and (2.16) we note that n'(s,y) equals n(s,y) as given by (2.21) when
g(y) # 0. Finally the process £(X7, f(X7)) is unique up to a Qx=-null set, and the set
{(w,t) : g(X}_ (w)) = 0} is Q x=-negligible: hence (2.20) gives a version of {(X7*, f(X7)).

3) Second, we prove the result when f and g are once continuously differentiable with
bounded derivatives f’ and ¢’, and further f is bounded, and when Z is a locally square-
integrable martingale.

First we replace Z by a sequence of Lévy processes Z" obtained by truncating the
jumps of Z of size bigger than n. More precisely, we may write

t
Zy = Ztc—i-/ / z(p —v)(ds,dz),
0 JR

where Z€ is the continuous martingale part of Z (of the form ¢W, where W is a Wiener
process), p is the jump measure of Z and v(ds,dz) = ds ® F(dz). Then we set

t
zZi = Zt“r/ / 21{1<ny (1 — v)(ds, dz).
0 JIR

We have (Z,Z); = ét where ¢ = ¢+ [ F(dz)z?, and (Z",Z"); = é,t where &, = ¢ +
fF(dz)z21{|z|§n}, and obviously

(Z — 2", 7 — 2", — 0. (2.22)

Next, let ¢ be an infinitely differentiable function with compact support and inte-
gral equal to 1. Then we replace g by g,(z) = [n¢(ny)g(z — y)dy and f by f,(z) =
J ne(ny) f(x —y)dy. Thus g, and f, are infinitely differentiable with bounded derivatives
of all orders, and there exists K such that for all n:

9.(0)] < K, |gp(2)] < K, [fulz)] < K, |fa(z)] < K, (2.23)
and moreover

gn = 9 G = ¢ fu — [, fn = f' locally uniformly. (2.24)

Now, denote by X™* and X'™% the solutions of (2.17) and (2.18), with Z and g¢
substituted with Z™ and g, and by Q7 the kernel associated by (2.19). Since Z", g, and
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[n satisfy the conditions of Step 2, £" = £(X™7, f,, (X)) is given by (2.20), with 7, given
by

1
(s, ) = Qs fr(y) + % /F(dz)z21{\z\§n}/0 (QF—s [0y + gn(y)zu) — Qs f1,(y))du.

By virtue of (2.22) and (2.24), stability results for stochastic differential equations
(see [10]) imply that (X™¥n X'™¥n) converges locally uniformly (in time) in probability
to (XY, X") for any sequence y, — y, and further f,(X;"’") — f(X/) and f)(X;""") —
f'(X}) in probability by (2.24), hence also in ILP(P) for all p by (2.23). Thus applying
¢n < ¢ and (5.2) of the Appendix and (2.19) we see that

Qrfrlyn) = Quf'(y), QYW < K, (2.25)

for a constant K; independent of n and z. If further we use the facts that ¢, — ¢ and
that [ F(dz)z? < oo, (2.24) and (2.25) allow us to deduce that if 5 is defined by (2.21),

Yn — Y = M(8,yn) — 1(s,y)- (2.26)

Finally, we have

t t
X - XF = [ XA = 2)+ [ aa(X)) = g(X2 )z,
hence

t t
(X = XX < XY, < 2E ) [ gn(X) s + 26 [ (galX0) - g(XE) s,
0 0
Using ¢, — ¢, (2.23), (2.24) and the fact that X — X7 uniformly in s € [0,¢] in
probability, we readily deduce that (X™* — X% X™% — X?*); — 0 in probability.

Since f,,(X7") — f(X[) in IL*(P), we are in a position to apply a result proved
in the next section (not based upon the present theorem, of course), namely Theorem
3.3: this theorem asserts that {" converges to {(X*, f(XF)) in @ x-measure. Then, since
£ = (s, X"")1jo7)(s) and since X™* converges locally uniformly in time, in probability,
to X7, we deduce (2.20) from (2.26).

4) For (a) it remains to consider the case where f has a continuous bounded derivative
but is not bounded itself. We can find a sequence (f,) of bounded continuously differ-
entiable functions such that |f](z)] < K for some constant K and f,(z) = f(z) for all
|z| < n and |f,| < |f|. Then £" = (X7, f,(XF)) is given by (2.20) with n, given by
(2.21), where f is substituted with f,. That f,(X%) — f(X%) in IL?(P) and that (2.25)
holds with @Q; instead of Q} are obvious by the previous estimates on f, and f} and (5.2)
of the Appendix. It follows as above that 7, — 1 pointwise, where 7 is given by (2.21).
Then by (1.4) we have (2.20).

5) It remains to prove (b). We set fp(z) = [né(ny)f(z — y)dy as in Step 3. Then

fn — f locally uniformly, while f; — f] everywhere except on an at most countable set
D, and we still have |f] ()| < K and |f,(0)] < K for some constant K. Therefore, exactly
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as in Step 3, we have f,(X}) — f(X}) and f(X}/") — fLU(X}) (as yn — y) in L?(P), at
least when restricted to the set Q,; = {w : X/(w) ¢ D}. Now, if P(y,.) has no atom, the
set €, is P-negligible: then we have (2.25) with @ instead of Q}, and the rest of the
proof follows as in Step 4. O

Remark 2.7 When ¢ = 0 and F is a finite measure, the process Z is a compensated
compound Poisson process, and the situation is much simpler. One can show with the
same methods used in Steps 3 or 4 above that the result hold without any differentiability
condition. We need f to be continuous, and both f and g with linear growth, and (2.21)
takes the following simple form (with 2 = 0):

J F(dz)2(Pr—s f(y + 9(y)z) = Pr—sf(y))
n(s,y) = o(y) [ F(d2)22 (2.27)

Of course in this simple situation we could also write an “elementary” proof which looks
like the proof of Proposition 2.1. This is no surprise, since the compound Poisson case has
a “discrete” structure.

Remark 2.8 We have considered above the “homogeneous” situation, where the coeffi-
cient g does not depend on time. Similar formulas would obviously hold when the coeffi-
cient depends on time, and also when the process Z is a non-homogeneous process with
independent increments.

Remark 2.9 Let f be a function on IR* (say, with linear growth) and 0 < T} < ... <
Ty be deterministic times, and & = {(X*,U) where U = f(X%l,...,X%k). Then the
martingale My = E(U|F;) when T; <t < T; is My = fPTi,t(Xf,dy)fX:aﬁl,mX% (v),

i—1
where

f:vl,...:vifl (y) = /PTi+17Ti (y7 d$i+1) s Pkakal ($k—17 de‘k)f(fL'l, ey L1, Y, Ti4-1y - - - IEk)

By iteration of the previous result we then get that

) x
Z nz;X%.l o XE (Sa X ) I(Ti—l i)
—
where

MNisx1,...xi_1 (83 y) = QTi—Sf:;h...:Ei_l (y)

+= /F dz)z / Q1 sfor,ai (W +9W)20) = Q1 [, 0y, (y))du.

Of course we need some smoothness conditions of f to do that: that f is continuously
differentiable with all partial derivatives bounded is enough, in which case we need to
reproduce the proof of the previous theorem.

We do not have an explicit form for £(X,U) when U is a function of the whole path
of X* over [0,T]. But the variables of the form above are dense into the set of square-
integrable variables, measurable w.r.t. the o-field o(X7? : s <T'). This is to be compared
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to the Clark-Haussmann formula in the Wiener case, see e.g. Nualart [14]: in this case
one has an “explicit” form for £(X*,U) for variables U that are smooth in the Malliavin
sense (and thus include the variables f(Xf, ,...) for smooth f’s). But this approach is
limited to the Wiener space, and the explicit form involves the not so explicit Malliavin
derivatives and predictable projections of such derivatives.

3 Strong convergence results

3.1 Discretization of a process

Here we consider the situation of Section 2.2, and we look at what happens when we have a
sequence of subdivisions whose meshes go to 0. More precisely, we have a square-integrable
martingale X on a basis (Q,F, (F;)i>0, P) with F = \/; Fy, and for each n a subdivision
T = (T'(n,1) : i € IN) satisfying (2.4). The sequence (7,,) satisfies
sup(T'(n,s) ANt —T(n,i —1) At) — 0 as. asn — oo. (3.1)
i>1

Then set X = Xr(n,i): for each n the sequence (X[');cv is a square-integrable martingale
w.r.t. (Fram,))iew. Finally, let U € IL?(P) be fixed. We have the first decomposition
(2.6), and the second one for each n with the process £", and we associate with £" and 7,
the process ™ by (2.7). Then we have:

Theorem 3.1 Under (3.1), and if X is a square-integrable martingale and U € IL*(P),
the functions ™ tend to & in IL?(Qx).

Proof. For each n we endow the space Q with the o-field P! generated by the sets
D x (T(n,i —1),T(n,i)] :== {(w,t) : w € D, T(n,i —1)(w) <t <T(n,i)(w)}, where i > 1
and D € Fr(n;_1). By virtue of Proposition 2.2, we have {™ = Qx(£|P;,). Recall that
here Q) x is a finite measure.

The sequence () is bounded in IL?(Qx), and thus is in a compact set for the weak
topology in IL?(Qx). So there exists a subsequence, again denoted by &™ for simplicity,
which converges weakly to a variable ¢ in IL?(Qx).

Let us first show that ¢ = £ Qx-a.s. Take n = 1px)s,), where D is Fs-measurable.
Then Qx(¢™n) — Qx(&'n). Consider the two stopping times S, = inf{T(n,i) : i €
IN,T(n,i) > s} and T, = inf{T'(n,i) : i € IN,T(n,i) > t}. Then

Qx(E™n) = Qx(E™1px(s,,m)) T Q@x (€™ 1px(s,5,) — Qx (€™ 1pm)) } 52
3.2
Qx(En) = Qx(Elpx(s,,1.)) T @x(E1Dx(s,5.1) — Qx(Elpx(1,1.))-
If A(n,s,e) ={Sp, > s+ ¢} we have
Qx(D x (s,5]) < Qx(A(n,s,e) x Ry) + Qx (2 x (s,s+¢€]).

Since Qx (. x IRy ) is absolutely continuous w.r.t. P and since (3.1) implies P(A(n, s,€)) —
0 as n — oo, we also have Qx(A(n,s,e) x Ry) — 0 as n — oo for all £ > 0. On the
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other hand, Qx (2 x (s,s+¢]) — 0 as € — 0 because Qx is a finite measure, so we deduce
that Qx (D x (s,S,]) = 0. The variables £ being @ x-uniformly integrable, we deduce
that Qx(ﬁlnlDX(sysn}) — 0, and similarly Qx(flnlDX(t,Tn}) — 0, and QX(£1DX(5,SR}) —0
and Qx(§1px(,m,)) — 0. Since further D x (S, Ty] € P!, we get Qx (™ px(8,,1]) =
Qx(€1px(s,,r.])- It then follows from (3.2) and from the fact that Qx (&) — Qx ('),
that Qx(£'n) = Q@x(én). Then by a monotone class argument, this relation holds for all
bounded predictable 7, which yields & = &' Qx-a.s. (recall that £ and all £, hence ¢’ as
well, are predictable).

In particular, Qx((¢™)?) = Qx(£™€) tends to Qx(£?). Now, if a sequence &™ in
IL2(Qx) converges weakly to ¢ and the norms of ¢’ converge to the norm of ¢, we have
indeed strong convergence. Thus the IL?(Qx)-convergence of the original sequence &™ to
¢ follows. O

Remark 3.2 When the subdivisions (7;,) are finer and finer, the sequence of o-fields
P! is increasing, hence the fact that & = Qx(¢|P!,) implies that the sequence £™ is a
square-integrable martingale and the convergence to £ readily follows from the fact that
P! increases to P up to P-null sets (by (3.1)). O

3.2 A general continuous time convergence theorem

We have again a stochastic basis (2, F, (F;)i>0, P) with F = \/ F;, supporting locally
square-integrable martingales X and X" and square-integrable variables U™ and U. We
have the following (unique) decompositions, as in (1.2):

U = a—l—fooofsts—i—Noo,
Un = an+ [ EX] + NE,

where a = E(U|Fy) and o = E(U"|Fy) and N (resp. N™) is a square-integrable mar-
tingale orthogonal to X (resp. to X™).

(3.3)

Below, we consider again the measure (QQx associated with X by (1.3). It is not
necessarily finite, so we recall that £ —9X ¢ means that ¢ — ¢ in R-measure for one
(hence for all) finite measure R equivalent to Qx. Our main result is the following:

Theorem 3.3 Assume that U" — U in IL*(P) and that X and X™ are locally square-
integrable martingales satisfying

(X" -X, X"-X)y - 0 in probability for all t > 0. (3.4)

Then €™ — € in Qx measure. (We denote £" —9X ¢).

Proof. 1) To begin with, we introduce the following orthogonal decompositions for the
locally square-integrable martingales X™ and the square-integrable martingales N™ (recall
(3.3)); below the processes L™ are locally square-integrable martingales and T™ are square-
integrable martingales (recall also that the orthogonality between local martingales is
denoted by L):

t
Xr = xn +/ yrAX, +IP, LML X, (3.5)
0
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t
NP = /AZdXS+Tt”, ™ L X. (3.6)
0

In what follows we prove a bit more than is strictly necessary for the present theorem,
but the following facts will also be used in the subsequent results. The orthogonality of
" and N" yields

/ AP +(L", T, = 0, Vi, as. (3.7)

We also have
(X" - X, X" - X); = /Ot('y? —1)2d(X, X)) + (L", L"), (3.8)
Qx((E™" + A" =€)?) < B(U"-U)*) = 0, (3.9)

B((T" T"o) < E((N",N")e) } < B(U)) £ K (3.10)

E(f°(€8)?d(L", L),) < B((fg® £rdXY)?)

for some constant K, and where we have used that U™ — U in IL?(P) for the last two
properties.

2) After these preliminaries, we can go the proof of our claim. First, we can write the
(pathwise) Lebesgue decomposition of the process (L™, T™), which is of locally bounded
variation, w.r.t. the increasing process (X, X) as (L",T"), = [J phd(X, X)s + A}, where
A™ is a function of locally bounded variation which is singular w.r.t. to (X, X ) Then
(3.7) yields

YA+ p" =0 Qx —a.s. (3.11)
But it is well known by Kunita-Watanabe inequality that the variation of the process
(L™, T™) over [0,t] is smaller than or equal to \/(L", L™};\/(T™, T™);, while by the above

Lebesgue decomposition it is bigger than [ [p?|d(X, X)s. Then we readily deduce from
(3.4), (3.8) and (3.10) that fot |p?|d(X, X)s =T 0 for all ¢, so in view of (3.11) we get

ATAT 50X, (3.12)
Next, (3.4) and (3.8) on the one hand, (3.9) on the other hand, give us:
D S S AR (3.13)

Now, combining (3.12) and (3.13) readily gives us £ —@x ¢, O

Associated with this theorem, we have a result about the rate of convergence:

Theorem 3.4 Assume that U" — U in IL*(P) and that X and X™ are locally square-
integrable martingales satisfying (3.4). Assume further that there is a sequence (ap) in
IR, going to +oo such that the sequence (a,(U™ —U) : n > 1) is bounded in IL?>(P) and
that for each t the sequence of variables (a2(X™ — X, X™ — X); : n € IN) is uniformly
tight. Then the sequence (a,(£™ —&) :n € IN) is uniformly tight with respect to any finite
measure equivalent to Qx.
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Proof. 1) We choose a finite measure R equivalent to Qx. Let us first recall that
if (u™) is a sequence of processes such that for all ¢ the sequence of random variables
(Ji Ju|d(X, X)s : n > 1) is tight, then the sequence (u") is R-tight.

Applying this to (3.8) and (3.9) multiplied by a? gives that
the two sequences a, (7" —1), an(£"y" + A" —¢£) are R-tight. (3.14)

We also deduce from (3.8) that for each ¢ the sequence ((L™, L™); : n > 1) is tight. Exactly
as in the last step of the previous proof, we deduce that the sequences ( fg an|p2d(X, X)s :
n > 1) are tight, hence the sequence (a,p") is R-tight. In view of (3.11) we deduce that

the sequence a,7y"\" is R-tight. (3.15)

Now, we can write

an(§" = &) = anf"(1 =7")(1+7") +any"(7"€" + A" = &) — any" A" + anf(y" = 1).

We also know that the sequences (7") and (£") are R-tight (by (3.13) and the previous
theorem). Then the result readily follows from (3.14) and (3.15). O

3.3 A discrete version of Section (3.2)

Now we consider for each n a subdivision 7,, = (T'(n,4) : i € IN) of stopping times on the
basis (2, F, (Fy), P) with F = \/ Fy, satisfying (2.4), and we suppose that the sequence
(n) satisfies (3.1). For each n we have a square-integrable martingale X™ and a square-
integrable variable U". Analoguous to (2.5), we set X' = XTnpy- As in (2.6) we have
(3.3), as well as the decomposition

U™ = o"+> AX]+NL. (3.16)
i=1
Then, as in (2.7) we set
=& if T(n,i—1) <t<T(n,i). (3.17)

Theorem 3.5 Assume that U™ — U in IL?(P) and that X" and X are square-integrable
martingales and that
E(X" - X, X" - X)) — 0. (3.18)

Then the sequence ™ converges to £ = £(X,U) in Qx-measure.

Proof. In view of Proposition 2.2 we have {™ = Qx» (£"|P;,), where P, is the o-field on
Q defined in the proof of Theorem 3.1. Let also P be the predictable o-field on 2. We
consider the decomposition (3.5) for X™.
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We can find a probability measure R on (Q, P) which dominates all the finite measures
Qx and Qpn, and such that Q) x < aR for some constant a. We can thus find nonnegative
R-integrable and predictable functions V, V" such that V < a and

QX :V.R, QLn :Vn.R

Then we have Qx» = W™ ¢ R, with W" = (fyn)ZV +vn,
Now, (3.18) and (3.8), then (3.9), then (3.10), yield

v SIQx) 1 QL (1) = 0, (3.19)
gy 4 An S 1A@x) ¢ (3.20)
Qm(l) < K, Qr.((¢"% < K. (3.21)

Furthermore we get Qx(|p"|) < +/Qr»(1)\/Q7= (1), exactly as in the proof of Theorem
3.3, and in view of (3.19), (3.21) and (3.11), we obtain

yrAn I @x) . (3.22)

Then (3.19) and (3.20) yield that (y7)26"+4"A" — £ in IL'(Qx), hence also (y)%¢" —
¢ in IL'(Qx) by (3.22). Since V is bounded, we readily deduce that (y*)?V¢" — V€ and
(v*)?V — V in IL'(R) (use (3.19) again for the later). Furthermore V" — 0 in IL'(R) by
(3.19), while we have R(V"|"|) < /R(V™)\/R(V™(£™)2), which goes to 0 by (3.19) and
(3.21): then V™™ — 0 in IL'(R). Putting all these results together yields

wn SL® y o mgn SLE) e
It readily follows that

R(W"|P.) = R(V|P.) =L'(®) o, RE"W"|P.)— R(VEP.) =L (R 0. (3.23)

On the other hand, Bayes’ rule yields

R(E"W™|Py)
mo— Qe (€"P) = n) 3.24
Now let us apply the proof of Theorem 3.1 to R instead of QQx: first with V instead

of &, which, since V is bounded, yields R(V|P]) — V in IL?(R). Next with ¢V instead
of &, which, since V < a and thus R((¢V)?) < aR((€)?V) = aQx((£)?) < oo, yields

R(£V|PL) — £V in IL?(R). Combining this with (3.23) yields
RW"|P) — V, R("W"|PL) — &V in IL'(R), hence also in @ x-measure.
Since further we have V' > 0 @ x-a.s., it follows from (3.24) that £ — ¢ in Q) x-measure,

and we are done O

In the previous theorem, we would like to replace (3.18) by (3.4), with X and X"
being only locally square-integrable martingales. But we have been unable to prove such
a result under “reasonable” conditions.
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3.4 Application to the Euler scheme

We apply the previous results to the Euler approximation scheme for a stochastic differ-
ential equation. The setting, similar to that of Subsection 2.4, is as follows: we have a
locally square-integrable martingale Z on a space (Q, F, (F;)i>0, P) with F =/ F; and a
locally Lipschitz continuous function with linear growth g, and X is the (unique) solution
of the following stochastic equation (where X is a given Fj-measurable square-integrable
variable):

t
X, = Xo+ / 9(X,_)dZ,. (3.25)
0

In comparison with Subsection 2.4, we relax the assumptions on g and Z and allow
an arbitrary initial condition Xy. We also consider subdivisions 7, = (T'(n,7) : 7 € IN) of
stopping times satisfying (2.4), such that (3.1) holds. With ¢j = 0 and ¢} = T'(n,i — 1)
for T'(n,i — 1) < t < T(n,1), we have the “continuous” Euler approximation at stage n,
which is the solution of

t
XP = Xo+ / 9(X2,)dZ,. (3.26)
0 S

Let U and U™ be square-integrable variables such that U" — U in IL?: typically
U = f(X;) and U" = f(X}") for some ¢, where f is a bounded continuous function. In
this case, since by a well known result (see e.g. [11]) X™ goes in probability to X, locally
uniformly in time, we do indeed have U" — U in IL°.

Note that X and X" are locally square-integrable martingales. Recall also (1.3). Then
as a corollary of Theorem 3.3 we get:

Theorem 3.6 Let U™ — U in IL?(P), and let £ = £(X,U) and ™ = £(X™,U™). Then
£ Qx ¢

Proof. It is enough to prove that (3.4) holds. Note

(XXX = [ aX)  o(X, )2, 2),

< 2/;(9()%) —9(Xgp))?d(Z, Z)s + 2/(Jt(g(x¢g) — 9(X,2))2d(Z, Z)s.

We have already mentioned that X™ goes to X uniformly in time, in P-measure. Thus
the sequence sup,;(|Xs| + |X?|) is bounded in probability and, since g is continuous and
locally bounded, it follows that the first term in the right side of the above inequality goes
to 0 in probability for each ¢. On the other hand ¢? — s and ¢7 < s for all s > 0: thus
for all w and all s > 0 we have Xyn(w) — X, (w). Thus, by the continuity of g again,
the second term in the right side of the above inequality goes to 0 for all w: hence (3.4) is
proved. O

Let us now pass to the “discrete” Euler approximation:

2
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Here we have some problems of integrability, because in order to apply the previous results
we need each X to be a discrete-time locally square-integrable martingale. On the other
hand we do not wish to assume that X, X" and Z are square-integrable up to infinity.

In order to resolve this problem, we suppose that Z is a martingale square-integrable
on compacts, and also that there is a constant K such that for all i, n:

T(n,i) —T(n,i—1) < K. (3.28)

Then the process Z stopped at any time T'(n, i) (which is bounded by (3.28)), is a square-
integrable martingale, and Z!" = Z7(n;) 1s a martingale square-integrable on compacts
w.r.t. (Fren,))i>0- Due to the linear growth of g, and similarly to (5.2) of the Appendix,
one also checks easily that X" = X%(n, i) is also a martingale square-integrable on compacts

w.r.t. the filtration (Frp 3 )i>0-
As soon as U™ is square-integrable, analogous to (3.16), we may thus write
o + 372 EPAXD + NI,
u" = - - (3.29)
o + 32 Xy AZY + NT

where N™ (resp. N'™) is a square-integrable martingale w.r.t. (FT(n,i))iz0, null at 0

and orthogonal to the discrete time locally square-integrable martingale (X')i>o (resp.

(Z")i>0), and " and x? are F1(ni—1)-measurable. Further, we set
=g
xi' = Xi
Recall that £ = £(X,U), and set x = £(Z,U). Then:

} if T(n,i—1)<t<T(n,i). (3.30)

Theorem 3.7 Assume (3.28) and that Z is a martingale square-integrable on compacts.
If the variables U™ and U are Fr-measurable for some T € IRy and satisfy U™ — U in
IL2(P), we have &™ —@x ¢ and x'™ =97 .

Proof. 1) Take T" = T + K, where K occurs in (3.28). Then the processes x" are the
same if we replace Z by the stopped process ZZ' in (3.29), and also x = ¢£(Z7,U). So we
can assume that Z = Z” is square-integrable. Applying Theorem 3.5 with X" = X = Z
then yields that x™ — x in @Qz-measure.

2) In (3.29) we may write, in view of (3.26) and (3.27):

oo
U" = o+ (XL )AZ} + NE,
=1

o0 [ee]
U™ = "+ X lgxn y20)AZ0 + D Xilggisr )=} AZ + N
i=1 i=1

The last three terms above are orthogonal martingales, and thus by identification with
the previous expression we get that a.s.:

&9(Xl ) = Xiligxr )20}- (3.31)
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This yields
§9(X5) = X gxp 20y Qz-as. (3.32)

A similar argument shows that
§59(Xs—) = Xslygx,_)z0y  @z-as. (3.33)

As seen in the proof of Theorem 3.6, g(X§,) — g(X,—) in probability for all s. Then
one deduces from the fact that x'" — x in Qz-measure and from (3.32) and (3.33) that
¢ — £ in Qz-measure on the set {(w,t) : |g(X;— (w)| > €}, for every € > 0. Hence the
same convergence holds also on the set A = {(w,?) : g(X;—(w)) # 0}, and since Qx is
absolutely continuous w.r.t. )z and does not charge the complement of A, we deduce
that £¢™ — ¢ in Qx-measure. O

Remark 3.8 The same proof as above would also work for Theorem 3.6: we have x" =
&(Z,U™) — x =¢&(Z,U) by (1.4), while the relation (3.32) holds between x™ and £".

4 Weak convergence results

In this section we consider the weak convergence of integrands: we have a sequence
X™ of locally square-integrable martingales, each defined on its own probability space
(Qm, F", (F}),P™), and for each n a square-integrable variable U™ on the relevant space.
The aim is to prove that if (X™,U™) converges in law to (X,U), with X a locally square-
integrable martingale and U a square-integrable variable on the space (2, F, (F;), P), then
(X™ &(X™ U™)) converges in law to (X,&(X,U)) in some sense.

It seems impossible to solve such a general problem, so we will concentrate on some
particular cases.

4.1 Application of the Clark-Haussmann formula

Here we consider a sequence of processes of the form studied in Subsection 2.4. More
precisely, we have Z, g and X* as in this subsection, given on (Q, F, (F};), P). For each n,
we also have a Lévy process Z" which is a martingale square-integrable on compacts on a
space (Q", F", (F}), P"), satisfying (2.15) with ¢, and F},, and as before, we assume that
the numbers

¢ = c+/F(dz)z2, Cn = cn—i-/Fn(dz)z2
are finite and strictly positive.

Then we have differentiable functions g,, and we consider the equations (2.17) and
(2.18) w.r.t. Z™ and g,, and whose solutions are denoted by X™* and X'™*. We make
the following assumptions. First on g, and g:

g (0)] < K,  gp(x)] < K,  lgp(z) —g,(w)|] < Klz -yl (4.1)

gn — G, g, — g pointwise. (4.2)
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Next on Z™ and Z: we basically assume that Z" converges in law to Z, plus a slightly
stronger assumption which is reminiscent of the Lindeberg condition; more precisely we
assume that

én — G, [ Fo(dz)h(z) — [ F(dz)h(z) }
(4.3)

for h continuous, bounded and vanishing in a neighborhood of 0,

A(z) = sup/Fn(dz)z21{‘Z‘2x} — 0 as z — oo. (4.4)

These two conditions imply that the second convergence in (4.3) also holds when A is con-
tinuous, and h(z) = O(2?) at infinity, and h(z) = o(2?) at 0. They imply the convergence
in law of Z" to Z (see e.g. [9]).

Then we can state:

Theorem 4.1 Assume (4.1), (4.2), (4.3) and (4.4). Let f be a differentiable function
with a bounded and Lipschitz derivative and T > 0. The processes & = £(X7, f(XT)) and
" =¢(X™", f(X7")) have versions which are left continuous with right limits, and if we
set &(+)s = limy s 55 & and E(+)2 = limy g 455 &, the processes (X™,€™(+)) converge in

S

law for the Skorokhod topology on IR? to (X% &(+4)).

Proof. 1) A version of ¢ is given by (2.20), with n given by (2.21). We wish to prove here
that this version is left continuous with right limits. We can rewrite n as

k(s,y,2) = [y (Qr—sf'(y +uzg(y)) — Qr—sf'(y))du, }
n(say) = QTfsfl(y) + % fF(dZ)ZQk‘(S,y,Z)

In view of (5.9) of the appendix and of the properties of f, we have for 0 < s <t < T

k(s,9,2)| < C, }
(5,9, 2) — Ky, 2)] < C(L+ [yl(1+ |2)VI—5

for a constant C. Now, (4.3) and (4.4) yield that [ F(dz)z?1{,>,) < A(z), so the above

estimates and (5.9) again yield that for all N > 1V T~'/* and for two other constants C’,
(O4F

(4.5)

(4.6)

n(s,y) —nlt,g)] < C'(1+ NlVi—s+CAN) < C"(1+|yl)(t — )Y+ A((t—s)1/%)

(4.7
(take N = (t — s)~1/* to get the last estimate). On the other hand, as in the proof of
Theorem 2.6 we have (2.25) with @Q; instead of @}, hence it is clear from (4.5) and (4.7)
and another application of (5.9) that (s,y) — n(s,y) is continuous: hence (2.20) readily
yields that £ is left continuous with right limits.

2) Similarly, for each n we associate with Z", F,,, ¢,, g, the functions k, and 7, given
by (4.5). Exactly as before, we obtain that £, as given by (2.20) with 7, and X™" instead
of n and X7, is left continuous with right limits. Moreover, in view of the Appendix and
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of (4.1), (4.3) and (4.4), it is clear that the estimates (4.6) and (4.7) hold for all &, and
N, with constants C', C’' independent of n.

3) Now we apply again the stability results of [10]: by (4.1), (4.2) and (4.3), for any
sequence y, — ¥y, the processes (X™¥n X'™¥n) converge in law to (X¥, X'¥), and further
the estimate (5.2) of the Appendix yields that each sequence (X;n’y")nzl is uniformly
integrable. Hence if QF is associated with (X™7 X'™7) by (2.19) we readily deduce that
(2.25) holds.

We will deduce that if y,, — y and s, — s we have

M (Snsyn) — 1(8,9). (4.8)

Indeed, by (2.25) and (5.9) of the Appendix, we have Q% _, f'(yn) — Qr—sf'(y), hence
also kn(Sn,Yn,2n) — k(s,y,2) as soon as z, — z because of (4.2). Hence for (4.8) it
remains to prove that if hy(2) = ky(Sn, Yn, 2) and h(z) = k(s,y, 2)
1 1
L [ Eod)2ha(z) — = / F(d2)22h(2), (4.9)
Cn, ¢
knowing that hy,(z,) — h(z) if 2z, — z and h is continuous and |h,| < C for a constant C'.
Now, consider the probability measures G, (dz) = %(Fn(dz)z2 + cneo(dz)) and G(dz) =
L(F(dz)2* +cgo(dz). Since hy,(0) = h(0) =0, (4.9) reads as Gy (hy,) — G(h). Furthermore
(4.3) and (4.4) imply that G,, converges weakly to G.

By the Skorokhod representation theorem we can find random variables V,,, V on a
suitable probability space, such that V,, and V have laws G,, and G, and that V,, — V
everywhere. Then G,,(hy,) = E(hy,(V,)) and G(h) = E(h(V)), and the fact that h,(z,) —
h(z) if z, — z yields that hy,(V,) — h(V) everywhere. Since further |h,| < C, it follows
that Gy, (h,) — G(h): hence (4.9) and (4.8) are proved.

4) Observe that (+)§ = nu(s, X{") 101y (s) and &(+)s = n(s, X7)1o7)(s). Further,
(4.8) implies that 7, — n locally uniformly. Since X™7% converges in law to X* and since
X" has no fixed time of discontinuity, an application of the continuous mapping theorem
yields that (X™% £(4)™) converges in law for the Skorokhod topology to (X7%,&(+)). O

Remark 4.2 Suppose now that f is a continuously differentiable function on IR* with
all partial derivatives bounded and Lipschitz, and let 0 < T3 < ... < T. Set £ =
(X7, f(XT,,--., XT,)) and £ = E(X™7, FXp7, .. ,X%;x)), as in Remark 2.9. Then the
statement of Theorem 4.1 holds, with exactly the same proof.

4.2 A discrete time version

Here we consider a “discrete time” version of the previous results. The setting is as follows,
and will also be the same in the next subsection.

For each n we have a sequence (Y;");>1 of i.i.d. variables on a given space (", F", P"),
with 1
EMY®) =0, BN = -, B < 2 (4.10)
n n
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where €, — 0. These conditions imply that the partial sums processes
[nt]
7z = Z Y;" (4.11)
i=1

converge weakly to a standard Wiener process Z = W, defined on a (possibly different)
filtered space (£, F, (F)i>0, P). We also have a function g on IR which is differentiable
with a bounded Lipschitz derivative, and we consider the difference equation

Xt = XPT = X4 g (XYY, (4.12)

whose solution is a square-integrable martingale w.r.t. the discrete-time filtration F}' =
o(Yj* 1 j <i). We also consider the associated continuous-time martingale w.r.t. the
filtration (7, )e>0:

XM = X[’;;g. (4.13)

This process X™* can be viewed as the solution of the stochastic differential equation
¢

X7 = o+ [ g(xpaz, (4.14)
0

and by stability theorems (see [10]) it converges weakly to the unique strong solution of
the following equation:

t
X7 — x—l—/ 9(XT)dZ,. (4.15)
0

We even have that the pair (Z", X™%) weakly converges to (Z, X%). Further X™ and X™*
are also related by (2.5) with 7; = i/n, and X™7 is a locally square-integrable martingale.

Now we let T" > 0 and f be a differential function with a bounded and Lipschitz
derivative. Then U™ = f(X7'") is square-integrable. We can consider the decomposition
(3.16), which gives £, and we associate £™ as in (3.17) with T'(n,i) = i/n. On the other
hand U = f(X#%) is also square-integrable, and we set £ = £(X*,U).

Here again, by construction £™ is left continuous with right limits, and we set (+)7 =
limg s 45 €. On the other hand, the version of £ given by Theorem 2.6 is not only left
continuous, but even continuous except at time 7" this is because the function 7 of (2.21) is
continuous, and the process X also is continuous: then the process &; = n(s, X7)1jo.1)(s)
is another version of ¢, which is right continous with left limits (and also continuous except
at T') and differs from the first version at time 7" only.

Theorem 4.3 Assume (4.10), (4.11), (4.12), (4.14) and (4.15) with g differentiable with
a bounded and Lipschitz derivative. Let f be a differentiable function with a bounded and
Lipschitz derivative and let T > 0. Then the processes (X™% &(+)™) converge in law for
the Skorokhod topology on IR% to (X*,¢&).

Proof. The explicit form of £ is given by (2.20), with 1 taking the simple form 7(s,y) =
Qr—sf'(y). Now, if P*f(z) = E(f(X;"")), we readily deduce from Proposition 2.1 and
from (4.10) and (4.12) and (4.13) that a version of £ is given by

{ goemy [ Hidy)y PR XN +g(X)y) i < T, g(X]) #0

0 otherwise,

&
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where ' denotes the law of Y;". In view of the properties of g, we readily deduce by induc-
tion on 7 that z — X" is differentiable (for all w), hence z — X;"" is also differentiable
and its derivative satisfies

t
X~ 14 /0 g (X)X qzn.

and we set Q7 f(z) = E(f(X;"")X;™"). Then by virtue of (4.10) and of the properties of
g again, one easily checks that Q7 f'(y) is bounded in (n,y) and continuous in y, and that
%Ptnf(y) = Q7 f'(y); since further the Y;*’s are centered, we get

g(X"7)
n

[ Py (R + (X = Qs f'(X15) + T,
where sup; [el'| — 0. Therefore if ¢, (s) = i/n when i/n < s < (i + 1)/n, we deduce that
a version of £(+)™ is given by

EH)S = Qg (o) (X () 0,0n(ry(8) + &

n

where sup, [£;"| — 0. By the same argument as in Theorem 4.1 one has QY f'(y.) —

Qsf'(y) when s, — s and y, — y. Since X™% converges in law to X%, the result then
follows as in Theorem 4.1 again. O

Remark 4.4 Exactly as in Remark 4.2, the same result holds when instead of f(X7)
and f(X7") we consider the variables f(Xg ..., X7, ) and f(Xp", ..., Xp"), where f
is a continuously differentiable function on IR¥ with all partial derivatives bounded and
Lipschitz, and 0 < T < ... < T}.

4.3 Another discrete time version

Here we consider exactly the same setting as in the previous subsection: we have (4.10),
(4.11), (4.12), (4.13), (4.14) and (4.15).

The only two differences are that we only assume g to be locally Lipschitz with at most
linear growth, and that we will prove a convergence theorem for more general variables
than f(X7%), but in a much weaker sense.

More precisely, we consider a function ® on the Skorohod space ID of all right contin-
uous with left limits functions on IR, which is bounded, continuous for the local uniform
topology, and measurable w.r.t. the o-field D generated by the coordinates on ID up to
some time T > 0 (recall that if ® is continuous for the Skorokhod topology, it is a fortiori
continuous for the local uniform topology). Then we take U = ®(X?*) and U" = &(X™").

For each n we can write the decomposition (3.29) for U", and define the continuous
time processes £™ and x'™ by

"= } i1

if <t<
X' = Xi "

Set also &€ = ¢(X*,U) and x = £(Z,U0).

(4.16)
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To finish with our preliminaries, we need to introduce the topology w.r.t. which our
processes will converge. We write IF' for the space of all Borel functions on IR, , and A
for the set of all bijective increasing maps from IR, into itself (= the set of continuous
time-changes). We define the probability measure p on IR, by p(dt) = e~!dt, and denote
by A a distance metrizing the convergence in p-measure. Then for z,y € IF' and with Id
denoting the identity map on IR, , we set

do((L‘,y) = /{gjf\(A()\,Id)+A(xo>\,y)), d(ac,y) = do(x,y)—l—do(y,x). (4'17)

This defines clearly a distance on IF', and a sequence z,, converges to = for this topology
iff there is a sequence A, of time changes converging locally uniformly to I'd and such that
A(zp o Ap,y) — 0. This type of convergence is a weakening of convergence in Lebesgue
measure, studied by many authors in the context of processes (see e.g. Grinblat [8],
Cremers and Kadelka [4] or Meyer and Zheng [12]).

Finally, we endow the product ID x ID x IF with the product of the local uniform
topology on ID and the topology induced on IF' by the distance d in (4.17). Then we have:

Theorem 4.5 Assume (4.10), (4.11), (4.12), (4.14) and (4.15) with g locally Lipschitz
with at most linear growth. The processes (X™%, Z™ x"™) converge in law to (X*,Z,x) in
the product space ID x ID x IF with the above topology.

If further the function s — g(X7¥) does not vanish the processes (X™%, Z™ ¢"™) converge
in law to (X*,Z,€) in the same space.

Proof. 1) The idea of the proof is to embed in the Skorohod sense the random walk in
the Wiener process.

Our basic space here will be (€2, F, (F;)s>0, P) on which the Wiener process Z is defined,

as well as the solution X* of (4.15). By Skorohod embedding (see e.g. Skorokhod [16] or
Azéma and Yor [1]), for each n we can find an increasing sequence (T'(n,1));>o of stopping
times with 7'(n,0) = 0 and such that if S(n,i) = T'(n,i) — T'(n,i — 1), the variables
(S(n,9), Zr(n,i) — Z1(n,i—1))i>1 are independent and Zp(, ;) — Zr(n,i—1) has the same law
as Y;", and further (compare to (4.10))
BSmi) =~  B(S(mi)?) < 4% (4.18)
In other words, since we are interested in convergence in law only and since thus the
concrete realization of the variables Y;” does not matter, we can and will assume that
Y = Zrni)y — Zr(ni-1)- Then the process Z" of (4.11) becomes Z;' = Zp(y [ns). The
solutions of (4.12), (4.13) and (4.15) are all defined on the space (2, F, (F¢)i>0, P), w.r.t.
the same Z, as well as U = ®(X?) and U" = ®(X™7%), and thus also £, x?, &, x', ¢
and x.

2) Set A} = T(n,[nt]) and ¢} = T(n,i — 1) if T(n,i — 1) < ¢t < T(n,i). Note
that in (4.16) the time discretization is along the sequences i/n, while with the above
representation of the Y;”’s it is rather related to the sequences T'(n,4). This leads us to
consider the equation

t
VI = gy / g(VIi)dZ,, (4.19)
0 S
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which is the Euler approximation of (4.15) along the T'(n,)’s. Note that VTn(’z )= X"
(see (4.12)), hence
Xt = VR (4.20)
Similarly, we will replace x'™ by
o= xr if T(n,i—1)<t<T(n,i), (4.21)
so if A" is such that Af}n = T(n,4) and is linear on each interval (=1, L), we have
Xi" = Y. (4.22)

In the sequel we can assume without loss of generality that 7" is an integer. If t < T
we have A} < T'(n,nT), so (4.20) implies that U" = ®(X™7) is Frp(, ,r)-measurable: it
follows from (3.29) that x? = 0 for ¢ > nT, and ¢ = 0 for ¢ > T(n,nT). Similarly, U
is Fp-measurable and we have x; = 0 for ¢ > T. Therefore for defining the process '™
we can use the stopped process Hy' = Z;\7(n,n1), and for the process x we can use the
stopped process Hy = Zipr.

Therefore, 1)'™ and x are associated with H™ and H exactly as '™ and £ are associated
with X” and X in Theorem 3.5. So we will deduce from this theorem that

P = x in @) -measure, (4.23)
provided we prove that

E(lU"-U* — 0, E(H"-H,H"—H)y) — 0. (4.24)

3) Recalling (4.18) and the independence of the S(n,%)’s for ¢ > 1, we have that

the mean of T'(n, [nt]) is %, and its variance is smaller than 4te,: therefore we have
T(n, [nt]) — t in IL?(P). Therefore

AP — t, A =t locally uniformly in ¢ in IL2(P). (4.25)

As already mentionned, V™% converges locally uniformly in probability to X*, and
the limit X* is continuous: so (4.20) and (4.25) imply that X™7 also converges locally
uniformly in probability to X?. Since ® is bounded and continuous for the local uniform
topology we have the first half of (4.24). As for the second half, since (Z, Z); = t, it
amounts to E(|T — T'(n,[nt])]) — 0: this is again a consequence of (4.25), hence (4.24)
and (4.23) holds. Furthermore, since x; = 0 for ¢ > T and ;" = 0 for ¢t > T'(n,nT), and
since Qz(dw,dt) = P(dw) ® dt, we readily deduce from (4.23) and (4.25) that we even
have

P = x in ) z-measure. (4.26)

Now Z™ — Z locally uniformly for all w, and X™* — X7 locally uniformly in proba-
bility as seen above. Finally, (4.25) and (4.22) implies that d(x'", x) — 0 in probability,
where d is defined in (4.17). That is, (Z™, X™*, x'") converges in probability to (Z, X*, x)
in ID x ID x IF' for the desired topology, and the first claim is proved.
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4) For the second claim, we observe that, exactly as in the proof of Theorem 3.7, the
relations (3.31) and (3.33) hold, and thus also

G9(XT) = X gxmmyzey  Qz-as. (4.27)

We have also seen that X™% — X7 locally uniformly in probability. So the second claim
readily follows from the first one and from (3.33) and (4.27). O

Remark 4.6 The second claim is not very satisfactory, since it assumes that g(X?*) does
not vanish. If § = inf(¢ : ¢(X{) = 0) is not everywhere infinite, then X7 is constant
after S, and in the above proof we have the convergence of £ to £ on the set [0, 5], but
not necessarily on (S, 00): when we go back to the original sequence Y;" and the original
processes X™% defined on possibly different spaces, one can no longer compare £™ and &
“pathwise”, and the convergence in law “in restriction to [0, S]” makes no sense.

This is in contrast with Theorem 4.3, in which we obtained the convergence in law
without restriction. Another difference with this theorem is that here the convergence of
x'™ and ™ is in a much weaker sense, because the limiting processes x and £ are no longer
left continuous with right limits. O

Remark 4.7 When the variables Y;” are N (0, ﬁ), the embedding in the previous proof
is trivially realized with T'(n,7) = i/n. Then there is no time-change involved: the conver-
gence in law takes place in ID x ID x IF', with IF' endowed with the topology of convergence

in Lebesgue measure. It does not seem to be true in general. O

Remark 4.8 The conditions (4.10) are far too strong for this result. In fact, Theorem
4.5 remains valid if the Y;"’s have
En

EMYPFL) = 0, BMY)FL) = 6, BMO)IFL) < o (428)

1

where Fi' = o(Y]" : j <) and e, — 0 (the &, are constants) and the variables ¢;' satisfy

Zgﬂ 07 — t in law for each ¢. The proof is almost the same: observing that ¢ is a
function A (Y}",..., Y, ), the only difference is that the first equality in (4.18) is replaced
by E(S(n,i)|Frm,i-1)) = b (S(n,1),...,S(n,i — 1)) (using also the fact that embedding
a random variable depending measurably on a parameter gives rise to a stopping time
depending also measurably on this parameter, as is the case in the construction of Azema

and Yor [1]). O

Remark 4.9 One could perhaps also consider the case of i.i.d. variables Y;” (or more

generally triangular arrays of martingale increments, as in Remark 4.8) such that the
processes Z™ of (4.11) converge in law to a Lévy process Z: this would probably require
the embedding technique of Monroe [13], but we have not tried to do this. O

5 Appendix: some complements on stochastic differential
equations

Here we gather some results about Equation (2.17). First, assume that Z is a Lévy process
and a locally square-integrable martingale, so that (Z, Z); = ¢t for some ¢ > 0. We are
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also given a differentiable function g, such that
9(0)] < K, |d(=)] < K. (5.1)

In this case both (2.17) and the linear equation (2.18) have unique (strong) solutions.

We have the following estimates, which rely upon Gronwall’s Lemma and the property
(Z,Z); = ¢t

E(sup |X%|?) < (222 +1)exp(4K?ét), E(sup | X"|?) < 2exp(2K?ét). (5.2)
s<t s<t

Second, we prove the following lemma, which is less well known than the previous
results:

Lemma 5.1 Assume that the Lévy process Z above has bounded jumps, and that the coef-
ficient g is infinitely differentiable with bounded derivatives of all order, and define P, and
Q¢ by (2.19). Then for every twice continuously differentiable function f which is bounded
as well as its two first derivatives, the function (t,z) — P,f(x) is twice differentiable in x
and once differentiable in t, and all the partial derivatives are continuous in (t,x), and

0

ZRf@) = Quf' (@), 5.3
Proof. 1) In addition to (2.17) and (2.18), consider also the linear equation
t
Xtr = [ (" (XK + (X0 XU) dZ (5.4)
0

Then we have the following properties, to be proved below:

the maps z — X, X/ X' are differentiable in IL?(P), (5.5)
the derivatives of z — X7, X/* are X;* and X]'* respectively, (5.6)
the variables (| X7 |?,|X;"|?,|X{"|*)icjo,r] are uniformly integrable. (5.7)

We readily deduce from these properties that (5.3) holds and moreover

2
SR () = B + /(X)X 6

hold. Further, the processes X%, X'* and X"* are continuous in time, in probability:
hence (5.6) and (5.7), together with (2.19) and (5.8), readily imply that P,f(z) and its
two first derivatives in x are continuous in (¢, z).

Moreover it is well known that f belongs to the domain of the infinitesimal generator
A of (P;), and

Af@) = So@)f" (@) + [ F(2)(f (o + 9(0)2) - f(2) = 1'(2)g(2)2)

Hence %Pt f(z) = P,Af(z) exists and is continuous in (¢, z), because Af is bounded and
continuous.

29



2) It remains to prove that (5.5), (5.6) and (5.7) hold. For this, we will apply some
results of Chapter 5 of [2]. The continuous martingale part of Z is Z¢ = c¢W for some
¢ > 0 and a Wiener process W; let y be the jump measure of Z, whose compensator
is v(dt,dz) = dt ® F(dz), where F' is the Lévy measure of Z, which by hypothesis has
compact support. The function n(x) = x is thus in ILP(F) for all p > 2. Then we set for
A€ Rand y = (y1,y2,y3) € R*:

HY ) = e+ HPw) =1 HM =0,
AN =0,
BA’l(yawat) = g(y1)7 B)\,Z(yawat) = gl(yl)y27 B/\73(y7w7t) = gll(yl)(y2)2 +gl(y1)y37
C/\(yawataz) = B)\(yawat)z'

Then the set of the three equations (2.17), (2.18) and (5.4) for z + X instead of z reduces
to Equation (5-22) of [2], with Y* = (X*+} X'#+A X"#+A) The assumptions of Theorem
5-24 of [2] are then obviously satisfied, and this theorem states that Y;* is differentiable in
all ILP(P) in A\, at A = 0, and that the derivative is obtained by formal differentiation of the
equation giving Y*, and that all powers of the derivatives |Y/°|P are uniformly integrable
when ¢ runs through any finite interval: these properties imply (5.5), (5.6) and (5.7). O

Third, we give an estimate as in (5.2) for the kernel Qy:

Lemma 5.2 Assume (5.1). If f is a bounded Lipschitz function, for all s < t we have

with C = sup(|f ()|, LELLL 5.y € R,z # y):

Qif ()| < 2C ¢, }
|Quf () — Qsf(z)] < 8KCV1+ 2?2 3K [T g,

Proof. The first estimate in (5.9) follows from (5.2). For s < ¢t we have:

t
X =X¢ = | 9(X;7)dZ,
S
t

Xo_x = / ¢ (XT )X dZ,.
S
Hence by (5.1) and (5.2) we readily get
E(XF — X*)?) < 4K*(1 + 2%)e*°% (1 — 5),

B(X" — X")2) < 2K2e2K70 (¢t — 5).

Now we write

Quf(z) = Qsf(z) = B(f(X)(X" = X)) + E((J(XF) — F(X9))XS),

and the second estimate in (5.9) follows from what precedes and from (5.2) again. O
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