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ABSTRACT

Stochastic integral representation of martingales has been undergoing a renaissance due
to questions motivated by Stochastic Finance theory� In the Brownian case one usually
has formulas �of di�ering degrees of exactness� for the predictable integrands� We extend
some of these to Markov cases where one does not necessarily have stochastic integral
representation of all martingales� Moreover we study various convergence questions that
arise naturally from �for example� approximations of �price processes� via Euler schemes
for solutions of stochastic di�erential equations� We obtain general results of the following
type� let U � Un be random variables with decompositions�

U � �	

Z �

�
�sdXs 	N�

Un � �n 	

Z �

�
�ns dX

n
s 	Nn

�

where X�N �Xn�Nn are martingales� If Xn � X and Un � U � when and how does
�n � �


� Introduction

�� Consider a sequence Xn of square�integrable martingales� which converge to another
square�integrable martingale X� this convergence may hold in a strong sense �as in IL��
and all the Xn�s and X are on the same probability space� or it may hold in the weak
sense �convergence in law� and each Xn is dened on its own probability space� Let also
� be a bounded continuous functional �say� on the Skorokhod space of all right continuous
functions with left limits�� and set Un � ��Xn� and U � ��X�� so that Un converges to
U � Suppose in addition that we have the martingale representation property for each Xn

and for X� so we can write Un and U as stochastic integrals as follows�

Un � �n 	

Z �

�
�ns dX

n
s � U � �	

Z �

�
�sdXs� �����
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where �n and � are random variables measurable w�r�t� the relevant initial ��elds� and �n

and � are predictable processes� Then an important theoretical problem is to nd whether
the sequence �n converges in law� for a suitable topology� to ��

This problem has also much practical relevance� For example in nancial mathematics�
suppose that X models the price of a stock� and U is a claim based upon this stock� and
for simplicity the riskless bond has constant price �� If the model is complete and with
no arbitrage opportunity� then X is a martingale under the unique risk neutral equivalent
measure� the price of the claim is the expectation E�U� � � under this measure� and
we have the martingale representation property w�r�t� X� then the process � in �����
is the so�called hedging strategy� Now� for computational purposes we might want to
take a discrete time approximation for X� e�g� a binomial approximation Xn which thus
converges in law to X� or an Euler approximation Xn which thus converges strongly to
X when this process is the solution of a stochastic di�erential equation� If one also has
the martingale representation property for the discrete time models �as is the case for
the binomial approximation�� then it is important to know whether the �approximate�
hedging strategies �n do converge in some sense to �� Such questions have been touched
upon in ��� for example�

The above brief description immediately gives rise to two kinds of problems� The
rst one comes from the fact that the martingale representation property quite often does
not hold� it holds under reasonably general conditions when the basic martingale X is
continuous� but it is usually lost as soon as X as jumps� and in particular in the discrete
time setting �except for the binomial model��

The second problem is to nd an adequate topology for which the �n�s might converge�
This is not obvious� because these processes have a priori no regularity in time �they are
predictable� but otherwise neither right continuous nor left continuous in general��

�� To begin with� let us consider the rst problem described above� Let X be a locally
square�integrable martingale on a ltered space ���F � �Ft�t��� P � having F �

W
tF t� and

U be a square�integrable random variable� Using the theory of �stable� subspaces gener�
ated by a martingale �see Dellacherie and Meyer ���� or ���� or ��� for this fact� as well as
for all results on martingales and stochastic integrals�� we have the decomposition

U � �	

Z �

�
�sdXs 	N�� �����

where � � E�U jF �� and N is a square�integrable martingale �i�e� a martingale such that
supt jNtj is square�integrable�� orthogonal to X and � is a predictable process� and this
decomposition is unique up to null sets� it comes in fact from the �unique� decomposition
of the square�integrable martingale Mt � E�U jF t� as a stochastic integral w�r�t� X� plus
an orthogonal term� Recall also that two locally square�integrable martingales M and N
are orthogonal if their product MN is a local martingale� and this is denoted by M � N �

Observe that � and N are dened uniquely up to a P �null set� while � is dened
uniquely up to a null set w�r�t� the following measure

QX�d�� dt� � P �d��dhX�Xit��� �����
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on � � IR�� Here� hX�Xi denotes the �angle� �or predictable� bracket� We will denote
the process � by ��X�U�� which is square�integrable w�r�t� QX �

Section � of this paper is devoted to nding an �explicit� expression for the process �
above� rst in the discrete time setting� where it is very simple� next in some Markovian
situations� when U has the form U � f�YT � for a xed time T and an underlying Markov
process Y andX is a locally square�integrable martingale on this Markov process� We thus
extend the well known Clark�Haussmann formula� usually given for Brownian motion� in
two directions� the Brownian motion is replaced by a rather general Markov process� and
we do not assume the martingale representation property� But of course we are limited to
variables U of the form U � f�YT � or more generally of the form U � f�YT� � � � � � YTk� for
xed times T� � � � � � Tk�

Let us come back to the nancial interpretation of ������ if the martingale representa�
tion property w�r�t� X does not hold� the variable N� in ����� is in general not equal to ��
We are in the incomplete model case� and the process � is shown to be a risk minimizing
strategy for hedging the claim U � see F�ollmer and Sondermann ����

�� Let us now turn to convergence results� To get an idea of what to expect as far as
convergence results are concerned� here is a trivial special case� we have a sequence Un

of random variables tending to a limit U in IL��P �� and a xed locally square�integrable
martingale X� Writing Mn� �n� �n and Nn for the terms associated with Un and X
in ������ the three variables �n � ��

R�
� ��ns � �s�dXs and Nn� � N� are orthogonal in

IL��P � and add up to Un � U � so they all go to � in IL��P �� Since the expected value of
�
R�
� �sdXs�

� is QX����� we deduce in particular that

Un �IL��P � U � ��X�Un� �IL��QX� ��X�U�� �����

This leads us to consider rst the case where all locally square�integrable martingales
Xn and X are dened on the same space ���F � �Ft�t��� P � with F �

W
t F t� The simplest

result one can state in this direction is as follows�

Theorem A Assume that Xn and X are locally square�integrable martingales on a

�ltered space� such that hXn � X�Xn � Xit � � in probability for all t � IR�� and that

Un converges to U in IL��P �� Then �n converges to � in QX�measure�

We also give a series of other results� which are more di�cult to state� and which
mainly concern discrete time approximations of a given martingale X� of various kinds�
stepwise approximations� or Euler schemes when X is the solution of a stochastic di�er�
ential equation� All these results are proved in Section ��

�� Section � is devoted to weak convergence results� First� we take advantage of the
explicit results of Section � in the Markov case to show that if Xn is the solution of the
equation dXn

t � gn�X
n
t��dZn

t and X is the solution of a similar equation with g and Z�
where Zn and Z are L�evy processes� and if gn � g and Zn converges in law to Z� then
under some mild additional assumptions the processes �n converge to � for a suitable
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topology� when Un � f�Xn
T � and U � f�XT � and f is a di�erentiable function �typically

Z is a Brownian motion� but the Zn�s are not� so we have the martingale representation
property w�r�t� X� but not w�r�t� Xn�� We also give a discrete time version of this result�

Finally� we give an analogous convergence result when Un � ��Xn� and U � ��X�
for a continuous bounded function � on the Skorokhod space� when X is the solution of
an equation as above with Z a Brownian motion� and the Xn�s are discrete time solutions
of di�erence equations converging to X� As an example� particularly relevant in nancial
applications� let us mention the case where

 Xn
i�� �  Xn

i 	 g�  Xn
i �Y

n
i���

where for each n the �Y n
i �i�� are i�i�d� bounded variables� centered with variance �	n�

Then the processes Xn
t �  Xn

�nt� converge in law to the solution of dXt � g�Xt�dWt� where

W is a Brownian motion� as soon as g is Lipschitz� In this situation� with Un � ��Xn�
and U � ��X� with � as above� the processes �n �naturally dened as some sort of
interpolations of the discrete time processes ��  Xn� Un�� do converge in a suitable sense to
�� in law�

� Explicit representations of the integrand

In this section our aim is to give an �explicit� form for the integrand ��X�U� in essentially
two specic cases� one is the discrete�time case� with an extension to the discretization of
a continuous�time process� the other is a Markov situation� It seems hopeless to obtain
such an explicit form in general� but other cases are found in the literature� essentially on
the Wiener space and using Malliavin calculus� see e�g� the book of Nualart ���� and the
references therein�

Before starting we wish to make precise the various notions of �locally� square�integra�
ble martingales used in this paper� since they play a crucial role� As said in the introduc�
tion� a process X given on a stochastic basis� either with discrete or with continuous time�
is called a square�integrable martingale if it is a martingale and if the supremum of X over
all time is square�integrable� then the limit X� exists and is a square�integrable variable�
X is called a locally square�integrable martingale if there is a sequence Rn of stopping
times increasing to 	�� such that the process X stopped at any Rn is a square�integrable
martingale� In between� we say that X is a martingale square�integrable on compacts if the
process X stopped at any nite deterministic time is a square�integrable martingale� for
example the Wiener process is a martingale square�integrable on compacts in this sense�

��� The discrete�time case

In this subsection� time is discrete� we have the basis ���F � �F i�i�IN � P � with F �
WF i

and with a given locally square�integrable martingale X� We also have a square�integrable
variable U � For any process Y we write !Yi � Yi � Yi��� In this discrete�time case� �����
becomes

U � �	
�X
i	�

�i!Xi 	N�� �����

�



where the series converges in IL� and �i is F i���measurable and N is a square�integrable
martingale orthogonal to X� Here the orthogonality of X and N amounts to say that

E�!Xi!NijF i��� � �� � i 	 �� �����

The above conditional expectation is to be understood in the generalized sense� since
the variable !Xi!Ni might be not integrable� it is however integrable on each F i���
measurable set fRn 	 ig �where Rn is as above�� while 
nfRn 	 ig � �� The same
comment applies below�

Proposition ��� Assume that X is a locally square�integrable martingale� and let Mi �
E�U jF i�� Then a version of � � ��X�U� is given by

�i �
E�!XiU jF i���

E��!Xi��jF i���
�

E�!Xi!MijF i���

E��!Xi��jF i���
� �����

Proof� By denition of M and by the property E�!XijF i��� � � �where again the
conditional expectation is in the generalized sense�� the last equality in ����� is obvious�
Dene � by ������ The measurability condition is obviously met� Set

!Ni � E�U jF i��E�U jF i���� �i!Xi � !Mi � �i!Xi

and Ni �
Pi

j	�!Nj� Then N is a square�integrable martingale with ������ That �����
holds is then obvious� �

��� Discretization in time

Here we have a basis ���F � �Ft�t��� P � such that F �
W
t F t� We consider a square�

integrable martingale X� We also consider a locally nite subdivision 
 of IR�� consisting
of an increasing sequence 
 � �Ti � i � IN� of stopping times such that

T� � �� Ti �� � Ti � Ti��� lim
i
Ti �� a�s� �����

The discretized process is then

 Xi � XTi i � IN� �����

which makes sense even on the set fTi � �g� Then the sequence �  Xi�i�IN is a square�
integrable martingale w�r�t� the discrete�time ltration �FTi�i�IN � If U � IL�� we then
have the two decompositions ����� and ������ namely

U �

��
�

�	
R�
� �sdXs 	N��

�	
P�

i	�
 �i!  Xi 	  N��

�����

where N is a square�integrable martingale w�r�t� �F t�t�� orthogonal to X� and  N is a
square�integrable martingale w�r�t� �FTi�i�IN orthogonal to  X� and � � E�U jF��� Then

�



it is natural to call the discretized version of the integrand � the following continuous�time
process�

��t �  �i if Ti�� � t � Ti� i 	 �� �����

In a sense� this process �� naturally occurs if we replace X by the discretized version along
the subdivision 
 �

Our aim here is to compute �� in terms of �� This is simple� after recalling that the
process � is square�integrable w�r�t� the nite measure QX dened by ������ and after
introducing the ��eld P � on "� � �� IR� which is generated by the sets D � �Ti� Ti����
where i � IN and D � FTi �

Proposition ��� Assume that X is a square�integrable martingale� With the above no�

tation we have �� � QX��jP �� �the conditional expectation of � w�r�t� P � for the �nite

measure QX��

Proof� Set A � hX�Xi and Bt �
R t
� �sdAs� If Mt � E�U jF t�� then ����� yields Mt �

�	
R t
� �sdXs	Nt� hence hX�Mi � B	 hX�Ni � B because X and N are orthogonal� So

an application of Proposition ��� yields the following explicit form for  ��

 �i �
E�BTi �BTi�� jFTi���

E�ATi �ATi�� jFTi���
� ���#�

For D � FTi�� we have

QX��D��Ti���Ti��� � E��D�BTi �BTi���� � E��DE�BTi �BTi�� jFTi�����

By ���#� and ����� this is equal to

E��D  �i�ATi �ATi���� � QX��D��Ti���Ti��
���

Since �� is obviously P ��measurable� this implies the result� �

Remark ��� Exactly the same result �with the same proof� holds if we assume that X is
a locally square�integrable martingale� such that each stopped process �XTi

t � XTi�t�t��

is a square�integrable martingale� �

��� A Clark�Haussmann formula for Markov processes

In this subsection we give an alternative form of the Clark�Haussmann formula giving the
integrand ��X�U�� see Nualart ���� for a general form of this formula�

The setting is as follows� we have a quasi�left continuous IRd�valued strong Markov
process Y on ���F � �F t�� Px�� where Px is the probability measure under which Y� � x
a�s�� and we assume also that Y is a semimartingale under each Px� Let � be the jump
measure of Y � and �B�C� �� its characteristics� we refer for this to ���� and also to ���
for the following structural results� showing in particular that �B�C� �� do not depend
on the starting point� there exist a continuous increasing additive functional A� a Borel
IRd�valued function b� a Borel nonnegative symmetric IRd � IRd�valued function c and a

�



transition measure F from IRd into itself integrating z � jzj� V � �the �modied L�evy
measure��� such that

Bt �
R t
� b�Ys��dAs�

Cij
t �

R t
� c�Ys��

ijdAs�

���� ds� dz� � dAs���F �Ys����� dz��

�������
������

�����

We denote by �Pt� the transition semi�group of Y �

Now� we work under the measure P of the form P �
R
m�dx�Px �so m is the law of Y���

Denote by DT the class of all Borel functions f such that f�YT � � IL��P � and that the
function �t� y�� Ptf�y� on ������ IRd is once di�erentiable in t and twice di�erentiable
in y� with all partial derivatives being continuous�

Next� our basic locally square�integrable martingale X is of the form

Xt � X� 	

Z t

�
Ts dY

c
s 	

Z t

�

Z
IRd

 �s� z��� � ���ds� dz�� ������

where Y c denotes the continuous martingale part of Y � and �T� denotes the transpose�
and  � �i��	i	d and   are predictable functions on � � IR� and � � IR� � IRd� such
that for all t ���Z t

�
asdAs � �� where as � Ts c�Ys��s 	

Z
F �Ys�� dz� �s� z��� ������

Observe that under ������� X is well dened and is a locally square�integrable martingale
under each Px and P � with angle bracket hX�Xit �

R t
� asdAs�

Theorem ��� Let f � DT and U � f�YT � for a given T � IR�� Then a version of the

process � � ��X�U� is given for s � T by �s � � and for s � T by

�s �
�

as

�
Ts c�Ys��r�PT�sf��Ys�� 	

Z
F �Ys�� dz� �s� z��PT�sf�Ys� 	 z��PT�sf�Ys���

	
�

������

We use here the traditional convention �
� � �� since when as � � the numerator in the

right side of ������ is also �� Observe that the process � does not depend on the measure
m in Pm �� P �

R
m�dx�Px� as long as f�YT � is in IL��Pm��

Proof� Since U is FT �measurable� that �s � � for s � T is trivial� By the Markov
property� Mt � E�U jF t� is given for t � T by Mt � g�t� Yt�� where g�t� y� � PT�tf�y��
By hypothesis� g is once di�erentiable in t and twice di�erentiable in y with continuous
partial derivatives� By It$o�s formula�

Mt � �	

Z t

�

�

�s
g�s� Ys��ds	

�

�

Z t

�

X
�	i�j	d

��

�yi�yj
g�s� Ys�c�Ys��ijdAs

�



	

Z t

�

X
�	i	d

�

�yi
g�s� Ys��b�Ys��idAs 	

Z t

�

X
�	i	d

�

�yi
g�s� Ys��dY i�c

s

	

Z t

�

Z
IRd

X
�	i	d

�

�yi
g�s� Ys��zi�fjzj	�g��� ���ds� dz�

	

Z t

�

Z
IRd



�g�s� Ys� 	 z�� g�s� Ys���

X
�	i	d

�

�yi
g�s� Ys��zi�fjzj	�g

�
A��ds� dz��

The rst three integrals above are predictable process of nite variation� The last integral
may be rewritten as the sum of the stochastic integral w�r�t� the measure martingale ����
plus the integral w�r�t� �� which again is a predictable process of nite variation� Since M
is a martingale� the sum of all predictable processes of nite variation must equal �� and
after a simple transformation we get

Mt � �	

Z t

�

X
�	i	d

�

�yi
g�s� Ys��dY i�c

s 	

Z t

�

Z
IRd

�g�s� Ys�	 z�� g�s� Ys������ ���ds� dz��

Then ����� and ������ give for t � T �

Nt �

Z t

�

X
�	i	d

�
�

�yi
g�s� Ys��� �s

i
s

	
dY i�c

s

	

Z t

�

Z
IRd

�g�s� Ys�	 z�� g�s� Ys��� �s �s� z�� ��� ���ds� dz��

Then we get

hN�Xit �

Z t

�



� X

�	i�j	d

�
�

�yi
g�s� Ys��� �s

i
s

	
c�Ys��ijjs 	

	

Z
IRd

F �Ys�� dz� �g�s� Ys�	 z�� g�s� Ys��� �s �s� z��  �s� z�

	
dAs�

In view of ������� this becomes

hN�Xit �

Z t

�



���sas 	 X

�	i�j	d

�

�yi
g�s� Ys��c�Ys��ijjs

	

Z
IRd

F �Ys�� dz��g�s� Ys�	 z�� g�s� Ys��� �s� z�
	
dAs�

Since � is charaterized by the orthogonality of N and X� that is by hN�Xi � �� a version
of � is thus given by ������� and we have proved the claim� �

The class DT of functions for which ������ holds is rather restrictive� It might be of
interest to enlarge this class� To this e�ect� for each x � IRd we introduce the set D�

T of all
functions f for which there is a sequence fn � DT �called an �approximating sequence��
such that fn�YT �� f�YT � in IL��P � �

#



The measure QX associated by ����� with X �and relative to P � is here QX�d�� dt� �
P �d��dAt���at����

Finally� let D��
T be the subset of all f � D�

T such that y � Ptf�y� is di�erentiable for
� � t � T � and for which there is an approximating sequence fn in DT such that for all
t � ��� T � and y � IRd we have

Ptfn�y� � Ptf�y��
�

�yi
Ptfn�y� � �

�yi
Ptf�y�� ������

and that for QX�almost all ��� t� with t � T we haveZ
F �Yt����� dz� ��� t� z��PT�tfn�Yt���� 	 z�� PT�tfn�Yt������

�
Z
F �Yt����� dz� ��� t� z��PT�tf�Yt���� 	 z�� PT�tf�Yt������� ������

Observe that ������ implies ������ as soon as f � the fn�s and the �
�yi

Ptfn�s are uniformly

bounded for each t� by virtue of ������ and of the fact that
R
F �y� dz��jzj�  �� ���

Corollary ��� a� If f � D�
T with the approximating sequence fn� then a version of the

process ��X� f�YT �� is the limit of ��X� fn�YT �� in IL��QX��

b� If further f � D��
T � then a version of the process ��X� f�YT �� is given by ������ for

s � T � and by � for s � T �

Proof� The claim a� readily follows from ������ Assume now that f � D��
T � with the ap�

proximating sequence fn� Then if �� is given by ������� on the one hand ��X� fn�YT ��s����
��s��� for QX�almost all ��� s�� and on the other hand ����� holds� hence �� � ��X� f�YT ��
QX �a�s�� and we have b�� �

��� A particular case

Theorem ��� and its corollary are not quite satisfactory� because they give ��X�U� for a
variable U of the form U � f�YT �� while one would like to have it for U � f�XT �� It
becomes more satisfactory when X itself is Markov� We give in some detail a simple case
of this situation� namely when X is the solution of the equation dX � g�X��dZ� where Z
is a ��dimensional L�evy process and g a smooth enough coe�cient�

Since we wish X to be a locally square�integrable martingale� it is natural to assume
rst that the L�evy process Z� which is dened on some space ���F � �Ft�t��� P �� is a
locally square�integrable martingale itself� This in fact implies that it is then a martingale
square�integrable on compacts� and its characteristic function has the form

E

eiuZt

�
� exp t

�
�cu

�

�
	

Z
F �dx��eiux � �� iux�

�
� ������

where c 	 � and the L�evy measure F integrates x�� We set

"c � c	

Z
F �dz�z�� ������

�



so hZ�Zit � "ct� and of course we assume that "c � � �otherwise Z � � and what follows is
empty�� Next we have a continuously di�erentiable function g with bounded derivative g��
and for any x we consider the solution Xx of the following stochastic di�erential equation�

Xx
t � x	

Z t

�
g�Xx

s��dZs ������

A classical argument �see ����� in the Appendix� yields that Xx is a square�integrable
martingale over each nite interval ��� T �� Further� the solution of the following linear
equation

X �x
t � � 	

Z t

�
g��Xx

s��X
�x
s�dZs� ����#�

is also a square�integrable martingale over each nite interval ��� T �� So for each measurable
function f with at most linear growth we can set

Ptf�x� � E�f�Xx
t ��� Qtf�x� � E�f�Xx

t �X
�x
t �� ������

Observe that �Pt� is the semi�group of Xx� which is a Markov process� We then have�

Theorem ��� Assume that g has a continuous and bounded derivative�

a� For any T � IR� and any di	erentiable function f with bounded derivative f � the
variable f�Xx

T � is square�integrable� and a version of ��Xx� f�Xx
T �� is given by

�s�X
x� f�Xx

T �� � ��s�Xx
s������T ��s�� ������

where

��s� y� � QT�sf ��y� 	
�

"c

Z
F �dz�z�

Z �

�
�QT�sf ��y 	 g�y�zu� �QT�sf ��y��du� ������

b� The same holds when f is the di	erence of two convex functions� with a right derivative
f �r bounded and f � above replaced by f �r� provided we have Pt�y� �� has no atom for all

t � ��� T �� y � IR�

In the last claim one can of course replace the right derivative f �r by the left derivative
f �l � The last condition is obviously satised when Pt�x� �� has a density� this is the case
when c � � as soon as g does not vanish �or� does not vanish in the set in which the
process Xx takes its values�� When c � �� one can nd conditions implying the existence
of a density in e�g� ����

Proof� �� Our assumptions always imply that f and g have at most linear growth� Then
the property f�Xx

T � � IL��P � follows from ����� in the Appendix�

�� We rst prove the result under the three additional assumptions that Z has bounded
jumps �which is equivalent to saying that F has compact support�� that g is innitely
di�erentiable with bounded derivatives of all orders� and that f is twice continuously
di�erentiable with f � f � and f �� bounded�

��



By virtue of Theorem ��� applied to Y � Xx� it su�ces to prove that f � DT and
that ������ reduces to ������ in our situation� The rst property is proved in Lemma ���
of the Appendix� So it remains to identify ������ with ������� With Y � X we have b � ��
c�y� � cg�y��� At � t and F �y� �� is the image of the measure F under the map z �� g�y�z�
while in ������ we must take s � � and  �s� z� � z� So if a�y� � cg�y�� 	

R
F �dz�z�g�y���

������ becomes as � a�Xs��� while rPtf � Qtf
� by ������ Then ������ yields that we

have ������ with �� instead of �� given by

���s� y� �
g�y��cQT�sf ��y� 	

R
F �dz�zg�y��PT�sf�y 	 g�y�z� � PT�sf�y��
g�y���c	

R
F �dz�z��

if g�y� �� �� and ���s� y� � � if g�y� � �� By Taylor�s formula and again the property
rPtf � Qtf

� and ������ we note that ���s� y� equals ��s� y� as given by ������ when
g�y� �� �� Finally the process ��Xx� f�Xx

T �� is unique up to a QXx�null set� and the set
f��� t� � g�Xx

t����� � �g is QXx�negligible� hence ������ gives a version of ��Xx� f�Xx
T ���

�� Second� we prove the result when f and g are once continuously di�erentiable with
bounded derivatives f � and g�� and further f is bounded� and when Z is a locally square�
integrable martingale�

First we replace Z by a sequence of L�evy processes Zn obtained by truncating the
jumps of Z of size bigger than n� More precisely� we may write

Zt � Zc
t 	

Z t

�

Z
IR
z��� ���ds� dz��

where Zc is the continuous martingale part of Z �of the form cW � where W is a Wiener
process�� � is the jump measure of Z and ��ds� dz� � ds� F �dz�� Then we set

Zn
t � Zc

t 	

Z t

�

Z
IR
z�fjzj	ng��� ���ds� dz��

We have hZ�Zit � "ct where "c � c 	
R
F �dz�z�� and hZn� Znit � "cnt where "cn � c 	R

F �dz�z��fjzj	ng� and obviously

hZ � Zn� Z � Znit � �� ������

Next� let � be an innitely di�erentiable function with compact support and inte�
gral equal to �� Then we replace g by gn�x� �

R
n��ny�g�x � y�dy and f by fn�x� �R

n��ny�f�x� y�dy� Thus gn and fn are innitely di�erentiable with bounded derivatives
of all orders� and there exists K such that for all n�

jgn���j � K� jg�n�x�j � K� jfn�x�j � K� jf �n�x�j � K� ������

and moreover

gn � g� g�n � g� fn � f� f �n � f � locally uniformly� ������

Now� denote by Xn�x and X �n�x the solutions of ������ and ����#�� with Z and g
substituted with Zn and gn� and by Qn

t the kernel associated by ������� Since Zn� gn and

��



fn satisfy the conditions of Step �� �n � ��Xn�x� fn�X
n�x
T �� is given by ������� with �n given

by

�n�s� y� � Qn
T�sf

�
n�y� 	

�

"cn

Z
F �dz�z��fjzj	ng

Z �

�
�Qn

T�sf
�
n�y 	 gn�y�zu��Qn

T�sf
�
n�y��du�

By virtue of ������ and ������� stability results for stochastic di�erential equations
�see ����� imply that �Xn�yn �X �n�yn� converges locally uniformly �in time� in probability
to �Xy�X �y� for any sequence yn � y� and further fn�X

n�yn
t � � f�Xy

t � and f �n�X
n�yn
t � �

f ��Xy
t � in probability by ������� hence also in ILp�P � for all p by ������� Thus applying

"cn � "c and ����� of the Appendix and ������ we see that

Qn
t f

�
n�yn� � Qtf

��y�� jQn
t f

�
n�y�j � Kt ������

for a constant Kt independent of n and x� If further we use the facts that "cn � "c and
that

R
F �dz�z� ��� ������ and ������ allow us to deduce that if � is dened by �������

yn � y � �n�s� yn� � ��s� y�� ������

Finally� we have

Xn�x
t �Xx

t �

Z t

�
gn�X

n�x
s� �d�Zn � Z�s 	

Z t

�
�gn�X

n�x
s� �� g�Xx

s���dZs�

hence

hXn�x �Xx�Xn�x �Xxit � ��"c� "cn�

Z t

�
gn�X

n�x
s ��ds	 �"c

Z t

�
�gn�X

n�x
s �� g�Xx

s ��
�ds�

Using "cn � "c� ������� ������ and the fact that Xn�x
s � Xx

s uniformly in s � ��� t� in
probability� we readily deduce that hXn�x �Xx�Xn�x �Xxit � � in probability�

Since fn�X
n�x
T � � f�Xx

t � in IL��P �� we are in a position to apply a result proved
in the next section �not based upon the present theorem� of course�� namely Theorem
���� this theorem asserts that �n converges to ��Xx� f�Xx

T �� in QX�measure� Then� since
�ns � �n�s�X

n�x
s� �����T ��s� and sinceXn�x converges locally uniformly in time� in probability�

to Xx� we deduce ������ from �������

�� For �a� it remains to consider the case where f has a continuous bounded derivative
but is not bounded itself� We can nd a sequence �fn� of bounded continuously di�er�
entiable functions such that jf �n�x�j � K for some constant K and fn�x� � f�x� for all
jxj � n and jfnj � jf j� Then �n � ��Xx� fn�X

x
T �� is given by ������ with �n given by

������� where f is substituted with fn� That fn�X
x
T � � f�Xx

T � in IL��P � and that ������
holds with Qt instead of Qn

t are obvious by the previous estimates on fn and f �n and �����
of the Appendix� It follows as above that �n � � pointwise� where � is given by �������
Then by ����� we have �������

�� It remains to prove �b�� We set fn�x� �
R
n��ny�f�x � y�dy as in Step �� Then

fn � f locally uniformly� while f �n � f �r everywhere except on an at most countable set
D� and we still have jf �n�x�j � K and jfn���j � K for some constant K� Therefore� exactly

��



as in Step �� we have fn�X
y
t �� f�Xy

t � and f �n�X
yn
t �� f �r�X

y
t � �as yn � y� in IL��P �� at

least when restricted to the set �y�t � f� � Xy
t ��� 	� Dg� Now� if Pt�y� �� has no atom� the

set �y�t is P �negligible� then we have ������ with Qt instead of Qn
t � and the rest of the

proof follows as in Step �� �

Remark ��	 When c � � and F is a nite measure� the process Z is a compensated
compound Poisson process� and the situation is much simpler� One can show with the
same methods used in Steps � or � above that the result hold without any di�erentiability
condition� We need f to be continuous� and both f and g with linear growth� and ������
takes the following simple form �with �

� � ���

��s� y� �

R
F �dz�z�PT�sf�y 	 g�y�z� � PT�sf�y��

g�y�
R
F �dz�z�

� ������

Of course in this simple situation we could also write an �elementary� proof which looks
like the proof of Proposition ���� This is no surprise� since the compound Poisson case has
a �discrete� structure�

Remark ��
 We have considered above the �homogeneous� situation� where the coe��
cient g does not depend on time� Similar formulas would obviously hold when the coe��
cient depends on time� and also when the process Z is a non�homogeneous process with
independent increments�

Remark ��� Let f be a function on IRk �say� with linear growth� and � � T� � � � � �
Tk be deterministic times� and � � ��Xx� U� where U � f�Xx

T�
� � � � �Xx

Tk
�� Then the

martingale Mt � E�U jF t� when Ti�� � t � Ti is Mt �
R
PTi�t�X

x
t � dy�fXx

T�
����Xx

Ti��
�y��

where

fx�����xi���y� �

Z
PTi���Ti�y� dxi��� � � � PTk�Tk���xk��� dxk�f�x�� � � � � xi��� y� xi��� � � � xk��

By iteration of the previous result we then get that

�s �
kX
i	�

�i
Xx
T�
����Xx

Ti��
�s�Xx

s����Ti�� �Ti��

where

�i
x�����xi���s� y� � QTi�sf
�
x�����xi���y�

	
�

"c

Z
F �dz�z�

Z �

�
�QTi�sf

�
x�����xi���y 	 g�y�zu� �QTi�sf

�
x�����xi���y��du�

Of course we need some smoothness conditions of f to do that� that f is continuously
di�erentiable with all partial derivatives bounded is enough� in which case we need to
reproduce the proof of the previous theorem�

We do not have an explicit form for ��X�U� when U is a function of the whole path
of Xx over ��� T �� But the variables of the form above are dense into the set of square�
integrable variables� measurable w�r�t� the ��eld ��Xx

s � s � T �� This is to be compared

��



to the Clark�Haussmann formula in the Wiener case� see e�g� Nualart ����� in this case
one has an �explicit� form for ��Xx� U� for variables U that are smooth in the Malliavin
sense �and thus include the variables f�Xx

T�
� � � �� for smooth f �s�� But this approach is

limited to the Wiener space� and the explicit form involves the not so explicit Malliavin
derivatives and predictable projections of such derivatives�

� Strong convergence results

��� Discretization of a process

Here we consider the situation of Section ���� and we look at what happens when we have a
sequence of subdivisions whose meshes go to �� More precisely� we have a square�integrable
martingale X on a basis ���F � �Ft�t��� P � with F �

W
tF t� and for each n a subdivision


n � �T �n� i� � i � IN� satisfying ������ The sequence �
n� satises

sup
i��

�T �n� i�  t� T �n� i� ��  t� � � a�s� as n��� �����

Then set  Xn
i � XT �n�i�� for each n the sequence �  Xn

i �i�IN is a square�integrable martingale
w�r�t� �FT �n�i��i�IN � Finally� let U � IL��P � be xed� We have the rst decomposition
������ and the second one for each n with the process  �n� and we associate with  �n and 
n
the process ��n by ������ Then we have�

Theorem ��� Under �
���� and if X is a square�integrable martingale and U � IL��P ��
the functions ��n tend to � in IL��QX��

Proof� For each n we endow the space "� with the ��eld P �
n generated by the sets

D � �T �n� i� ��� T �n� i�� �� f��� t� � � � D�T �n� i � ����� � t � T �n� i����g� where i 	 �
and D � FT �n�i���� By virtue of Proposition ���� we have ��n � QX��jP �

n�� Recall that
here QX is a nite measure�

The sequence ���n� is bounded in IL��QX�� and thus is in a compact set for the weak
topology in IL��QX�� So there exists a subsequence� again denoted by ��n for simplicity�
which converges weakly to a variable �� in IL��QX��

Let us rst show that �� � � QX �a�s� Take � � �D��s�t�� where D is Fs�measurable�
Then QX���n�� � QX������ Consider the two stopping times Sn � inffT �n� i� � i �
IN� T �n� i� 	 sg and Tn � inffT �n� i� � i � IN� T �n� i� 	 tg� Then

QX���n�� � QX���n�D��Sn�Tn�� 	QX���n�D��s�Sn���QX���n�D��t�Tn��

QX���� � QX���D��Sn�Tn�� 	QX���D��s�Sn���QX���D��t�Tn���

��
� �����

If A�n� s� �� � fSn � s	 �g we have

QX�D � �s� Sn�� � QX�A�n� s� ��� IR�� 	QX��� �s� s	 ����

Since QX���IR�� is absolutely continuous w�r�t� P and since ����� implies P �A�n� s� ��� �
� as n � �� we also have QX�A�n� s� �� � IR�� � � as n � � for all � � �� On the

��



other hand� QX��� �s� s	 ���� � as �� � because QX is a nite measure� so we deduce
that QX�D � �s� Sn�� � �� The variables ��n being QX �uniformly integrable� we deduce
that QX���n�D��s�Sn��� �� and similarly QX���n�D��t�Tn��� �� and QX���D��s�Sn��� �
and QX���D��t�Tn�� � �� Since further D � �Sn� Tn� � P �

n� we get QX���n�D��Sn �Tn�� �
QX���D��Sn�Tn��� It then follows from ����� and from the fact that QX���n��� QX������
that QX����� � QX����� Then by a monotone class argument� this relation holds for all
bounded predictable �� which yields � � �� QX �a�s� �recall that � and all ��n� hence �� as
well� are predictable��

In particular� QX����n��� � QX���n�� tends to QX����� Now� if a sequence ��n in
IL��QX� converges weakly to � and the norms of ��n converge to the norm of �� we have
indeed strong convergence� Thus the IL��QX��convergence of the original sequence ��n to
� follows� �

Remark ��� When the subdivisions �
n� are ner and ner� the sequence of ��elds
P �
n is increasing� hence the fact that ��n � QX��jP �

n� implies that the sequence ��n is a
square�integrable martingale and the convergence to � readily follows from the fact that
P �
n increases to P up to P �null sets �by ������� �

��� A general continuous time convergence theorem

We have again a stochastic basis ���F � �Ft�t��� P � with F �
WF t� supporting locally

square�integrable martingales X and Xn and square�integrable variables Un and U � We
have the following �unique� decompositions� as in ������

U � �	
R�
� �sdXs 	N��

Un � �n 	
R�
� �ns dX

n
s 	Nn��

��
� �����

where � � E�U jF�� and �n � E�UnjF�� and N �resp� Nn� is a square�integrable mar�
tingale orthogonal to X �resp� to Xn��

Below� we consider again the measure QX associated with X by ������ It is not
necessarily nite� so we recall that �n �QX � means that �n � � in R�measure for one
�hence for all� nite measure R equivalent to QX � Our main result is the following�

Theorem ��� Assume that Un � U in IL��P � and that X and Xn are locally square�

integrable martingales satisfying

hXn �X�Xn �Xit � � in probability for all t � �� �����

Then �n � � in QX measure� �We denote �n �QX ���

Proof� �� To begin with� we introduce the following orthogonal decompositions for the
locally square�integrable martingales Xn and the square�integrable martingales Nn �recall
������� below the processes Ln are locally square�integrable martingales and T n are square�
integrable martingales �recall also that the orthogonality between local martingales is
denoted by ���

Xn
t � Xn

� 	

Z t

�
ns dXs 	 Lnt � Ln � X� �����

��



Nn
t �

Z t

�
�nsdXs 	 T n

t � T n � X� �����

In what follows we prove a bit more than is strictly necessary for the present theorem�
but the following facts will also be used in the subsequent results� The orthogonality of
Xn and Nn yields Z t

�
ns �

n
sdhX�Xis 	 hLn� T nit � �� �t� a�s� �����

We also have

hXn �X�Xn �Xit �

Z t

�
�ns � ���dhX�Xis 	 hLn� Lnit� ���#�

QX���nn 	 �n � ���� � E��Un � U��� � �� �����

E�hT n� T ni�� � E�hNn� Nni��

E�
R�
� ��ns �

�dhLn� Lnis� � E��
R�
� �ns dX

n
s �

��

��
� � E��Un��� � K ������

for some constant K� and where we have used that Un � U in IL��P � for the last two
properties�

�� After these preliminaries� we can go the proof of our claim� First� we can write the
�pathwise� Lebesgue decomposition of the process hLn� T ni� which is of locally bounded
variation� w�r�t� the increasing process hX�Xi as hLn� T nit �

R t
� �

n
sdhX�Xis 	 An

t � where
An is a function of locally bounded variation which is singular w�r�t� to hX�Xi� Then
����� yields

n�n 	 �n � � QX � a�s� ������

But it is well known by Kunita�Watanabe inequality that the variation of the process
hLn� T ni over ��� t� is smaller than or equal to

phLn� LnitphT n� T nit� while by the above
Lebesgue decomposition it is bigger than

R t
� j�ns jdhX�Xis� Then we readily deduce from

������ ���#� and ������ that
R t
� j�ns jdhX�Xis �P � for all t� so in view of ������ we get

n�n �QX �� ������

Next� ����� and ���#� on the one hand� ����� on the other hand� give us�

�nn 	 �n �QX �� n �QX �� ������

Now� combining ������ and ������ readily gives us �n �QX �� �

Associated with this theorem� we have a result about the rate of convergence�

Theorem ��� Assume that Un � U in IL��P � and that X and Xn are locally square�

integrable martingales satisfying �
���� Assume further that there is a sequence �an� in

IR� going to 	� such that the sequence �an�U
n � U� � n 	 �� is bounded in IL��P � and

that for each t the sequence of variables �a�nhXn � X�Xn � Xit � n � IN� is uniformly

tight� Then the sequence �an��
n � �� � n � IN� is uniformly tight with respect to any �nite

measure equivalent to QX �

��



Proof� �� We choose a nite measure R equivalent to QX � Let us rst recall that
if �un� is a sequence of processes such that for all t the sequence of random variables
�
R t
� juns jdhX�Xis � n 	 �� is tight� then the sequence �un� is R�tight�

Applying this to ���#� and ����� multiplied by a�n gives that

the two sequences an�
n � ��� an��

nn 	 �n � �� are R�tight� ������

We also deduce from ���#� that for each t the sequence �hLn� Lnit � n 	 �� is tight� Exactly
as in the last step of the previous proof� we deduce that the sequences �

R t
� anj�ns jdhX�Xis �

n 	 �� are tight� hence the sequence �an�
n� is R�tight� In view of ������ we deduce that

the sequence an
n�n is R�tight� ������

Now� we can write

an��
n � �� � an�

n��� n��� 	 n� 	 an
n�n�n 	 �n � ��� an

n�n 	 an��
n � ���

We also know that the sequences �n� and ��n� are R�tight �by ������ and the previous
theorem�� Then the result readily follows from ������ and ������� �

��� A discrete version of Section �����

Now we consider for each n a subdivision 
n � �T �n� i� � i � IN� of stopping times on the
basis ���F � �F t�� P � with F �

WF t� satisfying ������ and we suppose that the sequence
�
n� satises ������ For each n we have a square�integrable martingale Xn and a square�
integrable variable Un� Analoguous to ������ we set  Xn

i � Xn
T �n�i�� As in ����� we have

������ as well as the decomposition

Un � �n 	
�X
i	�

 �ni !
 Xn
i 	  Nn

�� ������

Then� as in ����� we set

��nt �  �ni if T �n� i� �� � t � T �n� i�� ������

Theorem ��� Assume that Un � U in IL��P � and that Xn and X are square�integrable

martingales and that

E�hXn �X�Xn �Xi�� � �� ����#�

Then the sequence ��n converges to � � ��X�U� in QX �measure�

Proof� In view of Proposition ��� we have ��n � QXn��njP �
n�� where P �

n is the ��eld on
"� dened in the proof of Theorem ���� Let also P be the predictable ��eld on "�� We
consider the decomposition ����� for Xn�

��



We can nd a probability measure R on �"��P� which dominates all the nite measures
QX and QLn � and such that QX � aR for some constant a� We can thus nd nonnegative
R�integrable and predictable functions V� V n such that V � a and

QX � V �R� QLn � V n � R�
Then we have QXn � W n �R� with W n � �n��V 	 V n�

Now� ����#� and ���#�� then ������ then ������� yield

n �IL��QX� �� QLn��� � �� ������

�nn 	 �n �IL��QX� �� ������

QTn��� � K� QLn���
n��� � K� ������

Furthermore we get QX�j�nj� � p
QLn���

p
QTn���� exactly as in the proof of Theorem

���� and in view of ������� ������ and ������� we obtain

n�n �IL��QX� �� ������

Then ������ and ������ yield that �n���n	n�n � � in IL��QX�� hence also �n���n �
� in IL��QX� by ������� Since V is bounded� we readily deduce that �n��V �n � V � and
�n��V � V in IL��R� �use ������ again for the later�� Furthermore V n � � in IL��R� by
������� while we have R�V nj�nj� � pR�V n�

p
R�V n��n���� which goes to � by ������ and

������� then V n�n � � in IL��R�� Putting all these results together yields

W n �IL��R� V� W n�n �IL��R� V ��

It readily follows that

R�W njP �
n��R�V jP �

n� �IL��R� �� R��nW njP �
n��R�V �jP �

n� �IL��R� �� ������

On the other hand� Bayes� rule yields

��n � QXn��njP �
n� �

R��nW njP �
n�

R�W njP �
n�

� ������

Now let us apply the proof of Theorem ��� to R instead of QX � rst with V instead
of �� which� since V is bounded� yields R�V jP �

n� � V in IL��R�� Next with �V instead
of �� which� since V � a and thus R���V ��� � aR�����V � � aQX������ � �� yields
R��V jP �

n�� �V in IL��R�� Combining this with ������ yields

R�W njP �
n� � V� R��nW njP �

n� � �V in IL��R�� hence also in QX�measure�

Since further we have V � � QX �a�s�� it follows from ������ that ��n � � in QX�measure�
and we are done �

In the previous theorem� we would like to replace ����#� by ������ with X and Xn

being only locally square�integrable martingales� But we have been unable to prove such
a result under �reasonable� conditions�

�#



��� Application to the Euler scheme

We apply the previous results to the Euler approximation scheme for a stochastic di�er�
ential equation� The setting� similar to that of Subsection ���� is as follows� we have a
locally square�integrable martingale Z on a space ���F � �Ft�t��� P � with F �

WF t and a
locally Lipschitz continuous function with linear growth g� and X is the �unique� solution
of the following stochastic equation �where X� is a given F��measurable square�integrable
variable��

Xt � X� 	

Z t

�
g�Xs��dZs� ������

In comparison with Subsection ���� we relax the assumptions on g and Z and allow
an arbitrary initial condition X�� We also consider subdivisions 
n � �T �n� i� � i � IN� of
stopping times satisfying ������ such that ����� holds� With �n� � � and �nt � T �n� i� ��
for T �n� i � �� � t � T �n� i�� we have the �continuous� Euler approximation at stage n�
which is the solution of

Xn
t � X� 	

Z t

�
g�Xn

�ns
�dZs� ������

Let U and Un be square�integrable variables such that Un � U in IL�� typically
U � f�Xt� and Un � f�Xn

t � for some t� where f is a bounded continuous function� In
this case� since by a well known result �see e�g� ����� Xn goes in probability to X� locally
uniformly in time� we do indeed have Un � U in IL��

Note that X and Xn are locally square�integrable martingales� Recall also ������ Then
as a corollary of Theorem ��� we get�

Theorem ��� Let Un � U in IL��P �� and let � � ��X�U� and �n � ��Xn� Un�� Then

�n �QX ��

Proof� It is enough to prove that ����� holds� Note

hXn �X�Xn �Xit �

Z t

�
�g�Xn

�ns
�� g�Xs����dhZ�Zis

� �

Z t

�
�g�Xn

�ns
�� g�X�ns ��

�dhZ�Zis 	 �

Z t

�
�g�X�ns �� g�Xs����dhZ�Zis�

We have already mentioned that Xn goes to X uniformly in time� in P �measure� Thus
the sequence sups	t�jXsj	 jXn

s j� is bounded in probability and� since g is continuous and
locally bounded� it follows that the rst term in the right side of the above inequality goes
to � in probability for each t� On the other hand �ns � s and �ns � s for all s � �� thus
for all � and all s � � we have X�ns ��� � Xs����� Thus� by the continuity of g again�
the second term in the right side of the above inequality goes to � for all �� hence ����� is
proved� �

Let us now pass to the �discrete� Euler approximation�

 Xn
i � Xn

T �n�i�� ������

��



Here we have some problems of integrability� because in order to apply the previous results
we need each  Xn to be a discrete�time locally square�integrable martingale� On the other
hand we do not wish to assume that X� Xn and Z are square�integrable up to innity�

In order to resolve this problem� we suppose that Z is a martingale square�integrable
on compacts� and also that there is a constant K such that for all i� n�

T �n� i�� T �n� i� �� � K� ����#�

Then the process Z stopped at any time T �n� i� �which is bounded by ����#��� is a square�
integrable martingale� and  Zn

i � ZT �n�i� is a martingale square�integrable on compacts
w�r�t� �FT �n�i��i��� Due to the linear growth of g� and similarly to ����� of the Appendix�
one also checks easily that  Xn

i � Xn
T �n�i� is also a martingale square�integrable on compacts

w�r�t� the ltration �FT �n�i��i���

As soon as Un is square�integrable� analogous to ������� we may thus write

Un �

��
�

�n 	
P�

i	�
 �ni !

 Xn
i 	  Nn�

�n 	
P�

i	�  �ni !
 Zn
i 	  N �n�

������

where  Nn �resp�  N �n� is a square�integrable martingale w�r�t� �FT �n�i��i��� null at �
and orthogonal to the discrete time locally square�integrable martingale �  Xn

i �i�� �resp�
�  Zn

i �i���� and  �ni and  �ni are FT �n�i����measurable� Further� we set

��nt �  �ni

��nt �  �ni

��
� if T �n� i� �� � t � T �n� i�� ������

Recall that � � ��X�U�� and set � � ��Z�U�� Then�

Theorem ��	 Assume �
���� and that Z is a martingale square�integrable on compacts�

If the variables Un and U are FT �measurable for some T � IR� and satisfy Un � U in

IL��P �� we have ��n �QX � and ��n �QZ ��

Proof� �� Take T � � T 	K� where K occurs in ����#�� Then the processes �n are the
same if we replace Z by the stopped process ZT �

in ������� and also � � ��ZT �
� U�� So we

can assume that Z � ZT is square�integrable� Applying Theorem ��� with Xn � X � Z
then yields that ��n � � in QZ�measure�

�� In ������ we may write� in view of ������ and �������

Un � �n 	
�X
i	�

 �ni g�
 Xn
i���!

 Zn
i 	  Nn

��

Un � �n 	
�X
i	�

 �ni �fg� �Xn
i��� 
	�g!  Zn

i 	
�X
i	�

 �ni �fg� �Xn
i���	�g!  Zn

i 	  N �n
��

The last three terms above are orthogonal martingales� and thus by identication with
the previous expression we get that a�s��

 �ni g�
 Xn
i��� �  �ni �fg� �Xn

i��� 
	�g� ������

��



This yields
��ns g�X

n
�ns

� � ��ns �fg�Xn
�ns

�
	�g QZ�a�s� ������

A similar argument shows that

�sg�Xs�� � �s�fg�Xs��
	�g QZ�a�s� ������

As seen in the proof of Theorem ���� g�Xn
�ns
�� g�Xs�� in probability for all s� Then

one deduces from the fact that ��n � � in QZ�measure and from ������ and ������ that
��n � � in QZ�measure on the set f��� t� � jg�Xt����j 	 �g� for every � � �� Hence the
same convergence holds also on the set A � f��� t� � g�Xt����� �� �g� and since QX is
absolutely continuous w�r�t� QZ and does not charge the complement of A� we deduce
that ��n � � in QX�measure� �

Remark ��
 The same proof as above would also work for Theorem ���� we have �n �
��Z�Un�� � � ��Z�U� by ������ while the relation ������ holds between �n and �n�

� Weak convergence results

In this section we consider the weak convergence of integrands� we have a sequence
Xn of locally square�integrable martingales� each dened on its own probability space
��n�Fn� �Fn

t �� P
n�� and for each n a square�integrable variable Un on the relevant space�

The aim is to prove that if �Xn� Un� converges in law to �X�U�� with X a locally square�
integrable martingale and U a square�integrable variable on the space ���F � �F t�� P �� then
�Xn� ��Xn� Un�� converges in law to �X� ��X�U�� in some sense�

It seems impossible to solve such a general problem� so we will concentrate on some
particular cases�

��� Application of the Clark�Haussmann formula

Here we consider a sequence of processes of the form studied in Subsection ���� More
precisely� we have Z� g and Xx as in this subsection� given on ���F � �F t�� P �� For each n�
we also have a L�evy process Zn which is a martingale square�integrable on compacts on a
space ��n�Fn� �Fn

t �� P
n�� satisfying ������ with cn and Fn� and as before� we assume that

the numbers

"c � c	

Z
F �dz�z�� "cn � cn 	

Z
Fn�dz�z

�

are nite and strictly positive�

Then we have di�erentiable functions gn� and we consider the equations ������ and
����#� w�r�t� Zn and gn� and whose solutions are denoted by Xn�x and X �n�x� We make
the following assumptions� First on gn and g�

jgn���j � K� jg�n�x�j � K� jg�n�x�� g�n�y�j � Kjx� yj� �����

gn � g� g�n � g� pointwise� �����

��



Next on Zn and Z� we basically assume that Zn converges in law to Z� plus a slightly
stronger assumption which is reminiscent of the Lindeberg condition� more precisely we
assume that

"cn � "c�
R
Fn�dz�h�z� �

R
F �dz�h�z�

for h continuous� bounded and vanishing in a neighborhood of ��

��
� �����

A�x� � sup
n

Z
Fn�dz�z

��fjzj�xg � � as x��� �����

These two conditions imply that the second convergence in ����� also holds when h is con�
tinuous� and h�x� � O�x�� at innity� and h�x� � o�x�� at �� They imply the convergence
in law of Zn to Z �see e�g� �����

Then we can state�

Theorem ��� Assume ������ ������ ���
� and ������ Let f be a di	erentiable function

with a bounded and Lipschitz derivative and T � �� The processes � � ��Xx� f�Xx
T �� and

�n � ��Xn�x� f�Xn�x
T �� have versions which are left continuous with right limits� and if we

set ��	�s � limt�s�t�s �t and ��	�ns � limt�s�t�s �nt � the processes �Xn�x� �n�	�� converge in
law for the Skorokhod topology on IR� to �Xx� ��	���

Proof� �� A version of � is given by ������� with � given by ������� We wish to prove here
that this version is left continuous with right limits� We can rewrite � as

k�s� y� z� �
R �
� �QT�sf ��y 	 uzg�y�� �QT�sf ��y��du�

��s� y� � QT�sf ��y� 	 �
�c

R
F �dz�z�k�s� y� z��

��
� �����

In view of ����� of the appendix and of the properties of f � we have for � � s � t � T �

jk�s� y� z�j � C�

jk�s� y� z� � k�t� y� z�j � C�� 	 jyj�� 	 jzj��pt� s

��
� �����

for a constant C� Now� ����� and ����� yield that
R
F �dz�z��fjzj�xg � A�x�� so the above

estimates and ����� again yield that for all N � �� T��� and for two other constants C ��
C ���

j��s� y����t� y�j � C ���	N jyj�pt� s	CA�N� � C ����	 jyj��t� s���	A��t� s�����
�����

�take N � �t � s���� to get the last estimate�� On the other hand� as in the proof of
Theorem ��� we have ������ with Qt instead of Qn

t � hence it is clear from ����� and �����
and another application of ����� that �s� y� �� ��s� y� is continuous� hence ������ readily
yields that � is left continuous with right limits�

�� Similarly� for each n we associate with Zn� Fn� "cn� gn the functions kn and �n given
by ������ Exactly as before� we obtain that �n� as given by ������ with �n and Xn�x instead
of � and Xx� is left continuous with right limits� Moreover� in view of the Appendix and

��



of ������ ����� and ������ it is clear that the estimates ����� and ����� hold for all kn and
�n with constants C� C � independent of n�

�� Now we apply again the stability results of ����� by ������ ����� and ������ for any
sequence yn � y� the processes �Xn�yn �X �n�yn� converge in law to �Xy�X �y�� and further
the estimate ����� of the Appendix yields that each sequence �X �n�yn

t �n�� is uniformly
integrable� Hence if Qn

t is associated with �Xn�x� X �n�x� by ������ we readily deduce that
������ holds�

We will deduce that if yn � y and sn � s we have

�n�sn� yn� � ��s� y�� ���#�

Indeed� by ������ and ����� of the Appendix� we have Qn
T�snf

��yn� � QT�sf ��y�� hence
also kn�sn� yn� zn� � k�s� y� z� as soon as zn � z because of ������ Hence for ���#� it
remains to prove that if hn�z� � kn�sn� yn� z� and h�z� � k�s� y� z�

�

"cn

Z
Fn�dz�z

�hn�z� � �

"c

Z
F �dz�z�h�z�� �����

knowing that hn�zn�� h�z� if zn � z and h is continuous and jhnj � C for a constant C�
Now� consider the probability measures Gn�dz� �

�
�cn
�Fn�dz�z

� 	 cn���dz�� and G�dz� �
�
�c �F �dz�z�	c���dz�� Since hn��� � h��� � �� ����� reads as Gn�hn�� G�h�� Furthermore
����� and ����� imply that Gn converges weakly to G�

By the Skorokhod representation theorem we can nd random variables Vn� V on a
suitable probability space� such that Vn and V have laws Gn and G� and that Vn � V
everywhere� Then Gn�hn� � E�hn�Vn�� and G�h� � E�h�V ��� and the fact that hn�zn��
h�z� if zn � z yields that hn�Vn� � h�V � everywhere� Since further jhnj � C� it follows
that Gn�hn�� G�h�� hence ����� and ���#� are proved�

�� Observe that ��	�ns � �n�s�X
n�x
s �����T ��s� and ��	�s � ��s�Xx

s �����T ��s�� Further�
���#� implies that �n � � locally uniformly� Since Xn�x converges in law to Xx and since
Xx has no xed time of discontinuity� an application of the continuous mapping theorem
yields that �Xn�x� ��	�n� converges in law for the Skorokhod topology to �Xx� ��	��� �

Remark ��� Suppose now that f is a continuously di�erentiable function on IRk with
all partial derivatives bounded and Lipschitz� and let � � T� � � � � � Tk� Set � �
��Xx� f�Xx

T�
� � � � �Xx

Tk
�� and �n � ��Xn�x� f�Xn�x

T�
� � � � �Xn�x

Tk
��� as in Remark ���� Then the

statement of Theorem ��� holds� with exactly the same proof�

��� A discrete time version

Here we consider a �discrete time� version of the previous results� The setting is as follows�
and will also be the same in the next subsection�

For each n we have a sequence �Y n
i �i�� of i�i�d� variables on a given space ��n�Fn� P n��

with

En�Y n
i � � �� En��Y n

i ��� �
�

n
� En��Y n

i �� � �n
n
� ������

��



where �n � �� These conditions imply that the partial sums processes

Zn
t �

�nt�X
i	�

Y n
i ������

converge weakly to a standard Wiener process Z � W � dened on a �possibly di�erent�
ltered space ���F � �Ft�t��� P �� We also have a function g on IR which is di�erentiable
with a bounded Lipschitz derivative� and we consider the di�erence equation

 Xn�x
� � x�  Xn�x

i �  Xn�x
i�� 	 g�  Xn�x

i���Y
n
i � ������

whose solution is a square�integrable martingale w�r�t� the discrete�time ltration Fn
i �

��Y n
j � j � i�� We also consider the associated continuous�time martingale w�r�t� the

ltration �Fn
�nt��t���

Xn�x
t �  Xn�x

�nt�� ������

This process Xn�x can be viewed as the solution of the stochastic di�erential equation

Xn�x
t � x	

Z t

�
g�Xn�x

s� �dZn
s � ������

and by stability theorems �see ����� it converges weakly to the unique strong solution of
the following equation�

Xx
t � x	

Z t

�
g�Xx

s �dZs� ������

We even have that the pair �Zn�Xn�x� weakly converges to �Z�Xx�� FurtherXn�x and  Xn�x

are also related by ����� with Ti � i	n� and Xn�x is a locally square�integrable martingale�

Now we let T � � and f be a di�erential function with a bounded and Lipschitz
derivative� Then Un � f�Xn�x

T � is square�integrable� We can consider the decomposition
������� which gives  �ni � and we associate ��n as in ������ with T �n� i� � i	n� On the other
hand U � f�Xx

T � is also square�integrable� and we set � � ��Xx� U��

Here again� by construction ��n is left continuous with right limits� and we set ��	��ns �
limt�s�t�s ��ns � On the other hand� the version of � given by Theorem ��� is not only left
continuous� but even continuous except at time T � this is because the function � of ������ is
continuous� and the process Xx also is continuous� then the process �s � ��s�Xx

s �����T ��s�
is another version of �� which is right continous with left limits �and also continuous except
at T � and di�ers from the rst version at time T only�

Theorem ��� Assume ������ ������� ������� ������ and ������ with g di	erentiable with

a bounded and Lipschitz derivative� Let f be a di	erentiable function with a bounded and

Lipschitz derivative and let T � �� Then the processes �Xn�x� ��	��n� converge in law for

the Skorokhod topology on IR� to �Xx� ���

Proof� The explicit form of � is given by ������� with � taking the simple form ��s� y� �
QT�sf ��y�� Now� if P n

t f�x� � E�f�Xn�x
t ��� we readily deduce from Proposition ��� and

from ������ and ������ and ������ that a version of  �ni is given by

�ni �

��
�

n
g� �Xn�x

i���

R
�ni �dy�yP

n
T� i

n

f�  Xn�x
i�� 	 g�  Xn�x

i���y� if i
n � T� g�  Xn�x

i��� �� �

� otherwise�

��



where �ni denotes the law of Y n
i � In view of the properties of g� we readily deduce by induc�

tion on i that x ��  Xn�x
i is di�erentiable �for all ��� hence x �� Xn�x

t is also di�erentiable
and its derivative satises

X �n�x
t � � 	

Z t

�
g��Xn�x

s� �X �n�x
s� dZn

s �

and we set Qn
t f�x� � E�f�Xn�x

t �X �n�x
t �� Then by virtue of ������ and of the properties of

g again� one easily checks that Qn
t f

��y� is bounded in �n� y� and continuous in y� and that
�
�yP

n
t f�y� � Qn

t f
��y�� since further the Y n

i �s are centered� we get

Z
�ni �dy�yP

n
T� i

n

f�  Xn�x
i�� 	 g�  Xn�x

i���y� �
g�  Xn�x

i���

n
Qn
T� i

n

f ��  Xn�x
i��� 	 �ni �

where supi j�ni j � �� Therefore if �n�s� � i	n when i	n � s � �i 	 ��	n� we deduce that
a version of ��	��n is given by

��	��ns � Qn
T��n�s�f

��Xn�x
�n�s�

������n�T ���s� 	 ���ns �

where sups j���ns j � �� By the same argument as in Theorem ��� one has Qn
snf

��yn� �
Qsf

��y� when sn � s and yn � y� Since Xn�x converges in law to Xx� the result then
follows as in Theorem ��� again� �

Remark ��� Exactly as in Remark ���� the same result holds when instead of f�Xx
T �

and f�Xn�x
T � we consider the variables f�Xx

T�
� � � � �Xx

Tk
� and f�Xn�x

T�
� � � � �Xn�x

Tk
�� where f

is a continuously di�erentiable function on IRk with all partial derivatives bounded and
Lipschitz� and � � T� � � � � � Tk�

��� Another discrete time version

Here we consider exactly the same setting as in the previous subsection� we have �������
������� ������� ������� ������ and �������

The only two di�erences are that we only assume g to be locally Lipschitz with at most
linear growth� and that we will prove a convergence theorem for more general variables
than f�Xx

T �� but in a much weaker sense�

More precisely� we consider a function � on the Skorohod space ID of all right contin�
uous with left limits functions on IR�� which is bounded� continuous for the local uniform
topology� and measurable w�r�t� the ��eld DT generated by the coordinates on ID up to
some time T � � �recall that if � is continuous for the Skorokhod topology� it is a fortiori
continuous for the local uniform topology�� Then we take U � ��Xx� and Un � ��Xn�x��

For each n we can write the decomposition ������ for Un� and dene the continuous
time processes ��n and ��n by

��nt �  �ni

��nt �  �ni

��
� if

i� �

n
� t � i

n
� ������

Set also � � ��Xx� U� and � � ��Z�U��

��



To nish with our preliminaries� we need to introduce the topology w�r�t� which our
processes will converge� We write IF for the space of all Borel functions on IR�� and %
for the set of all bijective increasing maps from IR� into itself �� the set of continuous
time�changes�� We dene the probability measure � on IR� by ��dt� � e�tdt� and denote
by ! a distance metrizing the convergence in ��measure� Then for x� y � IF and with Id
denoting the identity map on IR�� we set

d��x� y� � inf
���

�!��� Id� 	!�x � �� y��� d�x� y� � d��x� y� 	 d��y� x�� ������

This denes clearly a distance on IF � and a sequence xn converges to x for this topology
i� there is a sequence �n of time changes converging locally uniformly to Id and such that
!�xn � �n� y� � �� This type of convergence is a weakening of convergence in Lebesgue
measure� studied by many authors in the context of processes �see e�g� Grinblat �#��
Cremers and Kadelka ��� or Meyer and Zheng ������

Finally� we endow the product ID � ID � IF with the product of the local uniform
topology on ID and the topology induced on IF by the distance d in ������� Then we have�

Theorem ��� Assume ������ ������� ������� ������ and ������ with g locally Lipschitz

with at most linear growth� The processes �Xn�x� Zn� ��n� converge in law to �Xx� Z� �� in
the product space ID � ID � IF with the above topology�

If further the function s �� g�Xx
s � does not vanish the processes �X

n�x� Zn� ��n� converge
in law to �Xx� Z� �� in the same space�

Proof� �� The idea of the proof is to embed in the Skorohod sense the random walk in
the Wiener process�

Our basic space here will be ���F � �Ft�t��� P � on which the Wiener process Z is dened�
as well as the solution Xx of ������� By Skorohod embedding �see e�g� Skorokhod ���� or
Az�ema and Yor ����� for each n we can nd an increasing sequence �T �n� i��i�� of stopping
times with T �n� �� � � and such that if S�n� i� � T �n� i� � T �n� i � ��� the variables
�S�n� i�� ZT �n�i� � ZT �n�i����i�� are independent and ZT �n�i� � ZT �n�i��� has the same law
as Y n

i � and further �compare to �������

E�S�n� i�� �
�

n
� E�S�n� i��� � ��n

n
� ����#�

In other words� since we are interested in convergence in law only and since thus the
concrete realization of the variables Y n

i does not matter� we can and will assume that
Y n
i � ZT �n�i� � ZT �n�i���� Then the process Zn of ������ becomes Zn

t � ZT �n��nt��� The
solutions of ������� ������ and ������ are all dened on the space ���F � �Ft�t��� P �� w�r�t�
the same Z� as well as U � ��Xx� and Un � ��Xn�x�� and thus also  �ni �  �ni � �

�n� ��n� �
and ��

�� Set %n
t � T �n� �nt�� and �nt � T �n� i � �� if T �n� i � �� � t � T �n� i�� Note

that in ������ the time discretization is along the sequences i	n� while with the above
representation of the Y n

i �s it is rather related to the sequences T �n� i�� This leads us to
consider the equation

V n�x
t � x	

Z t

�
g�V n�x

�ns
�dZs� ������

��



which is the Euler approximation of ������ along the T �n� i��s� Note that V n�x
T �n�i� �

 Xn�x
i

�see �������� hence
Xn�x
t � V n�x

�nt
� ������

Similarly� we will replace ��n by

��nt �  �ni if T �n� i� �� � t � T �n� i�� ������

so if %�n is such that %�ni�n � T �n� i� and is linear on each interval � i��
n � in�� we have

��nt � ��n��n
t
� ������

In the sequel we can assume without loss of generality that T is an integer� If t � T
we have %n

t � T �n� nT �� so ������ implies that Un � ��Xn�x� is FT �n�nT ��measurable� it
follows from ������ that  �ni � � for i � nT � and ��nt � � for t 	 T �n� nT �� Similarly� U
is FT �measurable and we have �t � � for t � T � Therefore for dening the process ��n

we can use the stopped process Hn
t � Zt�T �n�nT �� and for the process � we can use the

stopped process Ht � Zt�T �

Therefore� ��n and � are associated with Hn and H exactly as ��n and � are associated
with Xn and X in Theorem ���� So we will deduce from this theorem that

��n � � in QH �measure� ������

provided we prove that

E�jUn � U j�� � �� E�hHn �H�Hn �Hi�� � �� ������

�� Recalling ����#� and the independence of the S�n� i��s for i 	 �� we have that

the mean of T �n� �nt�� is �nt�
n � and its variance is smaller than �t�n� therefore we have

T �n� �nt��� t in IL��P �� Therefore

%n
t � t� %�nt � t locally uniformly in t in IL��P �� ������

As already mentionned� V n�x converges locally uniformly in probability to Xx� and
the limit Xx is continuous� so ������ and ������ imply that Xn�x also converges locally
uniformly in probability to Xx� Since � is bounded and continuous for the local uniform
topology we have the rst half of ������� As for the second half� since hZ�Zit � t� it
amounts to E�jT � T �n� �nt��j� � �� this is again a consequence of ������� hence ������
and ������ holds� Furthermore� since �t � � for t � T and ��nt � � for t � T �n� nT �� and
since QZ�d�� dt� � P �d�� � dt� we readily deduce from ������ and ������ that we even
have

��n � � in QZ�measure� ������

Now Zn � Z locally uniformly for all �� and Xn�x � Xx locally uniformly in proba�
bility as seen above� Finally� ������ and ������ implies that d���n� �� � � in probability�
where d is dened in ������� That is� �Zn�Xn�x� ��n� converges in probability to �Z�Xx� ��
in ID � ID � IF for the desired topology� and the rst claim is proved�

��



�� For the second claim� we observe that� exactly as in the proof of Theorem ���� the
relations ������ and ������ hold� and thus also

��ns g�X
n�x
s� � � ��ns �fg�Xn�x

s� �
	�g QZ�a�s� ������

We have also seen that Xn�x � Xx locally uniformly in probability� So the second claim
readily follows from the rst one and from ������ and ������� �

Remark ��� The second claim is not very satisfactory� since it assumes that g�Xx� does
not vanish� If S � inf�t � g�Xx

t � � �� is not everywhere innite� then Xx is constant
after S� and in the above proof we have the convergence of ��n to � on the set ��� S�� but
not necessarily on �S���� when we go back to the original sequence Y n

i and the original
processes Xn�x� dened on possibly di�erent spaces� one can no longer compare ��n and �
�pathwise�� and the convergence in law �in restriction to ��� S�� makes no sense�

This is in contrast with Theorem ���� in which we obtained the convergence in law
without restriction� Another di�erence with this theorem is that here the convergence of
��n and ��n is in a much weaker sense� because the limiting processes � and � are no longer
left continuous with right limits� �

Remark ��	 When the variables Y n
i are N ��� �p

n
�� the embedding in the previous proof

is trivially realized with T �n� i� � i	n� Then there is no time�change involved� the conver�
gence in law takes place in ID�ID�IF � with IF endowed with the topology of convergence
in Lebesgue measure� It does not seem to be true in general� �

Remark ��
 The conditions ������ are far too strong for this result� In fact� Theorem
��� remains valid if the Y n

i �s have

En�Y n
i jFn

i��� � �� En��Y n
i ��jFn

i��� � �ni � En��Y n
i �jFn

i��� � �n
n
� ����#�

where Fn
i � ��Y n

j � j � i� and �n � � �the �n are constants� and the variables �ni satisfyP�nt�
i	� �

n
i � t in law for each t� The proof is almost the same� observing that �ni is a

function hni �Y
n
� � � � � � Y

n
i���� the only di�erence is that the rst equality in ����#� is replaced

by E�S�n� i�jFT �n�i���� � hni �S�n� ��� � � � � S�n� i� ��� �using also the fact that embedding
a random variable depending measurably on a parameter gives rise to a stopping time
depending also measurably on this parameter� as is the case in the construction of Azema
and Yor ����� �

Remark ��� One could perhaps also consider the case of i�i�d� variables Y n
i �or more

generally triangular arrays of martingale increments� as in Remark ��#� such that the
processes Zn of ������ converge in law to a L�evy process Z� this would probably require
the embedding technique of Monroe ����� but we have not tried to do this� �

� Appendix� some complements on stochastic di�erential

equations

Here we gather some results about Equation ������� First� assume that Z is a L�evy process
and a locally square�integrable martingale� so that hZ�Zit � "ct for some "c � �� We are

�#



also given a di�erentiable function g� such that

jg���j � K� jg��x�j � K� �����

In this case both ������ and the linear equation ����#� have unique �strong� solutions�
We have the following estimates� which rely upon Gronwall�s Lemma and the property
hZ�Zit � "ct�

E�sup
s	t

jXx
s j�� � ��x� 	 �� exp��K�"ct�� E�sup

s	t
jX �x

s j�� � � exp��K�"ct�� �����

Second� we prove the following lemma� which is less well known than the previous
results�

Lemma ��� Assume that the L�evy process Z above has bounded jumps� and that the coef�

�cient g is in�nitely di	erentiable with bounded derivatives of all order� and de�ne Pt and
Qt by ������� Then for every twice continuously di	erentiable function f which is bounded

as well as its two �rst derivatives� the function �t� x� �� Ptf�x� is twice di	erentiable in x
and once di	erentiable in t� and all the partial derivatives are continuous in �t� x�� and

�

�x
Ptf�x� � Qtf

��x�� �����

Proof� �� In addition to ������ and ����#�� consider also the linear equation

X ��x
t �

Z t

�


g���Xx

s���X
�x
s��

� 	 g��X �x
s��X

��x
s�
�
dZs� �����

Then we have the following properties� to be proved below�

the maps x �� Xx
t � X

�x
t � X

��x
t are di�erentiable in IL��P �� �����

the derivatives of x �� Xx
t � X

�x
t are X �x

t and X ��x
t respectively� �����

the variables �jXx
t j�� jX �x

t j�� jX ��x
t j��t����T � are uniformly integrable� �����

We readily deduce from these properties that ����� holds and moreover

��

�x�
Ptf�x� � E�f ���Xx

t ��X
�x
t �� 	 f ��Xx

t �X
��x
t � ���#�

hold� Further� the processes Xx� X �x and X ��x are continuous in time� in probability�
hence ����� and ������ together with ������ and ���#�� readily imply that Ptf�x� and its
two rst derivatives in x are continuous in �t� x��

Moreover it is well known that f belongs to the domain of the innitesimal generator
A of �Pt�� and

Af�x� �
c

�
g�x��f ���x� 	

Z
F �dz��f�x	 g�x�z� � f�x�� f ��x�g�x�z��

Hence �
�tPtf�x� � PtAf�x� exists and is continuous in �t� x�� because Af is bounded and

continuous�

��



�� It remains to prove that ������ ����� and ����� hold� For this� we will apply some
results of Chapter � of ���� The continuous martingale part of Z is Zc � cW for some
c 	 � and a Wiener process W � let � be the jump measure of Z� whose compensator
is ��dt� dx� � dt � F �dx�� where F is the L�evy measure of Z� which by hypothesis has
compact support� The function ��x� � x is thus in ILp�F � for all p 	 �� Then we set for
� � IR and y � �y�� y�� y�� � IR��

H���
t ��� � x	 �� H���

t ��� � �� H��� � ��

A� � ��

B����y� �� t� � g�y��� B����y� �� t� � g��y��y�� B����y� �� t� � g���y���y��� 	 g��y��y��

C��y� �� t� z� � B��y� �� t�z�

Then the set of the three equations ������� ����#� and ����� for x	 � instead of x reduces
to Equation ������ of ���� with Y � � �Xx��� X �x���X ��x���� The assumptions of Theorem
���� of ��� are then obviously satised� and this theorem states that Y �

t is di�erentiable in
all ILp�P � in �� at � � �� and that the derivative is obtained by formal di�erentiation of the
equation giving Y �� and that all powers of the derivatives jY ��

t jp are uniformly integrable
when t runs through any nite interval� these properties imply ������ ����� and ������ �

Third� we give an estimate as in ����� for the kernel Qt�

Lemma ��� Assume ������ If f is a bounded Lipschitz function� for all s � t we have

with C � sup�jf�x�j� jf�x��f�y�jjx�yj � x� y � IR� x �� y��

jQtf�x�j � �C eK
��ct�

jQtf�x��Qsf�x�j � #KC
p
� 	 x� e�K

��ct
p
t� s�

��
� �����

Proof� The rst estimate in ����� follows from ������ For s � t we have�

Xx
t �Xx

s �

Z t

s
g�Xx

r��dZr�

X �x
t �X �x

s �

Z t

s
g��Xx

r��X
�x
r�dZr�

Hence by ����� and ����� we readily get

E�jXx
t �Xx

s j�� � �K��� 	 x��eK
��ct�t� s��

E�jX �x
t �X �x

s j�� � �K�e�K
��ct�t� s��

Now we write

Qtf�x��Qsf�x� � E�f�Xx
t ��X

�x
t �X �x

s �� 	E��f�Xx
t �� f�Xx

s ��X
�x
s ��

and the second estimate in ����� follows from what precedes and from ����� again� �

��
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