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Smoothness is a desirable characteristic of interpolated zero curves; not only is it 
intuitively appealing, but there is some evidence that it provides more accurate 
pricing of securities. This paper outlines the mathematics necessary to 
understand the smooth interpolation of zero curves, and describes two useful 
methods: cubic-spline interpolation—which guarantees the smoothest 
interpolation of continuously compounded zero rates—and smoothest forward-
rate interpolation—which guarantees the smoothest interpolation of the 
continuously compounded instantaneous forward rates. Since the theory of spline 
interpolation is explained in many textbooks on numerical methods, this paper 
focuses on a careful explanation of smoothest forward-rate interpolation.
Risk and other market professionals often show a 
keen interest in the smooth interpolation of 
interest rates. Though smooth interpolation is 
intuitively appealing, there is little published 
research on its benefits. Adams and van 
Deventer’s (1994) investigation into whether 
smooth interpolation affected the accuracy of 
pricing swaps lends some credence to the 
intuitive belief that smooth interpolation gives 
more accurate results than linear interpolation. 
The authors took swap rates for maturities of 
one, two, three, five, seven and 10 years together 
with the six-month zero rate, removed the seven-
year swap rate from the data and created the 
implied zero-rate curve from the remaining data. 
The resulting zero-rate curve was used to 
calculate the missing seven-year swap rate which 
was then compared to the actual seven-year swap 
rate. The authors found that swap rates 
calculated with smoothly interpolated zero-rate 
curves were closer to the actual seven-year swap 
rate than swap rates calculated with curves that 
were linearly interpolated. 

This paper aims to describe the mathematics and 
finance theory necessary for an understanding of 

smooth interpolation. There is a simple 
mathematical definition of smoothness, namely, a 
smooth function is one that has a continuous 
differential. Thus, any zero curve that can be 
represented by a function with a continuous first 
derivative is necessarily smooth. However, 
interpolated zero curves are not necessarily 
smooth; for example, curves that are created by 
the well-known technique of linear interpolation 
of a set of yields are not smooth, since the first 
derivative is discontinuous. This article extends 
the simple mathematical definition of 
smoothness, and then describes the implications 
of the extended definition for the smooth 
interpolation of zero curves.

The mathematics of zero curves

The mathematics of zero curves is derived from 
the prices of discount bonds; a discount bond 
being a security that pays, with certainty, a unit 
amount at maturity. The following axioms define 
the discount bond market:

• The market trades continuously over its 
trading horizon: it extends from the current 
time to some distant future time such that 
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Interpolation of zero curves
the maturities of all the instruments to be 
valued fall between now and the trading 
horizon. 

• The market is frictionless: no transaction 
costs or taxes are incurred in trading, there 
are no restrictions on trade (legal or 
otherwise) such as margin requirements on 
short sales, and the goods in the market are 
infinitely divisible.

• The market is competitive: every trader can 
buy and sell as many bonds as desired 
without changing the market price.

• The market is efficient: information is 
available to all traders simultaneously, and 
every trader makes use of all the available 
information.

• The market is complete: any desired cash 
flow can be obtained from a suitable self-
financing strategy based on a portfolio of 
discount bonds.

• There are no arbitrage opportunities: the 
price of a portfolio is the sum of its 
constituent parts.

• All traders in the market act to maximize 
their profits: they are rational and prefer 
more to less.

These axioms are necessary for the development 
of the mathematics of zero curves. However, they 
may not apply to real markets. For example, one 
conclusion that can be drawn from the axioms is 
that the market prices equal the intrinsic value of 
the bonds; that is, there is no “noise” in the 
market prices. Further, the market completeness 
axiom implies that all points on the zero curve 
are known. In fact, the zero curve is not defined 
by an infinite set of values, but rather by a 
discrete, finite set. 

Discount bonds are often called zero coupon 
bonds, in contrast to coupon bonds that make 
more than one cash payment to their owner. It is 
usual to distinguish between yield curves derived 
from the periodically compounded yields to 

maturity of coupon-bearing bonds and yield 
curves derived from the continuously 
compounded yields to maturity of zero coupon 
(discount) bonds. This article is concerned only 
with the latter, which are called zero curves. In 
addition, the term zero yield is used to refer to 
the continuously compounded yield to maturity 
of a zero coupon bond. Note that all rates are 
continuously compounded. It is an easy matter to 
convert to and from periodic compounding, and 
the use of continuous compounding enables the 
expression of the mathematics of zero curves in a 
particularly simple and elegant form, which 
greatly simplifies the discussion.

Prices and yields

Consider a bond which is sold now, at time t, and 
is due to mature at time x, where . The 

trading horizon, , is much greater than zero 
and is longer than the maturity of any bond. 
Suppose the price of the bond is denoted by 

. Since the bond pays a unit amount at 
maturity, we must have . When  
the bond sells at a discount and . Thus, 
in general, we have .

Now, define the zero yield in terms of the bond 
price. The zero yield, as seen at time t, of a bond 
that matures at time x, , is denoted by 

 and is defined, for , by the relationship

 (1)

Equation 1 states that the price of the bond at 
time t is equal to its discounted value. Note that 
this relationship does not define  since 

 for all T; so, for a discount bond 
maturing at , both sides of the equation are 
equal to unity, irrespective of the value of . 
The zero yield in terms of the price of a bond is 
obtained by rearranging Equation 1:

  (2)

provided . 

t x x∞<≤

x∞
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Interpolation of zero curves
Forward rates

Suppose that at time t we enter into a forward 
contract to deliver at time  a bond that will 

mature at time . Let the forward price of the 

bond be denoted by . At the same time, 

a bond that matures at time  is purchased; the 

price of this bond is . Further, again at 

time t, a bond that matures at time  is bought; 

the price of this bond is . Note that the 
complete-market axiom guarantees that these 
bonds exist. In addition, the axiom specifying 
that there are no arbitrage opportunities implies 
that the price of the bond maturing at time  

must be equal to the product of the price of the 
bond maturing at time  and the forward price: 

 (3)

Let the implied forward rate, as seen at time t, for 
the period  to  be , defined by:

 (4)

Note the similarity between the definition of the 
implied forward rate (as defined in Equation 4) 
and the zero rates (as defined in Equation 1). On 
substituting Equation 1 and Equation 4 into 
Equation 3 we obtain

 (5)

Rearranging Equation 5 gives

 (6)

The forward rate , defined in 

Equation 6, is the period forward rate. However, 
the instantaneous forward rate is of much greater 
importance in the theory of the term structure. 
The instantaneous forward rate for time x, as 
seen at time t, is denoted by  and is the 
continuously compounded rate defined by

 (7)

where 

To derive an equation for the instantaneous 
forward rates in terms of the bond prices, 
Equation 2 can be rearranged to obtain

 (8)

Differentiating Equation 8 with respect to x gives

 (9)

Finally, by direct comparison of Equation 7 and 
Equation 9

 (10)

It is now possible to define , which, as noted, 
is not defined by Equation 2. First, note that 
Equation 7 implies . Then, noting 
that , Equation 10 can be used to 
obtain

Defining the zero curve

Assume that the prices of all bonds in the market 
are known; the implication being that the value 
of  for  is known. Then, the 

current zero curve (i.e., the one seen at time t) 
comprises the zero yields, as seen at time t, of the 
zero coupon bonds, which mature between t and 

, inclusive; that is, the current zero curve 

defined by  for .

Though the zero curve is defined in terms of the 
zero yields, it can be defined in terms of the 
instantaneous forward rates. In this case, the zero 
curve is defined by the instantaneous forward 
rates  for . The zero yield in terms of 

the instantaneous forward rate is obtained by 
integrating Equation 7:

 (11)
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Interpolation of zero curves
This completes the essential mathematical 
theory of zero curves. In the following sections, 
the relevance of this theory to the interpolation 
of zero curves is shown, with particular emphasis 
on smoothest forward-rate interpolation.

The smooth interpolation of zero curves

To construct zero curves from market data, 
assume that the n data values are 

where  are the times to 

maturity of  zero coupon bonds and 
 is the zero rate corresponding to the 

time to maturity  ( ). Note that we 

have implicitly set , as is customary when 
constructing a zero curve from current market 
data. This allows the simplification of the 
notation as follows. Use  and  to denote 

 and , respectively. Using this new 
notation, .

In developing the mathematical theory of zero 
curves, it is assumed that the value of  for 

 is known. In reality, the current zero 

curve is not defined by this infinite set of values 
implied by the complete market axiom, but, 
rather, by a set of discrete data values , 

each value comprising a time to maturity and a 
zero rate. If we wish to use the mathematics of 
zero curves derived above, the discrete set of 
values must be extended to an infinite set. This is 
achieved by defining the current zero curve by a 
combination of the set of discrete data values and 
a method for interpolating those values. Given 
these, the value of  for any value of x in the 
range  can be found. Note that one 

consequence of this definition of the zero curve is 
that changing the interpolation method changes 
the zero curve.

Interpolation

Interpolation methods provide a means to 
calculate values of  for times xi that do not 
coincide with the given times to maturity, 

. Though there are many interpolation 

methods, here, we consider those methods that 
require knowledge of the data points only. This 
excludes, for example, Hermitian interpolation, 
which requires knowledge of the derivative 
values as well as the values at the data points. In 
addition, the use of algebraic polynomials, such 
as Lagrange polynomials, are excluded because 
the order of the interpolating polynomial must, in 
general, be , which implies that there could 
be as many as  maxima and minima, and this 
is not a desirable property of a zero curve.

Consequently, we consider only piecewise spline 
curves. Splines were originally strips of elastic 
material used by engineering draughtsmen to 
draw smooth curves through a given set of 
points, known as knot points. Being elastic, the 
splines assume the shape that minimizes their 
strain energy. Unconstrained, this shape is a 
straight line. However, when the splines are 
constrained to pass through a set of points, and 
no other constraints are imposed (e.g., they were 
not twisted at the ends), an elastic spline assumes 
a shape that is “as straight as possible.” 

Analogously, the zero curve is defined by the n 
data points , where each 
one of the data values represents a knot point, 
that is a point at which the (as yet unspecified) 
spline segments join. If the spline segment 
function for the interval  is denoted 

by , then the zero curve can be defined by the 

set of functions . If it is necessary 

to extrapolate beyond the end values,  and 

, two further spline functions,  and , 
will be needed; the former being used for the 
range at the left-hand end, , and the 
latter for the range at the right-hand end, 

. Though nothing has been said about 
the form of the spline functions, polynomial 
splines are sufficient for our purpose.

The simplest type of interpolation algorithm is 
the two-point algorithm, where interpolation of 
values in the interval  depends only 

on the two points  and . In 
contrast, the multi-point algorithm requires 
knowledge beyond the adjacent knot points. The 
well-known technique of linear interpolation is a 
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Interpolation of zero curves
two-point algorithm, and cubic-spline 
interpolation is a multi-point algorithm.

Smoothness

Recall that a smooth function is one that has a 
continuous differential. Thus, any zero curve that 
can be represented by a continuous function is 
smooth. However, the same is not necessarily 
true for interpolated zero curves; for example, 
curves that are created by linear interpolation are 
not smooth. This observation applies to all two-
point interpolation formulae, since, in general, 
there is a discontinuity in the first derivative at 
the knot points. For similar reasons, it also 
applies to any method that does not use the full 
set of data points in the construction of the spline 
curve. In general, there must be at least one knot 
point at which the derivatives are not 
continuous. Consequently, only those 
interpolation methods that use all of the data 
points to construct the spline curve are 
considered.

The mathematical definition of smoothness does 
not help to distinguish between different spline 
functions; in particular, it does not provide a 
measure of smoothness. To define a measure of 
smoothness, we begin with a simple idea that 
makes intuitive sense and then give it a precise 
meaning. Intuitively, interpolation functions with 
the smallest number of maxima and minima have 
the fewest possible “bends,” that is, they are as 
close as possible to a straight line. Recall that 
straight lines can not be used to join the knot 
points, because when data sets contain more 
than two points, linear interpolation is not 
smooth. 

Elastic splines are a mechanical equivalent of our 
intuitive idea to draw a curve with the fewest 
possible bends, as well as a means of defining a 
precise measure of smoothness. The strain energy 
depends on the shape, , assumed by the spline 
(  is used to avoid confusion with , which is 
used to denote forward rates). It can be shown 
(see, for example, Schwarz (1989)) that the 
strain energy over the interval  is related to 
the quantity

Though the theory of strain energy is not 
discussed, note that the smaller the quantity, the 
less the strain energy or, intuitively, the smaller 
the “bending” of the elastic spline. This quantity 
is taken as the measurement of smoothness for 
the splines: the smaller this measure of 
smoothness, the smoother the interpolating 
curve. The measure of smoothness shall be used 
to determine the “best” interpolation methods 
for zero curves.

A second property of elastic splines is useful. 
Since the only constraints are that the splines 
must pass through the given points, the parts of 
the splines that project beyond the curve defined 
by the specified points are not subject to any 
constraints. This implies that the portions of the 
splines beyond the ends of the specified points 
are linear (since this minimizes the strain energy 
in those parts of the splines). Thus, the second 
derivatives of the splines beyond the given data 
points are zero. 

The determination of the smoothest possible 
interpolation method depends on whether we 
want to find the smoothest zero curve or the 
smoothest forward-rate curve (specifically, the 
smoothest continuously compounded forward-
rate curve). Thus, two interpolation methods are 
considered. Cubic-spline interpolation 
guarantees the smoothest zero curve, and 
smoothest forward-rate interpolation guarantees 
the smoothest continuously compounded 
forward-rate curve. Since cubic-spline 
interpolation is a standard technique dealt with 
in many books on numerical methods, it is 
reviewed only briefly here.

Smoothest zero-rate interpolation 

The cubic-spline interpolation method produces 
smooth zero curves. Moreover, it can be shown 
that (see, e.g., Burden and Faires (1997)), for the 
measure of smoothness defined by the strain 
energy, no interpolating function passing through 
the given data values is smoother than the cubic 
spline passing through the same points. The most 
commonly used cubic spline is the natural cubic 
spline, which is constructed so that the second 
derivatives at both end points are zero. This is 
analogous to allowing the ends of the splines to 
be unconstrained so that the free ends are linear.

g x( )
g x( ) f x( )
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∂
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Interpolation of zero curves
Values beyond the two end points are calculated 
using linear extrapolation. However, if the 
gradient of this line is too steep, the extrapolated 
values may be unacceptably high (positive 
gradient) or negative (negative gradient). If our 
aim is to create a zero curve with a better shape, 
it is possible to constrain the cubic spline so that 
the gradient at the right-hand end is zero; the 
constrained spline behaves like zero curves that 
tend to flatten at longer maturities. Then linear 
extrapolation gives a smooth curve, albeit a 
horizontal one for maturities longer than the 
maturities in the data set. 

A financial cubic spline denotes a cubic spline 
that is constrained so that its derivative at its 
right-hand end is zero, and its second derivative 
at the left-hand end is also zero. These additional 
constraints mean that it will have a slightly 
different shape than the natural cubic spline 
passing through the same set of points, so it will 
not be the smoothest curve to interpolate those 
points (the natural cubic spline is). However, no 
other interpolation function that is subject to the 
same constraints as the financial cubic spline, 
and which fits the given data, is smoother than 
the financial cubic spline that interpolates that 
data.

A further property of cubic-spline interpolation is 
worthy of mention. The general equation for a 

cubic is , suggesting the 
need for four coefficients (a, b, c and d) for each 
section of the spline curve. However, it is also 
possible to define a cubic spline in terms of the 
given x and y values and the second derivatives 
at the knot points. Thus, to create a cubic-spline 
zero curve, it is necessary to find only the second 
derivatives at the knot points, which leads to a 
set of tri-diagonal linear equations. A standard 
algorithm for solving sets of linear equations is 
LU decomposition and back-substitution. When 
the set of equations is tri-diagonal, the algorithm 
takes a particularly efficient form so that the 
implementation of cubic-spline interpolation is 
computationally efficient. These algorithms are 
described in standard texts on numerical 
methods (see, e.g., Burden and Faires (1997)).

Smoothest forward-rate interpolation

Though smooth zero curves are desirable, 
practitioners often state a preference for zero 
curves that have the smoothest forward rates. 
The interpolating function that guarantees the 
smoothest continuously compounded 
instantaneous forward-rate curve is a quartic 
spline. Recall that the data consist of zero rates, 
not forward rates. Therefore, the quartic spline 
that is constructed does not pass through the 
data points. In this section, the equations of the 
smoothest forward-rate interpolating function 
are given, and the linear equations to be solved 
to find the coefficients defining that function are 
specified.

We wish to construct a quartic spline for each of 
the  sections between the knot points. The 
ith spline segment can be expressed as

 (12)

where  represents the function  over the 

range . 

Each spline segment is a quartic polynomial and 
there are  segments;  
unknown coefficients must be found. 

The system of linear equations is defined by the 
following constraints: 

• the  original zero rates must be recoverable 
from the zero curve

• there must be continuity:

• at the interior knot points

• of the first derivatives at the  
interior knot points

• of the second derivatives at the  
interior knot points

• of the third derivatives at the  
interior knot points. 

Thus far,  conditions have 
been defined. The additional three conditions 
imposed are ,  and . 

The first condition, , ensures that the 

y a bx cx2 dx3+ + +=
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Interpolation of zero curves
right-hand end of the curve is flat. The last two 
of these conditions constrain the second 
derivatives of the forward curve at both the left-
hand and right-hand ends to be zero. Together, 
these  conditions ensure that the 
interpolating spline has the smoothest 
instantaneous forward rates. 

Each of these constraints is considered in 
constructing the linear equations that will be 
solved to find the coefficients. 

Recovering the yields

Recall from Equation 11 that:

 (13)

Then, since , Equation 13 takes the form

This must apply at each knot point. Thus, at the 
knot point 

 (14)

This is true for . Substituting 
Equation 12 for  in Equation 14 over this 
range and integrating gives 

 (15)

We consider two cases. In the first case, the spot 
rate at time zero is known; in the second case, it 
is unknown. 

Equation 15 can be used to match all yields 
except the first. If the spot rate at  is known 
( ), then  and 

In the second case, where , the spot rate at 
time zero is unknown. Again, from Equation 11

 (16)

In addition, the functional form of f(x) must be 
specified. Since , an obvious choice is 

to use linear extrapolation for the range ; 
this corresponds to the straight line that an 
unconstrained elastic spline would take. Thus, 
the equation for the left-hand extrapolation is:

 (17)

where

 (18)

 (19)

The values of m and  are derived directly from 
Equation 12. Substituting Equation 17 into 
Equation 16, we obtain

Hence, the extrapolated zero rate is

 (20)

The validity of Equation 20 can be checked by 
noting that , as expected. 
Therefore, 

 (21)

Equation 21 is also valid for ; so it suffices 
whether or not the spot rate at time zero is 
known.

First, note that the validity of the extrapolation 
backward from  to time zero depends on the 
value of . Here,  is the shortest maturity; so 
the larger its value, the greater the time to 
maturity over which extrapolation is linear. Thus, 
the smaller , the better; if possible, the 
overnight rate should be used.
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Interpolation of zero curves
Continuity constraints

Continuity at the interior knot points is 
equivalent to requiring that 

 for , so that, on 

substituting the equations for  and 

Continuity of the first derivatives at the interior 
knot points is equivalent to 

 for , so that

Continuity of the second derivatives at the 
interior knot points is equivalent to

 for , so that

Continuity of the third derivative at the interior 
knot points is equivalent to the constraint 

 for , so that

Additional constraints

The first additional constraint, , implies

The second additional constraint, , 
implies

The third additional constraint, , 
implies

Solving the system of equations

The linear equations defined above are arranged 
into blocks of five equations each. If the blocks 

are numbered  to correspond to the 
spline segments , then the rows in 
block i ( ) are, in order, 

• Match 

• Ensure continuity at internal knot points: 

• Ensure continuity of first derivative at 
internal knot points:

• Ensure continuity of second derivative at 
internal knot points:

• Ensure continuity of third derivative at 
internal knot points: 

The last block, , contains the rows

• Match 

• Set 

• Set 

• Match 

• Set 

Note that the second, third and fifth lines 
contain the additional constraints.

Unlike cubic splines, the system of linear 
equations describing quartic splines cannot be 
represented by a tri-diagonal matrix; standard 
diagonal decomposition and back-substitution 
must be used to solve the system of equations. 
(For a description of this standard method, see 
Burden and Faires (1997)). 

Once the coefficients are known, it is possible to 
interpolate and extrapolate values from the zero 
curve, such that these values correspond to the 
smoothest forward-rate curve. 

Interpolating values from the zero curve

In order to interpolate the value of  for 
, first determine the index i such that 

Si xi 1+( ) Si 1+ xi 1+( )= 0 i n 2–≤ ≤

Si Si 1+

ai bixi 1+ cixi 1+
2 dixi 1+

3 eixi 1+
4+ + + +

ai 1+ bi 1+ xi 1+ ci 1+ xi 1+
2 di 1+ xi 1+

3 ei 1+ xi 1+
4+ + + +=

S ′ i xi 1+( ) S ′ i 1+ xi 1+( )= 1 i n 1–≤ ≤

bi 2cixi 1+ 3dixi 1+
2 4eixi 1+

3+ + +

bi 1+ 2ci 1+ xi 1+ 3di 1+ xi 1+
2 4ei 1+ xi 1+

3+ + +=

S ′′ xi 1+( ) S′ ′ i 1+ xi 1+( )= 1 i n 1–≤ ≤

ci 3dixi 1+ 6eixi 1+
2+ + ci 1+ 3di 1+ xi 1+ 6ei 1+ xi 1+

2+ +=

S ′′ ′ i xi 1+( ) S ′ ′ ′ i 1+ xi 1+( )= 1 i n 1–≤ ≤

di 4eixi 1++ di 1+ 4ei 1+ xi 1++=

f ′ xn( ) 0=

bn 1– 2cn 1– xn 3dn 1– xn
2 4en 1– xn

3+ + + 0=

f″ xn( ) 0=

cn 1– dn 1– xn en 1– xn
2+ + 0=

f″′ x1( ) 0=

c1 3d1x1 6e1x1
2+ + 0=

1 2 … n 1–, , ,

S1 S2 … Sn 1–, , ,

1 i n 1–<≤

yi 1+

Si xi 1+( ) Si 1+ xi 1+( )=

S′ i xi 1+( ) S′ i 1+ xi 1+( )=

S′′ i xi 1+( ) S ′ ′ i 1+ xi 1+( )=

S′′ ′ i xi 1+( ) S ′ ′ ′ i 1+ xi 1+( )=

i n 1–=

yn

S′n 1– xn( ) 0=

S′′ n 1– xn( ) 0=

y1

S′′ 1 x1( ) 0=

f x( )
x1 x< xn≤
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Interpolation of zero curves
. Then, from Equation 11

The value  has been excluded to avoid 

problems with division by zero when . 

Extrapolating values from the zero curve

It has already been shown that, if , the 
forward rates can be extrapolated using 
Equation 17. Now, the value of the zero rate at 

 is given by 

where f1 and m are defined by Equations 18 and 
19. 

Two cases must be considered,  and 

. 

The integral of the forward rate is

 

where . Therefore, 

Finally, consider extrapolating zero rates for 
values of x such that . Recall that the 
additional constraints stipulate that the first and 
second derivatives of the right-hand end of the 
forward-rate curve be zero, that is 

Thus, it is possible to extrapolate the right-hand 
end of the forward-rate curve with constant 

value  where 

Thus, the integral of the forward rate is 

 (22)

From Equation 22, the zero rate is

 

for . 

Comparing interpolation methods

Most practitioners judge the quality of a zero 
curve not by the quality of the underlying 
mathematics, but by the quality of the curve 
itself. In the absence of an objective measure of 
quality, they rely on subjective observation of the 
candidate curves. To demonstrate the nature of 
the curves produced by the methods discussed, 
zero curves constructed from the same initial 
data using different interpolation methods are 
presented and compared. The data is presented 
in Table 1.

Table 1: Zero-rate data

xi x≤ xi 1+<

y 1
x
-- f u( ) ud

0

xi

� f u( ) ud

xi

x

�+
� �
� �
� �
� �

1
x
-- yixi f u( ) ud

xi

x

�+
� �
� �
� �
� �

= =

1
x
-- xiyi ai x xi–( )+

bi

2
--- x2 xi

2–( )+
�
�=

ci

3
--- x3 xi

3–( )
di

4
---- x4 xi

4–( )
ei

5
--- x5 xi

5–( )+ +
�
�+

x x1=

x1 0=

0 x x1≤ ≤

x 0=

y 0( ) f 0( ) f1 mx1–= =

0 x x1≤ ≤

xn x<

f u( ) ud

0

x

� f1 m u x1–( )+( ) ud

0

x

� x f1 m x
2
-- x1–
� �
� �+

� �
� �= =

0 x≤ x1<

y f1 m x
2
-- x1–� �
� �+=

xn x<

S′n 1– xn( ) 0=

S ′ ′ n 1– xn( ) 0=

Maturity 
(years) Zero rate

0.5 0.0552

1 0.0600

2 0.0682

4 0.0801

5 0.0843

10 0.0931

15 0.0912

20 0.0857

fn

fn an 1– bn 1– xn cn 1– xn
2 dn 1– xn

3 en 1– xn
4+ + + +=

f u( ) ud

0

x

� f u( ) ud

0

xn

� f u( ) ud

xn

x

�+=

xnyn fn ud

xn

x

�+=

xnyn x xn–( )fn+=

y
xnyn x xn–( )fn+

x
---------------------------------------=

xn x≤
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Interpolation of zero curves
The following three graphs show the zero- and 
forward-rate curves interpolated from this data 
using the smoothest forward rate, natural cubic-
spline and financial cubic-spline interpolation 
methods. Note that though the maximum 
maturity in the data is 20 years, the graphs have 
been extended to 30 years to show the 
differences between the extrapolated values.

Figure 1 shows the curves constructed from the 
smoothest forward-rate interpolation method. 
Note that the gradient of the forward-rate curve 
is zero at the maximum maturity of 20 years and 
the gradient is zero when extrapolated. Beyond 
the maximum maturity, the zero curve tends 
towards the forward-rate curve with increasing 
maturity. Both the zero and the forward-rate 
curves are smooth.

 Figure 1: Smoothest forward-rate interpolation

Figure 2 shows the curves constructed from the 
natural cubic-spline interpolation method. Note 
that the extrapolated zero curve is downward 
sloping, whereas most zero curves tend to zero 
gradient at the right-hand end. Also, note that 
the extrapolated zero curve is linear and leads 
inevitably to negative zero and forward rates. 
Both the zero and the forward-rate curves are 
smooth.

Figure 3 shows the curves constructed from the 
financial cubic-spline interpolation method. This 
method corrects the problem with the 

extrapolated rates, but distorts the forward-rate 
curve. Though the zero curve is smooth, there is 
an abrupt transition at the maximum maturity 
(20 years) where the forward-rate curve ceases to 
be smooth.

 Figure 2: Natural cubic-spline interpolation

 Figure 3: Financial cubic-spline interpolation

The zero curves are very similar in the maturity 
range of the given data, but differ substantially in 
the extrapolated sections. As illustrated in 
Figure 4, the zero curves are similar up to about 
11 years when the zero rates attain their 
maximum value. Beyond that point, they show 
considerable differences and only the smoothest 
forward-rate curve has a shape consistent with 
that of the majority of zero curves.
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Interpolation of zero curves
 Figure 4: Comparing zero curves

The differences in the resulting forward-rate 
curves are more notable, as illustrated in 
Figure 5. Though the data was chosen to 
illustrate the differences among the interpolation 
methods, financial cubic-spline interpolation 
always causes similar distortions of the forward-
rate curve. Though natural cubic-spline 
interpolation does not distort the forward-rate 
curve, the right-hand end of the curve does not 
flatten, and the method is less suitable for 
calculating rates for maturities close to the 
maximum maturity.

 Figure 5: Comparing forward curves

Discussion

Given that there are three ways to interpolate 
the zero curve, it is natural to ask what 
differences arise from the use of these methods. 
First, it is important to note that all three 
methods interpolate the same set of points, and 

all produce smooth zero curves. Only smoothest 
forward-rate and natural cubic-spline 
interpolation methods produce smooth 
(instantaneous) forward-rate curves. In addition, 
all three methods guarantee the smoothest 
interpolation of a curve, though the smoothest 
curve depends on the chosen method. The 
natural cubic-spline interpolation method 
guarantees the smoothest zero curve and a 
smooth, but not necessarily the smoothest, 
(instantaneous) forward-rate curve. Similarly, the 
financial cubic-spline interpolation method 
guarantees the smoothest zero curve whose right-
hand end is constrained to have a zero gradient; 
it does not guarantee a smooth forward-rate 
curve. Finally, the smoothest forward-rate 
interpolation guarantees, as its name implies, the 
smoothest (instantaneous) forward curve and a 
smooth, but not necessarily the smoothest, zero 
curve.

There is some evidence that using smooth zero 
curves results in more accurate pricing, though 
there is insufficient evidence to show that one 
interpolation method is always the best. Hence, 
practitioners have to make a choice, and that will 
depend on the nature of the market data from 
which the zero curve is constructed. Swap 
traders, in particular, desire smooth forward rates 
and one would expect them to prefer smoothest 
forward-rate interpolation to cubic-spline 
interpolation. Other practitioners may regard the 
degree of smoothness of the zero curve to be 
paramount. In that case, they will have to choose 
between the two cubic-spline interpolation 
methods, choosing the one that best suits their 
needs. Both cubic-spline interpolation methods 
give better results for short- and medium-term 
maturities, whereas, the smoothest forward-rate 
interpolated curve can be used over the whole 
range of maturities. As smoothest interpolation 
methods are more widely adopted, the benefits 
and trade-offs of the various methods will be 
better defined and better understood.

Conclusions

This discussion has extended the mathematical 
concept that a smooth function is one that has a 
continuous first derivative. To do this, a measure 
of smoothness used by engineers when fitting 
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Interpolation of zero curves
smooth curves to a finite set of points was 
adopted. This measure of smoothness implies 
that there in no smoother interpolating function 
than the set of cubic splines interpolating the 
given points.

In addition, we develop a theory of the 
mathematics of zero curves that enables the 
definition of a real zero curve in terms of a set of 
market data points and an interpolation method. 
Without this dual identity (data points and 
interpolation method) the assumed bond market 
is incomplete and the theory does not apply. 
Many practitioners have been in the habit of 
extracting a curve by bootstrapping, which 
typically implies the use of a two-point 
interpolation formula, and then using a different 
interpolation formula when using the curve to 
value cash flows. The dual nature of interpolated 
zero curves implies that more care should be 
taken in defining the way in which the rates are 
interpolated.

Finally, by combining the mathematical theories 
of zero curves and smoothness, we show that the 
smoothest interpolation method depends on 
whether the smoothest zero rates or the 
smoothest, continuously compounded forward 
rates are desired. The well-known cubic-spline 
interpolation method ensures that the smoothest 
zero rates approach is well established as an 
interpolation method in financial software 
systems. The smoothest forward-rate 
interpolation method, which ensures the 
smoothest continuously compounded forward 
rates, is as well known. This method uses quartic 
splines and it was possible to give a full account 

of how to set up the system of linear equations to 
solve for the coefficients of these quartic splines. 
In addition, it is shown how to interpolate values 
and how to deal with rates beyond the ends of 
the zero curve.

There is anecdotal evidence that finance 
practitioners consider maximum smoothness to 
be intuitively important. The little research that 
has been done indicates there is some basis for 
this intuitive judgement. A better understanding 
of the interpolation of zero curves depends on 
the dual nature of the definition of a zero curve 
in terms of both the market data points and the 
interpolation method. This understanding—
together with the knowledge of which method 
guarantees which smoothest curve, and 
experience in the use of those methods—will 
allow risk practitioners to make informed choices 
about the appropriate interpolation method to 
use in different situations.
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